
Java字节码技术

程显峰@OneAPM

我

• 伪技术⼈人员 @OneAPM

• chengxianfeng@oneapm.com

mailto:chengxianfeng@oneapm.com

提纲

• 什么是Bytecode

• Bytecode有哪些⽤用处

• JVM如何运⾏行Bytecode

• ⼏几个有趣的⽰示例

Bytecode是什么

• Java程序的归宿，但从规范上讲和Java已
没有任何关系了

• JVM能够解释执⾏行（JIT也有编译）

• JVM上的汇编语⾔言

Bytecode的⼀一些特点

• 标准JVM使⽤用的堆栈（区别于寄存器）

• ⼀一个字节的指令
• 理论上256个指令（已经⽤用了200+）

• 近⼆二⼗十年，貌似只增加了⼀一个指令
• 有类型的，虽然有点残

Bytecode的⽤用途

• 静态检查
• 调试/热切换/诊断⼯工具

• 在JVM上的新语⾔言

• AOP，ORM

• Mock, 尤其是Fault Injection

为什么折腾字节码

• 语⾔言⽆无关
• 执⾏行效率⾼高
• 不⽤用修改源代码
• 增加语⾔言的特性

⾁肉眼看懂Bytecode

• 诊断性能问题
• 逆向⼯工程
• 安全审计
• 调试遗留代码
• 给FindBugs贡献个插件

JVM如何执⾏行Bytecode

class Add{
int add(int a, int b){

return a + b;
}

}

Add();
 Code:
 0: aload_0
 1: invokespecial #1 // Method java/lang/Object."<init>":()V
 4: return

 int add(int, int);
 Code:
 0: iload_1
 1: iload_2
 2: iadd
 3: ireturn

class Add{
public Add(){

super();
}
int add(int a,

int b){
return a + b;

}
}

[mars@r2d2:~/demo/java-bytecode]
% javac Add.java
[mars@r2d2:~/demo/java-bytecode]
% javap -c Add

0 this
1 <a>
2
3
4

0
1
2
3
4

#1
#2
#3
#4
#5

local vars stack constants

 int add(int, int);
 Code:
 0: iload_1
 1: iload_2
 2: iadd
 3: ireturn

class Add{
int add(int a, int b){

return a + b;
}

}

<a>

<a+b>

•<TYPE> ::= b, s, c, i, l, f, d, a

•常量 (ldc, iconst_1)

•本地变量和堆栈互操作 (load/store)

•数组操作 (aload, astore)

•算数运算 (add, sub, mul, div)

•逻辑和位运算 (iand, ixor)

•⽐比较和分⽀支 (cmpl, ifeq, jsr)

•转换 (l2d, i2l)

TYPE OPERATION

 public static void main(java.lang.String[]);
 Code:
 0: new #2 // class java/util/ArrayList
 3: dup
 4: invokespecial #3 // Method java/util/
ArrayList."<init>":()V
 7: ldc #4 // String Hello
 9: invokevirtual #5 // Method java/util/ArrayList.add:
(Ljava/lang/Object;)Z
 12: pop
 13: return

import java.util.*;

class Main{
public static void main(String[] args){

(new ArrayList<String>()).add("Hello");
}

}

 public static void main(java.lang.String[]);
 Code:
 0: new #2 // class java/util/ArrayList
 3: dup
 4: invokespecial #3 // Method java/util/
ArrayList."<init>":()V
 7: ldc #4 // String Hello
 9: invokevirtual #5 // Method java/util/ArrayList.add:
(Ljava/lang/Object;)Z
 12: pop
 13: return

0
1
2
3
4

0
1
2
3
4

#1 java/lang/Object."<init>":()V

#2 java/util/ArrayList

#3 java/util/ArrayList."<init>":
()V

#4 Hello

#5 java/util/ArrayList.add:(Ljava/
lang/Object;)Z

local vars stack constants

ArrayList Hellotrue<ArrayList><ArrayList>

描述符

• Ljava/util/List;

• ([Ljava/lang/String;)V

调⽤用
• invokespecial

• 初始化，私有，⽗父类
• invokeinterface

• invokestatic

• invokevirtual (通常)

• invokedynamic (⼤大坑，勿⼊入)

import java.util.*;

public class Items{
private List<Integer> ids = new ArrayList<Integer>();
{

ids.add(1);
ids.add(100);
ids.add(100000);

}

public int getId(int i){
return ids.get(i);

}
}

 15: aload_0
 16: getfield #4 // Field ids:Ljava/util/List;
 19: iconst_1
 20: invokestatic #5 // Method java/lang/Integer.valueOf:
(I)Ljava/lang/Integer;
 23: invokeinterface #6, 2 // InterfaceMethod java/util/List.add:
(Ljava/lang/Object;)Z
 28: pop

 0: aload_0
 1: invokespecial #1 // Method java/lang/Object."<init>":()V
 4: aload_0
 5: new #2 // class java/util/ArrayList
 8: dup
 9: invokespecial #3 // Method java/util/ArrayList."<init>":()V
 12: putfield #4 // Field ids:Ljava/util/List;

 29: aload_0
 30: getfield #4 // Field ids:Ljava/util/List;
 33: bipush 100
 35: invokestatic #5 // Method java/lang/Integer.valueOf:
(I)Ljava/lang/Integer;
 38: invokeinterface #6, 2 // InterfaceMethod java/util/List.add:
(Ljava/lang/Object;)Z
 43: pop

 44: aload_0
 45: getfield #4 // Field ids:Ljava/util/List;
 48: ldc #7 // int 100000
 50: invokestatic #5 // Method java/lang/Integer.valueOf:
(I)Ljava/lang/Integer;
 53: invokeinterface #6, 2 // InterfaceMethod java/util/List.add:
(Ljava/lang/Object;)Z
 58: pop

