
Ingres® 9.3

Connectivity Guide

ING-93-CN-03

This Documentation is for the end user's informational purposes only and may be subject to change or withdrawal
by Ingres Corporation ("Ingres") at any time. This Documentation is the proprietary information of Ingres and is
protected by the copyright laws of the United States and international treaties. It is not distributed under a GPL
license. You may make printed or electronic copies of this Documentation provided that such copies are for your
own internal use and all Ingres copyright notices and legends are affixed to each reproduced copy.

You may publish or distribute this document, in whole or in part, so long as the document remains unchanged and
is disseminated with the applicable Ingres software. Any such publication or distribution must be in the same
manner and medium as that used by Ingres, e.g., electronic download via website with the software or on a CD­
ROM. Any other use, such as any dissemination of printed copies or use of this documentation, in whole or in part,
in another publication, requires the prior written consent from an authorized representative of Ingres.

To the extent permitted by applicable law, INGRES PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IN NO EVENT WILL INGRES BE LIABLE TO THE
END USER OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USER OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF INGRES IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The manufacturer of this Documentation is Ingres Corporation.

For government users, the Documentation is delivered with "Restricted Rights" as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Copyright © 2009 Ingres Corporation. All Rights Reserved.

Ingres, OpenROAD, and EDBC are registered trademarks of Ingres Corporation. All other trademarks, trade names,
service marks, and logos referenced herein belong to their respective companies.

Contents

Chapter 1: Introducing Ingres Connectivity 13

In This Guide.. 13

Connectivity Solutions Not in This Guide ... 14

Basic Networking Concepts ... 14

Ingres Components and Tools ... 16

Ingres Instance ... 17

System-specific Text in This Guide... 18

Terminology Used in This Guide... 19

Syntax Conventions Used in This Guide .. 19

Chapter 2: Exploring Net 21

Ingres Net.. 21

General Communication Facility ... 22

Net Security.. 23

Installation Configurations That Require Net.. 24

Net and Other Ingres-related Products ... 24

Net and Enterprise Access and EDBC Products.. 25

Net and Ingres Star.. 25

Net Product Integration Summary .. 26

Benefits of Net .. 27

Net Concepts .. 28

Virtual Nodes .. 28

Connection Data .. 29

Remote User Authorizations .. 30

Global and Private Definitions .. 31

Net Management Tools... 32

Net and Bridge Users ... 33

System Administrator and Ingres Net ... 34

Database Administrator and Ingres Net... 34

End Users and Ingres Net.. 34

GCA Privileges .. 35

Chapter 3: Installing and Configuring Net 37

Installation Components... 37

How You Prepare for Installation.. 37

Network Installation and Testing .. 37

Setup Parameters for Net.. 41

Contents iii

How Net Setup Works on an Existing Installation ... 43

How Communications Are Enabled ... 43

How You Install Net ... 44

ingvalidpw Program.. 45

Create Password Validation Program (UNIX) .. 46

Net Configuration Parameters—Customize Ingres Net ... 47

Chapter 4: Establishing Communications
How User Access Is Established ... 49

Requirements for Accessing Remote Instances ... 50

Requirements for Accessing Distributed Databases ... 51

Access Tools for Defining Vnodes ... 51

Netutil (Net Management Utility) ... 53

Netutil Startup Screen .. 53

Virtual Node Name Table in Netutil ... 54

Login and Password Data Table in Netutil .. 55

Connection Data Table in Netutil .. 57

Other Attribute Data Table in Netutil ... 59

Netutil Operations.. 60

Prerequisites to Establish and Test a Remote Connection ... 61

Establish and Test a Remote Connection Using Netutil ... 62

Delete an Entry ... 68

Change an Entry.. 70

Define an Installation Password for the Local Instance... 74

Netutil Non-Interactive Mode .. 75

Command Line Flags in Netutil Non-interactive Mode .. 76

Create Function—Create a Remote User Authorization ... 78

Destroy Function—Destroy a Remote User Authorization.. 80

Show Function—Display Remote User Authorizations... 81

Create Function—Define an Installation Password for the Local Instance 82

Create Function—Create a Connection Data Entry... 83

Destroy Function—Destroy a Connection Data Entry.. 84

Show Function—Display Connection Data Entries .. 86

Stop and Quiesce Commands—Stop or Quiesce One or More Communications Servers 88

Network Utility and Visual DBA.. 89

Virtual Nodes Toolbar ... 89

Simple and Advanced Vnodes .. 90

Advanced Vnode Parameters ... 90

Installation Password Definitions for the Local Instance ... 93

Changing Installation Passwords .. 93

Additional Vnode-Related Tasks ... 93

Server-related Tasks .. 95

iv Connectivity Guide

49

Chapter 5: Using Net 97

Connection to Remote Databases... 97

Database Access Syntax—Connect to Remote Database .. 98

Use of the SQL Connect Statement with Net .. 101

Commands and Net ... 102

User Identity on Remote Instance.. 103

-u Command Flag—Impersonate User ... 103

Verify Your Identity .. 104

Chapter 6: Maintaining Connectivity 105

Start Communications Server.. 105

Stop Communications Server .. 106

Network Server Control Screen in Netutil .. 106

Stop or Quiesce a Communications Server Using Netutil.. 108

Inbound and Outbound Session Limits.. 110

How You Set Inbound and Outbound Session Limits .. 110

Logging Levels .. 111

How You Change the Logging Level .. 111

How You Direct Logging Output to a File ... 112

GCF Server Management Using iimonitor .. 113

Default Remote Nodes ... 114

How You Set Default Remote Nodes.. 114

Start Data Access Server (DAS)... 115

Stop Data Access Server (DAS) ... 115

Chapter 7: Troubleshooting Connectivity 117

How Connection Between the Application and DBMS Server Is Established................................. 117

Where Ingres Net Information Is Stored ... 118

config.dat—Store Net Configuration Values .. 119

Name Server Database—Store Remote Access Information .. 120

Causes of Connectivity Problems ... 122

How You Diagnose Connectivity Problems ... 122

General Net Installation Check... 123

Connection Errors .. 127

How You Resolve Net Registration Problems... 129

Security and Permission Errors .. 129

Chapter 8: Exploring Bridge 131

Ingres Bridge.. 131

How the Bridge Server Works .. 131

Contents v

Tools for Configuring Bridge .. 132

Installation Configurations That Require Bridge .. 132

How Bridge Is Installed .. 134

How Bridge Is Started.. 134

config.dat File—Store Bridge Configuration .. 135

ingstart Command—Start the Bridge Server... 135

iigcb Command—Start the Bridge Server... 136

How the Client Is Set Up .. 136

vnode Definition—Enable Client Access to Remote Servers Through Bridge........................... 137

Bridge Server Monitoring.. 137

Stop the Bridge Server... 138

How a Connection Is Established Through Bridge ... 138

Bridge Troubleshooting .. 139

Sample Bridge Server Configuration... 140

Chapter 9: Configuring the Data Access Server 143

Data Access Server.. 143

Data Access Server Parameters—Configure DAS .. 144

How You Enable Data Access Server Tracing.. 146

Tracing Levels ... 146

Chapter 10: Understanding ODBC Connectivity 147

ODBC Driver... 147

ODBC Call-level Interface ... 148

Unsupported ODBC Features ... 149

Read-Only Driver Option .. 149

ODBC Driver Requirements... 149

ODBC Driver Manager Programs... 150

Support for Previously Released ODBC Drivers ... 152

Backward Compatibility Issues for ODBC DSN Definitions... 152

Configure a Data Source (Windows) ... 153

Configure a Data Source (UNIX and VMS) ... 155

iiodbcadmin Utility ... 155

Connection String Keywords ... 156

ODBC CLI Implementation Considerations... 158

Configuration on UNIX, Linux, and VMS... 158

Optional Data Source Definitions .. 159

Supported Applications... 159

ODBC Programming... 160

ODBC Handles... 160

How ODBC Applications Connect to a Database .. 161

vi Connectivity Guide

SQLConnect()—Connect Using a Data Source Name.. 161

SQLDriverConnect()—Connect without Using a Data Source Name 164

Connect Using Dynamic Vnode Definitions ... 166

ODBC User Authentication... 166

Query Execution .. 174

Database Procedures Execution.. 177

Fetched Data... 180

Scrollable Cursors .. 189

Large Objects (Blobs) Support ... 194

Transactions Handling .. 201

Date/Time Columns and Values.. 203

National Character Set (Unicode) Columns... 204

Metadata (Catalog) Queries... 205

Termination and Clean-up ... 208

ODBC CLI Connection Pooling .. 208

Ingres ODBC and Distributed Transactions (Windows) .. 211

How You Enable the Use of Distributed Transactions through the Ingres ODBC Driver 212

Vnode Definitions When Using Distributed Transactions through ODBC 212

Troubleshooting Distributed Transactions through ODBC.. 213

ODBC Trace Diagnostics ... 214

Standard ODBC Tracing .. 214

Windows Environments... 215

UNIX, Linux and VMS Environments.. 215

Chapter 11: Understanding JDBC Connectivity
JDBC Components ... 221

JDBC Driver .. 222

JDBC Information Utility—Load the JDBC Driver ... 223

Unsupported JDBC Features.. 224

JDBC Driver Interface .. 225

JDBC Driver and Data Source Classes ... 225

JDBC Implementation Considerations ... 237

JDBC User Authentication.. 237

How Transactions Are Autocommitted ... 238

Cursors and Result Set Characteristics .. 239

Cursors and Select Loops .. 242

Database Procedures.. 243

Named and Unnamed Parameters .. 243

Additional Parameter Considerations... 244

Executing Procedures ... 244

BLOB Column Handling ... 245

Date/Time Columns and Values.. 249

Contents vii

221

259

National Character Set Columns... 251

Data Type Compatibility ... 252

JDBC Tracing .. 255

Tracing Levels ... 257

Chapter 12: Understanding .NET Data Provider Connectivity
.NET Data Provider .. 259

.NET Data Provider Architecture .. 260

Data Provider Data Flow ... 260

Data Provider Assembly .. 261

Data Provider Namespace ... 261

Data Retrieval Strategies .. 262

Connection Pooling... 263

Code Access Security ... 264

.NET Data Provider Classes ... 264

IngresCommand Class .. 265

Sample Program Constructed with .NET Data Provider... 269

IngresCommandBuilder Class .. 271

IngresConnection Class... 273

IngresConnectionStringBuilder Class... 285

IngresDataReader Class.. 290

IngresDataAdapter Class... 297

IngresError Class ... 300

IngresErrorCollection Class.. 302

IngresException Class... 304

IngresFactory Class.. 305

IngresInfoMessageEventArgs Class... 306

IngresInfoMessageEventHandler Class .. 307

IngresMetaDataCollectionNames Class .. 309

IngresParameter Class.. 309

IngresParameterCollection Class .. 313

IngresPermission Class ... 315

IngresRowUpdatedEventArgs Class... 315

IngresRowUpdatedEventHandler Class .. 316

IngresRowUpdatingEventArgs Class .. 317

IngresRowUpdatingEventHandler Class ... 318

IngresTransaction Class .. 318

Data Types Mapping .. 320

DbType Mapping.. 321

Coercion of Unicode Strings... 322

IngresDataReader Object—Retrieve Data from the Database ... 322

Build the IngresDataReader... 323

viii Connectivity Guide

IngresDataReader Methods ... 323

Example: Using the IngresDataReader .. 324

ExecuteScalar Method—Obtain a Single Value from a Database .. 325

GetBytes Method—Obtain BLOB Values from a Database ... 325

GetSchemaTable Method—Obtain Schema Information from a Database 326

ExecuteNonQuery Method—Modify and Update Database .. 326

IngresDataAdapter Object—Manage Data .. 327

How Database Procedures Are Called ... 328

Row Producing Procedures .. 329

Integration with Visual Studio ... 330

Install the Data Provider into the Toolbox .. 331

Start the Ingres Data Adapter Configuration Wizard .. 332

Design a Query Using the Query Builder .. 336

Server Explorer Integration ... 338

Application Configuration File—Troubleshoot Applications .. 340

Appendix A: TCP/IP Protocol 341

Listen Address Format.. 341

Network Address Format .. 342

Connection Data Entry Information .. 343

Windows... 343

UNIX.. 343

VMS... 343

MVS... 344

Appendix B: SNA LU0 Protocol 345

Listen Address Format.. 345

MVS... 345

Appendix C: SNA LU62 Protocol 347

Listen Address Format.. 347

MVS... 348

Solaris ... 350

HP-UX .. 351

RS/6000... 353

Appendix D: SPX/IPX Protocol 355

Listen Address Format.. 355

Windows... 356

UNIX and VMS... 357

Contents ix

Appendix E: DECnet Protocol 359

Listen Address Format.. 359

VMS... 360

Appendix F: LAN Manager Protocol 361

LAN Manager Listen Address—Enable Communications.. 361

Appendix G: SunLink Gateway Configuration Files 363

SunLink Gateway Configuration File ... 363

Solaris Independent LUs... 364

Solaris Dependent LUs ... 366

SunOS (or Sun-4) Independent LUs ... 368

SunOS (or Sun-4) Dependent LUs.. 370

Appendix H: AIX SNA Services/6000 Configuration Profiles 373

Sample Configuration Profiles.. 373

CONNECTION Profile for Independent LUs.. 374

CONNECTION Profile for Dependent LUs .. 374

LOCALLU Profile for Independent LU ... 375

LOCALLU Profile for Dependent LU.. 376

MODE Profile for Independent LUs .. 377

MODE Profile for Dependent LUs .. 377

Appendix I: HP-UX SNAplus Configuration 379

Sample Configuration File Excerpts .. 379

Independent LUs ... 380

Dependent LUs .. 381

Dynamically Loadable TP... 382

Appendix J: Netu Procedures 383

Netu (Deprecated)... 383

Start Netu .. 383

Netu User Interface ... 384

Stop the Communications Server ... 384

Modify Node Entry.. 385

Modify Remote Authorization Entry... 385

Exit Netu .. 386

Remote Node Definition Operations.. 386

x Connectivity Guide

Add or Merge Remote Node Definitions ... 387

Delete Remote Node Definitions ... 389

How You Change Remote Node Definitions... 390

Retrieve Remote Node Definition Information... 392

Remote User Authorization Operations ... 394

Define Remote User Authorizations... 395

Delete Remote User Authorizations... 396

Change Remote User Authorizations ... 397

Retrieve Remote User Authorizations .. 400

Netu Options for Stopping the Communications Server ... 401

Obtain GCF Address ... 402

Stop Communications Server... 403

Appendix K: IPv6 Configuration 405

IPv6 Configuration Overview ... 405

TCP/IP and Ingres Communications ... 406

Parameters for Controlling IPv6 Support ... 406

II_TCPIP_VERSION Environment Variable—Specify Version of TCP/IP to Use 407

II_GC_PROT Environment Variable—Set IPC Communications Protocol (Linux and UNIX Only) 408

ii.hostname.gcX.*.protocol.status Resource—Set Network Communications Protocol.............. 409

Options for Disabling IPv6 Support... 409

Use IPv4 Addresses Only .. 410

Back Out IPv6 Support ... 411

iicvtwintcp Command—Convert wintcp to tcp_ip Protocol Setting .. 412

IPv6 in the JDBC Driver and Ingres .NET Data Provider ... 414

Examples of Disabling IPv6 Support ... 415

Index 417

Contents xi

Chapter 1: Introducing Ingres
Connectivity

This section contains the following topics:

In This Guide (see page 13)

Connectivity Solutions Not in This Guide (see page 14)

Basic Networking Concepts (see page 14)

Ingres Components and Tools (see page 16)

System-specific Text in This Guide (see page 18)

Terminology Used in This Guide (see page 19)

Syntax Conventions Used in This Guide (see page 19)

In This Guide

The Connectivity Guide describes how to establish and maintain
communications between Ingres® installations. The connectivity information
presented in this guide for accessing Ingres databases also applies to
Enterprise Access and EDBC products and the databases they support.

This guide includes the following information:

�	 How to install, configure, use, and maintain Ingres® Net and Ingres
Protocol Bridge.

�	 Using JDBC, ODBC, and .NET Data Provider connectivity components in the
Ingres environment.

�	 Configuration and troubleshooting tips for each of the network protocols
supported by Ingres.

This chapter briefly describes networking concepts, Ingres components and
tools, and conventions used in this guide.

Introducing Ingres Connectivity 13

Connectivity Solutions Not in This Guide

Connectivity Solutions Not in This Guide

Ingres provides a variety of connectivity drivers, data adapters, and dialects,
including the following:

� Ingres Python DBI Driver

� Ingres PHP Driver

� Ingres Perl DBI Extension

� Ingres Torque Database Adapter

� Ingres Hibernate Dialect

For a list of latest solutions and details on each, see the downloads page of the
Ingres web site.

Basic Networking Concepts

To use this guide effectively, you should be familiar with the following basic
networking terms and concepts.

A network is a collection of connected computers, software, and
communication links.

A heterogeneous environment is a computing environment that includes a
variety of machines, operating systems, software, and protocols.

A homogeneous environment is a computing environment in which all
machines are the same, and use the same operating system, software, and
protocols.

A protocol is a standard that defines a set of rules for the transference of data
between computers. A protocol specifies how the data is represented, how the
transfer occurs, and how errors are detected and transmissions are
acknowledged.

14 Connectivity Guide

Basic Networking Concepts

A node is a computer that is connected to a network. Each network node has a
unique address within the network.

The term local refers to the instance or node on which you are working.

The term remote refers to all non-local instances or nodes on the network. For
example, assume that your network has three instances, “napoleon,”
“eugenie,” and “josephine,” and that you are working on “napoleon.” From
your perspective, “napoleon” is the local instance and “eugenie” and
“josephine” are the remote instances. If a co-worker is working on “josephine,”
for that person, “josephine” is the local instance and “napoleon” and “eugenie”
are remote instances.

JDBC (Java Database Connectivity) is a standardized API (Application
Programming Interface) that allows database connectivity. It defines a set of
function calls, error codes and data types that can be used to develop
database independent applications using Java.

ODBC (Open Database Connectivity) is a standardized API (Application
Programming Interface) that allows database connectivity. It defines a set of
function calls, error codes and data types that can be used to develop
database independent applications using Structured Query Language (SQL).

ODBC permits maximum interoperability—a single application can access many
different database management systems. This enables an ODBC developer to
develop, compile, and deploy an application without targeting a specific type of
data source. Users can add the database drivers that link the application to the
database management systems of their choice.

Introducing Ingres Connectivity 15

Ingres Components and Tools

Ingres Components and Tools

To use this guide effectively, you should be familiar with the basic components
of Ingres, client/server concepts, and the Ingres tools required to configure,
maintain, and view data.

The basic components of Ingres are as follows:

� The Relational Database Management System (RDBMS)—The Relational
Database Management System is a set of Ingres processes. This set
includes the processes that make up the Ingres DBMS Server and those
that make up the logging and locking system. All of these processes work
together to process queries from users running applications or using Ingres
tools.

� The database—The database is the structure in which the RDBMS stores
the data.

Client/Server—The Ingres database management system is the server that
processes requests from clients. The Ingres tools and database applications
are the clients.

The following figure illustrates the relationships among Ingres components and
tools:

16 Connectivity Guide

Ingres Components and Tools

The Ingres tools used to configure, maintain, and view data include the
following (commands to invoke these tools are shown in parentheses):

� Configuration Manager (vcbf)

� Configuration-By-Forms (cbf)

� Ingres Visual Manager (ivm)

� Visual Performance Monitor (vdbamon)

� Journal Analyzer (ija)

� Import Assistant (iia)

� Export Assistant (iea)

� Visual Configuration Differences Analyzer (vcda)

� Visual Database Objects Differences Analyzer (vdda)

� Visual SQL (vdbasql)

� Visual DBA (vdba)

� Net Management Utility (netutil)

� Network Utility (ingnet)

� Terminal Monitor (isql)

� Report-By-Forms (rbf)

� Query-By-Forms (qbf)

� Applications-By-Forms (abf)

For a description of each tool, see the System Administrator Guide.

The application development tools used to write customized applications
include:

� Vision

� Ingres 4GL

For instructions on using these tools, see the Forms-based Application
Development Tools User Guide.

Ingres Instance

An Ingres instance consists of a set of installed products that share a unique
system-file location, ownership, and installation code, together with any data
files created by these products. An instance is classified as either a server
installation or a client installation.

Introducing Ingres Connectivity 17

System-specific Text in This Guide

Server Installation

An Ingres server installation consists of a DBMS server process (iidbms), a
Name Server process (iigcn), a set of Ingres tools, and the files and logs
necessary to run the DBMS Server. For a detailed description of DBMS servers,
see the System Administrator Guide.

If the server installation allows remote clients to access its DBMS servers, the
server installation also includes the Ingres Net Communications Server process
(iigcc).

Client Installation

An Ingres client installation contains a Name server process (iigcn), a
Communications server process (iigcc), a Data Access Server process (iigcd),
the API components that support client applications (Ingres JDBC Driver,
ODBC Driver and .NET Data Provider) and the Ingres tools. A client installation
does not run a DBMS server or store any data.

System-specific Text in This Guide

This guide provides information that is specific to your operating system, as in
these examples:

Windows: This information is specific to the Windows operation system.

UNIX: This information is specific to the UNIX operation system.

VMS: This information is specific to VMS operating system.

When necessary for clarity, the symbol is used to indicate the end of the
system-specific text.

For sections that pertain to one system only, the system is indicated in the
section title.

18 Connectivity Guide

Terminology Used in This Guide

Terminology Used in This Guide

This guide uses the following terminology:

�	 A command is an operation that you execute at the operating system level.
An extended operation invoked by a command is often referred to as a
utility.

�	 A statement is an operation that you embed within a program or execute
interactively from a terminal monitor.

Note: A statement can be written in Ingres 4GL, a host programming
language (such as C), or a database query language (SQL or QUEL).

Syntax Conventions Used in This Guide

This guide uses the following conventions to describe syntax:

Convention Usage

Monospace Indicates key words, symbols, or punctuation
that you must enter as shown

Italics Represent a variable name for which you must
supply an actual value

[] (brackets) Indicate an optional item

{ } (braces) Indicate an optional item that you can repeat
as many times as appropriate

| (vertical bar) Separates items in a list and indicates that you
must choose one item

Introducing Ingres Connectivity 19

Chapter 2: Exploring Net

This section contains the following topics:

Ingres Net (see page 21)

Installation Configurations That Require Net (see page 24)

Net and Other Ingres-related Products (see page 24)

Benefits of Net (see page 27)

Net Concepts (see page 28)

Net Management Tools (see page 32)

Net and Bridge Users (see page 33)

GCA Privileges (see page 35)

Ingres Net
Ingres Net is a server process that allows you to work on one Ingres instance
and access databases on another instance. Both instances can reside on the
same machine or they can reside on different machines. For example, with
Ingres Net on each instance in your network, you can access Ingres databases
on remote nodes as well as on your own local node. Similarly, with Ingres Net
in a cluster, you can access Ingres databases on any node in the cluster.

Ingres Net connects multiple computer architectures, operating systems, and
network protocols. This capability broadens the range and number of machines
that can offer solutions to problems requiring Ingres-based distributed
processing. Ingres Net automatically handles all low-level details of data
format conversion required in such heterogeneous environments.

Ingres Net is implemented on industry-standard networking protocols. It is
designed to be independent of underlying communications hardware and
networking software. Subject to the appropriate security checks, Ingres Net
lets you treat any remote database as a local database.

Exploring Net 21

Ingres Net

General Communication Facility

Ingres Net works with the basic Ingres components to enable connectivity
between client and server instances. It also uses the General Communication
Facility to manage communication among various components of Ingres.

The General Communication Facility (GCF) manages communication among all
the components of Ingres. The GCF consists of five parts:

� The General Communications Architecture (GCA), which provides
communication connections between Ingres processes on the same
instance.

� The Name Server (iigcn) maintains a list of all registered, active servers.
The Name Server provides information to user processes that enables a
connection to a local DBMS Server. When a process wants to connect to a
remote DBMS Server, the Name Server provides information that allows
the process to first connect to a Communications Server. The
Communications Server establishes communication with the remote DBMS
Server. An instance has only one Name Server process.

� The Communications Server (iigcc) is the main process component of
Ingres Net. It monitors outgoing communication from local applications to
remote DBMS servers and incoming communication from remote
applications to local DBMS servers. An instance can have multiple
Communications server processes.

� The Data Access Server (iigcd) translates requests from the Ingres JDBC
Driver and the .NET Data Provider into Ingres internal format and forwards
the request to the appropriate DBMS Server. The Data Access Server
(DAS) accesses DBMS servers on remote machines using Net.

� The Protocol Bridge Server (iigcb) provides services for Ingres Bridge, a
product that enables a client application running on one type of local area
network to access a DBMS server running on a different type of network.
Ingres Bridge “bridges” a client using one network protocol to a server
using another. (This component is functional only if you are using Ingres
Bridge.)

22 Connectivity Guide

Ingres Net

Communications Server

As the main server process of Ingres Net, the Communications Server (iigcc),
also referred to as the Net Server, provides access to standard network
protocols. It is modeled on the top four layers of the network layering
structure and communication protocols known as the Open Systems
Interconnection (OSI) standards. These standards are specified by the
International Standards Organization (ISO). The following figure displays these
layers.

Net Security

Ingres Net supports the Ingres security system; users can access only the data
for which they are authorized.

Exploring Net 23

Installation Configurations That Require Net

Installation Configurations That Require Net

With one exception, any installation configuration in which the client and
server processes do not reside on the same machine or in the same instance
must use Ingres Net.

The exception occurs when Ingres is configured in the cluster mode on nodes
that are part of a cluster. In this case, the processes can reside on separate
machines without using Net. If Ingres is configured in its normal (rather than
cluster) mode on a node that is part of a cluster, Ingres Net is required to
connect client and server processes on separate nodes.

For example, an Ingres 4GL client application using Net accesses a remote
DBMS server. In this configuration, the Java application does not use Ingres
Net because the Data Access Server (DAS) is local to the DBMS Server. If the
DAS is remote to the DBMS Server, Ingres Net is required to enable the
client/server connection.

Net and Other Ingres-related Products

Ingres Net, along with any of the following products, can fit into a variety of
installation configurations to provide enhanced access and communication
capabilities in more complex installations. Using these products with the basic
Ingres components provides simultaneous, distributed access to databases and
applications in a heterogeneous environment.

Ingres Bridge

Enables client applications running on one type of network LAN to access
an Ingres server running on a different type of network.

Enterprise Access and EDBC products

Provide access to non-Ingres databases.

Ingres Star

Allows access to multiple databases transparently and simultaneously.

24 Connectivity Guide

Net and Other Ingres-related Products

Net and Enterprise Access and EDBC Products

Enterprise Access and EDBC products allow you to use Ingres tools, interfaces,
and applications to access data stored in non-Ingres databases by translating
queries into forms that are understood by the non-Ingres databases.
Consequently, you can perform operations and queries on files stored in these
non-Ingres databases as if they were Ingres tables.

A sample installation configuration uses Ingres Net and EDBC to database 2
(DB2). The installation is on node_a, a VMS implementation of the Ingres
tools.

An installation on node_b is EDBC to DB2 on an MVS environment. The two
nodes communicate using the SNA LU0 protocol. Ingres Net is present on both
nodes. Users on node_a can access DB2 data on node_b as if the DB2 tables
were Ingres tables stored on node_a.

Note: MVS refers to all IBM MVS-based operating systems, including OS/390
and z/OS.

For a detailed discussion of Enterprise Access or EDBC architecture, see the
guides for your specific Enterprise Access or EDBC product.

Net and Ingres Star

In Ingres, one application can have multiple sessions, with each session
accessing one database. However, in many applications, the ability to access
multiple databases in a single session is also very useful. In Ingres, this
expanded functionality is available by using Ingres Star.

Ingres Star lets you create a distributed database. A distributed database is
composed of some or all of the tables from a number of databases. When you
access a distributed database, these tables appear to reside in a single
database. The composition and operation of the distributed database is
completely transparent to the user.

Combining Ingres Net and Ingres Star gives you simultaneous access to any
number of databases residing on separate instances. Ingres Net gives you the
ability to query a database on a different instance, and Ingres Star allows you
to simultaneously query more than one database. You need both Ingres Net
and Ingres Star to simultaneously access more than one database if the
databases are in separate instances.

For a full explanation of how to use Ingres Star, see the Ingres Star User
Guide.

Exploring Net 25

Net and Other Ingres-related Products

Net Product Integration Summary

By making an Enterprise Access or EDBC product part of an Ingres Star
database, you can transparently and simultaneously access both Ingres and
non-Ingres databases.

The following figure illustrates a distributed database environment that
contains an Enterprise Access or EDBC product. In this illustration, the local
DBMS Server resides on the VMS operating system. The remote DBMS Server
resides on UNIX. EDBC to DB2 resides on MVS.

Ingres applications on VMS are linked by Ingres Net to the remote DBMS
Server on UNIX with the TCP/IP network protocol. Ingres applications on VMS
are linked by Ingres Net to the remote EDBC to DB2 on MVS with the SNA LU0
network protocol.

26 Connectivity Guide

Benefits of Net

Benefits of Net

Ingres Net provides many benefits in your computing environment. With
Ingres Net, you can do the following:

�	 Improve total system performance

Ingres Net lets you dedicate each node in a network to specific
applications, tools, or databases. By doing so, you can optimize each node
for a primary function and avoid the problem of designing for conflicting
requirements.

�	 Build larger applications

When you are working with Ingres installed on just one machine, the
number of users and applications you can support is limited by the
capacity of the machine. With Ingres Net you can connect multiple
machines and instances in a network to support larger applications and to
handle more users.

�	 Simplify expansion

With Ingres Net, the network serves as a vehicle for expanding the
computer environment. When more computing power is needed, add
smaller, less expensive machines instead of replacing existing computers
with larger, more costly machines. This preserves the existing hardware
investment and allows expansion without disrupting productivity.

�	 Minimize data communication costs

Ingres Net uses the network efficiently. Together, the following features
minimize the number of messages and the amount of data sent, thus
minimizing data communication costs.

–	 The local Ingres program communicates with its remote data manager
using the SQL language. Built on the relational model, SQL
manipulates sets of records rather than a single record at a time. This
allows the use of more compact commands and queries.

–	 The remote data manager carries out database access functions
entirely on the remote node. Only data requested by the user is
transmitted over the network to the local application. For example, in
update operations, users are not requesting to see any data; they
simply want to change some existing data. The remote data manager,
therefore, carries out all the work.

�	 Improve resource sharing

Consider a company headquarters that must support a number of sales
offices across the country. Although each sales office needs only a small
on-site computer to support its few users, it must have access to the data
stored in the large corporate database.

Exploring Net 27

Net Concepts

With Ingres Net, local data can remain on the local nodes, providing fast
response to users in the local sales offices. These same users also have the
advantage of sharing the large database maintained on the central
computer at corporate headquarters when necessary without being
required to house a copy of it on their local machine.

By connecting databases and applications on different machines, you can
balance computer resources, promote data sharing, and improve access to
an organization’s information.

Net Concepts

Concepts related to Ingres Net include the following:

�	 Virtual nodes

�	 Connection data

�	 Remote user authorizations

�	 Global and private definitions

Virtual Nodes

A virtual node (vnode) is a name defined on the local instance to identify a
particular remote instance. Assigning a vnode name is typically the first step in
the process of establishing connection and authorization data for a remote
instance.

Whenever local users connect to a database on a remote instance or run an
application that accesses a database on a remote instance, they must do one
of the following:

�	 Use the virtual node name assigned to that instance

�	 Specify all of the required information in the connection string using the
“dynamic vnode” format

Using vnodes is generally simpler for users because they only have to enter a
single, user-friendly vnode name when they run an application, rather than
detailed network-specific connection information. Another advantage of vnodes
is that network changes can be updated for a vnode without notifying the user
or changing the application.

28 	Connectivity Guide

Net Concepts

Connection Data

Connection data refers to the information that the Communications Server in
the local instance requires to locate and connect to the Communications Server
on a remote instance. Connection data includes the following:

�	 The network address or node name of the remote instance’s host machine

�	 The listen address of the remote instance’s Communications Server

�	 The network protocol by which the local and remote instances
communicates

Connection data is defined for each vnode, but can also be specified when
using the dynamic vnode format.

It is possible to have more than one connection data entry for the same vnode.
For example, if the remote instance has more than one Communications
Server or can be accessed through more than one network protocol, this
information can be included in the vnode definition by adding extra connection
data entries.

Listen Address

A listen address is a unique identifier used for interprocess communications.
The format of a listen address is dependent on the network protocol and the
hardware.

For descriptions of listen address formats for the protocols supported by Ingres
Net, see the appendixes in this guide.

Exploring Net 29

Net Concepts

Remote User Authorizations

Connection data alone is not sufficient to access a remote Ingres instance. You
must authorize users to access the remote instance.

A remote user authorization consists of either of the following:

� An Installation Password

An Installation Password enables the user to access the remote instance
directly. Users retain their identity as defined on the local instance.

If an Installation Password is defined, a login account is optional.

� Login account and password

A login account (set up by the system administrator) on the host machine
of the remote instance. Users take on the identity of the login account
through which they access the remote instance.

The main advantage of using an Installation Password is that users on the local
node do not require a login account on the remote instance’s host machine.
They can access the remote instance directly provided they are recognized as
valid Ingres users on the remote instance.

Note: Installation passwords must be used only when user privileges are the
same on both local and remote machines. Using installation passwords
between machines with different access privileges can lead to security access
violations. For example, if a user is able to access the Ingres administrator
account on a client machine but not on the server machine, use of installation
passwords allows the user to bypass standard security and access the
database as the Ingres administrator through Ingres Net.

Ingres Net requires the following remote user authorization information:

� Name of remote login account (if applicable)

� Password (either a login account password or an Installation Password)

For more information, see the chapter “Establishing Communications.”

30 Connectivity Guide

Net Concepts

Global and Private Definitions

Both connection data entries and remote user authorization entries can be
defined for vnodes as either global or private. A global entry is available to all
users on the local instance. A private entry is available only to the user who
creates it.

Each user can create a private entry. Only a user with the GCA privilege
NET_ADMIN (typically a system administrator) can create a global entry.

If both a private and a global entry exist for a given vnode, the private entry
takes precedence when the user who created the private entry invokes the
vnode.

The following figure shows how connections are made when both private and
global entries are defined for a given vnode.

Exploring Net 31

Net Management Tools

On installation_c, the system administrator has created a vnode (“Chicago”)
with a global connection data entry specifying installation_a and a global
remote user authorization specifying a login account (“Guest”) on that
instance. User A has not defined any private definitions for vnode “Chicago”
that takes precedence over the global definitions.

When User A invokes vnode “Chicago,” a connection is made to installation_a
through login account “Guest.” User B has added a private remote user
authorization to vnode “Chicago,” specifying the login account “User B.” When
User B invokes vnode “Chicago,” the private authorization takes precedence
over the global authorization, and a connection is made to installation_a
through the login account “User B.”

User C has added a private connection data entry to vnode “Chicago.” The
private connection data entry contains the listen address, node name, and
network protocol of installation_b.

User C has also added a private authorization to login account “User C” on
installation_b. When User C invokes vnode “Chicago,” the private definitions
take precedence over the global definitions, and a connection is made to
installation_b through the login account “User C.”

Net Management Tools

The Ingres Net management tools allow you to store and manage the vnode
information (connection data and remote user authorizations) used by the
Communications Server and the Bridge Server to connect to remote Ingres
instances. These tools are:

� The forms-based Net Management Utility, netutil

� The GUI-based Network Utility and Visual DBA

For information on using these tools, see the chapter “Establishing
Communications.”

32 Connectivity Guide

Net and Bridge Users

Net and Bridge Users

At a site, several levels of users are often defined by the tasks and
responsibilities they have within the installation. For installations with Ingres
Net and Ingres Bridge, these levels are:

� Operating system administrator

The operating system administrator sets up the operating system
environment in which Ingres is installed. This person is the owner of the
operating system account (for example, root in UNIX, system in VMS),
which provides all permissions and privileges available from the operating
system.

� Network administrator

The network administrator is responsible for the physical installation and
maintenance of the network. These responsibilities include designing a
network configuration that provides optimal user and database access, and
installing and maintaining the necessary hardware and software.

� System administrator

The system administrator is the owner of the user account that provides
permissions in the Ingres environment. Responsibilities include installing
and maintaining Ingres and Ingres Net, authorizing user access, and
maintaining and troubleshooting the installation.

� Database administrator (DBA)

Each database in an installation has a DBA who is responsible for
maintaining and tuning the database, granting permission to access
objects in the database (such as tables and views), and backup and
recovery of the database.

� End users

An end user is anyone who uses the instance and is not an operating
system administrator, system administrator, DBA, or user with special
privileges.

A person may have responsibilities at more than one level. For example, a user
can be the database administrator of one database and simply an end user of
another.

Users at the system administrator, database administrator, and end user levels
have specific Ingres Net responsibilities.

Exploring Net 33

Net and Bridge Users

System Administrator and Ingres Net

The system administrator often performs the following Ingres Net-specific
tasks, however any user with the appropriate privileges can perform these
tasks:

� Defining global connection data entries and remote user authorizations.
This task requires the GCA privilege NET_ADMIN.

� Starting, stopping, configuring, and monitoring Ingres servers, including
the Name, Communications, and Bridge servers. These tasks require the
GCA privilege SERVER_CONTROL.

The NET_ADMIN and SERVER_CONTROL privileges are assigned by default to
the installation owner user ID, system (on VMS), and root (on UNIX). To
assign these privileges to another user, the system administrator must
manually add the following line to the config.dat file:

ii.node_name.privileges.user.user: SERVER_CONTROL,NET_ADMIN

For example:

ii.panther.privileges.user.joan: SERVER_CONTROL,NET ADMIN

Database Administrator and Ingres Net

The DBA must ensure that users who remotely access an Ingres instance have
a user profile that permits access.

End Users and Ingres Net

End users are responsible for the following Ingres Net and Ingres Bridge-
specific tasks:

� Defining their private connection data entries, if any

� Defining their private remote user authorizations, if any

34 Connectivity Guide

GCA Privileges

GCA Privileges

GCF Servers, APIs, and utilities permit certain operations based on the
following privileges:

SERVER_CONTROL

Stop GCF servers. Run iimonitor against GCF servers. Add and delete
server registrations.

NET_ADMIN

Add and delete global vnode entries. View, add, and delete the vnode
entries of another user.

MONITOR

Access server statistics (IMA internal access through GCM).

TRUSTED

Installation administrator privileges, including those above.

The Ingres DBMS and Enterprise Access Gateways can also reference these
privileges.

Exploring Net 35

Chapter 3: Installing and Configuring Net
This section contains the following topics:

Installation Components (see page 37)

How You Prepare for Installation (see page 37)

How Net Setup Works on an Existing Installation (see page 43)

How Communications Are Enabled (see page 43)

How You Install Net (see page 44)

Net Configuration Parameters—Customize Ingres Net (see page 47)

Installation Components
When you install Ingres Net, the following components are automatically
installed with it:

�	 Data Access Server (provides network access to the DBMS Server for
Ingres JDBC drivers and .NET Data Providers)

�	 Ingres JDBC Driver

�	 Ingres ODBC Driver

�	 Ingres .NET Data Provider

�	 Ingres Bridge

How You Prepare for Installation

Before you install Net, do the following:

1.	 Make sure you have met the installation prerequisites for the network
protocol you are using, and that the physical network is installed and
working.

2.	 Understand the configuration parameters you must supply values for
during the setup phase of the installation process.

Network Installation and Testing

Before you install Ingres Net, the network administrator must make sure the
network is properly installed and operating.

Installing and Configuring Net 37

How You Prepare for Installation

TCP/IP Installation (Windows)

To install Ingres Net for Windows with TCP/IP as its network protocol, you
must first install the TCP/IP network software for Windows. From the Network
applet in the Control Panel, choose Add Software. From the list of choices,
choose TCP/IP Protocol and Related Components and follow the installation
instructions.

To use symbolic node names (host names) of a remote host instead of its
numeric IP address, you must either configure a Domain Name Server in the
DNS section of the TCP/IP configuration or add a list of IP addresses and
corresponding symbolic names in a file called
%windir%\system32\drivers\etc\hosts. For information on the format of this
file, see Windows documentation.

SPX/IPX Installation (Windows)

To install Ingres Net for Windows with SPX/IPX as its network protocol, you
must first install the SPX/IPX network software for Windows.

From the Network applet in the Control Panel, choose Add Software. From the
list of choices, choose NWLink IPX/SPX Compatible Transport and follow the
installation instructions.

For information on installing the SPX/IPX protocol, see Windows
documentation.

TCP/IP Installation (UNIX)

To install Ingres Net for UNIX with TCP/IP as its network protocol, you must
first configure TCP/IP for UNIX.

To use symbolic node names (host names) of a remote host instead of its
numeric IP address, you must either configure TCP/IP to use a Domain Name
Server configuration or add a list of IP addresses and corresponding
symbolic node names host names) of all remote hosts that are referred to by
host name in a file called the /etc/hosts file (or other list of network host
addresses).

Establish aliases for node names in the /etc/hosts file. This is useful if the node
name contains characters that are not accepted by Ingres Net. For information
about how to establish aliases, see UNIX documentation for your machine.

Fully test TCP/IP before installing Ingres Net. You must be able to connect to
other nodes on the network using telnet and ftp commands.

38 Connectivity Guide

How You Prepare for Installation

TCP/IP Services Installation (VMS)

To install Ingres Net for VMS with TCP/IP as its network protocol, you must
first install TCP/IP Services on VMS. To use symbolic node names (host names)
of a remote host instead of its numeric IP address, you must either
configure TCP/IP to utilize a Domain Name Server configuration or add a list of
IP addresses and corresponding symbolic node names host names) of all
remote hosts that are referred to by host name in the TCP$HOST file.

Establish aliases for node names in the TCP$HOST file. This is useful if the
node name contains characters that are not accepted by Ingres Net. For
information about how to establish aliases, see VMS documentation.

Test TCP/IP fully before installing Ingres Net. You must be able to connect to
other nodes on the network using telnet and ftp commands. The
connection can be tested with a TCPIP PING command, or use the telnet utility
to connect to the node. If the connection succeeds, you are ready to add the
nodes to the Ingres installation using netutil.

For more information, see the chapter Establishing Communications and the
VMS documentation on TCP/IP services.

Note: TCP/IP Services for OpenVMS, formerly UCX, is often still referred to as
UCX.

DECnet Installation (VMS)

Installing Ingres Net using DECnet as a network protocol requires no additional
procedures in the DECnet installation. Simply install DECnet and test it fully
before installing Ingres Net. Be sure that all nodes that use Ingres Net are
defined and accessible through DECnet. You must be able to use the set host
command to connect to any node on the network that uses Ingres Net. For
details, see DECnet-Plus for OpenVMS Installation and Basic Configuration or
DECnet-Plus Introduction and User’s Guide.

MultiNet TCP/IP Installation (VMS)

When installing MultiNet TCP/IP on a network that uses Ingres Net, you must
make it emulate either Wollongong TCP/IP or TCP/IP Services for OpenVMS.
For details on enabling TCP/IP Services emulation (using the MultiNet SET
LOAD-UC_DRIVER command) or WIN/TCP emulation (using the SET WINS­
COMPATIBILITY command), see the MultiNet for OpenVMS System
Administrator’s Guide.

Depending on the selected emulation mode, you must follow the guide’s
instructions for Wollongong TCP/IP or TCP/IP Services for OpenVMS.

Installing and Configuring Net 39

How You Prepare for Installation

SunLink SNA Peer-to-Peer Installation (Solaris and Sun-4)

When using SunLink SNA Peer-to-Peer (LU 62) as the network protocol, you
must set up the appc Gateway configuration files to define the SNA Logical
Unit (LU) and Physical Unit (PU) resources associated with Ingres Net
connections. For information on setting up this configuration file, see the
SunLink SNA Peer-to-Peer Administrator’s Guide.

The “SunLink Gateway Configuration Files” appendix contains sample excerpts
from configuration files. An experienced SNA communications specialist must
perform the configuration.

If using independent LUs, make sure (in SunLink SNA Peer-to-Peer Release
7.x) that you start the cnos_local and cnos_remote processes in addition to
starting and configuring the appc Gateway process.

Test SunLink SNA Peer-to-Peer fully before installing Ingres Net. Use the
SunLink SNA test_p2p program to perform testing.

Ingres Net does not currently support the Physical Unit Management Services
(PUMS) that SunLink SNA provides.

HP-UX SNAplus (HP-UX 9.0)

When using HP-UX SNAplus (LU6.2) as the network protocol, you must
configure the links, connections, Modes, Remote APPC LUs, Local APPC LUs,
and Invocable TPs associated with Ingres Net connections. For information on
the configuration procedure, see the HP SNA Products Remote System
Configuration Guide, the HP-UX SNAplusLink Administrator’s Guide, and the
HP-UX SNAplusAPI Administrator’s Guide.

For more detailed information on configuration, see the appendix "Netu
Procedures" in this guide. An experienced SNA communications specialist must
perform the configuration.

You must test HP-UX SNAplus fully before installing Ingres Net. For guidance,
see the sample programs in /usr/lib/sna/samples.

If the SNAplus control daemon is restarted, any Communications Servers that
are using the protocol must also be restarted.

40 Connectivity Guide

How You Prepare for Installation

AIX SNA Services/6000 (IBM RS/6000)

When using AIX SNA Services/6000 as the network protocol, you must create
a set of configuration profiles that describe the hardware and software that are
used for communications. For information on defining these profiles, see Using
AIX SNA Services/6000 and AIX SNA Services/6000 Reference. An experienced
SNA communications specialist must perform the configuration.

Ensure that SNA Services/6000 is fully functional before installing Ingres Net.
In particular, make sure that the SNA subsystem and the network attachment
that is to be used can be started using the startsrc console command. Using
AIX SNA Services/6000 contains details on the use of this command.

The appendix “AIX SNA Services/6000 Configuration Profiles” contains sample
excerpts from configuration profiles showing examples of those profiles that
must be specifically tailored for Ingres Net. Once these profiles are defined and
Ingres Net is installed on both the local and remote machines, use the startsrc
command to start up the connection that you have configured. This is not
necessary for Ingres Net operations, but it helps to verify that the
configuration profiles are correct before attempting to actually run Ingres Net.

Setup Parameters for Net

The parameters that must be specified when installing and setting up Ingres
Net depend on whether it is a server or client installation. They also depend on
whether you choose to use an Installation Password to authorize access to a
server installation from a remote client installation.

Installation Password and Remote User Authorization

Installation Passwords and their corresponding remote user authorizations can
be wholly or partially set up during the Ingres Net installation procedure.

You can set up Installation Passwords and remote user authorizations at any
time after the installation procedure using Network Utility, Visual DBA, or
netutil. For more information about these procedures, see the chapter
"Establishing Communications."

Installing and Configuring Net 41

How You Prepare for Installation

Setup Parameters for a Server Installation

If Ingres Net is part of a server installation, you are asked to supply the
following information:

Installation Password

Is an alphanumeric string that can be used to authorize remote users to
access the DBMS Server on this installation.

The first eight characters of the string must be unique on the installation.

Default: None

VMS: If you are installing Ingres Net on a VMS system, you are not
prompted to define an Installation Password. To define one, use netutil
after completing the installation procedure.

Setup Parameters for a Client Installation

If you are installing Ingres Net on a non-NFS client installation, you are asked
for the following information.

Installation Code

An installer-defined, two-character code that identifies this installation.

Default: II

Windows and UNIX: The first character must be a letter; the second
character can be a letter or numeral. If there is more than one installation
on the same node, each installation must have a unique installation
code.

VMS: This parameter applies only to group-level installations. System level
installations are assigned an internal code of “aa”.

Make sure that the first letter of your group-level installation code is not
“a” and not in use by another group-level installation in the node.

Region and Time Zone

The region of the world and the time zone in which this client installation is
located. You must enter these values even if they are the same as for this
client’s DBMS Server (host) node.

Default on some systems: NA-PACIFIC.

NFS clients are prompted only for the Installation Password. For detailed
information on running Setup for NFS clients, see the Installation Guide.

Note: If you are setting up NFS clients from the server installation, you are
not prompted to set up a remote user authorization entry. You must set up
your remote user authorization entries using netutil after you have completed
the installation procedure. For instructions on setting up a remote user
authorization using netutil, see the chapter "Establishing Communications."

42 Connectivity Guide

How Net Setup Works on an Existing Installation

How Net Setup Works on an Existing Installation

When Ingres Net is added to an existing installation, the procedures differ
slightly but the fundamentals remain the same. You must rerun the Ingres
Setup program to install and configure Ingres Net. The prompts that you must
answer remain the same, regardless of whether Ingres Net is being installed as
part of an initial installation or as an addition to an existing installation.

How Communications Are Enabled

A server and client are able to communicate through Ingres Net as soon as the
installation procedure is complete if an Installation Password and
corresponding remote user authorization entry are set up on that server and
client, respectively.

Otherwise, before Ingres Net can be used to connect installations, the
necessary remote user authorizations, connection data, and Installation
Passwords or Login Account Passwords must be defined.

Installing and Configuring Net 43

How You Install Net

How You Install Net

To install Ingres Net as part of a new or existing installation, follow this
process:

Note: On VMS, make sure any user account that is using Net has the NETMBX
privilege.

1.	 Make sure you have met the installation prerequisites for the network
protocol you are using, and that the physical network is installed and
working. For more information, see Network Installation and Testing (see
page 37) and the appendix specific to your network protocol.

2.	 Be ready with the necessary information to set up the Net installation
parameters.

Windows:

For server installations:

� Installation Password, if you are defining one at this time

For client installations:

� Installation Code

� Region and Time Zone

If access is authorized to a remote server using an Installation Password:

� Installation Password defined on server installation

� Name of the host machine on which the server installation resides

� Server installation's listen address

UNIX:

�	 Host Name: The name of the host machine on which the remote
installation resides

�	 Listen Address: The listen address for the remote installation's
Communications server. The default is the server installation code

�	 Installation Password: The Installation Password defined on the remote
installation

VMS:

� Installation Code

� Time Zone

3.	 Shut down your installation if you are adding Ingres Net to an existing
installation.

4.	 Perform the appropriate installation procedure documented in the
Installation Guide.

5.	 Start your installation.

44 	Connectivity Guide

How You Install Net

6.	 Authorize users to use Ingres by using the create user statement (or Visual
DBA if available). For details, see the Database Administrator Guide.

7.	 Define connection data for the remote installations you plan to access. For
detailed procedures, see the chapter "Establishing Communications."

8.	 Define remote user authorizations for the remote installations you plan to
access, if you did not do so during the installation procedure. For detailed
procedures, see the chapter "Establishing Communications."

9.	 Define an Installation Password for the local installation to enable remote
users to access this installation

Note: This step is not necessary if you defined a password during the
installation procedure.

For detailed procedures, see the chapter "Establishing Communications."

10. UNIX: On UNIX and Linux systems, make sure the password validation
program ingvalidpw is installed. For details, see Create Password Validation
Program (UNIX) (see page 46).

Note: The ingvalidpam program can be used instead of ingvalidpw to
validate passwords through pluggable authentication modules (PAM). For
more information, see the Security Guide.

Note: If you are upgrading an existing Ingres Net installation, your existing
netutil (or netu) definitions remain in effect.

ingvalidpw Program

In some environments, Ingres uses the ingvalidpw program to validate user
passwords. It is not strictly a part of Ingres Net. The passwords may originate
from any local application or from a remote application coming through Ingres
Net or the Data Access Server.

Ingvalidpw is used depending on the requirements of the platform where the
password is validated. For example, the Ingres DBMS Server uses the
ingvalidpw program to validate shadow passwords on UNIX or to enforce C2
security in some UNIX environments.

Installing and Configuring Net 45

How You Install Net

Create Password Validation Program (UNIX)

On UNIX, the Ingres DBMS Server uses the ingvalidpw program to validate
shadow passwords. This executable is created at installation time or loaded
from the distribution media.

The mkvalidpw script tries to recompile the ingvalidpw program if your
machine has a C compiler available; otherwise it copies the supplied
ingvalidpw program to the $II_SYSTEM/ingres/bin directory. The mkvalidpw
script also sets the II_SHADOW_PWD variable in the Ingres symbol.tbl to
enable shadow password validation.

To create the ingvalidpw program

1.	 Log in as root.

2.	 Set the II_SYSTEM and PATH variables to the same values as those for the
user account that owns the installation.

3.	 Run the mkvalidpw script, located in the directory $II_SYSTEM/ingres/bin,
as follows:

mkvalidpw

The ingvalidpw executable is created.

4.	 Shut down and restart the Name Server.

The ingvalidpw program is ready for operation.

46 	Connectivity Guide

Net Configuration Parameters—Customize Ingres Net

Net Configuration Parameters—Customize Ingres Net

Your Net installation can be customized by changing the values of the Ingres
Net configuration parameters. Default values are assigned during installation.

You view or change the configuration parameters using Configuration-By-
Forms (or Configuration Manager, if available).

The Net configuration parameters are as follows:

inbound_limit and outbound_limit

Defines inbound and outbound session limits.

Default: 64 inbound sessions and 64 outbound sessions

log_level

Defines the logging level.

Default: 4

Protocol

Specifies the name of the network protocol.

Default: Any protocol present at installation is indicated as active.

Listen Address

Specifies the GCC listen addresses for this installation.

Default: A GCC listen address is assigned for any protocol present at
installation. The format depends on the protocol.

default_server_class

Specifies the server class assumed as the default when a server class
is specified.

Default: INGRES

remote_vnode

(Optional) Specifies the vnode assumed as the default when a vnode is
not specified.

Default: None.

local_vnode

Specifies the vnode name configured for the local installation.

Default: Name of host machine.

Installing and Configuring Net 47

Net Configuration Parameters—Customize Ingres Net

For more information, see the following chapters:

� Using Net

� Maintaining Connectivity

� Troubleshooting Connectivity

48 Connectivity Guide

Chapter 4: Establishing Communications
This section contains the following topics:

How User Access Is Established (see page 49)
Access Tools for Defining Vnodes (see page 51)
Netutil (Net Management Utility) (see page 53)
Netutil Non-Interactive Mode (see page 75)
Network Utility and Visual DBA (see page 89)

How User Access Is Established
For users to be able to access Ingres, the following two steps are required:

1.	 The system administrator sets up accounts for local users, and for those
remote users who access the local instance through a local account. This
step is optional if an Installation Password is defined, in which case users
access Ingres directly, without going through a local account. The system
administrator can do this either before or after the installation procedure.

Note: During installation, the installation owner user ID is defined. This
account belongs to the Ingres administrator and is automatically
authorized with maximum Ingres privileges that allow this user to perform
all operations. Other user accounts can be set up after Ingres is installed.

2.	 After Ingres is running and the accounts are set up, the system
administrator or database administrator uses Visual DBA or the create
user statement to authorize the accounts that use this Ingres instance.
For more information about this procedure, see the Database
Administrator Guide.

Establishing Communications 49

How User Access Is Established

Requirements for Accessing Remote Instances

When the instance includes Ingres Net, users can connect to databases on
remote instances as well as those on their local instance. To connect to remote
instances, the following requirements must be met:

�	 A virtual node (vnode) name must be defined for each remote instance
that is accessed, unless you use the dynamic vnode format to connect.

A virtual node (vnode) is a name defined on the local instance that points
to the connection data and authorization data necessary to access a
particular remote instance. When a user on the local node wants to access
a database on a remote instance or run an application that accesses a
database on a remote instance, the user must specify the vnode name for
the instance in addition to the name of the database.

The vnode name can be the same as the node’s real address or node
name. However, because the real names or addresses are often difficult to
remember, and because there can be more than one instance on the node,
other names are typically chosen for vnode names.

�	 A connection data entry must be defined for each remote instance that is
accessed.

A connection data entry contains the information necessary for Ingres Net
to locate and connect to an instance on a remote node. A connection data
entry is typically associated with a particular, locally defined vnode, but
can also be specified dynamically with the dynamic vnode format. It
includes the name or address of the node on which the remote instance
resides, the listen address of the remote instance, and an Ingres keyword
for the network protocol used between the local and remote nodes.

�	 Remote user authorizations must be defined for each remote instance that
is accessed.

A remote user authorization contains the login and password information
necessary to gain access to a remote instance. It is typically associated
with a particular, locally defined vnode, but can also be specified
dynamically with the dynamic vnode format.

Note: It is not necessary for a particular user ID to be defined as an
operating system account on an instance’s host machine to be a valid
Ingres user on that instance. An account on a remote node can be
authorized in exactly the same way as an account on the local node.
Provided an Installation Password has been defined locally, the remote
account can then access the instance directly without having to go through
a local account.

Instructions for defining an Installation Password for the local instance are
provided later in this chapter. For the differences between these two types
of passwords, see Remote User Authorizations (see page 30).

50 	Connectivity Guide

Access Tools for Defining Vnodes

Requirements for Accessing Distributed Databases

Just as a local DBMS Server accesses a local database, a Star Server (part of
the Ingres Star product) accesses a distributed database. When one or more of
the databases that make up the distributed database reside on separate
instances, Ingres Star uses Ingres Net. To use Ingres Star across Ingres Net,
vnodes (with their corresponding connection data entries and remote user
authorizations) must be defined on the Star server instance for each of the
remote instances containing the databases that make up the distributed
database.

If the connection data entries and the remote user authorizations are defined
as private, connection data entries and remote user authorizations must also
be defined for the installation owner (or the system administrator). These
definitions are used if a distributed transaction fails. The Star Server attempts
to recover the transaction as the owner of the Ingres Star instance.

Access Tools for Defining Vnodes

You define vnode names and their corresponding connection data entries and
remote user authorizations using one of these tools:

� Net Management Utility (netutil)

� Network Utility (ingnet)

� Visual DBA

Not all tools are available on all platforms.

Note: The Network Utility (if supported on your platform) is the preferred
means of creating vnodes in Ingres.

To access the Network Utility

Windows and UNIX Environments that Support Ingres Visual Tools:

Use one of the following ways:

� Choose Start, Programs, Ingres, Network Utility.

� From Ingres Visual Manager, choose File, Run, Ingres Network Utility or

select the Network Utility toolbar button.

� Enter ingnet on the command line.

Establishing Communications 51

Access Tools for Defining Vnodes

To access Visual DBA

Use one of the following ways:

� Choose Start, Programs, Ingres, Visual DBA, or right-click the Ingres
installation icon in the Windows status bar and choose Visual DBA.

� From Ingres Visual Manager, choose File, Run, Ingres Visual DBA or select
the Visual DBA toolbar button.

� Enter vdba on the command line. For the required command syntax, see
the Command Reference Guide.

To access netutil

Enter netutil on the command line. For the required command syntax, see the
Command Reference Guide.

VMS and UNIX Environments that Do Not Support Ingres Visual Tools:
Enter netutil on the command line. For the required command syntax, see the
Command Reference Guide.

When Ingres and Ingres tools are installed as a cluster installation, it is
necessary to run netutil from only one node to set up connection data entries
and remote user authorizations for all of the nodes in the cluster.

52 Connectivity Guide

Netutil (Net Management Utility)

Netutil (Net Management Utility)

The forms-based Net Management Utility, netutil, is used to define the
connection and authorization data used by the Communications Server to
access remote instances.

System administrators (or any user with the appropriate Ingres privileges) can
use netutil to perform the following tasks:

�	 Add, change, or delete global remote user authorizations or connection
data entries.

These tasks require the GCA privilege NET_ADMIN.

�	 Add, change, or delete any user’s private remote user authorizations or
connection data entries using the -u command flag.

These tasks require the NET_ADMIN privilege. For more information about
the -u flag, which allows a user to perform operations on behalf of other
users, see Command Line Flags in Netutil Non-interactive Mode (see
page 76).

�	 Stop the Communications Server.

This task requires the GCA privilege SERVER_CONTROL. For instructions on
stopping the Communications Server using the forms-based netutil, see
the chapter "Maintenance Procedures."

End users can use netutil to:

� Add, change, or delete their private connection data entries.

� Add, change, or delete their private remote user authorizations.

Netutil Startup Screen

The netutil user interface consists of four tables and a menu of operations that
can be performed on entries in these tables.

The four tables on the netutil startup screen are:

� Virtual Node Name (vnode) table

� Login/password data table

� Connection data table

� Other attribute data table. On the Startup screen, choose Attributes.

Establishing Communications 53

Netutil (Net Management Utility)

Virtual Node Name Table in Netutil

The Virtual Node Name table on the netutil startup screen determines what
information is displayed in the Connection data and Login/password tables.
These tables display information about the vnode highlighted in the Virtual
Node Name table.

