
QCon全球软件开发大会

International Software Development Conference

Geekbang>. ^{极客邦科技}

全球领先的技术人学习和交流平台

Geekbang».

Info@: | EGO NETWORKS | Stu@:

高端技术人员 学习型社交网络

实践驱动的IT职业 学习和服务平台

促进软件开发领域知识与创新的传播

实践第一

案例为主

时间: 2015年12月18-19日 / 地点: 北京·国际会议中心

欢迎您参加ArchSummit北京2015,技术因你而不同

ArchSummit北京二维码

[**北京站**] 2016年04月21日-23日

关注InfoQ官方信息 及时获取QCon演讲视频信息

云原生应用平台架构解析

张海宁 (Henry Zhang) 云应用平台资深架构师 VMware中国研发中心

About Me

- Lead Architect in China R&D for Cloud Native App Solutions
- One of the first China evangelists of Cloud Foundry
- Full stack engineer
 - Cloud architect PaaS, laaS
 - iOS developer top free app and top 10 paid apps in China App Store
 - Operator of 10M PV web sites
- 10 years experience on containers

Agenda

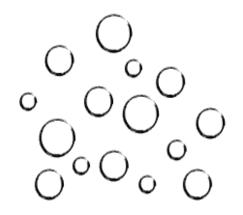
1	The Rise of Cloud Native Applications
2	Cloud Native Key Technologies
2.1	Container optimized Linux
2.2	Developer Tooling
2.3	Secure Container Runtime
2.4	Microservices governance

Mobile-Cloud Era = Increased Customer Expectations

Everything On-Demand

Fully Functional,
All the Time

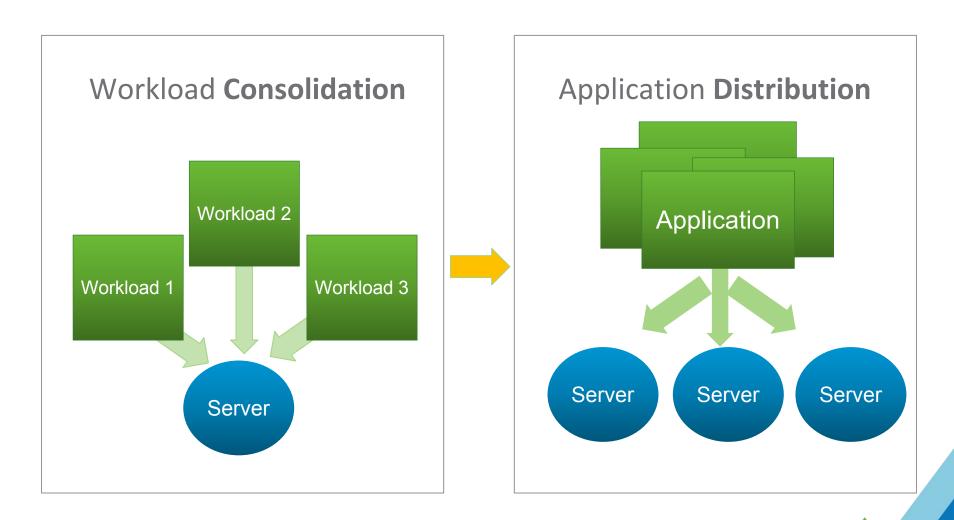
Accessible Everywhere



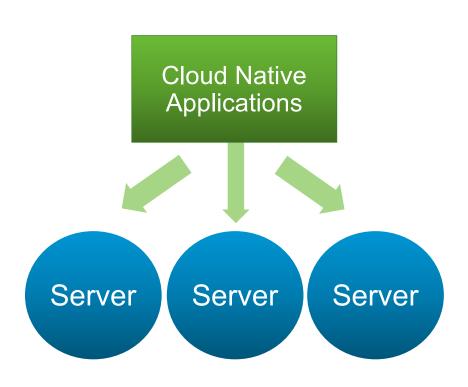
Applications must be more resilient than ever!

