
 Twitter Heron
Streaming at Scale

MAOSONG FU
@LOUIS_FUMAOSONG

#TwitterHeron

intro
ABOUT MYSELF

Lead for Twitter Heron project

Senior Engineer for Real Time Analytics

BEGIN

END

OVERVIEW

!
I

MOTIVATION

(II

HERON
PERFORMANCE

K
V

OPERATIONAL
EXPERIENCES

ZIV

TALK OUTLINE

HERON

b
III

OVERVIEW

!
[

TWITTER IS REAL TIME

G

Emerging break out
trends in Twitter (in the

form #hashtags)

Ü

Real time sports
conversations related

with a topic (recent goal
or touchdown)

"

Real time product
recommendations based

on your behavior &
profile

real time searchreal time trends real time conversations real time recommendations

Real time search of
tweets

s

ANALYZING BILLIONS OF EVENTS IN REAL TIME IS A CHALLENGE!

GUARANTEED
MESSAGE

PROCESSING

HORIZONTAL
SCALABILITY

ROBUST
FAULT

TOLERANCE

CONCISE
CODE- FOCUS

ON LOGIC

/b \ Ñ

TWITTER STORM

Streaming platform for analyzing realtime data as they arrive,
so you can react to data as it happens.

STORM TERMINOLOGY
TOPOLOGY

Directed acyclic graph

Vertices=computation, and edges=streams of data tuples

SPOUTS

Sources of data tuples for the topology

Examples - Kafka/Kestrel/MySQL/Postgres

BOLTS

Process incoming tuples and emit outgoing tuples

Examples - filtering/aggregation/join/arbitrary function

,

%

STORM TOPOLOGY

%

%

%

%

%

SPOUT 1

SPOUT 2

BOLT 1

BOLT 2

BOLT 3

BOLT 4

BOLT 5

WORD COUNT TOPOLOGY

% %
TWEET SPOUT PARSE TWEET BOLT WORD COUNT BOLT

Live stream of Tweets

LOGICAL PLAN

WORD COUNT TOPOLOGY

% %
TWEET SPOUT

TASKS
PARSE TWEET BOLT

TASKS
WORD COUNT BOLT

TASKS

%%%% %%%%

When a parse tweet bolt task emits a tuple
which word count bolt task should it send to?

STREAM GROUPINGS

Random distribution
of tuples

Group tuples by a
field or multiple

fields

Replicates tuples to
all tasks

SHUFFLE GROUPING FIELDS GROUPING ALL GROUPING

Sends the entire
stream to one task

GLOBAL GROUPING

/ - ,.

WORD COUNT TOPOLOGY

% %
TWEET SPOUT

TASKS
PARSE TWEET BOLT

TASKS
WORD COUNT BOLT

TASKS

%%%% %%%%

SHUFFLE GROUPING FIELDS GROUPING

MOTIVATION

(

STORM ARCHITECTURE

Nimbus

ZK
CLUSTER

SUPERVISOR

W1 W2 W3 W4

SUPERVISOR

W1 W2 W3 W4

TOPOLOGY
SUBMISSION ASSIGNMENT

MAPS

SLAVE NODE SLAVE NODE

MASTER NODE

Multiple Functionality
Scheduling/Monitoring Single point of failure

Storage Contention

No resource reservation
and isolation

STORM WORKER

TASK4

TASK5

EXECUTOR2

TASK2

TASK3

TASK1

EXECUTOR1

JV
M

 P
R

O
C

ES
S

Complex hierarchy

Difficult to tune

Hard to debug

DATA FLOW IN STORM WORKERS

In QueueIn QueueIn QueueIn QueueIn Queue

TCP Receive Buffer

In QueueIn QueueIn QueueIn QueueOut Queue

Outgoing
Message Buffer

User Logic
Thread

User Logic
Thread

User Logic
Thread

User Logic
Thread

User Logic
Thread

User Logic
Thread

User Logic
Thread

User Logic
Thread

User Logic
ThreadSend Thread

Global Send
Thread

TCP Send Buffer

Global Receive
Thread

Kernel

Queue Contention

Multiple Languages

OVERLOADED ZOOKEEPER

zk

S1

S2

S3

Scaled up

W

W

W
STORM

zk

Handled unto to 1200 workers per cluster

67%

33%

OVERLOADED ZOOKEEPER

KAFKA SPOUT

Offset/partition is written every 2 secs

STORM RUNTIME

Workers write heart beats every 3 secs

Analyzing zookeeper traffic

OVERLOADED ZOOKEEPER

zk

S1

S2

S3

Heart beat daemons

W

W

W
STORM

zk

5000 workers per cluster

HHH

KVKVKV

shared pool

storm
cluster

STORM - DEPLOYMENT

shared pool

storm
cluster

joe’s topology

isolated pools

STORM - DEPLOYMENT

STORM - DEPLOYMENT

shared pool

storm
cluster

joe’s topology

isolated pools

jane’s topology

STORM - DEPLOYMENT

shared pool

storm
cluster

joe’s topology

isolated pools

jane’s topology

dave’s topology

g

G

STORM ISSUES

LACK OF BACK PRESSURE

Drops tuples unpredictably

EFFICIENCY

Serialization program consumes 75 cores at 30% CPU

Topology consumes 600 cores at 20-30% CPU

NO BATCHING

Tuple oriented system - implicit batching by 0MQ !

EVOLUTION OR REVOLUTION?

FUNDAMENTAL ISSUES- REQUIRE EXTENSIVE REWRITING

Several queues for moving data

Inflexible and requires longer development cycle

USE EXISTING OPEN SOURCE SOLUTIONS

Issues working at scale/lacks required performance

Incompatible API and long migration process

,

fix storm or develop a new system?

