Twitter Messaging的架构演化之路

@sijieg | Twitter

このり2016.10.20~22上海・宝华万豪酒店

全球软件开发大会2016

[上海站]

购票热线: 010-64738142

会务咨询: qcon@cn.infoq.com

赞助咨询: sponsor@cn.infoq.com

议题提交: speakers@cn.infoq.com

在线咨询(QQ): 1173834688

团・购・享・受・更・多・优・惠

优惠(截至06月21日) 现在报名,立省2040元/张

Agenda

Background

Layered Architecture

Design Details

Performance

Scale @Twitter

Q & A

Publish-Subscribe

Online services - 10s of milliseconds

Transaction log, Queues, RPC

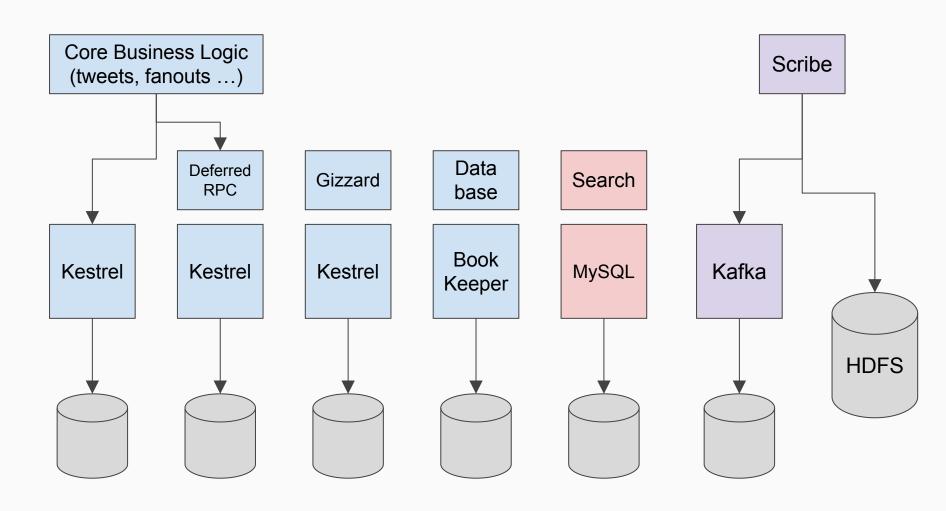
Near real-time processing - 100s of milliseconds

Change propagation, Stream Computing

Data delivery for analytics - seconds~minutes

Log collection, aggregation

Twitter Messaging at 2012



Online Services - Kestrel

Kestrel

Simple

Perform well (as long as queue fits in memory)

Fan-out Queues: One per subscriber

Reliable reads - per item transaction

Cross DC replication

Online Services - Kestrel Limitations

Kestrel Limitations

Durability is hard to achieve - Each queue is a separate file

Adding subscribers is expensive

Separate physical copy of the queue for each fanout

Read-behind degrades performance - Too many random I/Os

Scales poorly as #queues increase

Stream Computing - Kafka

Kafka

Throughput/Latency through sequential I/O with small number of topics

Avoid data copying - Direct Network I/O (sendfile)

Batch Compression

Cross DC replication (Mirroring)

Stream Computing - Kafka Limitation

Kafka Limitation

Relies on filesystem page cache

Limit #topics: Ideally one or handful topics per disk

Performance degrades when subscriber falls behind - Too much random I/O

No durability and replication (0.7)

Problems

Each of the systems came with their maintenance overhead

Software Components - backend, clients and interop with the rest of Twitter stack

Manageability and Supportability - deployment, upgrades, hardware maintenance and optimization