0: aload_0
 1: getfield #4 // Field ids:Ljava/util/List;
 4: iload_1
 5: invokeinterface #8, 2 // InterfaceMethod java/util/List.get:(I)Ljava/
lang/Object;
10: checkcast #9 // class java/lang/Integer
13: invokevirtual #10 // Method java/lang/Integer.intValue:()I
16: ireturn

增加⽇日志

class AppMain
{
 public static void main(String[] args)
 {
 for (int i = 0; i < args.length; i++) {
 System.out.println(args[i]);
 }
 }
}

[mars@r2d2:~/demo/java-bytecode]
% javac AppMain.java
[mars@r2d2:~/demo/java-bytecode]
% java AppMain foo bar bah
foo
bar
bah

[mars@r2d2:~/demo/java-bytecode]
% java -javaagent:byteman.jar=script:appmain.btm AppMain foo bar
entering main
foo
bar
exiting main

RULE trace main exit
CLASS AppMain
METHOD main
AT EXIT
IF TRUE
DO traceln("exiting main")
ENDRULE

RULE trace main entry
CLASS AppMain
METHOD main
AT ENTRY
IF TRUE
DO traceln("entering main")
ENDRULE

Brainfuck 编译器
https://github.com/jkutner/jipsy

https://github.com/jkutner/jipsy

• p 打印变量

• > 将0压⼊入堆栈

• < 弹栈pop

• + 变量加⼀一

• - 变量减⼀一

• [循环开始

•] 循环结束

• s 交换堆栈顶的两个值

0
0

> > + + + [- s + + + + + s] < p

3
0

> > + + + [- s + + + + + s] < p

3
0

> > + + + [- s + + + + + s] < p

2
0

> > + + + [- s + + + + + s] < p

0
2

> > + + + [- s + + + + + s] < p

5
2

> > + + + [- s + + + + + s] < p

2
5

> > + + + [- s + + + + + s] < p

0
15

> > + + + [- s + + + + + s] < p

15
> > + + + [- s + + + + + s] < p

15
> > + + + [- s + + + + + s] < p

[mars@r2d2:~/demo/java-bytecode/jipsy on master]
% mvn exec:java -Dexec.mainClass="Compiler" -Dexec.args="> > + + + [- s + + +
+ + s] < p"
[INFO] Scanning for projects...
[INFO]
[INFO] Using the builder
org.apache.maven.lifecycle.internal.builder.singlethreaded.SingleThreadedBuild
er with a thread count of 1
[INFO]
[INFO]
--
[INFO] Building jipsy 0.0.1-SNAPSHOT
[INFO]
--
[INFO]
[INFO] --- exec-maven-plugin:1.4.0:java (default-cli) @ jipsy ---
[INFO]
--
[INFO] BUILD SUCCESS
[INFO]
--
[INFO] Total time: 4.259 s
[INFO] Finished at: 2015-04-19T17:51:10+08:00
[INFO] Final Memory: 9M/115M
[INFO]
--
[mars@r2d2:~/demo/java-bytecode/jipsy on master]
% java Main
✭
15

new JiteClass("Main") {{
 defineMethod("main", ACC_PUBLIC |
ACC_STATIC,
 sig(void.class, String[].class),
 new CodeBlock() {{
 new(p(ArrayList.class));
 dup();
 invokestatic(
 p(ArrayList.class), "<init>",
sig(void.class));
 ldc("Hello")
 invokevirtual(
 p(ArrayList.class), "add",
 sig(boolean.class, Object.class));
 pop();
 voidreturn();
 }});
}};

import java.util.*;

class Main{
public static void main(String[] args){

(new ArrayList<String>()).add("Hello");
}

}

 public static void main(java.lang.String[]);
 Code:
 0: new #2
 3: dup
 4: invokespecial #3
 7: ldc #4
 9: invokevirtual #5
 12: pop
 13: return

for (String arg : tokens) {
 if ("p".equals(arg)) {
 jPrintInt();
 } else if ("+".equals(arg)) {
 jInc();
 } else if ("-".equals(arg)) {
 jDec();
 } else if (">".equals(arg)) {
 iconst_0();
 } else if ("<".equals(arg)) {
 pop();
 } else if ("s".equals(arg)) {
 swap();
 } else if ("[".equals(arg)) {
 LabelNode[] labelNodes = jBeingLoop();
 loopStack.push(labelNodes);
 } else if ("]".equals(arg)) {
 LabelNode[] labelNodes = loopStack.pop();
 jEndLoop(labelNodes);
 }
}

public void jPrintInt() {
 dup();
 invokestatic(p(String.class), "valueOf", sig(String.class, int.class));
 getstatic(p(System.class), "out", ci(PrintStream.class));
 swap();
 invokevirtual(p(PrintStream.class), "print", sig(void.class, Object.class));
}

public void jInc() {
 iconst_1();
 iadd();
}

public LabelNode[] jBeingLoop() {
 LabelNode begin = new LabelNode();
 LabelNode end = new LabelNode();
 label(begin);
 dup();
 ifeq(end);
 return new LabelNode[] {begin, end};
}

public void jEndLoop(LabelNode[] beginAndEnd) {
 LabelNode begin = beginAndEnd[0];
 LabelNode end = beginAndEnd[1];
 go_to(begin);
 label(end);
}

参考资料

• http://docs.oracle.com/javase/specs/jvms/se8/html/index.html

• http://zeroturnaround.com/rebellabs/

http://docs.oracle.com/javase/specs/jvms/se8/html/index.html
http://zeroturnaround.com/rebellabs/

程显峰
@程显峰-Mars

0
1
2
3
4

0
1
2
3
4

#1
#2
#3
#4
#5

local vars stack constants

