SCALING UBER
BY BREAKING
EVERYTHING

UBER

INfoQ erzerFszaEmmRsoF0EE

LB
I\rchSumAmn:

Sciixse— S=Dl7ZAakx

B 2015412818-198 / i 1tz - EFFSiNgd
XRIBIZRZNNArchSummitdbz= 2015, IARERMANE

QCon !it=us)

eHRBREREXxe 20165E04821H-23

LiEInfoQEHRE
RETIREQCon®iRilsRES

Geelcban

&30 BHR
LRALORRALINZAFS

3, BLFEHER

HIITER)
53 mwﬁ$u
Geekbangp.

InfoQ | EGDwrnss | StuQy

As of October 2015:

Cities Worldwide: 340
Number of Countries: 61
Employees: 4,000+
Engineers: 1000+

Trips per Day: 3,000,000

W’
J
-) — /J
~ L f 3
e \
‘l
!
I - /
4 .
4 f
~ ! n
— / f {
-~ 1 .
N\

_T \

e -

- :

- [- — / .
- »
- K 1 \‘ 9
l.‘

N \

\ a
/74

e ax amy s ok
S el e A —g I S
e 'ﬁ....\%ﬂh:@/&ﬁ#lf..
=
/

. S N S A
1 . s 4 o\\o ..v ’c‘l .
BEESE R Wy o

Y h’%‘w& ‘.w#p |

KON 1
sl o7
2
) g
A A .
/
/
3
|
]

\A__
) [~
0 'S
.\../
\‘. RN ZF=31
— 1 : ‘]
~ /5
\
b
)
"/ \
'/
/)
—_— 7k—’-.--- \. -‘
.“ ’\.,»
\

-

o)

P

S

0

Bl e
L
HAEARANRANRN
ME NN
MM NN RN
L

AN A
WL
aasl .-

‘i)

CONDE NAST e — ————

CONSIDER IT DELIVERED

UberRUSH is the fastest, most reliable way to get things from here to there in New York City.
Request, track, and confirm your delivery right in the Uber app.

‘ FOR IPHONE * FOR ANDROID

Q CITIES ~ MENU

e 4

UBER %,._ AT S

uo«

Your Uber is on the way. Jackie (4.9 stars)

wil armive in 10 minutes
e—

From tap to table in minutes

UberEATS delivers the best of your city right when you want it.
Our curated menus feature dishes from the local spots you love
And the ones you've always wanted to try. It's same cashless

payment as an Uber ride. So just tap the app, meet your driver

outside, and enjoy.

250 18th Street

-~

ICWE TOYOTA

Local favorites, delivered In
an instant

UberEATS delivers the best of San Francisco right when you
want it. Our curated menu features dishes from the local spots
you love. And the ones you've always wanted to try. It's the
same cashless payment as an Uber ride. So just tap the app, meet

your driver outside, and enjoy.

SIGN UP FOR MENU UPDATES

(
| T L
R
t 5 [

\

| ¢
|
'

N W W
N[W& /7
\IE/31 20 san Fr

"/"‘L 3 A

:)

“\.f'”]i\ |
e s

A,

TUE WED THU FRI SAT
_ - _(_1
(-0 o

1 Lot

-
Jii!
1 —
———
———

cisco, USA

—

Ty

{ o |
12/31/2014 . Boston, USA

\
\ \
N
b

:"

\\ \
/ \ -
<5y (B \
' \\ j
-) N\ o~ \ - "] /
\ <
) \ = AN
\\. \..‘ \ \\ -
‘—/ \(\ / l ‘///\
N ' g - i

IS
:

’ 4
- aw
| FNIREs
|
-

H_ p KRN 4 - T -
=B |
/) "{ 1 L
. -
- 7 ~ ~ | v - f
¢ 5 8 / j
l‘ ' <3 3 \
/ H-H \
\ : : s2(8
N\ / Y :
\ \ A\ _ . { ~
Ve)
g = |

l - ——

Sy, / pate | | T cy 4

1/2014 [Washington D.d, USA X3~ _

— ™~

UBER ENGINEERING
HISTORY

2009-2010 OQutsourced PHP + MySQL

Jan 2011 "dispatch" - Node.JS/MongoDB

Jan 2011 “API” - Python/SQLAIchemy/MySQL
Feb 2012 Dispatch swaps MongoDB for Redis
May 2012 Dispatch adds ON fallback