Technical know-how

Rethink the messaging architecture

Unified Stack - tradeoffs for various workloads

Durable writes, intra-cluster and geo-replication

Multi tenancy

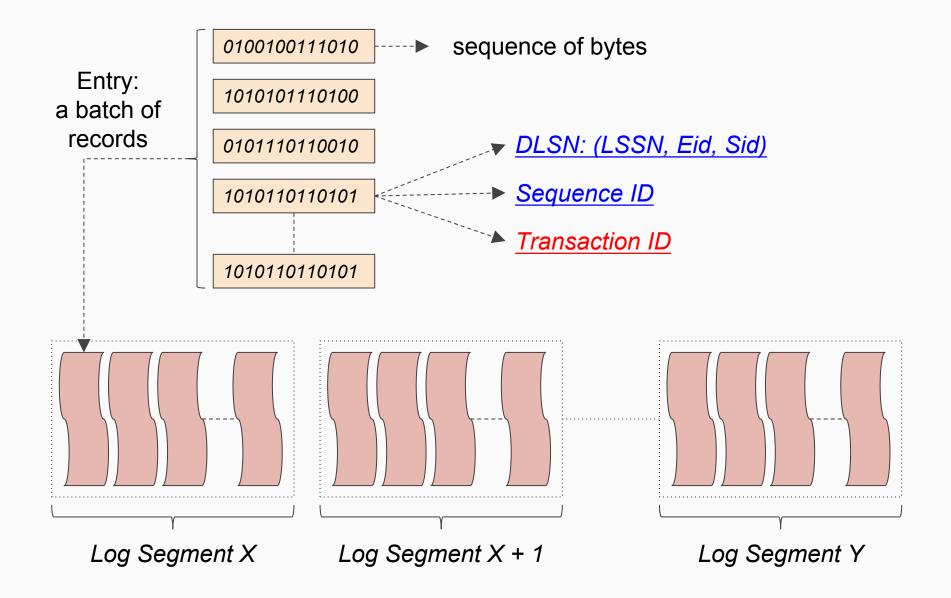
Scale resources independently - Cost efficiency

