

手Q专项测试最佳

腾讯手Q victorhuang

实 践

Agenda

• 专项测试为何&为何物

• 专项测试体系总览

• 资源类性能测试最佳实践

• 交互类性能测试最佳实践

• 小结与展望

专项测试为何&为何物

• 移动化要面对的两大难题

差异 稀缺

专项测试为何&为何物

• 移动化要面对的两大难题

0

20000000

40000000

60000000

80000000

100000000

120000000

使用用户

0

20

40

60

80

100

120

140

160

180

3 5 31 1 4 2

2013022 GT-
I9300

GT-
S7572

MI 2S MI 2SC MI 3

WebP解码耗时(ms)

相差近两倍

5千万，17.8%

专项测试为何&为何物

网络

磁盘 CPU

交互

电量

时延

内存

流畅

性能 稳定 兼容 安全

专项测试体系建设：兼容

兼容

指标

 App兼容

 OS兼容

 终端硬件兼容

特征 层出不穷

策略

 静态检查 Kapalai（兼容性规则）

 人工测试（众包，众测）

 组件化 （兼容性组件）

专项测试体系建设：稳定

稳定

指标
CRASH率

ANR, WatchDog(Timeout)

特征
场景多，覆盖难

难重现

策略

静态检查

灰度测试+crash上报(RQD=bugly.qq.com)

Monkey测试(NewMonkey)

交互类性能测试最佳实践

1S ,2S, 3S …..30S …..40S

交互类性能建设

交互类性能

指标

流畅度(FPS,JANKY)

响应时延

特征

直观感受

复杂难查

策略

分流资源类性能

数据上报（卡上报，性能数据采集）

性能监控

竞品测试

性能监控

• 基于UI自动化测试的性能监控

性能监控的构成

• 脚本化控件化的UI自动化

• 准确稳定的性能监控接口

• 稳定的网络环境和手机环境

• 一套大家认可的标准

发现类似这样的问题

交互类性能测试最佳实践

12

10

17

9

10

8 8

0

2

4

6

8

10

12

14

16

18

4.7 5 5.1 5.2 5.3 5.4 5.5

QT4A发现性能缺陷/版本

汇总

交互类性能测试最佳实践

• 优势

–复杂->简单

• 场景

• 变更代码

–数值敏感度

• 劣势

–场景有限

–固化思维

交互类性能建设

交互类性能

指标

流畅度(FPS,JANKY)

响应时延

特征

直观感受

复杂难查

策略

分流资源类性能

数据上报（卡上报，性能数据采集）

性能监控

竞品测试

交互类性能测试最佳实践

• 数据上报

–被动上报

• 质量上报 （分析能力：低）

• 卡上报 （分析能力：中）

• 关键路径分析上报（分析能力：高）

–主动上报

• 用户反馈（分析能力：低）

质量上报：流畅度

卡上报

卡上报

关键路径分析上报

发送指令

采集并返回关键路径trace/log

用户反馈分析

小结

01

03

02

04

优势

易于分析定位

客观公平

劣势

无法反应用户的真实感受

优势

表达真实感情

优化带来的真实口碑

劣势

难以形成客观数据

难以分析定位

主动反馈 被动反馈

资源专项体系建设

资源类性能

指标

CPU (cpu usage, overload,thread cpu cost)

内存 (内存泄漏，内存常驻，OOM，GC)

网络(流量合理性，流量兜底策略，传输速度)

磁盘(文件I/O， 数据库，磁盘空间占用, 安装包)

电量(mAh, wakeup, condition, 网络操作频率)

特征
后知后觉

易查

策略

静态检查

动态检查

性能监控/数据上报

静态检查

• 静态检查（增量）

–低性能实践

• I/O资源规则:select *

• RGB8888

–集中管理

• New Webview, New Thread/Handler

• New Static Bitmap

–危机代码
• Bitmap Haven`t Catch OOM

• 电量规则：new WakeLock

静态检查

0

50

100

150

200

250

300

静态检查-性能BUG

手Q 空间

静态检查

• 优点

–敏捷速度快

–稳定

–直达代码，解单速度快

• 缺点

–复杂的数据/逻辑无法覆盖

动态检查

性能测试

测试 性能监控

动态检查

• 动态检查

LOG

PROC信息

触发条件

导出分析类

数据

YES

内存dump

Trace

Bugreport

Log event

App Log

动态检查

性能测试

测试 性能监控

开发解单效率低下

分析云建设
InAppSDK

动态检查

• 动态检查

LOG

PROC信息

触发条件

导出分析类

数据

YES

内存dump

Trace

Bugreport

Log event

App Log

自动提单

动态检查：内存分析云

• 效率，内存泄漏为例

• 定位？
• GCPath初步定位问题

• 误报？
• 在heapsize60%标准下，添加InApp SDK方式

• GCPath白名单（如IClipboardDataPasteEventImpl)

• GCPath + Value白名单

• 去重？
• GCPath去重

动态检查：内存分析云

• InApp SDK内存泄漏的动态检查

 New CheckMemLeak onDestory

List<Pair<WeakReference<BaseActivity>, String>>

自动导出hrof

Add

Get

是否为空
NO

YES

动态检查

性能测试

测试 性能监控

误报

分析云建设
InApp SDK

不仅仅
内存泄漏

更多规则

动态检查：内存分析云

–仅仅只是可以用来发现activity泄漏吗？

• Activity泄漏

•图片尺寸分析

•重复内存块分析

• Single Cache分析

• 565自动检查

动态检查

动态检查

0

2

4

6

8

10

12

14

16

18

5.3.1 5.3.2 5.3 5.4

内存分析云提单情况

有效单

更多规则

LOG

PROC信息

触发条件

导出分析类

数据

YES

内存dump

Trace

Bugreport

Log event

App Log

自动提单

I/O Stack Pcap

动态检查：I/O检查

主线程执行I/O
小Buffer执行I/O
重复执行I/O

堆栈信息
直接定位问题

动态检查:I/O检查

动态检查：Break Rules

磁盘I/O

主线程I/O
BUFFER过小
重复I/O

Zip最佳实践
序列化实践

PCAP分析

重复图片
HAR分析
重复JS/CSS

DNS直连实践

trace分析
双trace对比
+SVN定位

Activity泄漏
重复缓存
565图片
单一缓存 hrof分析

内存兜底组件

资源类性能测试最佳实践

• 优点

–补充静态检查的缺失

–可以配合任何的UI自动化测试/手工测试

–减少性能测试的人力投入（配合自动化0人力）

• 缺点

–场景复杂，分析难度大

小结和展望

交互类性能

资源类性能

Break Rules
&Cases

自动化测试

手工测试

数据上报 Findbugs
分析云 自动提单

最佳实践

联系方式

自称:小V
网名:天天爱晴天

@InfoQ infoqchina

http://www.infoq.com/cn
http://e.weibo.com/infoqchina

