
Discovering Better Object
Oriented Design with Test

Discovering Better Object
Oriented Design with Test

SEXY

Discovering Better Object
Oriented Design with Test

SEXY

@poiyzy

Github/Twitter/Weibo

Why hate to write test?!

Why hate to write test?!

* Protect our code.

Why hate to write test?!

* Hard to think about how to write it.

* Protect our code.

Why hate to write test?!

* Hard to think about how to write it.

* It is painful, can’t keep on going.

* Protect our code.

Why hate to write test?!

* Hard to think about how to write it.

* It is painful, can’t keep on going.

* Protect our code. Fetch up test after
implementation!

Why hate to write test?!

* Hard to think about how to write it.

* It is painful, can’t keep on going.

* Protect our code. Fetch up test after
implementation!

It is not TDD.

Something behind that

* Hard to think about
how to write it.

* It is painful, can’t keep on
going.

Something behind that

* Hard to think about
how to write it.

* It is painful, can’t keep on
going.

* Write it Step by Step, test
reflect your design structure.

Something behind that

* Hard to think about
how to write it.

* It is painful, can’t keep on
going.
* It is a signal about
your bad design.

* Write it Step by Step, test
reflect your design structure.

Why need OO design?

Why need OO design?

* Code is unclearly.

Why need OO design?

* Code is unclearly.

* Hard to understand.

Why need OO design?

* Code is unclearly.

* Hard to understand.

* It is unmaintainable.

Refactor the bad structure as earlier as possible.

Refactor the bad structure as earlier as possible.

Test reflects the design structure.

Refactor the bad structure as earlier as possible.

Test reflects the design structure.

Discovering better OO design with test

A New Feature
of Pragmatic.ly

Pragmatic.ly

Working Flow

SendCloud

Client

Pragmatic.ly

Working Flow

SendCloud

Client

1.Tell SendCloud to send email.

Pragmatic.ly

Working Flow

SendCloud

Client

1.Tell SendCloud to send email.
2.Send out the email to clients.

Pragmatic.ly

Working Flow

SendCloud

Client

1.Tell SendCloud to send email.
2.Send out the email to clients.

3.Client reply the email.

Pragmatic.ly

Working Flow

SendCloud

Client

1.Tell SendCloud to send email.
2.Send out the email to clients.

3.Client reply the email.
4.SendCloud webhook send a
post request to our callback url.

Pragmatic.ly

Working Flow

SendCloud

Client

1.Tell SendCloud to send email.
2.Send out the email to clients.

3.Client reply the email.
4.SendCloud webhook send a
post request to our callback url.

5.Create a comment.

Pragmatic.ly

Working Flow

SendCloud

Client

1.Tell SendCloud to send email.
2.Send out the email to clients.

3.Client reply the email.
4.SendCloud webhook send a
post request to our callback url.

5.Create a comment.

What we need to do?

Pragmatic.lySendCloud

What we need to do?

Pragmatic.lySendCloud

1. Verify the post request.

What we need to do?

Pragmatic.lySendCloud

1. Verify the post request.

What we need to do?

Pragmatic.lySendCloud

Reply-To: ticket+PROJECT_UID+TICKET_UID@info.pragmatic.ly

1. Verify the post request.

mailto:ticket+PROJECT_UID+TICKET_UID@info.pragmatic.ly

What we need to do?

Pragmatic.lySendCloud

Reply-To: ticket+PROJECT_UID+TICKET_UID@info.pragmatic.ly

1. Verify the post request.

2. Validate the reply email information.

mailto:ticket+PROJECT_UID+TICKET_UID@info.pragmatic.ly

What we need to do?

Pragmatic.lySendCloud

Reply-To: ticket+PROJECT_UID+TICKET_UID@info.pragmatic.ly

1. Verify the post request.

2. Validate the reply email information.

3.Create a comment.

mailto:ticket+PROJECT_UID+TICKET_UID@info.pragmatic.ly

Implementation
TDD

Where to begin with

Where to begin with
I need a callback url

Where to begin with

class EmailRepliesController < ApplicationController	
 def create	
 end	
end	

I need a callback url

Where to begin with

class EmailRepliesController < ApplicationController	
 def create	
 end	
end	

I need a callback url

Test First

Where to begin with

class EmailRepliesController < ApplicationController	
 def create	
 end	
end	

I need a callback url

describe EmailRepiesController do	
 describe "POST create" do	
 end	
end	
!