Ease of manageability

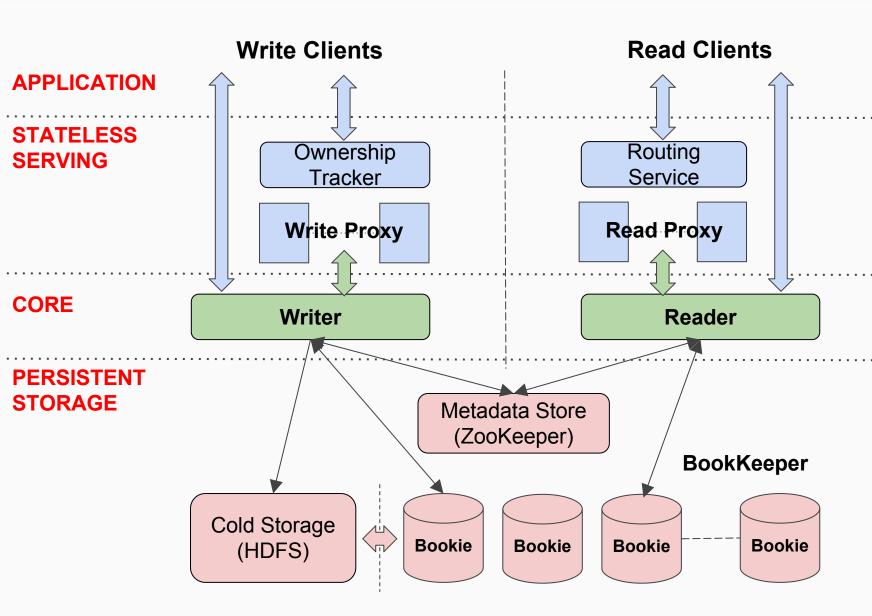
Layered Architecture

Data Model
Software Stack
Data Flow

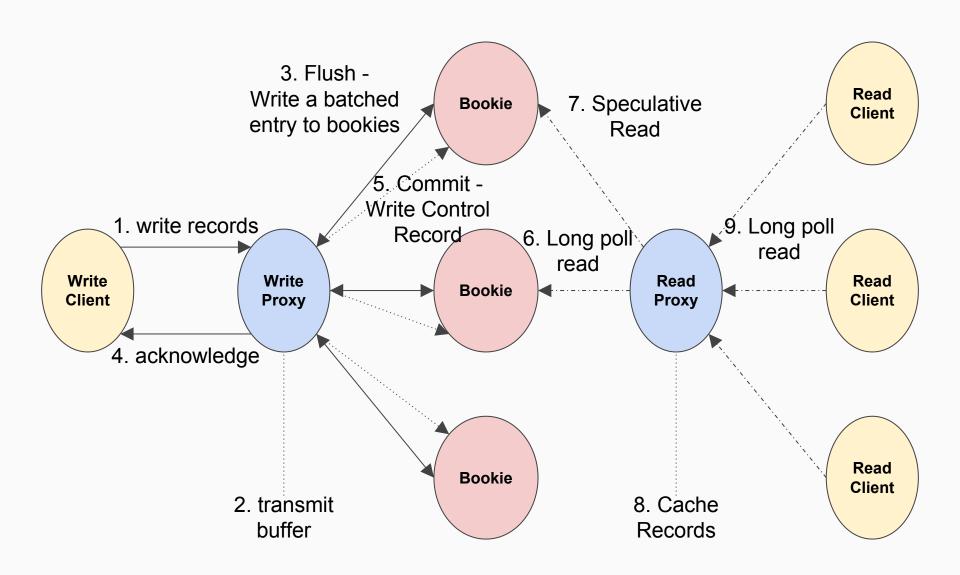
Log Stream



Layered Architecture



Messaging Flow



Design Details

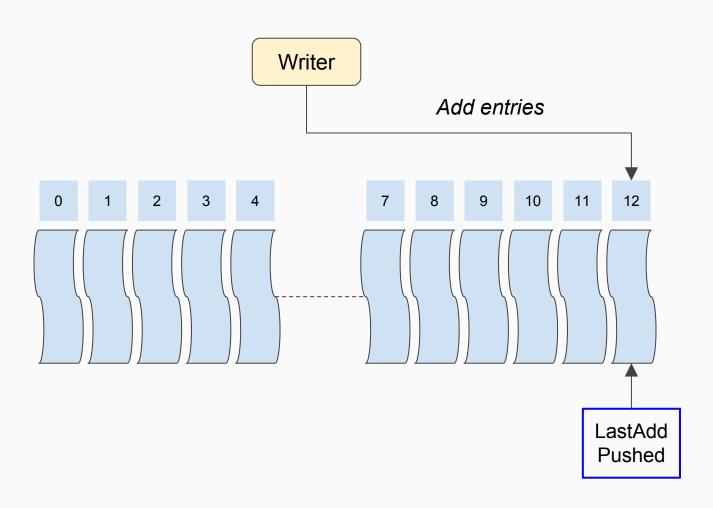
Consistency
Global Replicated
Log

Consistency

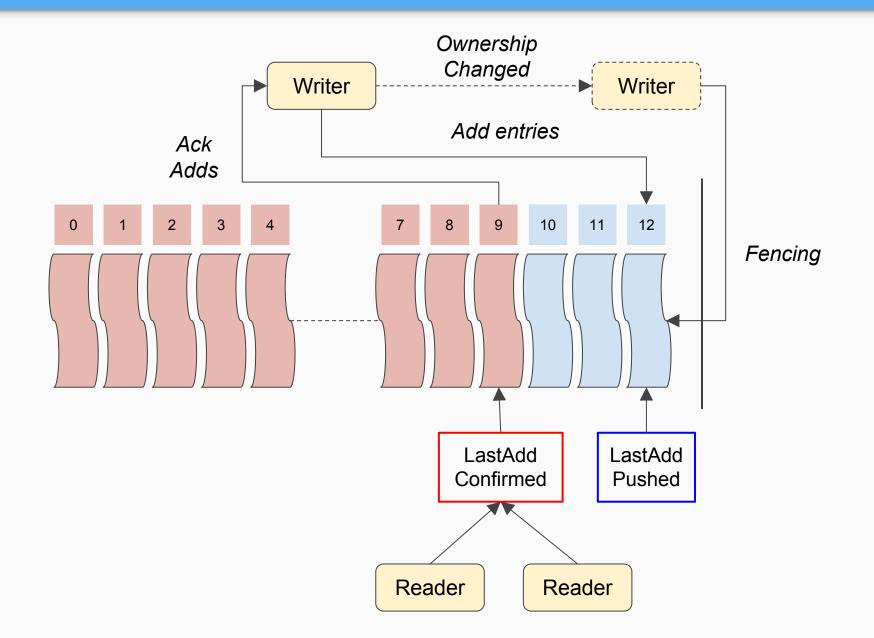
LastAddConfirmed => Consistent views among readers