Jan 2013 First non-API Python services

Feb 2013 APl switched to Postgres

Mar 2014 New Python services use MySQL

Mar 2014 Schemaless begins, must finish before pg collapse
Sep 2014 First Schemaless - trips out of Postgres
Aug 2015 Dispatch X.0 / Ringpop / Riak

TECHNICAL DEBT

BREAKAGE

RESPONSIBLE
CHOICES

CUMULATIVE FAILURE

TRADEOFFS

L) L

LR

o B~

-

TRADEOFFS

MICROSERVICES

count

500

375

250

125

created services / week

A 1

AD

A9 qf:) a\

a5

N OO P N

week number

&l

1% 19 P

— Services created

Netflix / SimianArmy @ Watch~ 386 s Star 2776 Y Fork 363

Chaos Monkey

Cory Bennett edited this page on Jan 5 - 3 revisions

<

What is Chaos Monkey? > Pages ¥

Chaos Monkey is a service which identifies groups of systems and randomly terminates i
one of the systems in a group. The service operates at a controlled time (does not run on ’ :°_m: Start Guld
. uic a uige
weekends and holidays) and interval (only operates during business hours). In most cases e Configuration »
we have designed our applications to continue working when a peer goes offline, but in e REST
. Hal
those special cases we want to make sure there are people around to resolve and learn * Monkeys o

from any problems. With this in mind Chaos Monkey only runs in business hours with the ° Chaos Monkey

" . . o Janitor Monkey
intent that engineers will be alert and able to respond.

o Conformity Monkey
e Migration
Support

Why Run Chaos Monkey?

Clone this wiki locally
Failures happen, and they inevitably happen when least desired. If your application can't

tolerate a system failure would you rather find out by being paged at 3am or after you are

in the office having already had your morning coffee? Even if you are confident that your (@ Clone in Desktop
architecture can tolerate a system failure, are you sure it will still be able to next week,

how about next month? Software is complex and dynamic, that “simple fix" you put in

place last week could have undesired consequences. Do your traffic load balancers

correctly detect and route requests around system failures? Can you reliably rebuild your

systems? Perhaps an engineer "quick patched" a live system last week and forgot to

https://github.com/Netflix/Sir @.

UDESTROY

::',.:3 UDESTROY Services Events

<4 CREATE SCENARIO

EEEEHBEEE
o

i 4 4 8

&% UDESTROY

STATSDEX_INGESTER

ADD RULES

" EDIT SCHEDULES

VIEW ARCHIVED RUNS

Scenario: Brutal Staging Ingester Chokehold

OVERVIEW

CONFIGURATION

uuID

Enabled

RUNS

RULES

When Target

SCHEDULES

All times are local times

When

Action(s)

Enabled

Services

Datacenters

Services

Repeat

4
E 2
L

README

Specify target, start time, repeating and action in respective panels, then click "Add rule" to create the rule.

The table at the bottom describes all rules for this scenario.

TARGET

WHICH HOSTS DO YOU WANT TO TARGET

Percent of One or More Clusto Pools ~

TARGET MINIMUM % TARGET MAXIMUM %

50 50

TARGET POOL OR POD

statsdex_ingester

START TIME AND REPEATING

START TIME (SECONDS)

0

REPEAT MODE

Do Not Repeat N

ACTION

CHOOSE WHAT TO DO

v Block Inbound Traffic

Block Outbound Traffic

Block ALL Traffic

Delay Inbound Traffic

Delay Outbound Traffic

Inbound Packet Loss

Outbound Packet Loss

Kill by Regex (pgrep -f)

Kill Supervisor Service

Kill Containerized Service

Hiccup (SIGSTOP/SIGCONT) by Regex (pgrep -f)
Hiccup (SIGSTOP/SIGCONT) Supervisor Service
Hiccup (SIGSTOP/SIGCONT) Containerized Service
Reduce capacity via hadown/haup

supervisorctl stop/start

Restrict CPU Time

Restrict Memory Limit Before Swapping

Restrict hosts that can log in via ssh

Activate a failpoint for application failures

FAILURE TESTING

DATABASES

REPLICATION
PARTNERS

 master and “slave”

* leader and follower
* primary and secondary

*queen and princess?