Test First

Verify Post Request Source
describe EmailRepiesController do	
 describe "POST create" do	

end	
end	

Verify Post Request Source
describe EmailRepiesController do	
 describe "POST create" do	

context "when the post request is a valid request" do

end

end	
end	

context "when the post request is not a valid request" do

Verify Post Request Source
describe EmailRepiesController do	
 describe "POST create" do	

context "when the post request is a valid request" do

end

end
end	

end	

context "when the post request is not a valid request" do

Verify Post Request Source
describe EmailRepiesController do	
 describe "POST create" do	

context "when the post request is a valid request" do
it "returns status 200"

end

end
end	

end	

context "when the post request is not a valid request" do

Verify Post Request Source
describe EmailRepiesController do	
 describe "POST create" do	

context "when the post request is a valid request" do
it "returns status 200"

end

it "returns status 422"
end

end	
end	

What we need to do?

Pragmatic.lySendCloud

Reply-To: ticket+PROJECT_UID+TICKET_UID@info.pragmatic.ly

1. Verify the post request.

2. The reply email information.

3.Create a comment.

mailto:ticket+PROJECT_UID+TICKET_UID@info.pragmatic.ly

What we need to do?

Pragmatic.lySendCloud

Reply-To: ticket+PROJECT_UID+TICKET_UID@info.pragmatic.ly

1. Verify the post request.

2. The reply email information.

3.Create a comment.

mailto:ticket+PROJECT_UID+TICKET_UID@info.pragmatic.ly

Validation & Creation

describe "POST create" do	
 context "when the post request is a valid request" do	
 it "returns status 200"	
!
 	
!
!
 	
!
 	
 end	
end	

Validation & Creation

describe "POST create" do	
 context "when the post request is a valid request" do	
 it "returns status 200"	
!
 	
!
!
 	
!
 	
 end	
end	

Validation & Creation

describe "POST create" do	
 context "when the post request is a valid request" do	
 it "returns status 200"	
!
 	
!
!
 	
!
 	
 end	
end	

context "when the project uid is valid" do
end

context "when the project uid is invalid" do

end

Validation & Creation

describe "POST create" do	
 context "when the post request is a valid request" do	
 it "returns status 200"	
!
 	
!
!
 	
!
 	
 end	
end	

context "when the project uid is valid" do
end

context "when the project uid is invalid" do

end

Validation & Creation

describe "POST create" do	
 context "when the post request is a valid request" do	
 it "returns status 200"	
!
 	
!
!
 	
!
 	
 end	
end	

context "when the project uid is valid" do
end

it "doesn't create the comment"

Validation & Creation

context "when the project uid is valid" do

end

Validation & Creation

context "when the project uid is valid" do

end

context "when the user email is valid" do

end

context "when the user uid is invalid" do
it "doesn't create the comment"

end

Validation & Creation

context "when the project uid is valid" do

end

context "when the user email is valid" do

end

context "when the user uid is invalid" do
it "doesn't create the comment"

end

Validation & Creation

context "when the project uid is valid" do

end

context "when the user email is valid" do

end

context "when the user has the right to access this
project" do

end

context "when the user uid is invalid" do
it "doesn't create the comment"

end

Validation & Creation

context "when the project uid is valid" do

end

context "when the user email is valid" do

end

context "when the user has the right to access this
project" do

context "when the user has no right to access this
project" do

it "doesn't create the comment"
end

end

context "when the user uid is invalid" do
it "doesn't create the comment"

end

Validation & Creation

context "when the project uid is valid" do

end

context "when the user email is valid" do

end

context "when the user has the right to access this
project" do

context "when the user has no right to access this
project" do

it "doesn't create the comment"
end

end
Next Step

context "when the user has the right to access this project" do	

Validation & Creation

end

context "when the ticket uid is valid" do
context "when the user has the right to access this project" do	

