
打造坚实的服务平台
 －－京东服务化实践

李鑫 lixininfo@jd.com

mailto:lixininfo@jd.com

为何要服务化

• 系统规模随着业务的发展⽽而增⻓长，原有系统架构模式，逻辑过于
耦合不再适应；

• 拆分后的⼦子系统逻辑内聚，易于局部扩展；

• ⼦子系统之间通过接⼝口来进⾏行交互，接⼝口契约不变的情况下可独⽴立
变化；

 DB

 APP2 APP1 APP3

交互通过DB来进⾏行

 Data

 Store

 Data

 Store

 Data

 Store

App1 App2 App3

交互通过同步／异步接⼝口来进⾏行

为什么要打造服务平台

3

服务发布

服务寻址

服务调⽤用

调⽤用分析图表

存活监控

服务性能数据收集

服务⻔门户 配置查看／推送

降级

限流

负载均衡

第⼀一代服务框架

• 2012年初开始研发；

• zookeeper集群作为注册中⼼心；

• base on开源的服务框架；

4

5

zookeeper

服务消费者1

服务消费者2

服务消费者3

服务提供者1

服务提供者2

服务提供者3

Web管理端

3.直接服务调⽤用

1.服务提供者进⾏行注册
2.服务消费者进⾏行订阅

地址举例：WebService://172.17.3.18:20880/?
interface=com.jd.arch.HelloService&group=pop&version=0.1

webservice://172.17.3.18:20880/?interface=com.jd.arch.HelloService&group=pop&version=0.1

运营中暴露出的不⾜足
1.客户端

• 许多逻辑放到客户端，推出新的会有版本升级问题；

• watch时效问题；

2.注册中⼼心

• zookeeper作为注册中⼼心⾃自⼰己定制功能、性能受限；

3.服务治理

• 缺乏流控⼿手段，⼤大流量打爆线程池；

• 更改配置需重启，对运营不够友好；

• 缺乏调⽤用监控，没有调⽤用分析图表；
6

7

重装上阵！

新服务平台JSF

• 14年初开始研发；

• ⾃自主研发以获得彻底的掌控⼒力；

• ⽼老版本运营经验⽀支撑功能特性设计；

• 中⽂文名：杰夫

8

9

Index Service

Web管理端

Monitor Service

Event Worker

Index Service

服务注册

服务寻址

配置管理

注册中⼼心

监控数据库

注册中⼼心数据库

管理数据库

Monitor Service

服务提供者1

服务提供者2

服务提供者3

服务消费者1

服务消费者2

服务消费者3

JSF协议直接调⽤用

注册／订阅

定期发送性能统计数据
询问注册中⼼心地址

index服务数据库

10

proxy

Client

ClientTransport ServerTransport

ServerTaskExecutor

Invoker

InterfaceImpl

ClientFilterChain

ServerFilterChain

Header Invocation Body

encode/序列化 decode

负载均衡
链接管理
重试策略

JSF核⼼心技术－RPC⽰示意图

NIO TCP⻓长链接 IO-Multiplex多路复⽤用

JSF核⼼心技术－协议

• 采⽤用Netty来实现⺴⽹网络协议栈，异步事件通讯框架；

• 同⼀一端⼝口同时⽀支持Http、TCP协议访问，根据数据包情况挂载不同
解码器；

• TCP⻓长链接下使⽤用⾃自定义⼆二进制协议；

• HTTP⺴⽹网关来应对跨语⾔言访问；

11

ad cf 00 00 00 7f 00 0f 01 0a 01 00 00 00 0e 16 01 01 01 00 00 07 d0
97 91 c2 da 00 2f 63 6f 6d 2e 6a 64 2e 6a 6c… …

