
1

Headline Goes HereMachine learning in finance 
using Spark ML pipeline 
梁堰波@明略数据

@DataScientist
October 2015



Who am I ?



Outline
Spark and ML/MLlib background

Spark ML pipeline

Hyperparameter tuning

Spark ML/MLlib feature transformers & algorithms

Financial user cases

Credit scoring case



Spark background

Distributed computing engine

Apache open source

Built for speed, ease of use, and 
sophisticated analytics

Resilient Distributed Dataset (RDD)

Expressive APIs in Python, Java, 
Scala and R



Machine learning in Spark
Spark is first general purpose big data processing engine build for ML from day 
one

The initial design in Spark was driven by ML optimization

Caching - For running on data multiple times

Accumulator - To keep state across multiple iterations in memory

Good support for CPU intensive tasks with laziness

Aggregate & TreeAggregate

One of the examples in Spark first version was of ML



Distributed
memory

Input
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Key: Keep Working Set in RAM

one-time
processing



Spark for Data Science
DataFrames

Intuitive manipulation of distributed structured data

Familiar API based on R & Python Pandas

Distributed, optimized implementation

Machine Learning Pipelines

Integration with DataFrames

Familiar API based on scikit-learn

Simpale parameter tuning



ML Workflows are complex

Image classification pipeline

Specify pipeline

Inspect & debug

Re-run on new data

Tune parameters



ML Workflow are complex

DataSource1 DataSource3DataSource2

ExtraceFeatures ExtraceFeatures

FeatureTransform1

FeatureTransform2

FeatureTransform3

ModelTrainer1

ModelTrainer2

ModelTrainer3

Ensemble

Evaluate

BestModel



Key abstraction of Spark ML pipeline

Transformer

Feature transformers (e.g., OneHotEncoder) and trained ML models (e.g., 
LogisticRegressionModel).

Estimator

ML algorithms for training models (e.g., LogisticRegression)

Evaluator

These evaluate predictions and compute metrics, useful for tuning 
algorithm parameters (e.g., BinaryClassificationEvaluator).



Example



Load data

Data sources for DataFrames

LibSVMRelation

val df = sqlContext.read.format(“libsvm”).load(path)

Load data

Tokenizer

hashingTF

LogisticRegression

evaluate

predict



Load data

Load data

Tokenizer

hashingTF

LogisticRegression

evaluate

predict

label Int

text String



Feature transform

Load data

Tokenizer

hashingTF

LogisticRegression

evaluate

predict

label Int

words Seq[String]



Feature transform

Load data

Tokenizer

hashingTF

LogisticRegression

evaluate

predict

label Int

words Vector



Train and evaluate model 

Load data

Tokenizer

hashingTF

LogisticRegression

evaluate

predict

label Int

features Vector

prediction Int



Train and evaluate model 

Train data

Tokenizer

hashingTF

LogisticRegression

evaluate

predict

Test data

Tokenizer

hashingTF

LogisticRegression

evaluate

predict

Re-run exactly 
the same way



Concise code

val tokenizer = new Tokenizer()

  .setInputCol("text")

  .setOutputCol("words")

val hashingTF = new HashingTF()

  .setNumFeatures(1000)

  .setInputCol(tokenizer.getOutputCol)

  .setOutputCol("features")

val lr = new LogisticRegression()

  .setMaxIter(10)

  .setRegParam(0.01)

val pipeline = new Pipeline()

  .setStages(Array(tokenizer, hashingTF, lr))

val model = pipeline.fit(trainingDataset)

model.transform(testDataset)



Hyperparameter tuning

Dataset

Extract/Transform
#features = 100

Training
regParam = 0.01

EvaluationExtract/Transform
#features = 200

Extract/Transform
#features = 400

Training
regParam = 0.1

Training
regParam = 1.0



Cross validation

Given:

Estimator

Parameter grid

Evaluator

Find best parameters or models

// Build a parameter grid.

val paramGrid = new ParamGridBuilder()

  .addGrid(hashingTF.numFeatures, Array(10, 20, 40))

  .addGrid(lr.regParam, Array(0.01, 0.1, 1.0))

  .build()

// Set up cross-validation.

val cv = new CrossValidator()

  .setNumFolds(3)

  .setEstimator(pipeline)

  .setEstimatorParamMaps(paramGrid)

  .setEvaluator(new BinaryClassificationEvaluator)

// Fit a model with cross-validation.

val cvModel = cv.fit(trainingDataset)



Feature Transformers

Transformer Description scikit-learn

Binarizer Threshold numerical feature to binary Binarizer

Bucketizer Bucket numerical features into ranges

ElementwiseProduct Scale each feature/column separately

HashingTF Hash text/data to vector. Scale by term 
frequency

FeatureHasher

IDF Scale features by inverse document frequency TfidfTransformer

Normalizer Scale each row to unit norm Normalizer

OneHotEncoder Encode k-category feature as binary features OneHotEncoder



Transformer Description scikit-learn

PolynomialExpansion Create higher-order features PolynomialFeatures

RegexTokenizer Tokenize text using regular expressions (part of text 
methods)

StandardScaler Scale features to 0 mean and/or unit 
variance

StandardScaler

StringIndexer Convert String feature to 0-based indices LabelEncoder

Tokenizer Tokenize text on whitespace (part of text 
methods)

VectorAssembler Concatenate feature vectors FeatureUnion

VectorIndexer Identify categorical features, and index

Word2Vec Learn vector representation of words



tok = Tokenizer(inputCol="text", outputCol="words")
htf = HashingTF(inputCol="words", outputCol="tf", 
numFeatures=200)
w2v = Word2Vec(inputCol="text", outputCol="w2v")
ohe = OneHotEncoder(inputCol="userGroup", 
outputCol="ug")
va = VectorAssembler(inputCols=["tf", "w2v", "ug"], 
outputCol="features")
pipeline = Pipeline(stages=[tok,htf,w2v,ohe,va])