WORST OUTAGE
EVER

The API did not have an available Postgres master
database for approximately 16 hours, and had
inadequate read capacity for an additional 24 hours.
The core trip flow continued to work during this outage,
but most other capabilities were degraded or non-
functional during this period.

May 11, 4:10AM

<patch> is landed to upgrade the s3cmd program from
v1.5.0 to v1.5.2, which adds support for China, but also
starts requiring new |IAM permissions. This caused the
program which backs up write-ahead log segments to
S3 to fail and (to prevent losing data) store all segments
on disk, greatly increasing the rate of database disk
consumption.

Sun 1PM

Sun BPM

Mon 12AM

Mon 4AM

postgres07 free disk space

Tue BAM

Tue 8PM

Wed 12AM Wed 4AM

Wad 8AM

6:11 PM - Initial Pagerduty alert fires on Postgres07-sjc1, the API
Postgres master database at that time : “DISK CRITICAL - free
space:/ 81 GB (2% inode=99%)”.

6:11 PM - Alert was acknowledged by oncall engineer.

7:11 PM - Second Pagerduty alert fires on Postgres07-sjc1.
"DISK CRITICAL - free space: / 36 GB (1% inode=99%)".

7:17 PM - Alert acknowledged by oncall engineer.

8:11 PM - Third Pagerduty alert fires on postgres07-sjci1. "DISK
CRITICAL - free space:/ 0 GB (0% inode=99%)"

8:14 PM - AP| master database becomes unavailable and
Postgres master process crashes.

postgres20_sjc|

8:20 PM - Issue is identified as being caused by a huge number
of unarchived WAL files, and <engineer> tries to resolve the
iIssue by deleting old WAL issues and restarting Postgres. This
IS done incorrectly and Postgres fails to restart.

~9:00 PM - Promoted postgres08-sjc1 using pg_ctl promote,
(note that the runbook failed to specity that the archive_cmd
must be changed on the promoted slave before promoting it).

Cormgoint > Croapoion D> Corapotson D Cooapoinon D Corsoon S
Crrnn> ComiaD Crmmapi

9:20PM - We decide to restart postgresO1-sjc1 and
postgres05-sjc1 pointing to postgres08-sjct

@ @ postgresO5_sjcl postgres02_sjcl @ postgres18_sjcl postgres21_sjcl postgres22_sjcl

9:35 PM - The new timeline is copied from postgres08-sjc1 to
S3, and followers begin trying to catch up, but very slowly,
there is a lot to recover. APl Read-Write is stopped to reduce
potential data loss and amount of writes to recover (however
autovacuum is still writing to the WAL, a lot).

11:43 PM - Identify that at least one WAL segment is corrupt in
S3, i.e. archived while it was pre-allocated, but not completely
written. The archiver was failing on this because it existed, so
the script was changed to no-op if it already exists, and
postgres removed the good copy. At this point, postgres08-sjc
IS up as a master, but any follower of postgres08-sjc1 at a WAL
location prior to the corrupt segment will not be able to cross the
gap (i.e. all of them).

postgres08-sjc1, postgres05-sjc1, and postgresO1-sjc1, as well
as all children of postgres01-sjc1 are effectively broken at this
point.

<=
. T
RS P> Coaper> Gt Cmrrin> Gt Cmpin> Qe

11:45 PM - <consultants> suggest that we may be able to rsync
the data from postgres08-sjc1 to the other follower since the
data changes are minimal (caveat: autovacuum), and we
decide to use postgres18-sjc1 as the follower to try to sync.
This effectively takes postgres18-sjc1 out of commission.

7
OIS
<>
SO v@ oo postgres02_sic| posigres]_sic! N o—ryr
2 N /N N PR

12:30 AM - <consultants> believe that they may be able to
write a C program that would allow us to promote postgres05-
sjc1 in a way that would skip the corrupted WAL file on

postgres08-sjc1. This program would bypass the normal safety
mechanisms built into PostgreSQL.