Naming Rules for Vnodes

Valid vnode names cannot include:

� Double colons (::)

� Slashes (/)

� Commas (,)

Vnode names are not case-sensitive, except on Star Server installations.

54 Connectivity Guide

Netutil (Net Management Utility)

Login and Password Data Table in Netutil

The Login and password data table on the netutil startup screen is used for the
following tasks:

� To record a remote user authorization using a login account and password
on the remote instance’s host machine

� To record a remote user authorization using the Installation Password
defined on the remote instance

� To define an Installation Password for the local instance

The information you enter into the fields in the Login/password data table
depends on which of the above tasks you are performing. For more
information, see Task-Specific Values for the Login/Password Data Fields (see
page 56).

The Login/password data columns are as follows:

Type

Is the type of definition, either Global or Private. For details, see Global
and Private Definitions (see page 31).

Scope

Is a read-only message, supplied automatically, that briefly describes the
scope of the connection. The message depends on the value that you enter
in the Type field.

If you enter Private, netutil displays the following message:

User user_id only

If you enter Global, netutil displays the following message:

Any user on node_name

Login

Specifies the name of the account to be used on the remote instance’s host
machine.

Note: If you are authorizing access to a remote instance using an
Installation Password or defining an Installation Password for the local
instance, enter an asterisk (*) into this field.

After you fill in this field, netutil prompts you for a password.

Establishing Communications 55

Netutil (Net Management Utility)

Task-Specific Values for the Login/Password Data Fields

The following table shows the required values for the Type, Login, and
Password fields according to the kind of record you are entering:

Type Login Password

Remote User
Authorization

Using login
account
password

Global or
Private

Name of
remote login
account

Password of
remote login
account

Using
Installation
Password

Global or
Private

* (asterisk) Installation
Password of
remote
instance

Local
Installation
Password

Global * (asterisk) Local
Installation
Password

Note: When creating a local installation password, the vnode name used
must be identical to the name that has been configured as LOCAL_VNODE on
the Configure Name Server screen of the Configuration-By-Forms (cbf) utility
and is generally the same as the local machine name.

56 Connectivity Guide

Netutil (Net Management Utility)

Connection Data Table in Netutil

The Connection data table on the netutil startup screen specifies the network
address of the remote node, the listen address of the remote instance’s
Communications Server, and the network protocol that is used to make the
connection.

The Connection data table has the following columns:

Type

Specifies type of connection, either global or private.

Net Address

Identifies the network address or name of the remote node.

Your network administrator specifies this address or name when the
network software is installed. Normally, the node name as defined at the
remote node is sufficient for the node address.

The format of the net address depends on the type of network software
used by the node. For protocol-specific information, see the appendixes in
this guide.

Protocol

Specifies the Ingres keyword for the protocol used by the local node to
connect to the remote node.

Protocol availability varies by platform. For a list of protocols and their
associated Ingres keywords, see Network Protocol Keywords (see
page 58).

Listen Address

Identifies the unique identifier used by the remote Communications Server
for interprocess communication.

Just as the vnode name identifies an instance on the network, the listen
address identifies a process (the Communications Server) in the remote
instance.

The format of a remote node listen address depends on the type of
network software that the node is using. For protocol-specific information,
see the appendixes in this guide.

Establishing Communications 57

Netutil (Net Management Utility)

Network Protocol Keywords

When entering connection data for a remote instance, you are prompted for
the name of the network protocol that is used to make the connection. You
must respond with one of the following keywords:

tcp_ip

TCP/IP Internet protocol for UNIX and Windows (using WinSock 2.2 API).
This is the default TCP/IP protocol and supersedes wintcp.

wintcp

(Deprecated) TCP/IP Internet protocol for Windows (using WinSock 1.1
API).

lanman

Microsoft NetBIOS protocol for Windows (using WinSock 1.1 API)

nvlspx

Novell Netware SPX/IPX protocol for Windows (using WinSock 1.1 API)

decnet

DECnet protocol for VMS

sna_lu0

SNA LU0 protocol for MVS and VMS

sna_lu62

SNA LU62 protocol for RS/6000, HP/UX, Solaris, and MVS

tcp_dec

TCP/IP Services for OpenVMS and Multinet TCP/IP when running in TCP/IP
Services emulation

tcp_ibm

IBM TCP/IP for MVS

tcp_knet

KNET TCP/IP for MVS

tcp_sns

TCP/IP protocol for SNS TCP/IP

tcp_wol

Wollongong TCI/IP Internet protocol for VMS and Multinet TCP/IP when
running in Wollongong emulation

spx

Novell Netware SPX/IPX for UNIX and VMS

58 Connectivity Guide

Netutil (Net Management Utility)

For additional information on the protocols supported for your environment,
see the Ingres Readme file for your operating system.

Other Attribute Data Table in Netutil

The Other attribute data table in netutil specifies additional connection,
encryption and authentication attributes for a vnode. For a description of each
attribute and its associated values, see Configure Vnode Attributes (see
page 64).

The Other attribute data columns are as follows:

Type

Is the type of connection, either Global or Private.

Attr_Name

Is the name of the attribute.

Attr_Value

Is the value of the attribute.

Establishing Communications 59

Netutil (Net Management Utility)

Netutil Operations

The following operations are available from the netutil startup screen:

Create

Creates a new record in the highlighted table.

In the vnode table, this operation allows you to create a new vnode name
and define its user authorization and connection data.

In the Connection data table or Login/password data table, this operation
allows you to create an additional entry for an existing vnode.

Destroy

Deletes the highlighted record.

Note: Deleting a record in the Virtual Node Name (vnode) table
automatically deletes the Login/password and Connection data table
records associated with that vnode.

Attributes/Login

Toggles the display to show attribute or login information for the
highlighted node. The initial display shows login information, and the
Attributes menu option appears on the menu. Choosing Attributes displays
attribute information, and the Attributes menu option is replaced by the
Login menu option. Choosing Login brings back the original display.

Edit

Modifies the highlighted record.

Control

Stops or quiesces the local Communications Server. This menu item takes
you to the Network Server Control screen.

Test

Tests a vnode after all of the user authorization and connection data has
been defined.

Netutil tests to see if a connection can be made to the remote instance
using any of the connection data entries and remote user authorizations
defined for the vnode. Note that individual connection data entries and
remote user authorizations cannot be tested.

Help

Displays help screens.

End

Exits netutil.

60 Connectivity Guide

Netutil (Net Management Utility)

Prerequisites to Establish and Test a Remote Connection

To establish and test a remote connection, the following information is
required:

� The network address or name of the node on which the remote instance
resides.

� The listen address of the remote instance’s Communications Server.

� The keyword for the network protocol that is used to make the connection.
For more information, see Network Protocol Keywords (see page 58).

� The name of the login account that is used to access the remote instance.

(This information is not applicable when using an Installation Password to
authorize access.)

� The password of the remote login account or the remote instance’s
Installation Password.

Establishing Communications 61

Netutil (Net Management Utility)

Establish and Test a Remote Connection Using Netutil

You use netutil to establish and maintain access to remote instances. Defining
a virtual node name is the first step in the process of establishing a
connection.

To define a virtual node (vnode) and use it to test a connection to a
remote instance

1.	 Enter the following command at the operating system prompt:

netutil

The netutil startup screen appears.

2.	 Make sure that the cursor is in the Virtual Node Name table; then choose
Create from the menu.

A pop-up window appears, displaying the following prompt:

Enter new virtual node name.

3.	 Enter a virtual node name of your choosing and select OK from the menu.

A pop-up window appears, displaying the following prompt:

Choose type of login to be created

Global—Any user on [local node]

Private—User [user name] only

4.	 Use the arrow keys to highlight Global or Private; then choose Select from
the menu.

The Enter new login/password pop-up window appears. It displays prompts
for the login of the account that is used on the remote node, the password
of that account, and verification of the password.

62 	Connectivity Guide

Netutil (Net Management Utility)

5.	 Enter the login and the password, then re-enter the password as
prompted. (Notice that for security purposes neither the password nor the
verification appears on screen.) When you have entered the login and
password information, choose Save from the menu.

Note: If you are using an Installation Password to authorize access, enter
an asterisk (*) in the Login field, and then enter the remote instance’s
Installation Password in the Password field.

The Enter new connection pop-up window appears. It displays prompts for
the connection type (private or global), the network address, the network
protocol to be used, and the Listen address of the remote instance. For
your convenience, netutil supplies default values for the first three fields.
To enter a new value, simply type over the default value.

6.	 Enter the connection data, and then choose Save from the menu.

Netutil returns to the startup screen. The data you entered in this and the
previous steps is displayed in the Vnode, Login/password data, and
Connection data tables.

7.	 Choose Test from the menu.

Netutil attempts to establish a connection to the remote instance using
authorization and connection data you have entered.

A message is displayed in a pop-up window indicating whether the test is
successful.

If the connection is not successful, the error message indicates the nature
of the error or where to look for further information.

8.	 Press Return.

You are returned to the startup screen.

Establishing Communications 63

Netutil (Net Management Utility)

Configure Vnode Attributes

In addition to defining login and connection data, you can use netutil to
configure vnode attributes. Attributes define additional connection, encryption,
and authentication information for the vnode.

To configure one or more attributes for a vnode

1.	 From the netutil startup screen, select the Attributes menu option.

Attribute information for the first vnode in the Virtual Node Name table is
displayed.

2.	 Use the arrow keys to select the vnode for which you want to configure an
attribute. Tab to the Other attribute data for vnode table and select the
Create menu option.

The Enter new attribute pop-up window appears.

64 	Connectivity Guide

Netutil (Net Management Utility)

3.	 Enter an attribute name and value, as follows:

connection_type

Indicates the connection type. The only valid value is direct, which
indicates that a direct connection with the remote instance must be
established without using Net. This attribute improves performance
because data goes directly from the application process on the client
machine to the Ingres DBMS process on the server machine, thus
bypassing Communications Server processing, except for initial
connection setup.

For direct access to occur, the following conditions must be met:

�	 The client and server machines must be the same platform type
(for example, both Windows, or both Solaris) and the environment
variable II_CHARSET must be identical on both the client and
server machines.

�	 On Windows, the client and server machines must be logged into
the same Windows network domain.

�	 Ingres II 2.5 or higher must be installed on both the client and
server machines.

�	 On any platform which uses the IPC protocol for local and network
connections, the environment variable, II_GC_REMOTE must be
set (for the DBMS Server instance) to ON or ENABLE to allow direct
connections. For important information on network security and
II_GC_REMOTE, see the System Administrator Guide.

encryption_mode

Determines the encryption mode for the connection. If set, this value
overrides the Communications Server’s ob_encrypt_mode parameter
value configured using Configuration Manager or the Configuration-By-
Forms utility. The local and remote Communications Servers must be
able to negotiate a common mechanism to perform the encryption.
Valid values are:

�	 off – No encryption. The connection fails if the remote
Communications Server has an encryption mode of required.

�	 optional – Encryption occurs if the remote Communications Server
has an encryption mode of on or required.

�	 on – Encryption occurs if the remote Communications Server has
an encryption mode other than off.

�	 required – Encryption occurs if the remote Communications Server
has an encryption mode other than off. If off, the connection fails.

Establishing Communications 65

Netutil (Net Management Utility)

encryption_mechanism

Determines the mechanism to be used to encrypt the remote
connection. If set, this value overrides the Communications Server’s
ob_encrypt_mech parameter value configured using Configuration
Manager or the Configuration-By-Forms utility. Valid values are:

�	 none – Disables encryption

�	 * – Allows all encryption mechanisms to be considered during
Communications Server negotiations

�	 mechanism_name – Indicates a specific mechanism to be
considered during Communications Server negotiations

authentication_mechanism

Specifies the mechanism to be used for remote authentication in a
distributed security environment. This setting replaces the need for a
user ID and password. If set, this value overrides the Communications
Server’s remote_mechanism parameter value configured using
Configuration Manager or the Configuration-By-Forms utility. The only
valid value is kerberos.

4.	 Select the Save menu option.

Netutil returns to the startup screen. The attribute you configured is now
displayed in the Other attribute data for vnode table.

66 	Connectivity Guide

Netutil (Net Management Utility)

Multiple Connection Data Entries

If a remote instance has more than one Communications Server or can be
accessed by more than one network protocol, that information can be included
in the vnode definition by adding another connection data entry. This allows
you to distribute the load of communications processing and increase fault
tolerance.

Note: When more than one Communications Server listen address is defined
for a given vnode, Ingres Net automatically tries each server in random order
until it finds one that is available. Similarly, when a connection fails over one
network protocol, Ingres Net automatically attempts the connection over any
other protocol that has been defined.

End users can create private connection data for an existing vnode by adding
an entry to the Connection Data table. For the user who creates it, a private
connection data entry overrides a global connection data entry defined to the
same vnode. In other words, Ingres Net uses the private connection data entry
whenever the user who created the entry uses the vnode.

You need the following information before adding a connection data entry:

�	 The network address of the node on which the remote instance resides

�	 The listen address of the remote instance’s Communications Server. (For
the correct listen address format for your network protocol, see the
appropriate appendix or check the Configure Net Server Protocols screen in
the Configuration-By-Forms utility on the remote instance.)

�	 The keyword for the network protocol (see page 58) that is used to make
the connection.

To define an additional connection data entry in netutil

1.	 Select the desired vnode in the Virtual Node Name table.

The connection data for the highlighted vnode appears in the Connection
Data table.

2.	 Move the cursor to the Connection Data table, and then choose Create
from the menu.

The Enter new connection pop-up window appears displaying prompts for
the connection type (private or global), the network address, the network
protocol to be used, and the Listen address of the remote instance. For
your convenience, netutil supplies default values for the first three fields;
to enter a new value, simply type over the default value.

3. Enter the connection data; then choose Save from the menu.

Netutil returns to the startup screen. The data you entered is now
displayed in the Connection Data table.

Establishing Communications 67

Netutil (Net Management Utility)

Additional Remote User Authorization

End users can create a private remote user authorization for an existing vnode.

For the user who creates it, a private authorization overrides a global
authorization defined to the same vnode. Ingres Net uses the private
authorization whenever that user uses the vnode.

You need the following information before adding a private remote user
authorization:

�	 The name of the remote account that is used to access the remote
instance

(This information is not applicable when using an Installation Password to
authorize access.)

�	 The password of the remote login account or the remote instance’s
Installation Password.

To define and test a new remote user authorization in netutil

1.	 Select the desired vnode in the Virtual Node Name table.

The remote user authorization for the highlighted vnode appears in the
“Login/password data” table.

2.	 Move the cursor to the “Login/password data” table, and then choose
Create from the menu.

The Enter New Login/Password pop-up window appears. It displays
prompts for the login of the account that is used on the remote node, the
password of that account, and verification of the password.

3.	 Enter the login and the password, and then re-enter the password as
prompted. (For security purposes neither the password nor the verification
appears on screen.)

Note: If you are using an Installation Password to authorize access, enter
an asterisk (*) in the Login field, and then enter the remote instance’s
Installation Password in the Password field.

Choose Save from the menu.

Netutil returns to the startup screen. The data you entered is now
displayed in the Login/password data table.

Delete an Entry

To delete a virtual node entry or one of its connection data entries, remote
user authorizations or attributes, place the cursor on the desired record and
choose Destroy from the menu.

68 	Connectivity Guide

Netutil (Net Management Utility)

Delete All Vnode Information

To delete all information for a specific vnode

1.	 Highlight the desired entry in the Virtual Node Name table and choose
Destroy from the menu.

A pop-up window appears with the following prompt:

Really destroy all data for vnode [vnode name]?
No—Do not destroy all data for vnode
Yes—Destroy all data for vnode

2.	 Use the arrow keys to highlight No or Yes (No is the default); then choose
Select from the menu.

Netutil removes the vnode from the Virtual Node Name table and all
associated information from the Login/password data and Connection data
tables.

Delete a Connection Entry for a Vnode

To delete one of the connection data entries associated with a
particular vnode

1.	 Highlight the desired entry in the Connection Data table and choose
Destroy from the menu.

A pop-up window appears with the following prompt:

Really destroy connection entry?
No—Do not destroy connection entry
Yes—Destroy connection entry

2.	 Use the arrow keys to highlight No or Yes (No is the default), and then
choose Select from the menu.

Netutil removes the entry from the Connection Data table.

Delete a Remote User Authorization for a Vnode

To delete one of the remote user authorizations associated with a
particular vnode

1.	 Highlight the desired entry in the Login/password data table and choose
Destroy from the menu.

A pop-up window appears with the following prompt:

Really destroy [private/global] login/password entry ‘[Login name]’?
No—Do not destroy [private/global] login/password entry
Yes—Destroy [private/global] login/password entry

2.	 Use the arrow keys to highlight No or Yes (No is the default); then choose
Select from the menu.

Netutil removes the entry from the Login/password data table.

Establishing Communications 69

Netutil (Net Management Utility)

Delete an Attribute Associated with a Vnode

To delete an attribute associated with a particular vnode

1.	 From the netutil startup screen, select the Attributes menu option.

The "Other attribute data" table is displayed.

2.	 Select the desired vnode from the Virtual Node Name table. Tab to the
Other attribute data for vnode table, highlight the attribute that you want
to delete, and choose Destroy from the menu.

A pop-up window appears with the following prompt:

Really destroy attribute entry?
No—Do not destroy attribute entry
Yes—Destroy attribute entry

3.	 Use the arrow keys to highlight No or Yes (No is the default); then choose
Select from the menu.

Netutil removes the attribute from the Other attribute data for vnode table.

Change an Entry

To modify a virtual node entry or one of its Connection data entries, remote
user authorizations, or attributes, place the cursor on the desired record and
select Edit from the menu.

70 	Connectivity Guide

Netutil (Net Management Utility)

Modify a Vnode Name

To modify a vnode name

1.	 Select the desired entry in the Virtual Node Name (vnode) table ,and then
choose Edit from the menu.

A pop-up window appears, displaying the following prompt:

Enter the new name for [‘vnode name’]
New name:

2.	 Enter the new virtual node name and choose OK from the menu.

The Enter Global/Private Password pop-up window appears and prompts
you to re-enter the remote account password or Installation Password
associated with this vnode. For security reasons, any time a vnode name is
modified, you must re-enter the associated passwords.

3.	 Enter the password, re-enter the password as prompted, and then choose
Save from the menu.

If there is a second remote user authorization associated with this vnode,
a second pop-up window appears. Repeat this step with the password of
the second authorization.

After you have saved all password information, netutil returns to the
startup screen. The edited vnode name is displayed in the Virtual Node
Name (vnode) table.

Edit a Remote User Authorization

To edit a remote user authorization

1.	 Select the desired entry in the Login/password data table, and choose Edit
from the menu.

The Edit login and password pop-up window appears and prompts you to
enter new login and password data.

Establishing Communications 71

Netutil (Net Management Utility)

2.	 Enter the login and password for the remote account; then re-enter the
password as prompted.

Note: If you are using an Installation Password to authorize access, enter
an asterisk (*) in the Login field, and then enter the remote instance’s
Installation Password in the Password field.

3.	 Choose Save from the menu.

Netutil returns to the startup screen. The edited remote user authorization
is displayed in the Login/password data table.

Edit a Connection Data Entry

To edit a connection data entry

1.	 Select the desired entry in the Connection Data table, and choose Edit
from the menu.

The Edit connection entry pop-up window appears, which displays the
connection type, network address, protocol, and listen address for the
selected entry.

2.	 Tab to the fields to be changed and enter the new values. Choose Save
from the menu.

Netutil returns to the startup screen. The edited connection data entry is
displayed in the Connection Data table.

72 	Connectivity Guide

Netutil (Net Management Utility)

Edit Vnode Attribute

To edit attribute data for a particular vnode

1.	 From the netutil startup screen, select the Attribute menu option from the
netutil startup screen.

The "Network connection and other attribute information screen" appears.

2.	 Select the desired vnode from the vnode list. Tab to the Other attribute
data for vnode table and select the attribute that you want to edit. Choose
Edit from the menu.

The Edit attribute entry pop-up window appears.

3.	 Edit the attribute by typing over the displayed data with the desired
changes. For a list of valid attribute names and values, see Configure
Vnode Attributes (see page 64). Choose Save from the menu.

Netutil returns to the startup screen. The attribute you edited is now
displayed in the Other attribute data for vnode table.

Establishing Communications 73

Netutil (Net Management Utility)

Define an Installation Password for the Local Instance

To define an Installation Password for the local instance

1.	 Enter the following command at the operating system prompt:
netutil

The netutil startup screen appears.

2.	 Make sure that the cursor is in the Virtual Node Name table, and then
choose Create from the menu.

A pop-up window appears, displaying the following prompt:

Enter new virtual node name:

3.	 Enter the virtual node name for the local instance and choose OK from the
menu.

Note: The virtual node name must be identical to the name that has been
configured as LOCAL_VNODE on the Configure Name Server screen of the
Configuration-By-Forms (cbf) utility and is typically the same as the local
machine name.

A pop-up window appears, displaying the following prompt:

Choose type of login to be created
Global—Any user on [local node]
Private—User [user name] only

4.	 Highlight Global by using the arrow keys, and then choose Select from the
menu.

The Enter new login/password pop-up window appears. It displays prompts
for the global login, the password, and verification of the password.

5.	 Enter an asterisk in the Global Login field, enter an Installation Password in
the Password field, and finally re-enter the password as prompted. (Notice
that for security purposes neither the password nor the verification
appears on screen.) When you have entered this information, choose Save
from the menu.

The Enter new connection pop-up window appears. It displays prompts for
the connection type (private or global), the network address, the network
protocol to be used, and the Listen address of the instance.

6.	 Choose Cancel from the menu. (It is not necessary to enter connection
data for the local instance.)

Netutil returns to the startup screen. The data you entered in the previous
steps is displayed in the vnode and Login/password data tables.

74 	Connectivity Guide

Netutil Non-Interactive Mode

Netutil Non-Interactive Mode

Netutil supports a non-interactive mode of operation controlled by command
line flags and an input control file. You can use this mode if you want to write
your own system administration utility programs or authorize large numbers of
users using a batch file.

The following functions are available through this interface:

Create

Creates a new connection data entry or remote user authorization.

Destroy

Destroys a connection data entry or remote user authorization.

Show

Displays information to the terminal. This function does not correspond to
a menu item in the forms-based interface.

Stop

Stops all Communications Servers.

For example, this command stops a specific Communications Server:

stop 2937

Quiesce

Stops all Communications Servers after the sessions currently in progress
on those servers have terminated.

For example, this command quiesces a specific Communications Server:

quiesce 2116

Note: The Edit and Test functions found in the forms-based netutil interface
are not supported in non-interactive mode.

Establishing Communications 75

Netutil Non-Interactive Mode

Command Line Flags in Netutil Non-interactive Mode

The following command line flags are supported in netutil’s non-interactive
mode:

-u user

Impersonate the specified user for the purpose of managing private
authorization and connection entries. Only a user with the NET_ADMIN
privilege (generally a system administrator) can impersonate another user.

-file filename

When this flag is used, netutil processes commands specified in the
indicated input control file.

The format of the input control file is described in the following section.

-file-

If the input file is specified as "-" (a single dash character), input is taken
from the standard input channel. This allows the user to enter commands
directly from the keyboard or to run netutil as part of a UNIX pipeline. To
exit, press Ctrl+Z.

-vnode vnode

Connect to the Name server on the remote instance specified by the vnode
name.

The vnode name must be defined on the local host's Name server; that is,
connection and authorization information must exist locally for that vnode
name. This information can be defined by invoking netutil on the local
Name server.

Input Control File

The input control file is an ASCII file that stores instructions about operations
to be performed on the Name Server database. Each line of the file represents
either a create, destroy, or show operation. These lines are called “input lines”
in the remainder of this section.

The following conventions are observed:

� Blank lines are ignored in the control file.

� Case is insignificant except where significance is imposed by the usage of
the data. For example, the login name on a UNIX system has significant
case.

� The character “#” indicates a comment; all text following a “#” character
on any line is ignored.

� Input lines are divided into fields, which are separated by a blank space.
For example, the following input line contains four fields:

show private login paulj

76 Connectivity Guide

Netutil Non-Interactive Mode

Invariant Fields

The first four fields of an input line describe the action to be performed and the
vnode with which the action is associated. These four fields appear in the order
given below in every input line (except stop and quiesce server commands).

The following table defines these fields and their potential values:

Field Parameter Value Description

1 Function Create,
Destroy, or
Show

The task that is performed.

2 Type Global or
Private

The registration type of the object.

A global object is available to all users
on the local node. A private object is
available to a single user.

3 Object Login or
Connection

The object to be created, destroyed,
or shown.

“Connection” refers to a connection

Attribute
data entry.

“Login” refers to a remote user
authorization.

“Attribute” refers to a vnode attribute
entry.

4 Virtual Nod
Name

e Vnode
name

The virtual node name.

Each line in the input control file must
contain a vnode identifier.

Note: Values in any of the first three fields (Function, Type, and Object) can
be abbreviated to a unique left substring. In practice, this means that a single-
letter abbreviation is sufficient for any of these fields.

Values in the Virtual Node Name field cannot be abbreviated.

In addition to the four fields discussed above, other fields are required
depending on the task to be accomplished by the input line. For example, an
input line creating a remote user authorization requires an additional two
fields: a login field and a password field. An input line creating or destroying a
connection data entry requires an additional three fields: a network address
field, a protocol field, and a listen address field.

For detailed information about additional fields, see the examples that follow.

Establishing Communications 77

Netutil Non-Interactive Mode

Wildcards

On input lines that specify either the Destroy or Show function, the asterisk
character (*) can be entered as a wildcard in any field other than the Function,
Type, and Object fields.

The asterisk character (*) indicates that the field is not to be used in selecting
the data records to which the function is applied. Therefore, it is possible to
destroy or display a number of records with a single input line.

Note: Wildcards cannot be used with the Create function.

Create Function—Create a Remote User Authorization

In netutil non-interactive mode, you can use the create function to create a
remote user authorization.

This function has the following format when used to create a remote user
authorization:

create type login vnode login password

type

Specifies the type of entry. Valid values are:

global

Indicates that the object is available to all users on the local node.

private

Indicates that the object is available to a single user.

vnode

Identifies the virtual node name associated with this authorization.

login

Identifies the name of the account to be used on the remote instance's
host machine.

If you are authorizing access to the remote instance using an Installation
Password, an asterisk (*) must be entered into this field.

password

Identifies the password of the remote account or the remote instance's
Installation Password, depending on which method of authorization you are
using.

78 Connectivity Guide

Netutil Non-Interactive Mode

Examples: Create a Remote User Authorization

This command creates a private authorization for vnode “payroll” for user
Jane:

C P L Payroll jane jpassword

This command creates a global authorization for vnode “accounting” using an
Installation Password:

cr gl login accounting * acctpassword

Note: Any previously existing authorization of the specified type is replaced by
the execution of this line.

Note: Private authorizations are created for the currently logged-in user or for
the user identified by the -u flag. Only a user with the GCA privilege
NET_ADMIN can create a global authorization.

Establishing Communications 79

Netutil Non-Interactive Mode

Destroy Function—Destroy a Remote User Authorization

In netutil non-interactive mode, you can use the destroy function to destroy a
remote user authorization.

This function has the following syntax when destroying a remote user
authorization:

destroy type login vnode

type

Specifies the type of entry. Valid values are:

global

Indicates that the object is available to all users on the local node.

private

Indicates that the object is available to a single user.

vnode

Identifies the virtual node name associated with this authorization.

Examples: Destroy a Remote User Authorization

This command destroys a private login on vnode “payroll.” The entry to be
destroyed is uniquely identified by its type and the vnode name. No additional
fields are necessary.

DE PR L payroll # Current user now uses global login

This command destroys a private login on all vnodes where it occurs. Using a
wildcard in the vnode field lets you destroy all instances of a particular login
with a single input line:

DE PR L *

Note: Private authorizations are destroyed for the currently logged-in user or
for the user identified by the -u flag. Only a user with the GCA privilege
NET_ADMIN can destroy a global authorization.

80 Connectivity Guide

Netutil Non-Interactive Mode

Show Function—Display Remote User Authorizations

In netutil non-interactive mode, you can use the show function to display
remote user authorizations. The login information for the specified vnodes is
displayed on the terminal, or written to standard output (Windows and UNIX)
or SYS$OUTPUT (VMS). The password is not displayed.

The information is displayed in a format similar to that of control file input lines
for ease of use in programs that edit and re-use the information.

The show function has following format for displaying remote user
authorizations:

show type login vnode

type

Specifies the type of entry. Valid values are:

global

Indicates that the object is available to all users on the local node.

private

Indicates that the object is available to a single user.

vnode

Identifies the virtual node name associated with this authorization. An
asterisk (*) can be used as a wildcard in the vnode, field.

Example: Display Remote User Authorizations

The following command displays the global login of vnode “accounting:”

S GL login accounting

The following line is displayed:

global login accounting ingres

Establishing Communications 81

Netutil Non-Interactive Mode

Create Function—Define an Installation Password for the Local Instance

In netutil non-interactive mode, you can use the create function to create an
Installation Password for the local instance.

This function has the following format:

create global login local_vnode * password

local_vnode

Identifies the name that has been configured as LOCAL_VNODE on this
instance. This name can be found on the Configure Name Server screen of
the CBF utility.

password

Defines the Installation Password you have chosen for this instance.

Example: Define an Installation Password

This command defines an Installation Password for the local instance, which
has a local_vnode name of “payroll:”

create gl login payroll * payroll_password

82 Connectivity Guide

Netutil Non-Interactive Mode

Create Function—Create a Connection Data Entry

In netutil non-interactive mode, you can use the create function to create a
connection data entry.

This function has the following format:

create type connection vnode network_address protocol listen_address

type

Specifies the type of entry. Valid values are:

global

Indicates that the object is available to all users on the local node.

private

Indicates that the object is available to a single user.

vnode

Identifies the virtual node name associated with this connection entry.

network_address

Identifies the address or name of the remote node. Your network
administrator specifies this address or name when the network software is
installed. Normally, the node name as defined at the remote node is
sufficient for this field.

The format of a net address depends on the type of network software that
the node is using.

protocol

Specifies the keyword for the protocol used to connect to the remote
instance. For a list of protocols and their associated keywords, see Network
Protocol Keywords (see page 58).

listen_address

Is the unique identifier used by the remote Communications Server for
interprocess communication. The format of a listen address depends on the
network protocol.

Example: Create a Connection Data Entry

The following command creates a global connection data entry on vnode
“payroll,” where:

Network address = payroll

Protocol = TCP/IP

Listen address = fe0

C G C payroll payroll tcp_ip fe0 # payroll comsvr 1

Establishing Communications 83

Netutil Non-Interactive Mode

Note: The virtual node name and the network address are different objects,
although it is common for them to have the same value.

If a connection entry already exists that matches the specified one in all
respects, the operation has no effect and no error is reported.

Note: Private connection data entries are created for the currently logged-in
user or for the user identified by the -u flag. Only a user with the GCA privilege
NET_ADMIN can create a global connection data entry.

Destroy Function—Destroy a Connection Data Entry

In netutil non-interactive mode, you can use the destroy function to destroy a
connection data entry. To obtain the network address, protocol, and listen
address of the connection data entry you want to destroy, use the show
command.

This function has the following format:

destroy type connection vnode network_address protocol listen_address

type

Specifies the type of entry. Valid values are:

global

Indicates that the object is available to all users on the local node.

private

Indicates that the object is available to a single user.

vnode

Identifies the virtual node name associated with this input line. An asterisk
(*) can be used as a wildcard to select a range of records.

network_address

Identifies the address or name of the remote node. An asterisk (*) can be
used as a wildcard to select a range of records.

protocol

Specifies the keyword for the protocol used to connect to the remote
instance. For a list of protocols and their associated keywords, see Network
Protocol Keywords (see page 58). An asterisk (*) can be used as a
wildcard to select a range of records.

listen_address

Is the unique identifier used by the remote Communications Server for
interprocess communication. An asterisk (*) can be used as a wildcard to
select a range of records.

84 Connectivity Guide

Netutil Non-Interactive Mode

Examples: Destroy a Connection Data Entry

The following command destroys a private connection data entry on vnode
“payroll”, where:

Network address = payroll
Protocol = TCP/IP
Listen address = fe2

D p c payroll payroll tcp_ip fe2 # No comm server on fe2

The following command destroys all global connection data entries for vnode
“accounting” that include the TCP/IP protocol:

d gl c accounting * tcp_ip *

Note: Private connection data entries are destroyed for the currently logged-in
user or for the user identified by the -u flag. Only a user with the GCA privilege
NET_ADMIN can destroy a global connection data entry.

Establishing Communications 85

Netutil Non-Interactive Mode

Show Function—Display Connection Data Entries

In netutil non-interactive mode, you can use the show function to display
connection data entries. The connection information for the specified vnode is
displayed on the terminal, or written to standard output (Windows and UNIX)
or SYS$OUTPUT (VMS). The information is displayed in a format similar to the
format of control file input lines, for ease of use in programs that edit and re­
use the information. The password is not displayed.

This function has the following format:

show type connection vnode network_address protocol listen_address

type

Specifies the type of entry. Valid values are:

global

Indicates that the object is available to all users on the local node.

private

Indicates that the object is available to a single user.

vnode

Identifies the virtual node name associated with this input line. An asterisk
(*) can be used as a wildcard to select a range of records.

network_address

Identifies the address or name of the remote node. An asterisk (*) can be
used as a wildcard to select a range of records.

protocol

Specifies the keyword for the protocol used to connect to the remote
instance. For a list of protocols and their associated keywords, see Network
Protocol Keywords (see page 58). An asterisk (*) can be used as a
wildcard to select a range of records.

listen_address

Is the unique identifier used by the remote Communications Server for
interprocess communication. An asterisk (*) can be used as a wildcard to
select a range of records.

86 Connectivity Guide

Netutil Non-Interactive Mode

Example: Display Connection Data Entries

The following displays global connection data entries on vnode “payroll,”

where:

Network address = payroll

Protocol = * (This field is not to be used in selecting records.)

Listen address = * (This field is not to be used in selecting records.)

S GL conn payroll payroll * *

The following line is displayed:

global connection payroll payroll tcp_ip fe2

Establishing Communications 87

Netutil Non-Interactive Mode

Stop and Quiesce Commands—Stop or Quiesce One or More Communications
Servers

In netutil non-interactive mode, to stop all Communications Servers on the
instance, enter the following commands at the system prompt:

netutil -file-

stop

To stop a single Communications Server, enter the following commands at the
system prompt:

netutil -file-

stop server_id

server_id

Is a unique string that identifies a particular Communications Server on
the instance. To find the server_id, use the iinamu utility.

Examples: Quiesce One or More Communications Servers

The following commands entered at the system prompt quiesce all
Communications Servers on the instance (that is, stops the Communications
Servers after all current sessions have terminated):

netutil -file-

quiesce

The following commands entered at the system prompt quiesce
Communications Server 2937 (that is, stop the server after all current sessions
have terminated):

netutil -file-

quiesce 2937

Note: Only a user with the GCA privilege SERVER_CONTROL can stop a
Communications Server.

88 Connectivity Guide

Network Utility and Visual DBA

Network Utility and Visual DBA

The GUI-based tools Network Utility (ingnet) and Visual DBA can both be used
to define vnodes containing the connection and authorization data used by the
Communications Server to access remote instances.

Because Network Utility is a tool dedicated to defining and managing vnodes, it
is preferred over netutil or Visual DBA for performing these tasks in Ingres.

System administrators (or any user with the appropriate Ingres privileges) can
use these visual tools to perform the following tasks:

�	 Add, change, or delete global remote user authorizations or connection
data entries.

�	 Add, change, or delete any user’s private remote user authorizations or
connection data entries.

�	 Define an Installation Password for the local instance

End users can use these visual tools to:

�	 Add, change, or delete their private connection data entries.

�	 Add, change, or delete their private remote user authorizations.

In Network Utility and Visual DBA, vnodes are defined using vnode objects. A
vnode object specifies a virtual node name, and login and connection
information.

Using the Nodes branch in the Virtual Nodes toolbar/window, you can create
and alter vnodes, view vnode objects, and drop vnode objects.

Detailed steps for these procedures can be found in the Procedures section of
online help for Network Utility and Visual DBA.

Virtual Nodes Toolbar

The Virtual Nodes toolbar in both Network Utility and Visual DBA provides the
same functionality. Use the toolbar to create, alter, drop, and disconnect
vnodes. The toolbar also provides features that allow you to connect to
database servers and open various types of database administration utility
windows.

For example, connect to the Database Object Manager and open a DOM
Scratchpad. The toolbar also allows you to use an SQL Scratchpad, monitor
your system performance, and display a list of Dbevents.

Establishing Communications 89

Network Utility and Visual DBA

Simple and Advanced Vnodes

Virtual nodes are classified as simple or advanced. A simple vnode is one in
which there is only one set of login and connection parameters associated with
it. An advanced vnode is one in which there is more than one connection data
definition and/or up to two login data definitions.

Advanced Vnode Parameters

You can maintain up to two login data definitions for each vnode. If the first
definition has been defined as private, the other login must be global (and vice
versa). A global entry is available to all users on the local instance. A private
entry is available only to the user who creates it.

If one of the login data definitions is private and the other is global, the vnode
is considered to be an advanced vnode. A vnode is also considered to be an
advanced vnode if it has more than one connection data definition and/or has
one or more vnode attribute definitions.

Use the Advanced Node Parameters branch in Network Utility and Visual DBA
to:

� Add, alter, or drop connection data

� Add private and global logins

� Add, alter, or drop vnode attributes

For additional information on performing these tasks, see the following
sections.

90 Connectivity Guide

Network Utility and Visual DBA

Multiple Connection Data Entries

If a remote instance has more than one Communications Server or can be
accessed by more than one network protocol, that information can be included
in the vnode definition by adding another connection data entry. This allows
you to distribute the load of communications processing and increase fault
tolerance.

Note: When more than one Communications Server listen address is defined
for a given vnode, Ingres Net automatically tries each server in random order
until it finds one that is available. Similarly, when a connection fails over one
network protocol, Ingres Net automatically attempts the connection over any
other protocol that has been defined.

End users can create private connection data for an existing vnode by adding
an entry to the Connection Data table. For the user who creates it, a private
connection data entry overrides a global connection data entry defined to the
same vnode. In other words, Ingres Net uses the private connection data entry
whenever the user who created the entry uses the vnode.

You need the following information before adding a connection data entry:

� The network address of the node on which the remote instance resides

� The listen address of the remote instance’s Communications Server. (For
the correct listen address format for your network protocol, see the
appropriate appendix or check the Configure Net Server Protocols screen in
the Configuration-By-Forms utility on the remote instance.)

� The keyword for the network protocol (see page 58) that is used to make
the connection.

To define an additional connection data entry using Network Utility

See the topics under Defining Connection Data in the Procedures section of the
Network Utility online help.

Establishing Communications 91

Network Utility and Visual DBA

Additional Remote User Authorization

End users can create a private remote user authorization for an existing vnode.

For the user who creates it, a private authorization overrides a global
authorization defined to the same vnode. Ingres Net uses the private
authorization whenever that user uses the vnode.

You need the following information before adding a private remote user
authorization:

� The name of the remote account that is used to access the remote
instance

(This information is not applicable when using an Installation Password to
authorize access.)

� The password of the remote login account or the remote instance’s
Installation Password.

To define and test a new remote user authorization using Network
Utility

See the following topics in the Procedures section of the Network Utility online
help:

� Adding a Login Database Definition

� Altering a Login Database Definition

� Dropping a Login Database Definition

Vnode Attributes Configuration

In addition to login and connection data, you can use Network Utility or Visual
DBA to configure the following vnode attributes:

� connection_type

� encryption_mode

� encryption_mechanism

� authentication_mechanism

For a description of each attribute and its associated values, and for detailed
steps for adding, altering and dropping these attributes, see the following
topics in the Procedures section of online help for Network Utility and Visual
DBA:

� Adding a Vnode Attribute

� Altering a Vnode Attribute

� Dropping a Vnode Attribute

92 Connectivity Guide

Network Utility and Visual DBA

Installation Password Definitions for the Local Instance

As previously explained, users can access a remote Ingres instance using a
login account set up on the remote instance’s host machine, or through an
Installation Password, which allows users direct access to the instance. The
Installation Password is configured for the local instance containing the
databases that remote users want to access.

Detailed steps for this procedure can be found in the Procedures section of
online help for Network Utility and Visual DBA. See the following online topic:

� Adding an Installation Password

Changing Installation Passwords

Changing installation passwords requires special care. Because of caching of
information on the client and server, installation passwords must be changed
at least 30 minutes after the last use of Ingres Net. Failure to do this can
cause connections to fail with “E_GC0141_GCN_INPW_INVALID.”

Additional Vnode-Related Tasks

In addition to connection data entries and user authorization tasks, you can
use Network Utility and Visual DBA to perform vnode-related tasks, such as
refreshing a vnode, testing a vnode, disconnecting from a vnode, and opening
utility windows.

Refresh Vnodes

Refreshing a vnode updates loaded vnode data.

To refresh particular vnodes

Click the Force Refresh button on the toolbar.

or

Choose a node, Force Refresh.

You can configure your background refresh settings by choosing File,
Preferences.

Establishing Communications 93

Network Utility and Visual DBA

Test Vnodes

In Network Utility and Visual DBA, you can test if a connection to a specific
node can be established.

To test a connection

From the Virtual Nodes toolbar, choose Node, Test Node.

If the connection fails, an error message is returned.

Disconnect from a Vnode

Closing a window does not end communications with the servers on that
window. Network Utility and Visual DBA continue to request data refreshes
from the vnode until you disconnect from it.

Detailed steps for this procedure can be found in the Procedures section of
Network Utility and Visual DBA online help. See the topic Disconnecting From a
Vnode.

Opening Utility Windows

By choosing a virtual node, you can both establish a physical connection
between the database server and your client workstation, and also open one of
the four types of Visual DBA database administration windows.

The detailed steps for these procedures can be found in the Procedures section
of online help for Network Utility and Visual DBA. See the following topics:

� Opening a Utility Window

� Close Window

� Activate Window

94 Connectivity Guide

Network Utility and Visual DBA

Server-related Tasks

In Network Utility and Visual DBA, Servers represent server classes associated
with a particular vnode. You can view a list of the servers that exist for a given
vnode using the Servers branch in the Virtual Nodes toolbar/window.

From this branch, you can:

� Access a list of users on a particular server

� Connect to a local server

� Establish a connection at the user level (under a different user name)

� Disconnect at the vnode level

� Disconnect at the user level

The detailed steps for these procedures can be found in the Procedures section
of online help for Network Utility and Visual DBA. See the following topics:

� Connecting to a Server

� Impersonating Another User

� Disconnecting from a Server

� Disconnecting a User from a Server

Establishing Communications 95

Chapter 5: Using Net

This section contains the following topics:

Connection to Remote Databases (see page 97)

Commands and Net (see page 102)

User Identity on Remote Instance (see page 103)

Connection to Remote Databases
In general, Ingres Net provides users with transparent access to remote
databases. Only when the connection is first established must you specify the
node on which the database resides and, in some circumstances, the type of
server. After you are connected, you can work in the database as if it were
local; no further reference to its location is necessary.

Note: If a default remote node is defined on the local instance, you do not
have to specify a vnode name when you make a connection to that node. For
information about using this feature, see Default Remote Nodes (see
page 114).

Using Net 97

Connection to Remote Databases

Database Access Syntax—Connect to Remote Database

The syntax for accessing a remote database through an operating system-level
command is:

command vnode::dbname[/server_class]

where:

command

Is any command used to invoke an Ingres tool, such as cbf, vcbf, sql, qbf
or rbf.

vnode::

Is the remote node on which the database is located. The two colons are
required.

The remote node can be specified as either of the following:

vnode_name

Is the virtual node name that points to the connection data and
authorization data necessary to access a particular remote instance.

@host+

Is a “dynamic vnode” connection string that includes the connection
data, user authorization, and attributes that are associated with a
remote node. For the format of @host+, see Dynamic Vnode
Specification (see page 99).

dbname

 Is the name of the database.

server_class

Is the type of server being accessed at the remote site. For a list of server
classes, see Server Classes (see page 100).

Example:

This command runs the terminal monitor (sql) and connects using vnode
"production" to the customerdb database:

sql production::customerdb

98 Connectivity Guide

Connection to Remote Databases

Dynamic Vnode Specification—Connect to Remote Node

When connecting to a remote node (using the vnode::dbname syntax), you
can specify a dynamic vnode instead of a vnode name. The dynamic vnode
specification includes the connection data, user authorization, and attributes
that are associated with a remote node.

Note: A dynamic vnode can be used wherever a vnode is allowed, unless
otherwise stated.

A dynamic vnode specification has the following format:

@host,protocol,port[;attribute=value{;attribute=value}][[user,password]]

@host

Identifies the network name or address of the node on which the remote
database is located. The @ character is required because it identifies this
specification as a dynamic vnode rather than a vnode name.

protocol

Identifies the network protocol to be used by the local node to connect to
the remote node. For a list of protocols and their associated keywords, see
Network Protocol Keywords (see page 58).

port

Identifies the listen address of the Ingres instance on the remote node.

attribute=value

(Optional) Is one or more additional connection, encryption, and
authentication attributes for the connection. Vnode attributes are described
in Configure Vnode Attributes (see page 64).

user

Identifies the user (login) name on the remote system.

password

Is the password for the user on the remote system.

Note: The user and password are optional for a dynamic vnode, but must
be enclosed in brackets if used.

Examples of dynamic vnode specification:

This command runs the terminal monitor (sql) and connects to node hosta
using protocol tcp_ip to remote Ingres symbolic port II. The login and
password are Johnny and secretpwd. The remote database name is
customerdb:

sql @hosta,tcp_ip,II;[Johnny,secretpwd]::customerdb

Using Net 99

Connection to Remote Databases

This command establishes a direct connection by using the connection_type
attribute:

sql @hosta,tcp_ip,II;connection_type=direct[Johnny,secretpwd]::customerdb

Server Classes

If you do not specify a server class when connecting to a database, Ingres
assumes a default. The default is the value in default_server_class on the
remote instance (ingres, unless defined otherwise).

Valid Ingres server classes are as follows:

ingres

Indicates DBMS Server

star

Indicates Star Server (Ingres Ingres Star)

db2

Indicates EDBC for DB2

db2udb

Indicates Enterprise Access for DB2 UDB

rdb

Indicates Enterprise Access for Rdb

ims

Indicates EDBC for IMS

rms

Indicates Ingres RMS Access

vsam

Indicates EDBC for VSAM

mssql

Indicates Enterprise Access for MS SQL

oracle

Indicates Enterprise Access for Oracle

informix

Indicates Enterprise Access for Informix

sybase

Indicates Enterprise Access for Sybase

100 Connectivity Guide

Connection to Remote Databases

To view or change the default server class value, use the Configure Name
Server screen of the Configuration-By-Forms (cbf) utility, or the Parameters
Page, Name Server Component in Configuration Manager (vcbf).

The server class for the DBMS Server (default is ingres) and Star Server
(default is star) can also be changed. This is typically done to distinguish
between multiple DBMS or Star servers that have different sets of parameters,
so that users can connect to a specific server using an assigned server class
name.

Additional server types are added to this list as additional Enterprise Access or
EDBC products are developed. Check the Readme file for the most up-to-date
set of products.

Use of the SQL Connect Statement with Net

If you are using the connect statement in an application, connect to a
database on a remote instance using the following syntax:

exec sql connect 'vnode::dbname[/server_class]'

Note: The vnode can be either a vnode name or a dynamic vnode specification
(@host+).

You must use the single quotes around the designation of the vnode and
database names (and server class, if applicable). For example, assume that
you have an application residing on “napoleon” that wants to open a session
with the database “advertisers” on “eugenie.” The following statement
performs this task (assuming also that “lady” is a valid vnode name for
“eugenie”):

exec sql connect 'lady::advertisers';

Note that a server class is not specified in this statement; therefore the default
server class defined on “eugenie” is used.

If the target database is accessed through an Enterprise Access or EDBC
products, be sure to include the appropriate keyword for the server class. For
example:

exec sql connect 'lady::advertisers/db2';

If the target database is accessed through Ingres Star, be sure to include the
appropriate keyword for the server class. For example:

exec sql connect 'lady::advertisers/star';

Using Net 101

mailto:(@host+)

Commands and Net

When you are working over Ingres Net, you can use the -u flag with a
command to imitate another user provided the User ID that you are working
under on the remote node has the SECURITY privilege.

Commands and Net

You can run any of the following Ingres commands against a remote database:

abf imageapp report

accessdb ingmenu sql

compform isql sreport

copyapp netutil unloaddb

copydb printform upgradedb

copyform qfb upgradefe

copyrep query vifred

dclgen rbf vision

Note: The optimizedb command works across Ingres Net only if the client and
server machines have identical architectures. Do not use this command across
Ingres Net if the client and server have different architectures.

You cannot run the following Ingres commands against a remote database:

createdb destroydb iimonitor

iinamu lockstat logstat

statdump sysmod usermod

verifydb

For additional information on commands, see the Command Reference Guide.

102 Connectivity Guide

User Identity on Remote Instance

User Identity on Remote Instance

A user’s identity when working on a remote instance depends upon the type of
access authorized.

� When access to a remote instance is authorized using an Installation
Password, users retain their local identities (User IDs) when working on
the remote instance.

� When access is authorized through a login account on the remote
instance’s host machine, users take on the identity (User ID) of this
account when working on the remote instance.

In either case, the user’s privileges and permissions on the remote instance
can differ from those on the local instance. For example, a user can have
system administrator privileges on the local instance but only very general,
low-level privileges and permissions on the remote instance. It is important to
make sure that the privileges and permissions assigned to you on the remote
instance are adequate for the work that you intend to perform.

User privileges and permissions are set up individually for each instance using
Visual DBA or create user statement. They apply only to the instance on
which they are set up. For more information about this procedure, see the
Security Guide.

Note: Using Network Utility or Visual DBA, you can access a list of users on
Ingres server nodes and establish a connection at the user level under a
different user name. For more information, see Impersonating Another User in
online help for either of these visual tools.

-u Command Flag—Impersonate User

You can use the -u command flag on a remote instance to impersonate
another user provided your user ID on the remote instance has the SECURITY
permission. (Typically, a system administrator has this privilege.)

This command flag has the following format:

-u user_ID

where user_ID is the user ID of the user you are impersonating.

Using Net 103

User Identity on Remote Instance

Verify Your Identity

When impersonating a user using the -u command flag, you may need to
verify your identity.

To verify your identity

Use the following command:

dbmsinfo (‘username’)

The user ID that you are working under is displayed.

104 Connectivity Guide

Chapter 6: Maintaining Connectivity

This section contains the following topics:

Start Communications Server (see page 105)

Stop Communications Server (see page 106)

Network Server Control Screen in Netutil (see page 106)

Stop or Quiesce a Communications Server Using Netutil (see page 108)

Inbound and Outbound Session Limits (see page 110)

Logging Levels (see page 111)

How You Direct Logging Output to a File (see page 112)

GCF Server Management Using iimonitor (see page 113)

Default Remote Nodes (see page 114)

Start Data Access Server (DAS) (see page 115)

Stop Data Access Server (DAS) (see page 115)

Start Communications Server
The Communications Server starts automatically when you start your Ingres
instance. Sometimes, however, it is necessary to stop the Communications
Server.

You can start the local instance’s Communications Server using Ingres Visual
Manager (IVM). For specific instructions, see IVM online help.

You can also start the Communications Server using the command line
utilities.

To start the Communications Server at the command line

1. Log in as the installation owner.

2. Enter the following command at the operating system prompt:

ingstart -iigcc

The configured number of Communications Servers (set during installation)
is started.

Maintaining Connectivity 105

Stop Communications Server

Stop Communications Server

You can stop the local instance’s Communications Server using Ingres Visual
Manager (IVM). For specific instructions, see IVM online help.

You can also stop the Communications Server using the command line utilities.

You can stop the local instance’s Communications Servers using Visual
Performance Monitor. This “soft” shutdown operation waits for all sessions to
end before stopping the server. Close the sessions (or ask users of those
sessions to close them) before shutting down a server. For specific
instructions, see Visual Performance Monitor online help.

To stop the communications server at the command line

1. Log in as the installation owner.

2. Enter the following command at the operating system prompt:

ingstop -iigcc

The configured number of Communications Servers is stopped.

Note: To increase the configured number of servers, you must reconfigure
Ingres Net using Configuration Manager (vcbf) or the Configuration-By-Forms
(cbf) utility.

Network Server Control Screen in Netutil

You can stop or quiesce the local instance’s Communications Server using the
Network Server Control screen in netutil.

106 Connectivity Guide

Network Server Control Screen in Netutil

The Network Server Control screen contains the following tables:

Network Server ID table

Lists the server IDs of the Communications Servers and the Bridge Servers
on the local instance.

Network server TYPE table

Lists server TYPEs (COMSVR, BRIDGE).

Note: You cannot obtain information about remote Communications Servers
from this screen.

If the local instance has only one Communications Server, the Network Server
Control screen menu selections are:

Quiesce

Stops the highlighted Communications Server after all sessions currently in
progress terminate

Stop

Stops the highlighted Communications Server immediately, disconnecting
any open sessions

Help

Displays help screens

End

Returns you to the netutil startup screen

If the local instance has more than one Communications Server, the menu
contains two additional selections:

Quiesce All

Stops all Communications Servers after the sessions currently in progress
terminate.

Stop All

Stops all Communications Servers immediately, disconnecting any open
sessions

Maintaining Connectivity 107

Stop or Quiesce a Communications Server Using Netutil

Stop or Quiesce a Communications Server Using Netutil

You can stop or quiesce a Communications Server using the Network Server
Control screen in netutil.

To stop a single Communications Server

1.	 Tab to the Login/password table on the netutil startup screen, and select
Control from the function menu.

The Network Server Control screen appears.

2.	 Highlight the desired entry in the Network Server ID table, and select Stop
from the menu.

A pop-up screen appears with the following prompt:

Really stop network server [server ID]?

Yes — Stop

No — Don’t Stop

3.	 Use your arrow keys to highlight No or Yes (Yes is the default), and then
choose Select from the menu.

Netutil stops the Communications Server and returns to the Network
Server Control screen.

4.	 Select End.

You are returned to the netutil startup screen.

To stop multiple Communications Servers

1.	 Select Stop All from the Network Server Control screen menu in netutil.

A pop-up screen appears with the following prompt:

Really stop all network servers?

Yes - Stop

No - Don’t Stop

2.	 Use your arrow keys to highlight No or Yes (Yes is the default), and choose
Select from the menu.

Netutil stops all local Communications Servers and returns to the Network
Server Control screen.

3.	 Select End.

You are returned to the netutil startup screen.

108 	Connectivity Guide

Stop or Quiesce a Communications Server Using Netutil

To quiesce a single Communications Server

1.	 Highlight the desired entry in the Network Server ID table in the Network
Server Control screen in netutil, and select Quiesce from the function
menu.

A pop-up screen appears with the following prompt:

Really quiesce network server [server ID]?

Yes - Quiesce

No - Don’t quiesce

2.	 Use your arrow keys to highlight No or Yes (Yes is the default), and choose
Select from the menu.

Netutil quiesces the Communications Server and returns to the Network
Server Control screen.

3.	 Select End.

You are returned to the netutil startup screen.

To quiesce multiple Communications Servers

1.	 Select Quiesce All from the Network Server Control screen menu.

A pop-up screen appears with the following prompt:

Really quiesce all network servers?

Yes - Quiesce

No - Don’t quiesce

2.	 Use your arrow keys to highlight No or Yes (Yes is the default), and choose
Select from the menu.

Netutil quiesces all local Communications Servers and returns to the
Network Server Control screen.

3.	 Select End

You are returned to the netutil startup screen.

Note: For instructions on stopping or quiescing Communications Servers using
netutil non-interactive mode, see the chapter "Establishing Communications."

Maintaining Connectivity 109

Inbound and Outbound Session Limits

Inbound and Outbound Session Limits

A default number of 64 inbound and 64 outbound sessions are configured
during the installation process. After the Communications Server has been
running, you can change these default limits.

Resetting the maximum number of inbound and outbound sessions does not
affect a currently running Communications Server. If you alter these figures
after you start a Communications Server, you must stop and restart the server
for the new limits to take effect.

The Ingres Net configuration parameters that determine the maximum number
of allowed inbound and outbound sessions for a Communications Server are
inbound_limit and outbound_limit.

The maximum values that you can assign to inbound_limit and outbound_limit
are operating system dependent.

UNIX: Bear in mind when setting inbound and outbound session limits that the
maximum number of sessions that can be concurrently supported cannot
exceed 14 less than the number of file descriptors allocated to each process.
The following formula expresses the maximum number of connections that can
be supported at any given time:

inbound_limit + outbound_limit <= (per_process_open_file_limit14)/2

The number of file descriptors allocated to a process is a UNIX kernel
parameter (NOFILES on most platforms).

Windows and VMS: Ingres uses the inbound_limit and outbound_limit values
when it allocates resources. Consequently, if the sum of the new values is
greater than the sum of the current values, you must shut down the instance
(instead of only the Communications Server) and restart it so that the system
can allocate the appropriate level of resources. If the sum of the new values is
equal to or less than the sum of the current values, you can simply stop the
Communications Server and restart it after you have reset the values.

How You Set Inbound and Outbound Session Limits

The inbound_limit and outbound_limit parameters determine the maximum
number of allowed inbound and outbound sessions for a Communications
Server.

You can view or change the values for these parameters using the Parameters
page for the selected Net Server in Configuration Manager (vcbf) or the
Configure Net Server Definition screen in the Configuration-By-Forms (cbf)
utility.

110 Connectivity Guide

Logging Levels

Logging Levels

By default, Ingres logs DBMS error messages, Ingres Net error messages, and
Communications Server startup and shutdown messages to the errlog.log file.

The following logging level values are available:

0

Logs no error messages (silent)

1

Logs startup messages only

4

(Default) Logs GCC START/STOP status messages, fatal GCC errors that
cause the GCC process to stop, connection-specific errors that cause a
specific connection to be broken, as well as logging level 1 messages

6

Logs connection setup and termination messages for all connections, as
well as logging levels 4 and 1 messages.

How You Change the Logging Level

Logging level is defined by the Ingres Net configuration parameter log_level.

To change the value of the log_level parameter, use the Parameters Page for
the selected Net Server in Configuration Manager (vcbf) or the Configure Net
Server Definition screen in the Configuration-By-Forms (cbf) utility.

Maintaining Connectivity 111

How You Direct Logging Output to a File

How You Direct Logging Output to a File

During an Ingres session, each process or program queries the value of
II_GCA_LOG when it starts up. If this environment variable/logical is set to a
file name, the program sends its trace output to the specified file in addition to
sending the output to the errlog.log. If you want to see the GCC trace output
for a Communications Server, set II_GCA_LOG and stop and restart the
Communications Server.

After you restart the Communications Server, unset II_GCA_LOG. You can
leave II_GCA_LOG set, but you receive trace output for any Ingres process
that starts after it was set.

To send the GCC information that Ingres logs in errlog.log to another file in
addition to the log file, follow this process:

Windows and UNIX:

1.	 Log in as the installation owner.

2.	 Set the Ingres environment variable II_GCA_LOG to a file name.

3.	 Stop and restart the Communications Server.

VMS:

1.	 Log in as the installation owner.

2.	 Define the logical II_GCA_LOG to a file name. If this is a production
instance, define the logical at the system level. If this is a test instance,
define the logical at the group level.

3.	 Stop and restart the Communications Server.

112 	Connectivity Guide

GCF Server Management Using iimonitor

GCF Server Management Using iimonitor

GCF servers (Name Server, Communications Server, and Data Access Server)
can be monitored using the iimonitor utility. The iimonitor utility can be used
to:

� Show and remove sessions

� Display server status

� Enable, disable, and register servers

� Turn tracing on and off dynamically

� Remove tickets

� Remove pooled sessions

For more information, see the iimonitor command in the Command Reference
Guide.

Maintaining Connectivity 113

Default Remote Nodes

Default Remote Nodes

A system administrator can define a default remote node for the local node.
When this parameter is set, users are automatically connected to the default
node whenever they request a connection without specifying a vnode name. If
users want to access a database on their local node, they must specify the
name configured as local_vnode on the Parameters Page, Name Server
Component in Configuration Manager (vcbf) or the Configure Name Server
screen in the Configuration-By-Forms (cbf) utility.