Algorithm Coverage

Discrete Continous

Supervised Classification
LogisticRegression(with Elastic-Net)
SVM
DecisionTree
RandomForest
GBT
NaiveBayes
MultilayerPerceptron
OneVsRest

Regression
LinearRegression(with Elastic-Net)
DecisionTree
RandomForest
GBT
AFTSurvivalRegression
IsotonicRegression

Unsupervised Clustering
KMeans
GaussianMixture
LDA
PowerIterationClustering

Dimensionality Reduction, matrix 
factorization
PCA
SVD
ALS
WLS



Algorithm optimized for distributed computing

ALS

Online statistic algorithm

WLS vs L-BFGS (4096 features and 1 billion features) 

Use in-place operation for vector/matrix, i.e. update existing vectors rather 
than creating new vector

Standarization on LiR and LoR



Linear vs Non-linear model in Spark

Linear model Non-linear model

LogisticRegression
LinearRegression

AFTSurvivalRegression
SVM

NaiveBayes

DecisionTree
RandomForest

GBT
MultilayerPerceptron



Non-linear relationships of covariates

Many observations and variables, non-linear relationships

Non-linear and non-parametric models are popular solutions, but they are solw 
and difficult to interpret

Spark ML solution:

Automated feature generation with polynomial mappings

Regularized regressions with various performance optimizations

For some problems, linear methods with feature engineering are as good as 
nonlinear kernel methods, and with better performance



User cases

Recommend engine with ALS

Classification such as users churn, users behavior prediction

Clustering users based on geographic locations with DBSCAN

Provide R formula in R/Scala/Python for financial users 



The credit scoring problem

Traditional credit scoring systems aim at deciding upon the creditworthiness of 
applicants using characteristics e.g. age, marital status, amount on savings 
account, macroeconomic,  …

The problem is usually tackled using classification techniques, e.g. logistic 
regression, neural networks, decision trees, …



The credit scoring survival analysis problem

But: Time to default is also very important:

- to decide upon length of time of loan
- for debt provisioning purposes
- decide upon increase or decrease of credit limit
- to monitor a client’s repayment behaviour

Traditional classification techniques not appropriate to handle this problem

- linear regression ?
- no, because of censored data

Use survival analysis methods originating from medicine



Time to default in credit risk 

default

no default 
(censored)

no default

0 t



Log-linear survival regression model(SPARK-8518)
n iid random variables {(Y1, X1, δ1), …, (Yn, Xn, δn)}

Y = min{T, C} is the observed maturity

- T is the time to default
- C is the time to the end of the study or anticipated cancellation of the 

credit

δ = I(T<=C) is the indicator of noncensoring(default)

X is a vector of explanatory covariates

We assume that there exists an unknown relationship between T and X, T and C 
are conditionally independent given X 

https://issues.apache.org/jira/browse/SPARK-8518


Loss and gradient function

likelihood function

                                                                                 where

loss function

gradient function



AFTSurvivalRegression(SPARK-8518)

Initialize 
Weights 

Broadcast Weights 
to Executors 

Comput loss and 
gradient for each 
instance, and sum 
them up locally

Comput loss and 
gradient for each 
instance, and sum 
them up locally

Comput loss and 
gradient for each 
instance, and sum 
them up locally

Reduce from 
executor to get 

lossSum and 
gradientSum

Use L-BFGS to 
find next step

Final Model 
Weights 

Executors/Workers

Driver/Controller

loop untial converge

https://issues.apache.org/jira/browse/SPARK-8518


Benchmark

Dataset:

- 15288 records, can fit by R
- 80 million records, over 50 GB, hard to train in a single machine

Use survival model to generate default probabilities at various points in time.

Compare the results achieved using survival models with respect to classical 
parametric models (Logistic Regression of Spark ML).



To compare the logistic model with the survival analysis the time to event and 
censored observation in the datasets are transformed to a good-bad variable. 
The following procedure is used: 

Where years is the number of years the PD is estimated for, tte is the time to 
default and cens is a flag if the observation is censored (1) or defaulted (0). 



Pipeline

Outliers detection

Data validation

Bucketizer

Omit the correlated variables

OneHotEncoder

VectorAssembler

Model training with cross validation and evaluation



Model coefficients - The same as R ! 

                                                      Value
(Intercept)                                     1.3773     
landline                                          0.5926
noSecondaryEducation                   -0.9811
onlySecondaryEducation                 -0.2876
higherThanSecondaryEducation       0.0014
employedLt1year                           -0.9613
employedBt1and5year                    -0.7782
employedGt5year                            0.0038
paymentOnAccountFromSameBank   1.5536
paymentOther                                 0.0002
Log(scale)                                      -0.0236



Performance comparison

Tools R
Logistic 

Regression

R AFT
Survival 

Regression

Spark ML
Logistic 

Regression

Spark AFT 
Survival Regression

Dataset1
ROC/AUC 0.75 0.77 0.75 0.77

KS 0.43 0.43 0.43 0.43

Dataset2
ROC/AUC 0.72 0.74

KS 0.39 0.38



Challenge

The AFT model is fully described by a distribution of an error term. The AFT 
model will always follow this distribution, therefore once e.g. log-normal 
distribution is chosen, it cannot be used to describe more peaks in a hazard 
function. 

In practice, the proportion of defaulted credits is small, the proportion of 
censored data is large.



Conclusion

More and more algorithms and functions are moving to Spark ML/MLlib

Spark ML/MLlib is moving to traditional IT area

We are actively Spark contributors and users

We are hiring !
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