
© 2015 IBM Corporation1

Trends in Application Development
For Enterprise Web Applications

Chris Bailey
IBM Runtime Technologies

© 2015 IBM Corporation2 2

#1
Language Choices

© 2014 IBM Corporation3

The Ecosystem is Increasingly Polyglot

Hardware Platforms

Language
Developers

Runtime Stacks

Cloud Providers

Service Providers

Want to ensure quality implementations of language runtimes on their HW
platforms and drive innovation to exploit hardware

Want high performance infrastructure but lack expertise. Lack a common point of
investment for runtime acceleration on all platforms

Want hardware platform benefits to showcase their stack regardless of the
language runtime engine

Need a premium deployment platform where the language runtime showcases
their density, performance, scaling and reliability

Leverage the platform capabilities to accelerate computation and communication
regardless of language runtime

© 2014 IBM Corporation4

GitHub Adoption

© 2014 IBM Corporation5

GitHub Trends

© 2014 IBM Corporation6

Ratings based on the number of skilled engineers, courses and third party vendors.

Tiobe Community Programming Index

© 2014 IBM Corporation7

modulecounts.com

© 2014 IBM Corporation8

Average salary and job vacancies (Computer Science Zone)

Computer Science Zone Jobs Report

© 2014 IBM Corporation9

RedMonk Language Rankings
1 JavaScript
2 Java
3 PHP
4 Python
5 C#
5 C++
5 Ruby
8 CSS
9 C
10 Objective-C
11 Perl
11 Shell
13 R
14 Scala
15 Go
16 Haskell
17 Matlab
17 Swift
19 Clojure
19 Groovy
19 Visual Basic

© 2014 IBM Corporation10

RedMonk Language Rankings Trends

01/01/2013 01/05/2013 01/09/2013 01/01/2014 01/05/2014 01/09/2014 01/01/2015 01/05/2015
0

2

4

6

8

10

12

14

16

18

20

JavaScript

Java

PHP

Python

C#

C++

Ruby

CSS

C

Objective-C

Perl

Shell

R

Scala

Go

Haskell

Matlab

Swift

Clojure

Groovy

Visual Basic

© 2014 IBM Corporation11

RedMonk Language Rankings Trends

01/01/2013 01/05/2013 01/09/2013 01/01/2014 01/05/2014 01/09/2014 01/01/2015 01/05/2015
0

2

4

6

8

10

12

14

16

18

20

JavaScript

Java

PHP

Python

C#

C++

Ruby

CSS

C

Objective-C

Perl

Shell

R

Scala

Go

Haskell

Matlab

Swift

Clojure

Groovy

Visual Basic

© 2015 IBM Corporation12

#2
Engaging Applications

© 2015 IBM Corporation13

 JavaScript is ubiquitous in the browser
- Supported in every browser

- Integration with HTML and CSS

 JavaScript is not affected by negative publicity....

Unless it is absolutely necessary to run Java in web browsers, disable it as described
below, even after updating to 7u11. This will help mitigate other Java vulnerabilities that
may be discovered in the future.

This and previous Java vulnerabilities have been widely targeted by attackers, and
new Java vulnerabilities are likely to be discovered. To defend against this and future
Java vulnerabilities, consider disabling Java in web browsers…

Browser Applications

© 2015 IBM Corporation14

 Java has originally targeted at for creating user applications

 Eventually started to migrate to the server:
- JPE launched in 1998

 Today Java has rich platform support:
- Linux x86, Linux POWER, zLinux

- Windows, Mac OS, Solaris, AIX, z/OS

 JavaScript usage is starting to grow on the server

Browser Applications to Server Applications

© 2015 IBM Corporation15

 Single Threaded Event based JavaScript framework
– Uses non-blocking asynchronous I/O

 Wraps the Chrome V8 JavaScript engine with I/O interfaces

– Libuv provides interaction with OS/system

 Designed to build scalable network applications
– Suited for real time delivery of data to distributed client

 Available on a wide set of platforms:
- Linux on x86, ARM, Power and Z
- Windows, Mac OS, Solaris, SmartOS and AIX

libuvV8

Node Bindings

Node Standard Library

C

JavaScript

Server Side JavaScript: Node.js

© 2015 IBM Corporation16

#3
Reactive Programming

© 2015 IBM Corporation17

 Can easily express dynamic data flows

 Execution model propagates changes through the model

 Typically makes use of asynchronous models to propagate events

Reactive Programming

“a programming paradigm oriented around data
flows and the propagation of change.”

© 2015 IBM Corporation18

 One thread (or process) per connection
- Each thread waits on a response
- Scalability determined by the number

of threads

 Each thread:
- consumes memory
- is relatively idle

 Number of concurrent customers
determined by number of depot workers

 Additional customers wait in a queue with no
response

Typical approach to I/O

© 2015 IBM Corporation19

 One thread multiplexes for multiple
requests
- No waiting for a response
- Handles return from I/O when

notified

 Scalability determined by:
- CPU usage
- “Back end” responsiveness

 Number of concurrent customers
determined by how fast the food Server
can work

 Or until the kitchen gets slammed

Asycnhronous Non-Blocking I/O

© 2015 IBM Corporation20

 JavaScript is inherently designed to be asynchronous
- eg. onClick and onMouseOver events

 This applies easily to server applications as well

JavaScript and Asynchronous I/O

var http = require('http');

var server = http.createServer();
server.listen(8080);

server.on('request', function(request, response) {
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.write("Hello World!\n");
 response.end();
});

server.on('connection', function(socket) {});
server.on('close', function() {});
server.on('connect', function(socket) {});
server.on('upgrade', function(request, socket, head) {});
server.on('clientError', function(exception, socket) {});