3:20 AM - The C program allows us to issue commands to
postgres01-sjc1. We are able to promote it, but postgres05-
sjc1 is unable to follow the promotion.

Crmrenni™s oot Cmmnn> oo Comon> Coaporr G i

~6:00 AM - We decide to give up on postgres01, and decide
to promote postgres06-sjc1, which is immediately successful,
but getting followers replicating from it is taking too long to
recover via S3, so archive/recover scripts are modified to use
cephfs on our local network instead.

~7:00 AM - We successfully reparent postgres20-sjc1 under
postgres06-sjc1, which brings us about 5 followers.

@gmsoz_sjc I postgres| 7_@ postgres20_ s_|c l i|

postgres21 s;kgrcsﬁ D

~7:30 AM - We attempt to reparent peaki to postgres06-sjc1
using the same mechanism used to reparent postgres20-sjci.
This does not work, and peak1 is left unrecoverable.

May 13, ~9:00 AM - We are able to successtully reparent
DCA1 to postgres06-sjc1.

@ gres02_sjcl post grcsZO_sD

@ gresl8_sjcl @ gres2 l_sjc) post grcs22_sjc>

postgres17_sjcl

May 14, 10:00 AM - All systems returned to normal level of
operations.

LEARNING THE HARD
WAY

Alert titles can obscure critical information
Thresholds aren’t as useful as derivatives
Make a lot of copies of your critical data
Practice failure scenarios

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

maZzo

ABSTRACT

Reliability at massive scale 1s one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
1s implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state 1s managed in the face
of these failures drives the reliability and scalability of the
software systems.

Home Download Getting Started Planet Cassandra Contribute

Welcome Video Slides

Welcome to Apache Cassandra ™

The Apache Cassandra database is the right choice when you need scalability and high
availability without compromising performance. Linear scalability and proven fault-tolerance
on commodity hardware or cloud infrastructure make it the perfect platform for mission-
critical data. Cassandra's support for replicating across multiple datacenters is best-in-class,
providing lower latency for your users and the peace of mind of knowing that you can survive
regional outages.

Cassandra's data model offers the convenience of column indexes with the performance of
log-structured updates, strong support for denormalization and materialized views, and
powerful built-in caching.

Latest release 2.1.5 (Changes)
Stable release 2.0.15 (Changes)

&

Download options

Riak is an open source, distributed database. Riak is architected for:

e Low-Latency: Riak is designed to store data and serve requests predictably and quickly, even during
peak times.

e Availability: Riak replicates and retrieves data intelligently, making it available for read and write
operations even in failure conditions.

e Fault-Tolerance: Riak is fault-tolerant so you can lose access to nodes due to network partition or
hardware failure and never lose data.

e Operational Simplicity: Riak allows you to add machines to the cluster easily, without a large
operational burden.

o Scalability: Riak automatically distributes data around the cluster and yields a near-linear performance
increase as capacity is added.

August 21 ~3:00 PM - 10 node Riak cluster “rt-riak-supply”
experiences an intermittent and as yet undiagnosed network
problem resulting in multi-second TCP delays.

These delays are masked by Riak, but due to a
misconfiguration many siblings are created.

3:41 PM - Delays increase and Riak is no longer able to mask
this latency. Clients respond by opening more connections.

3:45 PM - Additional connections, sibling management, and
client retries combine to exhaust file descriptors on all 10 Riak
nodes.

3:47 PM - Bad timeout handling in client service cascades
through SOA to front ends. All dispatch services are degraded
or down.

4:06 PM - Traffic is routed to legacy dispatch system.

LEARNING THE HARD
WAY

Delay testing would have caught this
Proper back pressure is hard
Understanding the metrics is crucial

CRASH ONLY

HUMAN ERROR

HOME > APP>CLOUD

Microsoft confirms Azure
outage was human error

19 December 2014 By Peter Judge

- s N

icrosoft has given a final - and painful - explanation for a major outage of Azure cloud services on November 18,

2014. The downtime left some customers of Azure Storage and other offerings without internet services, and was

caused by human error.

In the immediate aftermath, Jason Zander, Microsoft Azure Team (below), said on a blog, that the problem was an automated
update, set up to improve performance, putting storage blog updates into an infinite loop. This post apologized and

presented a preliminary Root Cause Analysis (RCA), with a promise to address the issue.

