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#1
Language Choices
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The Ecosystem is Increasingly Polyglot

Hardware Platforms

Language 
Developers

Runtime Stacks

Cloud Providers

Service Providers

Want to ensure quality implementations of language runtimes on their HW 
platforms and drive innovation to exploit hardware

Want high performance infrastructure but lack expertise.  Lack a common point of 
investment for runtime acceleration on all platforms

Want hardware platform benefits to showcase their stack regardless of the 
language runtime engine

Need a premium deployment platform where the language runtime showcases 
their density, performance, scaling and reliability

Leverage the platform capabilities to accelerate computation and communication 
regardless of language runtime
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GitHub Adoption
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GitHub Trends
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Ratings based on the number of skilled engineers, courses and third party vendors.

Tiobe Community Programming Index
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modulecounts.com
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Average salary and job vacancies (Computer Science Zone)

Computer Science Zone Jobs Report
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RedMonk Language Rankings
1 JavaScript
2 Java
3 PHP
4 Python
5 C#
5 C++
5 Ruby
8 CSS
9 C
10 Objective-C
11 Perl
11 Shell
13 R
14 Scala
15 Go
16 Haskell
17 Matlab
17 Swift
19 Clojure
19 Groovy
19 Visual Basic
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RedMonk Language Rankings Trends
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#2
Engaging Applications
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 JavaScript is ubiquitous in the browser
- Supported in every browser

- Integration with HTML and CSS

 JavaScript is not affected by negative publicity....

Unless it is absolutely necessary to run Java in web browsers, disable it as described
below, even after updating to 7u11. This will help mitigate other Java vulnerabilities that
may be discovered in the future.

This and previous Java vulnerabilities have been widely targeted by attackers, and 
new Java vulnerabilities are likely to be discovered. To defend against this and future 
Java vulnerabilities, consider disabling Java in web browsers…

Browser Applications
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 Java has originally targeted at for creating user applications

 Eventually started to migrate to the server:
- JPE launched in 1998

 Today Java has rich platform support:
- Linux x86, Linux POWER, zLinux

- Windows, Mac OS, Solaris, AIX, z/OS

 JavaScript usage is starting to grow on the server

Browser Applications to Server Applications
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 Single Threaded Event based JavaScript framework
– Uses non-blocking asynchronous I/O

 Wraps the Chrome V8 JavaScript engine with I/O interfaces

– Libuv provides interaction with OS/system

 Designed to build scalable network applications
– Suited for real time delivery of data to distributed client

 Available on a wide set of platforms:
- Linux on x86, ARM, Power and Z
- Windows, Mac OS, Solaris, SmartOS and AIX

libuvV8

Node Bindings

Node Standard Library

C

JavaScript

Server Side JavaScript: Node.js
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#3
Reactive Programming
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 Can easily express dynamic data flows

 Execution model propagates changes through the model

 Typically makes use of asynchronous models to propagate events

Reactive Programming

“a programming paradigm oriented around data 
flows and the propagation of change.”
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 One thread (or process) per connection
- Each thread waits on a response
- Scalability determined by the number 

of threads

 Each thread:
- consumes memory
- is relatively idle

 Number of concurrent customers 
determined by number of depot workers

 Additional customers wait in a queue with no 
response

Typical approach to I/O
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 One thread multiplexes for multiple 
requests
- No waiting for a response
- Handles return from I/O when 

notified

 Scalability determined by:
- CPU usage
- “Back end” responsiveness

 Number of concurrent customers 
determined by how fast the food Server 
can work

 Or until the kitchen gets slammed

Asycnhronous Non-Blocking I/O
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 JavaScript is inherently designed to be asynchronous
- eg. onClick and onMouseOver events

 This applies easily to server applications as well

JavaScript and Asynchronous I/O

var http = require('http');

var server = http.createServer();
server.listen(8080);

server.on('request', function(request, response) {
  response.writeHead(200, {"Content-Type": "text/plain"});
  response.write("Hello World!\n");
  response.end();
});

server.on('connection', function(socket) {});
server.on('close', function() {});
server.on('connect', function(socket) {});
server.on('upgrade', function(request, socket, head) {});
server.on('clientError', function(exception, socket) {});
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#4
Cloud Deployments
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Cloud 

“a virtual, dynamic environment which maximizes use, 
is infinitely scalable, always available and needs 

minimal upfront investment or commitment”

● Removes infrastructure as a bottleneck to rapid application delivery 
and expansion

● Provides “compute on tap”

● But taps come with meters and usage charge models
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Compute Costs

Offering RAM Cost CPUs

IBM Bluemix (CF) $24.15 GB/Month 4vCPUs per instance

IBM Bluemix (Containers) $  9.94 GB/Month 4vCPUs per GB

run.pivotal.io $21.60 GB/Month 4vCPUs per instance

Heroku (Hobby) $14.00 GB/Month 1 "CPU share" per 512MB 
in an instance

Heroku (Professional) $50.00 GB/Month 1 "CPU share" per 512MB 
in an instance

Amazon EC2 (SLES) $16.56 GB/Month 1 vCPU per 4GB in an 
instance.
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-Xmx: $$$

Cloud Economics
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Cloud Economics

Someone 
will be 
looking at 
your leaky 
app

Someone 
will be 
looking at 
your leaky 
app
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Clouds are Polyglot
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N-Body Benchmark: Memory Footprints
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N-Body Benchmark: Time to Complete
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N-Body Benchmark: Time to Complete
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#5
MicroServices
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 Services are small and targeted to their task

 Services are organized around capabilties

 Services are self contained, storing their own data

MicroServices

“Do one thing, and do it well”
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 Dynamically typed languages are harder to manage under the hood

 They have lower runtime performance for computational tasks

Dynamically vs Statically Types Languages
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 Dynamically typed languages are harder to manage under the hood

 They have lower runtime performance for computational tasks

 They have higher scope for data integrity issues:

 Statically typed languages throw error at compile time or runtime

Dynamically vs Statically Types Languages
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Choosing the Right Language for the Service

Node.js
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Node.js

Application Performance
(higher is better)

Development Effort
(lower is better)

● Node.js has higher performance for I/O 
    Fast async non-blocking framework for scalability

● Node.js allows “fullstack” webapp development
    End to end JavaScript for server and browser

However....

● Java is much faster at computational logic
    Node.js performance is non-ideal for transactions

- 3x

● Node.js has higher developer productivity
    Many applications developed with significantly less code

● Rich module system simplifies development
    Reduces need to develop custom code

However...

● Java is strongly typed, ensuring data correctness
    Node.js type mis-matches can result in incorrect results

Node.js fits the presentation tier, offloading to Java* for business transactional logic

    Avg 1/3rd less code



© 2015 IBM Corporation35

Service topology for Web Applications
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Service topology for Web Applications
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Service topology for Web Applications
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