Market Expectations drive Operational Changes for Customers

IT decisions moving to LOB and application developers


Applications broken into microservices

Continuous Delivery Several times a day


Do everything faster

Changing Infrastructure Needs

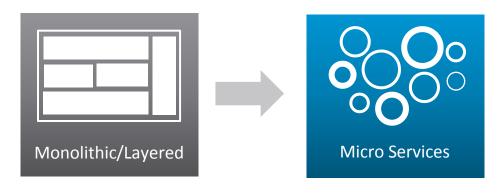
The Cloud Native Application



Leverage elastic infrastructure to

- Provision instances of itself
- Scale up and down
- Detect and work around failures

Cloud Native Application Characteristics



Distributed and Scale-out

- Microservices oriented
- Container packaged
- Dynamically managed

A New Application Architecture is Emerging

Properties of a Microservice

Small code base

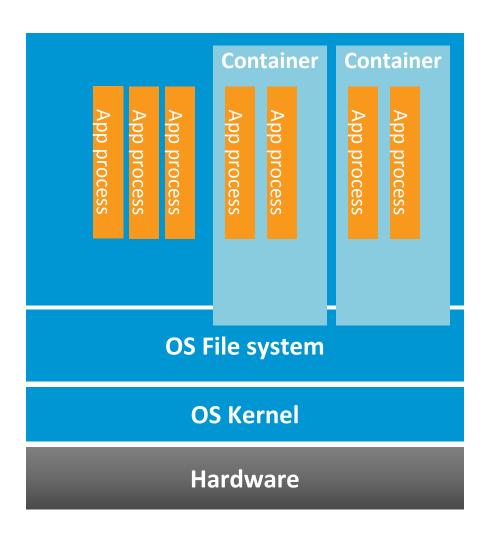
Easy to scale, deploy and throw away

Autonomous

Resilient

Benefits of a microservices architecture

A highly resilient, scalable and resource efficient application

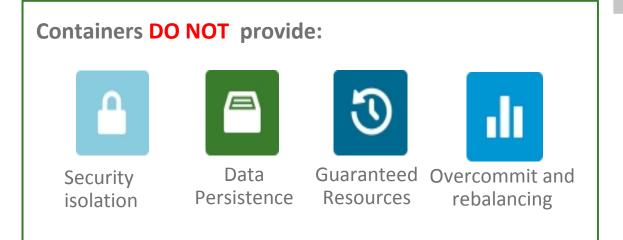

Enables smaller development teams

Teams free to use the right languages and tools for the job

Rapid application developmen

Microservices with Containers

Conatiners Exist for Many Years


 Solaris Zones, FreeBSD Jails, OpenVZ, LXC

Why Containers?

- Process isolation with good performance isolation
- Reproducible environment
- Enables management at scale

It's a Challenging Jump to Cloud Native Application

Ecosystems to be harmonized Core OS Rocket Rocket

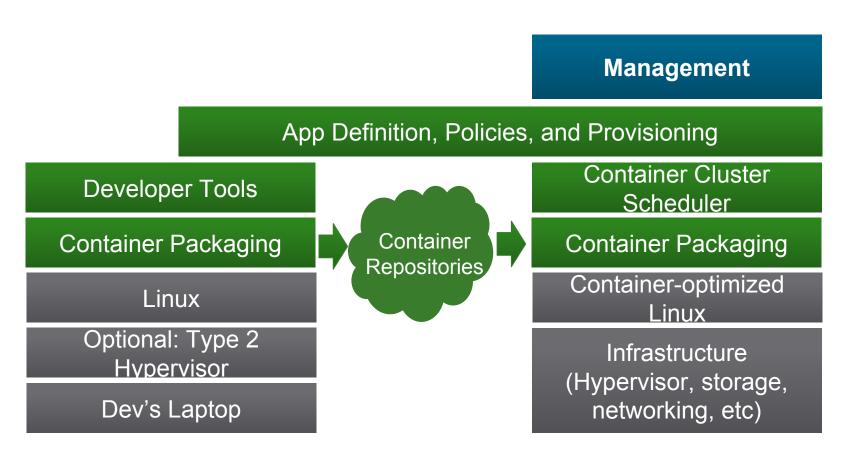
Hidden Costs

- Management overheads
 - Container sprawl
 - Governance challenges

Agenda

1	The Rise of Cloud Native Applications
2	Cloud Native Key Technologies
2.1	Container optimized Linux
2.2	Developer Tooling
2.3	Secure Container Runtime
2.4	Microservices governance

Developer is a First-Class User of the Cloud



- Build technologies that span the app lifecycle
- Empower operations teams to manage Cloud-Native applications
- Build to and support open systems and standards