Validation & Creation

end

end

context "when the ticket uid is valid" do

context "when the ticket uid is invalid" do

context "when the user has the right to access this project" do	

Validation & Creation

end

end

end

context "when the ticket uid is valid" do

context "when the ticket uid is invalid" do

it "creates the comment"

context "when the user has the right to access this project" do	

Validation & Creation

end

end

end

context "when the ticket uid is valid" do

context "when the ticket uid is invalid" do
it "doesn't create the comment"

it "creates the comment"

context "when the user has the right to access this project" do	

Validation & Creation

end

end

end

What do we get now?
 context "when the project uid is valid" do	
 context "when the user uid is valid" do	
 context "when the user has the right to access this project" do	
 context "when the ticket uid is valid" do	
 it "creates the comment for iteration"	
 end	
!
 context "when the ticket uid is invalid" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the user has no right to access this project" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the user uid is invalid" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the project uid is invalid" do	
 it "doesn't create the comment"	
 end	

What do we get now?
 context "when the project uid is valid" do	
 context "when the user uid is valid" do	
 context "when the user has the right to access this project" do	
 context "when the ticket uid is valid" do	
 it "creates the comment for iteration"	
 end	
!
 context "when the ticket uid is invalid" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the user has no right to access this project" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the user uid is invalid" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the project uid is invalid" do	
 it "doesn't create the comment"	
 end	

Controller

What do we get now?
 context "when the project uid is valid" do	
 context "when the user uid is valid" do	
 context "when the user has the right to access this project" do	
 context "when the ticket uid is valid" do	
 it "creates the comment for iteration"	
 end	
!
 context "when the ticket uid is invalid" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the user has no right to access this project" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the user uid is invalid" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the project uid is invalid" do	
 it "doesn't create the comment"	
 end	

Controller

SendClou
d

What do we get now?
 context "when the project uid is valid" do	
 context "when the user uid is valid" do	
 context "when the user has the right to access this project" do	
 context "when the ticket uid is valid" do	
 it "creates the comment for iteration"	
 end	
!
 context "when the ticket uid is invalid" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the user has no right to access this project" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the user uid is invalid" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the project uid is invalid" do	
 it "doesn't create the comment"	
 end	

Projec
t

Controller

SendClou
d

What do we get now?
 context "when the project uid is valid" do	
 context "when the user uid is valid" do	
 context "when the user has the right to access this project" do	
 context "when the ticket uid is valid" do	
 it "creates the comment for iteration"	
 end	
!
 context "when the ticket uid is invalid" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the user has no right to access this project" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the user uid is invalid" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the project uid is invalid" do	
 it "doesn't create the comment"	
 end	

Projec
t

User

Controller

SendClou
d

What do we get now?
 context "when the project uid is valid" do	
 context "when the user uid is valid" do	
 context "when the user has the right to access this project" do	
 context "when the ticket uid is valid" do	
 it "creates the comment for iteration"	
 end	
!
 context "when the ticket uid is invalid" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the user has no right to access this project" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the user uid is invalid" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the project uid is invalid" do	
 it "doesn't create the comment"	
 end	

Projec
t

User

Ticket

Controller

SendClou
d

What do we get now?
 context "when the project uid is valid" do	
 context "when the user uid is valid" do	
 context "when the user has the right to access this project" do	
 context "when the ticket uid is valid" do	
 it "creates the comment for iteration"	
 end	
!
 context "when the ticket uid is invalid" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the user has no right to access this project" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the user uid is invalid" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the project uid is invalid" do	
 it "doesn't create the comment"	
 end	

Projec
t

User

Ticket

Comme
nt

Controller

SendClou
d

What do we get now?
 context "when the project uid is valid" do	
 context "when the user uid is valid" do	
 context "when the user has the right to access this project" do	
 context "when the ticket uid is valid" do	
 it "creates the comment for iteration"	
 end	
!
 context "when the ticket uid is invalid" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the user has no right to access this project" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the user uid is invalid" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the project uid is invalid" do	
 it "doesn't create the comment"	
 end	

Projec
t

User

Ticket

Comme
nt

Controller

SendClou
d

What do we get now?
 context "when the project uid is valid" do	
 context "when the user uid is valid" do	
 context "when the user has the right to access this project" do	
 context "when the ticket uid is valid" do	
 it "creates the comment for iteration"	
 end	
!
 context "when the ticket uid is invalid" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the user has no right to access this project" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the user uid is invalid" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the project uid is invalid" do	
 it "doesn't create the comment"	
 end	