To illustrate, assume that the system administrator has set up the node
“eugenie” as the default remote node for users at the node “josephine.” The
node “eugenie” has the database “advertisers” and “josephine” has the
database “employees.” Whenever users on “josephine” issue database
connection requests that do not specify a vnode name, they are automatically
connected to “eugenie” because “eugenie” is the default remote node for
“josephine.” For example, look at the following statement:

isql advertisers

If users on “josephine” issue this statement, Ingres Net automatically connects
them to the “advertisers” database on “eugenie.” If the users on “josephine”
want to query a local database, they must specify josephine’s local_vnode
name. For example, if the local_vnode name for “josephine” is “royal,” users
on “josephine” issue the following statement to query the local database
“employees”:

isql royal::employees

Note: Do not set the default remote node name to point to a vnode that is in
fact a loopback to the local instance. If you do so, your local connections loop
through Ingres Net until all resources are exhausted and the connection fails.

How You Set Default Remote Nodes

To define a default remote node for the local node, set the configuration
parameter remote_vnode on the Parameters Page, Name Server Component in
Configuration Manager (vcbf) or the Configure Name Server screen in the
Configuration-By-Forms (cbf) utility.

114 Connectivity Guide

Start Data Access Server (DAS)

Start Data Access Server (DAS)

The DAS (iigcd) starts up automatically when you start up your Ingres
instance. Sometimes, however, it is necessary to stop the DAS. In such
instances, you can use the following procedures to restart the server.

You can start the DAS using one of these methods:

�	 Using Ingres Visual Manager (IVM) to start the local instance's DAS. For
specific instructions, see IVM online help.

�	 Using a command line utility. This procedure uses the configuration values
set during installation to start the DAS.

To start the DAS using the command line utility

1.	 Log in as the installation owner.

2.	 Enter the following command at the operating system prompt:

ingstart -iigcd

The DAS is started using the configuration values set during installation.

Stop Data Access Server (DAS)

You can stop the DAS using one of these methods:

�	 Using Ingres Visual Manager (IVM) to stop the local instance's DAS. For
specific instructions, see IVM online help.

�	 Using a command line utility.

To stop the DAS at the command line with ingstop

1.	 Log in as the installation owner.

2.	 Enter the following command at the operating system prompt:

ingstop -iigcd

To stop the DAS at the command line with iigcdstop

1.	 Log in as the installation owner.

2.	 Enter the following command at the operating system prompt:

iigcdstop addr

where addr is the server address, which can be obtained using the iinamu
utility and issuing the request show dasvr.

Maintaining Connectivity 115

Chapter 7: Troubleshooting Connectivity
This section contains the following topics:

How Connection Between the Application and DBMS Server Is Established
(see page 117)

Where Ingres Net Information Is Stored (see page 118)

Causes of Connectivity Problems (see page 122)

How You Diagnose Connectivity Problems (see page 122)

How Connection Between the Application and DBMS
Server Is Established

For queries to be processed, applications must establish a connection to the
DBMS Server through Ingres Net. When an application issues a query, the
query is sent to the DBMS Server for execution. The server executes the query
and returns data to the application.

For a client to connect to a server through Ingres Net, many internal
connections must be made.

When the application, the DBMS Server, and the database reside on the same
instance, establishing a connection is a short process:

1.	 The application program connects to the local Name Server (iigcn) and
requests the listen address of the local DBMS Server process.

2.	 The Name Server returns this information to the application, which
thereafter communicates directly with the DBMS Server through that
address.

Troubleshooting Connectivity 117

Where Ingres Net Information Is Stored

When the application and DBMS Server are on separate instances, the process
has more steps:

1.	 The application finds the local Name Server (iigcn) listen address and talks
to the local Name Server to request remote access.

2.	 The local Name Server passes the listen address of the local
Communications Server (iigcc) and the listen address of the remote
Communications Server (iigcc) back to the application. (The local Name
Server (iigcn) stored the remote Communications server’s listen address
when you ran netutil on the local instance.)

3.	 The application connects to the local Communications Server, passing it
the remote Communications Server’s listen address as part of the remote
access request.

4.	 The local Communications Server connects to the remote Communications
Server and requests a connection to a DBMS Server on that remote
instance.

5.	 The Communications Server on the remote instance finds the listen
address of the Name Server on the remote instance. The Communications
Server requests connection information from the Name Server, passing the
name of the database for which a connection is requested.

6.	 The remote Name Server returns the listen address of a DBMS Server that
is capable of servicing a request for connection to the target database.

7.	 The remote Communications Server connects to the DBMS Server on the
remote instance.

When these steps are completed, a “virtual connection” has been established
between the application and the DBMS Server.

Where Ingres Net Information Is Stored

Ingres Net configuration values are stored in either of the following:

config.dat file

Stores Ingres Net configuration parameters, which can be changed using
Configuration-By-Forms or Configuration Manager.

Name Server database

Stores remote access information, which can be entered using the netutil
utility.

118 	Connectivity Guide

Where Ingres Net Information Is Stored

config.dat—Store Net Configuration Values

The following Ingres Net configuration parameters, stored in config.dat, can be
viewed and changed using the Configuration Manager (vcbf) or Configuration-
By-Forms (cbf) utility. The default values are assigned during installation.

Note: The Net Server is the Communications Server.

Parameter Default vcbf page cbf screen

inbound_limit

outbound_limit

64 inbound sessions

64 outbound
sessions

Parameters
Page, Net
Server
Component

Configure Net
Server
Definition
screen

log_level Level 4 Parameters
Page, Net
Server
Component

Configure Net
Server
Definition
screen

Protocol Any protocol present
at installation is
indicated as active

Protocols Page,
Net Server
Component

Configure Net
Server
Protocols
screen

Listen Address A GCC listen address
is assigned for any
protocol present at
installation. (The
format depends on
the protocol.)

Protocols Page,
Net Server
Component

Configure Net
Server
Protocols
screen

default_server_
class

INGRES Parameters
Page, Name
Server
Component

Configure
Name Server
screen

remote_vnode No default value Parameters
Page, Name
Server
Component

Configure
Name Server
screen

local_vnode Name of host
machine

Parameters
Page, Name
Server
Component

Configure
Name Server
screen

Troubleshooting Connectivity 119

Where Ingres Net Information Is Stored

Name Server Database—Store Remote Access Information

Ingres maintains an internal database called the Name Server database, which
is used by the Name Server (iigcn). The Name Server database contains the
information required for remote access, such as remote node names, listen
addresses, login accounts and passwords, virtual node names, and local and
remote Installation Passwords. This information can be entered in the Name
Server database using the netutil utility.

In a client/server configuration, this database contains one file called iiname.all
and one or more "nodename" files for each client node and for the local node.
For example:

iiname.all
IIINGRES_nodename1
IICOMSVR_nodename1
IISTAR_nodename1
IINODE_nodename1
IILOGIN_nodename1
IIIUSVR_nodename1
IIDB2UDB_nodename1
IIORACLE_nodename1
IIRDB_nodename1
IIRMS_nodename1
IILTICKET_nodename1
IIRTICKET_nodename1
IIINGRES_nodename2
IICOMSVR_nodename2
IISTAR_nodename2
IINODE_nodename2
IILOGIN_nodename2
IIIUSVR_nodename2
IIDB2UDB_nodename2
IIORACLE_nodename2
IIRDB_nodename2
IIRMS_nodename2
IILTICKET_nodename2
IIRTICKET_nodename2

A unique set of files is created for each node registered as an Ingres Net client.

In the cluster environment, the Name Server database has only one file of
each type. For example:

iiname.all
INGRES
COMSVR
STAR
NODE
LOGIN
IUSVR
DB2 UDB
ORACLE
RDB
RMS

120 Connectivity Guide

Where Ingres Net Information Is Stored

LTICKET
RTICKET

All the nodes in an Ingres Cluster Solution instance share the same files.

The files in the Name Server Database are as follows:

iiname.all

Contains a list of all of the types of servers that the instance is expected to
manage. The possibilities are DBMS servers, Communications servers, and
Star servers.

IIINGRES_nodename

Contains the GCA listen addresses of all the DBMS servers registered with
the Name Server (iigcn) on the specified node.

The file is written when the DBMS Server starts and is cached when the
node's (identified by nodename) Name Server starts.

IICOMSVR_nodename

Contains the GCA listen address of the Communications Server (iigcc) on
the specified node (identified by nodename). The file is written when the
local Communications Server starts and is cached when the local Name
Server starts.

IISTAR_nodename

Contains the GCA listen address of the Star Server on the specified node
(identified by nodename). The file is written when the Star Server starts
and is cached when the nodename’s Name Server starts.

IINODE_nodename

Contains the connection data entries established for the specified node
(identified by nodename) by running netutil, Network Utility (ingnet) or
Visual DBA from that node. The file is written whenever you select the
“create” option to add a connection data entry for an existing vnode. The
file is cached when the nodename’s Name Server starts.

IILOGIN_nodename

Contains the remote user authorizations set up at the specified node
(identified by nodename) by running netutil, Network Utility (ingnet) or
Visual DBA from that node. The file is written whenever you add a remote
user authorization. It is cached when the nodename’s Name Server starts.

Troubleshooting Connectivity 121

Causes of Connectivity Problems

Causes of Connectivity Problems

You can trace most network connectivity problems to one of the following
causes:

� The network or the network protocol is not properly installed

� The Name Server (iigcn) or Communications Server (iigcc) process is not
running

� Vnode entries are incorrect

� There are port connection problems

� There are problems with the Ingres Net files

How You Diagnose Connectivity Problems

Often, the most difficult task in problem solving is determining the origin of the
problem. Sometimes the circumstances of the problem point to a particular
cause. For example, if only one user on a node is experiencing an Ingres Net
connection problem, that user’s vnode entries are probably incorrect. Some
problems, however, leave more ambiguous clues.

To determine the origin of a problem, follow these steps:

1.	 Examine the Ingres error file, errlog.log. Ingres logs DBMS error
messages, Ingres Net error messages, and Communications Server startup
and shutdown messages to this log.

The default location for the errlog.log file is:

Windows: %II_SYSTEM%\ingres\files\errlog.log

UNIX: $II_SYSTEM/ingres/files/errlog.log

VMS: II_SYSTEM:[INGRES.FILES]ERRLOG.LOG

Often the error message provides sufficient information to determine the
origin of the problem.

2.	 Examine any of the optional logs or tracing facilities, if set up in your
installation.

3.	 Perform the General Ingres Net Installation Check described next if
examining the error messages does not pinpoint the origin of the problem.

If you are having password or other security or permission problems with
Ingres Net, use the procedure in Security and Permission Errors (UNIX) to
resolve them.

122 	Connectivity Guide

How You Diagnose Connectivity Problems

General Net Installation Check

The Ingres Net installation check is a diagnostic procedure that checks your
installation to determine the following:

� Whether the problem is Ingres Net-related

� Whether the iigcn and iigcc processes are running

� Whether the network protocol software is working

How You Check Net Installation on Windows

If you are experiencing a problem and cannot determine its source, use this
diagnostic procedure as a starting point:

1.	 Verify that your network protocol is functioning.

a.	 Use the ping command to connect between machines to verify that
basic TCP/IP networking is working.

b.	 On both the client and the server, verify that TCP/IP is properly
installed and configured. Do this by attempting to connect to the
default localhost (or loopback) listen address from each machine. Type
one of the following commands to loop back to your own machine
using the network:

�	 ping localhost

�	 ping 127.0.0.1

�	 ping ::1 (if TCP/IP version 6 enabled)

If either “a” or “b” fails, the problem is with the underlying network.
Contact your network administrator.

2.	 If the remote node is a UNIX machine, verify that you can connect to the
target database on the remote node when you are logged in directly to the
remote node.

a.	 Use telnet to log in to the remote node from your local node.

b.	 Enter a command that connects you to the database. For example:

sql database_name

If you cannot connect to the database even when logged in directly to the
remote node, the problem is something other than Ingres Net.

If you can connect this way, but cannot connect when you are Using Net to
log into the remote node and connect (through the syntax sql
vnode_name::database_name), it is an Ingres Net problem. Proceed with
Step 3.

Troubleshooting Connectivity 123

How You Diagnose Connectivity Problems

3.	 Check that the iigcc process is registered with the Name Server:

a.	 Enter iinamu at the operating system prompt.

b.	 Type show comsvr.

If you receive no output from the show comsvr command, this means that
no Communications Server is registered with the Name Server.

4.	 Check that configuration parameters such as local_vnode and the
Communications Server listen address are correctly set. These parameters
can be viewed and, if necessary, changed using the Configuration Manager
(vcbf) or Configuration-By-Forms (cbf) utility.

5.	 Check the II_GCNxx_PORT environment variable where xx is the
installation ID. It must be visible only when using the ingprenv utility. It
must never be visible when using the UNIX commands env or printenv.
II_GCNxx_PORT must not be part of your local operating system
environment. If it is set in the local environment, it overrides their proper
settings in the Ingres symbol table.

You must be the installation owner (who by default has Ingres user privileges)
to take corrective action.

How You Check Net Installation on Linux and UNIX

If you are experiencing a problem and cannot determine its source, use this
diagnostic procedure as a starting point:

1.	 Verify that your network protocol is functioning.

a.	 Use the rlogin and/or telnet commands to connect between machines
to verify that basic TCP/IP networking is working.

b.	 On both the client and the server, verify that TCP/IP is properly
installed and configured. Do this by attempting to connect to the
default localhost (or loopback) listen address from each machine. Type
one of the following commands to loop back to your own machine
using the network:

�	 telnet localhost

�	 telnet 127.0.0.1

�	 ping ::1 (if TCP/IP version 6 enabled)

The login messages that follow the command reveal whether you are
connected to your own machine (the name of the machine can be
embedded in the messages). If they do not, you can log in and issue the
hostname command to display the name of the machine to which you are
connected.

If either “a” or “b” fails, the problem is with the underlying network.
Contact your network administrator.

124 	Connectivity Guide

How You Diagnose Connectivity Problems

2.	 Verify that you can connect to the target database on the remote node
when you are logged in directly to the remote node.

a.	 Use telnet, rlogin, or your site’s network server bridge software to log
in to the remote node from your local node.

b.	 Enter a command that connects you to the database. For example:

 $ sql database_name

If you cannot connect to the database even when logged in directly to the
remote node, the problem is something other than Ingres Net.

If you can connect this way, but cannot connect when you are Using Net to
log into the remote node and connect (through the syntax sql
vnode_name::database_name), it is an Ingres Net problem. Proceed with
Step 3.

3.	 To verify that the Communications Server (iigcc) and Name Server (iigcn)
processes are running on your local node, use the ps command. This
command shows the status of all currently running processes. Also check
the processes on the remote node.

4.	 Check that the iigcc process is registered with the Name Server:

a.	 Enter iinamu at the operating system prompt.

b.	 Type show comsvr.

If you receive no output from the show comsvr command, this means that
no Communications Server is registered with the Name Server.

5.	 Check that configuration parameters such as local_vnode and the
Communications Server listen address are correctly set. These parameters
can be viewed and, if necessary, changed using the Configuration Manager
(vcbf) or Configuration-By-Forms (cbf) utility.

6.	 Check the II_GCNxx_PORT environment variable where xx is the
installation ID. It must only be visible using the ingprenv utility. It must
never be visible using the UNIX commands env or printenv.
II_GCNxx_PORT must not be part of your local UNIX shell environment. If
it is set in the local environment, it overrides their proper settings in the
Ingres symbol table.

You must be the installation owner (who by default has Ingres user
privileges) to take corrective action.

Troubleshooting Connectivity 125

How You Diagnose Connectivity Problems

How You Check Installation on VMS

If you are experiencing a problem and cannot determine its source, use this
diagnostic procedure as a starting point:

1.	 Verify that your network protocol is functioning.

You must be able to connect to another node on the network. If you
cannot, your network software is not working. Contact your network
administrator to correct the networking problem.

2.	 Verify that you can connect to the database on the remote node when you
are logged in directly to the remote node.

a.	 Log directly into the remote node.

b.	 Enter a command that connects you to the database. For example:

 $ sql database_name

If you cannot connect when logged in directly to the remote node, the
problem is something other than Ingres Net.

If you can connect this way, but cannot connect when you are Using Net to
log into the remote node and make the connection (through the syntax sql
vnode_name::database_name for example), it is an Ingres Net problem.
Proceed with Step 3.

3.	 To verify that the iigcc and iigcn processes are running properly on your
local node:

Check the error log (errlog.log) for any error messages indicating a startup
failure on the part of either iigcc or iigcn. Check the iigcc process on the
remote node also.

Alternatively, at the operating system prompt, type show system.

This command displays a list of the processes currently active. Check for
the following processes:

II_GCC

II_GCN

II_DBMS

II_IUSV (dmfrcp)

DMFACP

4.	 Check that the iigcc process is registered with the Name Server:

a.	 Enter iinamu at the operating system prompt.

b.	 Type show comsvr.

If you receive no output from the show comsvr command, this means that
there is no Communications Server registered with the Name Server.

5.	 Check that configuration parameters such as local_vnode and the
Communications Server listen address are correctly set. These parameters
can be viewed and, if necessary, changed using the Configuration Manager
(vcbf) or Configuration-By-Forms (cbf) utility.

126 	Connectivity Guide

How You Diagnose Connectivity Problems

Connection Errors

Connection errors can occur for a variety of reasons. For example, a failure in
any of the internal connections described in How Connection Between the
Application and DBMS Server Is Established (see page 117) results in a
connection error.

How connection errors are reported depends on where the failure occurs. If
failure occurs:

� At the local instance, errors are reported directly to the user interface
program or the application.

� Between the local and remote instances, for example, when attempting to
connect from the local Communications Server to the remote
Communications Server, errors go to the local errlog.log file as well as to
the application.

� At the server installation, errors are reported to both the local and remote
errlog.log file and to the application.

Local Connection Errors

Each Communications Server has a GCA and GCC listen address. The GCA
listen address is the server’s connection to local processes and is known only
to the local Name Server (iigcn). The GCC listen address is the server’s
connection to the network and is known to all nodes in the network. These
listen addresses are stored separately.

The GCA address is stored at runtime in an IICOMSVR file in the Name Server
database. You can obtain this address using the iinamu utility. Do not attempt
to view these files directly. For more information about iinamu, see the
Command Reference Guide.

The GCC address is stored in the config.dat file when the installation is
configured. To view or change the GCC address, use the Net Server Protocol
Configuration screen in the Configuration-By-Forms (cbf) utility, or the Net
Server Protocols page in Configuration Manager (vcbf).

When the Communications Server starts up, it must be able to obtain the use
of the network (GCC) listen address. If the Communications Server cannot use
this listen address because the operating system has allocated the address to
another process, the Communications Server cannot listen on that protocol.
This problem can occasionally arise if the installation is not started from the
machine boot file.

Troubleshooting Connectivity 127

How You Diagnose Connectivity Problems

How You Resolve Remote Connection Errors

When you cannot establish a remote connection, use this procedure to
diagnose the problem:

1.	 Check the errlog.log for error messages.

2.	 If that does not identify the problem, follow the procedure for your
protocol in the General Net Installation Check section of this chapter. This
procedure tells you if your network and protocol are working properly and
if the Name Server (iigcn) and Communications Server (iigcc) processes
are working properly.

3.	 If the problem remains unidentified after you have looked at the error
messages and performed the installation check, use the following
procedure to verify that your netutil connection data entry contains the
correct listen address.

a.	 From the local instance, check the connection data for the remote
instance. Note the listen address specified in the netutil Connection
Data table.

b.	 From the remote instance, check to see which GCC listen address the
remote instance’s Communications Server is using. You can find this
information in the Net Server Protocol Configuration screen in the
Configuration-By-Forms (cbf) utility, or the Net Server Protocols page
in Configuration Manager (vcbf).

c.	 If the listen address found Step a does not match the listen address
found in Step b, correct the problem by re-registering the remote
instance’s GCC listen address. Do this from the local instance, using
netutil to edit the incorrect entry. For procedures for adding, deleting,
and changing a vnode definition, see the chapter "Establishing
Communications."

128 	Connectivity Guide

How You Diagnose Connectivity Problems

How You Resolve Net Registration Problems

To resolve net registration problems, use this procedure:

1.	 Use the General Net Installation Check to verify that your installation is
properly installed and working.

2.	 Check that your connection data entries and remote user authorizations
are correct.

The utilities used to set up connection data and remote user authorizations
(Network Utility, Visual DBA, or netutil) can test a connection, but you
must explicitly choose the Test operation from a menu. If you did not test
the connection after entering, adding, or editing connection data or remote
user authorizations, the information can be incorrect.

3.	 Check that the required connection data and remote user authorizations
for the target installation exist. If they are present, check the following:

�	 That all vnode names and user (account) names are spelled correctly

�	 That the proper network protocol has been specified

�	 That listen addresses and network addresses are correct

Note: End users check their private entries. A user with the SECURITY
privilege (typically a system administrator) checks another user’s private
entries by using the -u command flag in netutil to impersonate that user.
Users can also perform this task using Network Utility and Visual DBA.

Any user can check global entries, however if corrections are required,
they must be made by a user with the GCA privilege NET_ADMIN (typically
the system administrator).

4.	 If you are experiencing problems connecting to a distributed database,
make sure that the connection data and remote user authorizations
required by Ingres Star have been entered on the Star Server installation.
For more information, see the Ingres Star User Guide.

Security and Permission Errors

Ingres Net encrypts the password entered in netutil and compares it with the
encrypted password in “/etc/passwd” (or your machine’s similar password file).
If the two do not match, an error is returned.

Troubleshooting Connectivity 129

How You Diagnose Connectivity Problems

How You Resolve Ingres Security Problems (UNIX)

If you are having password or other security/permission problems in Ingres
Net, use the following procedure:

1.	 Verify that you can log in to the remote machine directly. If you cannot,
you do not have the right password.

2.	 Using netutil, re-enter the remote user authorization.

3.	 If you are running NIS (“yellow pages”), the account’s correct password
will be in the yellow pages password file (/etc/yppasswd) rather than in
/etc/passwd. Add the following string to the end of /etc/passwd file to tell
Ingres Net to look in /etc/yppaswd for the encrypted password:

+::0:0:::

4.	 If you have additional security such as C2 security enabled on the target
machine, you must verify that the ingvalidpw executable exists in
$II_SYSTEM/ingres/bin by typing:

$ ls -l $II_SYSTEM/ingres/bin/ingvalidpw

This executable is required to make the password in the secure area
readable by Ingres.

Note: Not all Ingres UNIX releases use ingvalidpw to enforce C2 security.
If the ingvalidpw executable is required for your release, it will be
documented in the Readme file for your platform.

5.	 If the ingvalidpw executable exists:

a.	 Verify that it is owned by root. If not, log in as root and issue the
command:

$ chown root ingvalidpw

b.	 Verify that it has the “set uid” bit set. If not, issue the command:

$ chmod 4711 ingvalidpw

c.	 Verify that the Ingres variable II_SHADOW_PWD is set to the full path
to the ingvalidpw executable. Type:

$ ingprenv | grep II_SHADOW_PWD

The ingprenv utility displays the II_SHADOW_PWD variable.

6.	 If the ingvalidpw executable is not installed, create it using the mkvalidpw
script. For details, see Create Password Validation Program (UNIX) (see
page 46).

130 	Connectivity Guide

Chapter 8: Exploring Bridge

This section contains the following topics:

Ingres Bridge (see page 131)

How Bridge Is Installed (see page 134)

How Bridge Is Started (see page 134)

How the Client Is Set Up (see page 136)

Bridge Server Monitoring (see page 137)

Stop the Bridge Server (see page 138)

How a Connection Is Established Through Bridge (see page 138)

Bridge Troubleshooting (see page 139)

Sample Bridge Server Configuration (see page 140)

Ingres Bridge
Ingres Bridge is a component of Ingres that enables a client application
running on one type of local area network to access an Ingres server running
on a different type of network. The client and server do not have to
communicate over the same network protocol (such as TCP/IP, SNA LU62);
Ingres Bridge “bridges” a client using one network protocol to a server using
another.

For example, a PC on a TCP/IP network communicates through Ingres Bridge
to an EDBC server (such as DB2, IMS, or Datacom/DB) on an SNA network.

Ingres Bridge does not provide any security checking but simply passes the
messages through. Security is handled on the server in the usual way.

How the Bridge Server Works

Ingres Bridge consists of the Bridge Server.

The Bridge Server (iigcb) process connects a client application on one type of
network to a server on a different type of network. Modeled on the transport
layer of the Ingres Net architecture, the Bridge Server does the following:

� Listens for and accepts incoming connection requests and establishes
corresponding connections to a local or remote Communications Server

� Allows bi-directional data transfer over the established connections

� Terminates the connections in an orderly way

Exploring Bridge 131

Ingres Bridge

Tools for Configuring Bridge

You configure the Bridge Server using one of these utilities (based on your
environment):

� Netutil

� Visual DBA

� Ingres Visual Manager

Installation Configurations That Require Bridge

Ingres Bridge is required in any installation configuration where the client and
server processes do not reside on the same machine and the client machine is
on one type of local area network and the server machine is on another type of
network.

Ingres Bridge runs on an intermediate platform between the client and the
server; the intermediate platform must support both the client and the server
network protocols. Ingres Bridge runs as a stand-alone installation or as a part
of an Ingres client or server installation.

Ingres Star provides a similar network bridging capability. Ingres Star is
required when the user views different physical databases as a single logical
database. Ingres Bridge must be used when this is not the case, and the user
wants to connect a client and server that run on different network protocols.
Ingres Bridge has a fairly small “footprint” and has little impact on response
time.

132 Connectivity Guide

Ingres Bridge

Sample Installation Configuration Using Bridge

The following figure shows a sample installation configuration that uses Ingres
Net, Ingres Bridge, and EDBC to DB2. Ingres Bridge runs on a separate
installation on an intermediate platform.

Exploring Bridge 133

How Bridge Is Installed

Node A is an Ingres for VMS installation. Node B is an Ingres Bridge installation
in a UNIX environment using TCP/IP. Node C is an EDBC to DB2 installation in
a z/OS environment using SNA_LU62. Node A and Node C are not directly
connected to each other.

Ingres Net is present on Node A and Node C. Users on Node A can access DB2
data on Node C as if the DB2 tables were Ingres tables stored on Node A.

How Bridge Is Installed

Ingres Bridge is installed as a component of Ingres. It uses the same
installation procedure as Ingres and Ingres tools.

The component appears in the install utility as Ingres Protocol Bridge.

Note: Ingres Bridge is installed as the only component in an installation or
with other components such as Ingres Net.

How Bridge Is Started

Ingres Bridge is started by reading configuration parameter values from one of
the following:

� The config.dat file

This method gives you have the flexibility of routing the client connections
dynamically, and allows multiple routes.

To use values from config.dat, you can start Ingres Bridge using the
ingstart command or Visual Manager (if available in your environment).

� The iigcb command line options

This method requires you to stop and start Ingres Bridge if you want to
route the client connections to a different installation, and allows only a
single “from-to” route.

134 Connectivity Guide

How Bridge Is Started

config.dat File—Store Bridge Configuration

After the installation and setup phases of Ingres Bridge, default configuration
entries are defined in the config.dat file in the Ingres Bridge installation. You
can change some of the configuration parameters values by using
Configuration-By-Forms (cbf) or Configuration Manager (vcbf). These values
are then stored in the config.dat file.

Here is an example configuration entry in config.dat:

ii.<hostname>.gcb.*.tcp_ip.port.<vnode>:<listen address>

This entry means that Ingres Bridge accepts the incoming client connections
from TCP/IP on the port specified by the listen address and route them to the
DBMS Server installation defined by the vnode. The vnode name matches a
vnode name defined for the DBMS Server installation.

The vnode name must be set in config.dat before starting the server. Only the
connection information can be changed for the vnode name, which enables you
to change the routing information without stopping and starting Ingres Bridge.

Login/password (remote authorization) data for the vnode is not required
because the login data is obtained from the connecting client; only the
connection data for the server is required.

ingstart Command—Start the Bridge Server

The ingstart command starts the Bridge Server using the values in config.dat.

If Ingres Bridge is installed with other components such as Ingres Net, or has
been configured using the Configuration-By-Forms utility, use the following
ingstart command to start the Bridge Server:

ingstart -iigcb

Or start the Name Server first and the Bridge Server next, using the following
:

ingstart -iigcn

ingstart -iigcb

Exploring Bridge 135

How the Client Is Set Up

iigcb Command—Start the Bridge Server

The Bridge Server process (iigcb) can be executed from the system prompt.

This command has the following format:

iigcb -from prot -to dest_prot hostname listen_addr

prot

Is the local protocol (for example, tcp_ip).

dest_prot

Is the destination protocol (for example, SNA LU62).

hostname

Is the network name or address where the target DBMS Server and
Communications Server are located (format dependent on protocol).

listen_addr

Is the unique identifier for the Communications Server that is used for
Ingres Net connections with the destination protocol.

For example, the following command starts the Bridge Server process:

iigcb -from tcp_ip -to sna_lu62 hostname listen_addr

The following lines are displayed in the errlog.log file:

Network open complete for protocol TCP_IP, port <xx>
Network open complete for protocol SNA_LU62, port <xx>
Protocol Bridge normal startup: rev. level 1.1/02

Ingres Bridge is now ready for clients to make connections to it on the TCP/IP
port specified by the listen address in the following line in the config.dat file in
the Ingres Bridge installation:

ii.hostname.gcb.*.tcp_ip.port: listen address

How the Client Is Set Up

To enable the client machine to access remote servers through Ingres Bridge,
you must first create a vnode entry for the host machine on which Ingres
Bridge is running.

136 Connectivity Guide

Bridge Server Monitoring

vnode Definition—Enable Client Access to Remote Servers Through Bridge

The following information defines a vnode. You enter this information using
any of the Net Management tools.

Note: The Network Utility (if supported on your platform) is the preferred
means of creating vnodes in Ingres.

Virtual Node

Defines the Ingres Bridge node.

Remote Node

Identifies the network name or address of the machine on which the
Bridge Server is running.

Protocol

Specifies the Ingres keyword for the protocol used by the local client node
to connect to the remote node. For details, see Network Protocol Keywords
(see page 58).

Listen Address

Is the listen address of the Bridge Server. This address varies by protocol.
For more information, see the appropriate appendix in this guide.

Username

Is the login ID for the host machine on which the target DBMS Server is
running.

Password

Is the password associated with the login ID for the host machine on which
the target DBMS Server is running.

Bridge Server Monitoring

To determine if the Bridge Server is running, use either of the following:

� Ingres Visual Manager

� The iinamu utility's show bridge command

Exploring Bridge 137

Stop the Bridge Server

Stop the Bridge Server

You can use either the ingstop command or Ingres Visual Manager to stop the
Bridge Server.

To stop the Bridge Server using ingstop

Issue the following command at the operating system prompt:

ingstop -iigcb

How a Connection Is Established Through Bridge

When an application on one type of local area network attempts to establish a
connection to a server on a different type of network, the following sequence
of events establishes the connection:

� The application gets the local Name Server (iigcn) listen address and
connects to the local Name Server to request remote access.

� The local Name Server passes the listen address of the local
Communications Server (iigcc) and the listen address of the remote Bridge
Server (iigcb) back to the application. (The local Name Server (iigcn)
stored the remote Bridge Server’s listen address when you defined a vnode
for the remote node on which the Bridge Server is running.)

� The application connects to the local Communication Server, passing it the
remote Bridge Server’s listen address as part of the remote access
request.

� The local Communications Server connects to the remote Bridge Server.
The remote Bridge Server gets the connection data entries from the Name
Server on that instance and re-directs the connection to the
Communications Server (iigcc) on the target database’s network using the
connection data that it received from the Name Server.

� The Communications Server on the target database’s network (a different
network than that of the requesting application) finds the listen address of
the Name Server on that network’s installation. The Communications
Server requests connection information from the Name Server by passing
the name of the database for which the connection is requested.

� The Name Server returns the listen address of a DBMS Server on that
instance that is capable of servicing a request for connection to the target
database.

� The Communications Server (iigcc) connects to the DBMS Server on the
remote instance.

When these steps are completed, a virtual connection has been established
between the application and the DBMS Server through the Bridge Server.

138 Connectivity Guide

Bridge Troubleshooting

Bridge Troubleshooting

Most problems with Ingres Bridge are related to one of the following
situations:

� Network or protocol not properly installed

� The Name Server (iigcn), Communications Server (iigcc), or Bridge Server
(iigcb) process not running

� Incorrect netutil entries

� Port connection problems

To determine the origin of a problem, begin by examining the Ingres error file,
errlog.log. The Bridge Server’s startup and shutdown messages and Ingres
Bridge error messages are logged to this file. The error log is maintained in the
following file:

Windows:

%II_SYSTEM%\INGRES\FILES\ERRLOG.LOG

UNIX:

$II_SYSTEM/ingres/files/errlog.log

VMS:

II_SYSTEM:[INGRES.FILES]ERRLOG.LOG

For additional information on problems related to the Bridge Server process,
see the chapter “Troubleshooting Connectivity."

Exploring Bridge 139

Sample Bridge Server Configuration

Sample Bridge Server Configuration

The following is a sample Bridge Server setup for a client on Windows to an
EDBC for DB2 server on z/OS by means of Ingres Bridge on Solaris. The client
supports TCP/IP and the DB2 server supports SNA LU62. Ingres Bridge
supports both network protocols.

The following examples show pertinent excerpts from the files.

Client on Windows—This connection between the client and Ingres Bridge is
supported by TCP/IP. The following excerpt is for the client:

VNODE Definition:
 Virtual Node = db2gw
 Remote Node = abc
 Protocol = tcp_ip
 Listen Address = CC7 (matches Bridge listen address below)
 Username = johnm (userid in DB2 Gateway)
 Password = xxxxxx

User invokes terminal monitor:
 SQL db2gw::db23/db2

Bridge on Solaris—This connection between Ingres Bridge and the EDBC for
DB2 server is supported by SNA LU62. The following excerpt is for Ingres
Bridge:

140 Connectivity Guide

Sample Bridge Server Configuration

hostname = abc
Ingres Variables:
 II_INSTALLATION = CC
config.dat file:
 ii.abc.gcb.*.inbound_limit: 50(max concurrent sessions)
 ii.abc.gcb.*.tcp_ip.port: CC
 ii.abc.gcb.*.tcp_ip.port.bvdb2gw CC7 (Bridge listen address)

 ("bvdb2gw" is vnode for DB2 Gateway in netutil below)
 ii.abc.gcb.*.tcp_ip.status: ON
 ii.abc.gcb.*.sna_lu62.poll: 4000
 ii.abc.gcb.*.sna_lu62.port: abcgw0.sunlu62

 ("abcgw0" is gateway name in /etc/appcs below,
 "sunlu62" can be anything in this case)

 ii.abc.gcb.*.sna_lu62.status: ON
netutil entry:
 Virtual Node = bvdb2gw
 Net Address = s2 (matches unique_session_name below)
 Protocol = sna_lu62
 Listen Address = sunlu62 (anything OK here)

/etc/appcs file: (Sun SNA server config file)
 abcgw0 abc:abcgw0
Sun SNA network config file:
 :DEFINE_PARTNER_LU
 fql_plu_name = A04IS2G2 (VTAM applid for DB2 Gateway)
 u_plu_name = A04IS2G2 (VTAM applid for DB2 Gateway)
 DEFINE MODE
 mode_name = INGLU62
 unique_session_name = s2
System Administrator starts the Name Server and Bridge Server
 ingstart -iigcn
 ingstart -iigcb

Server on z/OS—The following excerpt is for the server:

VTAM Config:
 Applid for DB2 Gateway = A04IS2G2
 Acbname for DB2 Gateway = IIS2GWS2

DB2 Gateway IIPSERV file:
 IIPSERV TYPE=SNA_LU62,

INSTALL=S2,
ACB=IIS2GWS2,
LOGMODE=INGLU62,

DB2 Gateway IIPARM file:
 II_PROTOCOL_SNA_LU62 = YES

Exploring Bridge 141

Chapter 9: Configuring the Data Access
Server

This section contains the following topics:

Data Access Server (see page 143)

Data Access Server Parameters—Configure DAS (see page 144)

How You Enable Data Access Server Tracing (see page 146)

Data Access Server

The Data Access Server (DAS) process (iigcd) is a component of the General
Communications Architecture (GCA) and runs as part of a standard Ingres
instance.

The server translates JDBC or .NET Data Provider requests from the Ingres
JDBC Driver or the .NET Data Provider into Ingres internal format and forwards
the request to the appropriate DBMS server. The DAS supports the same
network protocols and port designations as the Communications Server.

Through the DAS, a JDBC or .NET Data Provider client has full access to
Ingres, Enterprise Access, and EDBC databases. Using Net, the DAS can also
provide JDBC or .NET Data Provider clients with access to these databases on
remote machines.

Configuring the Data Access Server 143

Data Access Server Parameters—Configure DAS

Data Access Server Parameters—Configure DAS

To configure the DAS, use the Data Access Server Parameters page in
Configuration-By-Forms (cbf) or Configuration Manager (vcbf).

The DAS has the following configurable parameters:

client_max

Defines the maximum number of concurrent client connections permitted.
Set to –1 for no limit.

client_timeout

Defines the time, in minutes, to wait for client requests. If the time expires

with no request from the client, the client and DBMS Server connections

are aborted.

Set to 0 for no timeout.

connect_pool_expire

Defines the time, in minutes, for which a DBMS Server connection remains

in the connection pool. The connection is aborted if a pooled connection is

not used in this amount of time.

Set to 0 for no expiration.

connect_pool_size

Defines the maximum number of DBMS Server connections held in the

connection pool.

Set to –1 for no limit.

connect_pool_status

Specifies the operational mode of the connection pool. Modes are:

on

Enables pooling unless explicitly disabled by the client. The DAS saves
and reuses DBMS Server connections when connection pooling is
enabled.

off

Disables pooling.

optional

Enables pooling but only when requested by the client.

144 Connectivity Guide

Data Access Server Parameters—Configure DAS

<protocol>.port

Identifies the listen address for the network protocol port. This can be a
numeric port identifier or an Ingres symbolic port identifier such as II7.
This port must not be used by any other network server on the platform.

The symbolic port ID has the following syntax:

XY{n}{+}

where

� X is an alphabetic character

� Y is an alphanumeric character

� n is a subport in the range 0 to 15. A leading 0 is permitted in the
subport (for example: II09 is interpreted as II9).

� + indicates that a port ID can be rolled up.

If the DAS startup count is specified as greater than 1, CBF automatically
adds a + designator to the port identifier. When listen attempts are made
on such a port identifier, the address is incremented (rolled up) and a
listen attempt is made on the next address. This allows for connection
attempts to multiple Data Acccess Servers.

<protocol>.status

Specifies the status of the network protocol. Options are:

on

Indicates that the DAS must listen to (accept) connection requests on
the protocol.

off

Disables the protocol.

Configuring the Data Access Server 145

How You Enable Data Access Server Tracing

How You Enable Data Access Server Tracing

Because the DAS (iigcd) is a GCA-based server, it is a companion to the Ingres
Name Server (iigcn) and the Communications Server (iigcc), and supports GCA
tracing and other similar module tracing.

To enable DAS tracing, use any of these methods:

� Add entries to the Ingres configuration file (config.dat) in the gcd section.
This method is preferred because it allows trace output from multiple
servers to be logged in the same file.

� Set the environment variables prior to starting the server.

� Enable tracing dynamically by using the iimonitor set trace command. This
command overrides trace settings in the config.dat and environment
variables. For details, see the iimonitor set trace command in the
Command Reference Guide.

As a general rule, use the config.dat file for server tracing and the
environment variables for client tracing.

The entries or values you must supply are as follows:

Configuration
File Entry

Environment
Variable

Value Description

gcd_trace_log II_GCD_LOG log Path and file name of the
trace log

gcd_trace_level II_GCD_TRACE 0 – 5 Tracing level for the DAS

Tracing Levels

The tracing level determines the type of information that is logged. The
following levels are currently defined:

1 – Errors and exceptions

2 – High level method invocation

3 – High level method details

4 – Low level method invocation

5 – Low level method details

146 Connectivity Guide

Chapter 10: Understanding ODBC
Connectivity

This section contains the following topics:

ODBC Driver (see page 147)

ODBC Call-level Interface (see page 148)

Unsupported ODBC Features (see page 149)

Read-Only Driver Option (see page 149)

ODBC Driver Requirements (see page 149)

Configure a Data Source (Windows) (see page 153)

Configure a Data Source (UNIX and VMS) (see page 155)

Connection String Keywords (see page 156)

ODBC CLI Implementation Considerations (see page 158)

Supported Applications (see page 159)

ODBC Programming (see page 160)

Ingres ODBC and Distributed Transactions (Windows) (see page 211)

ODBC Trace Diagnostics (see page 214)

This chapter introduces the Ingres ODBC components that enable ODBC
connectivity to Ingres data sources. It provides a description of each
component, a list of supported API features, data source configuration
instructions, connection string keyword definitions, and guidelines for
implementing ODBC-enabled applications in the Ingres environment.

ODBC Driver

The Ingres ODBC driver (subsequently referred to as the ODBC driver) enables
ODBC-enabled applications to access Ingres, Enterprise Access, and EDBC
databases. The driver is installed as part of a standard Ingres client installation
or as a stand-alone product.

Understanding ODBC Connectivity 147

ODBC Call-level Interface

ODBC Call-level Interface

The Ingres ODBC Call-level Interface (ODBC CLI) provides access to the ODBC
application environment without the need to use third-party software. It is
installed when you install the Ingres ODBC Driver and is supported on all
platforms on which Ingres runs.

The Ingres ODBC CLI performs the following functions:

� Optionally determines driver characteristics from ODBC configuration files

� Loads and unloads the ODBC driver into and from application memory

� Maps the driver manager API to the driver API

� Performs basic error checking

� Provides thread safety

� Provides ODBC tracing

� Provides function templates, type definitions, and constant definitions for
ODBC applications

� Provides connection pooling, which allows connections to be shared in
ODBC applications.

Note: The ODBC CLI is not a generic ODBC driver manager. While it does
provide functions similar to other ODBC driver managers, it is designed
specifically to support ODBC-based application access to the Ingres 3.5 ODBC
driver. It does not support Ingres ODBC drivers provided by third-party
vendors.

The ODBC CLI is available on all supported platforms except Windows. The
iiodbcadmin utility configures ODBC Data Source Definitions for the CLI. For
more information, see Configure a Data Source (UNIX and VMS) (see
page 155).

148 Connectivity Guide

Unsupported ODBC Features

Unsupported ODBC Features

The ODBC driver does not currently support the following features:

� Executing functions asynchronously

� Translation DLL (Ingres handles this requirement through the
II_CHARSETxx environment variable.)

� The GUID (Globally Unique Identifier) data type, which is specific to
Microsoft Access databases.

� Installer DLL

On Windows, the Microsoft installer DLL can be used to install the Ingres
ODBC driver, if required. The Ingres ODBC driver can be installed from the
Ingres installer software or the Ingres ODBC Standalone Patch Installer.

On non-Windows platforms, the odbcinst and iisuodbc utilities use the
Ingres ODBC Configuration API to configure driver information.

� SQLBulkOperations()

Read-Only Driver Option

To support the release of a non-configurable read-only driver into production
environments, the ODBC driver can optionally be installed as a read-only
driver. This driver allows SQL statements such as SELECT, EXECUTE
PROCEDURE, and ODBC CALL, but does not allow update statements (for
example, INSERT, DELETE, UPDATE, CREATE, and so on).

Both ODBC drivers (read-only and read/update) are installed during the
standard Ingres installation. Selection of the driver type is performed during
configuration of an ODBC data source. For more information, see Configure a
Data Source (Windows) (see page 153) and Configure a Data Source (UNIX
and VMS) (see page 155).

ODBC Driver Requirements

The following sections list the ODBC driver software, platform, and protocol
requirements. For additional information relating to the ODBC driver, see
http://www.ingres.com. The Ingres ODBC CLI and Driver Manager are
packaged with every Ingres release and service pack. ODBC patches are also
available from Ingres Support.

Understanding ODBC Connectivity 149

http://www.ingres.com

ODBC Driver Requirements

ODBC Driver Manager Programs

The following are the installation requirements for the ODBC driver.

Windows: Microsoft's ODBC Driver Manager must be installed to use the
ODBC driver (release 2.5 or above of the ODBC Driver Manager is acceptable).
If the existing Windows installation has no ODBC Administrator or ODBC
driver, these items can be downloaded as part of the Microsoft Data Access
SDK (MDAC) from http://www.microsoft.com.

UNIX and VMS: The Ingres ODBC CLI is the preferred ODBC driver manager
if no other ODBC drivers are required. No additional download is required. The
only requirement for installation is to execute the utility iisuodbc. The iisuodbc
utility provides configuration information to Ingres and creates an ODBC
configuration file.

If the ODBC application requires non-Ingres ODBC drivers, unixODBC Driver
Manager can be installed to use the Ingres ODBC driver. The unixODBC Driver
Manager is often included with Linux or UNIX installations or can be
downloaded from http://www.unixodbc.org. The download includes a Readme
file with instructions for UNIX, Linux, and VMS.

150 Connectivity Guide

http://www.microsoft.com
http://www.unixodbc.org

ODBC Driver Requirements

UnixODBC Implementation Considerations

The Ingres ODBC driver can be used with the unixODBC Driver Manager on
non-Windows platforms. Unlike the Ingres ODBC CLI, the unixODBC Driver
Manager allows other ODBC drivers to be used in addition to the Ingres ODBC
driver. To build the application, the include files sql.h and sqlext.h files in
$II_SYSTEM/ingres/files can be used; alternatively, the include files sql.h,
sqlext.h, sqltypes.h, and sqlucode.h provided with the unixODBC installation
can be used.

UnixODBC data sources can be configured using the Ingres ODBC
Administrator, just as for the Ingres ODBC CLI. Unlike the CLI, the ODBCINI
and ODBCSYSINI environment variables must be specified if the locations for
the odbc.ini and odbcinst.ini files differ from the default locations. For more
information about ODBCINI and ODBCSYSINI in the unixODBC environment,
see the unixODBC documentation.

Linux: Here is an example for building a unixODBC application on Linux:

cc -c myOdbcApp.c /I/disk1/unixODBC-2.2.12/include
ld -o myOdbcApp myOdbcApp.o -L/disk1/unixODBC-2.2.12/DriverManager -lodbc

VMS: Here is an example for building a unixODBC application on VMS:

$ cc/nowarn/name=as_is/nodeb/float=ieee/opt/include=DKA0:[TESTENV.UNIXODBC
2.2.3.INCLUDE]-
 odbctest.c
$ lin/nodeb/exe=odbctest_unixodbc.exe odbctest.obj, sys$input/opt
CASE_SENSITIVE=YES
sys$share:ODBC.EXE/share
SYS$LIBRARY:PTHREAD$RTL.EXE/SHARE

Notes:

�	 The “as_is” qualifier is required for compiling and the
“CASE_SENSITIVE=YES” qualifier is used for unixODBC. This means that
the ODBC function entry points are case-sensitive, which is the default for
unixODBC on VMS.

�	 For successful loading of the Ingres ODBC Driver,
SYS$LIBRARY:PTHREAD$RTL.EXE must be included when the unixODBC
image is linked. Multi-threading, however, is not currently supported for
the Ingres ODBC driver on VMS.

Understanding ODBC Connectivity 151

ODBC Driver Requirements

Support for Previously Released ODBC Drivers

Each release of Ingres requires a compatible ODBC driver.

For Ingres 2006 and higher, the Ingres ODBC Driver 3.5 is required. For
previous releases, either ODBC 3.5 or ODBC 2.8 is supported. Prior to Ingres
2006, there is no Ingres ODBC CLI on UNIX; the unixODBC Driver Manager is
required.

The Ingres ODBC driver is installed with the driver names “Ingres” and “Ingres
2006”. Non-Windows platforms allow for custom driver names. This is done for
backward compatibility with prior releases of Ingres that may be installed on
the same machine. Previous driver names include “Ingres 3.0” (the first
release of Ingres 2006) and “Ingres 2.6”. Thus, the driver name “Ingres” will
always reference the most recent installation of the Ingres ODBC driver.

Backward Compatibility Issues for ODBC DSN Definitions

On UNIX, Linux, and VMS, the ODBC driver is loaded automatically from the
“library” directory on Ingres, regardless of the ODBC DSN definition.

On Windows, the path of the ODBC driver remains hard-coded in the registry.
Thus, the ODBC DSN definitions must be refreshed if Ingres is installed in a
different location than the previous installation.

152 Connectivity Guide

Configure a Data Source (Windows)

Configure a Data Source (Windows)

A data source configuration is a collection of information that identifies the
database you want to access using the ODBC driver. You can configure as
many data sources as you require. Once defined, a data source is available for
use by any application that uses ODBC.

ODBC data sources are a convenient way of connecting to a database. You
can, however, connect to a database without them by using only a connection
string. For details, see Connection String Keywords (see page 156).

Note: On 64-bit Windows, when creating a new data source using the ODBC
Data Source Administrator, the Ingres ODBC driver does not appear in the list
of drivers on the User DSN or System DSN tab. The Ingres ODBC driver is a
32-bit driver and appears only in the 32-bit ODBC Data Source Administrator.
The ODBC Data Source Administrator shortcut in the Control Panel is a 64-bit
shortcut and will bring up 64-bit ODBC Data Source Administrator and only
display the 64-bit drivers.

To bring up the 32-bit ODBC Data Source Administrator, which will list the
Ingres ODBC driver, run c:\windows\SysWow64\odbcad32.exe.

To configure a new data source on Windows

1. Run the ODBC Data Source Administrator provided on Windows.

To do this on Windows XP, click Start, Control Panel, Administrative Tools,
Data Sources (ODBC).

The ODBC Data Source Administrator is displayed:

Understanding ODBC Connectivity 153

Configure a Data Source (Windows)

You can define one or more data sources for each installed driver. The data
source name must provide a unique description of the data; for example,
Payroll or Accounts Payable.

A data source can be defined as system or user, depending on whether it
must be visible to all users (and services) or only the current user.

2.	 Select the User DSN or the System DSN tab, depending on your
requirements, and click Add.

Note: A system DSN pointing to a public server definition is required for
Microsoft Internet Information Server (IIS) and Microsoft Transaction
Server (MTS).

The Create New Data Source dialog opens, which lists all the ODBC drivers
installed on your system.

Note: To switch ODBC DSNs defined previously for the ODBC 2.8 driver to
the new ODBC 3.5 driver, remove the DSN by selecting it in the ODBC
Data Source Administrator Data Sources list, and clicking Remove. Add the
DSN again using the new ODBC driver.

3.	 Select the Ingres driver and click Finish.

The Ingres ODBC Administrator dialog opens.

Fill in the necessary fields on this dialog. For details, see the online help.

154 	Connectivity Guide

Configure a Data Source (UNIX and VMS)

Configure a Data Source (UNIX and VMS)

A data source configuration is a collection of information that identifies the
database you want to access using the ODBC driver. You must configure a data
source before connecting to a database through ODBC.

To configure a new data source on UNIX and VMS

Run the Ingres ODBC Administrator utility, iiodbcadmin.

iiodbcadmin Utility

The Ingres ODBC Administrator (iiodbcadmin) utility lets you perform the

following tasks:

� Create, edit, and remove data sources

� Perform configuration tasks for each installed driver, including:

– Turn on ODBC tracing

– Define the path of the driver

– View details about the configuration

– Set configuration options, such as connection pooling timeout

� Test a data source connection

For details, see the Ingres ODBC Administrator online help.

Understanding ODBC Connectivity 155

Connection String Keywords

Connection String Keywords

If your application requires a connection string to connect to a data source,
you must specify the data source name. Optionally, you can specify
attribute=value pairs to override certain data source and vnode definitions.
The ODBC function SQLDriverConnect() or SQLDriverConnectW() is required
for connection strings.

The connection string has the form:

DSN=data_source_name[;attribute=value[;attribute=value]...]

Alternatively, you can bypass data source definitions entirely if you include
sufficient information in the connection string. The minimum attributes in this
case are the SERVER, SERVERTYPE, and DATABASE attribute=value pairs.

Connection strings that bypass the DSN definition have the form:

CONNECTSTR=SERVER=server_name; SERVERTYPE=server_type;
DATABASE=database;[attribute=value]...]

The following table provides the keywords for each connection string attribute.

Keyword Attribute Value Description

DSN Data source name.

DRIVER Driver description as returned by SQLDrivers().

UID User ID to override vnode definition. If specified,
PWD must also be specified.

PWD

DBMS_PWD

SERVER

SERVERTYPE

Password to override vnode definition. If
specified, UID must also be specified.

Database password. Database passwords are
defined by the accessdb or VDBA utilities or by
the CREATE USER SQL command.

Although supported as a connection string
attribute, DBMS_PWD is not supported as a DSN
configuration attribute.

 Vnode name.

Server type (for example, INGRES, IDMS, or
DB2).

DATABASE Database name as defined on the server.

DB A synonym for DATABASE.

156 Connectivity Guide

Connection String Keywords

Keyword Attribute Value Description

ROLENAME Role name to override vnode definition.

ROLEPWD Role password to override vnode definition.

GROUP Group identifier for the session. Equivalent to
the -G flag of the Ingres command-line flags.

BLANKDATE =NULL
Indicates that the driver must return empty
string DATE values as NULL.

DATE1582 =NULL
Indicates that the driver must return values of
‘1582-01-01’ as NULL.

DATE Same as DATE1582 keyword.

SELECTLOOPS =N
Indicates that Cursor Loops must be used.

CATCONNECT =Y
Indicates that a second separate Ingres session
must be used for catalog functions (SQLTables,
and so on).

NUMERIC_ OVERFLOW =IGNORE
Indicates that no error is issued if an arithmetic
error of numeric overflow, underflow, or divide
by zero occur.
Equivalent to “-numeric_overflow=ignore”
command line flag.

CATSCHEMANULL =Y
Returns NULL for schema names from ODBC
catalog functions.

CONVERTINT8TOINT4 =Y
Coerces eight-byte (i8) integer values from the
DBMS to four-byte (i4).

ALLOWUPDATE =Y
Allows updates on sessions set to read-only.

DEFAULTTOCHAR =Y
Treats Unicode strings as "standard" (multi­
byte) strings.

DISABLEUNDERSCORE =Y
Disables underscore wildcard search characters
in catalog function.

Understanding ODBC Connectivity 157

ODBC CLI Implementation Considerations

ODBC CLI Implementation Considerations

The ODBC CLI includes two include files for compiling applications:

� sql.h

� sqlext.h

These files can be found at $II_SYSTEM/ingres/files.

Other standard ODBC includes libraries, such as sqlucode.h or sqltypes.h, are
already included within the ODBC CLI version of sql.h and sqlext.h.

UNIX and Linux: The ODBC CLI is installed as the shared library
libiiodbc.[ext]. Depending on the UNIX or Linux implementation, the library
extension ([ext]) varies. The library resides in $II_SYSTEM/ingres/lib.

Here is an example for building an ODBC CLI application on Linux:

cc -c myOdbcApp.c -I$II_SYSTEM/ingres/files
ld -o myOdbcApp myOdbcApp.o -L$II_SYSTEM/ingres/lib -liiodbc.1

VMS: The library is named ODBCCLIFELIB.EXE and resides in
II_SYSTEM:[INGRES.LIBRARY].

ODBC CLI applications link against the appropriate shared library. The logical
II_ODBC_CLILIB references the Ingres ODBC CLI library. The II_ODBC_CLILIB
library is defined by the iisuodbc utility.

ODBC applications can be coded using the ODBC Command Line Interface
exactly as if coded with the Microsoft ODBC Driver Manager library or
unixODBC Driver Manager library.

Here is an example for building an ODBC CLI application on VMS:

$ CC/nowarn/include=ii_system:[ingres.files] myApp.c
$ LINK myApp.obj, sys$input/opt
ii_odbc_clilib/share

Configuration on UNIX, Linux, and VMS

Before using the ODBC CLI, the utility iisuodbc must be executed. Iisuodbc
configures Ingres with the appropriate name of the ODBC driver library and
creates the ODBC configuration file, odbcinst.ini. For more information, see
Configure a Data Source (UNIX and VMS) (see page 155).

158 Connectivity Guide

Supported Applications

Optional Data Source Definitions

The use of odbcinst.ini, odbc.ini or the ODBC configuration registry is optional
for the ODBC CLI. An application can invoke SQLDriverConnect() and specify a
connection string that omits an ODBC Data Source (DSN) specification.

If the connection string has sufficient information to connect to the database,
the location and name of the ODBC driver library are automatically
determined. The use of the iiodbcadmin utility (UNIX, Linux, and VMS) or
Microsoft ODBC Administrator (Windows) is optional.

Supported Applications

The Ingres ODBC driver is compatible with many database applications that
use ODBC. Little or no knowledge of ODBC is required to use these
applications.

The following list is a sample of applications and application languages that can
be used with the Ingres ODBC Driver:

� Microsoft Access

� Microsoft Excel

� Open Office Base

� Microsoft ADO using OLE DB and ODBC

� Microsoft .NET Data Provider for ODBC (ODBC.NET)

� Microsoft .Net Data Provider for ADO using OLE DB and ODBC

� Microsoft ASP Web Pages

� Ingres Python DBI Driver

� JDBC/ODBC Bridge

� PHP ODBC Interface

� Business Objects Crystal Reports

� Microsoft Query

For detailed information on using these technologies, see the Ingres
Community Wiki ODBC section.

Understanding ODBC Connectivity 159

ODBC Programming

ODBC Programming

If you are proficient in the C programming language, you can call ODBC
routines directly. The Ingres ODBC driver supports all platforms (operating
systems) that Ingres supports, so this is an option if you want to run your
ODBC application on more than one platform.

Low-level ODBC applications can be more efficient than higher-level
applications, since the layers of software between your application and the
data are reduced. The disadvantage of low-level ODBC applications is that less
of the work is automated, and the interface is less intuitive than a higher-level
application interface such as ADO or the .NET Data Provider for ODBC.

The following functional overview examines some of the ODBC function calls
and discusses issues specific to the Ingres environment.

ODBC Handles

ODBC handles store the environment of ODBC execution components. The
components that the handles describe are not visible to the ODBC application,
but they are visible internally in the ODBC driver.

There are four types of ODBC handles:

� Environment handles describe the general ODBC runtime environment.

� Connection handles describe the ODBC environment specific to individual
connections.

� Statement (query) handles describe the ODBC environment for queries.

� Descriptor handles describe metadata information related to result sets.

SQLAllocHandle() allocates ODBC driver resources for these four types of
handles. The format of SQLAllocHandle() is:

SQLAllocHandle(HandleType, ParentHandle, Handle)

HandleType

Specifies the type of handle to be allocated.

ParentHandle

Specifies the handle with which the allocated handle is associated.

Handle

Identifies the handle itself.

160 Connectivity Guide

ODBC Programming

How ODBC Applications Connect to a Database

ODBC applications are never linked directly against the ODBC driver DLL or
shared library. Instead, the applications are linked against the ODBC Driver
Manager, which can be the Microsoft ODBC Driver Manager, the unixODBC
Driver Manager, or the Ingres ODBC CLI.

The ODBC application has no knowledge of the driver until a connection is
made. During a successful connection, the Ingres ODBC driver is dynamically
loaded into the program image. After loading, the functions called in the ODBC
application are passed down to the driver implementation of the function. In
this way, the same ODBC application can be used with different ODBC drivers,
and thus can be used with a variety of different databases. This portability is a
principal aim of ODBC.

The Ingres ODBC driver is designed to work from a driver manager such as
unixODBC or the Ingres ODBC CLI. Applications link with the driver manager.
The Ingres ODBC driver is loaded into the driver manager when the first
connection is made to a database. One can theoretically link directly with the
Ingres ODBC driver, leaving out the driver manager, but this is not supported
and may yield unpredictable results.

The Ingres ODBC Driver, the Ingres ODBC CLI, and the unixODBC Driver
Manager are implemented as shared libraries on UNIX, but the names vary
according to platform conventions. For example, on Linux, for 32-bit Ingres:
the Ingres ODBC Driver is implemented as
$II_SYSTEM/ingres/lib/libiiodbcdriver.1.so and libiiodbcdriverro.1.so, and the
Ingres ODBC CLI is implemented as libiiodbc.1.so.

SQLConnect()—Connect Using a Data Source Name

SQLConnect() allows you to connect to the database using connection
attributes stored in the ODBC Data Source Name (DSN) definition. See
Configure a Data Source (Windows) (see page 153) and Configure a Data
Source (UNIX and VMS) (see page 155) for information about creating an
ODBC DSN definition.