Cloud Native Platform

Dev & Production Stack, DevOps Process

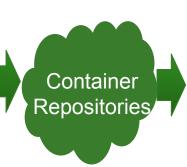
Developer Production

Agenda

1	The Rise of Cloud Native Applications
2	Cloud Native Key Technologies
2.1	Container optimized Linux
2.2	Developer Tooling
2.3	Secure Container Runtime
2.4	Microservices governance
3	Summary

Container Developer Stack

Developer Tools


Container Packaging

Linux

Optional: Type 2
Hypervisor

Dev's Laptop

Developer

e.g. Hashicorp Vagrant

e.g. OCF, Docker images/Docker Hub

e.g. Photon OS, CoreOS, Atomic, RancherOS

e.g. Fusion, Workstation, VMPlayer, VirtualBox

Container Developer Stack – Container Runtime

Developer Tools

Container Packaging

Linux

Optional: Type 2
Hypervisor

Dev's Laptop

Developer

e.g. Photon OS, CoreOS, Atomic, RancherOS

Photon OS - Secure & Optimized Container Runtime

Container Optimized Linux OS

Docker, rkt and Garden (Pivotal) support Minimal footprint to run containers

vSphere Integration

Part of your vSphere install

Hypervisor-optimized container runtime

Updates from VMware

Enterprise support

Security and update patches from VMware

Open Source
GPL v2 License

Photon OS Directions

Hypervisor-optimized container host

- Guest customization support improved vSphere and vCloud Air compatibility
- Shared folders for Workstation & Fusion streamline developer to production pipeline
- Lightwave integration single identity across all infrastructure
- Software Defined Datacenter for Containers single operational model for all workloads
- Performance and packaging optimizations faster boot, smaller footprint

Secure container stack

- Signed packages ensures trust of VMware packages
- Lightwave integration extends trust to containers and container authors
- Secure boot and attestation creates a chain of trust from the hardware, through the hypervisor, to the container

Agenda

1	The Rise of Cloud Native Applications
2	Cloud Native Key Technologies
2.1	Container optimized Linux
2.2	Developer Tooling
2.3	Secure Container Runtime
2.4	Microservices governance

Container Developer Stack – Dev Tooling

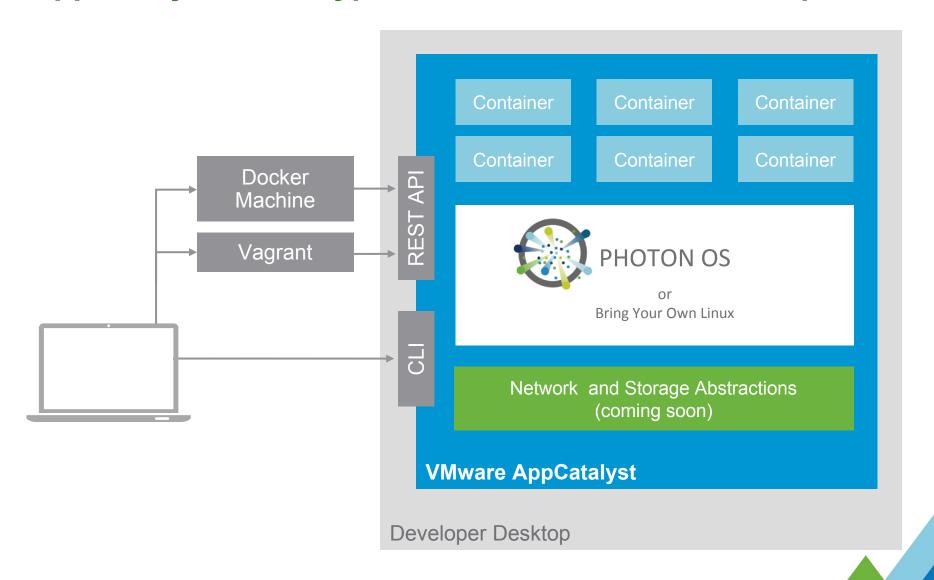
Developer Tools

Container Packaging

Linux

AppCatalyst

Dev's Laptop


Developer

Integrated with Docker Machine and Vagrant

An alternative to VirtualBox

AppCatalyst - The Hypervisor for Container Developer

AppCatalyst - Hypervisor to Speed up Development

Datacenter-in-a-laptop, model production deployments on your laptop

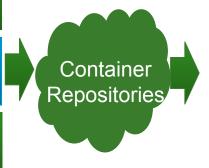
- Same battle-tested virtualization engine as Fusion and Workstation
- •Drop-in replacement for Virtualbox in Docker Machine and Vagrant