Projec
t

User

Ticket

Comme
nt

Controller

SendClou
d

No Test!

def create

No Test!

def create

No Test!
if post_request_valid

def create

No Test!
if post_request_valid
project = Project.find(...)

def create

No Test!
if post_request_valid
project = Project.find(...)
if project.valid

def create

No Test!
if post_request_valid
project = Project.find(...)
if project.valid
user = User.find(...)

def create

No Test!
if post_request_valid
project = Project.find(...)
if project.valid
user = User.find(...)
if user.valid

def create

No Test!
if post_request_valid
project = Project.find(...)
if project.valid
user = User.find(...)
if user.valid

if user.have_access_right

def create

No Test!
if post_request_valid
project = Project.find(...)
if project.valid
user = User.find(...)
if user.valid

if user.have_access_right
ticket = Ticket.find(...)

def create

No Test!
if post_request_valid
project = Project.find(...)
if project.valid
user = User.find(...)
if user.valid

if user.have_access_right
ticket = Ticket.find(...)
if ticket.valid

def create

No Test!
if post_request_valid
project = Project.find(...)
if project.valid
user = User.find(...)
if user.valid

if user.have_access_right
ticket = Ticket.find(...)
if ticket.valid
Comment.create(...)

def create

No Test!
if post_request_valid
project = Project.find(...)
if project.valid
user = User.find(...)
if user.valid

if user.have_access_right
ticket = Ticket.find(...)
if ticket.valid
Comment.create(...)

end
else
...

end
else

...
end

else
....

def create

No Test!
if post_request_valid
project = Project.find(...)
if project.valid
user = User.find(...)
if user.valid

if user.have_access_right
ticket = Ticket.find(...)
if ticket.valid
Comment.create(...)

end
else
...

end
else

...
end

else
....

def create

No Test!
if post_request_valid
project = Project.find(...)
if project.valid
user = User.find(...)
if user.valid

if user.have_access_right
ticket = Ticket.find(...)
if ticket.valid
Comment.create(...)

end
else
...

end
else

...
end

else
....

Refactor it?

def create

No Test!
if post_request_valid
project = Project.find(...)
if project.valid
user = User.find(...)
if user.valid

if user.have_access_right
ticket = Ticket.find(...)
if ticket.valid
Comment.create(...)

end
else
...

end
else

...
end

else
....

Refactor it? It is too late!

def create

No Test!
if post_request_valid
project = Project.find(...)
if project.valid
user = User.find(...)
if user.valid

if user.have_access_right
ticket = Ticket.find(...)
if ticket.valid
Comment.create(...)

end
else
...

end
else

...
end

else
....

Refactor it? It is too late!

Technical Debt

Redmine

Let’s go back here
 context "when the project uid is valid" do	
 context "when the user uid is valid" do	
 context "when the user has the right to access this project" do	
 context "when the ticket uid is valid" do	
 it "creates the comment for iteration"	
 end	
!
 context "when the ticket uid is invalid" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the user has no right to access this project" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the user uid is invalid" do	
 it "doesn't create the comment"	
 end	
 end	
!
 context "when the project uid is invalid" do	
 it "doesn't create the comment"	
 end	

Test reflect the design

Controller

describe "POST create" do	

Test reflect the design

Controller

context "when the post request is a valid request" do	
describe "POST create" do	

SendClou
d

Test reflect the design

 context "when the project uid is valid" do	

Controller

Projec
t

context "when the post request is a valid request" do	
describe "POST create" do	

SendClou
d

Test reflect the design

 context "when the project uid is valid" do	

Controller

Projec
t

User

context "when the user uid is valid" do	

context "when the post request is a valid request" do	
describe "POST create" do	

SendClou
d

Test reflect the design

 context "when the project uid is valid" do	

Controller

Projec
t

User

context "when the user uid is valid" do	
context "when the user has the right to access this project" do	

context "when the post request is a valid request" do	
describe "POST create" do	

SendClou
d

Test reflect the design

 context "when the project uid is valid" do	

Controller

Projec
t

User

Ticket

context "when the user uid is valid" do	
context "when the user has the right to access this project" do	
context "when the ticket uid is valid" do	

context "when the post request is a valid request" do	
describe "POST create" do	

SendClou
d

Test reflect the design

 context "when the project uid is valid" do	

Controller

Projec
t

User

Ticket Comme
nt

context "when the user uid is valid" do	
context "when the user has the right to access this project" do	
context "when the ticket uid is valid" do	

it "creates the comment for iteration"	

context "when the post request is a valid request" do	
describe "POST create" do	

SendClou
d

1. I didn’t write any codes
2. What we found from test

Test reflect the design

Controller

Projec
t

User

Ticket Comme
ntSendClou

d

Test reflect the design

Structural Coupling!