Fencing => Consistent views among writers

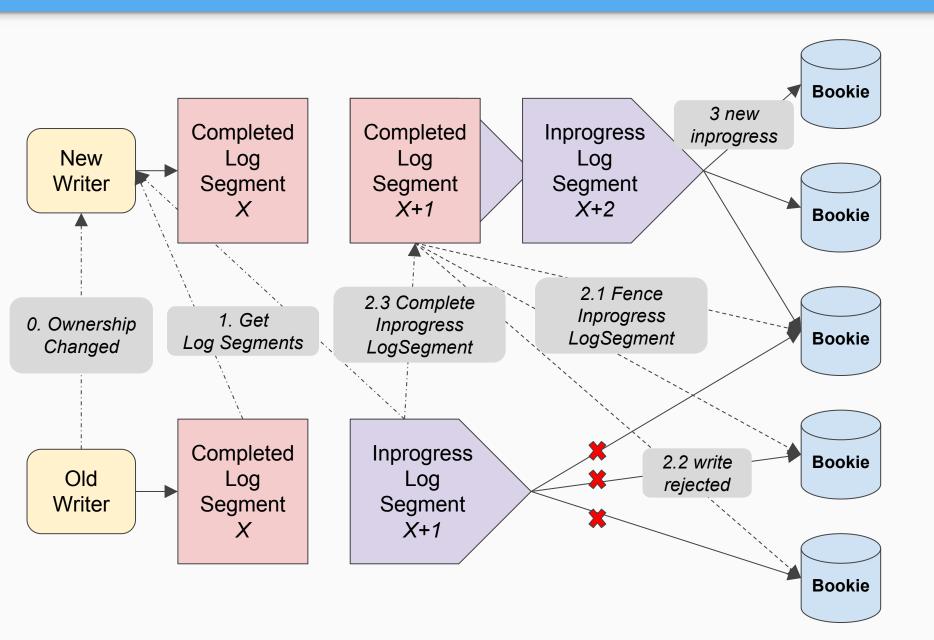
Consistency - LastAddPushed



Consistency - LastAddConfirmed



Consistency - Fencing



Consistency - Ownership Tracking

Ownership Tracking (Leader Election)

ZooKeeper Ephemeral Znodes (leases)

Aggressive Failure Detection (within a second)

TickTime = 500 (ms)

