
Mike Amundsen
CA Technologies

@mamund

Building Effective
Miroservice Teams

Learning from
Conway, Brooks, and Dunbar

Introduction

Effective Teams

Effective Teams
for Microservices

Melvin Conway

Project-Based Organizations

“Project-based organizations
revolve around the concept

that a group of individuals or
firms join together with the

explicit purpose of producing a
tangible set of outputs”

-- Paul Chinowsky, EPOJ 2011

“How Do Committees Invent?”

“
 Any organization that designs a

system (defined more broadly here
than just information systems) will

inevitably produce a design whose
structure is a copy of the

organization's communication
structure.”

-- Mel Conway, 1967

 A system’s design is a copy of

the organization’s communication
structure.

-- Mel Conway, 1967

 Communication dictates design.

-- Mel Conway, 1967

Conway’s Law

 Brooks’ Law

 “Adding manpower to a late

software project makes it later.”

-- Fred Brooks, 1975

Intercommunication formula

 n(n − 1) / 2

-- Fred Brooks, 1975

Intercommunication formula

5*(5–1)/2 = 10
15*(15–1)/2 = 105

50*(50–1)/2 = 1,225
 150*(150–1)/2 = 11,175

-- Fred Brooks, 1975

Dunbar’s Number

A measurement of the “cognitive
limit to the number of individuals
with whom any one person can

maintain stable relationships.”

-- Robin Dunbar, 1992

Dunbar Groups

Intimate friends: 5
Trusted friends: 15

Close friends: 35
Casual friends: 150

-- Robin Dunbar, 1992

Intercommunication formula

5*(5–1)/2 = 10
15*(15–1)/2 = 105

50*(50–1)/2 = 1,225
 150*(150–1)/2 = 11,175

-- Fred Brooks, 1975

 Communication dictates design.

-- Mel Conway, 1967

Conway’s (first) Law

Conway’s (first) Law
tells us TEAM SIZE is important

Conway’s (first) Law
tells us TEAM SIZE is important

so…

Make the teams as small as necessary.

Aim for “Dunbar level 1” (5),
possibly “Dunbar level 2” (15),

be wary of teams above that size.

If you don’t have
a personal relationship

with every member of your team,
it is probably TOO BIG.

So… what about other Conway Laws?

Conway’s Second Law

Doing it Over

“There is never enough time
to do something right,

but there is always enough
time to do it over.”

-- Mel Conway, 1967

Trade Offs

Efficiency-Effectiveness Trade Offs (ETTOs)

Satisficing v. Sacrificing

“Satisficing is explained as a
consequence of limited

cognitive capacity.

 Sacrificing is explained as a
consequence of the intractability

of the work environment”

-- Eric Hollnagel, 2009

Satisficing v. Sacrificing

Problem too complicated?
Ignore details.

 Not enough resources?

Give up features.

-- Eric Hollnagel, 2009

ETTOs are “normal” and result in
success more often than failure.

The enemy is intractability.

Increasing Intractability

1. Systems grow too large
2. Rate of change increases

3. Overall expectations keep rising

-- Eric Hollnagel, 2009

Conway’s Second Law
tells us PROBLEM SIZE is important

Conway’s Second Law
tells us PROBLEM SIZE is important

so…

Make the solution as small as necessary.

If you (or your team)
cannot explain ALL the code

in your release package,
your release is TOO LARGE

Conway’s Third Law

Homomorphism

“There is a homomorphism
from the linear graph of a

system to the linear graph of
its design organization”

-- Mel Conway, 1967

Homomorphism

“If you have four groups
working on a compiler, you'll

get a 4-pass compiler.”

- Eric S. Raymond, 1991

Conway’s Third Law
tells us CROSS-TEAM INDEPENDENCE

is important.

Conway’s Third Law
tells us CROSS-TEAM INDEPENDENCE

is important.

So…
Make each team fully independent.

If you have to hold a release
until some other time is ready,

you are not an
INDEPENDENT TEAM

Conway’s Fourth Law

Disintegration

“The structures of large
systems tend to disintegrate

during development,
qualitatively more so than with

small systems.”