Controller

Projec
t

User

Ticket Comme
ntSendClou

d

Test reflect the design

Structural Coupling!

Controller

Projec
t

User

Ticket Comme
ntSendClou

d

Doing too many things!

Test reflect the design

Structural Coupling!

Controller

Projec
t

User

Ticket Comme
ntSendClou

d

Doing too many things!
Knowing too much details!

Let’s re-design it from test!

context "when the post request is a valid request" do	
 context "when the project uid is valid" do	
 context "when the user uid is valid" do	
 context "when the user has the right to access this project" do	
 context "when the ticket uid is valid" do	
 it "creates the comment for iteration"	

SendClou
d

Re-Design From Test

Controller

Projec
t

User

Ticket Comme
nt

context "when the post request is a valid request" do	
 context "when the project uid is valid" do	
 context "when the user uid is valid" do	
 context "when the user has the right to access this project" do	
 context "when the ticket uid is valid" do	
 it "creates the comment for iteration"	

SendClou
d

Re-Design From Test

Controller

Projec
t

User

Ticket Comme
nt

context "when the post request is a valid request" do	
 context "when the project uid is valid" do	
 context "when the user uid is valid" do	
 context "when the user has the right to access this project" do	
 context "when the ticket uid is valid" do	
 it "creates the comment for iteration"	

SendClou
d

Re-Design From Test

Controller

Projec
t

User

Ticket Comme
nt

Re-Design

SendClou
d Controller

context "when the post request is a valid request" do	
 	

Re-Design

SendClou
d Controller

context "when the post request is a valid request" do	
 	it "tells email handler to handle the request" do

end

Re-Design

SendClou
d Controller

context "when the post request is a valid request" do	
 	it "tells email handler to handle the request" do

end

Re-Design

SendClou
d Controller

context "when the post request is a valid request" do	
 	it "tells email handler to handle the request" do

end

email_handler = EmailHandler.any_instance

Re-Design

SendClou
d Controller

context "when the post request is a valid request" do	
 	it "tells email handler to handle the request" do

end

email_handler = EmailHandler.any_instance

Re-Design

SendClou
d Controller

context "when the post request is a valid request" do	
 	it "tells email handler to handle the request" do

end

email_handler = EmailHandler.any_instance

email_handler.should_receive(:handle)

Re-Design

SendClou
d Controller

context "when the post request is a valid request" do	
 	it "tells email handler to handle the request" do

end

email_handler = EmailHandler.any_instance

post :create, timestamp: timestamps, token: token, signature:
signature

email_handler.should_receive(:handle)

Re-Design

SendClou
d Controller EmailHandler

context "when the post request is a valid request" do	
 	it "tells email handler to handle the request" do

end

email_handler = EmailHandler.any_instance

post :create, timestamp: timestamps, token: token, signature:
signature

email_handler.should_receive(:handle)

Re-Design

SendClou
d Controller EmailHandler

Mock

context "when the post request is a valid request" do	
 	it "tells email handler to handle the request" do

end

email_handler = EmailHandler.any_instance

post :create, timestamp: timestamps, token: token, signature:
signature

email_handler.should_receive(:handle)

Re-Design Controller
class EmailRepliesController < ApplicationController	
!
 def create	
!
 if post_request_authenticated	
 EmailHandler.new(params).handle	
 head(200)	
 else	
 head(422)	
 end	
 end	
!
 def post_request_authenticated	
 ...	
 end	
end	