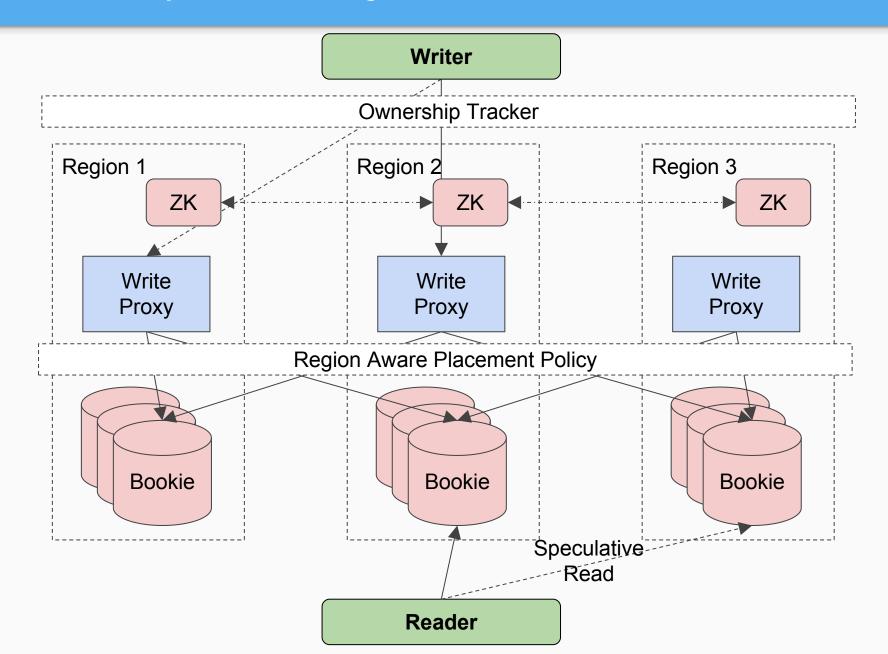
Session Timeout = 1000 (ms)

Global Replicated Log

Region Aware Data Placement

Cross Region Speculative Reads

Global Replicated Log



Region Aware Data Placement Policy

Hierarchical Data Placement

Data is spread uniformly across available regions

Each region uses rack aware placement policy

Acknowledge only when the data is persisted in majority of regions

Cross Region Speculative Reads

Reader consults data placement policy for read order

First: the bookie node that is closest to the client

Second: the closest node that is in a different failure domain - different rack

Third: the bookie node in a different closest region

. . .