The following program is the minimum code required for:

� Initializing ODBC driver

� Setting the ODBC version to version 3

� Connecting to the database

� Disconnecting from the database

� Cleaning up and exiting

Understanding ODBC Connectivity 161

http:libiiodbcdriverro.1.so
http:libiiodbc.1.so

ODBC Programming

Example: SQLConnect() Function

ifdef _WIN32

include <windows.h>

else

include <stdio.h>

include <stdlib.h>

endif

include <sql.h>

include <sqlext.h>

main()

{

HENV henv = NULL;
HDBC hdbc = NULL;

/* Initialize the ODBC environment handle. */
SQLAllocHandle(SQL_HANDLE_ENV, NULL, &henv);

/* Set the ODBC version to version 3 (the highest version) */
SQLSetEnvAttr(henv, SQL_ATTR_ODBC_VERSION,

 (void *)SQL_OV_ODBC3, 0);

/* Allocate the connection handle. */
SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);

/* Connect to the database using the ODBC DSN definition. */
SQLConnect(hdbc, /* Connection handle */

 (SQLCHAR *)"myDSN", /* The ODBC DSN definition */
 SQL_NTS, /* This is a null-terminated string */
 (SQLCHAR *)NULL, /* No username required */
 SQL_NTS, /* This is a null-terminated string */
 (SQLCHAR *)NULL, /* No password required */
 SQL_NTS); /* This is a null-terminated string */

/* Disconnect from the database. */
SQLDisconnect(hdbc);

/* Free the connection handle. */
SQLFreeHandle(SQL_HANDLE_DBC, hdbc);

/* Free the environment handle. */
SQLFreeHandle(SQL_HANDLE_ENV, henv);

/* Exit this program. */
return(0);

}

If your login name is a valid Ingres user for a local Ingres database, the above
code is all you need to connect through SQLConnect(). See the ODBC User
Authorization section for a discussion on authorizing yourself as another user.

162 Connectivity Guide

ODBC Programming

Other details of the connection, such as the database name and type of
database, are pre-defined in the ODBC DSN definition referenced by the string
“myDSN”.

Note that SQLAllocHandle() was invoked to initialize the environment handle
and that SQLSetEnvAttr() sets the ODBC version to SQL_OV_ODBC3. These
two calls are necessary to initialize your ODBC application as an ODBC level 3
driver. The default is ODBC level 2. It is advisable to initialize as version 3
because some ODBC level 3 functions, such as the treatment of date and time
values, depend on the ODBC version being set at level 3.

Understanding ODBC Connectivity 163

ODBC Programming

SQLDriverConnect()—Connect without Using a Data Source Name

You can bypass ODBC DSN information completely if you use the
SQLDriverConnect() function instead of SQLConnect(). SQLDriverConnect()
uses a connection string instead of an ODBC DSN definition; the odbc.ini file is
not used unless the DSN connection string attribute is specified in the
connection string.

Connection strings are typically used in higher-level languages that use ODBC,
such as:

� Microsoft ADO

� Microsoft OLE DB Provider for ODBC

� Microsoft .NET Data Provider for ODBC

� PHP ODBC interface

� Python DBI driver

� JDBC/ODBC Bridge

An ODBC connection string is structured as a set of “attribute, value” pairs in
the following abstract:

connectStr = attribute=value[;attribute=value[;...]]

Each set of “attribute, value” pairs is separated by a semicolon (“;”). No
spaces or other separators, such as <TAB>, are allowed between semicolons
and the next attribute pair.

The attribute pair “DSN=myDSN” causes SQLDriverConnect() to search for an
ODBC DSN specification just as in SQLConnect(). However, other connection
attributes specified in the connection string override any similar specification in
the ODBC DSN definition.

SQLDriverConnect() requires you to provide the following minimum connection
attributes:

� Database

� Type of driver

� Type of database (Ingres, SQLServer, Oracle, etc.)

� Server. In Ingres terms, the server is the name of a vnode definition in
neutil, ingnet, or VDBA. If you are connecting locally, the default string
name “(local)” indicates a local connection.

The following program using SQLDriverConnect() performs exactly the same
function as the previous code example.

164 Connectivity Guide

ODBC Programming

Example: SQLDriverConnect() Function

ifdef _WIN32

include <windows.h>

else

include <stdio.h>

include <stdlib.h>

endif

include <sql.h>

include <sqlext.h>

main()

{

HENV henv=NULL;
HDBC hdbc=NULL;
SQLCHAR connectString[256];

/* Initialize the ODBC environment handle. */
SQLAllocHandle(SQL_HANDLE_ENV, NULL, &henv);

/* Set the ODBC version to version 3 (the highest version) */
SQLSetEnvAttr(henv, SQL_ATTR_ODBC_VERSION,

 (void *)SQL_OV_ODBC3, 0);

/* Allocate the connection handle. */

SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);

/*

** Fill the connection string with the minimum

** connection information.

*/

strcpy(connectString, "driver={Ingres};servertype=Ingres;" \

 "server=(local);database=myDB");

/* Connect to the database using the connection string. */
SQLDriverConnect(hdbc, /* Connection handle */

0, /* Window handle */
 connectString, /* Connection string */
 SQL_NTS, /* This is a null-terminated string */
 (SQLCHAR *)NULL, /* Output (result) connection string */
 SQL_NTS, /* This is a null-terminated string */
0, /* Length of output connect string */
 SQL_DRIVER_NOPROMPT); /* Don’t display a prompt window */

/* Disconnect from the database. */
SQLDisconnect(hdbc);

/* Free the connection handle. */
SQLFreeHandle(SQL_HANDLE_DBC, hdbc);

/* Free the environment handle. */
SQLFreeHandle(SQL_HANDLE_ENV, henv);

/* Exit this program. */
return(0);

}

Understanding ODBC Connectivity 165

ODBC Programming

The example above applies to Windows programs. On UNIX, Linux, and VMS, if
you are using the Ingres ODBC CLI, only the database name is required as the
minimum connection attribute:

strcpy(connectString, "database=myDB");

The Ingres ODBC CLI assumes that the driver type is “Ingres”, the server type
is “Ingres”, and that the server is “(local)” if you do not so specify.

A complete list of ODBC connection attributes and values is available in the
Connection String Keywords (ODBC) section.

Connect Using Dynamic Vnode Definitions

Vnode definitions allow applications to connect to databases over the network.
The "server" connection string attribute equates to the vnode name.

Normally, you use VDBA, ingnet or netutil to define the vnode name and
network connections, similar to ODBC DSN definitions. However, both DSN and
vnode definitions may be bypassed as shown in the following example code
snippet:

strcpy(connectString, "driver=Ingres;servertype=ingres;" \
"server=@myHostname.myDomain.com,tcp_ip,II;" \
"uid=myUserName;pwd=myPassword;database=myDatabase");

The above connection string is an example of dynamic vnode definitions
discussed in the Using Net chapter of this guide. The example shows that the
ODBC can connect to a database without pre-defining any connection
information.

Note: When you use dynamic vnode definitions in your connection string, you
must specify the "uid" (user name) and "pwd" (password) connection
attributes.

ODBC User Authentication

There are several methods for authorizing users from within ODBC
applications.

166 Connectivity Guide

ODBC Programming

User Name and Password

SQLConnect() and SQLDriverConnect() allow your application to specify a user
(login) name and password. For example:

SQLConnect(hdbc, /* Connection handle */
(SQLCHAR *)"myDSN", /* The ODBC DSN definition */
 SQL_NTS, /* This is a null-terminated string */
(SQLCHAR *)"myUserName", /* Local user name */
 SQL_NTS, /* This is a null-terminated string */
(SQLCHAR *)"myPassword, /* Local password */
 SQL_NTS); /* This is a null-terminated string */

In SQLDriverConnect(), the "uid" and "pwd" attributes specify the local user
name and local password, respectively.

Specification of the user name and password authorizes the ODBC application
to act as it were logged in to the local machine as that user. This is true even if
the ODBC DSN definition specifies a network connection to another machine. If
you specify an invalid user name or password, the connection fails regardless
of whether the connection target is local or over the network.

Ingres Super Users

An Ingres user with security administrator privileges can assume the identity
of other users without having to provide a password. Such users are called
Ingres "super" users, as in Linux and Unix notation. An example in
SQLConnect() follows:

SQLConnect(hdbc, /* Connection handle */
(SQLCHAR *)"myDSN", /* The ODBC DSN definition */
 SQL_NTS, /* This is a null-terminated string */
(SQLCHAR *)"altUserName", /* Alternate username */
 SQL_NTS, /* This is a null-terminated string */
(SQLCHAR *)NULL, /* No password required */
 SQL_NTS); /* This is a null-terminated string */

The example code allows the ODBC application to authorize as "altUserName"
without a password. In functional terms, this is the equivalent to the -u flag in
Terminal Monitor.

Note: The local user name must be an Ingres super user when connecting
locally. If connecting remotely, the user name defined in netutil for the target
vnode must be an Ingres super user.

Understanding ODBC Connectivity 167

ODBC Programming

Installation Passwords

SQLConnect() and SQLDriverConnect() may be used with installation
passwords. The following code example demonstrates the use of installation
passwords with SQLDriverConnect(). Note that the user name and password
are not specified.

strcpy(connectString, "driver={Ingres};servertype=Ingres;" \
 "server=vnodeDef;database=remoteDB");

SQLDriverConnect(hdbc, /* Connection handle */
0, /* Window handle */
 connectString, /* Connection string */
 SQL_NTS, /* This is a null-terminated string */
 (SQLCHAR *)NULL, /* Output (result) connection string */
 SQL_NTS, /* This is a null-terminated string */
0, /* Length of output connect string */
 SQL_DRIVER_NOPROMPT); /* Don't display a prompt window */

If the ODBC application executes in the local "ingres" account, the target Name
Server authenticates "ingres" using the installation password for the target
database. You may not use installation passwords for a local database unless
the connection is done via a vnode definition.

The Ingres super user concept applies to installation passwords. Ingres super
users can specify alternate user names, but do not need to supply passwords,
as shown in the following SQLConnect() example:

SQLConnect(hdbc, /* Connection handle */
 (SQLCHAR *)"myDSN", /* The ODBC DSN definition */
 SQL_NTS, /* This is a null-terminated string */
 (SQLCHAR *)"altUserName", /* Alternate username */
 SQL_NTS, /* This is a null-terminated string */
 (SQLCHAR *)NULL, /* No password required */
 SQL_NTS); /* This is a null-terminated string */

The example above assumes "myDSN" references a vnode definition.

168 Connectivity Guide

ODBC Programming

DBMS Passwords

DBMS passwords are extra passwords defined for Ingres users and maintained
in the Ingres database. When an Ingres user account is associated with a
DBMS password, the correct DBMS password must be supplied as a connection
parameter, otherwise the connection attempt will be rejected.

DBMS passwords in the DSN definition in odbc.ini are not supported. The
Ingres ODBC driver supports DBMS passwords only through
SQLDriverConnect(), as shown in the following example:

/*

** The "dbms_pwd" connection attribute specifies the DBMS password.

*/

strcpy(connectString, "driver={Ingres};servertype=Ingres;" \

 "server=(local);database=myDB;uid=myUserName; \
 "pwd=myPassword;dbms_pwd=myDBMS_password);

SQLDriverConnect(hdbc, /* Connection handle */
0, /* Window handle */
 connectString, /* Connection string */
 SQL_NTS, /* Nll-terminated string */
 (SQLCHAR *)NULL, /* Output connection string */
 SQL_NTS, /* N=ull-terminated string */
0, /* Length of output connect string */
 SQL_DRIVER_NOPROMPT); /* No prompt window */

Understanding ODBC Connectivity 169

ODBC Programming

Kerberos

User name or password specifications are not required in a Kerberos
authentication environment, as shown in the following example:

SQLConnect(hdbc, /* Connection handle */
(SQLCHAR *)"myDSN", /* The ODBC DSN definition */
 SQL_NTS, /* This is a null-terminated string */
(SQLCHAR *)NULL, /* No username required */
 SQL_NTS, /* This is a null-terminated string */
(SQLCHAR *)NULL, /* No password required */
 SQL_NTS); /* This is a null-terminated string */

For Kerberos authentication to succeed, the following requirements must be
met:

�	 Kerberos must be installed and configured on the Kerberos client and
Kerberos KDC (Kerberos Domain Controller).

�	 The current login session must have valid Kerberos tickets obtained via the
"kinit" command or from a Kerberos authorization utility such as Leash on
Windows.

�	 An Ingres service principal name must be defined with keytabs defined in a
Kerberos keytab file.

�	 Kerberos must be configured for Ingres via the "iisukerberos" command
and possibly the CBF utility.

�	 The ODBC DSN definition "myDSN" must reference a vnode definition,
regardless of whether the connection is to a local or remote database.

�	 The vnode definition must define the "authentication_mechanism" attribute
as "kerberos".

For a full discussion of Kerberos authentication in an Ingres environment, see
the Security Guide.

SQLConnect() authenticates the application according to the Kerberos
principal. The user name of the Kerberos principal is passed to the DBMS as
the owner of the connection; otherwise, no authentication information is
passed between the client and server when SQLConnect() is invoked.
Authentication is performed by the Ingres Service Principal of the server-side
Name Server.

170 	Connectivity Guide

ODBC Programming

Dynamic (Run-Time) Authentication (Windows Only)

Some ODBC applications require that the user name and password are not
hard-coded in the code. To address these requirements, ODBC applications can
prompt the user for more information.

When prompted for connection information, the Ingres ODBC driver displays
the following input page:

Users can then enter the missing login information in the prompt window, and
the application will attempt to connect using the supplied information.

Understanding ODBC Connectivity 171

ODBC Programming

Connection Prompt Window—Using SQLDriverConnect()

The Ingres ODBC driver supports the DriverCompletion argument in
SQLDriverConnect(). The DriverCompletion argument is the eighth and last
argument in SQLDriverConnect(). The value SQL_DRIVER_PROMPT directs the
driver to display a prompt window. The value SQL_DRIVER_NOPROMPT directs
the driver to not display a prompt window.

Example: DriverCompletion Argument

/*

** Fill the connection string with the minimum

** connection information.

*/

strcpy(connectString, "driver={Ingres};servertype=Ingres;" \

"server=(local);database=myDB");

/* Connect to the database using the ODBC DSN definition. */
SQLDriverConnect(hdbc, /* Connection handle */

winHandle, /* Window handle */
connectString, /* Connection string */
SQL_NTS, /* This is a null-terminated string */

 (SQLCHAR *)NULL, /* Output (result) connection string */
SQL_NTS, /* This is a null-terminated string */
0, /* Length of output connect string */
SQL_DRIVER_PROMPT); /* Display a prompt window */

The example above displays a prompt window in a program that has a valid
handle to a Windows application. Windows-sensitive applications such as ADO
or the .NET Data Provider for ODBC are usually able to display prompts.

Note: ODBC programs that make no calls to the Windows API cannot display
connection prompt windows. ADO programs executed as ASP pages from IIS
cannot display prompt windows.

172 Connectivity Guide

ODBC Programming

Connection Prompt Window—Using DSN Definition

SQLDriverConnect() is not visible in Windows applications such as ADO or the
.NET Data Provider for ODBC. It is not possible to modify the DriverCompletion
argument in these cases. Ingres ODBC DSN definition pages include a Prompt
User ID and Password check box that forces the application to prompt for more
information, as in the following example:

If the application references the ODBC DSN definition at connect time, the
prompt window is displayed.

Note: IIS applications, such as ASP pages, will not display prompt windows.

Understanding ODBC Connectivity 173

ODBC Programming

Specification of User Names and Passwords in ODBC

For remote connections, the specification of user names and passwords
overrides the user names or passwords in the vnode definition.

For local connections, the specification of user names and passwords causes
the ODBC application to behave as if it was logged in as the alternate user.
This behavior is true regardless of whether or not the current login is an Ingres
"super" user.

It does not matter if user names and passwords are provided interactively or
are hard-coded, except in the case of Kerberos. For Kerberos, if you specify
user names and passwords, the ODBC application authenticates against the
local installation in addition to the Kerberos authentication. The Kerberos user
specified in "kinit" must match the user name specified in SQLConnect() or
SQLDriverConnect().

SQLBrowseConnect()—Prompt for Connection Information

SQLBrowseConnect() is another function that can be used to prompt for
connection information. SQLBrowseConnect() returns missing connection
information in a formatted output string that is used as a guide in the next
connection attempt. When SQLBrowseConnect() receives the minimum
connection information, a connection is made to the database.

Query Execution

This section explores methods for executing queries in ODBC applications.

SQLExecDirect()—Execute Queries Directly

SQLExecDirect() is commonly used for executing queries. The following code
snippet creates a table and inserts a row of data.

Example: SQLExecDirect() Function

/* Allocate a statement handle. */
SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

/* Execute a "create table" query. */
SQLExecDirect(hstmt, "create table cars(model varchar(20))",

SQL_NTS);

/* Insert one row of data. */
SQLExecDirect(hstmt, "insert into cars (model) values

('Hummer')", SQL_NTS);

174 Connectivity Guide

ODBC Programming

SQLPrepare() and SQLExecute()—Prepare and Execute Queries

For queries that are executed multiple times, preparing the queries before
execution may improve performance because the DBMS stores the query plan
of prepared queries. Rather than calculating a query plan each time a query is
executed, the DBMS references the query plan for all subsequent iterations of
the query.

SQLPrepare() and SQLExecute() perform the prepare and execute functions,
respectively.

Unless the ODBC application explicitly prepares a query via SQLPrepare(), the
ODBC always executes queries directly; there is no provision for automatically
preparing queries in Ingres.

The following code snippet is the equivalent of the SQLExecDirect() code
example in the Execute Queries Directly section.

Example: SQLPrepare() and SQLExecute() Functions

/* Prepare a "create table" query. */
SQLPrepare(hstmt, "create table cars(model varchar(20))",

SQL_NTS);

/* Execute the prepared query */
SQLExecute(hstmt);

Prepared queries persist in the default autocommit state. However, if you turn
off autocommit via SQLSetConnectAttr(), the query plan associated with a
prepared query is destroyed whenever the query is rolled back or committed.
You must then re-prepare the query via SQLPrepare().

Understanding ODBC Connectivity 175

ODBC Programming

Queries with Dynamic Parameters

ODBC applications frequently require data to be sent to the database
dynamically. Such data cannot be hard-coded in the query itself.

For comparison, the following set of queries inserts three rows with hard-coded
parameters:

insert into cars(model) values('Hummer');
insert into cars(model) values('Mustang');
insert into cars(model) values('Camray');

The above set of queries would be adequate if it was known in advance that
the target table would always receive this data. Often this is not the case, so
the data must be sent dynamically. The ODBC uses question marks ("?") as
placeholders for dynamic queries:

insert into cars(model) values (?);

A character string can be defined and bound to the query. Binding a parameter
to a query means that the data is sent as a parameter along with the query.
The DBMS reconstructs the parameter data with the query as if the data were
hard-coded in the original query.

In order to send data to the DBMS, the ODBC must tell the DBMS what the
data looks like. The ODBC function SQLBindParameter() serves that purpose.
The following example allows an ODBC application to send three rows of data
dynamically to a table consisting of one column with a varchar of length 20:

SQLCHAR model[3][21] = { "Hummer", "Mustang ", "Camray " };

int i;

SQLINTEGER orind = SQL_NTS;

[Allocate handles and connect.]

SQLExecDirect(hstmt, "insert into cars(model) values(?)",
SQL_NTS);

for (i = 0; i < 3; i++)
{

SQLBindParameter(hstmt, /* Statement handle */
1, /* Column number 1 */
 SQL_PARAM_INPUT, /* This is an input parameter */
 SQL_C_CHAR, /* This is a string in C */
 SQL_VARCHAR, /* Destination column is varchar */
 strlen(model[i]), /* Length of the parameter */
0, /* No precision specifier */
 model[i], /* The data itself */
0, /* Maximum length (default 0) */
 &orind); /* Null-terminated string */

}

176 Connectivity Guide

ODBC Programming

Dynamic parameters may be used in "where" clauses. The following example
selects from the cars table, using a dynamic parameter. This query is known as
a searched query:

SQLCHAR model[21] = "Hummer";

int i;

SQLINTEGER orind = SQL_NTS;

[Allocate handles and connect.]

SQLExecDirect(hstmt, "select model from cars where model =
(?)", SQL_NTS);

SQLBindParameter(hstmt, /* Statement handle */
1, /* Column number 1 */
SQL_PARAM_INPUT, /* This is an input parameter */
SQL_C_CHAR, /* This is a string in C */
SQL_VARCHAR, /* Destination column is varchar */
strlen(model), /* Length of the parameter */
0, /* No precision specifier */
model, /* The data itself */
0, /* Maximum length (default 0) */
&orind); /* Null-terminated string */

Database Procedures Execution

If the database procedure has no parameters, database procedures can be
executed in a straightforward manner using SQLExecDirect():

SQLExecDirect(hstmt, "execute procedure myDbProc", SQL_NTS);

If the database procedure requires parameters, ODBC "escape sequence"
syntax must be used. The ODBC uses escape sequence syntax to signify to the
ODBC Driver Manager that implementation of the syntax in question is to be
performed in a way that is specific to the driver.

The general form of escape syntax for database procedures is:

{ retcode = call dbproc [(?) [, (?) ...] }

The Ingres ODBC driver supports the following Ingres database procedures:

� Input parameters

� BYREF parameters

� Returned rows

� Procedure return values

Understanding ODBC Connectivity 177

ODBC Programming

Database Procedures that Return Values

SQLBindParameter() binds parameters for database procedures, just as for
other types of queries. The following example executes a procedure that has
no input parameters and returns an integer value:

SQLINTEGER retval = 500;
SQLINTEGER orind = 0;

SQLBindParameter(hstmt, /* Statement handle */
1, /* Parameter number */
SQL_PARAM_OUTPUT, /* It's an output parameter */
SQL_C_LONG, /* Source data is an integer */
SQL_INTEGER, /* Target column is an integer */
0, /* Length not required */
0, /* Precision not required */
&retval, /* The data itself */
0, /* Max length not required */
&orind1); /* Indicator can be zero */

SQLExecDirect(hstmt, "{ ? = call myDbProc () }", SQL_NTS);

The value returned from the procedure "myDbProc" is returned in the integer
"retval" after the procedure is executed. Note that the third argument,
ParameterType, is designated as SQL_PARAM_OUTPUT.

Database Procedures with Input Parameters

Input parameters are sent to the database procedure but not returned to the
application. The following example shows how input parameters are used:

SQLINTEGER retval = 500;
SQLINTEGER orind = 0;

SQLBindParameter(hstmt, /* Statement handle */
1, /* Parameter number */
SQL_PARAM_INPUT, /* It's an input parameter */
SQL_C_LONG, /* Source data is an integer */
SQL_INTEGER, /* Target column is an integer */
0, /* Length not required */
0, /* Precision not required */
&inputVal, /* The data itself */
0, /* Max length not required */
&orind1); /* Indicator can be zero */

SQLExecDirect(hstmt, "{ call myDbProc (?) }", SQL_NTS);

Note that the ParameterType argument for "inputVal" is now
SQL_PARAM_INPUT. The parameter marker "?" is now designated as an input
parameter to myDbProc by placing it within the parentheses after myDbProc.

178 Connectivity Guide

ODBC Programming

Database Procedures with BYREF Parameters

BYREF parameters can be used for both input and output. The following
example is almost the same as the Input Parameters example, but with one
exception:

SQLBindParameter(hstmt, /* Statement handle */
1, /* Parameter number */
SQL_PARAM_INPUT_OUTPUT, /* It's an BYREF parameter */
SQL_C_LONG, /* Source data is an integer */
SQL_INTEGER, /* Target column is an integer */
0, /* Length not required */
0, /* Precision not required */
&byRefval, /* The data itself */
0, /* Max length not required */
&orind1); /* Indicator can be zero */

SQLExecDirect(hstmt, "{ call myDbProc (?) }", SQL_NTS);

Since this procedure handles BYREF parameters, the call to SQLExecDirect()
may begin with a value of 500 for the "byRef" variable, but return with any
valid integer value, such as -1.

Database Procedures that Return Rows

No special parameter treatment is required for database procedures that
return rows. SQLBindParameter() can be used for return values, input
parameters, and BYREF parameters as before, regardless of whether rows are
to be returned.

The following example shows a procedure that returns rows but has no input
parameters:

/* Create the row-returning procedure. */
SQLExecDirect(hstmt, "create procedure retRow result row " \

"(varchar(20)) as declare pmodel = varchar(20) not null; " \
"begin for select model into pmodel from cars do " \
"return row(pmodel); endfor; end"), SQL_NTS);

/* Execute the procedure. */

SQLExecDirect(hstmt, "{ call retRow () }", SQL_NTS);

/* Fetch the result data. */

SQLFetch(hstmt);

Understanding ODBC Connectivity 179

ODBC Programming

Fetched Data

As with dynamic parameters, ODBC applications must bind the fetched data to
variables in the ODBC application. Data can be fetched one row at a time, or
the application can declare an array to serve as a record set.

It is not necessary for the type of variable to be similar to the type of column
in the DBMS. For instance, one can read a table containing an integer and bind
it to a character string. The ODBC performs the conversion internally.

SQLFetch()—Fetch Single Rows

SQLFetch() fetches a single row of data after a select query has been
executed. As with all ODBC functions, SQLFetch() returns a status that can be
analyzed to determine whether the end of the result set has been reached.

The following example shows how SQLFetch() is used:

RETCODE rc = SQL_SUCCESS;

SQLExecDirect(hstmt, "select models from cars", SQL_NTS);

while (TRUE)
{

rc = SQLFetch(hstmt);

if (rc == SQL_NO_DATA_FOUND)

{

 printf("End of data.\n");
 break;

}
if (!SQL_SUCCEEDED(rc))
{

 printf("Error! status is %d\n", rc);
 break;

}
}

180 Connectivity Guide

ODBC Programming

SQLGetData() and SQLBindCol()—Bind Fetched Data

The previous SQLFetch() example fetches rows from the database, but does
not make the data available to the application. The functions SQLGetData()
and SQLBindCol() bind the fetched data to variables in the application.
SQLGetData() binds the variables after the fetch; SQLBindCol() binds the
variables before the fetch. SQLGetData() and SQLBindCol() can be used
separately or together, although it is somewhat redundant to do both.

The following example expands the SQLFetch() example to show the use of
SQLGetData() and SQLBindCol():

RETCODE rc = SQL_SUCCESS;

SQLCHAR model[21] = "\0";

SQLINTEGER orind = SQL_NTS;

SQLINTEGER orind1 = SQL_NTS;

/*

** Execute the select query.

*/

SQLExecDirect(hstmt, "select model from cars", SQL_NTS);

/*

** Bind the column to be fetched.

*/
SQLBindCol(hstmt,

1,
SQL_C_CHAR,
model,
20,
&orind);

 /* Statement handle */
 /* Column Number */
 /* C type of variable */
 /* The fetched data */
 /* Maximum length */
 /* Status or length indicator */

/*
** Fetch the data in a loop.

*/

while (TRUE)

{

rc = SQLFetch(hstmt);

/*

** Break out of the loop if end-of-data is reached.

*/

if (rc == SQL_NO_DATA_FOUND)

{

 printf("End of data.\n");
 break;

}
/*
** Break out of the loop if an error is found.
*/
if (!SQL_SUCCEEDED(rc))
{

 printf("Error! status is %d\n", rc);
 break;

}
/*
** Re-bind the data to be fetched (redundant in this

Understanding ODBC Connectivity 181

ODBC Programming

** case).
*/
SQLGetData(hstmt, /* Statement handle */

1, /* Column number */
 SQL_C_CHAR, /* C type of variable */
 model, /* The fetched data */
 20, /* Maximum length */
 &orind1); /* Status or length indicator */

printf("model of car: %s\n", model);
}

The above example works, but would work just as well if only SQLBindCol() or
SQLGetData() were called. Both are included in the example to show how they
are used. Note that SQLBindCol() is called only once and serves to bind data
for all successive fetches. SQLGetData() is called after every fetch.
SQLGetData() is called in this way to fetch variable-length data, such as large
objects.

182 Connectivity Guide

ODBC Programming

SQLRecordScroll()—Fetch Record Sets

SQLFetchScroll() returns record sets, or blocks of data. By itself,
SQLFetchScroll() does not provide enough information to describe the
characteristics of the record set; instead, a series of calls to SQLSetStmtAttr
(set query attributes) define the record set characteristics.

The following example shows how the cars table is fetched into a record set
containing five rows:

#define ROWS 5
#define MODEL_LEN 21

SQLCHAR model[ROWS][MODEL_LEN]; /* Record set */
SQLINTEGER orind[ROWS]; /* Len or status ind */
SQLUSMALLINT rowStatus[ROWS]; /* Status of each row */
RETCODE rc=SQL_SUCCESS; /* Status return code */
int i; /* Loop counter */
SQLHSTMT hstmt; /* Statement handle */
SQLUINTEGER numRowsFetched; /* Number of rows fetched */

/*
** Declare that the record set is organized according to columns.

*/

SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_BIND_TYPE,

SQL_BIND_BY_COLUMN, 0);
/*
** Declare that the record set has five rows.
*/
SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_ARRAY_SIZE,

(SQLPOINTER)ROWS, 0);
/*
** Bind an array of status pointers to report on the status of
** each row fetched.
*/
SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_STATUS_PTR,

(SQLPOINTER)rowStatus, 0);
/*
** Bind an integer that reports the number of rows fetched.
*/
SQLSetStmtAttr(hstmt, SQL_ATTR_ROWS_FETCHED_PTR,

(SQLPOINTER)&numRowsFetched, 0);
/*
** Bind the array describing the column fetched.
*/
SQLBindCol(hstmt, /* Statement handle */

1, /* Column number */

SQL_C_CHAR, /* Bind to a C string */

model, /* The data to be fetched */

MODEL_LEN, /* Maximum length of the data */

orind); /* Status or length indicator */

/*

** Execute the select query.

*/

SQLExecDirect(hstmt, "SELECT model from cars", SQL_NTS);

/*

** Fetch the data in a loop.

Understanding ODBC Connectivity 183

ODBC Programming

*/
while (TRUE)
{

rc = SQLFetchScroll(hstmt, SQL_FETCH_NEXT, 0));

/*

 ** Break out of the loop at end of data.

*/

if (rc == SQL_NO_DATA_FOUND)

{

 printf("End of record set\n");
 break;

}

/*

** Break out of the loop if an error is found.

*/

if (!SQL_SUCCEEDED(rc))

{

 printf("Error on SQLFetchScroll(), status is %d\n", rc);
 break;

}

/*

** Display the result set.

*/

for (i = 0; i < numrowsfetched; i++)

{

 printf("Model: %s\n", model[i]);
}

} /* end while */

184 Connectivity Guide

ODBC Programming

Column-wise versus Row-wise Binding

The previous SQLRecordScroll() example depicts column-wise binding, which is
the default. In column-wise binding, the variable arrays describe the columns
of data to be fetched.

It is also possible to set up structures in your program that describe the rows
to be fetched, rather than the columns. This is called row-wise binding.

The following program excerpt fetches exactly the same data as the
SQLRecordScroll() example, but uses row-wise binding instead of column-wise
binding. The structure typedef MODEL_ROW can be considered a snapshot of
information about each row. Each column in the row structure consists of the
data to be fetched and a row status indicator.

#define ROWS 5

#define MODEL_LEN 21

/*

** Describe a row in the result set.

*/

typedef struct

{

SQLCHAR model[MODEL_LEN]; /* The data to be fetched */
SQLINTEGER orind; /* Len or status indicator */

} MODEL_ROW;

MODEL_ROW model_row[ROWS]; /* The record set */

SQLUSMALLINT rowStatus[ROWS]; /* Status of each row */

SQLHSTMT hstmt; /* Statement handle */

RETCODE rc=SQL_SUCCESS; /* Return status */

int i; /* Loop counter */

SQLUINTEGER numRowsFetched; /* Number of rows fetched */

/*

** Declare that the record set is organized according to rows.

*/

SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_BIND_TYPE,

(SQLPOINTER)sizeof(MODEL_ROW), 0);
/*
** Declare the number of rows in the result set.
*/
SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_ARRAY_SIZE,

(SQLPOINTER)ROWS, 0);
/*
** Bind to a status array reporting on each row fetched.
*/
SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_STATUS_PTR,

(SQLPOINTER)rowStatus, 0);
/*
** Bind to an integer reporting on the number of rows fetched.
*/
SQLSetStmtAttr(hstmt, SQL_ATTR_ROWS_FETCHED_PTR,

(SQLPOINTER)&numRowsFetched, 0);
/*
** Execute the select statement.

Understanding ODBC Connectivity 185

ODBC Programming

*/

SQLExecDirect(hstmt, "SELECT model from cars", SQL_NTS);

/*

** Bind each column in the record set structure.

*/

SQLBindCol(hstmt, /* Statement handle */

1, /* Column number */
SQL_C_CHAR, /* Bind to C string */
&model_row[0].model, /* Column to fetch */
sizeof(model_row[0].model), /* Length of data */
&model_row[0].orind); /* Len or status indicator */

/*

** Fetch the data in a loop.

*/

while (TRUE)

{

rc = SQLFetchScroll(hstmt, SQL_FETCH_NEXT, 0))

/*

** Break out of the loop at end-of-data.

*/

if (rc == SQL_NO_DATA_FOUND)

 break;

/*

** Break out of the loop if an error is found.

*/

if (!SQL_SUCCEEDED(rc))

{

 printf("Error on SQLFetchScroll(), status is %d\n", rc);
 break;

}

/*

** Display the result set.

*/

for (i = 0; i < numRowsFetched; i++)

{

 printf("Model: %s\n", model_row[i].model);
}

} /* end while */

186 Connectivity Guide

ODBC Programming

SQLSetCursorName()—Declare Cursor

The term cursor is an acronym for CURrent Set Of Records. A database cursor
is similar to the cursor on your computer screen. However, instead of pointing
at something on your screen, a database cursor points to a data row set.

Some database vendors make a distinction between client and server-side
cursors. However, a cursor declared in an Ingres ODBC program is always a
server-side cursor. This means that the properties of the cursor are applied
only on the DBMS server of the target database.

An ODBC application can name a cursor directly via a call to
SQLSetCursorName():

SQLSetCursorName(hstmt, /* Statement handle */
"C1", /* Cursor Name */
SQL_NTS); /* This is a null-terminated string */

The above code creates a cursor named C1, which is also visible to the DBMS
as C1.

Updatable Cursors

In order for a cursor to be made updatable, the Ingres ODBC driver imposes a
set of syntax rules:

� The cursor must be explicitly named via SQLSetCursorName().

� SQLSetStmtAttr() must be invoked with SQL_ATTR_CONCURRENCY
specified as SQL_CONCUR_VALUES.

� The update statement must include the "where current of" clause and refer
to the cursor name declared in SQLSetCursorName().

The following code highlights the minimum code required to declare an
updatable cursor:

SQLSetCursorName(hstmtS, /* Select statement handle */
"C1", /* Cursor Name */
SQL_NTS); /* This is a null-terminated string */

SQLSetStmtAttr(hstmtS, SQL_ATTR_CONCURRENCY,
(SQLPOINTER)SQL_CONCUR_VALUES, 0);

SQLExecDirect (hstmtS,
"select model from cars where model = 'Hummer '",
SQL_NTS);

SQLExecDirect(hstmtU,
"UPDATE cars SET model = 'HummV ' WHERE CURRENT OF C1",
SQL_NTS);

Understanding ODBC Connectivity 187

ODBC Programming

Cursors versus Select Loops

A loop is an iterative set of fetches. Thus, a cursor loop is a set of fetches
using cursors. Select loops are a set of fetches without a cursor defined. The
ODBC uses select loops by default. This is true whether or not an ODBC DSN
definition is specified.

Declaration of a cursor name is the same as a cursor loop in this discussion.

Select loops fetch multiple sets of rows from the DBMS. This is sometimes
referred to as block fetching. A single fetch may appear to return only one row,
but often the ODBC driver has already fetched many more rows that are
cached in the driver.

Cursor loops must be specified if the cursor is scrollable or updatable.

Note: Cursors loops may need to be specified for Windows applications such
as Microsoft Access or Microsoft ADO. If you are see an error message such as
"API function cannot be called in the current state", and are satisfied that your
application is coded correctly, try using cursor loops.

Cursor loops may offer better performance for Windows applications, because
the ODBC driver returns information that it supports unlimited active
statements. This signifies, for example, that ADO applications can re-use
existing connections for internal procedures.

Outside of Windows applications, the performance of cursor loops is often
comparable to select loops, because the ODBC driver pre-fetches rows in
blocks of 100 when cursors are used. The term pre-fetch means that multiple
rows are fetched and cached in the ODBC driver before they are presented to
the application.

If a cursor is declared as updatable, pre-fetching does not occur in order to
preserve the current position for the update. Thus, updatable cursors may be
slower that read-only cursors or select loops.

Only one select loop can be active at a time. As a result, select loops may not
be nested. For example, in ADO, multiple recordset objects may not be
retrieved within [Connection].BeginTrans and [Connection].CommitTrans
methods. In direct ODBC code, SQLFreeStmt() must be called with the
argument SQL_CLOSE before executing another select loop. By contrast,
cursors place no limits on the number of active result sets. Cursor loops may
be nested.

See the SQL Reference Guide for more information on cursors versus select
loops.

188 Connectivity Guide

ODBC Programming

SQLFreeStmt()—Close Fetch Loop

After the ODBC application has finished fetching, the cursor associated with
the statement handle must be closed. If a cursor was not declared, the ODBC
application still must tell the DBMS it has completed fetching.

A cursor is closed, or a select loop completes processing, via the
SQLFreeStmt() function, as shown in this example:

/* Stop fetching data */

SQLFreeStmt(hstmt, SQL_CLOSE);

SQLFreeStmt() may be called at any time during a fetch operation. When the
SQL_CLOSE argument is specified, all resources associated with the fetch are
released. The statement handle can be re-used for other types of queries
without having to call SQLAllocStmt() or SQLAllocHandle().

Scrollable Cursors

The ODBC driver supports scrollable cursors through SQLFetchScroll() and
SQLSetPos().

The driver supports static (read-only) and keyset-driven (updatable) cursor
types. These cursor types allow the cursor to be positioned in any direction
within a result set.

Static and keyset-driven cursors support the position directives described in
SQLFetchScroll (see page 191). In contrast, forward-only cursors support only
SQL_FETCH_NEXT.

Note: Static and keyset-driven cursors can be used only if the target database
is Ingres 9.2 and later. For Ingres databases prior to 9.2, the Cursor Library
can be used to simulate these types of cursors.

Static Scrollable Cursors

Static cursors fetch rows as they are materialized from the current transaction
isolation level. The result set is not updated if other sessions change data that
applies to the result set. Static cursors are read-only.

Understanding ODBC Connectivity 189

ODBC Programming

Keyset-driven Scrollable Cursors

Keyset-driven cursors allow updates to selected records in the result set.
Keyset-driven cursors require the target tables to include unique primary keys.
If an attempt is made to update or delete records in a result set, and the
corresponding records in the target table have been deleted, an error may be
returned, depending on the transaction isolation level.

Keyset-driven cursors can be used within a read-only context, but do not
perform as well as static cursors.

Scrollable Cursor Programming Considerations

The ODBC DSN definition or connection string must specify cursor loops, or
name a cursor using the SQLSetCursorName() function. Select loops cannot be
used with static or keyset-driven cursors.

Keyset-driven cursors require the cursor to be named. The cursor name must
be included in the WHERE CURRENT OF clause in the update or delete query.

The SQLFetchScroll() function fetches records in the result set according to the
directive specified in the FetchOrientation argument.

Cursor types can be specified in the SQLSetStmtAttr() function and queried by
the SQLGetStmtAttr() function.

Use the SQLSetConnectvAttr() function to specify that the Ingres ODBC driver
is to be used for scrollable cursor functions.

190 Connectivity Guide

ODBC Programming

SQLFetchScroll()—Fetch from a Scrollable Cursor

SQLFetchScroll() positions the cursor according to the specified fetch
orientation and then retrieves data.

SQLFetchScroll has the following syntax:

SQLFetchScroll(StatementHandle, FetchOrientation, FetchOffset)

where:

FetchOrientation

Specifies the fetch orientation as one of the following:

SQL_FETCH_NEXT

Fetch the next record in the result set

SQL_FETCH_FIRST

Fetch the first record in the result set

SQL_FETCH_LAST

Fetch the last record in the result set

SQL_FETCH_PRIOR

Fetch the previous record in the result set

SQL_FETCH_ABSOLUTE

Fetch a record based on the position in the result set

SQL_FETCH_RELATIVE

Fetch relative to n rows from the current position in the result set

Understanding ODBC Connectivity 191

ODBC Programming

SQLSetPos()—Scroll Cursor to Absolute Position

SQLSetPos() allows the ODBC application to scroll the cursor to an absolute
position within the result set and perform updates or deletes on the selected
record.

Note: The SQLSetPos() function works for keyset-driven (updatable) cursors
only.

SQLSetPos() has the following syntax:

SQLSetPos(StatementHandle, RowNumber, Operation, LockType)

where:

StatementHandle

 Specifies the statement handle

RowNumber

 Specifies the position of the record in the result set

Operation

Specifies the operation to perform: SQL_POSITION, SQL_UPDATE, or

SQL_DELETE.

SQL_REFRESH is not supported.

LockType

(Not supported) Specifies the type of table lock. SQLSetPos() ignores all
settings for the LockType argument.

192 Connectivity Guide

ODBC Programming

Static Scrollable Cursor Example

The following code demonstrates the use of static scrollable cursors:

/*

** Specify that the Ingres ODBC driver is used.

*/

SQLSetConnectAttr(hdbc, SQL_ATTR_ODBC_CURSORS,

SQL_CUR_USE_DRIVER,SQL_IS_INTEGER);

/* Set the cursor name. */
SQLSetCursorName(hstmt, "C1", SQL_NTS);

/* Set the number of rows in the rowset */
SQLSetStmtAttr(hstmt,

SQL_ATTR_ROW_ARRAY_SIZE,
(SQLPOINTER) ROWSET_SIZE,
0);

/* Set the cursor type */
SQLSetStmtAttr(hstmt,

SQL_ATTR_CURSOR_TYPE,
(SQLPOINTER) SQL_CURSOR_STATIC,
0);

/* Set the pointer to the variable numrowsfetched: */
SQLSetStmtAttr(hstmt,

SQL_ATTR_ROWS_FETCHED_PTR,
&numrowsfetched,
0);

/* Set pointer to the row status array */
SQLSetStmtAttr(hstmt,

SQL_ATTR_ROW_STATUS_PTR,
(SQLPOINTER) rowStatus,
0);

/* Execute the select query. */

strcpy((char *)sqlstmt,"SELECT y,x FROM myTable");

SQLExecDirect(hstmt,sqlstmt,SQL_NTS);

/* Fetch last full result set. */

SQLFetchScroll(hstmt, SQL_FETCH_LAST, 0);

/* Fetch first result set. */

SQLFetchScroll(hstmt, SQL_FETCH_FIRST, 0);

/* Fetch next row. */

SQLFetchScroll(hstmt, SQL_FETCH_NEXT, 0);

/* Fetch the result set starting from the third row. */

SQLFetchScroll(hstmt, SQL_FETCH_ABSOLUTE, 3);

/* Fetch the result set starting after moving up one row */

SQLFetchScroll(hstmt, SQL_FETCH_RELATIVE, -1);

Understanding ODBC Connectivity 193

ODBC Programming

Keyset-driven Scrollable Cursor Example

The following code demonstrates keyset-driven cursors:

/* Set the cursor name. */
SQLSetCursorName(hstmt, "CUPD1", SQL_NTS);

/* Set the cursor type */
SQLSetStmtAttr(hstmt,

SQL_ATTR_CURSOR_TYPE,
(SQLPOINTER) SQL_CURSOR_KEYSET,
0);

/* Execute select query */

SQLExecDirect(hstmtS, "SELECT x, y FROM keyset_cursor", SQL_NTS);

/* Fetch scrollable cursor */

SQLFetchScroll(hstmtS, SQL_FETCH_NEXT, 0)) != SQL_ERROR)

/* Move cursor to record 4 */

SQLSetPos(hstmtS, 4, SQL_POSITION, SQL_LOCK_NO_CHANGE);

/* Bind a string parameter */

rc = SQLBindParameter(hstmtU, 1, SQL_PARAM_INPUT,

SQL_C_CHAR, SQL_CHAR,
TXT_LEN, 0, x[irow-1], 0, NULL);

/* Update the record */
SQLExecDirect(hstmtU,

"UPDATE keyset_cursor SET x=? WHERE CURRENT OF CUPD", SQL_NTS);

Large Objects (Blobs) Support

The SQLGetData() and SQLPutData() functions allow fetching or insertion of
data in segments. Any non-atomic data type, such as char or byte varying, can
be sent or fetched in segments, but generally segments are used with large
objects, sometimes known as "blobs".

The Ingres ODBC driver supports the following large objects:

� Long varchar (SQL_LONGVARCHAR)

� Long byte (SQL_LONGVARBYTE)

� Long nvarchar (SQL_WLONGVARCHAR)

Although large object locators are supported in Ingres 2006 Release 2 and
later, the Ingres ODBC driver does not support large object locators, since
there is no corresponding support in the ODBC specification.

194 Connectivity Guide

ODBC Programming

SQLPutData()—Send Data in Segments

SQLPutData() sends blob data in segments. The length of the data must be
known in advance, and applied to the SQL_LEN_DATA_AT_EXEC macro prior to
execution of an insert or update query.

The following example sends a blob 5,000 characters in length to a table
containing a long varchar. Each segment is 1,000 characters long.

Example: SQLPutData() Function

SQLCHAR b[5000], *b = &b[0]; /* The blob to be sent */
int i; /* Loop counter */
SQLINTEGER len; /* Segment length */
RETCODE rc = SQL_SUCCESS; /* Return code */
SQLPOINTER pToken = NULL; /* Column indicator */
SQLHSTMT hstmt; /* Statement handle */

/*
** Fill the blob buffer with test data.

*/

for (i = 0; i < 5000; i++)

b[i] = 'x ';

/*

** Bind the blob, indicating that the length will be

** provided at runtime.
*/
SQLBindParameter(hstmt, /* Statement handle */

1, /* Column number */
SQL_PARAM_INPUT, /* This is an input parameter */
SQL_C_CHAR, /* Parameter is a string */
SQL_LONGVARBINARY, /* Destination type is long varchar */
0, /* No length required */
0, /* No precision required */
(PTR)1, /* Long parameter number 1 */
0, /* No max length required */
&len); /* Variable blob length */

/*

Understanding ODBC Connectivity 195

ODBC Programming

** This macro definition tells the ODBC when to expect the end of

** data for the blob.

*/

len = SQL_LEN_DATA_AT_EXEC(5000);

/*

** Execute the insert query.

*/

rc = SQLExecDirect(hstmt,

 "insert into longv values (?)", SQL_NTS);
/*
** Loop, sending the data in segments of 1000.
*/
while (rc == SQL_NEED_DATA)
{

/*

 ** Check for EOD marker.

*/

rc = SQLParamData(hstmt, pToken);

if (rc == SQL_NEED_DATA)

{

/*

 ** If more data to send, send it.

*/

 if (pToken == 1)

 {

 SQLPutData(hstmt, blob, 1000);
 blob += 1000;

}
}

}

Note that SQLBindParameter() never directly references the data buffer "blob".
Instead, the number 1 is used to indicate that parameter 1 is a variable length
parameter. The overall length of the blob is calculated as a negative number
into the len argument via the SQL_LEN_DATA_AT_EXEC() macro. The ODBC
driver uses these clues to detect that data is to be sent in segments.

The SQLParamData() function tracks the progress of SQLPutData(). If the
status return of SQLParamData() is SQL_NEED_DATA, the ODBC driver has not
yet finished sending data segments. The pToken argument returns the
parameter number of the data to be sent; thus, more than one blob or
variable-length datum may be sent in segments.

196 Connectivity Guide

ODBC Programming

The above example could have been coded in the traditional way, as shown in
this example:

/*

** Set the maximum length of the blob.

*/

len = 5000;

/*

** Bind in the traditional way.

*/
SQLBindParameter(hstmt, /* Statement handle */

1, /* Column number */
SQL_PARAM_INPUT, /* This is an input parameter */
SQL_C_CHAR, /* Parameter is a string */
SQL_LONGVARBINARY, /* Destination type is long varchar */
5000, /* Length of the data */
0, /* No precision required */
(PTR)blob, /* The data itself */
0, /* No max length required */
&len); /* Variable blob length */

/*
** Only one call to SQLExecDirect() is required.

*/

SQLExecDirect(hstmt,

"insert into longv values (?)", SQL_NTS);

This traditional approach may be acceptable for smaller-length blobs, but
would be less practical for large blobs, especially those that consume
substantial memory. The ODBC application would need to pre-allocate memory
for the entire blob before using it as a query parameter. By contrast, if blobs
are sent in segments, only memory for the blob segment needs to be
allocated.

Understanding ODBC Connectivity 197

ODBC Programming

SQLGetData()—Fetch Data in Segments

Fetching blob segments using SQLGetData() is more straightforward than
SQLPutData(). If the previous SQLPutData() example were expanded to fetch
the data after insertion, the following code would fetch the 5,000-character
blob in 1,000-character segments:

Example: SQLGetData() Function

RETCODE ret = SQL_SUCCESS;

/*

** Execute the fetch query.

*/

SQLExecDirect (hstmt, "select * from longv", SQL_NTS);

/*

** Fetch in a loop.

*/

while (TRUE)

{

rc = SQLFetch (hstmt);

if (rc == SQL_NO_DATA)

{

 printf("EOD\n");
 break;

}

/*

** Exit the loop if an error is found.

*/

if (!SQL_SUCCEEDED (rc))

{

 printf("Error fetching from blob table\n");

break;

}

len = 0;

blob = &b[0];

*blob = '\0';

while (TRUE)

198 Connectivity Guide

ODBC Programming

{

/*

 ** Get the data in segments until

 ** the status is SQL_SUCCESS.

*/

 ret = SQLGetData(hstmt,

 1,

 SQL_C_CHAR,

 1000,

 blob,

 &len);

/*

 ** A status value of SQL_SUCCESS means we're done.

 ** Exit the loop.

*/

 if (ret == SQL_SUCCESS)

 break;

 if (ret == SQL_ERROR)
{

 printf ("Error fetching blob segments!\n");

 break;

}
/*

 ** Increment the pointer to the blob for each successful

 ** segment fetch.

*/

 blob += 1000;

}
}

Often, ODBC functions can share status code variables, but in this case, a
second status code, "ret" must be declared in addition to "rc". This is because
segment fetching uses two fetch loops: one for the fetch itself, and one for
retrieving the segments. Each loop needs to track its own status.

There is no counterpart to SQLParamData() when fetching in segments.
Instead, SQLGetData() returns a status of SQL_SUCCESS_WITH_INFO when
there are more segments to be fetched. If the status of SQLGetData() were
further analyzed, the SQLSTATE would have the value 01004 (data truncated).
See Error Reporting in the next section for more information on SQLGetData().

The last argument to SQLGetData(), represented by the len variable, indicates
the length of the data available in the ODBC driver cache. For the Ingres ODBC
driver, it is normal for this argument to contain a larger value than the
segment length until the last segment is fetched.

When all of the blob segments are fetched, SQLGetData() returns a status of
SQL_SUCCESS.

Understanding ODBC Connectivity 199

ODBC Programming

As with SQLPutData(), the Ingres ODBC driver supports the traditional use of
SQLGetData(). The ODBC application could make a single call to SQLGetData()
specifying the entire length of the blob:

/*

** Fetch in a loop.

*/

while (TRUE)

{

rc = SQLFetch (hstmt);

/*

** Exit the loop at EOD.

*/

if (rc == SQL_NO_DATA)

{

 printf("EOD\n");
 break;

}

/*

** Exit the loop if an error is found.

*/

if (!SQL_SUCCEEDED (rc))

{

 printf("Error fetching from blob table\n");
 break;

}

len = 5000;

blob = &b[0];

*blob = '\0';

/*

** Just one call to SQLGetData() is all that is required.

*/

ret = SQLGetData(hstmt, /* Statement handle */

1, /* Column number */
 SQL_C_CHAR, /* It's a string */
 5000, /* Max length */
 blob, /* Buffer to fetch into */
 &len); /* Length indicator */

/*

** Exit the loop if the data cannot be converted to the blob

** buffer.

*/

if (ret != SQL_SUCCESS))

{

 printf ("Error entire fetching blob data!\n");
 break;

}
}

The ODBC application would need to know that the blob was at least 5,000
characters or less in order for the above example to work; otherwise, the
application would truncate the data. Furthermore, the data buffer must be pre-
allocated to 5,000 characters. Therefore, this approach may be inefficient for
fetching very large blobs.

200 Connectivity Guide

ODBC Programming

Transactions Handling

This section explores how the ODBC Driver and Ingres DBMS handle
transactions, and describes ODBC support for data types.

SQLSetConnectAttr()—Enable Autocommit

The Ingres DBMS supports standard transaction sessions. Standard transaction
sessions begin a transaction when the first query is issued, and end when a
commit or rollback command is executed. By contrast, autocommit sessions
commit each insert, delete or update query in the DBMS. Standard transaction
sessions delete prepared statements and cursor declarations after a commit or
rollback; autocommit sessions retain prepared statements and cursor
declarations.

The SQLSetConnectAttr() function enables or disables autocommit. The ODBC
driver default is to enable autocommit. The following example disables
autocommit and manages the transaction manually.

Example: SQLSetConnectAttr() Function

SQLHDBC hdbc; /* Connection handle */

/*

** Turn off autocommit.

*/

SQLSetConnectAttr(hdbc, /* Connection Handle */

SQL_ATTR_AUTOCOMMIT, /* Autocommit attribute */
SQL_AUTOCOMMIT_OFF, /* Autocommit disabled */
0); /* String length (n/a) */

The function SQLEndTran() commits or rolls back the transaction:

/*

** Roll back the current transaction.

*/

SQLEndTran(SQL_HANDLE_DBC, /* Handle type */

hdbc, /* Connection handle */
SQL_ROLLBACK); /* Roll back the transaction */

Simulated Autocommit for Cursors

The Ingres DBMS places a restriction on cursor declarations during autocommit
in that multiple cursors may not be declared. However, multiple cursors may
be declared for standard transaction sessions.

The Ingres restriction has ramifications on the ODBC. The ODBC specification
allows multiple cursor declarations regardless of whether autocommit is
enabled or not.

Understanding ODBC Connectivity 201

ODBC Programming

In order for the Ingres ODBC driver to support multiple cursors during
autocommit, the driver internally reverts to a state named simulated
autocommit. During simulated autocommit, when the ODBC driver detects that
a cursor is opened, and an update, insert or delete query is to be executed,
the ODBC driver internally disables autocommit. Commits are issued internally
from the ODBC driver when:

� The statement or connection handle is freed.

� A cursor is closed, and no other cursors are open.

When all cursors are closed, the ODBC driver changes back to autocommit
mode.

Simulated autocommit is not used if no cursors are open or if the only DBMS
queries are fetch queries.

SQLSetStmtAttr()—Set Transaction Isolation Level

The Ingres ODBC driver supports all transaction isolation levels available in the
ODBC specification, including:

� Serializable

� Read committed

� Read uncommitted

� Repeatable read

The above isolation levels are specified by the ODBC attributes
SQL_ATTR_TXN_SERIALIZABLE, SQL_ATTR_TXN_READ_COMMITTED,
SQL_TXN, READ_UNCOMMITTED, and SQL_TXN_REPEATABLE_READ,
respectively. Transaction isolation is specified by SQLSetStmtAttr() function via
the SQL_ATTR_TXN_ISOLATION connection attribute. The SQLGetStmtAttr()
function returns the current isolation level when the
SQL_ATTR_TXN_ISOLATION option is specified.

Other types of transaction isolation supported by Ingres, such as system, are
not available in SQLSetStmtAttr(). Use SQLExecDirect() to execute the SET
command directly in such cases. This is also the case when locking is specified
with the SET LOCKMODE command, such as for row-level locking.

Distributed (XA) Transactions

The ODBC driver supports distributed (XA) transactions in the Windows
environment using the Microsoft Distributed Transaction Coordinator. See
Ingres ODBC and Distributed Transactions (Windows) in this guide for more
information.

202 Connectivity Guide

ODBC Programming

Supported Data Types

The Ingres ODBC driver supports all ODBC data types except:

� SQL_GUID and SQL_C_GUID

� SQL_BOOKMARK and SQL_C_BOOKMARK

� SQL_VARBOOKMARK and SQL_C_VARBOOKMARK

The ODBC function SQLBindParameter() allows coercion from "C" data types to
SQL data types. Outside of the above exceptions, the ODBC supports all ODBC
data type coercions as described in the "Converting Data from SQL to C Data
Types" and "Converting Data from C to SQL Data Types" tables in the Microsoft
ODBC Programmer's Reference. The following table summarizes the coercions
available:

Data Type SQL Type

String All types

Binary All types

Numeric All numeric

Timestamp, date and time Timestamp, date and time

Interval Interval

Date/Time Columns and Values

Prior to Ingres 2006 Release 2, the Ingres ODBC driver supported
SQL_C_TYPE_DATE, SQL_C_TYPE_TIME, and SQL_C_TYPE_TIMESTAMP for the
Ingres "date" data type. In Ingres 2006 Release 2 and later, support was
added for ISO date/time data types, including:

� Time with local time zone

� Time with time zone

� Time without time zone

� Timestamp with local time zone

� Timestamp with time zone

� Timestamp without time zone

� Ansidate (also known as "ISO" date)

� Ingresdate (formerly known as "date")

� Year to month interval

� Day to second interval

Understanding ODBC Connectivity 203

ODBC Programming

The Ingres ODBC driver supports all ISO data types in addition to the legacy
"ingresdate" type. The ODBC driver is sensitive to the connection level of the
target database, and thus can work seamlessly against pre-Ingres 2006
Release 2 installations.

Support was added for SQL_C_INTERVAL_YEAR_TO_MONTH
SQL_INTERVAL_YEAR_TO_MONTH, SQL_C_INTERVAL_DAY_TO_SECOND,
SQL_INTERVAL_DAY_TO_SECOND in Ingres 2006 Release 2 and later.

The "precision" argument for SQLBindParameter() is supported for
SQL_C_TYPE_TIMESTAMP in Ingres 2006 Release 2 and later, since ISO
timestamps can be declared with a precision for fractions of a second.

If a date/time column is bound to a string type such as SQL_C_CHAR or
SQL_C_WCHAR, Ingres rules regarding II_DATE_FORMAT apply, just as if the
dates were handled from the Terminal Monitor or other Ingres utility.

Ingres rules on II_DATE_FORMAT do not apply if:

� An ODBC date/time escape sequence is used such as:

– { t 'hh:mm:ss ' }

– { d 'yyyy:mm:dd' }

– { ts 'yyyy:mm:dd hh:mm:ss.fffffffff' }

– { interval 'yy-mm' year to month' }

– {interval 'dd hh-mm-ss' day to second' }

� ODBC date/time structures are used, such as:

– SQL_TIME_STRUCT

– SQL_DATE_STRUCT

– SQL_TIMESTAMP_STRUCT

– SQL_INTERVAL_STRUCT

National Character Set (Unicode) Columns

The Ingres ODBC driver supports SQL_C_WCHAR, SQL_WCHAR,
SQL_WVARCHAR and SQL_WLONGVARCHAR data types for the following
Ingres data types:

� nchar

� nvarchar

� long nvarchar

204 Connectivity Guide

ODBC Programming

For databases that do not support Unicode, the ODBC treats Unicode
characters as multi-byte (also known as double-byte) for:

� char

� varchar

� long varchar

� long byte

When the target columns are not Unicode columns, SQL_WCHAR,
SQL_WVARCHAR and SQL_WLONGVARCHAR must be bound from
SQL_C_CHAR.

Metadata (Catalog) Queries

Sometimes an ODBC application needs to know information about items in the
database, such as tables, permissions, primary keys, etc. The Ingres ODBC
driver supports all ODBC functions pertaining to this information. The following
table summarizes the functions available:

Function Description

SQLColumns Column names in tables

SQLColumnPrivileges Privileges of columns in tables

SQLForeignKeys Foreign keys for a table

SQLPrimaryKeys Column names of primary keys in a table

SQLTables Table names in a database

SQLTablePrivileges Privileges of tables in a database

SQLProcedures Procedure names in a database

SQLProcedureColumns Input and output names of a database
procedure

SQLSpecialColumns Columns that uniquely identify a row

SQLStatistics Statistics and indexes associates with a table

Understanding ODBC Connectivity 205

ODBC Programming

Error Reporting

All ODBC functions return an error code. Both the Ingres ODBC driver and the
Driver Manager cache a list of any errors encountered. The list of errors is
deleted when the next ODBC function is called.

A return of SQL_SUCCESS means that the function completed successfully. A
return of SQL_ERROR means that an error occurred. A return of
SQL_SUCCESS_WITH_INFO can be considered a warning or informational
status code. SQL_INVALID_HANDLE means that the handle passed to the
function was invalid.