Re-Design Controller
class EmailRepliesController < ApplicationController	
!
 def create	
!
 if post_request_authenticated	
 EmailHandler.new(params).handle	
 head(200)	
 else	
 head(422)	
 end	
 end	
!
 def post_request_authenticated	
 ...	
 end	
end	

email_handler = EmailHandler.any_instance

email_handler.should_receive(:handle)Test

Re-Design Controller
class EmailRepliesController < ApplicationController	
!
 def create	
!
 if post_request_authenticated	
 EmailHandler.new(params).handle	
 head(200)	
 else	
 head(422)	
 end	
 end	
!
 def post_request_authenticated	
 ...	
 end	
end	

email_handler = EmailHandler.any_instance

email_handler.should_receive(:handle)Test

New Class EmailHandler
 EmailHandler.new(params).handle	

New Class EmailHandler

class EmailHandler
def initialize(params)
end

def handle
end

end

 EmailHandler.new(params).handle	

New Class EmailHandler

class EmailHandler
def initialize(params)
end

def handle
end

end

describe EmailHandler do	
 describe "#initialize" do	
 end	
 	
 describe "#handle" do	
 end	
end	

 EmailHandler.new(params).handle	

New Class EmailHandler

class EmailHandler
def initialize(params)
end

def handle
end

end

describe EmailHandler do	
 describe "#initialize" do	
 end	
 	
 describe "#handle" do	
 end	
end	

describe "#handle" do

end

 EmailHandler.new(params).handle	

New Class EmailHandler

class EmailHandler
def initialize(params)
end

def handle
end

end

describe EmailHandler do	
 describe "#initialize" do	
 end	
 	
 describe "#handle" do	
 end	
end	

context "when the project uid is valid" do
context "when the user email is valid" do

context "when the user has the right to access this project"
do

context "when the ticket uid is valid" do
....

describe "#handle" do

end

 EmailHandler.new(params).handle	

EmailHandler#handle
 context "when the project uid is valid" do	
 context "when the user email is valid" do	
 context "when the user has the right to access this project"
do	
 context "when the ticket uid is valid" do	
 	

 describe "#handle" do	

end

EmailHandler#handle
 context "when the project uid is valid" do	
 context "when the user email is valid" do	
 context "when the user has the right to access this project"
do	
 context "when the ticket uid is valid" do	
 	

 describe "#handle" do	

end

EmailHandler#handle
 context "when the project uid is valid" do	
 context "when the user email is valid" do	
 context "when the user has the right to access this project"
do	
 context "when the ticket uid is valid" do	
 	

 describe "#handle" do	

end

describe "#handle" do	
 context "when it is a valid email" do	
 it "creates a comment"	
 end	
 	
 context "when it is a invalid email" do	
 it "doesn't create a comment"	
 end 	
end	

 it "creates a comment" do	

EmailHandler#handle
describe "#handle" do	
 context "when it is a valid email" do	
!

 end	
 end

 it "creates a comment" do	

EmailHandler#handle
describe "#handle" do	
 context "when it is a valid email" do	
!

 end	
 end

let(:email_handler) { EmailHandler.new(....) }	

 it "creates a comment" do	

EmailHandler#handle
describe "#handle" do	
 context "when it is a valid email" do	
!

 end	
 end

let(:email_handler) { EmailHandler.new(....) }	

 it "creates a comment" do	

EmailHandler#handle
describe "#handle" do	
 context "when it is a valid email" do	
!

 end	
 end

let(:email_handler) { EmailHandler.new(....) }	
before { email_handler.stub(:valid_email?).and_return(true) }

 it "creates a comment" do	

EmailHandler#handle
describe "#handle" do	
 context "when it is a valid email" do	
!

 end	
 end

let(:email_handler) { EmailHandler.new(....) }	
before { email_handler.stub(:valid_email?).and_return(true) }

email_hander.handle

 it "creates a comment" do	

EmailHandler#handle
describe "#handle" do	
 context "when it is a valid email" do	
!

 end	
 end

let(:email_handler) { EmailHandler.new(....) }	
before { email_handler.stub(:valid_email?).and_return(true) }

email_hander.handle
Comment.count.should == 1

 it "creates a comment" do	

EmailHandler#handle
describe "#handle" do	
 context "when it is a valid email" do	
!