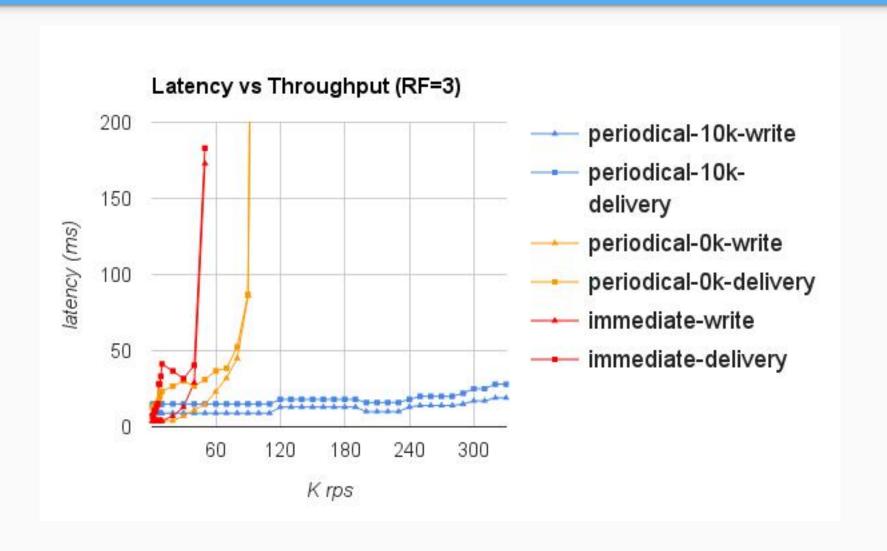
Performance

Latency vs Throughput

Scalability

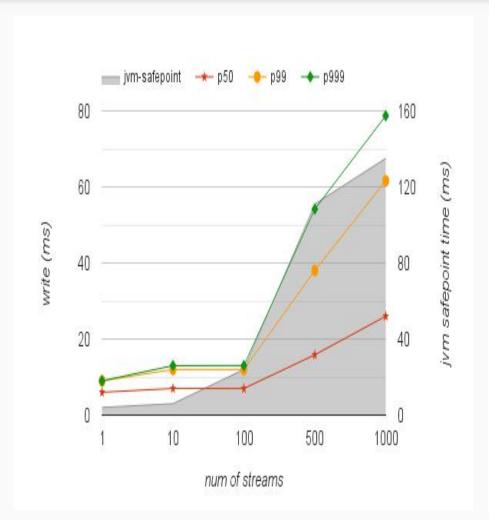
Efficiency

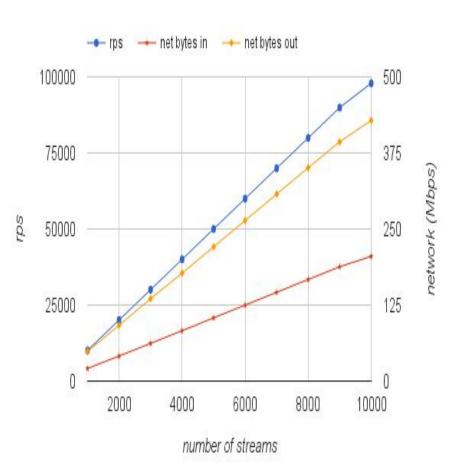
Support various workloads with latency/throughput tradeoffs



Latency and throughput under different flush policies

Scale with multiple streams (single node vs multiple nodes)



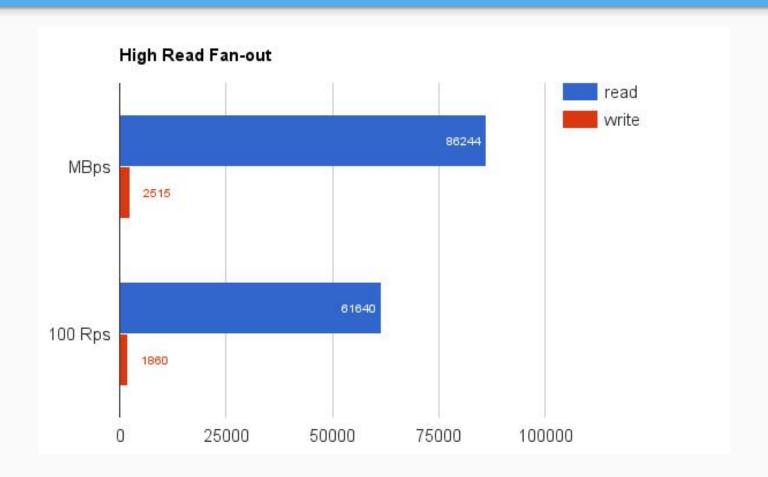


Under 100k rps, latency increased with number of streams increased on a single hybrid proxy

Each stream writes 100 rps.

Throughput increased linearly with number of streams.

Scale with large number of fanout readers



Analytic application writes **2.45GB** per second, while the data has been fanout to **40x** to the readers.

Messaging

@ Twitter

Use Cases

Deployment

Scale

Applications at Twitter

Manhattan Key-Value Store

Durable Deferred RPC

Real-time search indexing

Self-Served Pub-Sub System / Stream Computing

Reliable cross datacenter replication

• • •

Scale at Twitter

One global cluster, and a few local clusters each dc

O(10³) bookie nodes

O(10³) global log streams and O(10⁴) local log streams

O(10⁶) live log segments

Pub-Sub: deliver *O(1) trillion* records per day, roughly accounting for *O(10) PB* per day

Lessons that we learned

Make foundation durable and consistent

Don't trust filesystem

Think of workloads and I/O isolation

Keep persistent state as simple as possible

• • •

DistributedLog is the new messaging foundation

Layered Architecture

Separated Stateless Serving from Stateful Storage

Scale CPU/Memory/Network (shared mesos) independent of Storage (hybrid mesos)

Messaging Design

Writes / Reads Isolation

Scale Writes (Fan-in) independent of Reads (Fan-out)

Global Replicated Log

Future

Open source on Github (May)

https://github.com/twitter/distributedlog

Apache Incubating ...

Contact

guosijie@gmail.com

Twitter: @sijieg

Wechat: guosijie_