magic full length 协议／序列化／消息.. 消息ID 扩展描述 2000

JSF核⼼心技术 RPC－callback

• TCP⻓长链接是双⼯工的，服务⽅方可以主动推送消息到调⽤用⽅方；

• 调⽤用端检测到参数列表中有Callback类型，登记相应的callback对
象；服务端收到调⽤用时，⽣生成相应的反向调⽤用代理；

• 服务端并在需要时调⽤用此代理来推送消息；

12

Callback
stub

Provider

Callback
Impl

Consumer

JSF核⼼心技术 HA&负载均衡

• ⼀一个服务⾄至少部署两个以上实例；

• 服务消费者运⽤用负载均衡算法选择服务提供者，可以设置权重；

• 服务消费者对服务提供者有健康监测；

• 服务消费者端可以配置重试机制；

13

服务消费者 服务提供者1

服务提供者2可⽤用列表

重连列表

⾮非健康列表

JSF核⼼心技术－性能优化

• 批量处理，请求先写⼊入RingBuffer；

• 优化线程模型，将序列化与反序列化这种耗时的操作从Netty的IO

线程中挪到⽤用户线程池中；

• 启⽤用压缩以应对⼤大数据量的请求，默认snappy压缩算法；

• 定制msgpack序列化，序列化模版，同时还⽀支持fast json、hessian

等多种序列化协议；

14

JSF核⼼心技术－性能优化

15

蓝⾊色⼀一代框架 红⾊色⼆二代框架

JSF核⼼心技术－注册中⼼心

16

服务注册

服务寻址

配置管理

客户端
注册中⼼心数据库

服务注册

服务寻址

配置管理

客户端

A机房

B机房

JSF核⼼心技术－注册中⼼心

17

客户端

客户端

Connection
Manager

Connection
Manager LDM

LDS

LDM
LDS

注册中⼼心数据库A机房

B机房

JSF核⼼心技术－配置

• 服务提供者列表维护，动态推送；

• 查看当前服务⽣生效的配置，动态下发新配置：权重／负载均衡算
法／各种功能开关；

• 服务提供者动态分组⽆无需重启；

18

JSF核⼼心技术－限流

• 每⼀一个服务调⽤用者都有可能成为潜在的DDOS攻击者；

• 给服务的所有调⽤用者带上标⽰示，在系统环境变量中带上APPID；

• 开发计数器服务，限定单位时间内最⼤大调⽤用次数；

• 限定服务端调⽤用最⼤大并发数；

• 服务端执⾏行时检查请求的状态，如等待时间⼤大于超时时间，直接丢
弃；

19

JSF核⼼心技术－降级

• 每个服务接⼝口都有灾备降级开关；

• 配置mock逻辑，返回的结果⽤用json格式预先设好；

• 降级开关打开时将旁路RPC调⽤用；

20

JSF核⼼心技术－监控

21

MonitorService
MonitorService

服务提供者 服务消费者

influx DB

天表⼩小时表分钟表

MonitorQueryService

调⽤用情况报表

JSF核⼼心技术－报警

• provider下线报警（⼼心跳、telnet端⼝口检查）；

• 调⽤用量超限报警；

• Consumer存活报警；

• 耗时超限报警；

• 异常报警；

22

JSF核⼼心技术－监控报表(1)

23

JSF核⼼心技术－监控报表(2)

24

JSF核⼼心技术－弹性云部署
• 按需⾃自动扩展服务能⼒力；

• CAP（Cloud Application Platform）系统⾃自动分配物理机并创建容
器；

• ⾃自动部署系统在容器上部署业务应⽤用；

• 应⽤用启动并在JSF服务注册中⼼心进⾏行注册；

25

接⼝口设计的问题

• “⽆无缝将本地接⼝口发布为远程接⼝口”

• 考虑超时异常的处理；

• 考虑业务逻辑粒度；

• 考虑是否幂等；

• ⼀一些不好的接⼝口设计举例

• Object 对象被擦除实际类型

• 范型参数T

• 嵌套层数太多

26

京东服务化的现状
• 接⼊入4000余个接⼝口；

• 接⼊入的物理机 、docker按独⽴立IP计算共 10000+；

• 每⽇日上百亿次的调⽤用量；

• 商品接⼝口：500＋多个服务实例，9000+消费实例；

27

2012-06-18 2013-06-18 2014-06-18

7 60 700

商品接⼝口单⽇日调⽤用次数 单位（亿次）

研发中的⼀一些感悟…

• 数字化运营（实时数据／阶段性统计数据）；

• 开源软件，必须彻底掌握后再使⽤用；

• 寻找系统的关键点，详尽的⽇日志帮助找到问题所在；

• 客户端逻辑尽量简单，逻辑做到服务端去；

28

研发中的⼀一些感悟…

• 重复发明轮⼦子不是问题，满⾜足客户需求是第⼀一位的；

• 模拟线上实际情况的压测⾮非常重要；

• 定时线上容灾演练，验证应急预案的实际执⾏行效果；

29

下⼀一步研发⽅方向

• 服务治理，根据应⽤用ID的⼀一系列管理增强；

• HTTP/2等协议的⽀支持；

• 增强跨语⾔言⽀支持；

30

Q&A

@InfoQ infoqchina

http://e.weibo.com/infoqchina