Developer-Friendly

- Optimized to support developer workflows
- Exposes REST API with command-line interface
- No UI to mess with, built to run fast and mean

Container Developer Stack

Developer Tools


Container Packaging

Linux

Optional: Type 2
Hypervisor

Dev's Laptop

Developer

OCF:

- Standard operations
- Content-agnostic
- Infrastructure-agnostic
- Designed for automation
- Industrial-grade delivery

Agenda

1	The Rise of Cloud Native Applications
2	Cloud Native Key Technologies
2.1	Container optimized Linux
2.2	Developer Tooling
2.3	Secure Container Runtime
2.4	Microservices governance

Cloud Native Platform – Production Stack

Management

App Definition, Policies, and Provisioning
Container Cluster
Scheduler

Container Packaging

Container-optimized Linux

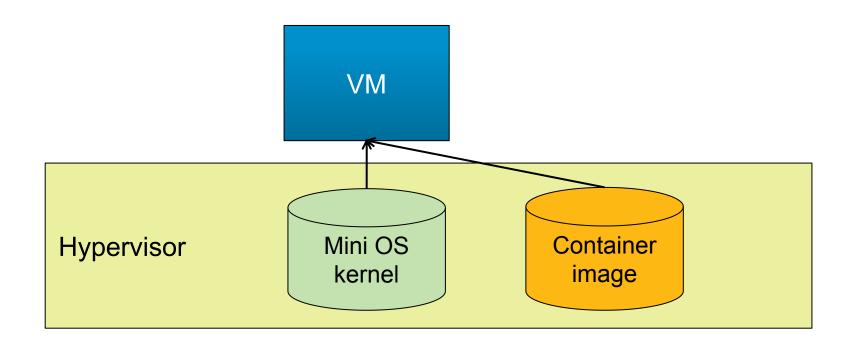
Infrastructure (Hypervisor, storage, networking, etc)

e.g. Photon OS, CoreOS, Atomic

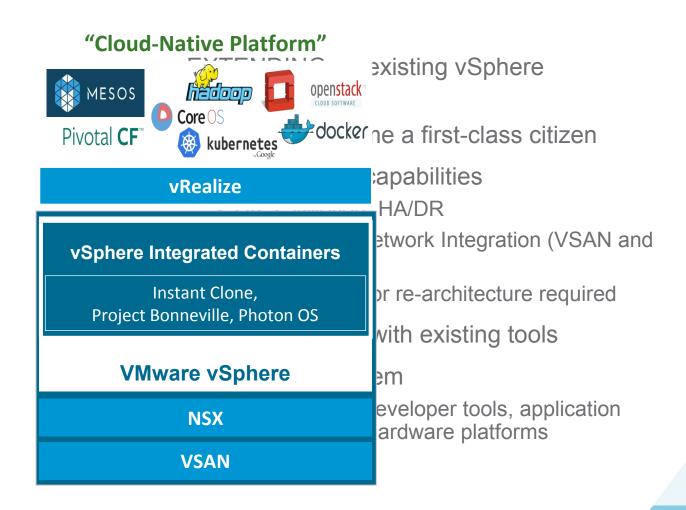
e.g. vSphere Integrated Container, VSAN, NSX, KVM,

Production

The Debate: Container vs VM


VS

- Portable packaging
- Small footprint
- Performance


- Secure
- Isolation
- Mature

Combining the best of both Container & VM

- Mini OS kernel enables fast startup time
- Mounting container image to start the bundled application
- Achieve strong isolation as VM