More information on a status of SQL_ERROR or SQL_SUCCESS_WITH_INFO
can be retrieved from the SQLGetDiagRec() function. The following example
code snippet returns error information on a call to SQLConnect().

Example: SQLGetDiagRec() Function

RETCODE rc = SQL_SUCCESS;

SQLHDBC hdbc;

SQLCHAR buffer[SQL_MAX_MESSAGE_LENGTH + 1];

SQLCHAR sqlstate[SQL_SQLSTATE_SIZE + 1];

SQLINTEGER sqlcode;

SQLSMALLINT length;

SQLSMALLINT i;

rc = SQLConnect(hdbc,

"myDSN",

SQL_NTS,

"ingres",

SQL_NTS,

"ingPWD",

SQL_NTS);

if (rc == SQL_ERROR)

{

i = 1;

while (SQLGetDiagRec(htype,

 hndl,
i,
 sqlstate,

 &sqlcode,

 buffer,

 SQL_MAX_MESSAGE_LENGTH + 1,

 &length) == SQL_SUCCESS)

{
 printf("SQLSTATE: %s\n", sqlstate) ;
 printf("Native Error Code: %ld\n", sqlcode) ;
 printf("buffer: %s \n", buffer) ;
 i++ ;

}

206 Connectivity Guide

ODBC Programming

If ingPWD was an invalid password, the following errors would be displayed
from the above code:

SQLSTATE: 08004
Native Error Code: 786443
buffer: [Ingres][Ingres 2006 ODBC Driver][Ingres 2006]Login failure: invalid
username/password.
SQLSTATE: 08S01
Native Error Code: 13172737
buffer: [Ingres][Ingres 2006 ODBC Driver][Ingres 2006]The connection to the server
has been aborted.

The SQLSTATE reference is specific to ODBC and does not correlate to
SQLSTATE in Ingres. The Native Error Code is an Ingres error code, viewable
from the errhelp utility:

> %II_SYSTEM%\ingres\sig\errhelp\errhelp 786443

(786443)

<12>000b Login failure: invalid username/password.

Understanding ODBC Connectivity 207

ODBC Programming

Termination and Clean-up

An ODBC application can simply terminate after executing its queries, but this
is considered poor programming practice. The DBMS server cannot distinguish
between a program that exited without cleaning up and a program that
aborted due to a serious error. As a result, spurious errors are reported in the
error log.

To disconnect gracefully from the database, call SQLDisconnect():

rc = SQLDisconnect(hdbc); /* Disconnect */

The ODBC function SQLFreeStmt() is used to close a cursor or free all
resources associated with a statement handle:

rc = SQLFreeStmt(hstmt, SQL_CLOSE); /* Close a cursor or query */
rc = SQLFreeStmt(hstmt, SQL_DROP); /* Free all resources */

A call to SQLFreeStmt() with an argument of SQL_DROP implicitly closes the
cursor before freeing resources.

The generic SQLFreeHandle() function can be used with all types of handles:

rc = SQLFreeHandle (SQL_HANDLE_STMT, hstmt);
rc = SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
rc = SQLFreeEnv (SQL_HANDLE_ENV, henv);

A call to SQLFreeHandle() with a handle type argument of SQL_HANDLE_STMT
is the equivalent of calling SQLFreeStmt() with an argument of SQL_DROP.

Once a handle has been freed, the corresponding allocate function must be re-
invoked to initialize resources associated with the handle.

ODBC CLI Connection Pooling

ODBC connection pooling is a method of sharing active database connections
with similar or identical connection characteristics. When a connection is
released through a call to SQLDisconnect(), the connection is left open and
added to a pool of active connections.

When an ODBC application opens a new connection, the application searches
the pool for a connection with matching connection characteristics. If a match
is found, the connection from the pool is used "under the covers" instead of
creating a new connection. If a match is not found, a new connection is
opened.

208 Connectivity Guide

ODBC Programming

ODBC connection pooling can improve performance significantly because an
ODBC application can take a long time to connect relative to the time it takes
to process data.

ODBC pooled connections can be shared with single or multi-threaded ODBC
applications, but are not shared between separate ODBC applications.

Note: In Windows environments, connection pooling is provided by the
Windows Driver Manager rather than the Ingres ODBC CLI.

ODBC Connection Pools: Per Driver and Per Environment

ODBC connection pooling is activated by invoking SQLSetEnvAttr() with the
attribute SQL_ATTR_CONNECTION_POOLING, and with the directives
SQL_CP_ONE_PER_DRIVER or SQL_CP_ONE_PER_HENV.

Example: SQL_ATTR_CONNECTION_POOLING Attribute

rc = SQLSetEnvAttr(NULL, SQL_ATTR_CONNECTION_POOLING,")
(SQLPOINTER)SQL_CP_ONE_PER_DRIVER, SQL_IS_INTEGER);

SQL_CP_ONE_PER_DRIVER means that there is only one connection pool for
the entire ODBC application, regardless of the number of connections. If only
one environment handle is allocated, SQL_CP_ONE_PER_DRIVER is essentially
the same as SQL_CP_ONE_PER_HENV.

If multiple environment handles are allocated, it may make more sense to
specify SQL_CP_ONE_PER_HENV, especially if the connections associated with
each environment have similar characteristics. This directive will create
multiple pools, each with a smaller number of connections to search through.

ODBC Connection Pool Match Criteria: Strict and Relaxed

The SQLSetEnvAttr() function allows the ODBC application to specify match
criteria for objects in the connection pool.

Connection objects with "strict" criteria must have identical connection
specifiers for connection attributes specified in the connection string from
SQLDriverConnect(). "Strict" is the only option supported, and other
specifications are ignored.

Example: Strict Match Criterion

rc = SQLSetEnvAttr(henv, SQL_ATTR_CP_MATCH, (SQLPOINTER)
SQL_CP_STRICT_MATCH, SQL_IS_INTEGER);

Understanding ODBC Connectivity 209

ODBC Programming

"Relaxed" match criteria do not apply to SQLDriverConnect() in the Ingres
ODBC CLI. If a relaxed match criterion is specified, only key connection
attributes must match. For the ODBC CLI, the following minimum attributes
must match, if specified:

� DATABASE

� SERVER_TYPE

� SERVER

� DRIVER

� GROUP

� ROLENAME

� ROLEPWD

� DBMS_PWD

The following connection string attributes are ignored for relaxed match
criteria:

� BLANKDATE

� DATE1582

� CATCONNECT

� SELECTLOOPS

� NUMERIC_OVERFLOW

� CATSCHEMANULL

ODBC Connection Pool Timeout

ODBC pooled connections can be configured to time out to prevent an
unmanageable number of connections in the pool.

By default, the Ingres ODBC CLI allows connections to remain in the pool as
long as the ODBC application is active. You can override the default connection
pool timeout value using the Ingres ODBC Administrator (iiodbcadmin) on
UNIX, Linux, and VMS.

210 Connectivity Guide

Ingres ODBC and Distributed Transactions (Windows)

To change the connection pool timeout value on UNIX, Linux, and VMS

1.	 Start the Ingres ODBC Administrator by issuing the iiodbcadmin
command.

2.	 At the utility menu, choose Drivers, Configuration Options.

The Configuration screen appears.

3.	 Enter a value in the edit box from 1 to 2,147,483,647, which represents
the number of seconds that unused connections remain in the pool.

The default value is -1, which means that pooled connection objects never
time out. When a connection object times out, it is disconnected from the
database and deleted from the pool.

Note: A thread in the ODBC CLI manages connection pool timeouts. If the
time out value is left at -1, the thread is never started. For performance
reasons, it is better to leave the timeout value at -1 rather than specifying
a large value.

Ingres ODBC and Distributed Transactions (Windows)

The Ingres ODBC 3.5 Driver fully supports enlistment of the ODBC connection
in a distributed transaction on Windows. The ODBC driver works with the
Microsoft Distributed Transaction Coordinator (MSDTC), Ingres DBMS Server,
and the Ingres XA Distributed Transaction Processing (DTP) subsystem to
allow the Ingres connection to participate in the distributed transaction on
Windows with other Ingres or non-Ingres participants.

To enlist in a transaction represented by a ITransaction interface, the Ingres
ODBC driver supports the SQLSetConnectionAttr(hDBC,
SQL_ATTR_ENLIST_IN_DTC, pITransaction) statement. Applications such as
ODBC .NET Data Provider, Microsoft Transaction Server (MTS), or ordinary
applications acquire a ITransaction pointer to a MSDTC transaction, and call
the Ingres ODBC driver with the request to enlist the ODBC connection in the
transaction. When the commit or rollback is required for the MSDTC
transaction, the Ingres ODBC driver works as a Resource Manager (RM) with
MSDTC to execute the commit or rollback for the XA transaction on the Ingres
DBMS Server.

Understanding ODBC Connectivity 211

Ingres ODBC and Distributed Transactions (Windows)

How You Enable the Use of Distributed Transactions through the Ingres
ODBC Driver

To use distributed transactions through the Ingres ODBC driver and to
maintain security within Windows XP, the Ingres DBA must register the Ingres
ODBC driver to Windows, and the Windows MSDTC account must be enabled
and registered to Ingres.

To enable the use of distributed transactions

1.	 Enable XA Transactions.

Select Component Services, My Computer Properties, MSDTC, Security
Configuration, Enable XA Transactions.

2.	 Add to the Windows registry the DLL name of the Ingres ODBC Driver
(caiiod35.dll). (Windows XP SP2 and later requires that the DLL name of a
MSDTC XA Resource Manager be defined in the Windows registry to
enhance the security of the system.)

Note: This step is not necessary if distributed transactions
(SQL_ATTR_ENLIST_IN_DTC feature of the driver) will not be used.

To register the Ingres ODBC driver, add the following entry to
HKLM\Microsoft\MSDTC\XADLL:

caiiod35.dll REG_SZ C:\Program
Files\Ingres\IngresII\ingres\bin\caiiod35.dll

3.	 Ensure that the Network Service account on Windows is authorized to
access Ingres. (During recovery operations, the MSDTC proxy calls the
ODBC driver under the NetworkService account on Windows XP SP2.)

Register the Network Service account with the Ingres Name Service. Using
Ingres Visual DBA or accessdb utilities, add “networkservice” as an Ingres
user. Only the name for the Ingres user account is required; no privileges
are required.

Vnode Definitions When Using Distributed Transactions through ODBC

For remote Ingres servers, vnodes must be of type Global, not Private, for
"Login/password data" and "Connection data" records in the vnode definition.
Global definitions are required because portions of MSDTC run under the
Windows System account and need the global login and connection data to
connect to Ingres for transaction recovery.

If needed, the vnode definition login records must contain the
username/password information, not the application connection string,
because the username/password information is needed by the MS Transaction
Manager and Ingres to connect to the server when XA recovery is needed.
Only the vnode information, not the application connection string, is available
at that time.

212 	Connectivity Guide

Ingres ODBC and Distributed Transactions (Windows)

Troubleshooting Distributed Transactions through ODBC

[Microsoft][ODBC Driver Manager] Failed to enlist on calling object's transaction

Possible actions include:

�	 Check that the MSDTC service is running.

Select Start, Settings, Control Panel, Administrative Tools, Services,
MSDTC.

�	 Check the Windows Event Viewer's application and system logs for any MS
DTC messages.

�	 Check for messages in the client machine's Ingres log on
$II_SYSTEM\ingres\files\errlog.log.

�	 Check for messages in the server machine's Ingres log.

�	 If using MTS, check the MTS Transaction Timeout value:

1.	 Start the MS Transaction Server Explorer.

2.	 Select Computers.

3.	 Right-click the computer (often My Computer) where the transaction
was initiated.

4.	 Click the Options property tab.

It is unlikely that the component's transaction aborted due to transaction time-
out (default is 60 seconds) before the database enlistment is completed.
However, if your transaction takes an unusually long time to enlist, you might
consider increasing the Transaction Timeout value.

DTC transaction recovery is not working as expected

If DTC transaction recovery is not working as expected, check the Windows
event viewer log/application screen for MS DTC messages. Also check the
Ingres error log file %II_SYSTEM%\ingres\files\errlog.log on both the client
and server machines.

To turn on the display of error messages and tracing of Ingres XA
transaction processing

Issue this command:

ingsetenv II_XA_TRACE_FILE "C:\mydir\xatrace.log"

Ingres XA tracing should normally be turned off (ingunset II_XA_TRACE_FILE)
because the trace output can accumulate to a significant volume over time.

For information on how to respond to relevant error messages, see Microsoft
Knowledge Base Document 415863.

Understanding ODBC Connectivity 213

ODBC Trace Diagnostics

ODBC Trace Diagnostics

If you have built your ODBC directly from code such as ADO or C, you can
debug your application directly using the appropriate debugger.

ODBC trace logs are a common method for debugging ODBC applications and
can be used with any application that uses the Ingres ODBC. ODBC trace logs
are the most meaningful if you understand ODBC programming or Ingres
internals.

Standard ODBC Tracing

Standard ODBC tracing is written in a format that summarizes the ODBC
functions called and provides information about the arguments passed to the
ODBC functions. Here is an excerpt of a standard ODBC trace:

python iter 	 ae4-21c ENTER SQLAllocHandle
 SQLSMALLINT 1 <SQL_HANDLE_ENV>
 SQLHANDLE 00000000
 SQLHANDLE * 0021FCA4

python iter 	 ae4-21c EXIT SQLAllocHandle with return code 0 (SQL_SUCCESS)
 SQLSMALLINT 1 <SQL_HANDLE_ENV>
 SQLHANDLE 00000000
 SQLHANDLE * 0x0021FCA4 (0x00961788)

Ingres Support can often generate test cases that reproduce the problem
entirely from the information in the ODBC trace log.

214 Connectivity Guide

ODBC Trace Diagnostics

Windows Environments

ODBC trace logs may be created for any Ingres application that uses ODBC. In
addition to straight ODBC, applications include, but are not limited to:

� ADO

� OLE DB Provider for ODBC

� .NET Data Provider for ODBC

� Ingres Python DBI Driver

� Ingres PHP ODBC Driver

� Windows Access

� Windows Excel

� OpenOffice Base

� Microsoft ASP pages

Note: ASP pages, or any ODBC-based application executed from IIS (Internet
Information Service) do not support ODBC tracing. See the Microsoft
Knowledge Base document 836072 for more information.

The Windows ODBC Administrator is used to enable tracing. The ODBC
Administrator may be visible from the Control Panel, or may be executed from
the command prompt as \WINDOWS\SYSTEM32\odbcad32.exe (32-bit
environments) or \WINDOWS\SysWOW64\odbcad32.exe (64-bit
environments).

To enable tracing, click the Tracing tab in the ODBC Administrator's startup
page, and then click the Start tracing now button. The Tracing page includes
an entry box that specifies the path and file name of the ODBC trace log file.
You may edit this box if you wish to redirect ODBC tracing output to another
file.

UNIX, Linux and VMS Environments

This section discusses several methods for supporting ODBC tracing in UNIX,
Linux and VMS environments.

Understanding ODBC Connectivity 215

ODBC Trace Diagnostics

Ingres ODBC CLI

For Ingres ODBC CLI applications, a standard ODBC trace is possible. Ingres
does not currently release the code for ODBC trace libraries. However, you can
obtain a binary of the ODBC trace library from Ingres Support.

To enable tracing for ODBC CLI applications:

1.	 Install the ODBC trace library

2.	 Select Drivers ⇒ Tracing from the Ingres ODBC Administrator,
iiodbcadmin.

3.	 To enable tracing for Linux, Unix and VMS, select the Set Tracing menu
option to turn tracing on, and then select Save.

UnixODBC Driver Managers

UnixODBC environments support tracing. The Ingres ODBC Administrator may
be used to trace in unixODBC environments, as previously documented for
ODBC CLI applications. In fact, ODBC DSN definitions can be created in the
Ingres ODBC Administrator and can be used in unixODBC applications.

To enable unixODBC tracing by manually editing the odbcinst.ini file, add this
code section:

[ODBC]

Trace = yes

TraceFile = /tmp/odbctrace.log

ODBC Tracing on All Platforms—Internal ODBC Tracing

Internal ODBC tracing is available on all platforms, regardless of the ODBC
application used. Internal ODBC tracing follows the conventions of GCA and
API tracing and relies on specification of Ingres environment variables (logical
definitions on VMS) to generate the trace.

The environment variable II_ODBC_LOG specifies the file name of the ODBC
trace. It is recommended to specify the full path of the trace log file; otherwise
it may be difficult to find the log after the application is executed.
II_ODBC_TRACE specifies the tracing level, which ranges from 0 to 5. (The
higher the value, the more detailed the output.)

The ingsetenv utility may be used to specify ODBC tracing. In IIS
environments, this utility is the only option.

Note: Use ingsetenv carefully, since all ODBC applications will "see" these
variables whenever they are executed.

216 	Connectivity Guide

ODBC Trace Diagnostics

Example: ODBC Tracing Using ingsetenv

ingsetenv II_ODBC_LOG C:\temp\odbc.log
ingsetenv II_ODBC_TRACE 5

If possible, it is preferable to use platform-specific commands to set the trace
variables, especially if your environment executes many ODBC applications
simultaneously.

On Windows, ODBC tracing is specified as follows:

> set II_ODBC_TRACE=5
> set II_ODBC_LOG="C:\My Path\odbctrace.log"

On Unix and Linux, ODBC tracing is specified as follows for Bourne, Korn and
Bash shells:

II_ODBC_TRACE=5
export II_ODBC_TRACE
II_ODBC_LOG=/tmp/odbctrace.log
export II_ODBC_LOG

On Unix and Linux, ODBC tracing is specified as follows for the C shell:

$ setenv II_ODBC_TRACE 5
$ setenv II_ODBC_LOG /tmp/odbctrace.log

On VMS, ODBC tracing is specified as follows:

$ DEF/JOB II_ODBC_LOG SYS$LOGIN:ODBC.LOG
$ DEF/JOB II_ODBC_TRACE 5

Understanding ODBC Connectivity 217

ODBC Trace Diagnostics

You may wish to add GCA or API tracing. The environment variables
II_GCA_TRACE and II_API_TRACE may be used in addition to II_ODBC_LOG.
See GCA_Tracing for more information on these options.

Here is a sample excerpt from an ODBC trace log that specifies both ODBC and
GCA tracing:

!ODBC Trace: SQLGetInfo (ca7cd0, 77, 21f0a4, 100, 21f144)
!ODBC Trace: ResetDbc
!ODBC Trace: SQLDriverConnect ()
!ODBC Trace: ResetDbc
!ODBC Trace: ConDriverName
!ODBC Trace: ConDriverInfo
!ODBC Trace: SQLConnect (ca7cd0, 0, 0, 0, 0, 0, 0)
! 0 GCA_REQUEST timeout=120000 async
! 0 GCA SA_INIT status 00000000 (0)
! 0 GCA SA_JUMP status 00000000 (1)
! 0 GCA RQ_INIT status 00000000 (222)
! 0 GCA_REQUEST target='var/INGRES' prot=66
! 0 GCA RQ_ALLOC status 00000000 (223)
! 0 GCA SA_BUFFERS status 00000000 (224)
! 0 GCA RQ_IS_NOXLATE status 00000000 (225)
! 0 GCA RQ_IS_RSLVD status 00000000 (226)
! 0 GCA RQ_ADDR_NSID status 00000000 (227)
! 0 GCA RQ_IS_NMSVR status 00000000 (228)
! 0 GCA RQ_USE_NMSVR status 00000000 (229)

Note: Do not define II_API_LOG or II_GCA_LOG if you wish to include ODBC
trace information. II_ODBC_LOG must be defined.

Internal verses Standard ODBC Trace Logs

Internal ODBC trace logs are most useful for ODBC problems that are not
related to the ODBC, such as:

�	 Problems connecting to the database

�	 Errors reported from the DBMS server, such as SQL syntax errors, table
permission errors, or failure to return data from a query

�	 Errors related to commit or rollback

On Windows, internal ODBC trace logs is the only option for ODBC applications
executed from IIS.

Standard ODBC trace logs are best for general use. Sometimes the best results
are obtained by generating both types of trace logs.

Disable Tracing

Do not forget to disable ODBC tracing after you have generated your test case!
ODBC tracing, like all tracing, can have a significant impact on performance. It
is even possible that the disk may become full if tracing is enabled for a
significant period of time.

218 	Connectivity Guide

ODBC Trace Diagnostics

How You Disable Standard Tracing

To disable standard tracing on Windows

1.	 Click the Tracing tab in the ODBC Administrator.

2.	 Click the Stop tracing now button.

To disable standard tracing for ODBC CLI applications

1.	 Execute the iiodbcadmin utility and select the Drivers ⇒ Tracing menu
options.

2.	 Select the Set Tracing menu option to turn tracing off, and then select
Save.

To disable standard tracing in unixODBC environments by editing the
odbcinst.ini file

1.	 Open the odbcinst.ini file.

2.	 Unset tracing with the following edits:

[ODBC]

Trace = no

TraceFile =

How You Disable Internal Tracing

The ingunset utililty turns off variables set via ingsetenv.

In Unix and Linux environments, internal tracing is disabled using either unset

or unsetenv, depending on the execution shell.

On VMS, Ingres logical names are unset using DEASSIGN/JOB.

On Windows, ODBC trace variables are unset as follows:

> SET II_ODBC_LOG=

> SET II_ODBC_TRACE=

Understanding ODBC Connectivity 219

Chapter 11: Understanding JDBC
Connectivity

This section contains the following topics:

JDBC Components (see page 221)

Unsupported JDBC Features (see page 224)

JDBC Driver Interface (see page 225)

JDBC Implementation Considerations (see page 237)

Data Type Compatibility (see page 252)

JDBC Tracing (see page 255)

This chapter explains the JDBC components that enable JDBC connectivity to
Ingres data sources. It provides a description of each component, a list of
supported API features, driver and server configuration information, and
guidelines for implementing Java applications in the Ingres environment.

JDBC Components

Ingres JDBC consists of the following components:

� The JDBC driver

� The JDBC information utility

Understanding JDBC Connectivity 221

JDBC Components

JDBC Driver

The Ingres JDBC Driver is a pure Java implementation of the JDBC 3.0 API
released with the Sun Java 2 SDK, version 5.0. The driver supports application,
applet, and servlet access to Ingres data sources through the Data Access
Server.

Note: The JDBC driver provided in the Ingres 2.6 release continues to be
supported in this current release. For migration instructions related to the
JDBC driver, see the Migration Guide.

The Ingres JDBC Driver supports the following JDBC 3.0 features:

� Updatable ResultSets

� Scrollable ResultSets

� Transaction savepoints

� Named procedure parameters

� Auto-generated keys

� Parameter metadata

� Blob and clob data objects

The Ingres JDBC Driver is delivered as a single Java archive file, named
iijdbc.jar, located in the library directory (lib) of the Ingres instance.
Depending on the Java environment used, access to the driver requires adding
the Java archive to the CLASSPATH environment setting or as a resource in the
appropriate utility. For browser/applet access, the Java archive must be copied
to the Web Server directories.

222 Connectivity Guide

JDBC Components

JDBC Information Utility—Load the JDBC Driver

The JDBC information utility, JdbcInfo, loads the Ingres JDBC driver and
displays its internal release information. The class files for the JdbcInfo utility
are located in the library directory (lib) of the Ingres instance.

You can invoke the JdbcInfo utility from the command line with the following
parameters:

java JdbcInfo

Displays the internal driver release of the Ingres JDBC Driver.

java JdbcInfo url

Attempts to establish a JDBC connection to the target database using the
specified URL. If successful, it displays the Ingres JDBC Driver name and
release that serviced the URL connection.

java JdbcInfo host port

Attempts to establish a low-level connection to the Data Access Server
associated with host port. If successful, it displays the internal driver
release of the Ingres JDBC Driver.

Understanding JDBC Connectivity 223

Unsupported JDBC Features

Unsupported JDBC Features

The Ingres JDBC Driver is compliant with the JDBC 3.0 API specification. JDBC
3.0 API interfaces are fully supported with the following exceptions:

Auto-generated Keys

The Ingres DBMS returns only a single table key or a single object key per
insert statement. Ingres does not return table and object keys for INSERT
AS SELECT statements. Depending on the keys that are produced by the
statement executed, auto-generated key parameters in execute(),
executeUpdate(), and prepareStatement() methods are ignored and
getGeneratedKeys() returns a result-set containing no rows, a single row
with one column, or a single row with two columns. The Ingres JDBC
Driver returns table and object keys as BINARY values.

Result sets

Result sets generated by executeQuery() requests are always
CLOSE_CURSORS_AT_COMMIT (non-holdable).

The isLast() method cannot always detect when the ResultSet is positioned
on the last row and may return false instead of returning true.

Data types

The JDBC data types DATALINK, ARRAY, REF, DISTINCT, STRUCT, and
JAVA_OBJECT are not supported. The storage or mapping of Java objects
(SQLInput, SQLOutput, and SQLData) is also not supported. Methods
associated with these data types throw exceptions when called.

Calendars

Ingres stores date/time values in GMT (same as Java). With an Ingres
DBMS, the Ingres JDBC Driver handles all date/time values in GMT and
calendars provided in setXXX() and getXXX() methods are ignored. EDBC
servers and Enterprise Access gateways do not reference date/time values
to a particular time zone. The Ingres JDBC Driver uses the local time zone
when accessing a non-Ingres DBMS Server, and utilizes calendars if
provided. Calendars are also used for TIME WITHOUT TIME ZONE and
TIMESTAMP WITHOUT TIME ZONE values.

Batch updates

Batched execution for Statements, PreparedStatements, and
CallableStatements is supported by individual execution of each batched
request. The driver implementation for batch updates is only as efficient as
an application making individual update requests.

224 Connectivity Guide

JDBC Driver Interface

JDBC Driver Interface

This section details the Ingres JDBC Driver interface class files and their
associated properties. It also includes instructions for loading and accessing
the driver.

JDBC Driver and Data Source Classes

The Ingres JDBC driver and data source classes are located in the Java
package, com.ingres.jdbc.

These packages are contained in the Java archive iijdbc.jar, which includes the
following class files:

Class Implemented JDBC Interface

com.ingres.jdbc.IngresDriver The Ingres implementation of the
JDBC Driver interface
(java.sql.Driver).

com.ingres.jdbc.IngresDataSource The Ingres implementation of the
JDBC DataSource interface
(javax.sql.DataSource).

com.ingres.jdbc.IngresCPDataSource The Ingres implementation of the
JDBC ConnectionPoolDataSource
interface
(javax.sql.ConnectionPoolDataSour
ce).

com.ingres.jdbc.IngresXADataSource The Ingres implementation of the
JDBC XADataSource interface
(javax.sql.XADataSource).

Note: The original Ingres JDBC Driver and DataSources classes contained in
the Java archive iijdbc.jar under the Java package path of "ca.ingres.jdbc" are
moved to the package path of "com.ingres.jdbc". The iijdbc.jar archive
included with Ingres 2006 also contains the original classes for backward
compatibility. The original "ca.ingres.jdbc" package path and classes will be
removed from iijdbc.jar in the next major release. Existing references to
"ca.ingres.jdbc" classes will continue to work, but should be changed when
convenient. New references should use the package path of "com.ingres.jdbc".

Understanding JDBC Connectivity 225

JDBC Driver Interface

JDBC Driver Properties

Driver properties allow applications to establish connection parameters that
are driver-dependent. Ingres JDBC Driver properties can be specified as
connection URL attributes as a Java Properties parameter to a
DriverManager.getConnection() method, as Java system properties, or in a
properties file. Attribute and property names are given below.

When specified as system properties or in a property file, the property key
must be of the form

ingres.jdbc.property.property_name

During Ingres installation, the JDBC Driver Properties Generator (see
page 230) reads the Ingres configuration and generates the corresponding
JDBC driver properties file, named iijdbc.properties.

A default properties file (typically iijdbc.properties) is loaded automatically by
the Ingres JDBC Driver when the driver class is loaded. The file must reside in
a location accessible by the class loader used to load the driver. In general,
this requires that the properties file directory be included in the Java
environment variable CLASSPATH.

An alternate properties file can also be specified using the system property
ingres.jdbc.property_file. The directory path of the property file can be
specified or the property file can be placed in a directory accessible as
described above for the default properties file. Properties are searched in the
following order: URL attributes, getConnection() property set, system
properties, alternate properties file, and default properties file.

The Ingres JDBC Driver supports the following properties:

Property Attribute Description

user UID The user ID on the target DBMS Server
machine. See the description of the
vnode_usage property in this table.

This property can be used if the user
has no DBMS user ID and password
assigned (see dbms_user and
dbms_password in this table).

password PWD The user's operating system password.

role ROLE The desired role identifier. If a role
password is required, include it with the
role name as follows: name/password.

group GRP The user's group identifier.

226 Connectivity Guide

JDBC Driver Interface

Property Attribute Description

dbms_user DBUSR The user name associated with the
DBMS session (Ingres -u flag, can
require admin privileges).

dbms_password DBPWD The user's DBMS password (Ingres -P
flag).

connect_pool POOL Server connection pool control.
Available options are:

off–requests a non-pooled connection
when server pooling is enabled

on–-requests a pooled connection when
server pooling is optional.

The default is to allow the DAS
configuration to determine pooling.

select_loop LOOP Select loop vs. cursor queries. Available
options are:

on–uses select loops to retrieve query
results

off–uses cursors (default).

For further details, see Cursors and
Select Loops (see page 242).

autocommit_mode AUTO Autocommit cursor handling mode.
Available options are:

dbms–autocommit processing is done
by the DBMS Server (default)

single–DAS enforces single cursor
operation during autocommit

multi–DAS simulates autocommit
operations when more than one cursor
is open.

For further details, see How
Transactions Are Autocommitted (see
page 238).

cursor_mode CURSOR Default cursor concurrency mode, which
determines the concurrency of cursors
that have no concurrency explicitly
assigned. Available options are:

dbms–-concurrency is determined by
the DBMS Server

Understanding JDBC Connectivity 227

JDBC Driver Interface

Property Attribute Description

update–provides updateable cursors

readonly–provides non-updateable
cursors (default)

Further details are provided in Cursors
and Result Set Characteristics (see
page 239).

vnode_usage VNODE Allows the JDBC application to control
the portions of the vnode information
that are used to establish the
connection to the remote DBMS server.
Available options are:

connect–Only the vnode connection
information is used to establish the
connection. (default)

login–Both the vnode connection and
login information are used to establish
the connection.

For further details, see JDBC User ID
Options (see page 237).

char_encode ENCODE Specifies the Java character encoding
used for conversions between Unicode
and character data types. Generally, the
character encoding is determined
automatically by the driver from the
DAS installation character set. This
property allows an alternate character
encoding to be specified (if desired) or a
valid character encoding to be used
when the driver is unable to map the
server's character set.

timezone TZ Specifies the Ingres time zone
associated with the client's location.
Corresponds to the Ingres environment
variable II_TIMEZONE_NAME and is
assigned the same values. This property
is not used directly by the driver but is
sent to the DBMS and affects the
processing of dates.

decimal_char DECIMAL Specifies the character to be used as
the decimal point in numeric literals.
Corresponds to the Ingres environment
variable II_DECIMAL and is assigned
the same values. This property is not

228 Connectivity Guide

JDBC Driver Interface

Property Attribute Description

used directly by the driver but is sent to
the DBMS and affects the processing of
query text.

date_alias DATE Specifies the data type of columns
created using the alias keyword "date".
Should be set to either "ingresdate"
(the default) or "ansidate". This
property is not used directly by the
driver but is sent to the DBMS and
affects the processing of query text.

date_format DATE_FMT Specifies the Ingres format for date
literals. Corresponds to the Ingres
environment variable II_DATE_FORMAT
and is assigned the same values. This
property is not used directly by the
driver, but is sent to the DBMS and
affects the processing of query text.

money_format MNY_FMT Specifies the Ingres format for money
literals. Corresponds to the Ingres
environment variable
II_MONEY_FORMAT and is assigned the
same values. This property is not used
directly by the driver but is sent to the
DBMS and affects the processing of
query text.

money_precision MNY_PREC Specifies the precision of money data
values. Corresponds to the Ingres
environment variable II_MONEY_PREC
and is assigned the same values. This
property is not used directly by the
driver but is sent to the DBMS and
affects the processing of money values.

Attributes can also be specified using the property name as the attribute
name. Thus "UID=user1" and "user=user1" are semantically the same.

Understanding JDBC Connectivity 229

JDBC Driver Interface

JDBC Driver Properties Generator (iijdbcprop)

The iijdbcprop utility automatically generates all supported JDBC properties.

The utility runs automatically during installation but can be run at any time.

This utility provides the following benefits:

� Automatically generates all JDBC properties that match related Ingres
environment variables, such as II_TIMEZONE_NAME, II_DECIMAL,
II_DATE_FORMAT, II_MONEY_FORMAT and II_MONEY_PREC. These
properties can keep the JDBC driver behavior synchronized with an Ingres
installation, since the JDBC driver does not have access to the Ingres
environment variables and is often deployed on a machine separate from
Ingres.

� Reduces typing errors when entering JDBC properties by hand. All
available JDBC properties are generated, but properties not in the Ingres
configuration files are commented out.

The iijdbcprop command writes the iijdbc.properties file into the directory:

UNIX: $II_SYSTEM/ingres/files

Windows: %II_SYSTEM\ingres\files

VMS: II_SYSTEM:[INGRES.FILES]

During loading of the JDBC driver by the class loader, the directory containing
the iijdbc.properties file must be specified in the Java environment variable
CLASSPATH.

If an Ingres JDBC application is connecting to a remote Data Access Server
(that is, Ingres is not installed on the machine running iijdbc.jar), the
iijdbc.properties file from the remote Ingres installation can be copied to the
machine running iijdbc.jar. The directory of the iijdbc.properties file must be
included in the CLASSPATH.

Example Entries—For example, to turn on tracing in the driver, uncomment
the desired trace entries in the iijdbc.properties file by removing the leading #
sign, and then provide appropriate values for them as shown here.

On UNIX, the following entries in iijdbc.properties file will produce a JDBC
driver trace file under the /tmp directory called jdbc_driver.log, provided the
$II_SYSTEM/ingres/files directory is in the CLASSPATH.

ingres.jdbc.trace.log=/tmp/jdbc_driver.log

ingres.jdbc.trace.drv=5

ingres.jdbc.trace.msg=3

For details on the iijdbcprop command, see the Command Reference Guide.

230 Connectivity Guide

JDBC Driver Interface

Data Source Properties

A data source configuration is a collection of information that identifies the
target database to which the driver connects. The Data Source classes support
the following data source properties and associated getter/setter methods.

DS Property Description

description Description of the data source.

serverName Server host name or network address (required).

Multiple hosts and associated ports can be specified
using the following syntax:

host:port{,port}{;host:port{,port}}

TCP/IPv6 addresses (colon-hexadecimal format) must
be enclosed in square brackets, for example: [::1]. If
a single host name or address is provided with no
port, the associated port must be provided using the
portName or portNumber properties. If a port (or
ports) is provided in this property, then the portName
and portNumber properties should not be set.

portName Symbolic port ID. Multiple ports can be provided,
separated by commas. A port ID must be provided in
the serverName, portName, or portNumber
properties.

portNumber

databaseName

user

Numeric port ID. A port ID must be provided either in
the serverName, portName, or portNumber
properties.

Database name (required).

User's ID. (A user ID is required when the DAS is not
on the same machine as the JDBC client; otherwise
this property is optional.)

password

roleName

groupName

dbmsUser

User's password. (A password is required when the
DAS is not on the same machine as the JDBC client;
otherwise this property is optional.)

DBMS role identifier.

DBMS group identifier.

User ID for the DBMS session (-u flag).

dbmsPassword User's DBMS password.

connectionPool Use pooled connection: 'off' or 'on'.

autocommitMode Autocommit cursor handling: 'dbms', 'single', 'multi'.

Understanding JDBC Connectivity 231

JDBC Driver Interface

DS Property Description

selectLoop Select loop processing: 'off', or 'on'.

cursorMode Default cursor concurrency: 'dbms', 'update',
'readonly'.

vnodeUsage Vnode usage for DBMS Server access: 'login',
'connect'.

charEncode Java character encoding.

timeZone Ingres timezone

decimalChar Ingres decimal character

dateAlias Ingres date alias

dateFormat Ingres date format

moneyFormat Ingres money format

moneyPrecision Ingres money precision

Note that the data source properties marked as “required” correspond to
parameters contained in a connection URL. For a description of these
parameters, see Establish JDBC Driver Connection (see page 236). The
remaining Data Source properties correspond to the driver properties defined
in JDBC Driver Properties (see page 226).

Additional Data Source Properties

In addition to the DataSource class properties, the ConnectionPoolDataSource
and XADataSource classes support the following properties and associated
getter/setter methods:

DS Property Description

initialPoolSize Initial connection pool size

minPoolSize Minimum connection pool size

maxPoolSize Maximum connection pool size

maxIdleTime Maximum time in connection pool

propertyCycle Wait time for checking the connection pool

232 Connectivity Guide

JDBC Driver Interface

System Properties

The following system properties can be used to configure the driver:

ingres.jdbc.property_file

Path and filename containing configuration system properties. Default is
iijdbc.properties (must reside in CLASSPATH directory).

ingres.jdbc.property.<property name>

Driver connection properties. Defaults are property dependent.

ingres.jdbc.lob.cache.enabled

Enable/disable caching Large Objects (true/false). Default is false.

ingres.jdbc.lob.cache.segment_size

Number of bytes/characters per segment in LOB cache. Default is 8192.

ingres.jdbc.lob.locators.enabled

Enable/disable Locators for Large Objects if supported by DBMS
(true/false). Default is true.

ingres.jdbc.lob.locators.autocommit.enabled

Enable/disable Locators for Large Objects during autocommit (true/false).
LOB Locators must also be generally enabled. Default is false.

ingres.jdbc.lob.locators.select_loop.enabled

Enable/disable Locators for Large Objects during select loops (true/false).
LOB Locators must also be generally enabled. Default is false.

Understanding JDBC Connectivity 233

JDBC Driver Interface

ingres.jdbc.date.empty

Replacement value, in standard JDBC date/time format YYYY-MM-DD
hh:mm:ss, for Ingres empty dates. Can also be set to null to have empty
dates returned as null values. For default behavior, set to default or
empty, as described in Date/Time Columns and Values (see page 249).

ingres.jdbc.dbms.trace.log

Path and filename of the DBMS trace log. Default is no trace log.

ingres.jdbc.trace.log

Path and filename of the driver trace log. Default is no trace log.

ingres.jdbc.trace.drv

Driver trace level. Default is 0 (no tracing).

ingres.jdbc.trace.ds

DataSource trace level. Default is 0 (no tracing).

ingres.jdbc.trace.msg

Messaging system trace level. Default is 0 (no tracing).

ingres.jdbc.trace.msg.tl

Transport layer trace level. Default is 0 (no tracing).

ingres.jdbc.trace.msg.nl

Network layer trace level. Default is 0 (no tracing).

ingres.jdbc.trace.timestamp

Include timestamps in traces (true/false). Default is false.

ingres.jdbc.scroll.enabled

Enable or disable scrollable result sets (true/false). If disabled, all result
sets will be forward-only and an SQLWARNING will be generated if a
scrollable result set is requested. Default is true.

234 Connectivity Guide

JDBC Driver Interface

How the Driver Is Loaded

The Ingres JDBC Driver can be loaded by an application or applet by using one
of these methods:

� Adding the driver class, com.ingres.jdbc.IngresDriver, to the JDBC
DriverManager system property "jdbc.drivers"

� Adding the following Java statement to the application/applet prior to
attempting to establish a connection using the Ingres JDBC Driver:

Class.forName("com.ingres.jdbc.IngresDriver").newInstance();

Depending on the Java environment, calling the forName() method can be
sufficient to load and initialize the Ingres JDBC Driver classes. Some
environments, most notably older releases of Microsoft Internet Explorer,
require the instantiation of an Ingres JDBC Driver object to fully initialize the
driver.

Understanding JDBC Connectivity 235

JDBC Driver Interface

DriverManager.getConnection() Method—Establish JDBC Driver Connection

An Ingres JDBC Driver connection can be established using a
DriverManager.getConnection() method with a URL in the following format:

jdbc:ingres://host:port{,port}{;host:port{,port}}/db{;attr=value}

where:

host

Specifies the network name or address of the host on which the target
Data Access Server (DAS) is running. TCP/IPv6 addresses (colon­
hexadecimal format) must be enclosed in square brackets, for example:
[::1]. Multiple hosts with associated ports must be separated by semi­
colons.

port

Specifies the network port used by the DAS. This can be a numeric port
number or an Ingres symbolic port address such as II7.

Multiple ports can be specified, one for each configured DAS. For example,
if DAS is configured with a startup count of 4 and a listen port of II7+:

II7,II8,II9,II10

The driver attempts to connect to each host/port combination until a
successful connection is made. The connection request between the JDBC
application and the DAS fails only if all port attempts fail. If a successful
connection to DAS is made, but the subsequent connection between DAS
and the DBMS fails, then the connection request fails immediately and
subsequent ports are not tried.

db

Specifies the target database. Any valid Ingres database designation can
be used including vnode and server class (that is,
vnode::dbname/server_class).

attr=value

(Optional) Specifies the attribute name and value pair. Multiple attribute
pairs are separated by a semi-colon.

Attributes represent driver properties that are implementation-specific and
can be used to configure the new connection. For details, see JDBC Driver
Properties (see page 226).

Note: A user ID and password are required when making remote connections
and can be included as parameters to the getConnection() method as driver
properties or as URL attributes.

236 Connectivity Guide

JDBC Implementation Considerations

JDBC Implementation Considerations

To implement Java applications in the Ingres environment, you should be
aware of the programming considerations and guidelines.

JDBC User Authentication

The Ingres JDBC Driver does not require a user ID and password to establish a
connection when the Ingres Data Access Server (DAS) is running on the same
machine as the Java client. When a userID/password is not provided, the Java
client process user ID is used to establish the DBMS connection. If the target
database specification includes a VNODE, the VNODE login information is used
to access the DBMS machine. Optionally, a userID/password can be provided
and is handled as described below.

When the Java client and DAS are on different machines, a user ID and
password are required to establish a connection to the DBMS. If the DAS and
DBMS server are running in the same Ingres instance (no VNODE in target
database specification), the userID/password is used to validate access to the
DAS/DBMS machine.

When the DAS and DBMS servers are on different machines, a VNODE is
required in the target database specification. The VNODE provides the
connection and (optionally) login information needed to establish the DBMS
connection.

The driver property vnode_usage determines how the VNODE is used to access
the DBMS. The vnode_usage property also determines the context (DAS or
DBMS) in which the application userID/password is used. VNODE usage
without a userID/password is described above. If the target database
specification does not contain a VNODE, the vnode_usage property is ignored.

When vnode_usage is set to 'connect', only global VNODE connection
information is used to establish the DBMS connection. The application-provided
user ID and password are used in the DBMS context to access the DBMS
machine.

When vnode_usage is set to 'login', both connection and login VNODE
information is used to access the DBMS machine. The application-provided
user ID and password are used in the DAS context, allowing access to private
and global VNODEs.

Note: Ingres may use the ingvalidpw program (see page 45) to validate a user
password, depending on the platform requirements where the password is
validated.

Understanding JDBC Connectivity 237

JDBC Implementation Considerations

How Transactions Are Autocommitted

Application developers must be aware that the DBMS Server imposes severe
limits on the operations that can be performed when autocommit is enabled
(the JDBC default transaction mode) and a cursor is opened. In general, only
one cursor at a time can be open during autocommit, and only cursor-related
operations (cursor delete, cursor update) can be performed. Violating this
restriction results in an exception being thrown with the message text:

No MST is currently in progress, cannot declare another cursor

Cursors are opened by the Statement and PreparedStatement executeQuery()
methods and remain open until the associated ResultSet is closed. The driver
closes a cursor automatically when the end of the result set is reached, but
applications must not rely on this behavior. JDBC applications can avoid many
problems by calling the close() method of each JDBC object when the object is
no longer needed.

autocommit_mode Connection Property—Set Autocommit Processing Mode

The Ingres JDBC Driver provides alternative autocommit processing modes
that help overcome the restriction of autocommitting transactions or handle
problems that applications have with closing result sets.

The autocommit processing modes can be selected by setting the connection
property autocommit_mode to one of the following values. For additional
information, see JDBC Driver Properties (see page 226).

Value Mode Description

dbms DBMS (default) Autocommit processing is done by the DBMS
Server and is subject to the restrictions
mentioned above.

single Single-cursor The DAS allows only a single cursor to be open
during autocommit. If a query or non-cursor
operation is requested while a cursor is open,
the server closes the open cursor. Any future
attempts to access the cursor fails with an
unknown cursor exception. This mode is useful
for applications that fail to close result sets,
but does not perform other queries or non-
cursor related operations while the result set is
being used.

multi Multi-cursor Autocommit processing is done by the DBMS
Server when no cursors are open. The DAS
disables autocommit and begins a standard
transaction when a cursor is opened. Because
autocommit processing is disabled, multiple

238 Connectivity Guide

JDBC Implementation Considerations

Value Mode Description

cursors can be open at the same time and non-
cursor operations are permitted.

When a cursor is closed, and no other cursor is
open, the DAS commits the standard
transaction and re-enables autocommit in the
DBMS. This mode overcomes the restrictions
imposed by the DBMS during autocommit, but
requires the application to be very careful in
closing result sets. Because the DAS does not
commit the transaction until all cursors are
closed, a cursor left open inadvertently
eventually runs into log-file full problems and
transaction aborts.

Cursors and Result Set Characteristics

Ingres cursors and JDBC result sets both have an associated type specifying
that the object is scrollable or forward-only. The Ingres JDBC driver by default
opens cursors as forward-only.

A scrollable cursor can be opened by specifying a JDBC result set type of
ResultSet.TYPE_SCROLL_INSENSITIVE or ResultSet.TYPE_SCROLL_SENSITIVE
when creating the associated statement. Ingres read-only (static) scrollable
cursors are insensitive to changes, while updatable (keyset) scrollable cursors
are sensitive to changes. Either type can be specified for both read-only and
updatable cursors. If the incorrect type is used, the JDBC driver will produce a
result set with the correct type and generate a JDBC warning indicating that
the result set type was changed.

Ingres cursors and JDBC result sets both have an associated concurrency
characteristic specifying that the object is readonly or updatable. The Ingres
JDBC Driver automatically provides an updatable ResultSet when the
associated cursor is updatable. The JDBC readonly/update mode characteristics
are used by the Ingres Driver to control the mode of the resulting cursor.

For an updatable cursor, row updates and deletes can be performed using the
updatable ResultSet interface or by using a separate JDBC Statement to issue
positioned update and delete statements on the cursor. The cursor name
needed to issue a positioned update or delete statement can be assigned using
the Statement method setCursorName() or obtained by using the ResultSet
method getCursorName().

Understanding JDBC Connectivity 239

JDBC Implementation Considerations

Cursor concurrency can be specified using the FOR READONLY or FOR UPDATE
clause in the SELECT statement. The Ingres JDBC Driver supports the JDBC
syntax SELECT FOR UPDATE (and also SELECT FOR READONLY) and translates
this to the correct Ingres syntax.

A cursor is opened as readonly if one of the following is true (listed in
descending precedence):

� The SELECT statement contains the FOR READONLY clause.

� The associated statement was created using a Connection method that
specified the concurrency as ResultSet.CONCUR_READ_ONLY.

� The connection is readonly (Connection.setReadOnly(true)).

� The connection property cursor_mode is set to 'readonly' (the default
setting).

� The connection property cursor_mode is set to 'dbms' and the DBMS
Server determines that the cursor cannot be updated.

A cursor is opened as updatable if one of the following is true (listed in
descending precedence):

�	 The SELECT statement contains the FOR UPDATE clause.

�	 The associated statement was created using a Connection method that
specified the concurrency as ResultSet.CONCUR_UPDATABLE and the
DBMS Server determines that the cursor can be updated.

�	 No other readonly condition is true and the DBMS Server determines that
the cursor can be updated.

Note: The Ingres JDBC Driver does not attempt to force the cursor to be
updatable even when the application requests a concurrency of
ResultSet.CONCUR_UPDATABLE when creating the associated statement or the
connection property cursor_mode is set to ‘update’. In these cases, the cursor
will be updatable if the DBMS Server determines that an updatable cursor is
possible, otherwise the cursor will be readonly. The JDBC specification requires
"graceful degradation" with a warning rather than throwing an exception when
a requested concurrency cannot be provided.

240 	Connectivity Guide

JDBC Implementation Considerations

Turn Off Bi-directional Updatable Scrollable Cursors

You can use a configuration setting to turn off bi-directional updatable
scrollable cursors. All result-sets will be forward-only.

To turn off bi-directional updatable scrollable cursors

Use this command:

java -Dingres.jdbc.scroll.enabled=false App

Or use this alternative method:

1. Put the following line in a property file:

ingres.jdbc.scroll.enabled=false

2. Specify the property file on the command line:

java -Dingres.jdbc.property_file=file App

Understanding JDBC Connectivity 241

JDBC Implementation Considerations

Cursors and Select Loops

By default, the Ingres JDBC Driver uses a cursor to issue SQL select queries.
Cursors permit other SQL operations, such as deletes or updates, to be
performed while the cursor is open. (Operations can be restricted during
autocommit. For more information, see How Transactions Are Autocommitted
(see page 238).

Cursors also permit multiple queries to be active at the same time. These
capabilities are possible because only a limited number of result rows
(frequently only a single row) are returned by the DBMS Server for each cursor
fetch request. The low ratio of driver requests to returned rows results in lower
performance compared to other access methods.

The Ingres JDBC Driver uses cursor pre-fetch capabilities whenever possible.
Updatable cursors only return a single row for each fetch request. READONLY
cursors return a fixed number of rows on each fetch request. For details, see
Cursors and Result Set Characteristics (see page 239). By default, the Ingres
JDBC Driver obtains as many rows as fit in one communications block on each
fetch request.

Depending on row size, this can greatly increase data access efficiency. The
application can also specify the number of rows to be retrieved for READONLY
cursors by using the setFetchSize() method.

The Ingres JDBC Driver also permits the JDBC application to use a data access
method called a select loop. In a select loop request, the DBMS Server returns
all the result rows in a single data stream to the driver. Because select loops
use the connection while the result set is open, no other operation or query
can be performed until the result set is closed.

The statement cancel() method can be used to interrupt a select loop data
stream when a result set needs to be closed before the last row is processed.
Because the DBMS Server does not wait for fetch requests from the driver, this
access method is the most efficient available.

Select loops are enabled in the Ingres JDBC Driver by setting the driver
connection property select_loop to a value of 'on.' For more information, see
JDBC Driver Properties (see page 226).

With select loops enabled, the driver avoids using cursors for SELECT queries
unless explicitly indicated by the application. An application can request a
cursor be used for a query by assigning a cursor name to the statement
(setCursorName() method) or by using the JDBC syntax 'SELECT FOR UPDATE
...' to request an updatable cursor.

242 Connectivity Guide

JDBC Implementation Considerations

Database Procedures

Database procedures are supported through the JDBC CallableStatement
interface. The Ingres JDBC Driver supports the following database procedure
syntax.

Note: Items enclosed in brackets are optional.

Database Procedure Syntax

JDBC/ODBC CALL escape {[? =] CALL [schema.]name[(parameters)]}

Ingres EXECUTE
PROCEDURE

EXECUTE PROCEDURE [schema.]name[(parameters
)] [INTO ?]

Ingres CALLPROC CALLPROC [schema.]name[(parameters)] [INTO
?]

For all of these statements, the Ingres JDBC Driver supports a combined
parameter syntax supporting features of the ODBC positional parameter syntax
and the Ingres named parameter syntax:

parameters := param | param, parameters

param := [name =] [value]

value := ? | literal | SESSION.table_name

literal := numeric_literal | string_literal | hex_string

Named and Unnamed Parameters

Parameters can be named or unnamed, but mixing of named and unnamed
parameters is not allowed. Dynamic parameters can also be named using
CallableStatement methods introduced with JDBC 3.0. Literals can only be
named using the syntax provided above. All Ingres database procedure
parameters are named.

If parameter names are not provided to the Ingres JDBC Driver, the driver
must query the database and assign names to the parameters based on the
declared order of the procedure parameters. Because querying the database
reduces the performance of database procedure execution, using named
parameters in your applications is strongly encouraged.

The Ingres JDBC Driver provides support for parameter default values by
allowing parameter values to be omitted. This support is intended primarily for
ODBC positional parameters. For Ingres named parameters, default values can
be used simply by omitting the parameter entirely.

Understanding JDBC Connectivity 243

JDBC Implementation Considerations

Additional Parameter Considerations

Ingres supports the parameter attributes IN, OUT, and INOUT when creating
database procedures. When invoking a database procedure, the Ingres JDBC
Driver marks a parameter as IN when an input value is set using a
CallableStatement.setXXX() method. Registering a parameter for output using
a CallableStatement registerOutParameter() method will mark the parameter
as OUT. Setting a value and registering for output will mark a parameter as
INOUT. All dynamic parameters must have an input value assigned and/or be
registered for output prior to executing the procedure.

Ingres database procedure parameters can also be passed by value or
reference when not explicitly marked with IN, OUT, or INOUT attributes. The
Ingres JDBC Driver treats parameters passed by value as IN parameters, and
parameters passed by reference (BYREF) as INOUT parameters. If an input
value is not provided for a parameter registered for output, the driver sends a
NULL value of the output type registered for that parameter.

Ingres Global Temporary Table procedure parameters are specified by
providing a parameter value in the form session.table_name. In this
parameter, table_name is the name of the Global Temporary Table, and
'session.' identifies the parameter as a Global Temporary Table parameter.

Executing Procedures

The CallableStatement methods executeQuery() and execute() can be used to
execute a row-producing procedure. The methods executeUpdate() and
execute() can be used for non-row-producing procedures. Ingres does not
permit output parameters with procedures that return rows.

Procedure return values, output parameter values and rows returned by row-
producing procedures are accessed by standard JDBC methods and interfaces.
The CallableStatement getXXX() methods are used to retrieve procedure
return and output parameter values. Rows returned by a procedure are
accessed using the ResultSet returned by the CallableStatement getResultSet()
method.

Ingres database procedures permit the use of the transaction statements
COMMIT and ROLLBACK, however, the use of these statements is highly
discouraged!

Using these statements in a procedure executed by the Ingres JDBC Driver can
result in the unintentional commitment or rollback of work done prior to
procedure execution. It is also possible that a change in transaction state
during procedure execution can be interpreted as a transaction abort. For
these reasons, applications must make sure that no transaction is active prior
to executing a database procedure that contains COMMIT or ROLLBACK
statements.

244 Connectivity Guide

JDBC Implementation Considerations

BLOB Column Handling

Large Data Objects

Long, variable length data can be stored in columns of type LONG BYTE, LONG
VARCHAR, and LONG NVARCHAR. Columns of these types are collectively
referred to as Large Objects (LOB) and are further distinguished as binary
(BLOB), character (CLOB), and National Character Set (NCS or Unicode –
NLOB). Handling values of these types is somewhat different than smaller,
fixed length types such as integers and strings and, depending on the
representation, can place restrictions on how the data is retrieved and used,
and impact the performance of an application.

The Ingres JDBC driver can represent LOB values in three different ways:

� As a data stream within the application

� As a reference (called a LOCATOR) to the value stored in the database

� As a cached value

When first introduced, Ingres LOB values were only represented as streams of
bytes or characters. Ingres 9.2 introduces the capability of retrieving a
LOCATOR reference to a LOB value and accessing the value as it resides in the
database through the reference. In addition, the Ingres JDBC driver provides
the capability of loading a LOB data stream or LOCATOR reference and caching
the LOB data in the driver.

These three representations, how they are manifested in JDBC, and the impact
they have on an application are discussed here.

LOB Data Streams

A LOB data stream value accompanies the other values in a set of parameters
or columns. LOB data streams are serialized in order with the other values
they accompany and must be processed entirely before accessing the values
that follow. LOB data streams can be accessed only once per value. The driver
declares LOB values, when represented as data streams, to be of type
LONGVARBINARY or LONGVARCHAR.

A LOB data stream must be accessed and read completely prior to accessing
any value that follows the LOB in a result set. When a value is accessed that
follows an unaccessed or partially accessed LOB data stream, the driver must
read and discard the remaining LOB data so that the requested value can be
accessed. If an attempt is subsequently made to access the discarded LOB
value, an SQLException is generated indicating that the LOB data is no longer
accessible.

Understanding JDBC Connectivity 245

JDBC Implementation Considerations

LOB data streams must also be read fully before making any further request
on the associated connection. Because data from the DBMS Server is serialized
on the connection, the results from additional requests on the connection are
queued behind any unread LOB data. The Ingres JDBC Driver avoids conflicts
resulting from multiple simultaneous requests on a connection by locking the
connection for the duration of each request.

When a LOB data stream value is present in a result set, the connection is not
unlocked until all the data in the row, including the LOB data, has been read.
An attempt to make an additional request on a connection when a LOB column
has not been read completely generates an SQLException indicating that a
request was made before the prior request had completed.

LOB data streams can be accessed only once. Because LOB data streams are
not cached, only one call (to getString(), getCharacterStream(), and so on)
can be made for each LOB value in each row of the result set. Additional
requests to access a LOB data stream value generate an SQLException
indicating that the LOB data is no longer available.

In general, the following recommendation from the Sun JDBC documentation
must be followed: “For maximum portability, columns within a row must be
read in left-to-right order, and each column must only be read once. This
reflects implementation limitations in some underlying database protocols.”

A result set containing a LOB data stream value is not able to perform
READONLY cursor pre-fetching. Only one row of a result set is retrieved with
each DBMS Server access when a LOB data stream is present. While this does
not directly affect the JDBC application, row fetch performance is reduced
when a result set contains a LOB data stream value.

The restrictions associated with LOB data streams can be avoided by
configuring the driver to cache LOB data streams when received from the
DBMS. When enabled, the driver reads LOB data streams as they are received
and stores them in memory. All row column values are fully loaded when
control is returned to the application.

An uncached LOB data stream can also be cached by accessing it using the
getBlob() or getClob() method. Calling one of these methods satisfies the
restrictions associated with LOB data streams and allows extended access to
the LOB data using the Blob/Clob interface.

For further details on caching LOB data streams, see Cached LOB Values
below.

246 Connectivity Guide

JDBC Implementation Considerations

LOB Locators

A LOB Locator is a reference to a LOB value stored in a database. Locators
reduce the overhead of retrieving the entire LOB data value during row
processing. Applications can use a Locator reference to retrieve the LOB data
when and if it is determined that the data is needed. A Locator reference can
also be used to perform certain operations on the LOB data while it resides in
the database. The driver declares LOB Locator values to be of type BLOB or
CLOB and wraps Locator values in objects which implement the JDBC Blob and
Clob interfaces.

By default, the driver utilizes LOB Locators when supported by the DBMS. The
driver can be configured to use LOB data streams instead of Locators by
setting the following system property:

ingres.jdbc.lob.locators.enabled=false

When select loops are enabled, the DBMS streams all result rows back to the
driver. Row returning database procedures also stream result rows. While a
result stream is active, no other DBMS request is permitted. The driver does
not utilize LOB Locators by default when result row streams are active since
they cannot be used to access LOB data until after the result set is closed. The
driver can be configured to use LOB Locators with result row streams by
setting the following system property (LOB Locators must be enabled in
general for this property to take effect):

ingres.jdbc.lob.locators.select_loop.enabled=true

Locators are valid during the transaction in which they are produced.
Autocommit imposes a number of restrictions, depending on the autocommit
mode, on the use of LOB Locators.

DBMS Mode

Locators remain valid during autocommit. Since the DBMS only
supports a single active cursor during autocommit, Locators cannot be
used to access a LOB value while a result set is active.

Single-Cursor Mode

Using a Locator to access a LOB value will cause any active result set
to be closed.

Multi-Cursor Mode

Locators can be used to access a LOB value while the associated result
set is active. Since autocommit is being simulated with standard
transactions, all associated LOB Locators become invalid and unusable
when their associated result set is closed.

Understanding JDBC Connectivity 247

JDBC Implementation Considerations

Cached LOB Values

Due to these restrictions, the driver does not utilize LOB Locators by default
when autocommit is enabled. The driver can be configured to utilize LOB
Locators during autocommit by setting the following system property (LOB
Locators must be enabled in general for this property to take effect):

ingres.jdbc.lob.locators.autocommit.enabled=true

LOB values can be accessed through a Locator using the JDBC Blob/Clob
objects returned by the ResultSet methods getBlob() and getClob(). The
Ingres DBMS supports using LOB Locators to determine the length of the LOB
data, search the LOB data, and read portions of the LOB data or the entire LOB
value.