© 2015 IBM Corporation21

#4
Cloud Deployments

© 2015 IBM Corporation22

Cloud

“a virtual, dynamic environment which maximizes use,
is infinitely scalable, always available and needs

minimal upfront investment or commitment”

● Removes infrastructure as a bottleneck to rapid application delivery
and expansion

● Provides “compute on tap”

● But taps come with meters and usage charge models

© 2015 IBM Corporation23

Compute Costs

Offering RAM Cost CPUs

IBM Bluemix (CF) $24.15 GB/Month 4vCPUs per instance

IBM Bluemix (Containers) $ 9.94 GB/Month 4vCPUs per GB

run.pivotal.io $21.60 GB/Month 4vCPUs per instance

Heroku (Hobby) $14.00 GB/Month 1 "CPU share" per 512MB
in an instance

Heroku (Professional) $50.00 GB/Month 1 "CPU share" per 512MB
in an instance

Amazon EC2 (SLES) $16.56 GB/Month 1 vCPU per 4GB in an
instance.

© 2015 IBM Corporation24

-Xmx: $$$

Cloud Economics

© 2015 IBM Corporation25

Cloud Economics

Someone
will be
looking at
your leaky
app

Someone
will be
looking at
your leaky
app

© 2015 IBM Corporation26

Clouds are Polyglot

© 2015 IBM Corporation27

N-Body Benchmark: Memory Footprints

0

10

20

30

40

50

60

70

© 2015 IBM Corporation28

N-Body Benchmark: Time to Complete

0

5

10

15

20

25

30

35

40

C
o

m
p

le
te

 T
im

e
 (

s
)

© 2015 IBM Corporation29

N-Body Benchmark: Time to Complete

0

2

4

6

8

10

12

14

16

18

20

C
o

m
p

le
te

 T
im

e
 /

1
0

0
M

B
 (

s
)

© 2015 IBM Corporation30

#5
MicroServices

© 2015 IBM Corporation31

 Services are small and targeted to their task

 Services are organized around capabilties

 Services are self contained, storing their own data

MicroServices

“Do one thing, and do it well”

© 2015 IBM Corporation32

 Dynamically typed languages are harder to manage under the hood

 They have lower runtime performance for computational tasks

Dynamically vs Statically Types Languages

-70

-60

-50

-40

-30

-20

-10

0

Dynamic vs Statically Typed Language Performance

JSON

Single

Multi

Updates

B
e

s
t d

yn
a

m
ic

 c
o

m
p

a
re

d
 to

 b
e

s
t s

ta
tic

 a
s

 b
a

s
e

lin
e

© 2015 IBM Corporation33

 Dynamically typed languages are harder to manage under the hood

 They have lower runtime performance for computational tasks

 They have higher scope for data integrity issues:

 Statically typed languages throw error at compile time or runtime

Dynamically vs Statically Types Languages

-70

-60

-50

-40

-30

-20

-10

0

Dynamic vs Statically Typed Language Performance

JSON

Single

Multi

Updates

B
e

s
t d

yn
a

m
ic

 c
o

m
p

a
re

d
 to

 b
e

s
t s

ta
tic

 a
s

 b
a

s
e

lin
e

> 12 + 3
123 // 12 or 3 previously used as text

© 2015 IBM Corporation34

Choosing the Right Language for the Service

Node.js

0

- 4x

+ 1/3x

N
o

d
e

.js
 P

e
rf

o
rm

a
n

c
e

 R
e

la
ti

ve
 t

o
 J

a
va

CPU Bound I/O Bound

* based on TechEmpower benchmark results

regex-dna Spectral-normfannkuch-redux fasta k-nucleotide Binary-trees n-body Reverse-complement

N
o

d
e

.js
 C

o
d

e
 V

o
lu

m
e

 R
e

la
ti

ve
 t

o
 J

a
va

* based on benchmarksgame benchmarks

Node.js

Application Performance
(higher is better)

Development Effort
(lower is better)

● Node.js has higher performance for I/O
 Fast async non-blocking framework for scalability

● Node.js allows “fullstack” webapp development
 End to end JavaScript for server and browser

However....

● Java is much faster at computational logic
 Node.js performance is non-ideal for transactions

- 3x

● Node.js has higher developer productivity
 Many applications developed with significantly less code

● Rich module system simplifies development
 Reduces need to develop custom code

However...

● Java is strongly typed, ensuring data correctness
 Node.js type mis-matches can result in incorrect results

Node.js fits the presentation tier, offloading to Java* for business transactional logic

 Avg 1/3rd less code

© 2015 IBM Corporation35

Service topology for Web Applications

Operations and Management

 Admin Analytics

L
o

ad
 B

al
an

ce
r

L
o

ad
 B

al
an

ce
r

HTTP

Monitoring ScalingAnalytics Diagnostics

© 2015 IBM Corporation36

Service topology for Web Applications

Operations and Management

 Admin Analytics

L
o

ad
 B

al
an

ce
r

L
o

ad
 B

al
an

ce
r

HTTP

Monitoring ScalingAnalytics Diagnostics

© 2015 IBM Corporation37

Service topology for Web Applications

Operations and Management

 Admin Analytics

L
o

ad
 B

al
an

ce
r

L
o

ad
 B

al
an

ce
r

HTTP

Monitoring ScalingAnalytics Diagnostics

© 2015 IBM Corporation38

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

