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DeeplID3
Face++

DeeplD2+ 99.47%
DeeplD2 DeeplLearning 99.15%
DeepID 97.45%
DeepFace-ensemble 97.35%
FR+FCN 96.45%
GaussianFace 98.52%
Betaface.com ERFE 98.08%
TL JointBayesian 96.33%
AR 99.20%
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= Acoustic model
DNN-HMM VS GMM-HMM
= Computation of DNN in SR
model parameters : more than tens of millions
speech corpus: more than ten thousand of hours
= Acceleration

CPU — GPU — GPUs
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training corpus

training corpus

Fig. 2 Model parallelism Fig. 3 Data parallelism
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Tradeoff between Speed-up and Convergence
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&SRS P SGDTEE

= central node, high bandwidth

// ” \\ \\ requirement

C = conflict between model latency
1

PU2
T n and efficiency

training corpus

Fig. 4 ASGD applied to multi-
GPU in a server [4][6]
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INEFTFEIRES

s> BN 2 (D get mini-batch from training
O corpus
2 receive the model from the
previous node, and merge the
local gradient to generate a
new model
3 send the new model to the
Fig. 5 Ring structure parallel next node and train the next
strategy for multiple GPUs mini-batch simultaneously
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time = asynchronous mode

I transmit
time

| "= no central node, one

ine transmission per mini-batch
for each node, low bandwidth
requirement

= easy to hide transmission

| andsoon |

Fig. 6 Timing analysis of the RSPS

MAME
IFLY TEK



INEFTFEIRES

- - - - “ime overlap of transmission and
satpont It computation
: | | :[[_rain
. Tresidual :Tcalc _[n transmit +(n 1) merge] 0

n (Ttransmlt + Tmerge ) Tcalc +Tmerge

T +T

calc merge

+T,

transmit merge

n<

| andsoon |

Fig. 6 Timing analysis of the RSPS
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Twalt = maX{ residual ’O} maX{n transmit + (n 1) merge calc’o}
Speedup . Tsingle — (Tcalc +Tmerge)
multipe Tcalc +Tmerge +Twa|t
( A
n If n< Tcalc +Tmerge
Speedup ) transmit +Tmerge
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INEHITZ=SIRES

T . +T

Speedupmax al calc merge
eI + Tmerge

* T (larger mini-batch, eg. rectified linear units)
* T,.ansmit (COMpPress transmission data, eg. quantize the gradient)
* Terge (OVErlap merging, eg. pipelining, hierarchical merging)
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speedup

the number of GPUs
Fig. 7 Relationship between the speedup and the number of GPUs
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THANK YOU!