HERON
b

HERON DESIGN GOALS
FULLY API COMPATIBLE WITH STORM

Directed acyclic graph

Topologies, spouts and bolts

USE OF MAIN STREAM LANGUAGES

C++/JAVA/Python

"

d

#
TASK ISOLATION

Ease of debug ability/resource isolation/profiling

HERON ARCHITECTURE

Topology 1

TOPOLOGY
SUBMISSION

Scheduler

Topology 2

Topology 3

Topology N

TOPOLOGY ARCHITECTURE

Topology
Master

ZK
CLUSTER

Stream
Manager

I1 I2 I3 I4

Stream
Manager

I1 I2 I3 I4

Logical Plan,
Physical Plan and
Execution State

Sync Physical Plan

CONTAINER CONTAINER

Metrics
Manager

Metrics
Manager

TOPOLOGY MASTER

ASSIGNS ROLE MONITORING METRICS

b \ Ñ

Solely responsible for the entire topology

TOPOLOGY MASTER

Topology
Master

ZK
CLUSTER

Logical Plan,
Physical Plan and
Execution State

PREVENT MULTIPLE TM BECOMING MASTERS!

! ALLOWS OTHER PROCESS TO DISCOVER TM

STREAM MANAGER

ROUTES TUPLES BACK PRESSURE ACK MGMT

Ñ

Routing Engine

/ ,

STREAM MANAGER

% %

S1 B2 B3

%

B4

S1 B2

B3

STREAM MANAGER

Stream
Manager

Stream
Manager

Stream
Manager

Stream
Manager

S1 B2

B3 B4

S1 B2

B3

S1 B2

B3 B4

O(n2) O(k2)

B4

S1 B2

B3

STREAM MANAGER

Stream
Manager

Stream
Manager

Stream
Manager

Stream
Manager

S1 B2

B3 B4

S1 B2

B3

S1 B2

B3 B4

tcp back pressure

B4

SLOWS UPSTREAM AND DOWNSTREAM INSTANCES

S1 B2

B3

STREAM MANAGER

Stream
Manager

Stream
Manager

Stream
Manager

Stream
Manager

S1 B2

B3 B4

S1 B2

B3

S1 B2

B3 B4

spout back pressure

B4

S1 S1

S1S1

STREAM MANAGER

PREDICTABILITY

Tuple failures are more deterministic

SELF ADJUSTS

Topology goes as fast as the slowest component

!

!

back pressure advantages

HERON INSTANCE

RUNS ONE TASK EXPOSES API COLLECTS
METRICS

|

Does the real work!

p

>>

>

HERON INSTANCE

Stream
Manager

Metrics
Manager

Gateway
Thread

Task Execution
Thread

data-in queue

data-out queue

metrics-out queue

OPERATIONAL
EXPERIENCES

K
$

HERON DEPLOYMENT
Topology 1

Topology 2

Topology 3

Topology N

Heron
Tracker

Heron
VIZ

Heron
Web

ZK
CLUSTER

Aurora Services

Aurora
Scheduler

Observability

HERON SAMPLE TOPOLOGIES

Large amount of data
produced every day

Large cluster Several topologies
deployed

Several billion
messages every day

HERON @TWITTER

1 stage 10 stages

3x reduction in cores and memory

STORM is decommissioned

HERON
PERFORMANCE

x

9

HERON PERFORMANCE
Settings

COMPONENTS EXPT #1 EXPT #2 EXPT #3 EXPT #4

Spout 25 100 200 300

Bolt 25 100 200 300

Heron containers 25 100 200 300

Storm workers 25 100 200 300

HERON PERFORMANCE
m

illi
on

 tu
pl

es
/m

in

0

350

700

1050

1400

Spout Parallelism
25 100 200 500

Storm Heron

Word count topology - Acknowledgements enabled

la
te

nc
y

(m
s)

0

625

1250

1875

2500

Spout Parallelism
25 100 200 500

Storm Heron

10-14x

Throughput Latency

5-15x

HERON PERFORMANCE

co
re

s
us

ed

0

625

1250

1875

2500

Spout Parallelism
25 100 200 500

Storm Heron

Word count topology - CPU usage

2-3x

HERON PERFORMANCE
Throughput and CPU usage with no acknowledgements - Word count topology

m
illi

on
 tu

pl
es

/m
in

0

1250

2500

3750

5000

Spout Parallelism
25 100 200 500

Storm Heron

co

re
s

us
ed

0

625

1250

1875

2500

Spout Parallelism
25 100 200 500

Storm Heron

HERON EXPERIMENT
RTAC topology

% %
CLIENT EVENT

SPOUT
DISTRIBUTOR

BOLT
USER COUNT

BOLT

%
AGGREGATOR

BOLT

SHUFFLE
GROUPING

FIELDS
GROUPING

FIELDS
GROUPING

HERON PERFORMANCE

Acknowledgements enabled

co

re
s

us
ed

0

100

200

300

400

Storm Heron

CPU usage - RTAC Topology

No acknowledgements

co

re
s

us
ed

0

100

200

300

400

Storm Heron

HERON PERFORMANCE
la

te
nc

y
(m

s)

0

17.5

35

52.5

70

Storm Heron

Latency with acknowledgements enabled - RTAC Topology

CONCLUSION
SIMPLIFIED ARCHITECTURE

Easy to debug, profile and support

HIGH PERFORMANCE

7-10x increase in throughput

5-10x improvement in latency

"

%

#
EFFICIENCY

3-5x decrease in resource usage

&

#ThankYou
FOR LISTENING

QUESTIONS

 and

ANSWERS

R
' Go ahead. Ask away.