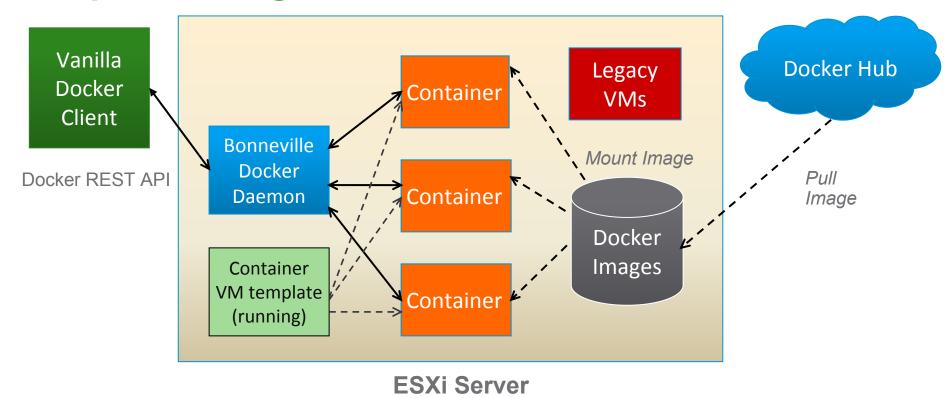
vSphere Integrated Containers (VIC)

vSphere Integrated Containers – Combine the best of both worlds

The convenience of Docker containers with the management and security of vSphere

Docker containers encapsulated as virtual machines

- Everything in ESX becomes a well-isolated VM "container"
- •Customers can move containers in and out of vSphere seamlessly

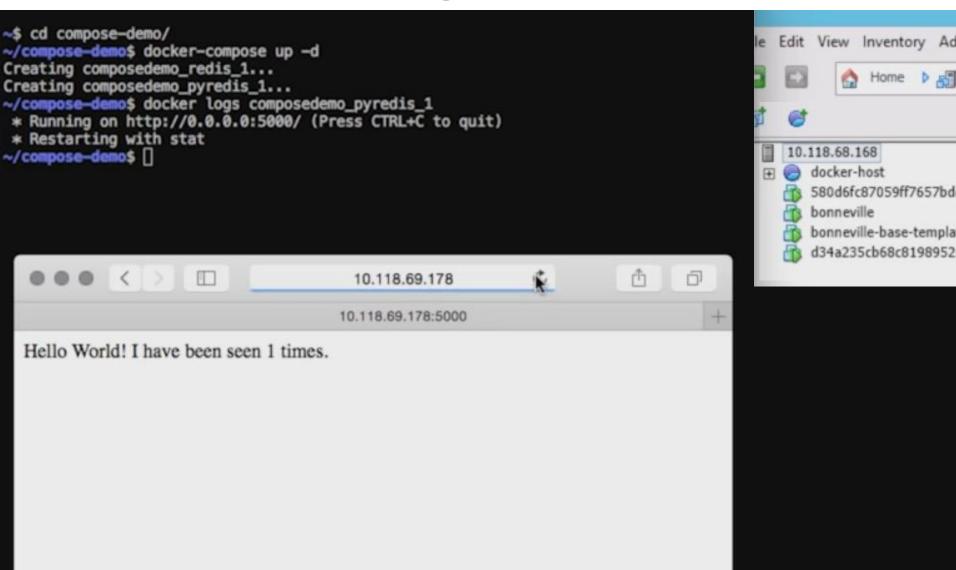

Complete API compatibility with Docker

- Containers visible to IT administrators when running on ESX
- Works with full ecosystem of Docker clients

Greater security and resource efficiency

- •No container host operating system to maintain.
- •ESX clustering allows for more efficient multi-tenant access

vSphere Integrated Containers Architecture


- Containers are first-class citizens on the hypervisor
- No need for a separately managed Linux container host, ESX is the container host
- Virtualization brings many benefits: Security, Isolation and multiple-OS support, migration, HA