LOB values can also be accessed by using the other getXXX() methods
supported for LOB data streams. The LOB value is retrieved from the database
and converted to the form appropriate for the particular access method.

The Ingres DBMS does not support modifying LOB values using Locators. The
Ingres JDBC driver supports the Blob/Clob modification methods by reading
and caching the LOB data and performing the modification on the cached
value.

The Ingres JDBC driver will cache a LOB value in three circumstances:

� Caching of LOB data streams has been enabled with the system property
ingres.jdbc.lob.cache.enabled.

� The application calls getBlob() or getClob() for a LONGVARBINARY or
LONGVARCHAR column.

� The application calls a Blob/Clob modification method on an object
representing a LOB Locator.

The driver can be configured to automatically cache LOB data streams by
setting the following system property:

ingres.jdbc.lob.cache.enabled=true

Automatically caching LOB values requires sufficient memory to hold all active
LOB values. Memory resources may be severely impacted when caching is
enabled. To reduce the impact of extremely large LOB values, the LOB cache
stores values as a series of blocks or segments. The default size of a segment
is 8192 bytes or characters. The segment size is a trade off between the
number of segments needed to store a value, the size of memory blocks
needed to hold a segment, and the amount of unused space in the last
segment. The segment size can be configured using the following system
property:

ingres.jdbc.lob.cache.segment_size=<size>

248 Connectivity Guide

JDBC Implementation Considerations

The driver provides compatibility between the LOB data stream and Locator
representations by allowing the same getXXX() method calls for both types.
The driver supports getBlob() and getClob() methods for LOB data streams by
caching the LOB data in the Blob/Clob object.

The driver supports Blob/Clob methods that write or truncate LOB values by
reading the LOB data from the database (if necessary) and caching the data in
the Blob/Clob object. Modify operations therefore modify a copy of the LOB
data stored in the driver. The modified data is not automatically propagated to
the database. An application can write modified LOB data back to the database
by updating the row holding the LOB and providing the Blob/Clob object
holding the modified data as a parameter using the setBlob(), setClob(),
updateBlob(), or updateClob() methods.

Date/Time Columns and Values

The Ingres DBMS uses the timezone and date format of the client to perform
various types of processing of data values. By default, the Ingres JDBC Driver
uses the Java/JDBC conventions for dates by setting the client timezone to
GMT and the date format to match that specified by JDBC. When using these
settings, the Ingres JDBC Driver manipulates date/time values to match the
requirements of both the DBMS and JDBC.

Because the DBMS does not have the actual client timezone, the following
restrictions exist:

� Ingres date literal formats are not supported. JDBC specifies the format for
date, time, and timestamp literals using the following escape clause
syntax:

Literal Syntax

 date {d 'yyyy-mm-dd'}

 time {t 'hh:mm:ss'}

 timestamp {ts 'yyyy-mm-dd hh:mm:ss.f...'}

� These escape clauses must be used to include date, time, and timestamp
literals in SQL text. Applications can use other date/time formats by using
the classes java.sql.Date, java.sql.Time, java.sql.Timestamp, and
java.util.date with an appropriately configured date formatter
(java.text.DateFormat).

� Ingres specific date processing, such as intervals and date functions,
causes problems associated with the difference between GMT and the
actual client timezone and must be avoided.

Understanding JDBC Connectivity 249

JDBC Implementation Considerations

The Ingres JDBC Driver allows the Ingres timezone and date format to be
passed to the DBMS. For more information, see JDBC Driver Properties (see
page 226). When these property values are provided, all Ingres date
processing is supported in addition to the JDBC functionality listed above.

Note: The Ingres timezone provided must correspond to the Java client default
timezone. Using an arbitrary timezone results in time values that differ by the
relative timezone offsets.

The Ingres JDBC Driver supports Ingres empty dates ('') by returning the JDBC
date/time epoch values ('1970-01-01','00:00:00') for methods getDate(),
getTime() and getTimestamp() and a zero-length string for getString(). In
addition, a DataTruncation warning is created by the driver when an empty
date is returned by any of these methods. An application checks for the
warning by calling the getWarnings() method after calling one of the previously
mentioned methods. An Ingres empty date is different than a NULL value, and
cannot be detected using the wasNull() method.

A DataTruncation warning is also created for Ingres date-only values (no time
component) for the same conditions described for empty dates. While an
Ingres date-only value is comparable to a JDBC DATE value, Ingres date
columns are described as being JDBC TIMESTAMP types and date-only values
are technically a truncation of that type.

The driver can also be configured to return an alternate value for Ingres empty
dates. The system property ingres.jdbc.date.empty can be set to a standard
JDBC format date/time value to be returned in place of empty date values.
This property can also be set to null to have empty dates treated as null
values. A setting of default or empty results in the behavior described above.

Ingres interval values are not supported by the methods getDate(), getTime(),
and getTimestamp(). An exception is thrown if an Ingres date column
containing an interval value is accessed using these methods. Ingres interval
values can be retrieved using the getString() method. Because the output of
getString() for an interval value is not in a standard JDBC date/time format,
the Ingres JDBC Driver creates a warning that can be checked by calling the
getWarnings() method following the call to getString().

250 Connectivity Guide

JDBC Implementation Considerations

National Character Set Columns
The Ingres JDBC Driver supports the Ingres data types of nchar, nvarchar, and
long nvarchar. Retrieval of National Character Set values is done transparently
through the existing getXXX() ResultSet methods.

When using character parameters for a PreparedStatement, the data type sent
by the driver is determined by the JDBC methods used to assign the parameter
value, and the data types supported by the target database.

The JDBC parameter methods and resulting Ingres parameter data type for
both standard and National Character Set databases are as follows:

Method Standard Data NCS Database Data
Type Type

setString() varchar nvarchar

setAsciiStream() long varchar long nvarchar

setUnicodeStream() long varchar long nvarchar

setCharacterStream() long varchar long nvarchar

setObject(char[]) char nchar

setObject(String) varchar nvarchar

setObject(Reader) long varchar long nvarchar

setObject(obj,CHAR) char nchar

setObject(obj,VARCHAR) varchar nvarchar

setObject(obj,LONGVARCHAR) long varchar long nvarchar

setObject(char[],OTHER) char char

setObject(String,OTHER) varchar varchar

setObject(Reader,OTHER) long varchar long varchar

Note: The driver's use of National Character Set parameters can be overridden
using the JDBC SQL type of OTHER in the setObject() method.

Understanding JDBC Connectivity 251

Data Type Compatibility

Data Type Compatibility

With the exception of the data types listed in Unsupported JDBC Features (see
page 224), the Ingres JDBC Driver supports conversion of Ingres data values
into Java/JDBC values as required by the JDBC specification.

Because Ingres does not support all the JDBC data types, the following
conventions are used when sending Java/JDBC parameters to the DBMS:

NULL

Generally, NULL values sent to the DBMS are associated with the data type
provided in the setNULL() or setObject() method call or the data type
implied by the setXXX() method call. A generic or typeless NULL value can
be sent to the DBMS using one of the following method calls:

setNull(idx, Types.NULL)

setObject(idx, null)

setObject(idx, null, Types.NULL)

BOOLEAN

Boolean values are sent to the DBMS as single byte integers with the value
0 or 1.

BIGINT

Long values are sent to the DBMS as DECIMAL (if supported by the DBMS)
or DOUBLE values when BIGINT is not supported by the DBMS.

DECIMAL

BigDecimal values are sent as DOUBLE values when DECIMAL is not
supported by the DBMS. Avoid using the BigDecimal constructor that takes
a parameter of type double. This constructor can produce decimal values
that exceed the scale/precision supported by Ingres.

DATE

For earlier versions of Ingres and Enterprise Access gateways in which
ANSI date/time data types are not supported, Ingres supports a single
date data type, which is used for DATE, TIME, and TIMESTAMP values.
Ingres dates do support date without time values and this form is used for
JDBC DATE values.

TIME

For earlier versions of Ingres and Enterprise Access gateways in which
ANSI date/time data types are not supported, Ingres supports a single
date data type that is used for DATE, TIME, and TIMESTAMP values. Ingres
dates do not support date without time values. The Ingres JDBC
Driver adds the JDBC date epoch 1970-01-01 to JDBC TIME values. The
Ingres DBMS adds the current date to time-only values.

252 Connectivity Guide

Data Type Compatibility

CHAR

Zero length CHAR values are sent as VARCHAR values. For conventions
associated with NCS enabled databases, see National Character Set
Columns (see page 251). For information on automatic conversion to
LONGVARCHAR, see the end of this section.

VARCHAR

For conventions associated with NCS enabled databases, see National
Character Set Columns (see page 251). For information on automatic
conversion to LONGVARCHAR, see the end of this section.

LONGVARCHAR

The LONGVARCHAR type is used by the driver to represent Character and

NCS Large Object values passed to the driver as data streams.

For conventions associated with NCS enabled databases, see National

Character Set Columns (see page 251).

BINARY

Zero length BINARY values are sent as VARBINARY values.

LONGVARBINARY

The LONGVARBINARY type is used by the driver to represent Binary Large
Object values passed to the driver as data streams.

BLOB

The BLOB type is used by the driver to represent Locators to Binary Large
Object values residing in the database. Blob objects can be used to access
the blob value. Blob values in the database are read-only, therefore Blob
objects load and cache the referenced blob value locally when modification
requests are made.

Driver handling of Blob parameters is dependent on the value represented
by the Blob object. If a Blob object represents a Locator associated with
the connection, the driver sends the Locator as the parameter value. If a
Blob object represents a Locator associated with a different connection, a
cached blob value, or is an object which did not originate from the driver,
the driver sends the blob parameter value as a LONGVARBINARY data
stream.

CLOB

The CLOB type is used by the driver to represent Locators to Character and
NCS Large Object values residing in the database. Clob objects can be
used to access the clob value. Clob values in the database are read-only,
therefore Clob objects cache the referenced clob value when modification
requests are made.

Understanding JDBC Connectivity 253

Data Type Compatibility

Driver handling of Clob parameters is dependent on the value represented
by the Clob object. If a Clob object represents a Locator associated with
the connection, the driver sends the Locator as the parameter value. If a
Clob object represents a Locator associated with a different connection, a
cached clob value, or is an object which did not originate from the driver,
the driver sends the clob parameter value as a LONGVARCHAR data
stream.

In addition to the JDBC types listed above, the following conventions are used
when certain Java data values are provided to the setObject() method:

byte[]

Byte arrays are sent by default as VARBINARY values.

char[]

While not required by JDBC, character arrays are supported by the Ingres
JDBC Driver and are sent by default as CHAR values. For conventions
associated with NCS enabled databases, see National Character Set
Columns (see page 251). For information on automatic conversion
to LONGVARCHAR, see the end of this section.

String

Strings are sent by default as VARCHAR values. For conventions associated
with NCS enabled databases, see National Character Set Columns (see
page 251). For information on automatic conversion to LONGVARCHAR,
see the end of this section.

InputStream

While not required by JDBC, InputStream objects are supported by the
Ingres JDBC Driver and are sent by default as LONGVARBINARY values.

Reader

While not required by JDBC, Reader objects are supported by the Ingres

JDBC Driver and are sent by default as LONGVARCHAR values.

For conventions associated with NCS enabled databases, see National

Character Set Columns (see page 251).

JDBC requires BINARY, VARBINARY, CHAR, and VARCHAR parameter

values to be converted to LONGVARBINARY/LONGVARCHAR when their

length exceeds some DBMS dependent maximum.

The default maximum used by the Ingres JDBC driver is 2000 bytes. This

default maximum value can be incorrect for an Ingres database that has

been configured with non-default page sizes and for EDBC or Enterprise

Access gateways.

254 Connectivity Guide

JDBC Tracing

The Ingres driver uses the following entries in the iidbcapabilities system
catalog to determine at runtime the appropriate size limits:

SQL_MAX_BYTE_COLUMN_LEN
SQL_MAX_VBYT_COLUMN_LEN
SQL_MAX_CHAR_COLUMN_LEN
SQL_MAX_VCHR_COLUMN_LEN

Not all releases of the Ingres DBMS, EDBC, and Enterprise Access gateways
have these entries in their iidbcapabilities system catalogs. These entries can
be entered manually to provide accurate size information for the Ingres driver.
Depending on the DBMS involved, special permissions are required to update
the system catalog.

JDBC Tracing

The Ingres JDBC Driver supports both DriverManager and DataSource tracing
as documented in the JDBC 3.0 API specification. Trace information consists of
JDBC API method entry and exit points with corresponding parameter and
return values.

Enable internal Ingres JDBC Driver tracing by defining system properties on
the java command line (-D flag) or by including the properties in the driver
properties file.

DBMS trace messages are written to the internal trace log and can be directed
to a separate trace log specified by a driver property.

The following properties are supported:

Property Value Description

ingres.jdbc.trace.log log Path and file name of the Ingres
JDBC Driver trace log

ingres.jdbc.trace.drv 0 - 5 Tracing level for the Ingres JDBC
Driver

ingres.jdbc.trace.ds 0 - 5 Tracing level for the Ingres JDBC
DataSources

ingres.jdbc.trace.msg 0 - 5 Tracing level for Messaging I/O

ingres.jdbc.trace.msg.tl 0 - 5 Tracing level for Transport Layer I/O

ingres.jdbc.trace.msg.nl 0 - 5 Tracing level for Network Layer I/O

ingres.jdbc.trace.timestamp true Include timestamp in trace log

Understanding JDBC Connectivity 255

JDBC Tracing

Property Value Description

ingres.jdbc.dbms.trace.log log Path and file name of the DBMS
trace log

edbc.trace.log log Path and file name of the EDBC
JDBC Driver trace log

edbc.trace.id level Tracing level for the EDBC JDBC
Driver

edbc.trace.timestamp true Include timestamp in EDBC trace log

Internal tracing is also enabled by the application using the following Ingres
JDBC Driver methods:

Method Parameters Description

setTraceLog(String) log Log file path and name

setTraceLevel(int) level Tracing level for ID 'drv'

setTraceLevel(String,int) id, level Trace ID and numeric tracing
level

Internal driver tracing permits separate tracing level settings for the following
trace IDs (id):

Trace ID Description

drv General driver tracing

ds Data source tracing

msg General messaging IO tracing

msg.tl IO tracing: transport layer

msg.nl IO tracing: network layer

256 Connectivity Guide

JDBC Tracing

Tracing Levels

The tracing level determines the type of information that is logged. The
following levels are currently defined:

1 – Errors and exceptions

2 – High level method invocation

3 – High level method details

4 – Low level method invocation

5 – Low level method details

Understanding JDBC Connectivity 257

Chapter 12: Understanding .NET Data
Provider Connectivity

This section contains the following topics:

.NET Data Provider (see page 259)

.NET Data Provider Architecture (see page 260)

Code Access Security (see page 264)

.NET Data Provider Classes (see page 264)

Data Types Mapping (see page 320)

IngresDataReader Object—Retrieve Data from the Database (see page 322)

ExecuteNonQuery Method—Modify and Update Database (see page 326)

How Database Procedures Are Called (see page 328)

Integration with Visual Studio (see page 330)

Application Configuration File—Troubleshoot Applications (see page 340)

This chapter describes the Ingres .NET Data Provider. It also explains how
components and wizards in the provider objects help integrate the Ingres .NET
Data Provider with MS Visual Studio to aid in the development of .NET
applications that access Ingres data.

.NET Data Provider

The Ingres .NET Data Provider is a Microsoft .NET component that provides
native .NET connectivity to Ingres databases to deliver Ingres data to the
Microsoft .NET Framework. It uses the Data Access Server to access Ingres
data sources.

Note: The Ingres .NET Data Provider also supports .NET access to Enterprise
Access data sources.

Understanding .NET Data Provider Connectivity 259

.NET Data Provider Architecture

.NET Data Provider Architecture

The Ingres .NET Data Provider offers a series of .NET types to describe the
user's data, .NET provider classes to manipulate the data, and connection
pooling to efficiently manage data connections.

The design and naming conventions of the Ingres .NET Data Provider's data
types, classes, properties, and methods follow the same pattern as the
Microsoft .NET Data Providers. Consequently, developers who are familiar with
the Microsoft providers can easily develop or convert existing code from
Microsoft databases to Ingres databases.

All Ingres .NET Data Provider modules are written in C#, a managed .NET
language with full access to every .NET Framework capability. Even though the
data provider is written in C#, any managed language such as VB.NET or J#
can use the data provider because of .NET's language interoperability feature.

Data Provider Data Flow

A data provider in the Microsoft .NET Framework enables a connection to a
data source to retrieve and modify data from that data source. Data coming
out of a .NET data provider can be used directly by an application or it can be
redirected into an ADO.NET DataSet where it can be processed by other
application methods such as XML processing. The following figure shows the
flow of data in and out of the data provider.

260 Connectivity Guide

.NET Data Provider Architecture

As shown in this figure, the Ingres .NET Data Provider uses an intermediate
server called the Data Access Server to access Ingres databases.

For additional information on this server, see the chapter "Configuring the Data
Access Server."

Note: The Ingres .NET Data Provider does not require Ingres Net for database
connectivity. For best performance, the data provider directly communicates
with the wire.

Data Provider Assembly

The Ingres .NET Data Provider includes the Ingres.Client.dll, which contains
the Ingres.Client assembly. The Ingres.Client assembly contains the base
runtime support.

This assembly is installed as part of a standard Ingres client installation, which
automatically registers it in the Global Assembly Cache (GAC). The
Ingres.Client.dll that contains the Ingres.Client assembly is also installed, by
default, into the directory C:\Program Files\Ingres\Ingres .NET Data
Provider\v2.1.

Data Provider Namespace

When developing .NET applications, programmers use the data types,
components, and other classes in the data provider by referencing each name
as defined in the namespace for the classes. The namespace for the Ingres
.NET Data Provider is:

Ingres.Client

Understanding .NET Data Provider Connectivity 261

.NET Data Provider Architecture

Data Retrieval Strategies

The Ingres .NET Data Provider provides ADO.NET programmers with two
access strategies for retrieving data:

�	 DataReader—This program retrieves the data for read-only, forward-only
access. The program opens the connection, executes the command,
processes the rows in from the reader, closes the reader, and closes the
connection. Resources on the database server are held until the connection
is closed. For additional information, see IngresDataReader Class (see
page 290).

�	 DataAdapter—This program opens the connection, fills a DataSet, closes
the connection, processes the DataSet, opens the connection, updates the
database, and closes the connection. Resources on the database server are
not held during the processing of the DataSet. Using connection pooling,
usually only one physical connection is used. For additional information,
see IngresDataAdapter Class (see page 297).

In addition to the low-level DataReader and DataAdapter access strategies, the
data provider works with Visual Studio to support TableAdapter,
DataConnection, and DataSource components. The data provider uses
standard base classes, interfaces, and metadata methods to support higher
level data-bound .NET Framework controls. .NET Framework and Visual Studio
work with the Ingres .NET Data Provider to offer more rapid application
development and high quality code.

262 	Connectivity Guide

.NET Data Provider Architecture

Connection Pooling

Connection pooling significantly enhances the performance and scalability of
some applications. Physical connections are kept in a pool after they are no
longer needed by one application and are dispensed later to the same or
another application (as needed) to avoid the cost of connections. All
connections in a pool have identical connection strings. A new pool is created
for each connection that has a different connection string from all other pools.

When an application attempts to connect to a database, the Open method of
the IngresConnection object uses the connection pool to search for a physical
connection that specifies the same ConnectionString parameters. If no match
is found, a new physical connection is made to the database. If a match is
found, a connection is returned to the application from the pool.

After the application has completed its work, committed its changes, freed its
database locks and resources, and closed the connection, the physical
connection is retained by the .NET data provider and placed back in the
connection pool instead of being physically disconnected.

This connection is available to the same application later in the application's
life span or to other applications in the same process with the same connection
parameters. This avoids the overhead and delay of opening a new physical
connection. An application can choose to disable connection pooling by
specifying “Pooling=no” in its connection string.

The application is unaware of the connection reuse. If the connection is not
reused within three minutes, the connection is physically closed to release
system resources.

However, if the number of connections in the pool falls below the minimum
number of connections specified by the application in the “Min Pool Size=n”
value in the connection string, the connection is not physically closed and is
retained in the pool for later use. For additional information on connection
pooling, see IngresConnection Class (see page 273).

Understanding .NET Data Provider Connectivity 263

Code Access Security

Code Access Security

The Ingres .NET Data Provider assembly requires the FullTrust permission to
load, access the network, read and write certain files, and use other system
resources.

The Ingres .NET Data Provider is a strongly named assembly, making it eligible
for installation into the Global Assembly Cache and resistant to code
tampering.

The Ingres.Client assembly contains the attribute
AllowPartiallyTrustedCallersAttribute (APTCA) to allow the Ingres .NET Data
Provider to be called by a partially trusted assembly. APTCA has no effect on
Ingres database security. Ingres database security checks are performed as
usual.

.NET Data Provider Classes

The Ingres .NET Data Provider is the runtime component that provides the
interface between the .NET application and Ingres.

The Ingres .NET Data Provider namespace (Ingres.Client) and its contents
follow the same pattern as the Microsoft data providers.

All public static members are safe for multithreaded operations. To reduce
unnecessary overhead, instance members are not guaranteed to be thread-
safe. If a thread-safe operation on the instance is needed, wrap the operation
in one of .NET's System.Threading synchronization methods to protect the
state of the critical section of code.

The base class and interface definition for each class is provided in C# and
VB.NET syntax as shown below. However, .NET's language interoperability
feature allows any managed language to use the Ingres .NET Data Provider.

C#: Public sealed class IngresParameter :
System.Data.Common.DbParameter, IDataParameter, IDbDataParameter,
ICloneable

VB.NET: NotInheritable public class IngresParameter

Inherits System.Data.Common.DbParameter
Implements IDataParameter, IDbDataParameter, ICloneable

For more information on data provider classes, including information on other
.NET language syntax and inherited methods and properties, see the Microsoft
.NET Framework Developer's Guide and Microsoft .NET Framework Class
Library documentation.

264 Connectivity Guide

.NET Data Provider Classes

IngresCommand Class

The IngresCommand class represents an SQL command or a database
procedure that executes against an Ingres or Enterprise Access database.

Parameter placeholders in the SQL command text are represented by a
question mark (?).

Database procedures can be invoked by either setting
CommandText=”myproc” and
CommandType=CommandType.StoredProcedure, or by using the escape
sequence format and setting CommandText=”{ call myproc }” and
CommandType=CommandType.Text.

Ingres .NET Data Provider does not currently support the following features:

� Multiple active results-sets

� Batched commands consisting of multiple Ingres SQL commands in one
IngresCommand object

� Cursor direction other than forward

� Support for Ingres SQL command COPY TABLE

� Support for Ingres SQL command SAVEPOINT

� IngresCommand.ExecuteReader(CommandBehavior.SchemaOnly) is
supported for SELECT commands only

IngresCommand Class Declaration

The IngresCommand class declarations are:

C#: public sealed class IngresCommand :
System.Data.Common.DbCommand, IDbCommand, IDisposable, ICloneable

VB.NET: NotInheritable Public Class IngresCommand
 Inherits System.Data.Common.DbCommand

Implements IDbCommand, IDisposable, ICloneable

IngresCommand Class Example

IngresCommand cmd = new IngresCommand(

“SELECT id, name FROM employee WHERE id = ?”);

Understanding .NET Data Provider Connectivity 265

.NET Data Provider Classes

IngresCommand Class Properties

The IngresCommand class properties are:

Property Accessor Description

CommandText get set SQL statement string to execute or
procedure name to call.

CommandTimeOut get set The time, in seconds, for an attempted
query to time-out if the query has not
yet completed. Default is 30 seconds.

CommandType get set An enumeration describing how to
interpret the CommandText property.
Valid values are Text, TableDirect, or
StoredProcedure.

Connection get set The IngresConnection object that is
used to identify the connection to
execute a command. For more
information, see IngresConnection
Class (see page 273).

Parameters get The IngresParameterCollection for the
parameters associated with the SQL
query or database procedure. For more
information, see
IngresParameterCollection Class (see
page 313).

Transaction get set The IngresTransaction object in which
the IngresCommand executes. This
transaction object must be compatible
with the transaction object that is
associated with the Connection, (that
is, the IngresTransaction must be the
object (or a copy) returned by
IngresConnection.BeginTransaction).

UpdateRowSource get set Defines how results are applied to a
rowset by the DbDataAdapter.Update
method. (Inherited from
DbDataAdapter.)

266 Connectivity Guide

.NET Data Provider Classes

IngresCommand Class Public Methods

The public methods for the IngresCommand class are:

Method Description

Cancel Cancels the execution of the SQL command or
database procedure.

CreateParameter Creates a new instance of IngresParameter. For
more information, see IngresParameter Class
(see page 309).

Dispose Releases allocated resources of the
IngresCommand and base Component.

ExecuteNonQuery Executes a command that does not return
results. Returns the number of rows affected by
the update, delete, or insert SQL command.

ExecuteReader Executes a command and builds an
IngresDataReader. For more information, see
IngresDataReader Class (see page 290).

ExecuteScalar Executes a command and returns the first
column of the first row of the result set.

Prepare Prepares the SQL statement to be executed
later.

ResetCommandTimeout Resets the CommandTimeout property to its
default value of 30 seconds.

IngresCommand Class Constructors

The constructors for the IngresCommand class are:

Constructor Overloads Description

IngresCommand() Instantiates a new instance of the
IngresCommand class using default property
values

IngresCommand(string) Instantiates a new instance of the
IngresCommand class using the defined SQL
command or database procedure

IngresCommand(string,
IngresConnection)

Instantiates a new instance of the
IngresCommand class using the defined SQL
command or database procedure and the
connection to the Ingres or Enterprise Access
database

Understanding .NET Data Provider Connectivity 267

.NET Data Provider Classes

Constructor Overloads Description

IngresCommand(string,
IngresConnection,
IngresTransaction)

Instantiates a new instance of the
IngresCommand class using the defined SQL
command or database procedure, the
connection to the Ingres or Enterprise Access
database, and the IngresTransaction object

268 Connectivity Guide

.NET Data Provider Classes

Sample Program Constructed with .NET Data Provider

To construct an application using the Ingres .NET Data Provider, the developer
creates a series of objects from the data provider's classes. The following is a
simple C# program employing four data provider classes.

.NET 2.0 Programming Model

using System;

using System.Configuration;

using System.Data;

using System.Data.Common;

using System.IO;

using Ingres.Client;

class App
{
static public void Main()
{
ConnectionStringSettingsCollection connectionSettings =

 ConfigurationManager.ConnectionStrings;
if (connectionSettings.Count == 0)

 throw new InvalidOperationException(
 "No connection information specified in application configuration

file.");
ConnectionStringSettings connectionSetting = connectionSettings[0];

string invariantName = connectionSetting.ProviderName;
string myConnectionString = connectionSetting.ConnectionString;

DbProviderFactory factory = DbProviderFactories.GetFactory(invariantName);

DbConnection conn =
 factory.CreateConnection();

conn.ConnectionString = myConnectionString;

conn.Open(); // open the Ingres connection

string cmdtext =
 "select table_owner, table_name, " +
 " create_date from iitables " +
 " where table_type in ('T','V') and " +
 " table_name not like 'ii%' and" +
 " table_name not like 'II%'";

DbCommand cmd = conn.CreateCommand();

cmd.CommandText = cmdtext;

// read the data using the DataReader method

DbDataReader datareader = cmd.ExecuteReader();

// write header labels

Console.WriteLine(datareader.GetName(0).PadRight(18) +

datareader.GetName(1).PadRight(34) +

datareader.GetName(2).PadRight(34));

int i = 0;

while (i++ < 10 && datareader.Read())

// read and write out a few data rows

{ // write out the three columns to the console

Understanding .NET Data Provider Connectivity 269

.NET Data Provider Classes

 Console.WriteLine(
 datareader.GetString(0).Substring(0,16).PadRight(18) +
 datareader.GetString(1).PadRight(34) +

 datareader.GetString(2));
}
datareader.Close();

DataSet ds = new DataSet("my_list_of_tables");
// read the data using the DataAdapter method
DbDataAdapter adapter = factory.CreateDataAdapter();
DbCommand adapterCmd = conn.CreateCommand();
adapterCmd.CommandText = cmdtext;
adapter.SelectCommand = adapterCmd;
adapter.Fill(ds); // fill the dataset

// write the dataset to an XML file
ds.WriteXml("c:/temp/temp.xml");

conn.Close(); // close the connection
} // end Main()
} // end class App

.NET 1.1 Programming Model

using System;

using System.IO;

using System.Data;

using Ingres.Client;

class App

{

static public void Main()

{

string myConnectionString =

"Host=myserver.mycompany.com;" +

"User Id=myname;PWD=mypass;" +

"Database=mydatabase";

IngresConnection conn = new IngresConnection(

myConnectionString);

conn.Open(); // open the Ingres connection

string cmdtext = "select table_owner, table_name, " +

"create_date from iitables " +

" where table_type in ('T','V') and " +

" table_name not like 'ii%' and" +

" table_name not like 'II%'";

IngresCommand cmd = new IngresCommand(cmdtext, conn);

// read the data using the DataReader method

IngresDataReader datareader = cmd.ExecuteReader();

// write header labels

Console.WriteLine(datareader.GetName(0).PadRight(18) +

datareader.GetName(1).PadRight(34) +

datareader.GetName(2).PadRight(34));

int i = 0;

while (i++ < 10 && datareader.Read())

// read and write out a few data rows

{ // write out the three columns to the console

270 Connectivity Guide

.NET Data Provider Classes

 Console.WriteLine(
 datareader.GetString(0).Substring(0,16).PadRight(18) +
 datareader.GetString(1).PadRight(34) +

 datareader.GetString(2));
}
datareader.Close();
DataSet ds = new DataSet("my_list_of_tables");
// read the data using the DataAdapter method
IngresDataAdapter adapter = new IngresDataAdapter();
adapter.SelectCommand = new IngresCommand(cmdtext, conn);
adapter.Fill(ds); // fill the dataset

// write the dataset to an XML file
ds.WriteXml("c:/temp/temp.xml");

conn.Close(); // close the connection
} // end Main()
} // end class App

IngresCommandBuilder Class

The IngresCommandBuilder class automatically generates INSERT, DELETE,
and UPDATE commands into an IngresDataAdapter object for a simple single-
table SELECT query. These commands can be used to reconcile DataSet
changes through the IngresDataAdapter associated with the Ingres database.

IngresCommandBuilder Class Declaration

The IngresCommandBuilder class can be declared as follows:

C#: public sealed class IngresCommandBuilder : DbCommandBuilder

VB.NET: NotInheritable Public Class IngresCommandBuilder
 Inherits DbCommandBuilder

IngresCommandBuilder Class Properties

The IngresCommandBuilder class properties are:

Property Accessor Description

CatalogLocation get set Position of the catalog name in a
qualified table name.

CatalogSeparator get set The string of characters that defines
the separation between a catalog
name and the table name.

ConflictOption get set Controls how to compare for update
conflicts.

Understanding .NET Data Provider Connectivity 271

.NET Data Provider Classes

Property Accessor Description

DataAdapter get set The IngresDataAdapter object that
is associated with the
CommandBuilder. The
IngresDataAdapter contains the
InsertCommand, DeleteCommand,
and UpdateCommand objects that
are automatically derived from the
SelectCommand.

QuotePrefix get set The string of characters that are
used as the starting delimiter of a
quoted table or column name in an
SQL statement.

QuoteSuffix get set The string of characters that are
used as the ending delimiter of a
quoted table or column name in an
SQL statement.

SchemaSeparator get set The string of characters that defines
the separation between a table
name and column name. Always a
period (.)

IngresCommandBuilder Class Methods

The public methods available to the IngresCommandBuilder class are:

Method Description

Derive Parameters Retrieves the parameter metadata of the
database procedure specified in the
IngresCommand object and populates the
IngresCommand.Parameters collection.

GetDeleteCommand Gets the generated IngresCommand to perform
DELETE operations on the table.

GetInsertCommand Gets the generated IngresCommand to perform
INSERT operations on the table.

GetUpdateCommand Gets the generated IngresCommand to perform
UPDATE operations on the table.

QuoteIdentifier Wrap quotes around an identifier.

RefreshSchema Refreshes the IngresCommandBuilder's copy of
the metadata of a possibly changed SELECT
statement in the
IngresDataAdapter.SelectCommand object.

272 Connectivity Guide

.NET Data Provider Classes

Method Description

UnquoteIdentifier Removes quotes from an identifier.

IngresCommandBuilder Class Constructors

The IngresCommandBuilder class has the following constructors:

Constructor Overloads Description

IngresCommandBuilder () Instantiates a new instance of the
IngresCommandBuilder class using default
property values

IngresCommandBuilder
(IngresDataAdapter)

Instantiates a new instance of the
IngresCommandBuilder class using the
specified IngresDataAdapter

IngresConnection Class

The IngresConnection class represents an open connection to an Ingres
database. This class requires a connection string to connect to a target server
and database.

Important! An application must Close() or Dispose() on the Connection
object to return it to the connection pool for reuse by other applications.

IngresConnection Class Declaration

The IngresConnection class declaration method signature is:

C#: public sealed class IngresConnection :
System.Data.Common.DbConnection, IDbConnection, IDisposable

VB.NET: NotInheritable Public Class IngresConnection
 Inherits System.Data.Common.DbConnection
 Implements IDbConnection, IDisposable

IngresConnection Class Example

IngresConnection conn = new IngresConnection(

“Host=myserver.mycompany.com;Database=mydatabase;” +

“User ID=myuid;Password=mypassword;”);

conn.Open();

Understanding .NET Data Provider Connectivity 273

.NET Data Provider Classes

IngresConnection Class Properties

The IngresConnection class has the following properties:

Property Accessor Description

ConnectionString get set String that specifies the target server
machine and database to connect to,
the credentials of the user who is
connecting, and the parameters that
define connection pooling and
security.

Default is "".

Consists of keyword=value pairs,
separated by semicolons. Leading
and trailing blanks around the
keyword or value are ignored. Case
and embedded blanks in the keyword
are ignored. Case and embedded
blanks in the value are retained. Can
only be set if connection is closed.
Resetting the connection string
resets the ConnectionTimeOut and
Database properties.

For a list of valid keywords and their
descriptions, see Connection String
Keywords (see page 277).

ConnectionTimeOut get The time, in seconds, for an
attempted connection to abort if the
connection cannot be established.

Default is 15 seconds.

Database get The database name specified in the
ConnectionString's Database value.

Default is "".

DataSource get The name of the target server.

ServerVersion get The server version number. May
include additional descriptive
information about the server. This
property uses an IngresDataReader.
For this reason, no other
IngresDataReader can be active at
the time that this property is first
invoked.

274 Connectivity Guide

.NET Data Provider Classes

Property Accessor Description

State get The current state of the connection:
ConnectionState.Closed or
ConnectionState.Open.

IngresConnection Class Public Methods

The public methods for the IngresConnection class are:

Method Description

BeginTransaction Begins a local transaction. The connection
must be open before this method can be
called. Nested or parallel transactions are
not supported. Mutually exclusive with the
EnlistDistributedTransaction method.

ChangeDatabase Changes the database to be used for the
connection. The connection must be closed
before this method can be called.

Close Closes the connection (rollback pending
transaction) and returns the connection to
the connection pool.

CreateCommand Creates an IngresCommand object.

Dispose Closes the connection and releases
allocated resources.

EnlistDistributedTransaction

EnlistTransaction

GetSchema

Enlists in an existing distributed
transaction (ITransaction). Mutually
exclusive with the BeginTransaction
method.

Enlists in an existing distributed
transaction
(System.Transactions.Transaction).
Mutually exclusive with the
BeginTransaction method.

Returns schema metadata from the Ingres
catalog for the specified collection name.
Valid collection names include:

�

�

MetaDataCollections

DataSourceInformation

Understanding .NET Data Provider Connectivity 275

.NET Data Provider Classes

Method Description

� DataTypes

� Restrictions

� ReservedWords

� Tables

� Views

� Columns

� Indexes

� Procedures

� ProcedureParameters

Open Opens a database connection or uses one
from the connection pool.

IngresConnection Class Events

The events generated by the IngresConnection are:

Event Description

InfoMessage Generated when the database returns a warning or
informational message.

StateChange Generated when the State property changes from
Closed to Open or from Open to Close. For a definition
of State, see IngresConnection Class Properties (see
page 274).

IngresConnection Class Constructors

The constructors for the IngresConnection class are:

Constructor Overloads Description

IngresConnection() Instantiates a new instance of the
IngresConnection class using default property
values

IngresConnection(string) Instantiates a new instance of the
IngresConnection class using the defined
connection string

276 Connectivity Guide

.NET Data Provider Classes

Connection String Keywords

Keywords for the ConnectionString property of the IngresConnection class are
as follows.

Connection string keywords are case-insensitive. Certain keywords have
synonyms. For example, keywords Server and Address are synonyms of Host.
Spaces in values are retained. Values can be delimited by double quotes.

BlankDate

Specifies how an Ingres blank (empty) date result value is to be returned
to the application.

BlankDate=null means it is returned as a null value.

The default is to return it as a DateTime value of “9999-12-31 23:59:59”.

Character Encoding

Specifies the .NET character encoding name (for example, windows-1252)
used for conversions between Unicode and character data types. This
keyword allows an alternate .NET character encoding to be specified as an
override, or a valid .NET character encoding to be used if the data provider
is unable to map the Data Access Server’s installation character set. A
code page name can also be specified in “cp” format (for example,
“cp1252”).

Connect Timeout or Connection Timeout

Specifies the time, in seconds, to wait for an attempted connection to time
out if the connection has not completed. Default is 15.

Cursor_Mode

Specifies the default cursor concurrency mode, which determines the
concurrency of cursors that are not explicitly assigned in the command
text (for example, FOR UPDATE or FOR READONLY). Available options are:

� readonly – (Default) Provides non-updatable cursors for best
performance

� update – Provides updatable cursors

� dbms – Concurrency is assigned by the DBMS Server

Database or DB

Specifies the name of the database being connected to. If a server is
required, use the syntax dbname/server_class.

Date_format or Date_fmt

Specifies the Ingres format for date literals. It corresponds to the Ingres
environment variable II_DATE_FORMAT and is assigned the same values.
This option is not used directly by the data provider, but is sent to the
DBMS and affects the parsing of date literals in query text.

Understanding .NET Data Provider Connectivity 277

.NET Data Provider Classes

Dbms_user

Specifies the user name to be associated with the DBMS session. This
name is equivalent to the Ingres –u flag, which can require administrator
privileges.

Dbms_password

Specifies the DBMS password of the user, which is equivalent to the Ingres
–P flag.

Decimal_char

Specifies the character that the DBMS Server will use to separate fractional
and non-fractional parts of a number. It corresponds to the Ingres
environment variable II_DECIMAL and is assigned the same values. This
option is not used directly by the data provider, but is sent to the DBMS
and affects the parsing and construction of numeric literals.

Decimal_char=',' specifies the comma (,) character.

The default value is the period (.) as in 12.34.

Enlist

Specifies whether the IngresConnection in the transaction context is
automatically enlisted if the creation thread is within a transaction context
as established by System.EnterpriseServices.ServicedComponent. Default
is true.

Group ID

Specifies the group identifier that has permissions for a group of users.

Host or Server or Address

Specifies the name of the target host server machine with the Data Access
Server (DAS).

Multiple host names can be specified as a semicolon-separated list
enclosed in parentheses with optional port lists:

Server=(hostname1[:port[,port]];hostname2[:port[,port]])

Example connection string:

Server=(myserver1;myserver2);db=mydatabase;

If a port ID is attached to a host name, any additional port IDs outside the
list or specified in the PORT keyword are ignored. If a host name does not
have an explicit port ID in the specification, then port IDs in the list that
follows the PORT keyword are distributed to the hostname. For example:

Host=(myservera:II6;myserverb);Port=II8,II9;Database=mydb;

is equivalent to:

Host=(myservera:II6;myserverb):II8,II9;Database=mydb;

is equivalent to:

Host=(myservera:II6;myserverb:II8;myserverb:II9);Database=mydb;

278 Connectivity Guide

.NET Data Provider Classes

To maintain performance, the connection string should specify a hostname
and port that the DAS servers typically listen to.

Example:

Assume that four DAS servers are started and listening on symbolic ports
II7, II8, II9, and II10. The following IngresConnection.ConnectionString
will connect a .NET application to the Ingres database using one of the four
ports:

Host=myserver;Port=II7,II8,II9,II10;UserID=myuserid;Pwd=mypwd;Database=mydb;

or

Host=myserver:II7,II8,II9,II10;UserID=myuserid;Pwd=mypwd;Database=mydb;

Max Pool Size

Specifies the maximum number of connections that can be in the pool.
Default is 100.

Min Pool Size

Specifies the minimum number of connections that can be in the pool.
Default is 0.

Money_format or Money_fmt

Specifies the Ingres format for money literals. It corresponds to the Ingres
environment variable II_MONEY_FORMAT and is assigned the same values.
This option is not used directly by the data provider, but is sent to the
DBMS and affects the processing of query text.

Money_precision or Money_prec

Specifies the precision of money data values. It corresponds to the Ingres
environment variable II_MONEY_PREC and is assigned the same values.
This option is not used directly by the data provider, but is sent to the
DBMS and affects the processing of money values.

Password or PWD

Specifies the password to the database. This value may be case-sensitive
depending on the target server.

Persist Security Info

Specifies whether password information from the connection string is

returned in a get of the ConnectionString property:

false—(Default) Password information is not returned.

true—Password information is returned.

Pooling

Enables or disables connection pooling:

true—(Default) Connection pooling is enabled.

false—Connection pooling is disabled.

Understanding .NET Data Provider Connectivity 279

.NET Data Provider Classes

Port

Specifies the port number on the target host server machine that the Data
Access Server is listening to.

Multiple port numbers, separated by commas, can be specified, one for
each configured DAS. For example, "Port=II7,II8,II9,II10;" can be
specified if four DAS servers have been configured to listen on each
respective port. The data provider attempts to connect to each port, in
random order, until a successful connection is made. Default is II7.

Role ID

Specifies the role identifier that has associated privileges for the role.

Role Password or Role PWD

Specifies the role password associated with the Role ID.

Timezone or TZ

Specifies the Ingres time zone associated with the client's location.
Corresponds to the Ingres environment variable II_TIMEZONE_NAME and
is assigned the same values. This information is not used directly by the
data provider, but is sent to the DBMS and affects the processing of dates.

User ID or UID

Specifies the name of the authorized user connecting to the DBMS Server.
This value may be case-sensitive depending on the target server.

Vnode_usage

Allows the .NET application to control the portions of the vnode information
that are used to establish the connection to the remote DBMS server
through the Data Access Server. Options are:

connect

(Default) Only the vnode connection information is used to establish
the connection.

login

Both the vnode connection and login information are used to establish
the connection.

For further details, see Data Provider User ID Options (see page 281).

280 Connectivity Guide

.NET Data Provider Classes

Data Provider User ID Options

The Ingres .NET Data provider does not require a user ID and password to
establish a connection when the Ingres Data Access Server (DAS) is running
on the same machine as the .NET client application. When a user ID and
password is not provided, the .NET client process user ID is used to establish
the DBMS connection.

If the target database name specification includes a VNODE name
specification, the VNODE login information is used to access the DBMS
machine. Optionally, a user ID and password can be provided and is handled
as described below.

When the DAS and DBMS servers are on different machines, a VNODE name is
required in the target database specification of the form vnodename::dbname.
The VNODE provides the connection and (optionally) login information needed
to establish the DBMS connection.

The connection string keyword Vnode_usage determines how the VNODE is
used to access the DBMS. Vnode_usage also determines the context (DAS or
DBMS) in which the application user ID/password is used. If the target
database specification does not contain a VNODE name, the Vnode_usage
specification is ignored.

When Vnode_usage is set to connect, only global VNODE connection
information is used to establish the DBMS connection. The application-provided
user ID and password are used in the DBMS context to access the DBMS
machine.

When Vnode_usage is set to login, both connection and login VNODE
information is used to access the DBMS machine. The application-provided
User ID and Password are used in the DAS context, allowing access to private
and global VNODEs on the DAS server.

The Ingres .NET Data Provider supports IPv6 addressing. IPv6 addresses
should be enclosed in brackets [] because of the different address format—for
example: [fe80::127:dff:fe7c:fecc].

If a hostname is associated with multiple IP addresses, the data provider
sequentially tries to connect to each IP address in the AddressList returned by
System.Net.Dns.GetHostEntry until it achieves a successful socket connection
or until it reaches the end of the list. If the connection to the first address is
down, the driver attempts a connection to the next entry in the AddressList.
Although performance will suffer as each Exception from a failed connection is
caught, this re-attempt allows a secondary IP (backup) for a connection to a
server.

Understanding .NET Data Provider Connectivity 281

.NET Data Provider Classes

Enlistment in Distributed Transactions

The Ingres .NET Data Provider supports enlistment in distributed transactions
through the MS Distributed Transaction Coordinator (MSDTC) and the XA two-
phase commit protocol.

Developers should be aware of MSDTC performance with distributed
transactions and the lag time in communicating with all voters of the two-
phase commit protocol. For performance reasons, distributed transactions
should be used carefully. While the enlistment in a distributed transaction is
not slow, it is not as fast as an enlistment in a local transaction.

Enable XA Support in Windows

To use the EnlistTransaction and EnlistDistributedTtransaction methods in the
Ingres .NET Data Provider, the administrator of the Windows machine must
enable XA transactions through Component Services.

To enable XA support in Windows

Start, Control Panel, Administrative Tools, Component Services, Computers,
My Computer, Properties, MSDTC, Security Configuration, Enable XA
Transactions.

System.Transactions Programming Models

The .NET Framework System.Transactions namespace offers two programming
models to the .NET application programmer to create a transaction. The Ingres
.NET Data Provider supports both models:

� The explicit programming model allows the programmer to create, enlist
into, and control the transaction manually.

� The implicit programming model allows .NET to automatically perform
these operations. The implicit programming model is recommended as a
best practice since there are fewer chances for programming errors and it
frees the programmer from the details of managing enlistment in the
System.Transactions.Transaction.

282 Connectivity Guide

.NET Data Provider Classes

Implicit Automatic Enlistment using TransactionScope

The System.Transactions.TransactionScope class allows a .NET application to
establish a transaction context. When a TransactionScope is instantiated, a
current transaction context is established by .NET. Resource managers such as
Ingres by default enlist in this ambient transaction. If an
IngresConnection.Open() is issued by the application within the scope of this
current transaction, and if the ConnectionString contains Enlist=yes (the
default), then the IngresConnection automatically enlists the IngresConnection
into the transaction.

Within the scope of the TransactionScope, the application calls the
TransactionScope.Complete() method to indicate that the database unit of
work should be committed. If the method is not called, the work is rolled back.
When the TransactionScope is Disposed, updates to the Ingres database are
committed or rolled back as directed by the .NET Transaction Manager. The
Transaction Manager examines whether TransactionScope.Complete() method
was called and issues the appropriate commit or rollback statements to Ingres.

Note: When an Ingres connection is enlisted in the .NET transaction, the
commit or rollback to Ingres to commit/rollback the database changes occur
when the TransactionScope is disposed, not when the IngresConnection is
closed or disposed. Even though a IngresConection.Close() method has been
called and the IngresConection instance has been disposed, the Ingres session
remains active until the .NET TransactionScope is disposed and the .NET
Transaction Manager issues the commit/rollback to the Ingres session.

The .NET application programmer can prevent automatic enlistment of the
IngresConnection in the transaction context if the
IngresConnection.ConnectionString includes the Enlist=No keyword/value pair.

The advantage to coding a "using" statement and TransactionScope is that if
any of the database operations throws an exception, flow of control jumps out
of the "using (TransactionScope)" block and a rollback of the transaction
automatically occurs. The ease of programming and reliability of rollback or
commit within the TransactionScope makes this model of enlistment a better
programming practice.

Understanding .NET Data Provider Connectivity 283

.NET Data Provider Classes

TransactionScope Example

This example shows the enlistment of an Ingres database session in a
distributed transaction managed by a using TransactionScope block. When the
IngresConnection.Open() method is issued, the Ingres connection will enlist in
the distributed transaction represented by the Transaction object within the
TransactionScope. After the update, the TransactionScope is marked
Complete(), and the updates to the Ingres database will be committed when
the TransactionScope object is disposed.

static void TestEnlistTransactionImplicitSample(
 string connstring)

{
 using (TransactionScope scope = new TransactionScope())

{

 using (IngresConnection conn1 =
 new IngresConnection(connstring))
{
 conn1.Open();

 IngresCommand cmd = conn1.CreateCommand();
 cmd.CommandText =

 "update authors set au_id = '409-56-7008' " +
 "where au_id = '409-56-7008'";

 cmd.ExecuteNonQuery();

 scope.Complete();

 } // end using (IngresConnection)
} // end using (TransactionScope)

}

Explicit Enlistment by EnlistTransaction() Method

A .NET application can disable automatic transaction enlistment and manually
enlist the Ingres connection in the transaction if desired. The application
programmer can prevent automatic enlistment of the IngresConnection in the
current transaction context if the IngresConnection.ConnectionString includes
the Enlist=no or Enlist=false keyword/value pair. Later, the application can
manually enlist the Ingres connection in the transaction by calling the
IngresConnection.EnlistTransaction method. The .NET Transaction Manager will
issue a commit to the Ingres transaction if the .NET
System.Transactions.Transaction is marked complete before the Transaction
object is disposed, else the Ingres transaction will be rollbacked.

284 Connectivity Guide

.NET Data Provider Classes

Ingres Enlistment in a .NET Transaction

Whether the enlistment is automatic or manual, when an Ingres connection is
enlisted in a .NET transaction, the Ingres .NET Data Provider participates as a
resource manager within the transaction. The data provider works with the
Microsoft Distributed Transaction Coordinator (MSDTC), Ingres DBMS Server,
and the Ingres XA Distributed Transaction Processing (DTP) subsystem to
allow the Ingres connection to participate in the distributed transaction on
Windows with other Ingres or non-Ingres participants. The participants are
polled in a vote to commit in a two-phase commit protocol (2PC). If the vote to
commit is unanimous, all participants are directed to commit; otherwise, they
are directed to roll back the database updates as an atomic unit of work.

IngresConnectionStringBuilder Class

The IngresConnectionStringBuilder class provides a series of properties and
methods to create syntactically correct connection string and to parse and
rebuild existing connection strings.

IngresConnectionStringBuilder Class Declaration

The IngresConnectionStringBuilder class can be declared as follows:

C#: public sealed class IngresConnectionStringBuilder :
DbConnectionStringBuilder

VB.NET: NotInheritable Public Class IngresConnectionStringBuilder
 Inherits DbConnectionStringBuilder

IngresConnectionStringBuilder Class Properties

The IngresConnectionStringBuilder class has the following properties:

Property Accessor Description

BrowsableConnectionString get set Indicates whether the
ConnectionString Property is
visible in Visual Studio designers.

BlankDate get set BlankDate=null specifies that an
Ingres blank (empty) date result
value is to be returned to the
application as a null value. The
default is to return an Ingres
blank date as a DateTime value
of "9999-12-31 23:59:59".

Understanding .NET Data Provider Connectivity 285

.NET Data Provider Classes

Property Accessor Description

CharacterEncoding get set Specifies the .NET character
encoding (for example, ISO­
8859-1) used for conversions
between Unicode and character
data types.

ConnectTimeout get set The time, in seconds, to wait for
an attempted connection to time
out if the connection has not
completed. Default is 15.

Count get The number of keys contained
within the ConnectionString
property.

CursorMode get set Specifies the default cursor
concurrency mode, which
determines the concurrency of
cursors that have no explicitly
assigned option in the command
text. For example, FOR UPDATE
or FOR READONLY.

Database get set Name of the Ingres database
being connected to.

DataSource get set The name of the target server.

DateFormat get set Specifies the Ingres date format
to be used by the Ingres server
for date literals. Corresponds to
the Ingres environment variable
II_DATE_FORMAT and is
assigned the same values.

DbmsUser get set The user name associated with
the DBMS session.

DbmsPassword get set The DBMS password of the user.

DecimalChar get set Specifies the character that the
Ingres DBMS Server is to use to
separate fractional and non-
fractional parts of a number—the
comma (',') or the period ('.').
Default is the period.

Enlist get set If set to true and if the creation
thread is within a transaction
context as established by
System.EnterpriseServices.Servic
edComponent, the

286 Connectivity Guide

.NET Data Provider Classes

Property Accessor Description

IngresConnection is
automatically enlisted into the
transaction context. Default is
true.

GroupID get set Group identifier that has
permissions for a group of users.

Item get set The value associated with the
key. This property is the C#
indexer for the
IngresConnectionStringBuilder
class.

Keys get An ICollection of keys of type
String in the
IngresConnectionStringBuilder.

MaxPoolSize get set Maximum number of connections
that can be in the connection
pool. Default is 100.

MinPoolSize get set Minimum number of connections
that can be in the connection
pool. Default is 0.

MoneyFormat get set Specifies the Ingres money
format to be used by the Ingres
server for money literals.
Corresponds to the Ingres
environment variable
II_MONEY_FORMAT and is
assigned the same values.

MoneyPrecision get set Specifies the money precision to
be used by the Ingres server for
money literals. Corresponds to
the Ingres environment variable
II_MONEY_PREC and is assigned
the same values.

Password get set The password to the Ingres
database.

PersistSecurityInfo get set Indicates whether password
information is returned in a get
of the ConnectionString.

Pooling get set Enables or disables connection
pooling. By default, connection
pooling is enabled (true).

Understanding .NET Data Provider Connectivity 287

.NET Data Provider Classes

Property Accessor Description

Port get set Port number on the target server
machine that the Data Access
Server is listening to. Default is
II7.

RoleID get set Role identifier that has
associated privileges for the role.

RolePassword get set Role password associated with
the Role ID.

Server get set The Ingres host server to
connect to.

Timezone get set Specifies the Ingres time zone
associated with the user's
location. Used by the Ingres
server only. Corresponds to the
Ingres environment variable
II_TIMEZONE_NAME and is
assigned the same values.

UserID get set The name of the authorized user
connecting to the DBMS Server.
This value may be case-sensitive
depending on the target server.

Values get An ICollection of values of type
Object in the
IngresConnectionStringBuilder.

VnodeUsage get set Allows the .NET application to
control the portions of the vnode
information that are used to
establish the connection to the
remote DBMS server through the
Ingres DAS server. Valid options
are:

�

�

connect – Only the vnode
connection information is
used (default).

login – Both the vnode
connection and login
information is used.

288 Connectivity Guide

.NET Data Provider Classes

IngresConnectionStringBuilder Class Methods

The public methods available to the IngresConnectionStringBuilder class are:

Method Description

Add Adds a key and value to the collection within
IngresConnectionStringBuilder.

Clear Clears all keys and values from
IngresConnectionStringBuilder. Sets ConnectionString
propery to “”.

ContainsKey Returns true if IngresConnectionStringBuilder contains
the specified key.

EquivalentTo Returns true if keys and values are comparable to the
specified IngresConnectionStringBuilder object.

Remove Removes the entry with the specified key from
IngresConnectionStringBuilder.

ToString Returns the ConnectionString associated in the
IngresConnectionStringBuilder.

TryGetValue Returns a value corresponding to the specified key
from the IngresConnectionStringBuilder. Returns false
if the key was not found.

IngresConnectionStringBuilder Class Constructors

The IngresConnectionStringBuilder class has the following constructors:

Constructor Overloads Description

IngresConnectionStringBuilder () Instantiates a new instance of the
IngresConnectionStringBuilder class
using default property values

IngresConnectionStringBuilder
(string)

Instantiates a new instance of the
IngresConnectionStringBuilder class
using the specified connection
string.

Understanding .NET Data Provider Connectivity 289

.NET Data Provider Classes

IngresDataReader Class

IngresDataReader provides a means of reading a forward-only stream of rows
from a result-set created by a SELECT query or a row-producing database
procedure.

When an IngresDataReader is open, the IngresConnection is busy and no other
operations are allowed on the IngresConnection (other than
IngresConnection.Close) until IngresDataReader.Close is issued. Created by
the IngresCommand.ExecuteReader methods.

IngresDataReader Class Declaration

The IngresDataReader can be declared as follows:

C#: public sealed class IngresDataReader :
System.Data.Common.DbDataReader

VB.NET: NotInheritable Public Class IngresDataReader
 Inherits System.Data.Common.DbDataReader

290 Connectivity Guide

.NET Data Provider Classes

IngresDataReader Class Example

The following is an example implementation of the IngresDataReader class:

static void ReaderDemo(string connstring)
{

IngresConnection conn = new IngresConnection(connstring);

string strNumber;
string strName;
string strSSN;

conn.Open();

IngresCommand cmd = new IngresCommand(
 "select number, name, ssn from personnel", conn);

IngresDataReader reader = cmd.ExecuteReader();

Console.Write(reader.GetName(0) + "\t");
Console.Write(reader.GetName(1) + "\t");
Console.Write(reader.GetName(2));
Console.WriteLine();

while (reader.Read())
{

 strNumber= reader.IsDBNull(0)?
 "<none>":reader.GetInt32(0).ToString();

 strName = reader.IsDBNull(1)?
 "<none>":reader.GetString(1);

 strSSN = reader.IsDBNull(2)?
 "<none>":reader.GetString(2);

 Console.WriteLine(
 strNumber + "\t" + strName + "\t" + strSSN);

}

reader.Close();

conn.Close();

}

IngresDataReader Class Properties

The IngresDataReader class contains the following properties:

Property Accessor Description

Depth get The depth of nesting for the current row.
This data provider always returns a depth
of zero to indicate no nesting of tables.

FieldCount get The number of columns in the current row.

HasRows get Returns true if the data reader contains
one or more rows. Returns false if the data

Understanding .NET Data Provider Connectivity 291

.NET Data Provider Classes

Property Accessor Description

reader contains zero rows.

IsClosed get A true/false indicator as to whether the
data reader is closed.

Item get Gets the column value in its native format
for a given column name or column
ordinal. This property is the C# indexer for
the IngresDataReader class.

RecordsAffected get The number of rows updated, inserted, or
deleted by execution of the SQL
statement. -1 is returned for SELECT
statements.

IngresDataReader Class Public Methods

The public methods available to the IngresDataReader class are:

Method Description

Close Closes the IngresDataReader.

GetBoolean Gets the column value as a Boolean.

GetByte Gets the column value as an unsigned 8-bit Byte.

GetBytes Gets the column value as a byte stream into a Byte
array.

GetChar Gets the column value as a Char.

GetChars Gets the column value as a character stream into a
Char array.

GetDataTypeName Gets the column's data type name as known in
Ingres.

GetDateTime Gets the column value as a DateTime.

GetDecimal Gets the column value as a Decimal.

GetDouble Gets the column value as a double.

GetFieldType Gets the column's .NET Type.

GetFloat Gets the column value as a Float.

GetGuid Gets the column value as a Guid.

GetInt16 Gets the column value as a signed 16-bit integer.

GetInt32 Gets the column value as a signed 32-bit integer.

292 Connectivity Guide

.NET Data Provider Classes

Method Description

GetInt64 Gets the column value as a signed 64-bit integer.

GetName Gets the column's name using a specified ordinal.

GetOrdinal Gets the column's ordinal using a specified name.

GetSchemaTable Returns a DataTable that describes the resultset
column metadata. If ExecuteReader(
CommandBehavior.KeyInfo) was called, additional
information about primary key columns, unique
columns, and base names is retrieved from the
database catalog and included in the returned
DataTable. For column information returned, see
GetSchemaTable Columns Returned (see page 293).

GetString Gets the column value as a string.

GetTimeSpan Gets the column value as a TimeSpan.

GetValue Gets the column value in its native format.

GetValues Gets all of the column values into an Object array.

IsDBNull Returns true/false indicating whether the column
value is null.

NextResult Advances the data reader to the next result set if
present.

Read Advances the data reader to the next row in the
result set.

Important! There are no conversions performed by the GetXXX methods. If
the data is not of the correct type, an InvalidCastException is thrown.

Always call IsDBNull on a column if there is any chance of it being null before
attempting to call one of the GetXXX accessor to retrieve the data.

GetSchemaTable Columns Returned

The GetSchemaTable describes the column metadata of the IngresDataReader.

Note: The column information is not necessarily returned in the order shown.

Column
Information

Data Type Description

ColumnName String The name of the column, which
reflects the renaming of the column in
the command text (that is, the alias).

Understanding .NET Data Provider Connectivity 293

.NET Data Provider Classes

Column
Information

Data Type Description

ColumnOrdinal Int32 The number of the column, beginning
with 1.

ColumnSize Int32 Maximum possible length of a value in
the column.