-- Mel Conway, 1967

Three reasons Disintegration occurs…

Disintegration: Reason #1

“The realization that the
system will be large, together
with organization pressures,

make irresistible the
temptation to assign too many

people to a design effort”

-- Mel Conway, 1967

 Brooks’ Law

 Adding manpower to a late

software project makes it later.

-- Fred Brooks, 1975

Disintegration: Reason #2

“Application of the
conventional wisdom of

management to a large design
organization causes its

communication structure to
disintegrate.”

-- Mel Conway, 1967

Dunbar’s Number

A measurement of the “cognitive
limit to the number of individuals
with whom any one person can

maintain stable relationships.”

-- Robin Dunbar, 1992

Disintegration: Reason #3

“Homomorphism insures that
the structure of the system will
reflect the disintegration which

has occurred in the design
organization.”

-- Mel Conway, 1967

 Communication dictates design.

-- Mel Conway, 1967

Conway’s Fourth Law
tells us TIME is against LARGE teams.

Conway’s Fourth Law
tells us TIME is against LARGE teams.

So…

Make release cycles short and small.

If your release dates are often missed,
your release SIZE is TOO BIG.

So, let’s review our options…

Conway’s Laws
can help us succeed

Conway’s Laws
can help us succeed
when working with

microservice teams.

Conway’s First Law

A system’s design is a copy
of the organization’s

communication structure.

Conway’s First Law

A system’s design is a copy
of the organization’s

communication structure.

Actively manage
communications within the

teams and across teams.

James Herbsleb: “Tactics for Global Software Development”

James Herbsleb: “Tactics for Global Software Development”

Increase communications
•  Real-time Chat Tools
•  Video Conferencing
•  Online Forums/News Groups
•  Wiki and Web Sites

Reduce the effort required to locate and
interact with the ‘right people’

Conway’s Second Law

There is never enough time
to do something right, but

there is always enough time
to do it over.

Conway’s Second Law

There is never enough time
to do something right, but

there is always enough time
to do it over.

Remember the process is

continually repeating.

Continuous Delivery

“The core concept of making
small frequent changes, and

testing at every step,
reduces the risk inherent in

deploying new code.”

Jez Humble, Thoughworks.

Support continuous processes
•  Implement small changes
•  Test immediately
•  Deploy constantly

Shorten the feedback loop as much as
possible.

Conway’s Third Law

There is a homomorphism
from the linear graph of a

system to the linear graph of
its design organization.

Conway’s Third Law

There is a homomorphism
from the linear graph of a

system to the linear graph of
its design organization.

Organize teams in order to

achieve desired system.

Microservices

Organized around
business capabilities.

Products, not projects.

Martin Fowler, Thoughtworks

Organize teams by product or BU
•  Combine design, develop, test, & deploy
•  Include storage, business process, & UI
•  Allow teams autonomy within their boundary
•  Require teams to inter-operate, not integrate

Make sure teams own their complete lifecycle.

Conway’s Fourth Law

The structures of large
systems tend to disintegrate

during development.

Conway’s Fourth Law

The structures of large
systems tend to disintegrate

during development.

Keep your teams as small
as necessary, but no

smaller.

Sizing Teams

Jeff Bezos, Amazon

Sizing Teams

If a team can’t be fed with
two pizzas, it’s too big.

Jeff Bezos, Amazon

Make team as small as necessary
•  Resist urge to grow teams in response to deadlines
•  Consider Dunbar’s groups when sizing teams
•  Be prepared to break into smaller teams

It’s better to be “too small” than to be “too big.”

Conway’s Lessons
1.  Increase communications
2.  Support continuous process
3.  Organize teams by products
4.  Make teams as small as necessary

Mike Amundsen
CA Technologies

@mamund

Building Effective
Miroservice Teams

Learning from
Conway, Brooks, and Dunbar

http://g.mamund.com/2015-10-qcon-teams