Home »Data Center »Analysis: 70% of data center outages directly attributable to human error

Analysis: 70% of data center outages directly attributable
to human error

August 16, 2013
By Matt Vincent
Senior Editor

A new white paper from APC-Schneider Electric contends that "a properly designed, implemented, and supported
operations and maintenance (O&M) program will minimize risk, reduce costs, and even provide a competitive
advantage for the overall business the data center serves. A poorly organized program, on the other hand, can

quickly undermine the design intent of the facility putting its people, |T systems, and the business itself at risk of
harm or interruption.”

See: 8 best practices for data center personnel to follow

The paper's executive summary states that 70% of data center outages are directly attributable to human error,
according to the Uptime Institute’s analysis of their “abnormal incident” reporting (AIR) database. This figure

highlights the critical importance of having an effective operations and maintenance (O&M) program, says APC-
Schneider Electric.

'Human error' caused 911 outage
last week

By Nathaniel Axtell
Times-News staff writer

Published: Wednesday, April 15, 2015 at 6:07 p.m.
Last Modified: Wednesday, April 15, 2015 at 6:07 p.m.

"Human error" caused the county's E-911 system to stop working for
12 hours on April 7, E-911 Communications Director Lisha Stanley

told commissioners Wednesday.

The outage had nothing to do with the new E-911 system that went
online April 2 in the basement of the county's law enforcement
center, Stanley added. It was instead due to an error at Colorado-

based system provider Intrado Inc.

All of the center's equipment had been installed, but “there were
portions of monitoring software that was not completed,” said
Robert Sergi, Intrado's director of technical field services. “So we
had an individual who, against our standard procedure, attempted to
transfer large files from one piece of equipment to another,”

sparking the outage.

Nasdaq: 'Human Error' Causes Data
Service Outage

By Matt Egan - Published October 29, 2013 . FOXBusiness

_

(Reuters)

Traders wondering where the closely-watched Nasdaq Composite was trading
on Tuesday were left in the dark for nearly an hour as the exchange was hit by a
data service outage caused by "human error."

The values for both the Nasdag Composite and the Nasdaq 100 Index appeared
halted between 11:53 a.m. ET. and 12:47 p.m.

Twitter outage caused by human error,
domain briefly yanked

CNET has learned a Twitter outage that left millions of users fuming when they couldn't click on links came from an
unlikely source: a "phishing complaint” sent to an Australian firm.

by Declan McCullagh @declanm / October 8, 2012 3:16 PM PDT

Amazon blames human error for Xmas
Netflix vows better resiliency

by Dec. 31, 2012 - 3:58 PM PDT

-ve outage;

GMAIL OUTAGE NOT APOCALYPSE - JUST
HUMAN ERROR

(@ On 11 Dec, 2012 & By Christopher Woo %%

Yesterday, the internet experienced a moment of apocalypse angst when
Gmalil users around the world (including C2) experienced a variety of
issues getting email. Lasting roughly 40 minutes, users experienced
complete outages, slowness and, if they were using Chrome with browser
syncing enabled, outright application crashes. It turns out, rather than
being able to blame ancient prophecies, Google fingered one of their
ownr? as the root source of the problem.

What this means for you:

Cloud nay-sayers’ may have had a brief moment in the sun while Gmail
was on the ropes, but the fact remains that it's still a very reliable service.
Several lessons may be learned from the experience, all of them common sense:

BREAKING
EVERYTHING

Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web

Services
Seth Gilbert* Nancy Lynch*
Abstract

When designing distributed web services, there are three
properties that are commonly desired: consistency, avail-
ability, and partition tolerance. It is impossible to achieve
all three. In this note, we prove this conjecture in the asyn-
chronous network model, and then discuss solutions to this
dilemma in the partially synchronous model.

1 Introduction

At PODC 2000, Brewer!, in an invited talk [2], made the following con-
jecture: it is impossible for a web service to provide the following three
guarantees:

e Consistency
e Availability

e Partition-tolerance

HAPPY USERS

HAPPY USERS

BREAKING
EVERYTHING

THANKS