NumericPrecision Int16 This is the maximum precision of the
column if the column is a numeric data
type; otherwise the value is null.

NumericScale Int16 This is the number of decimal places in
the column if the column is a numeric
data type; otherwise the value is null.

DataType Type The .NET Framework data type of the
column.

ProviderType IngresType The indicator of the column's data type

IsLong Boolean Set to true if the column contains a
long varchar, long varbinary, or long
nvarchar object; otherwise false.

AllowDBNull Boolean Set to true if the application can set
the column to a null value or if the
data provider cannot determine if the
application can set the column to a
null value. Set to false if it is known
that the application is not permitted to
set the column to a null. Note that a
column value may be null even if the
application is not permitted to set the
null value.

IsReadOnly Boolean Set to true if it is known that the
column cannot be modified; otherwise
false.

IsRowVersion Boolean Set to true if column has a persistent
row identifier that cannot be written to
and serves only to identify the row.
The Ingres .NET Data Provider always
returns false.

IsUnique Boolean Set to true if no two rows in the table
can have the same value in this
column. Set to false if not unique or if
uniqueness cannot be determined.
Only set if
ExecuteReader(CommandBehavior.Key
Info) was called.

294 Connectivity Guide

.NET Data Provider Classes

Column
Information

Data Type Description

IsKey Boolean Set to true if this column is in the set
of columns that, taken together,
uniquely identify the row. Only set if
ExecuteReader(
CommandBehavior.KeyInfo) was
called.

IsAutoIncrement Boolean Set to true if the column assigns
values to new rows in fixed
increments. The Ingres .NET Data
Provider always returns false.

BaseCatalogName String The name of the database catalog that
contains the column. This value is null
if the catalog name cannot be
determined. The Ingres .NET Data
Provider always returns a null value.

BaseSchemaName String The name of the database schema that
contains the column. This value is null
if the schema name cannot be
determined. Only set if
ExecuteReader(CommandBehavior.Key
Info) was called.

BaseTableName String The name of the database table or
view that contains the column. This
value is null if the table name cannot
be determined. Only set if
ExecuteReader(CommandBehavior.Key
Info) was called.

BaseColumnName String The name of the column in the
database. This value is null if the
column name cannot be determined.
Only set if
ExecuteReader(
CommandBehavior.KeyInfo) was
called.

Understanding .NET Data Provider Connectivity 295

.NET Data Provider Classes

Mapping of Ingres Native Types to .NET Types

The following table maps the native Ingres database types supported by the
Ingres .NET Data Provider to their corresponding .NET type. It also maps the
typed accessor that a .NET application uses for an Ingres native database type
to be obtained as a .NET type.

IngresType Ingres Data .NET Data Accessor
Type Type

Binary byte Byte[] GetBytes()

Char char String GetString()

DateTime date DateTime GetDateTime()

Decimal decimal Decimal GetDecimal()

Double double Double GetDouble()
precision
(float8)

SmallInt smallint Int16 GetInt16()

TinyInt integer1 Byte GetByte()

Int integer Int32 GetInt32()

BigInt bigint Int64 GetInt64()

LongVarBinary long byte Byte[] GetBytes()

LongVarChar long varchar String GetString()

LongNVarChar long nvarchar String GetString()

Nchar nchar String GetString()

NvarChar nvarchar String GetString()

Real real (float4) Single GetString()

VarBinary byte varying Byte[] GetBytes()

VarChar varchar String GetString()

IntervalYearToMonth interval year String GetString()
to month

IntervalDayToSecond interval day to Timespan GetTimeSpan()
second

296 Connectivity Guide

.NET Data Provider Classes

IngresDataAdapter Class

The IngresDataAdapter class represents a set of SQL statements and a
database connection that are used to fill a DataSet and, optionally, update the
Ingres database. The IngresDataAdapter object acts as a bridge between a
.NET DataSet and the Ingres database for retrieving and updating data.

IngresDataAdapter Class Declaration

The declarations for the IngresDataAdapter class are:

C#: public sealed class IngresDataAdapter : DbDataAdapter, IDbDataAdapter,
ICloneable

VB.NET: NotInheritable Public Class DataAdapter
 Inherits DbDataAdapter
 Implements IDbDataAdapter, ICloneable

IngresDataAdapter Class Example

public DataSet CreateDataSet(
string dsName, string connectionString, string commandText)

{
IngresConnection connection =

 new IngresConnection(connectionString);
IngresCommand command =

 new IngresCommand(commandText, connection);
IngresDataAdapter adapter = new IngresDataAdapter(command);
DataSet ds = new DataSet();
adapter.Fill(ds, dsName);
return ds;

}

IngresDataAdapter Class Properties

The IngresDataAdapter class has the following properties:

Property Accessor Description

AcceptChangesDuringFill get set A true/false value indicating
whether the
DataRow.AcceptChanges method is
called after the DataRow is added
to the DataTable. Inherited from
DataAdapter.

Default is true.

ContinueUpdateOnError get set A true/false value indicating
whether to generate an exception
or to update the RowError property

Understanding .NET Data Provider Connectivity 297

.NET Data Provider Classes

Property Accessor Description

AcceptChangesDuringFill get set A true/false value indicating
whether the
DataRow.AcceptChanges method is
called after the DataRow is added
to the DataTable. Inherited from
DataAdapter.

Default is true.

when an error occurs during an
update to the row. Inherited from
DataAdapter.

Default is false.

DeleteCommand get set Command to be used (SQL
statement or database procedure)
to DELETE records from the
database.

InsertCommand get set Command to be used (SQL
statement or database procedure)
to INSERT records into the
database.

MissingMappingAction get set Action to be taken if incoming data
does not have a matching table or
column. Default is Passthrough.
Inherited from DataAdapter.

MissingSchemaAction get set Action to be taken if an existing
DataSet schema does not match
incoming data. Default is Add.
Inherited from DataAdapter.

SelectCommand get set Command to be used (SQL
statement or database procedure)
to SELECT records from the
database.

TableMappings get The collection that provides the
mapping between the returned
records and the DataSet. Default is
an empty collection. Inherited from
DataAdapter.

UpdateCommand get set Command to be used (SQL
statement or database procedure)
to UPDATE records in the
database.

298 Connectivity Guide

.NET Data Provider Classes

IngresDataAdapter Class Public Methods

The public methods available to the IngresDataAdapter Class are:

Method Description

Dispose Releases allocated resources.

Fill Adds or refreshes rows in the DataSet to match the
values in the database. Inherited from DBDataAdapter.

FillSchema Adds a DataTable to a DataSet and configures the
schema to match that in the database. FillSchema does
not add rows to a DataTable. Inherited from
DBDataAdapter.

GetFillParameters Gets an array of IDataParameter objects that contain
the parameters set by the user when executing a
SELECT statement. Inherited from DBDataAdapter.

Update Calls the respective INSERT, UPDATE, or DELETE
statements for each inserted, updated, or deleted row
in the DataSet. Inherited from DBDataAdapter.

IngresDataAdapter Class Events

The events generated by the IngresDataAdapter class are:

Event Description

FillError Raised when an error occurs during a Fill operation.
Inherited from DBDataAdapter.

RowUpdating Raised as an UPDATE, INSERT, or DELETE operation
on a row (by a call to one of the Update methods) is
about to start.

RowUpdated Raised after an UPDATE, INSERT, or DELETE
operation on a row (by a call to one of the Update
methods) is complete.

Understanding .NET Data Provider Connectivity 299

.NET Data Provider Classes

IngresDataAdapter Class Constructors

The IngresDataAdapter class contains the following constructors:

Constructor Overloads Description

IngresDataAdapter() Instantiates a new instance of the
IngresDataAdapter class using default
property values

IngresDataAdapter
(IngresCommand)

Instantiates a new instance of the
IngresDataAdapter class using the defined
IngresCommand as the SelectCommand.

IngresDataAdapter
(string, IngresConnection)

Instantiates a new instance of the
IngresDataAdapter class using the defined
command text for a new instance of
IngresCommand for the SelectCommand, and
the IngresConnection object

IngresDataAdapter
(string, string)

Instantiates a new instance of the
IngresDataAdapter class using the defined
command text for the SelectCommand and a
connection string

IngresError Class

The IngresError class represents error or warning information returned by the
Ingres database.

IngresError Class Declaration

The IngresError class can be declared as follows:

C#: [Serializable] public sealed class IngresError

VB.NET: NotInheritable Public Class IngresError

300 Connectivity Guide

.NET Data Provider Classes

IngresError Class Example

The following is an implementation of the IngresError class:

static void PrintErrorCollection(IngresErrorCollection errcol)
{

foreach(IngresError err in errcol)
{

 PrintError(err);
}
Console.WriteLine("");

}

static void PrintError(IngresError err)
{

Console.Write(err.GetType().ToString() + ":\n");
Console.Write("\t" + "Message = " +

 (err.Message !=null?
 err.Message.ToString() :"<null>") + "\n");

Console.Write("\t" + "Source = " +
 (err.Source!=null?err.Source.ToString():"<null>") + "\n");

Console.Write("\t" + "ToString: " + err.ToString() + "\n");
Console.Write("\t" + "Number = " +

 (err.Number.ToString()) + "\n");
Console.Write("\t" + "SQLState = " +

 (err.SQLState !=null?
 err.SQLState.ToString() :"<null>") + "\n");

Console.WriteLine("");
}

IngresError Class Properties

The IngresError class has the following properties:

Property Accessor Description

Message get A description of the error.

Number get The database-specific error integer
information returned by the Ingres database.

Source get Name of the data provider that generated the
error. Always “Ingres.”

SQLState get The standard five-character SQLSTATE code.

Understanding .NET Data Provider Connectivity 301

.NET Data Provider Classes

IngresError Class Public Methods

The public methods available to the IngresError class are:

Method Description

ToString A description of the error in the form of
“IngresError: error-message-text”.

IngresErrorCollection Class

The IngresErrorCollection class represents a collection of the IngresError
objects returned by the Ingres database. Created by IngresException, an
IngresErrorCollection collection always contains at least one instance of
IngresError.

IngresErrorCollection Class Declaration

The declarations for the IngresErrorCollection class are:

C#: [Serializable]
 public sealed class IngresErrorCollection : ICollection, IEnumerable

VB.NET: <Serializable]>
 NotInheritable Public Class IngresError

Inherits ICollection Implements IEnumerable

302 Connectivity Guide

.NET Data Provider Classes

IngresErrorCollection Class Example

The following is an example implementation of the IngresErrorCollection class:

static void PrintErrorCollection(IngresErrorCollection errcol)
{

foreach(IngresError err in errcol)
{

 PrintError(err);
}
Console.WriteLine("");

}

static void PrintError(IngresError err)
{

Console.Write(err.GetType().ToString() + ":\n");

Console.Write("\t" + "Message = " +
 (err.Message !=null?

 err.Message.ToString() :"<null>") + "\n");
Console.Write("\t" + "Source = " +

 (err.Source!=null?err.Source.ToString():"<null>") + "\n");
Console.Write("\t" + "ToString: " + err.ToString() + "\n");
Console.Write("\t" + "Number = " +

 (err.Number.ToString()) + "\n");
Console.Write("\t" + "SQLState = " +

 (err.SQLState !=null?
 err.SQLState.ToString() :"<null>") + "\n");

Console.WriteLine("");
}

IngresErrorCollection Class Properties

The IngresErrorCollection class has the following properties:

Property Accessor Description

Count get The number of errors in the collection.

Item get Gets the IngresError for a given
ordinal. This property is the C# indexer
for IngresErrorCollection class.

IngresErrorCollection Class Public Methods

The public methods available to the IngresErrorCollection class are:

Method Description

CopyTo Copies the elements of IngresErrorCollection to an
Array.

Understanding .NET Data Provider Connectivity 303

.NET Data Provider Classes

IngresException Class

The IngresException class represents the exception that is thrown when error
information is returned by the Ingres database.

IngresException Class Declaration

The IngresException is declared as follows:

C#:	 [Serializable]
 public sealed class IngresException : SystemException

VB.NET: <Serializable>
 NotInheritable Public Class IngresException

 Inherits SystemException

IngresException Class Example

The following is an example implementation of the IngresException class:

static void PrintException(IngresException ex)
{

Console.Write(ex.GetType().ToString() + ":\n");
Console.Write("\t" + "Errors = " +

 (ex.Errors !=null?ex.Errors.ToString() :
 "<null>") + "\n");

Console.Write("\t" + "HelpLink = " +
 (ex.HelpLink !=null?ex.HelpLink.ToString() :

 "<null>") + "\n");
Console.Write("\t" + "InnerException = " +

 (ex.InnerException!=null?ex.InnerException.ToString():
 "<null>") + "\n");

Console.Write("\t" + "Source = " +
 (ex.Source !=null?ex.Source.ToString() :

 "<null>") + "\n");
Console.Write("\t" + "TargetSite = " +

 (ex.TargetSite!=null?ex.TargetSite.ToString():"<null>") + "\n");
Console.WriteLine("");

}

IngresException Class Properties

The IngresException class contains the following properties:

Property Accessor Description

Errors get An ErrorCollection of one or more Error
objects that give more detailed
information on the exception generated
by the provider.

InnerException get The nested Exception instance that

304 Connectivity Guide

.NET Data Provider Classes

Property Accessor Description

caused the current exception. Inherited
from Exception.

Message get A concatenation of all the messages in
the Errors collection.

Source get Name of the data provider that generated
the error. Always “Ingres.”

StackTrace get A string representation of the frames on
the call stack at the time the current
exception was thrown.

TargetSite get The method that threw the current
exception. Inherited from Exception.

IngresException Class Public Methods

The public methods available to the IngresException class are:

Method Description

ToString The description of the exception as a string.

IngresFactory Class

The IngresFactory class helps generate many of the other Ingres classes in an
inter-operable data provider model. For each Ingres class that the factory
wants to construct, simply call the Ingres constructor for that class and return
the object instance.

IngresFactory Class Declaration

The IngresFactory class can be declared as follows:

C#: public sealed class IngresFactory : DbProviderFactory

VB.NET: NotInheritable Public Class IngresFactory
 Inherits DbProviderFactory

Understanding .NET Data Provider Connectivity 305

.NET Data Provider Classes

IngresFactory Class Public Fields

The IngresFactory class has the following public fields:

Field Description

Instance The static field containing the single instance of
IngresFactory.

IngresFactory Class Public Methods

The public methods available to the IngresFactory class are:

Method Description

CreateCommand Creates an instance of IngresCommand
using the factory.

CreateCommandBuilder Creates an instance of
IngresCommandBuilder using the factory.

CreateConnection Creates an instance of IngresConnection
using the factory.

CreateConnectionStringBuilder Creates an instance of
IngresConnectionStringBuilder using the
factory.

CreateDataAdapter Creates an instance of IngresDataAdapter
using the factory.

CreateDataSourceEnumerator Always returns null.

CreateParameter Creates an instance of IngresParameter
using the factory.

CreatePermission Creates an instance of IngresPermission
using the factory.

IngresInfoMessageEventArgs Class

The IngresInfoMessageEventArgs class provides the information on warnings
from the database to the delegate method that handles the InfoMessage
event.

306 Connectivity Guide

.NET Data Provider Classes

IngresInfoMessageEventArgs Class Declaration

The IngresInfoMessageEventArgs class is declared as follows:

C#: public sealed class IngresInfoMessageEventArgs : EventArgs

VB.NET: NotInheritable Public Class IngresInfoMessageEventArgs
 Inherits EventArgs

IngresInfoMessageEventArgs Class Example

The following is an implementation of the IngresInfoMessageEventArgs class:

static void OnInfoMessage(
Object sender, IngresInfoMessageEventArgs e)

{
Console.WriteLine("OnInfoMessage event args: ("+

 "ErrorCode=" + e.Number +

 ", Errors=" + e.Errors +
 ", Message=\"" + e.Message + "\"" +
 ", Source=" + e.Source +")");

}

IngresInfoMessageEventArgs Class Properties

The following are the properties of the IngresInfoMessageEventArgs class:

Property Accessor Description

Errors get An ErrorCollection of one or more Error objects
that give more detailed information on the
warnings generated by the provider.

Message get A concatenation of all the messages in the Errors
collection.

Number get The database-specific warning integer
information returned by the Ingres database.

Source get Name of the data provider that generated the
error. Always “Ingres.”

IngresInfoMessageEventHandler Class

The IngresInfoMessageEventHandler delegate represents the delegate method
that handles the InfoMessage event.

Understanding .NET Data Provider Connectivity 307

.NET Data Provider Classes

IngresInfoMessageEventHandler Class Declaration

The IngresInfoMessageEventHandler class has the following message
declaration:

C#: [Serializable]
 public delegate void IngresInfoMessageEventHandler
 (object sender, IngresInfoMessageEventArgs e)

VB.NET: <Serializable>
 Public Delegate Sub IngresInfoMessageEventHandler _
 (ByVal sender As Object, ByVal e As
 IngresInfoMessageEventArgs)

IngresInfoMessageEventHandler Class Example

The following is an implementation of the IngresInfoMessageEventHandler
class:

static void DoWork(string connstring)
{

IngresConnection conn = new IngresConnection(connstring);
conn.InfoMessage += new
IngresInfoMessageEventHandler(OnInfoMessage);

<do additional work>

 }

static void OnInfoMessage(
Object sender, IngresInfoMessageEventArgs e)

{
Console.WriteLine("OnInfoMessage event args: ("+

 "ErrorCode=" + e.Number +

 ", Errors=" + e.Errors +
 ", Message=\"" + e.Message + "\"" +
 ", Source=" + e.Source +")");

}

308 Connectivity Guide

.NET Data Provider Classes

IngresMetaDataCollectionNames Class

The IngresMetaDataCollectionNames class presents information on metadata,
such as tables, views, and columns. Each member of the class is a constant
string suitable for use as collectionName argument for the
IngresConnection.GetSchema method.

The collectionNames supported are:

� Columns

� ForeignKeys

� Indexes

� ProcedureParameters

� Procedures

� Tables

� Views

IngresMetaDataCollectionNames Class Declaration

The IngresMetaDataCollectionNames Class can be declared as follows:

C#: public static class IngresMetaDataCollectionNames

VB.NET: Public Shared Class IngresMetaDataCollectionNames

IngresParameter Class

The IngresParameter class represents a parameter for an IngresCommand for
each question mark (?) placeholder in the command and, optionally, its
mapping to a DataSet column.

The IngresParameter constructor determines the data type of the parameter in
the following ways:

�	 The constructor specifies an IngresType enumeration

�	 The constructor specifies a System.DbType enumeration

�	 Through the .NET Framework System.Type of the Value object if no
specific data type is in the constructor

Understanding .NET Data Provider Connectivity 309

.NET Data Provider Classes

IngresParameter Class Example

The following is an implementation of the IngresParameter class:

static string DemoParameterSSN(
string connstring, int intNumber, string strSSN)

{
IngresConnection conn = new IngresConnection(connstring);

string strName = null;

conn.Open();

IngresCommand cmd = new IngresCommand(
 "select name from demo_personnel where number = ? and ssn = ?",
 conn);

// add two parameters to the command's IngresParameterCollection
cmd.Parameters.Add(new IngresParameter("Number", intNumber));
IngresParameter parm =

 new IngresParameter("SSN", IngresType.VarChar);
parm.Value = strSSN;
cmd.Parameters.Add(parm);

IngresDataReader reader = cmd.ExecuteReader();

while (reader.Read())
{

 if (reader.IsDBNull(0))
 break;

 strName = reader.GetString(0);
}

reader.Close();

conn.Close();

return strName;

}

IngresParameter Class Declaration

The class declaration for IngresParameter class is:

C#: public sealed class IngresParameter :
System.Data.Common.DbParameter, IDataParameter, IDbDataParameter,
ICloneable

VB.NET: NotInheritable Public Class IngresParameter
 Inherits System.Data.Common.DbParameter

Implements IDataParameter, IDbDataParameter, ICloneable

310 Connectivity Guide

.NET Data Provider Classes

IngresParameter Class Properties

The properties for the IngresParameter are:

Property Accessor Description

DbType get set The type that the parameter must be
converted to before being passed to the
database server. Setting this parameter
induces a setting of IngresType property.

Default is DbType.String.

Direction get set Indicators whether the parameter has an
input, input/output, output, or procedure
return value.

IngresType get set The type that the parameter must be
converted to before being passed to the
database server. Setting this parameter
induces a setting of DbType property.

Default is IngresType.NvarChar if the
database supports Unicode UTF-16;
otherwise the default is
IngresType.VarChar.

IsNullable get set Indicates whether the parameter accepts
null values.
True = accepts null values. False = does
not accept null values.

ParameterName get set The name of the parameter.

Default is “”.

Precision get set Maximum number of digits for decimal
parameters.

Default is 0.

Scale get set Number of decimal places for decimal
parameters.

Default is 0.

Size get set Maximum size of binary and string data
to be sent to the server.

Default is inferred from the parameter
value.

SourceColumn get set The name of the source column mapped
to a DataSet.

Default is “”.

Understanding .NET Data Provider Connectivity 311

.NET Data Provider Classes

Property Accessor Description

SourceVersion get set The DataRowVersion used by an
UpdateCommand during an Update
operation for setting the parameter.

Default is DataRowVersion.Current.

Value get set The value of the parameter.

Default is null.

Important! .NET strings are Unicode based. If the application is sending a
Unicode string as a parameter to a database field that is ASCII char or
varchar, the application can direct the data provider to coerce the Unicode
string to an ASCII string on the client side by setting the parameter DbType
property to DbType.AnsiString, or the IngresType property to
IngresType.VarChar.

IngresParameter Class Public Methods

The public methods available for the IngresParameter class are:

Method Description

ToString The name of the parameter.

IngresParameter Class Constructors

The constructors available to the IngresParameter class are:

Constructor Description
Overloads

IngresParameter() Instantiates a new instance of the IngresParameter
class using default property values

IngresParameter Instantiates a new instance of the IngresParameter
(string, DbType) class using the defined parameter name and

DbType.

IngresParameter Instantiates a new instance of the IngresParameter
(string, IngresType) class using the defined parameter name and

IngresType.

IngresParameter Instantiates a new instance of the IngresParameter
(string, object) class using the defined parameter name and

System.Object. The DbType and IngresType are
inferred from the .NET Type of the object.

312 Connectivity Guide

.NET Data Provider Classes

Constructor
Overloads

Description

IngresParameter
(string, DbType,
string)

Instantiates a new instance of the IngresParameter
class using the defined parameter name, DbType,
and source column name.

IngresParameter
(string, IngresType,
string)

Instantiates a new instance of the IngresParameter
class using the defined parameter name,
IngresType, and source column name.

IngresParameter
(string, DbType, int)

Instantiates a new instance of the IngresParameter
class using the defined parameter name, DbType,
and column size.

IngresParameter
(string, IngresType,
int)

Instantiates a new instance of the IngresParameter
class using the defined parameter name,
IngresType, and column size.

IngresParameter
(string, DbType, int,
string)

IngresParameter
(string, IngresType,
int, string)

IngresParameter
(string, DbType, int,
ParameterDirection,
bool, byte, byte,
string,
DataRowVersion,
object)

IngresParameter
(string, IngresType,
int,
ParameterDirection,
bool, byte, byte,
string,
DataRowVersion,
object)

Instantiates a new instance of the IngresParameter
class using the defined parameter name, DbType,
column size, and source column name.

Instantiates a new instance of the IngresParameter
class using the defined parameter name,
IngresType, column size, and source column name.

Instantiates a new instance of the IngresParameter
class using the defined parameter name, DbType,
column size, parameter direction, boolean
indication of whether or not the field can be null,
precision, scale, source column name,
DataRowVersion describing the version of a
System.Data.DataRow, and the value of the object.

Instantiates a new instance of the IngresParameter
class using the defined parameter name,
IngresType, column size, parameter direction,
boolean indication of whether or not the field can
be null, precision, scale, source column name,
DataRowVersion describing the version of a
System.Data.DataRow, and the value of the object.

IngresParameterCollection Class

The IngresParameterCollection class represents a collection of all parameters
for an IngresCommand object and their mapping to a DataSet object.

Understanding .NET Data Provider Connectivity 313

.NET Data Provider Classes

IngresParameterCollection Class Declaration

The class declaration for IngresParameterCollection class is as follows:

C#: public sealed class IngresParameterCollection :
System.Data.Common.DbParameterCollection, IDataParameterCollection, IList,
ICollection, IEnumerable

VB.NET: NotInheritable Public Class IngresParameterCollection
 Inherits System.Data.Common.DbParameterCollection
 Implements IDataParameterCollection, IList, ICollection,
IEnumerable

IngresParameterCollection Class Example

For an example of adding parameters to an IngresParameterCollection, see
IngresParameter Class Example (see page 310).

IngresParameterCollection Class Properties

The IngresParameterCollection has the following properties:

Property Accessor Description

Count get The number of parameters in the
collection.

Item get set The IngresParameter object for a given
ordinal or parameter name. This property
is the C# indexer for
IngresParameterCollection class.

IngresParameterCollection Class Public Methods

The public methods available to the IngresParameterCollection class are:

Method Description

Add Adds an IngresParameter to the parameter collection.

Clear Removes all items from the collection.

Contains Indicates whether IngresParameter exists in the
collection. True = does exist; False = does not exist.

CopyTo Copies the elements of IngresParameterCollection to an
Array.

IndexOf Returns the index of the IngresParameter in the
collection.

314 Connectivity Guide

.NET Data Provider Classes

Method Description

Insert Inserts the IngresParameter into the collection.

Remove Removes the IngresParameter from the collection.

RemoveAt Removes an IngresParameter with a specified index or
name from the collection.

IngresPermission Class

The IngresPermission class provides additional information that a user has a
security level sufficient to access the Ingres database. At present, the class is
not used by the Ingres .NET Data Provider. The class is included in the Ingres
data provider to provide completeness for the Factory interoperability model.
Instead, standard Ingres security and access control is used.

The IngresPermission class can be declared as follows:

C#: public sealed class IngresPermission : DBPermission

VB.NET: NotInheritable Public Class IngresPermission
 Inherits DBPermission

IngresRowUpdatedEventArgs Class

The IngresRowUpdatedEventArgs class provides the information for the
RowUpdated event of an IngresDataAdapter.

IngresRowUpdatedEventArgs Class Declaration

The class declaration for IngresRowUpdateEventArgs is as follows:

C#: public sealed class IngresRowUpdatedEventArgs : RowUpdatedEventArgs

VB.NET: NotInheritable Public Class IngresRowUpdatedEventArgs
 Inherits RowUpdatedEventArgs

IngresRowUpdatedEventArgs Class Properties

The IngresRowUpdatedEventArgs has the following properties:

Property Accessor Description

Command get The IngresCommand executed when
DbDataAdapter.Update method is called.

Understanding .NET Data Provider Connectivity 315

.NET Data Provider Classes

Property Accessor Description

Errors get The Exception containing any errors
generated by the Ingres .NET Data
Provider during the execution of the
IngresCommand. Inherited from
RowUpdatedEventArgs.

RecordsAffected get The number of rows updated, inserted, or
deleted during the execution of the
UPDATE, INSERT, or DELETE SQL
statement. Inherited from
RowUpdatedEventArgs.

Row get The System.Data.DataRow sent through
the DbDataAdapter.Update. Inherited from
RowUpdatedEventArgs.

StatementType get The type of SQL statement executed.
Inherited from RowUpdatedEventArgs.

Status get The System.Data.UpdateStatus of the
IngresCommand. Inherited from
RowUpdatedEventArgs.

TableMapping get The DataTableMapping sent through a
DbDataAdapter.Update. Inherited from
RowUpdatedEventArgs.

IngresRowUpdatedEventHandler Class

The IngresRowUpdatedEventHandler delegate represents a delegate method
that handles the RowUpdated event of an IngresDataAdapter.

IngresRowUpdatedEventHandler Class Declaration

The IngresRowUpdateEventHandler class has the following declaration:

C#: [Serializable]
 public delegate void Ingres RowUpdated EventHandler
 (object sender, IngresRowUpdated EventArgs e)

VB.NET: <Serializable>
 Public Delegate Sub Ingres RowUpdatedEventHandler _

(ByVal sender As Object, ByVal e As
IngresRowUpdatedEventArgs)

316 Connectivity Guide

.NET Data Provider Classes

IngresRowUpdatingEventArgs Class

The IngresRowUpdatingEventArgs class provides the information for the
RowUpdating event of an IngresDataAdapter.

IngresRowUpdatingEventArgs Class Declaration

The IngresRowUpdatingEventArgs class has the following declaration:

C#: public sealed class IngresRowUpdatingEventArgs :
RowUpdatingEventArgs

VB.NET: NotInheritable Public Class Ingres RowUpdatingEventArgs
 Inherits RowUpdatingEventArgs

IngresRowUpdatingEventArgs Class Properties

The IngresRowUpdatingEventArgs class has the following properties:

Property Accessor Description

Command get set The IngresCommand executed when
DbDataAdapter.Update method is called.

Errors get The Exception containing any errors
generated by the Ingres .NET Data
Provider during the execution of the
IngresCommand. Inherited from
RowUpdatedEventArgs.

RecordsAffected get The number of rows updated, inserted,
or deleted during the execution of the
UPDATE, INSERT, or DELETE SQL
statement. Inherited from
RowUpdatedEventArgs.

Row get The System.Data.DataRow sent through
the DbDataAdapter.Update. Inherited
from RowUpdatedEventArgs.

StatementType get The type of SQL statement executed.
Inherited from RowUpdatedEventArgs.

Status get The System.Data.UpdateStatus of the
IngresCommand. Inherited from
RowUpdatedEventArgs.

TableMapping get The DataTableMapping sent through a
DbDataAdapter.Update. Inherited from
RowUpdatedEventArgs.

Understanding .NET Data Provider Connectivity 317

.NET Data Provider Classes

IngresRowUpdatingEventHandler Class

The IngresRowUpdatingEventHandler delegate represents a delegate method
that handles the RowUpdating event of an IngresDataAdapter.

IngresRowUpdatingEventHandler Class Declaration

The IngresRowUpdatingEventHandler class declaration is as follows:

C#: [Serializable]
 public delegate void IngresRowUpdatingEventHandler
 (object sender, IngresRowUpdatingEventArgs e)

VB.NET: <Serializable>
 Public Delegate Sub Ingres RowUpdatingEventHandler _

(ByVal sender As Object, ByVal e As
IngresRowUpdatingEventArgs)

IngresTransaction Class

The IngresTransaction class represents a local, non-distributed database
transaction. Each connection is associated with a transaction. This object
allows manual commit or rollback control over the pending local transaction.

Created by the BeginTransaction method in the IngresConnection object. After
Commit() or Rollback has been issued against the transaction, the
IngresTransaction object can not be reused and a new IngresTransaction
object must be obtained from the IngresConnection.BeginTransaction method
if another transaction is desired.

IngresTransaction Class Declaration

The IngresTransaction class declaration is as follows:

C#: public sealed class IngresTransaction :
System.Data.Common.DbTransaction

VB.NET: NotInheritable Public Class IngresTransaction
 Inherits System.Data.Common.DbTransaction

318 Connectivity Guide

.NET Data Provider Classes

IngresTransaction Class Example

The following is an implementation of the IngresTransaction class:

static void DemoTxn(string connstring)

{
IngresConnection conn = new IngresConnection(connstring);
ProviderTransaction txn;

conn.Open();
txn = conn.BeginTransaction();

IngresCommand cmd = new IngresCommand(
 "update demo_personnel set name = 'Howard Lane' "+
" where number = 200", conn, txn);

int numberOfRecordsAffected = cmd.ExecuteNonQuery();

Console.WriteLine(numberOfRecordsAffected.ToString() +
 " records updated.");

txn.Commit();

conn.Close();

}

IngresTransaction Class Properties

The IngresTransaction class has the following properties:

Property Accessor Description

Connection get The IngresConnection object that is
associated with the transaction. Null if the
transaction or connection is no longer valid.

IsolationLevel get The IsolationLevel for this transaction as set
in the IngresConnection.BeginTransaction
method.

IngresTransaction Class Methods

The IngresTransaction class contains the following methods:

Method Description

Commit Commit the database changes.

Dispose Release allocated resources.

Rollback Rollback the database changes.

Understanding .NET Data Provider Connectivity 319

Data Types Mapping

Data Types Mapping

The Ingres .NET Data Provider defines its own enumeration of supported data
types in addition to the standard System.Data.DbType enumeration.

The following table shows the mapping of the Ingres .NET Data Provider's data
types to its .NET data type counterparts. For information on the typed
accessors that a .NET application uses for an Ingres native database type to be
obtained as a .NET type, see IngresDataReader Class (see page 290).

IngresType Ingres
Data Type

Description .NET Data
Type

Binary byte Fixed length stream of
binary data

Byte[]

Char char Fixed length stream of
character data

String

DateTime date Date data DateTime

Decimal decimal Exact numeric data Decimal

Double double
precision
(float8)

Approximate numeric data Double

SmallInt smallint Signed 16-bit integer data Int16

TinyInt integer1 Signed 8-bit integer data SByte

Int integer Signed 32-bit integer data Int32

BigInt bigint Signed 64-bit integer data Int64

LongVarBinary long byte Binary large object Byte[]

LongVarChar long varchar Character large object String

LongNVarChar long
nvarchar

Unicode large object String

NChar nchar Fixed length stream of
Unicode data

String

NVarChar nvarchar Variable length stream of
Unicode data

String

Real real (float4) Approximate numeric data Single

VarBinary byte varying Variable length stream of
binary data

Byte[]

VarChar varchar Variable length stream of
character data

String

320 Connectivity Guide

Data Types Mapping

Notes:

�	 DateTime literals within SQL CommandText must be specified in the form
of {d 'yyyy-mm-dd'} for dates and {ts 'yyyy-mm-dd hh-mm-ss'} for
timestamps. However, it is preferable to pass .NET DateTime parameters
rather than literals for these values.

�	 For Ingres servers, DateTime parameters are converted to UTC values
before being sent to the Ingres servers. DateTime values retrieved from
Ingres servers are converted from UTC values to Local values. For non-
Ingres servers, DateTime values are passed between the data provider and
servers unchanged.

DbType Mapping

.NET's System.Data.DbType for a parameter is mapped to the IngresType data
type as follows:

DbType IngresType

AnsiString VarChar

AnsiStringFixedLength Char

Binary VarBinary

Boolean TinyInt, if supported by the database; otherwise,
SmallInt

Byte Binary, if supported by the database; otherwise,
Char

Currency Decimal

Date DateTime

DateTime DateTime

Decimal Decimal

Double Double

Guid Not supported

Int16 SmallInt

Int32 Int

Int64 Decimal

Object Not supported

SByte TinyInt, if supported by the database; otherwise,
SmallInt

Understanding .NET Data Provider Connectivity 321

IngresDataReader Object—Retrieve Data from the Database

DbType IngresType

Single Real

String NVarChar , if supported by the database;
otherwise, VarChar

StringFixedLength NChar, if supported by the database; otherwise,
Char

Time DateTime

UInt16 Int

UInt32 Decimal

UInt64 Decimal

VarNumeric Decimal

Coercion of Unicode Strings

.NET strings are Unicode based. If the application is sending a Unicode string
as a parameter to a database field that is ASCII char or varchar, the
application can direct the data provider to coerce the Unicode string to an
ASCII string on the client side by setting the IngresParameter's DbType
property to DbType.AnsiString or the IngresType property to
IngresType.VarChar.

The following is an example of coercing a Unicode string:

IngresCommand cmd = new IngresCommand(
"select name from personnel where ssn = ?",
conn);

IngresParameter parm =
new IngresParameter("SSN", IngresType.VarChar);

parm.Value = strSSN;
cmd.Parameters.Add(parm);

IngresDataReader Object—Retrieve Data from the
Database

Ingres .NET Data Provider provides the IngresDataReader object to retrieve a
read-only, forward-only stream of data from an Ingres result-set created by a
SELECT query or row-producing database procedure. Using the
IngresDataReader increases application performance and reduces system
overhead because only one row of data at a time is in memory.

322 Connectivity Guide

IngresDataReader Object—Retrieve Data from the Database

Build the IngresDataReader

After creating an instance of the IngresCommand object, call
Command.ExecuteReader to build the IngresDataReader to retrieve rows from
a data source, as shown in the following example:

Visual Basic:

Dim rdr As IngresDataReader = cmd.ExecuteReader()

C#:

IngresDataReader rdr = cmd.ExecuteReader();

IngresDataReader Methods

Use the Read method of the IngresDataReader object to obtain a row from the
results of the query. To access each column of the returned row, pass the
name or ordinal reference of the column to the IngresDataReader.

For best performance, the IngresDataReader provides a series of methods that
allow you to access column values in their native data types (GetDateTime,
GetDouble, GetGuid, GetInt32, and so on). For a list of typed accessor
methods, see the IngresDataReader Class (see page 290). Use the typed
accessor when you know the underlying data type. When using a type
accessor, use the correct accessor to avoid an InvalidCastException being
thrown when no type conversions are performed.

Understanding .NET Data Provider Connectivity 323

IngresDataReader Object—Retrieve Data from the Database

Example: Using the IngresDataReader

The following is an implementation of IngresDataReader.

static void DataReaderDemo(string connstring)
{

IngresConnection conn = new IngresConnection(connstring);

string strNumber;
string strName;
string strSSN;

conn.Open();

IngresCommand cmd = new IngresCommand(
 "select number, name, ssn from personnel", conn);

IngresDataReader reader = cmd.ExecuteReader();

Console.Write(reader.GetName(0) + "\t");
Console.Write(reader.GetName(1) + "\t");
Console.Write(reader.GetName(2));
Console.WriteLine();

while (reader.Read())
{

 strNumber= reader.IsDBNull(0)?
 "<none>":reader.GetInt32(0).ToString();

 strName = reader.IsDBNull(1)?
 "<none>":reader.GetString(1);

 strSSN = reader.IsDBNull(2)?
 "<none>":reader.GetString(2);

 Console.WriteLine(
 strNumber + "\t" + strName + "\t" + strSSN);

}

reader.Close();
conn.Close();

}

324 Connectivity Guide

IngresDataReader Object—Retrieve Data from the Database

ExecuteScalar Method—Obtain a Single Value from a Database

To return database information that is a single value rather than in the form of
a table or data stream—for example, to return the result of an aggregate
function such as Count(*), Sum(Price), or Avg(Quantity)—use the
IngresCommand object's ExecuteScalar method. The ExecuteScalar method
returns as a scalar value the value of the first column of the first row of the
result set.

The following code example uses the Count aggregate function to return the
number of records in a table:

Visual Basic:

Dim cmd As IngresCommand = New IngresCommand("SELECT Count(*) FROM Personnel",

conn)

Dim count As Int32 = CInt(cmd.ExecuteScalar())

C#:

IngresCommand cmd = new IngresCommand("SELECT Count(*) FROM Personnel", conn);
Int32 count = (Int32)cmd.ExecuteScalar();

GetBytes Method—Obtain BLOB Values from a Database

When you access the data in the BLOB field, use the GetBytes typed accessor
of the DataReader, which fills a byte array with the binary data. Specify a
buffer size of data to be returned and a starting location for the first byte read
from the returned data. GetBytes will return a long value that represents the
number of bytes returned. If you pass a null byte array to GetBytes, the long
value returned is the total number of bytes in the BLOB. Optionally, specify an
index in the byte array as a start position for the data being read.

Understanding .NET Data Provider Connectivity 325

ExecuteNonQuery Method—Modify and Update Database

GetSchemaTable Method—Obtain Schema Information from a Database

The Ingres .NET Data Provider enables you to obtain schema information from
Ingres data sources. Such schema information includes database schemas or
catalogs available from the data source, database tables and views, and
constraints that exist for database tables.

The Ingres .NET Data Provider exposes schema information using the
GetSchemaTable method of the IngresDataReader object. This method returns
a DataTable that describes the resultset column metadata. For more
information on this metadata, see GetSchemaTable Columns Returned (see
page 293).

If the ExecuteReader(CommandBehavior.KeyInfo) method was called in the
IngresCommand object when building the IngresDataReader, additional
information about primary key columns, unique columns, and base names are
retrieved from the database catalog and included in the returned DataTable.

ExecuteNonQuery Method—Modify and Update Database

Using the Ingres .NET Data Provider, you can use the IngresCommand's
ExecuteNonQuery method to process SQL statements that modify data but do
not return rows, such as INSERT, UPDATE, DELETE, and other non-resultset
commands such as CREATE TABLE.

Although rows are not returned by the ExecuteNonQuery method, input and
output parameters and return values can be passed and returned using the
Parameters property of the IngresCommand object.

The following code example executes an UPDATE statement to update a record
in a database using ExecuteNonQuery:

static void DemoUpdate(string connstring)
{

IngresConnection conn = new IngresConnection(connstring);

conn.Open();
IngresCommand cmd = new IngresCommand(

 "update demo_personnel set name = 'Howard Lane' "+
" where number = 200", conn);

int numberOfRecordsAffected = cmd.ExecuteNonQuery();

Console.WriteLine(numberOfRecordsAffected.ToString() +
 " records updated.");

conn.Close();

}

326 Connectivity Guide

ExecuteNonQuery Method—Modify and Update Database

IngresDataAdapter Object—Manage Data

An IngresDataAdapter object has four properties for retrieving and updating
data source records:

� SelectCommand returns selected data from the data source.

The SelectCommand property must be set before calling the Fill method of
the IngresDataAdapter.

� InsertCommand inserts data into the data source.

� UpdateCommand updates data in the data source.

� DeleteCommand deletes data from the data source.

The InsertCommand, UpdateCommand, and DeleteCommand properties
must be set before the Update method of the IngresDataAdapter is called,
depending on what changes were made to the data in the DataSet. For
example, if rows have been added, the InsertCommand must be set before
calling Update.

When Update is processing an inserted, updated, or deleted row, the
IngresDataAdapter uses the respective Command property to process the
action. Current information about the modified row is passed to the
Command object through the Parameters collection.

For example, when updating a row, the UPDATE statement uses a unique
identifier to identify the row in the table being updated. The unique
identifier is commonly the value of a primary key field, or unique non-null
index. The UPDATE statement uses parameters that contain the unique
identifier, the columns, and the values to be updated, as shown in the
following SQL statement:

static void DemoAdapter(string connstring)
{

IngresConnection conn = new IngresConnection (connstring);
IngresDataAdapter adapter = new IngresDataAdapter ();

adapter.SelectCommand = new IngresCommand (
 "select * from personnel", conn);

adapter.UpdateCommand = new IngresCommand (
 "update personnel set name = ?, number = ? where ssn = ?",
 conn);

adapter.UpdateCommand.Parameters.Add(
 "@name", IngresType.Char,"name");

adapter.UpdateCommand.Parameters.Add(
 "@number", IngresType.Int, "number");

adapter.UpdateCommand.Parameters.Add(
 "@oldssn", IngresType.Char, "ssn").SourceVersion =
 DataRowVersion.Original;

DataSet ds = new DataSet();
adapter.Fill(ds, "Personnel");

ds.Tables["Personnel"].Rows[195]["number"] = 4199;
adapter.Update(ds, "Personnel");

}

Understanding .NET Data Provider Connectivity 327

How Database Procedures Are Called

IngresDataAdapter Events

The IngresDataAdapter exposes the following events, which you can use to
respond to changes made to data source data:

RowUpdating

An UPDATE, INSERT, or DELETE operation on a row (by a call to one of the
Update methods) is about to start.

RowUpdated

An UPDATE, INSERT, or DELETE operation on a row (by a call to one of the
Update methods) is complete.

FillError

An error has occurred during a Fill operation. Inherited from
DBDataAdapter.

How Database Procedures Are Called

The Ingres .NET Data Provider supports calling Ingres database procedures.
Input, output, and return values can be passed to and from the execution of
the procedure on the DBMS server.

The .NET application can call database procedures in either of two
programming styles.

The first technique simply sets the IngresCommand.CommandText property to
the name of the database procedure, sets the IngresCommand.CommandType
to CommandType.StoredProcedure, optionally sets
IngresCommand.Parameters with a collection of parameters, and executes the
command.

The second technique uses the “{call …}” escape sequence syntax that is
commonly used in the ODBC and JDBC APIs. The syntax supported is:

{ [? =] CALL [schemaname.]procedurename [([parameters, ...])]

 parameters := param | param, parameters
 param := [parametername =] [value]
 value := ? | literal | SESSION.tablename
 literal := numeric_literal | string_literal | hex_string

328 Connectivity Guide

How Database Procedures Are Called

Zero or more parameters can be passed to the procedure. In its
IngresParameter.Direction property, a parameter can have a
ParameterDirection of Input, InputOutput, Output, or ReturnValue.

Ingres Global Temporary Table (GTT) procedure parameters are specified by
providing a parameter value in the form of SESSION.tablename. In this
parameter, tablename is the name of the GTT, and the keyword SESSION.
identifies the parameter as a GTT parameter.

When using the CALL syntax, parameters can be named or unnamed. Named
parameters specify a parametername= qualifier and can be specified in any
order in the CALL syntax. Unnamed (or positional) parameters must be
specified in the same order in the CALL syntax as the parameters defined in
the CREATE PROCEDURE declaration. It is not permitted to have a mix of
named and unnamed parameters in the CALL statement.

Use of named parameters is encouraged. If parameter names are not provided
in the call syntax, the Ingres .NET Data Provider must query the database
catalog to assign names to the parameters based on the declared order of the
procedure parameters. Using named parameters eliminates this extra query of
the catalog and improves performance.

Ingres database procedures permit the use of the transaction statements
COMMIT and ROLLBACK. The use of these statements, however, is highly
discouraged due to the potential for conflict in the transaction processing state
between the .NET client and DBMS Server sides of the session. Including these
statements in a procedure called by the data provider can result in the
unintentional commit or rollback of work done prior to procedure execution. It
is also possible that a change in transaction state during procedure execution
can be misinterpreted as a transaction abort. For these reasons, applications
must make sure that no transaction is active prior to executing a database
procedure that contains COMMIT or ROLLBACK statements.

Row Producing Procedures

The result-set from Ingres row-producing database procedures can be read by
the Ingres .NET Data Provider like any other result set.

If the database procedure was defined as:

create procedure myrowproc

 result row(char(32)) as

 declare tabname char(32);

begin
 for select table_name into :tabname from iitables
 do

 return row(:tabname);

 endfor;

end;

Understanding .NET Data Provider Connectivity 329

Integration with Visual Studio

The application code fragment to read the result set might be:

IngresCommand cmd = new IngresCommand(
 "myrowproc", conn);
cmd.CommandType = CommandType.StoredProcedure;
IDataReader reader = cmd.ExecuteReader();

while (reader.Read())
{
 Console.Write(reader.GetString(0));
}

Console.WriteLine();

reader.Close();

Integration with Visual Studio

The Ingres .NET Data Provider is integrated with Visual Studio 2005 and Visual
Studio 2008.

The .NET Framework has design-time support. .NET objects, derived from
certain component objects, can exist within an application runtime
environment and in a designer environment such as Microsoft Visual Studio.

Integration with Visual Studio visual tools allows a programmer to drag-and­
drop the data provider design component onto a control. Integration also
allows the programmer to use wizards and editors to aid application
development.

The Visual Studio Toolbox contains a series of tabs (for example, Data,
Components, and Window Forms) that list objects for the Visual Studio design
environment. These objects can be dragged-and-dropped onto design surfaces
such as the Windows Form control (WinForm). This operation can trigger
wizards, designers, or simply a paint of a control on the design surface.

330 Connectivity Guide

Integration with Visual Studio

Install the Data Provider into the Toolbox

The Ingres .NET Data Provider must be installed into the Visual Studio Toolbox
before using it for the first time.

To install the data provider components into the Toolbox

1.	 Create an empty Winform application.

2.	 Right-click the Data tab of the toolbox, and select Choose Items.

The Choose Toolbox Items dialog is displayed.

3.	 Select the IngresCommand, IngresConnection, and IngresDataAdapter
components on the .NET Framework Components tab, and then click OK.

The Ingres .NET Data Provider components are installed in the Toolbox, as
shown in this example:

If the IngresCommand, IngresConnection, and IngresDataAdaper components
do not appear in the Choose Toolbox Items dialog, you can add them.

To add the Ingres .NET Data Provider components to the Choose
Toolbox Items dialog

1.	 Click Browse on the Choose Toolbox Items dialog and browse to the
directory C:\Program Files\Ingres\Ingres .NET Data Provider\v2.1.

2.	 Open the Ingres.Client dll.

The components are added.

Understanding .NET Data Provider Connectivity 331

Integration with Visual Studio

Start the Ingres Data Adapter Configuration Wizard

The Toolbox's Data tab lists the .NET data provider components that are
available during the application's design.

To start the Ingres Data Adapter Configuration Wizard

1.	 Drag the IngresDataAdapter component from the list on the Toolbox's Data
tab onto the Windows Form design surface (“Form1”).

The welcome page of the Data Adapter Configuration Wizard is displayed.

An “ingresDataAdapter1” component and its icon are added to the Visual
Studio designer component tray.

2.	 Click Cancel on the welcome page.

Only the IngresDataAdapter component is created.

332 	Connectivity Guide

Integration with Visual Studio

Configure a Connection

Ingres Data Adapter Configuration Wizard assists you in specifying the design
properties of the ingresDataAdapter1 component, including its connection
string definition.

A connection string is a collection of information that identifies the target
server machine and database to connect to, the permissions of the user who is
connecting, and the parameters that define connection pooling and security.
You must configure a connection string before connecting to a database using
a .NET application.

To configure a connection string

1.	 Click Next in the Data Adapter Configuration Wizard welcome screen.

The Connection String Editor dialog is displayed.

2.	 Enter the required information. For details, see Connection String Editor
(see page 334).

Click OK.

The Connection string is created.

Understanding .NET Data Provider Connectivity 333

Integration with Visual Studio

Connection String Editor (Data Adapter Configuration Wizard)

The Connection String Editor of the Ingres Data Adapter Configuration Wizard
has the following tabs:

Connection Tab

Data Access Server

Identifies the name of the Data Access Server that services .NET
application requests for the target DBMS Server.

Port

Identifies the port number on the host server machine that the Data
Access Server is listening to.

Default: II7

Database

Specifies the name of the target database that the application will
connect to by default.

User ID

Specifies the name of the authorized user that is connecting to the
DBMS Server.

Password

Specifies the password associated with the specified User ID for
connecting to the DBMS Server.

Advanced Tab

Timeout

Defines the number of seconds after which an attempted connection
will abort if it cannot be established.

Default: 15

Enable Connection Pooling

Enables or disables connection pooling.

Default: Connection pooling is enabled

Return password text in Connection.ConnectionString property

Determines whether password information from the connection string
is returned in a get of the ConnectionString property.

Default: Password information is not returned

Role ID

Specifies the role identifier that has associated privileges for the role.

334 Connectivity Guide

Integration with Visual Studio

Role Password

Specifies the password associated with the specified Role ID.

DBMS User

Specifies the user name associated with the DBMS session (equivalent
to the –u flag).

DBMS Password

Specifies the DBMS password of the user (equivalent to the–P flag).

Group ID

Specifies the group identifier that has associated privileges for a group
of use.

Understanding .NET Data Provider Connectivity 335

Integration with Visual Studio

Design a Query Using the Query Builder

The Ingres .NET Data Provider uses SQL statements to retrieve and update
data in Ingres databases. In the Data Adapter Configuration Wizard, you can
enter your SQL command or use the Query Builder tool to generate the
SELECT statement.

To design a query using the Query Builder

1.	 Click Query Builder to develop your SELECT statement.

The Add Table dialog opens.

2.	 Click User Tables or All Tables.

A list of available tables is displayed.

3.	 Choose your table from the list, and then click Add, Close.

Ingres Query Designer opens.

336 	Connectivity Guide

Integration with Visual Studio

The Ingres Query Designer has three horizontal panels:

The top panel

Consists of tab pages, one for each table reference in the FROM clause
of the query. Each tab page contains a list of check boxes for each
column defined in the table. The columns are listed as they are written
in the table's catalog definition.

Check or uncheck each column to add or remove the column reference
from the SELECT statement.

The middle panel

Is a grid that lists the column names and or expressions in the SELECT
statement's column reference list. It provides a convenient tabular
format for entering the column references.

The bottom panel

Displays the query text as it is being built. The query text can be
directly edited and is automatically formatted for readability.

4.	 Enter column references you want to add to your query into any one of the
three panels.

The other two panels are automatically updated.

5.	 Click OK.

The query builder returns to the Ingres Data Adapter Wizard and displays
the generated SELECT statement.

6.	 Click Finish.

The Ingres Data Adapter Wizard is closed.

Understanding .NET Data Provider Connectivity 337

Integration with Visual Studio

Server Explorer Integration

The Ingres .NET Data Provider is integrated with the Visual Studio Server
Explorer and Data Sources tabs.

A Data Connection definition for Ingres can be defined in the Server Explorer.
This Data Connection definition can subsequently be used by other wizards and
designers in Visual Studio.

338 Connectivity Guide

Integration with Visual Studio

The Data Connection definition can also be used to examine the metadata
information of tables and views in the Ingres connection.

Note: The Visual Studio integration does not currently support database
procedures.

Understanding .NET Data Provider Connectivity 339

Application Configuration File—Troubleshoot Applications

Application Configuration File—Troubleshoot Applications

The Ingres .NET Data Provider offers a basic trace facility to assist the
application developer in identifying a sequence of data provider method calls
that may be called incorrectly by an application program. The developer can
create a .NET application configuration file that contains keys for Ingres.trace.

For example, you can create a file called myApplication.exe.config in the same
directory as the myApplication.exe executable. The myApplication.exe.config
text file contains the following:

<?xml version="1.0" encoding = "utf-8" ?>
<configuration>

<appSettings>
 <add key="Ingres.trace.log" value="C:\temp\Ingres.trace.log" />
 <add key="Ingres.trace.timestamp" value="true" />
 <add key="Ingres.trace.drv" value="2" />

</appSettings>
</configuration>

The value= key controls the level of tracing that is produced. Possible key
values are as follows:

0 - no tracing (default)

1 - Basic function name detail

2 - Internal connection and messaging detail

3 - Internal state detail

4 - Internal status, length, and count detail

340 Connectivity Guide

Appendix A: TCP/IP Protocol

This section contains the following topics:

Listen Address Format (see page 341)

Network Address Format (see page 342)

Connection Data Entry Information (see page 343)

This appendix describes the format of a listen address when the protocol
between two machines is TCP/IP. It also gives you the protocol- and platform-
specific information to set up connection data entries.

Listen Address Format
A listen address is a unique identifier used for interprocess communications. A
Communications Server has two kinds of listen addresses. It uses one to
receive messages from local processes and the other to receive messages from
remote Communications Servers.

This section describes the format of the listen address used to receive
messages from remote processes when the network protocol is TCP/IP.

Note: To view or change your instance’s listen addresses, use the
Configuration-By-Forms (cbf) utility or Configuration Manager (vcbf).

TCP/IP Protocol 341

Network Address Format

When you install Ingres Net on a machine that is using the TCP/IP protocol,
the listen address has two possible formats, as follows:

ax[n]

or

ppppp

where:

a

Is an alphabetic character (case is not significant)

x

Is an alphabetic character or a decimal digit (0-9)

n

Is a numeric digit from 0 - 7, inclusive

p

Is a numeric digit. The range depends on your operating system. For
specific details, see your operating system documentation.

The format ax[n] is the default format, where ax is the installation ID (found in
II_INSTALLATION) and n = 0. The digit n is incremented by 1 for each
successive Communications Server started in an installation. For example, if
the installation has three Communications Servers using the default format for
their listen addresses, the addresses are ax0, ax1, and ax2.

Network Address Format

The network address in a TCP/IP environment has the following format:

host_name | ip_address

where:

host_name

Is the name of the remote node in character form

ip_address

Is the internet address of the remote node in the following format:

For IPv4: d.d.d.d (For example: 123.45.67.89) dotted decimal

For IPv6: x:x:x:x:x:x:x:x (For example: fe80::208:dff:fe7c:fecd%3)

colon-hexadecimal

342 Connectivity Guide

Connection Data Entry Information

Connection Data Entry Information

Windows

Protocol: tcp_ip or wintcp

Network Address: See Network Address Format (see page 342).

Listen Address: See Listen Address Format (see page 341).

UNIX

Protocol: tcp_ip

Network Address: See Network Address Format (see page 342).

Listen Address: See Listen Address Format (see page 341).

VMS

Protocol: tcp_wol | tcp_dec

� Use tcp_wol if the protocol between the two machines is Wollongong
TCP/IP or Multinet TCP/IP when running in Wollongong emulation.

� Use tcp_dec if the protocol between the two machines is TCP/IP Services
for OpenVMS or Multinet TCP/IP when running in TCP/IP Services
emulation.

Network Address: See Network Address Format (see page 342).

Listen Address: See Listen Address Format (see page 341).

TCP/IP Protocol 343

Connection Data Entry Information

MVS

When you install Ingres Net on an MVS machine using the TCP/IP protocol, the
listen address is stored in the IGWFPSVR macro:

INSTALL = xx
TYPE = tcp_ibm | tcp_knet | tcp_sns
PORT = ax[n] | ppppp

where:

xx

Is the installation ID

tcp_ibm

Is the Ingres keyword indicating the IBM TCP/IP protocol

tcp_knet

Is the Ingres keyword indicating the KNET TCP/IP protocol

tcp_sns

Is the TCP/IP protocol for SNS TCP/IP

ax[n] ppppp

Is the listen address

Connection Data Entry Information:

Protocol: tcp_ibm | tcp_knet

Network Address: See Network Address Format (see page 342).

Listen Address: See Listen Address Format (see page 341).

344 Connectivity Guide

Appendix B: SNA LU0 Protocol

This section contains the following topics:

Listen Address Format (see page 345)

This appendix describes the format of a listen address when the protocol
between two machines is SNA LU0. It also gives you the protocol- and
platform-specific information to set up connection data entries.

Listen Address Format
A listen address is a unique identifier used for interprocess communications. A
Communications Server has two kinds of listen addresses. It uses one to
receive messages from local processes and the other to receive messages from
remote Communications Servers.

This section describes the format of the listen address used to receive
messages from remote processes when the network protocol is SNA LU0.

Note: To view or change your instance’s listen addresses, use the
Configuration-By-Forms (cbf) utility or Configuration Manager (vcbf).

MVS

When you install Ingres Net on an MVS machine, the listen address is
determined by the IGWFPSVR macro:

INSTALL = xx

TYPE=sna_lu0

ACB=acb_name

where:

xx

Is the installation ID, found in II_INSTALLATION

acb_name

Is the ACB name defined for the Ingres Net application using the VTAM
APPL statement

In the APPL statement, you can specify the ACB name explicitly using the
ACBNAME parameter, or implicitly by omitting ACBNAME. If you omit
ACBNAME, the label on the APPL statement is used as the ACB name.

SNA LU0 Protocol 345

Listen Address Format

Connection Data Entry Information:

Protocol: sna_lu0

Network address: This parameter is ignored by MVS. Enter x.

Listen Address: lu_name

where:

lu_name

Is the name of the LU that corresponds to the listen address specified on
the server node. This name does not necessarily have to match the name
specified as the configured listen address on the server instance.

If the server instance is on an MVS system, the lu_name is the application
minor node name for the target Ingres Net installation. The application
minor node name is usually, but not always, the ACB name.

346 Connectivity Guide

Appendix C: SNA LU62 Protocol

This section contains the following topics:

Listen Address Format (see page 347)

This appendix describes the format of a listen address when the protocol
between two machines is SNA LU62. It also gives you the protocol- and
platform-specific information to set up connection data entries.

Listen Address Format
A listen address is a unique identifier used for interprocess communications. A
Communications Server has two kinds of listen addresses. It uses one to
receive messages from local processes and the other to receive messages from
remote Communications Servers.

This section describes the format of the listen address used to receive
messages from remote processes when the network protocol is SNA LU62.

For the SNA LU62 protocol, the format of the listen address is platform
specific.

Note: To view or change your instance’s listen addresses, use the
Configuration-By-Forms (cbf) utility or Configuration Manager (vcbf).

SNA LU62 Protocol 347

Listen Address Format

MVS

When you install Ingres Net on an MVS system, the listen address is
determined by the IGWFPSVR macro:

INSTALL=xx

 TYPE=sna_lu62

 ACB=acb_name

where:

xx

Is the installation ID, found in II_INSTALLATION

acb_name

Is the ACB name defined for the Net LU6.2 application in the VTAM APPL
statement

In the APPL statement, you can specify the ACB name by using the
ACBNAME parameter or by omitting ACBNAME. If you omit ACBNAME, the
label on the APPL statement is used as the ACB name.