 end	
 end

let(:email_handler) { EmailHandler.new(....) }	
before { email_handler.stub(:valid_email?).and_return(true) }

email_hander.handle
Comment.count.should == 1

context "when it is a invalid email" do	
 let(:email_handler) { EmailHandler.new(....) }	
 before { email_handler.stub(:valid_email?).and_return(false) }	
 it "doesn't create a comment" do	
 email_hander.handle	
 Comment.count.should == 0	
 end	
end 	

class EmailHandler	
 def initialize	
 end	
 	
 def handle	
 if valid_email?	
 #create comment	
 end	
 end	
 	
 def valid_email?	
 #validate the email information.	
 end 	
end	

EmailHandler#handle

class EmailHandler	
 def initialize	
 end	
 	
 def handle	
 if valid_email?	
 #create comment	
 end	
 end	
 	
 def valid_email?	
 #validate the email information.	
 end 	
end	

EmailHandler#handle

class EmailHandler	
 def initialize	
 end	
 	
 def handle	
 if valid_email?	
 #create comment	
 end	
 end	
 	
 def valid_email?	
 #validate the email information.	
 end 	
end	

EmailHandler#handle

class EmailHandler	
 def initialize	
 end	
 	
 def handle	
 if valid_email?	
 #create comment	
 end	
 end	
 	
 def valid_email?	
 #validate the email information.	
 end 	
end	

EmailHandler#handle
describe "#valid_email?" do

end

class EmailHandler	
 def initialize	
 end	
 	
 def handle	
 if valid_email?	
 #create comment	
 end	
 end	
 	
 def valid_email?	
 #validate the email information.	
 end 	
end	

EmailHandler#handle
describe "#valid_email?" do

context "all objects is valid"
#true

context "invalid project"
#false

context "invalid user"
#false

context "invalid ticket"
#false

end

What we got

class EmailHandler	
 def initialize	
 end	
 	
 def handle	
 if self.valid_email?	
 #create comment	
 end	
 end	
 	
 def valid_email?	
 #validate the email.	
 end 	
end	

class EmailRepliesController < AC	
!
 def create	
 if post_request_authenticated?	
 EmailHandler.new(params).handle	
 head(200)	
 else	
 head(422)	
 end	
 end	
!
 def post_request_authenticated?	
 ...	
 end	
end	

What we got

SendCloud

Controll
er

What we got

SendCloud

Controll
er

What we got

SendCloud

Controll
er

EmailHandler

What we got

SendCloud

Controll
er

EmailHandler

Mock

What we got

SendCloud

Controll
er

EmailHandler

handle
Mock

What we got

SendCloud

Controll
er

EmailHandler

handle

valid_email?

Mock

What we got

SendCloud

Controll
er

EmailHandler

handle

valid_email?

Mock

Stub

What we got

SendCloud

Controll
er

EmailHandler

handle

valid_email?

Comment

Mock

Stub

What we got

SendCloud

Controll
er

EmailHandler

handle

valid_email?

Comment

Project

Ticket

User

Mock

Stub

Controll
er

EmailHandler

handle

valid_email?

Mock and Stub

Controll
er

EmailHandler

handle

valid_email?

Mock

Mock and Stub

Controll
er

EmailHandler

handle

valid_email?

Mock

Mock and Stub
Mock: Command method.

Controll
er

EmailHandler

handle

valid_email?

Mock

Stub

Mock and Stub
Mock: Command method.

Controll
er

EmailHandler

handle

valid_email?

Mock

Stub

Mock and Stub
Mock: Command method.
Stub: Query method.

Controll
er

EmailHandler

handle

valid_email?

Mock

Stub

Mock and Stub
Mock: Command method.
Stub: Query method.

Mock is brittle.

Controll
er

EmailHandler

handle

valid_email?

Mock

Stub

Mock and Stub
Mock: Command method.
Stub: Query method.

Mock is brittle.

Integrate
Test

Before

Controller

Projec
t

User

Ticket Comme
ntSendClou

d

Benefits

SendCloud

Controll
er

EmailHandler

handle

valid_email?

Comment

Project

Ticket

User

Benefits

SendCloud

Controll
er

EmailHandler

handle

valid_email?

Comment

Project

Ticket

User

* Test could be a documentation.

Benefits

SendCloud

Controll
er

EmailHandler

handle

valid_email?