Demo: Containers integrated with VMs on ESX

```
$ docker -v
Docker version 1.6.2, build 7c8fca2
                                                                                        le Edit View Inventory Ad
$ docker pull ubuntu
                                                                                                     Home D
latest: Pulling from ubuntu
e118faab2e16: Already exists
7e2c5c55ef2c: Already exists
e04c66a223c4: Already exists
                                                                                           10.118.68.168
fa81ed084842: Already exists
                                                                                        F docker-host
Digest: sha256:738edd684282277c07f23277718e43562daf2ee210f7aca9a13fae65f0159ddd
                                                                                           24f00f458307651c6a80
Status: Image is up to date for ubuntu: latest
                                                                                           bonneville.
$ docker pull redis
latest: Pulling from redis
                                                                                              bonneville-base-templa
b5edc072cfec: Already exists
41eb1212d9f4: Already exists
2c010358721d: Already exists
fb83dcd979bd: Already exists
a1811b7b024f: Already exists
05a396cb49e2: Already exists
361283d1af1a: Already exists
de77586468a2: Already exists
0f3059144681: Already exists
Digest: sha256:45ea798b819b69f3eb4d856d53154afd008b7aaae9280fcfeac26321dfcfd7a1
Status: Image is up to date for redis:latest
S docker images
REPOSITORY
                    TAG
                                        IMAGE ID
                                                             CREATED
                                                                                 VIRTUAL SIZE
pyredis
                    latest
                                        1530d4760567
                                                             5 minutes ago
                                                                                 755.7 MB
python
                    2.7
                                        1ab93ac449ed
                                                             28 hours ago
                                                                                 748.2 MB
                                                             6 days ago
redis
                    latest
                                        0f3059144681
                                                                                 111 MB
ubuntu
                                        fa81ed084842
                                                             10 days ago
                                                                                 188.3 MB
                    latest

◆$ docker run —it ubuntu sh —ic "apt—get update —qq && apt—get install cmatrix && cmatrix"
```

Demo: Containers integrated with VMs on ESX

Cloud Native Platform – Production Stack

e.g. Lightwave, Compose

e.g. K8s, Mesos

e.g. OCF

e.g. Photon OS, CoreOS, Atomic

e.g. vSphere Integrated Container, VSAN, NSX

Management

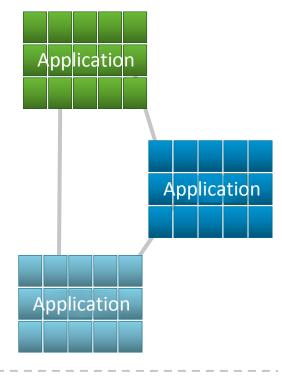
App Definition, Policies, and Provisioning Container Cluster Scheduler

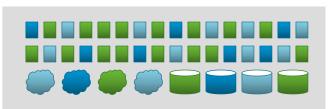
Container Packaging

Container-optimized
Linux

Infrastructure (Hypervisor, storage, networking, etc)

Production

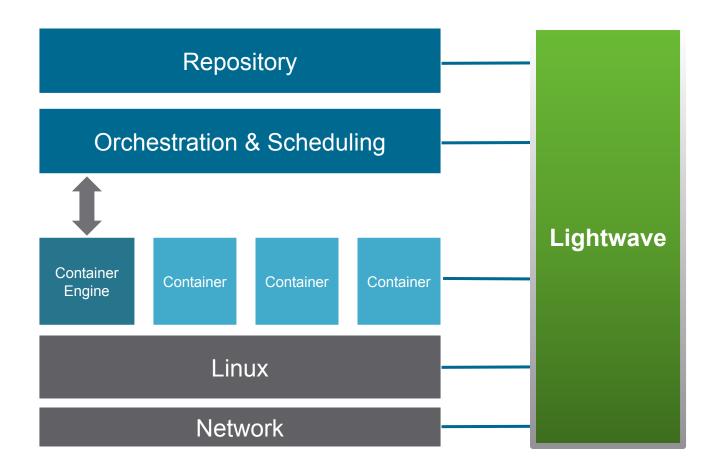



Agenda

1	The Rise of Cloud Native Applications
2	Cloud Native Key Technologies
2.1	Container optimized Linux
2.2	Developer Tooling
2.3	Secure Container Runtime
2.4	Microservices governance

How Will We Secure Cloud-Native Applications?

Challenges


- Complex networks of microservices
- •Services themselves are complex distributed systems
- Many points of attack

Needs

- Scalable identity infrastructure
- Network isolation
- Trusted compute runtime

Cloud-Native Security Solution

Cloud-Native Identity & Access Management

Identity, Authentication and Authorization Server

LDAP, Kerberos, SAML, OAuth2.0, x.509

Scalable Architecture

Multi-master state-based replication

Multi-data center replication

Multi-Tenant

Multiple independent forests

Open Source
Apache 2.0

We Are Hiring

Engineers for Cool Projects on Containers

resume-china@vmware.com

注明: 容器方向

THANKS