
SCALING UBER 
BY BREAKING 
EVERYTHING
MATT RANNEY







As of October 2015:

Cities Worldwide: 340
Number of Countries: 61
Employees: 4,000+
Engineers: 1000+
Trips per Day: 3,000,000







































UBER ENGINEERING 
HISTORY



2009-2010 Outsourced PHP + MySQL

Jan 2011 "dispatch" - Node.JS/MongoDB

Jan 2011 “API” - Python/SQLAlchemy/MySQL

Feb 2012 Dispatch swaps MongoDB for Redis

May 2012 Dispatch adds ON fallback

Jan 2013 First non-API Python services

Feb 2013 API switched to Postgres

Mar 2014 New Python services use MySQL

Mar 2014 Schemaless begins, must finish before pg collapse

Sep 2014 First Schemaless - trips out of Postgres

Aug 2015 Dispatch X.0 / Ringpop / Riak



TECHNICAL DEBT



BREAKAGE



RESPONSIBLE 
CHOICES



CUMULATIVE FAILURE



TRADEOFFS





TRADEOFFS



MICROSERVICES







UDESTROY









FAILURE TESTING



DATABASES



•master and “slave”

• leader and follower

•primary and secondary

•queen and princess?

REPLICATION 
PARTNERS



WORST OUTAGE 
EVER



The API did not have an available Postgres master 
database for approximately 16 hours, and had 
inadequate read capacity for an additional 24 hours. 
The core trip flow continued to work during this outage, 
but most other capabilities were degraded or non-
functional during this period.



May 11, 4:10AM
<patch> is landed to upgrade the s3cmd program from 
v1.5.0 to v1.5.2, which adds support for China, but also 
starts requiring new IAM permissions. This caused the 
program which backs up write-ahead log segments to 
S3 to fail and (to prevent losing data) store all segments 
on disk, greatly increasing the rate of database disk 
consumption.





6:11 PM - Initial Pagerduty alert fires on Postgres07-sjc1, the API 
Postgres master database at that time : “DISK CRITICAL - free 
space: / 81 GB (2% inode=99%)”.
6:11 PM - Alert was acknowledged by oncall engineer.
7:11 PM - Second Pagerduty alert fires on Postgres07-sjc1. 
"DISK CRITICAL - free space: / 36 GB (1% inode=99%)".
7:17 PM - Alert acknowledged by oncall engineer.
8:11 PM - Third Pagerduty alert fires on postgres07-sjc1. "DISK 
CRITICAL - free space: / 0 GB (0% inode=99%)"
8:14 PM - API master database becomes unavailable and 
Postgres master process crashes.





8:20 PM - Issue is identified as being caused by a huge number 
of unarchived WAL files, and <engineer> tries to resolve the 
issue by deleting old WAL issues and restarting Postgres. This 
is done incorrectly and Postgres fails to restart.
~9:00 PM - Promoted postgres08-sjc1 using pg_ctl promote, 
(note that the runbook failed to specify that the archive_cmd 
must be changed on the promoted slave before promoting it).





9:20PM - We decide to restart postgres01-sjc1 and 
postgres05-sjc1 pointing to postgres08-sjc1





9:35 PM - The new timeline is copied from postgres08-sjc1 to 
S3, and followers begin trying to catch up, but very slowly, 
there is a lot to recover. API Read-Write is stopped to reduce 
potential data loss and amount of writes to recover (however 
autovacuum is still writing to the WAL, a lot).



11:43 PM - Identify that at least one WAL segment is corrupt in 
S3, i.e. archived while it was pre-allocated, but not completely 
written. The archiver was failing on this because it existed, so 
the script was changed to no-op if it already exists, and 
postgres removed the good copy. At this point, postgres08-sjc1 
is up as a master, but any follower of postgres08-sjc1 at a WAL 
location prior to the corrupt segment will not be able to cross the 
gap (i.e. all of them).
postgres08-sjc1, postgres05-sjc1, and postgres01-sjc1, as well 
as all children of postgres01-sjc1 are effectively broken at this 
point.





11:45 PM - <consultants> suggest that we may be able to rsync 
the data from postgres08-sjc1 to the other follower since the 
data changes are minimal (caveat: autovacuum), and we 
decide to use postgres18-sjc1 as the follower to try to sync. 
This effectively takes postgres18-sjc1 out of commission.





12:30 AM - <consultants> believe that they may be able to 
write a C program that would allow us to promote postgres05-
sjc1 in a way that would skip the corrupted WAL file on 
postgres08-sjc1. This program would bypass the normal safety 
mechanisms built into PostgreSQL.



3:20 AM - The C program allows us to issue commands to 
postgres01-sjc1. We are able to promote it, but postgres05-
sjc1 is unable to follow the promotion. 





~6:00 AM - We decide to give up on postgres01, and decide 
to promote postgres06-sjc1, which is immediately successful, 
but getting followers replicating from it is taking too long to 
recover via S3, so archive/recover scripts are modified to use 
cephfs on our local network instead.
~7:00 AM - We successfully reparent postgres20-sjc1 under 
postgres06-sjc1, which brings us about 5 followers.





~7:30 AM - We attempt to reparent peak1 to postgres06-sjc1 
using the same mechanism used to reparent postgres20-sjc1. 
This does not work, and peak1 is left unrecoverable. 





May 13, ~9:00 AM - We are able to successfully reparent 
DCA1 to postgres06-sjc1.





May 14, 10:00 AM - All systems returned to normal level of 
operations.



Alert titles can obscure critical information
Thresholds aren’t as useful as derivatives
Make a lot of copies of your critical data
Practice failure scenarios

LEARNING THE HARD 
WAY











August 21 ~3:00 PM - 10 node Riak cluster “rt-riak-supply” 
experiences an intermittent and as yet undiagnosed network 
problem resulting in multi-second TCP delays.
These delays are masked by Riak, but due to a 
misconfiguration many siblings are created.



3:41 PM - Delays increase and Riak is no longer able to mask 
this latency. Clients respond by opening more connections. 
3:45 PM - Additional connections, sibling management, and 
client retries combine to exhaust file descriptors on all 10 Riak 
nodes.
3:47 PM - Bad timeout handling in client service cascades 
through SOA to front ends. All dispatch services are degraded 
or down.
4:06 PM - Traffic is routed to legacy dispatch system.



Delay testing would have caught this
Proper back pressure is hard
Understanding the metrics is crucial

LEARNING THE HARD 
WAY



CRASH ONLY



HUMAN ERROR



















BREAKING 
EVERYTHING





HAPPY USERS



HAPPY USERS



BREAKING 
EVERYTHING



THANKS