Comment

Project

Ticket

User

* Test could be a documentation.
* Flexible Api.

Benefits

SendCloud

Controll
er

EmailHandler

handle

valid_email?

Comment

Project

Ticket

User

* Test could be a documentation.
* Flexible Api.

Changed?

Benefits

SendCloud

Controll
er

EmailHandler

handle

valid_email?

Comment

Project

Ticket

User

Mock

* Test could be a documentation.
* Flexible Api.

Changed?

Benefits

SendCloud

Controll
er

EmailHandler

handle

valid_email?

Comment

Project

Ticket

User

Mock
Isolate

* Test could be a documentation.
* Flexible Api.

Changed?

Benefits

SendCloud

Controll
er

EmailHandler

handle

valid_email?

Comment

Project

Ticket

User

Mock
Isolate

* Test could be a documentation.
* Flexible Api.

Changed?

New Object

Benefits

SendCloud

Controll
er

EmailHandler

handle

valid_email?

Comment

Project

Ticket

User

Mock
Isolate

* Test could be a documentation.
* Flexible Api.

Changed?

New Object

Changed?

Benefits

SendCloud

Controll
er

EmailHandler

handle

valid_email?

Comment

Project

Ticket

User

Mock

Stub
Isolate

* Test could be a documentation.
* Flexible Api.

Changed?

New Object

Changed?

Benefits

SendCloud

Controll
er

EmailHandler

handle

valid_email?

Comment

Project

Ticket

User

Mock

Stub
Isolate

Isolate

* Test could be a documentation.
* Flexible Api.

Changed?

New Object

Changed?

Benefits

SendCloud

Controll
er

EmailHandler

handle

valid_email?

Comment

Project

Ticket

User

Mock

Stub
Isolate

Isolate

* Test could be a documentation.
* Flexible Api.

Changed?

New Object

Changed?

Changed?

Benefits

SendCloud

Controll
er

EmailHandler

handle

valid_email?

Comment

Project

Ticket

User

Mock

Stub
Isolate

Isolate

Isolate

* Test could be a documentation.
* Flexible Api.

Changed?

New Object

Changed?

Changed?

Benefits

SendCloud

Controll
er

EmailHandler

handle

valid_email?

Comment

Project

Ticket

User

Mock

Stub
Isolate

Isolate

Isolate

* Test could be a documentation.
* Flexible Api.

Changed?

New Object

New Object

Changed?

Changed?

If you don’t get me...

Example & Principles

Boss

Custome
r

Example & Principles

Boss

B

A

C DCustome
r

Example & Principles

Boss

B

A

C DCustome
r

BossCustomer

Example & Principles

Boss

B

A

C DCustome
r

BossCustomer Department

Example & Principles

Boss

B

A

C DCustome
r

BossCustomer Department
Alice

Bob

Example & Principles

Boss

B

A

C DCustome
r

BossCustomer Department
Alice

Bob

A

Example & Principles

Boss

B

A

C DCustome
r

BossCustomer Department
Alice

Bob

A

B

C

Example & Principles

Boss

B

A

C DCustome
r

BossCustomer Department
Alice

Bob

A

B

C

Doing too many things

Example & Principles

Boss

B

A

C DCustome
r

BossCustomer Department
Alice

Bob

A

B

C

Doing too many things

Single Responsibility Principle

Example & Principles

Boss

B

A

C DCustome
r

BossCustomer Department
Alice

Bob

A

B

C

too much details

Doing too many things

Single Responsibility Principle

Example & Principles

Boss

B

A

C DCustome
r

BossCustomer Department
Alice

Bob

A

B

C

too much details

Tell

Doing too many things

Single Responsibility Principle

Review

Review

When do we to refactor code?

Review

When do we to refactor code?

What do we need to refactor?

Review

Test guides us go forward.

When do we to refactor code?

What do we need to refactor?

Review

Test guides us go forward.

We begin to refactor when we feel pain in Test.

When do we to refactor code?

What do we need to refactor?

Review

Test guides us go forward.

We begin to refactor when we feel pain in Test.

When do we to refactor code?

What do we need to refactor?

We reduce the dependencies found by Test.

Keep an eye on TEST.
Enjoy it!

Further Resources
POODRGOOS

Thanks!

