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  def create	
  end	
end	
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  end	
end	
!
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Let’s go back here
  context "when the project uid is valid" do	
    context "when the user uid is valid" do	
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New Class EmailHandler

class EmailHandler
def initialize(params)
end

def handle
end

end

describe EmailHandler do	
  describe "#initialize" do	
  end	
  	
  describe "#handle" do	
  end	
end	

context "when the project uid is valid" do
context "when the user email is valid" do

context "when the user has the right to access this project"
do

context "when the ticket uid is valid" do
....

describe "#handle" do

end

      EmailHandler.new(params).handle	



EmailHandler#handle
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do	
          context "when the ticket uid is valid" do	
            ....	

  describe "#handle" do	

end



EmailHandler#handle
    context "when the project uid is valid" do	
      context "when the user email is valid" do	
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EmailHandler#handle
    context "when the project uid is valid" do	
      context "when the user email is valid" do	
        context "when the user has the right to access this project" 
do	
          context "when the ticket uid is valid" do	
            ....	

  describe "#handle" do	

end

describe "#handle" do	
  context "when it is a valid email" do	
    it "creates a comment"	
  end	
  	
  context "when it is a invalid email" do	
    it "doesn't create a comment"	
  end   	
end	
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    it "creates a comment" do	

EmailHandler#handle
describe "#handle" do	
  context "when it is a valid email" do	
!

    end	
  end

let(:email_handler) { EmailHandler.new(....) }	
before { email_handler.stub(:valid_email?).and_return(true) }

email_hander.handle
Comment.count.should == 1

context "when it is a invalid email" do	
  let(:email_handler) { EmailHandler.new(....) }	
  before { email_handler.stub(:valid_email?).and_return(false) }	
  it "doesn't create a comment" do	
    email_hander.handle	
    Comment.count.should == 0	
  end	
end 	
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class EmailHandler	
  def initialize	
  end	
  	
  def handle	
    if valid_email?	
      #create comment	
    end	
  end	
  	
  def valid_email?	
    #validate the email information.	
  end  	
end	

EmailHandler#handle
describe "#valid_email?" do

end



class EmailHandler	
  def initialize	
  end	
  	
  def handle	
    if valid_email?	
      #create comment	
    end	
  end	
  	
  def valid_email?	
    #validate the email information.	
  end  	
end	

EmailHandler#handle
describe "#valid_email?" do

context "all objects is valid"
#true

context "invalid project"
#false

context "invalid user"
#false

context "invalid ticket"
#false

end



What we got

class EmailHandler	
  def initialize	
  end	
  	
  def handle	
    if self.valid_email?	
      #create comment	
    end	
  end	
  	
  def valid_email?	
    #validate the email.	
  end  	
end	

class EmailRepliesController < AC	
!
  def create	
    if post_request_authenticated?	
      EmailHandler.new(params).handle	
      head(200)	
    else	
      head(422)	
    end	
  end	
!
  def post_request_authenticated?	
    ...	
  end	
end	
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If you don’t get me...
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Review

Test guides us go forward.

We begin to refactor when we feel pain in Test.

When do we to refactor code?

What do we need to refactor?

We reduce the dependencies found by Test.



Keep an eye on TEST. 
Enjoy it!



Further Resources
POODRGOOS



Thanks!