348 Connectivity Guide

Listen Address Format

Connection Data Entry Information:

Protocol: sna_lu62

Network address: lu_name[.mode_name]

where:

lu_name

Is the name of the LU on the remote instance that supports the Net
SNA_LU62 protocol driver.

If the remote instance is on an MVS system, the lu_name is the minor
node name for the target Net LU6.2 application. This is usually, but not
always, the ACB name.

If the remote instance is on a Sun-4 system, the lu_name is any LU
defined for the SunLink SNA Peer-to-Peer Gateway.

Default: None.

mode_name

Is the SNA logon mode name to be used for sessions with the remote
instance.

Default: The mode name specified in the LOGMODE parameter of the
IGWFPSVR macro.

Listen Address: tp_name

where:

tp_name

Is the transaction program name that is used by the Net SNA_LU62
protocol driver on the server node. If the remote instance is on an MVS
system, there is no transaction program name. Enter “x”. For all other
systems, the tp_name must be the transaction program name specified in
the remote instance. This is generally found in the remote instance’s listen
address.

SNA LU62 Protocol 349

Listen Address Format

Solaris

When you install Ingres Net on a Solaris system that is using the SNA LU62
protocol, the listen address has the format:

gateway_name.tp_name

where:

gateway_name

Is the name of the SunLink SNA Peer-to-Peer Gateway

This name must match a gateway_name contained in the /etc/appcs file or
NIS database, as described in the SunLink SNA Peer-to-Peer
Administrator's Guide.

tp_name

Is the transaction program name used by the listening process. The name
is an arbitrary string of up to 16 characters.

The rate at which Ingres Net polls for incoming connection requests can be
controlled through the Ingres configuration variable (in config.dat file)
ii.<host>.gcc.*.sna_lu62.poll (xx is the installation ID.) This specifies the
polling rate in milliseconds. The polling rate defaults to 4000 (4 seconds);
values smaller than this are not recommended. If there are no incoming
connection requests, you can inhibit polling by setting the environment
variable to the special value of -1.

350 Connectivity Guide

Listen Address Format

Connection Data Entry Information:

Protocol: sna_lu62

Network address: session_name

where:

session_name

Is the unique session name defined to the SunLink SNA Peer-to-Peer
Gateway for sessions between the Sun-4 client and the remote server
instance. Default: None

Listen Address: tp_name

where:

tp_name

Is the transaction program name that is used by the Net SNA_LU62
protocol driver on the server node. If the remote instance is on an MVS
system, there is no transaction program name. Enter x. For all other
systems, the tp_name must match the transaction program name specified
in the remote server instance. This is generally found in the remote server
instance’s listen address for SNA_LU62.

HP-UX

When you install Ingres Net on an HP-UX system using the HP-UX SNAplus
product, the listen address has the format:

tp_name

where:

tp_name

Is the transaction program name used by the listening process.

Unless you inhibit polling for incoming connections, the name must be
configured as an Invocable TP name in the SNAplusAPI configuration file.
For more information, see the appendix Netu Procedures.

The rate at which Ingres Net polls for incoming connection requests can be
controlled through the configuration variable (in config.dat file)
ii.<host>.gcc.*.sna_lu62.poll (xx is the installation ID.) This specifies the
polling rate in milliseconds. The polling rate defaults to 4000 (4 seconds);
values smaller than this are not recommended. If there are no incoming
connection requests, you can inhibit polling by setting the environment
variable to the special value of -1.

SNA LU62 Protocol 351

Listen Address Format

Connection Data Entry Information:

Protocol: sna_lu62

Network address: [lu_alias].plu_alias[.mode_name]

where:

lu_alias

Is the alias for the Local LU to be used by the connection.

The alias must match the name of a Local LU alias established during
configuration. If an LU from the pool of default Local LUs is to be used, the
alias is omitted.

plu_alias

Is the alias by which the Partner LU for the remote instance is known.

The alias must match the name of a Remote LU alias established during
configuration. Additionally, the alias must have been configured as a
Partner LU for the specified local LU.

mode_name

Is the name of a set of networking characteristics defined during

configuration.

The name must match the name of a mode assigned during configuration
with the pair of the specified Local LU and Partner LU. If a blank mode
name has been configured, the name (and the preceding ".") is omitted.

Listen Address: tp_name

where:

tp_name

Is the transaction program name that is used by the Net SNA_LU62
protocol driver on the server node. If the remote instance is on an MVS
system, there is no transaction program name. Enter x. For all other
systems, the tp_name must be the transaction program name specified in
the remote instance. This is generally found in the remote instance’s listen
address.

352 Connectivity Guide

Listen Address Format

RS/6000

When you install Ingres Net on a RS/6000 that is using the SNA LU62 protocol,
the listen address has the format:

[/pathname/] connection_profile.tp_profile.tp_name

where:

pathname

Is the name of the SNA device driver.

Default: dev/sna

connection_profile tp_profile

Refers to the names of configuration profiles that must be defined before
running Ingres Net.

For information on how to define these profiles, see Using AIX SNA
Services/6000 and AIX SNA Services/6000 Reference.

The AIX SNA Services/6000 Configuration Profiles appendix contains
samples of connection and tp profiles suitable for Ingres Net.

tp_name

Is the transaction program name used by the listening process

Connection Data Entry Information:

Protocol: sna_lu62

Network address: connection_profile

The connection_profile is a profile defined by AIX SNA Services/6000
configuration utilities for sessions between the AIX client and the remote
instance. There is no default for the connection_profile.

Listen Address: tp_name

where:

tp_name

Is the transaction program name that is used by the Net SNA_LU62
protocol driver on the server node. If the remote instance is on an MVS
system, there is no transaction program name. Enter x. For all other
systems, the tp_name must be the transaction program name specified in
the remote instance. This is generally found in the remote instance’s listen
address.

SNA LU62 Protocol 353

Appendix D: SPX/IPX Protocol

This section contains the following topics:

Listen Address Format (see page 355)

This appendix describes the format of a listen address when the protocol
between two machines is Novell Netware SPX/IPX. It also gives you the
protocol- and platform-specific information to set up connection data entries.

Listen Address Format
A listen address is a unique identifier used for interprocess communications. A
Communications Server has two kinds of listen addresses. It uses one to
receive messages from local processes and the other to receive messages from
remote Communications Servers.

This section describes the format of the listen address used to receive
messages from remote processes when the network protocol is SPX/IPX.

Note: To view or change your instance’s listen addresses, use the
Configuration-By-Forms (cbf) utility or Configuration Manager (vcbf).

SPX/IPX Protocol 355

Listen Address Format

Windows

An SPX/IPX listen address has the following format:

xxxxxxxx

where:

xxxxxxxx

Is a hexadecimal number from 00000000 to ffffffff

The listen address is the SPX/IPX "net number," an 8-digit hexadecimal
number. Both the net address and the 12-digit node number for a server
are repeated in the errlog.log file when the Communications Server starts.

Connection Data Entry Information:

Protocol: nvlspx

Network address: node

where:

node

Is a 12-digit hexadecimal SPX node number

356 Connectivity Guide

Listen Address Format

UNIX and VMS

SPX treats listen addresses as a 16-bit quantity, normally represented in
hexadecimal as 0000 - FFFF. As a convenience, the Ingres SPX/IPX protocol
driver recognizes an installation ID (followed by an optional digit) as a listen
address and translates that into a 16-bit value in the range 4000 - 4FFF, which
Novell has reserved for dynamically allocated listen addresses.

An SPX/IPX listen address has two possible formats:

ab[n] or xxxx

where:

a

An alphabetic character (case is not significant)

b

An alphabetic character or a decimal digit (0-9)

n

The 0 or 1 digit

xxxx

A hexadecimal number from 0000 to ffff

The format ab[n] is the default format, where ab is the installation ID (found in
II_INSTALLATION) and n = 0. The digit n is incremented by 1 for each
successive Communications server started in an installation. For example, if
the installation has two Communications Servers using the default format for
their listen addresses, the addresses are ab0 and ab1. Only two
Communications Servers using the default listen addresses for SPX/IPX can be
started in a single Ingres instance.

To accept a connection from Ingres running on a PC, the listen address must
be set to 6582. The PC currently does not support selecting alternate listen
addresses.

SPX/IPX Protocol 357

Listen Address Format

Connection Data Entry Information:

Protocol: spx

Network address: network.node

where:

network

Is a hexadecimal SPX network number

node

Is a hexadecimal SPX node number

The Novell utility getlan reports the local network and node numbers for the
internal network and all external network connections. Because most hosts
have only a single external network connection, getlan normally reports two
networks. The internal network is always the first in the list (Lan number 0),
and it is the address Ingres Net requires.

For example, if getlan reports:

LAN Network Node Mux ID State Stream

0 119D9D21 000000000001 00000000 UNBOUND OK

1 00000900 080020101FC7 00000059 IDLE OK

The network address is:

119D9D21.1

Leading zeroes are not important.

Listen Address: ab[n] | xxxx

358 Connectivity Guide

Appendix E: DECnet Protocol

This section contains the following topics:

Listen Address Format (see page 359)

This appendix describes the format of a listen address when the protocol
between two machines is DECnet. It also gives you the protocol- and platform-
specific information to set up connection data entries.

Listen Address Format
A listen address is a unique identifier used for interprocess communications. A
Communications Server has two kinds of listen addresses. It uses one to
receive messages from local processes and the other to receive messages from
remote Communications Servers.

This section describes the format of the listen address used to receive
messages from remote processes when the network protocol is DECnet.

Note: To view or change your instance’s listen addresses, use the
Configuration-By-Forms (cbf) utility or Configuration Manager (vcbf).

DECnet Protocol 359

Listen Address Format

VMS

A DECnet listen address is a DECnet object and has the format:

II_GCC[xx]_nnnnn

where :

xx

The installation ID, found in II_INSTALLATION.

The installation ID is only present for group level installations.

nnnnn

A five-digit number that you specify when you install Net. The default for
this number is 0.

The default listen address is II_GCC[xx]_0.

In netutil, the network address prompt is in DECnet node name in character
form. You can specify the node address and name in the format
area-number.node_number (for example: 1.234) instead of the DECnet node
name. If you are running DECnet-Plus, you can specify the format
namespace:.directory_path.node_object (for example, local:.mynode).
DECnet-Plus users can specify node names larger than six characters.

Connection Data Entry Information:

Protocol: decnet

Network address: node_name

The node_name is the DECnet node name in character form.

Listen address: II_GCC[xx]_nnnnn

360 Connectivity Guide

Appendix F: LAN Manager Protocol

This section contains the following topics:

LAN Manager Listen Address—Enable Communications (see page 361)

This appendix describes the format of a listen address when the protocol
between two machines is Microsoft LAN Manager. It also gives you the
protocol- and platform-specific information to set up connection data entries.

LAN Manager Listen Address—Enable Communications
A listen address is a unique identifier used for interprocess communications. A
Communications Server has two kinds of listen addresses. It uses one to
receive messages from local processes and the other to receive messages from
remote Communications Servers.

This section describes the format of the listen address used to receive
messages from remote processes when the network protocol is LAN Manager.

A LAN Manager listen address is the installation ID (found in
II_INSTALLATION).

Note: To view or change your instance’s listen addresses, use the
Configuration-By-Forms (cbf) utility or Configuration Manager (vcbf).

Connection Data Entry Information:

Protocol: lanman

Network address: computername

where:

computername

Is the Computer Name assigned during installation of Windows or through
the Network applet in the Control Panel. The current Computer Name can
be viewed along with the name of the current logged-in user at the top of
the Program Manager window. It can also be viewed in the operating
system environment variable COMPUTERNAME by typing echo
%COMPUTERNAME%.

Listen address: installation ID

LAN Manager Protocol 361

Appendix G: SunLink Gateway
Configuration Files

This section contains the following topics:

SunLink Gateway Configuration File (see page 363)

Solaris Independent LUs (see page 364)

Solaris Dependent LUs (see page 366)

SunOS (or Sun-4) Independent LUs (see page 368)

SunOS (or Sun-4) Dependent LUs (see page 370)

Ingres Net supports communications over both dependent and independent
Logical Units (LUs). This appendix contains sample configuration file excerpts
that show how to configure both types of LUs. For information about setting up
the configuration files, see the SunLink SNA Peer-to-Peer System
Administrator’s Guide.

SunLink Gateway Configuration File

The gateway configuration file is named /etc/appcs and must be present on
the SunLink Gateway machine as well as on each Sun Solaris or Sun-4
machine running Net providing SNA LU62 support. It is not necessary to have
Net installed on the same machine as the SunLink Gateway, but it must be
connected and accessible through TCP/IP.

The following entry defines the SunLink Gateway to other Sun machines that
require access to it:

ws406sgw0 ws406s:ws406sgw0

where:

ws406sgw0

Is the SunLink Gateway name.

ws406s

Is the machine name on which the SunLink Gateway is running.

SunLink Gateway Configuration Files 363

Solaris Independent LUs

Solaris Independent LUs

The following example is for Solaris independent LUs. This file is usually in the
/opt/SUNWconn/snap2p/p2p_etc/config directory.

:DEFINE_PU:
pu_name
contents_id

:DEFINE_NODE:
pu_name

:DEFINE_LOCAL_LU:
fql_lu_name

lu_local_address
lu_name

lu_session_limit

:DEFINE_PARTNER_LU:
fql plu name
u plu name
parallel_session
lu_is_dependent
initiate_type
security_acceptance

:DEFINE_MODE:
mode_name
unique_session_name

snd_pac_window
rcv_pac_window
snd_max_ru_size
rcv_max_ru_size
sync_level
sess_reinit
auto_activate_limit
session_limit
min_conwinner_limit
min_conloser_limit

 = S1MVS, network_name = RTIBM
 = 01234567

 = S1MVS, node_id = NODE0

 = S1115001 # An LU name in VTAM/NCP gen

 = 1
 = S1115001 # An LU name in VTAM/NCP gen

 = 16

 = A04IS1G2 # VTAM Applid for Ingres
 = A04IS1G2 # Enterprise Access to DB2
 = yes # Must set to this value
 = no # Must set to this value
 = INITIATE_ONLY
 NONE

 = INGLU62
 = s1

 = 0
 = 0
 = 4096
 = 4096
 = none

 # This is the name specified
 # as the Node Address
 # in NETU entries
 # Recommended
 # Recommended
 # Recommended
 # Recommended

 = INIT_OPERATOR
 = 0
 = 64 # Allows for 64 parallel sessions
 = 32
 = 32

364 Connectivity Guide

Solaris Independent LUs

The following example is for a Synchronous Data Link Control (SDLC)
connection through the serial port:

:DEFINE_DLC:
dlc_name = XLINK000
dlc_driver_name = /dev/sdlc
port_driver_name = zsh0
dlc_type = sdlc
npr_timeout = 240
pause_timeout = 2

idle_timeout = 1400 # for maxdata = 1033
& line speed = 9600

maxdata = 1033 # [frm_size - 8]
retries = 32
window_size = 7
sdlc_addr = 0x1
full_duplex = yes
nrzi = no
multipoint = yes
switched_line = no

block_number = 056 # MUST be first of
 # xid parameters

id_number = E2E43
role = secondary
tx_rx_capability = simultaneous
max_rcv_iframe_size = 7
include_control_point = yes # xid control vector
include_link_station_name = yes # xid control vector

:DEFINE_ALS:
dlc_name = XLINK000
pu_name = S1MVS
als_name = XXALS000

SunLink Gateway Configuration Files 365

Solaris Dependent LUs

Solaris Dependent LUs

The following example is for Solaris dependent LUs. This file is usually in the
opt/SUNWconn/snap2p/p2_etc/config directory.

:DEFINE_PU:
pu_name = S1MVS, network_name = RTIBM
contents_id = 01234567

:DEFINE_NODE:
pu_name = S1MVS, node_id = NODE0

:DEFINE_LOCAL_LU:
fql_lu_name = RTIBM.S1115001 # An LU name in VTAM/NCP gen
lu_local_address = 1
lu_name = S1115001 # An LU name in VTAM/NCP gen
lu_session_limit = 1

:DEFINE_PARTNER_LU:
fql_plu_name = RTIBM.A04IS1G2 # VTAM Applid for

 # Ingres
 # Enterprise Access
 # to DB2

parallel_session = no # Must set to this value
lu_is_dependent = yes # Must set to this value
initiate_type = INITIATE_ONLY
security_acceptance = NONE

:DEFINE_MODE:
mode_name = INGLU62
unique_session_name = s1 # This is the name specified

 # as the Node Address in
 # NETU entries

snd_pac_window = 0 # Recommended
rcv_pac_window = 0 # Recommended
snd_max_ru_size = 4096 # Recommended
rcv_max_ru_size = 4096 # Recommended
sync_level = none
sess_reinit = INIT_PLU_OR_SLU
auto_activate_limit 0
session_limit = 1 # Must set to this value
min_conwinner_limit = 1
min_conloser_limit = 0

366 Connectivity Guide

Solaris Dependent LUs

The following example is for an SDLC connection through the serial port:

:DEFINE_DLC:
dlc_name = XLINK000
device_driver_name = /dev/sdlc
port_driver_name = zsh0
dlc_type = sdlc
npr_timeout = 240
pause_timeout = 2
idle_timeout = 1400 # for maxdata = 1033

& line speed = 9600
maxdata = 1033 # [frm_size - 8]
retries = 32
window_size = 7
sdlc_addr = 0x1
full_duplex = yes
nrzi = no
multipoint = yes
switched_line = no
block_number = 056 # MUST be first of xid

parameters
id_number = E2E43
role = secondary
tx_rx_capability = simultaneous
max_rcv_iframe_size = 7
include_control_point = yes # xid control vector
include_link_station_name = yes # xid control vector

:DEFINE_ALS:
dlc_name = XLINK000
pu_name = S1MVS
als_name = XXALS000

SunLink Gateway Configuration Files 367

SunOS (or Sun-4) Independent LUs

SunOS (or Sun-4) Independent LUs

The following example is for SunOS (or Sun-4) independent LUs. This file is
usually in the opt/SUNWconn/snap2p/p2p_etc/config directory.

:DEFINE_PU:
pu_name
contents_id

:DEFINE_NODE:
pu_name

:DEFINE_LOCAL_LU:
fql_lu_name

lu_local_address
lu_name
lu_session_limit

:DEFINE_PARTNER_LU:
fql_plu_name

u_plu_name
parallel_session
cnos_supported
remote_is_sscp
initiate_type
security_acceptance

:DEFINE_MODE:
mode_name
unique_session_name

snd_pac_window
rcv_pac_window
snd_max_ru_size
rcv_max_ru_size
sync_level
sess_reinit
auto_activate_limit
session_limit

min_conwinner_limit
min_conloser_limit

 = S1MVS, network_name = RTIBM
 = 01234567

 = S1MVS, node_id = NODE0

 = S1115001

 = 1
 = S1115001
 = 16

 = A04IS1G2

 = A04IS1G2
 = 1
 = 1
 = 0
 = INITIATE_ONLY
 = NONE

 = INGLU62
 = s1

 = 0
 = 0
 = 4096
 = 4096
 = 0
 = INIT_OPERATOR
 = 0
 = 64

 = 32
 = 32

An LU name in VTAM/NCP gen

An LU name in VTAM/NCP gen

VTAM Applid for
Ingres
Enterprise Access to DB2
Must set to this value
Must set to this value
Must set to this value

This is the name specified
as the Node Address in
NETU entries
Recommended
Recommended
Recommended
Recommended

Allows for 64
parallel sessions

368 Connectivity Guide

SunOS (or Sun-4) Independent LUs

The following example is for an SDLC connection through the serial port:

:DEFINE_DLC:
dlc_name
device_driver_name
dlc_type
npr_timeout
pause_timeout
idle_timeout

frm_size
retries
window_size
rxaddr
txaddr
full_duplex
nrzi
multipoint
addr.search
switched_line
send_reject
rcv_reject
block_number

id_number
abm_support
max_btu_rev
sim_rlm
role
tx_rx_capability
max_btu_rcv
max_rcv_iframe_siz

 = XLINK000
 = /dev/ifd0
 = 0
 = 240
 = 2
 = 400

 = 1033
 = 32
 = 7
 = 0x1
 = 0x1
 = yes
 = no
 = yes
 = no
 = no
 = no
 = no
 = 056

 = E2E43
 = no
 = 265
 = no
 = secondary
 = simultaneous
 = 265
 = 7

include_control_point = yes
include_link_station_name = yes

 # for maxdata = 1033
 # & line speed = 9600
 # [frm_size - 8]

 # MUST be first of xid
 # parameters

 # xid control vector
 # xid control vector

product_set_id = 161101130011f9f4f0f4c3f1f0f1f0f0f0f2f4f1f6f4

:DEFINE_ALS:
dlc_name = XLINK000
pu_name = S1MVS
als_name = XXALS000
remote_addr = 0x10

SunLink Gateway Configuration Files 369

SunOS (or Sun-4) Dependent LUs

SunOS (or Sun-4) Dependent LUs

The following example is for SunOS (or Sun-4) dependent LUs. This file is
usually in the opt/SUNWconn/snap2p/p2_etc/config directory.

:DEFINE_PU:
pu_name = S1MVS, network_name = RTIBM
contents_id = 01234567

:DEFINE_NODE:
pu_name = S1MVS, node_id = NODE0

:DEFINE_LOCAL_LU:
fql_lu_name = RTIBM.S1115001 # An LU name in VTAM/NCP gen
lu_local_address = 1
lu_name = S1115001 # An LU name in VTAM/NCP gen
lu_session_limit = 1

:DEFINE_PARTNER_LU:
fql_plu_name = RTIBM.A04IS1G2 # VTAM Applid for

Ingres
Enterprise Access to DB2

parallel_session = 0 # Must set to this value
cnos_supported = 0 # Must set to this value
remote_is_sscp = 1 # Must set to this value
initiate_type = INITIATE_ONLY
security_acceptance = NONE

:DEFINE_MODE:
mode_name = INGLU62
unique_session_name = s1 # This is the name

specified
as the Node Address in
NETU entries

snd_pac_window = 0 # Recommended
rcv_pac_window = 0 # Recommended
snd_max_ru_size = 4096 # Recommended
rcv_max_ru_size = 4096 # Recommended
sync_level = 0
sess_reinit = INIT_PLU_OR_SLU
auto_activate_limit = 0
session_limit = 1 # Must set to this value
min_conwinner_limit = 1
min_conloser_limit = 0

370 Connectivity Guide

SunOS (or Sun-4) Dependent LUs

The following example is for an SDLC connection through the serial port:

:DEFINE_DLC:
dlc_name = XLINK000
device_driver_name = /dev/ifd0
dlc_type = 0
npr_timeout = 240
pause_timeout = 2

idle_timeout = 400

frm_size = 1033
retries = 32
window_size = 7
rxaddr = 0x1
txaddr = 0x1
full_duplex = yes
nrzi = no
multipoint = yes
addr.search = no
switched_line = no
send_reject = no
rcv_reject = no
block_number = 056

id_number = E2E43
abm_support = no
max_btu_rcv = 265
sim_rlm = no
role = secondary
tx_rx_capability = simultaneous
max_btu_rcv = 265
max_rcv_iframe_size = 7
include_control_point = yes
include_link_station_name = yes

for maxdata = 1033 & line
speed = 9600
[frm_size - 8]

MUST be first of xid
parameters

xid control vector
xid control vector

product_set_id = 161101130011f9f4f0f4c3f1f0f1f0f0f0f2f4f1f6f4

:DEFINE_ALS:
dlc_name = XLINK000
pu_name = S1MVS
als_name = XXALS000
remote_addr = 0x10

SunLink Gateway Configuration Files 371

Appendix H: AIX SNA Services/6000
Configuration Profiles

This section contains the following topics:

Sample Configuration Profiles (see page 373)

AIX SNA Services/6000 configuration is done by defining a series of profiles.
For detailed information about this process, see the guides Using AIX SNA
Services/6000 and AIX SNA Services/6000 Reference. This appendix includes
information about only those aspects of configuration particular to netutil.

Sample Configuration Profiles

The following excerpts provide examples of profiles suitable for running netutil.
The format shown here is roughly the same as the output from the AIX SNA
Services/6000 exportsna command. Comments (denoted by the symbol #) are
included only for the purpose of explanation; these do not appear in the actual
configuration files.

The configuration below reflects an environment using both dependent and
independent LUs. Note that independent and dependent LUs can share the
same ATTACHMENT, TPN, and REMOTETPN profiles. However, separate
CONNECTION, LOCALLU, and MODE profiles must be provided for dependent
and independent LUs respectively.

The following samples include profiles for independent and dependent
CONNECTION, LOCALLU, and MODE LUs.

AIX SNA Services/6000 Configuration Profiles 373

Sample Configuration Profiles

CONNECTION Profile for Independent LUs

indconn_CONNECTION:
 type = CONNECTION
 profile_name = indconn #this is the name specified

as the Network Address
in netutil entries

 attachment_profile_name = rs6_attach
 local_lu_profile_name = indlu
 network_name = RTIBM #actual SNA network name
 remote_lu_name = GCVDEV1 #actual target LU name
 stop_connection_on_inactivity = no #must set to this value
 lu_type = lu6.2 #must set to this value
 interface_type = extended #must set to this value
 remote_tpn_list_name = INET
 mode_list_name = INDMODE
 node_verification = no
 inactivity_timeout_value = 0
 notify = no
 parallel_sessions = parallel #independent LUs only
 negotiate_session_limits = yes #independent LUs only
 security_accepted = none
 conversation_security_access_list_name =

CONNECTION Profile for Dependent LUs

depconn_CONNECTION:
 type = CONNECTION
 profile_name = depconn #this is the name specified

as the Network Address
in netutil entries

 attachment_profile_name = rs6_attach
 local_lu_profile_name = deplu
 network_name = RTIBM #actual SNA network name
 remote_lu_name = GCVDEV1 #actual target LU name
 stop_connection_on_inactivity = no #must set to this value
 lu_type = lu6.2 #must set to this value
 interface_type = extended #must set to this value
 remote_tpn_list_name = INET
 mode_list_name = DEPMODE
 node_verification = no
 inactivity_timeout_value = 0
 notify = no
 parallel_sessions = single #dependent LUs only
 negotiate_session_limits = no #dependent LUs only
 security_accepted = none
 conversation_security_access_list_name =

374 Connectivity Guide

Sample Configuration Profiles

LOCALLU Profile for Independent LU

indlu_LOCALLU:
 type = LOCALLU
 profile_name = indlu
 local_lu_name = S1114000 #actual local LU name
 network_name = RTIBM #actual SNA network name
 lu_type = lu6.2 #must set to this value
 independent_lu = yes #indicates independent LU
 tpn_list_name = IIGCC
 local_lu_address = 99 #ignored for independent LUs
 sscp_id = #ignored for independent LUs
 number_of_rows = 24
 number_of_columns = 80

AIX SNA Services/6000 Configuration Profiles 375

Sample Configuration Profiles

LOCALLU Profile for Dependent LU

deplu_LOCALLU:
 type = LOCALLU
 profile_name = deplu
 local_lu_name = S111400G
 network_name = RTIBM
 lu_type = lu6.2
 independent_lu = no
 tpn_list_name = IIGCC
 local_lu_address = 1
 sscp_id = 050000000001
 number_of_rows = 24
 number_of_columns = 80

inet_REMOTETPN:
 type = REMOTETPN
 profile_name = inet
 tpn_name = x

 tpn_name_hex = A7

 pip_data = no

 conversation_type = mapped

 recovery_level = no_reconnect

 sync_level = none

 tpn_name_in_hex = no

INET_REMOTETPNLIST:
 type = REMOTETPNLIST
 Listname = INET
 list_members = inet

iigcc_TPN:
 type = TPN
 profile_name = iigcc
 tpn_name = iigcc
 tpn_name_hex = 8989878383
 conversation_type = mapped
 pip_data = no
 sync_level = none
 recovery_level = no_reconnect
 full_path_to_tpn_executable = /x
 multiple_instances = yes
 user_id = 777
 server_synonym_name =
 restart_action = once
 communication_type = signals
 stdin = /dev/null
 stdout = /tmp/tpn_output
 stderr = /tmp/tpn_error
 subfields = 0
 communication_ipc_queue_key = 0
 tpn_name_in_hex = no
 security_required = none
 resource_security_access_list_name =

IIGCC_TPNLIST:
 type = TPNLIST

 #actual local LU name
 #actual SNA network name
 #must set to this value
 #indicates dependent LU

 #actual local LU address
 #actual SSCP id

#this is the name specified
 # as Listen Address
 # in netutil entries

 #must set to this value
 #must set to this value
 #must set to this value
 #must set to this value

 #must set to this value
 #must set to this value
 #must set to this value
 #must set to this value
 #ignored for Net

376 Connectivity Guide

Sample Configuration Profiles

 Listname = IIGCC
 list_members = iigcc

MODE Profile for Independent LUs

indmode_MODE:
 type = MODE
 profile_name = indmode
 mode_name = INGLU62
 maximum_number_of_sessions = 200
 minimum_contention_winners = 50
 minimum_contention_losers = 5
 receive_pacing = 3
 send_pacing = 3
 maximum_ru_size = 2816
 recovery_level = no_reconnect

INDMODE_MODELIST:
 type = MODELIST
 Listname = INDMODE
 list_members = indmode

MODE Profile for Dependent LUs
depmode_MODE:
 type = MODE
 profile_name = depmode
 mode_name = INGSLU62
 maximum_number_of_sessions = 200
 minimum_contention_winners = 50
 minimum_contention_losers = 5
 receive_pacing = 3
 send_pacing = 3
 maximum_ru_size = 2816
 recovery_level = no_reconnect

DEPMODE_MODELIST:
 type = MODELIST
 Listname = DEPMODE
 list_members = depmode

 #actual mode name

 #default
 #default
 #default
 #must set to this value

 #actual mode name

 #default
 #default
 #default
 #must set to this value

AIX SNA Services/6000 Configuration Profiles 377

Appendix I: HP-UX SNAplus Configuration

This section contains the following topics:

Sample Configuration File Excerpts (see page 379)

Connectivity supports communications over both dependent and independent
Logical Units (LUs). This appendix contains sample configuration file excerpts
(as produced by the HP-UX SNAplus configuration file print utility,
snapshowcfg) that show how to configure both types of LUs. Additionally, an
excerpt is included that illustrates the required configuration for a dynamically
loadable TP, which is required if connections incoming to HP-UX are to be
supported.

Sample Configuration File Excerpts
The following samples include excerpts for independent and dependent LUs
and for a dynamically loadable TP.

HP-UX SNAplus Configuration 379

Sample Configuration File Excerpts

Independent LUs

The following are sample excerpts for independent LUs:

 * APPC Local LU Record *

Local LU nameS1110000
Description[LU for MVS DB2 access]
Owning local node nameNODE
Network ID[RTIBM]
Network nameS1110000

Session limit64
Default LU?No
Locally usable?No
LU number0
Conversation-level security? ...No
Prevalidation ability?No
Number of remote LUs 3
Remote LU #1:
 Remote LU name GCVDEV1

 Number of modes 1

 List of mode IDs 000

**

 * APPC Mode Data Record *

Mode name INGLU62
Description [INGLU62 mode for MVS]
Owning connection name ... [CONN1]
Mode ID 000

High priority mode? Yes
Session limit 64
Auto activation limit 16
Min contention losers 32
Min contention winners ... 32
Send pacing count 0
Receive pacing count 0
Send RU size 256 (min) to 4096 (max)
Receive RU size 256 (min) to 4096 (max)

 * APPC Remote LU Record *

LU aliasGCVDEV1
Description[Remote LU for DB2 Gateway]
Network IDRTIBM
Remote LU nameC5X6ICS5

Prevalidation ability?No
Parallel sessions?Yes
Conversation-level security? ...No
Uninterpreted LU nameC5X6ICS5

380 Connectivity Guide

Sample Configuration File Excerpts

Dependent LUs

The following are sample excerpts for dependent LUs:

 * APPC Local LU Record *

Local LU nameS1110008
Description[LU for MVS DB2 access]
Owning local node nameNODE
Network ID[RTIBM]
Network nameS1110008

Session limit1
Default LU?No
Locally usable?No
LU number1
Conversation-level security? ...No
Prevalidation ability?No
Number of remote LUs1
Remote LU #1:
 Remote LU nameGCVSDEV1

 Number of modes1

 List of mode IDs003

 * APPC Mode Data Record *

Mode nameINGSLU62
Description[INGLU62 mode for MVS]
Owning connection name[CONN1]
Mode ID003

High priority mode?Yes
Session limit1
Auto activation limit0
Min contention losers0
Min contention winners1
Send pacing count0
Receive pacing count0
Send RU size256 (min) to 4096 (max)
Receive RU size256 (min) to 4096 (max)

**
 * APPC Remote LU Record *

**
LU alias GCVSDEV1
Description [Remote LU for DB2 Gateway]
Network ID RTIBM
Remote LU name C5X6ICS5

Prevalidation ability? No
Parallel sessions? No
Conversation-level security? . No
Uninterpreted LU name C5X6ICS5

HP-UX SNAplus Configuration 381

Sample Configuration File Excerpts

Dynamically Loadable TP

The following is a sample excerpt for a dynamically loadable TP to support
Connectivity connections incoming to HP-UX. Note that the executable file
specified is not used by “Queued - operator started” TPs, and that the “Receive
allocate timeout” must be set to 0 seconds to avoid the Communications
server blocking for incoming connections.

* Dynamically Loadable TP Record *

Local TP name TEST
Description [test invocable TP]
TP type APPC
Queueing scheme Queued - operator started
Conversation security? No
Accept already-verified? No
Full TP name test
Executable file [junk]

Parameters []
Environment string []
Target machine name []
Attach timeout 3600 sec
Receive allocate timeout 0 sec

382 Connectivity Guide

Appendix J: Netu Procedures

This section contains the following topics:

Netu (Deprecated) (see page 383)

Start Netu (see page 383)

Netu User Interface (see page 384)

Remote Node Definition Operations (see page 386)

Remote User Authorization Operations (see page 394)

Netu Options for Stopping the Communications Server (see page 401)

Netu (Deprecated)
Netu (Net Management Utility) was provided in Ingres 6.4 and previous
releases for establishing and maintaining remote connections. The netu utility
is replaced by the forms-based netutil utility. It is still possible, however, to
establish remote connections using netu.

Start Netu

To access netu, follow the instructions below for your operating system:

Windows: At the command prompt, change directory to

%II_SYSTEM%/ingres/sig/netu, and then type netu.

UNIX: Verify that the environment variable II_SYSTEM is set to the location of

your current Ingres instance and that $II_SYSTEM/ingres/sig/netu is in the

search path of the user who owns the installation. If not, do this now.

C shell:

set path=($path $II_SYSTEM/ingres/sig/netu)

Bourne shell:

PATH=$PATH:$II_SYSTEM/ingres/sig/netu

VMS: Enter the following at your operating system prompt:

netu:== $ii_system:[ingres.sig.netu]netu.exe

Netu Procedures 383

Netu User Interface

Netu User Interface

The netu user interface’s primary component is a menu that appears when you
start netu. The menu looks like this:

Select one of the following:
Q <Comm_Server_Id> - Quiesce Ingres/Net
S <Comm_Server_Id> - Stop Ingres/Net
N - Modify Node Entry
A - Modify Remote Authorization Entry
E - Exit

Remember these tips when using netu:

� The netu user interface is not case sensitive. When you make a selection
from the main menu, use either an upper- or lowercase entry for the
selection.

� Press Enter after every response you make or every menu item that you
select.

� The netu utility does not check for valid entries in response to prompts.
Make sure your entries are accurate.

� Abort an operation by pressing Esc and Enter.

Stop the Communications Server

Choosing Q or S stops the Communications Server. The Q selection stops the
server after all sessions currently in progress terminate. The S selection stops
it immediately, disconnecting any sessions that are open. For more information
about these procedures, see the chapter "Maintaining Connectivity."

384 Connectivity Guide

Netu User Interface

Modify Node Entry

Choosing N allows you to:

� Add remote node definitions

� Merge remote node definitions (add a remote node definition whose vnode
name matches that of an existing node definition)

� Delete remote node definitions

� Retrieve remote node definitions for viewing

It is also possible to change an existing remote node definition, using the Add
option or a combination of Add and Delete. See How You Change Remote Node
Definitions (see page 390).

If you are a system administrator with Ingres privileges, define global or
private node definitions. If you are not a system administrator with Ingres
privileges, define only private remote node definitions. For a discussion of the
differences between private and global definitions, see the background
information in Remote Node Definition Operations (see page 386).

Modify Remote Authorization Entry

Choosing A lets you:

� Add remote user authorizations

� Delete remote user authorizations

� Retrieve remote user authorizations for viewing

It is also possible to change an existing remote user authorization using the
Add option or a combination of the Add and Delete options. See Change
Remote User Authorizations (see page 397).

If you are an Ingres administrator, establish global or private remote node
authorizations. If you are not a system administrator with Ingres privileges,
set up only private remote node authorizations.

Netu Procedures 385

Remote Node Definition Operations

Exit Netu

Choosing E exits the utility.

You exit the netu utility from its main menu. You can reach this menu from
any netu operation by choosing exit at that operation’s command line prompt.

If you are in the middle of an operation and want to quit without completing
the operation, press Esc and Enter to open the netu menu. From there, exit
netu or choose another operation.

Note: If your keyboard lacks an Escape key, use Control + [to quit without
completing the operation.

Remote Node Definition Operations

There are four operations associated with remote node definitions:

� Adding new definitions

� Merging new definitions

� Deleting existing definitions

� Viewing existing definitions

To perform each of these operations, netu asks for the following information:

� The vnode name of the remote node

� The network protocol used by the remote node

� The remote node address

� The listen address of the Communications server at the remote node

386 Connectivity Guide

Remote Node Definition Operations

Add or Merge Remote Node Definitions

A remote node definition identifies a particular node and a listen address for
that node’s Communications server and associates that node and address
combination with a vnode name.

When a user uses a vnode name to connect to a database on a remote
instance, the local instance must have a remote node definition that defines
that vnode name for the remote instance to complete the connection. The netu
utility offers two options for adding remote node definitions: add and merge.

Add and merge differ in how they handle the addition of a node definition
whose vnode name matches the vnode name of an existing node definition. If
you are using the add option, netu overwrites any existing node definitions
that have the matching vnode name. If you are using the merge option, netu
does not overwrite the existing definitions, but simply establishes another
definition. The merge option is very useful if you want to run more than one
Communications Server at a server node.

For example, assume that you want to run three Communications Servers at
the node “eugenie.” Each server has its own unique listen address for
interprocess communications. If you use the add option to establish the
remote node definitions for “eugenie” from “napoleon,” you must provide a
unique vnode name for each listen address. For example, you have the
following vnode name and listen address combinations:

From napoleon:

 Royal addr1
 Lady addr2

Second addr3

If you use the merge option, you need only one vnode name. Using merge, set
up the three node definitions at “napoleon” using the same vnode name for
each and simply changing the listen address.

For example:

From napoleon:

 Royal addr1
 Royal addr2
 Royal addr3

Netu Procedures 387

Remote Node Definition Operations

When users connect using the vnode name “Royal” Ingres Net connects them
to one of the three Communications Servers. Ingres Net automatically tries
each server, in random order, until it finds one of the three that is available.
Users do not need to remember three vnode names or make three connection
attempts. Using merge allows you to keep it simple for users, regardless of
how many Communications Servers are running on an installation.

Note: Ingres Net does not allow two definitions that are exactly the same at
the same node.

To add or merge a remote node definition

1.	 Start netu by entering netu at the operating system prompt.

The netu menu appears.

2.	 Select N (Modify Node Entry) from the menu.

The following prompt appears:

Enter command (add, merge, del, show, exit):

3.	 Select add or merge. (Type a or m instead of the full word.)

The add and merge options behave differently if the definition you are
adding matches an existing vnode name. Be sure to read the paragraphs
preceding this procedure before making a choice.

4.	 Define the account as a private or global account. The default is private.

� To accept the default, press Enter.

� To define a global node entry, enter G. You must be a user with Ingres
privileges to define a global node entry.

5.	 Enter a remote vnode name.

6.	 Enter the network software type.

This is the name of the protocol that the remote node is using. For a list of
valid entries see Network Protocol Keywords (see page 58).

7.	 Enter the remote node address.

8.	 Enter the listen address of the remote node’s Communications Server.

Netu adds one remote node definition for your local node and displays this
prompt:

Enter operation (add, merge, del, show, exit):

9.	 Select another operation or select exit to Enter to the netu menu.

388 	Connectivity Guide

Remote Node Definition Operations

Delete Remote Node Definitions

To remove a remote node definition from a local node, the netu utility allows
you to remove one or several definitions at a time. When you select the
operation that deletes node definitions, netu responds with a series of
prompts. When you have answered all the prompts, netu deletes all node
definitions that match the answers you supplied.

To remove several definitions at once, use the asterisk (*) in response to the
appropriate prompt. This is a wild card character that matches any entry. For
example, if you want to remove all private node definitions for the vnode name
“general,” complete the deletion procedure, responding to the prompts in the
following manner:

Enter Private or Global (P): <Enter>

Enter the vnode name of the remote node: general

Enter the node address of the remote node: *

Enter the network software type:

Enter the remote node address: *

Enter the remote Ingres/Net server listen address:

appropriate address

You cannot answer with an asterisk in response to the Global or Private
prompt.

To remove node definitions from the local Communications Server

1.	 Start netu by entering netu at the operating system prompt.

The netu menu appears.

2.	 Select N (Modify Node Entry) from the menu.

The following prompt appears:

Enter command (add, merge, del, show, exit):

3.	 Enter del. (Type d in place of del.)

4.	 When netu asks you to specify if the definition is a private or global
definition, do one of the following steps:

�	 If the node definition is private, press Enter.

�	 If the node definition is global, enter G. You must be a user with Ingres
privileges to select G.

5.	 Enter the vnode name of the remote node. Enter the network software
type.

This is the name of the protocol that the remote node is using. Valid
entries are described in Network Protocol Keywords (see page 58).

6.	 Enter the node address of the remote node.

Netu Procedures 389

Remote Node Definition Operations

7.	 Enter the listen address of the remote node’s Communications Server.

Netu removes the node definition(s) from the local Communications Server
and displays the following prompt:

Enter command (add, merge, del, show, exit):

8.	 Select another operation, or Enter to the netu menu by entering exit.

How You Change Remote Node Definitions

The procedure you use for changing an existing remote node definition
depends on whether the vnode name for the definition is unique among the
node definitions for the installation.

If the vnode name is unique (that is, associated with only one node definition),
overwrite the existing definition. For instructions, see Overwrite an Existing
Definition (see page 390).

If the vnode name is not unique (that is, associated with more than one node
definition), you must delete the incorrect definition and set up the new
definition. For instructions, see Delete Old and Add New Definition (see
page 391).

Overwrite an Existing Definition

Use this procedure to change a node definition only if the vnode name
associated with that definition is not associated with any other node definitions
within the local set of remote node definitions.

To overwrite an existing definition

1.	 Start netu by entering netu at the operating system prompt.

The main menu appears.

2.	 Select N (Modify Node Entry) from the menu.

The following prompt appears:

Enter the operation (add, merge, del, show, exit):

3.	 Enter add. (Type a instead of add.)

Prompts appear.

4.	 Answer the prompts using the values of the new, correct node definition.

The utility overwrites the existing node definition with the values that you
have just supplied and displays the following prompt:

Enter operation (add, merge, del, show, exit):

5.	 Continue with other node definition tasks or Enter to the netu menu by
choosing exit.

390 	Connectivity Guide

Remote Node Definition Operations

Delete Old and Add New Definition

Use this procedure when there are two or more remote node definitions (at the
same node) that are associated with the vnode name belonging to the
definition that you want to change.

When the merge option has been used to set up several node definitions that
use the same vnode name, you must be very careful when changing one of
these definitions. You cannot overwrite the incorrect definition using the add
option as in Overwrite an Existing Definition (see page 390). If you try to do
this, netu overwrites all of the definitions that have the specified vnode name,
effectively deleting them all and leaving you with only the definition you have
just added.

To safely change a node definition that has a vnode name in common with
other node definitions, you must delete the old definition and use merge to
add the new definition.

To delete an old definition and add a new one

1.	 Start netu by entering netu at the operating system prompt.

The main menu appears.

2.	 Select N (Modify Node Entry) from the menu.

The following prompt appears:

Enter operation (add, merge, del, show, exit):

3.	 Enter del. (Enter d instead of del.)

4.	 Answer the prompts that appear with the values from the definition you
want to change.

When all the prompts are answered, netu deletes the node definition that
has the values that you have just supplied and Enters you to the prompt:

Enter operation (add, merge, del, show, exit):

5.	 Enter merge. (Enter m instead of merge.)

6.	 Answer the prompts that appear with the values for the correct definition.

The utility adds a node definition with the values that you have just
supplied and displays the following prompt:

Enter operation (add, merge, del, show, exit):

7.	 Continue with node definition tasks or Enter to the main netu menu by
choosing exit.

Netu Procedures 391

Remote Node Definition Operations

Retrieve Remote Node Definition Information

To see the remote node definitions associated with a particular local node, the
following procedure asks for information about the definitions and displays all
the definitions that match the information you provide.

Use an asterisk in response to any prompt other than the one asking if the
definition is private or global. An asterisk is the wild card character that
matches any value.

To retrieve remote node definition information

1.	 Start netu by entering netu at the operating system prompt.

The netu menu appears.

2.	 Select N (Modify Node Entry) from the menu.

This prompt appears:

Enter operation (add, merge, del, show, exit):

3.	 Enter show. (Type s instead of show.)

4.	 When netu asks if the entry you want to see is a private or global entry, do
one of the following:

� If the entry is private, press Enter.

� If the entry is global, enter G.

5.	 Enter the vnode name of the remote node definition.

6.	 Enter the network software type.

7.	 Enter the remote node’s address.

8.	 Enter the listen address of the remote node’s Communications Server.

The utility displays all of the definitions that match the information that
you gave. If you used an asterisk as a wild card for any of the prompts,
you receive more than one definition. The definitions appear in table
format. You cannot change any node name definition while it is displayed
in this format.

After the definition or list of definitions is displayed, the utility displays the
following prompt:

Enter operation (add, merge, del, show, exit):

9.	 Continue with node definition tasks or choose exit to Enter to the netu
menu.

392 	Connectivity Guide

Remote Node Definition Operations

Displayed Node Definition Examples

Here are some examples of the format and type of information that you
receive when you retrieve node definition information for viewing.

Windows: The following table shows Windows Displayed Node Definition
examples:

Global: V_Node

london

Net
Software

 tcp_ip

Node
Address

uk1

Listen Address

II0

rome tcp_ip italy2 II0

n_york tcp_ip usa1 II0

chicago lanman usa2 USA2_II

UNIX: The following table shows UNIX Displayed Node Definition examples:

Global: V_Node Net
Software

Node
Address

Listen Address

london tcp_ip uk1 II0

rome tcp_ip italy2 II0

n_york tcp_ip usa1 II0

VMS: The following table shows VMS Displayed Node Definition examples:

Global: V_Node Net Node Listen Address
Software Address

n_york sna_lu0 GW1 NYMVSPLU

chicago sna_lu0 GW2 CHMVSPLU

london decnet uk1 II_GCC_0

rome decnet rome II_GCC_0

s_fran decnet s_fran II_GCC_0

n_york tcp_wol usa1 II

chicago tcp_wol usa2 KK

Netu Procedures 393

Remote User Authorization Operations

Remote User Authorization Operations

Remote user authorizations, along with node definitions, make it possible to
use Ingres Net to access databases on remote nodes. A remote user
authorization associates a specified vnode name with a specified account on
the remote node. When the user requests a connection using that vnode
name, Ingres Net makes the connection to the DBMS Server on the remote
node through that account.

Three operations concern remote user authorizations:

� Adding new remote user authorizations

� Deleting existing authorizations

� Viewing existing authorizations

In addition, change an existing authorization by overwriting the authorization
or by deleting it and adding a new authorization.

To perform any of these operations, you must have the following information
about the authorization:

� The type of the authorization, private or global

� The vnode name of the remote node

� The name of the account on the remote node

� The password for the account on the remote node

394 Connectivity Guide

Remote User Authorization Operations

Define Remote User Authorizations

A remote user authorization associates a specified vnode name with a specified
account on the node represented by that vnode name.

To define a remote user authorization

Note: You can exit this procedure at any time without making an entry by
pressing Esc and Enter.

1.	 Start netu by entering netu at the operating system prompt.

The netu menu appears.

2.	 Select A (Modify Remote User Authorization Entry).

The following prompt appears:

Enter operation (add, del, show, exit):

3.	 Enter add. (Type a instead of add.)

Netu asks if you want a private or global authorization.

4.	 Do one of the following:

� To accept the default (private), press Enter.

� To select global, enter G.

5.	 Enter the vnode name of the remote node.

6.	 Enter the name of the account at the remote node.

7.	 Enter the password for the remote account.

The default is an asterisk (*). Use this only if the remote account has no
password.

8. Enter the password for the remote account again.

The utility finishes defining a remote user authorization and displays the
following prompt:

Enter operation (add, del, show, exit):

9.	 Continue with remote user authorization tasks or choose exit to Enter to
the netu menu.

Netu Procedures 395

Remote User Authorization Operations

Delete Remote User Authorizations

The netu utility lets you delete one or several authorizations at a time. When
you select the delete operation, netu asks for the values that comprise the
authorization and deletes any and all authorizations that match those values.
To delete a single authorization, all the values must match. If the match is not
exact, the authorization is not deleted. To delete multiple authorizations, use
the wild card character (*), which matches any value.

If you are unsure of the values for the authorization that you want to delete,
use the “show” operation to check the values before you delete them. For
instructions on using the show operation, see Retrieve Remote User
Authorizations (see page 400).

To delete more than one authorization in one operation, use an asterisk in
response to the prompts asking for the remote user name. The asterisk is a
wild card character that matches any value. For example, assume that you
want to delete all of your private user authorizations from “napoleon” that are
associated with the account having the userid “tommy” on “josephine.” To do
this, run netu from “napoleon,” selecting A and the del operation. Respond to
the prompts in this manner:

Enter Private or Global (P): <Enter>
Enter the remote vnode name: *
Enter the remote user name: tommy

When you have completed the procedure, you deleted all of the private user
authorizations for the account “tommy.” If you have defined other remote user
authorizations to “josephine” through a different account, these remain
undeleted.

Only a user with Ingres privileges can delete global authorizations.

To delete remote user authorizations

Note: You can exit the procedure at any point by pressing Esc and Enter.

1. Start netu by entering netu at the operating system prompt.

The netu menu appears.

2. Select A (Modify Remote User Authorization Entry) from the menu.

The following prompt appears:

Enter operation (add, del, show, exit):

3. Enter del. (Enter d instead of del.)

Netu asks if the authorization is a private or global authorization.

396 Connectivity Guide

Remote User Authorization Operations

4.	 Do one of the following:

� If the authorization is private, press Enter.

� If the authorization is global, enter G.

5.	 Enter the remote vnode name.

6.	 Enter the remote user name.

The utility displays the number of authorizations that it deleted and the
following prompt:

Enter operation (add, del, show, exit):

7.	 Select del again to delete another authorization, or choose a different
operation.

Change Remote User Authorizations

If necessary, change an existing remote user authorization entry by using one
of two methods:

�	 Overwrite the existing, incorrect entry.

Use this method if the vnode names for both the old incorrect entry and
the new correct entry are the same. For instructions on performing this
method, see Overwrite an Incorrect Entry (see page 398).

�	 Delete the existing, incorrect entry and add the new, correct entry.

Use this method if you must correct a vnode name. For instructions on
performing this method, see Delete Old and Add New Definition (see
page 391).

Netu Procedures 397

Remote User Authorization Operations

Overwrite an Incorrect Entry

Use this procedure to modify a remote user authorization when some part of
the authorization information, other than the vnode name, has changed. For
example, perhaps the passwords to accounts are changed on a regular basis.
When this happens, the remote user authorizations must be modified to allow
users continued access to remote accounts.

When you use this procedure, netu overwrites the existing authorization whose
vnode name matches the vnode name that you specify. Use the values of the
new, correct authorization to respond to the prompts.

To modify a remote user authorization

1.	 Start netu by entering netu at the operating system prompt.

The netu menu appears.

2.	 Select A (Modify Remote User Authorization Entry).

The following prompt appears:

Enter command (add, del, show, exit):

3.	 Enter add. (Type a instead of add.)

Netu asks if the authorization is private or global.

4.	 Do one of the following:

� If the authorization is private, press Enter.

� If the authorization is global, enter G.

5.	 Enter the remote vnode name.

6.	 Enter the remote user name.

7.	 Enter the password.

8.	 Enter the password a second time.

Netu replaces the existing authorization with the new one and displays the
following prompt:

Enter operation (add, del, show, exit):

9.	 Continue with other user authorization operations or Enter to the netu
menu by selecting exit.

398 	Connectivity Guide

Remote User Authorization Operations

Delete and Add an Entry

To change the vnode name associated with a remote user
authorization

1.	 Start netu by entering netu at the operating system prompt.

The netu menu appears.

2.	 Select A (Modify Remote User Authorization Entry).

The following prompt appears:

Enter command (add, del, show, exit):

3.	 Enter del. (Enter d instead of del.)

4.	 Answer the prompts that appear using the values of the incorrect
authorization.

When you have answered all the prompts, netu deletes the incorrect
authorization and displays the following prompt:

Enter command (add, del, show, exit):

5.	 Enter add. (Enter a instead of add.)

6.	 Answer the prompts that appear using the values of the new, correct
authorization.

The utility adds the new authorization and displays the following prompt:

Enter command (add, del, show, exit):

7.	 Choose another operation or Enter to the netu menu by choosing exit.

Netu Procedures 399

Remote User Authorization Operations

Retrieve Remote User Authorizations

When you want to see a list of authorizations for a single node or several
nodes, use the procedure in this section. It produces a read-only display of
authorization information. For example, use this procedure to produce a list of
all your private authorizations to a single node or to all nodes. You can also
use this procedure to find out if there are any global authorizations to a
particular node.

For example, to see any global authorizations, you run the procedure and
make the following responses to the following prompts:

Enter Private or Global (P): Global
Enter the remote vnode name: *
Enter the remote user name: *

The utility displays all of the global authorizations that have been defined from
the node on which you are working. The display is in a table format. For
display examples, see Displayed Remote User Authorization Examples (see
page 401).

If you select Private, the utility displays the appropriate private authorizations
that belong to you.

To display remote user authorizations

Note: You can exit the procedure at any point by pressing Esc and Enter.

1. Enter netu at the operating system prompt.

The main menu appears.

2. Select A.

The following prompt appears:

Enter operation (add, del, show, exit):

3. Enter show. (Enter s instead of show.)

4. The utility asks if you want a list of private or global authorizations.

You must choose one or the other. You cannot enter the wildcard character
for this prompt.

� If you want a list of private authorizations, press Enter.

� If you want a list of global authorizations, enter G.

5. Enter the remote vnode name.

400 Connectivity Guide

Netu Options for Stopping the Communications Server

6.	 Enter the remote user name.

The netu utility shows you the authorizations that match the responses
you provided. The display appears in table format. You cannot change any
of the information while it is in this format.

After the authorizations are displayed, netu Enters you automatically to the
prompt:

Enter command (add, del, show, exit):

7.	 Choose another authorization operation or Enter to the netu menu by
choosing exit.

Displayed Remote User Authorization Examples

Here is an example of the information that you receive when you view remote
user authorizations:

Private: V_Node User Name

^ london janetd

^ rome janetd

^ n_york janetd

^ s_fran janetd

Netu Options for Stopping the Communications Server

Netu provides two options for stopping the Communications Server:

quiesce

Stops the server after any open sessions with the server have terminated.
Use the quiesce option to stop the server gracefully, waiting until open
sessions terminate.

stop

Stops the server immediately, regardless of whether there are any open
sessions using the server.

Both options require you to know the GCF (General Communication Facility)
address of the Communications Server.

Netu Procedures 401

Netu Options for Stopping the Communications Server

Obtain GCF Address

The GCF address is the Ingres-specific symbolic address that the
Communications Server uses to communicate with local Ingres processes. This
address is also called the GCA address.

You must know the Communications Server’s GCF address before you can stop
the server. Use the iinamu utility to obtain this address.

To obtain the GCF address

1.	 Enter the following command at the operating system prompt:

iinamu

The iinamu menu appears.

2.	 Enter this command:

show comsvr

The utility displays a list of Communications Servers running in the
installation, in the format:

COMSVR * GCF_ADDRESS

The GCF address is the value in the third column.

3.	 Note the GCF address shown in the display, and then enter quit.

You exit the utility.

402 	Connectivity Guide

Netu Options for Stopping the Communications Server

Stop Communications Server

Before you begin this procedure, you must have the GCF address of the
Communications Server. To obtain this address, see Obtain GCF Address (see
page 402).

To stop the Communications Server using netu

1.	 Enter this command at the operating system prompt:

netu

The netu menu appears.

2.	 Enter one of the following:

� Q Comm_server_id

where Comm_server_id is the GCF address of the Communications
Server.

The server stops after all open sessions are closed. In most cases, use
this option.

� S Comm_server_id

where Comm_server_id is the GCF address of the Communications
Server.

The Communications Server is stopped immediately, terminating any
open sessions.

The netu menu automatically reappears.

3.	 To exit netu, select E.

Note: If you enter the Comm_server_id on the command line when you start
netu (for example, $ netu Comm_server_id), you do not have to enter the
Comm_server_id when you select Q or S. By default, netu stops the
Communications Server associated with the ID that you specified on the
command line.

Netu Procedures 403

Appendix K: IPv6 Configuration

This section contains the following topics:

IPv6 Configuration Overview (see page 405)

TCP/IP and Ingres Communications (see page 406)

Parameters for Controlling IPv6 Support (see page 406)

Options for Disabling IPv6 Support (see page 409)

IPv6 in the JDBC Driver and Ingres .NET Data Provider (see page 414)

Examples of Disabling IPv6 Support (see page 415)

This appendix describes the parameters that control IPv6 support in Ingres and
how to disable IPv6 support, if necessary.

IPv6 Configuration Overview
In most cases, no configuration in Ingres is required to implement IPv6
support. It is automatically enabled in the tcp_ip (tcp_dec on VMS) network
protocol starting with Ingres 2006 Release 2.

Some versions of operating systems, however, provide no or limited support
for IPv6. In some cases, IPv6 support is available, but must be enabled or
configured in the operating system before it can be used. On systems with
partial or no IPv6 functionality, Ingres will adjust automatically to the level of
IPv6 support available. On some systems, however, Ingres may have difficulty,
particularly when starting up or establishing connections.

For those rare situations, configuration parameters can be used to "back out"
the IPv6 support, if required, or to restrict TCP support to IPv6 addresses only.
These parameters (see page 406), which are not available in the configuration
utilities, must be set with set, ingsetenv, or iisetres commands.

On Windows, the iicvtwintcp utility (see page 412) can be used to convert
wintcp settings to tcp_ip settings, or to subsequently restore the settings to
their previous values.

IPv6 Configuration 405

TCP/IP and Ingres Communications

TCP/IP and Ingres Communications

On all platforms, Ingres Net typically uses TCP/IP to communicate between
Ingres installations. A typical scenario is where applications in the client
installation communicate through Ingres Net with the DBMS Server in the
server installation. If using JDBC or .NET applications with Ingres, then TCP/IP
is used to communicate between the Ingres JDBC or .NET driver running under
the application and the Data Access Server (process iigcd).

On Linux and UNIX only, TCP/IP is typically used to communicate between
Ingres processes—that is, as the local IPC. The tcp_ip protocol driver used for
network communications is used for local communications also. Therefore, if
you experience trouble with IPv6 across the network, local communications are
likely to have trouble too. If so, basic Ingres server processes such as the
Name Server (iigcn) and the DBMS Server (iidbms) may not even start.

Parameters for Controlling IPv6 Support

The parameters for controlling IPv6 support are as follows:

�	 II_TCPIP_VERSION environment variable

�	 II_GC_PROT environment variable (Linux and UNIX only)

�	 ii.hostname.gcX.*.protocol.status (and port) in config.dat, where the gcX
server can be gcc, gcd, or jdbc.

VMS: The only configuration options are II_TCPIP_VERSION and
ii.hostname.gcX.*.tcp_ip.version.

406 	Connectivity Guide

Parameters for Controlling IPv6 Support

II_TCPIP_VERSION Environment Variable—Specify Version of TCP/IP to Use

The II_TCPIP_VERSION environment variable determines the version of IP
addresses that the tcp_ip (or tcp_dec on VMS) protocol driver uses. It can be
set using the ingsetenv command.

Note: The equivalent configuration parameter in config.dat is tcp_ip.version.

This variable has the following format:

II_TCPIP_VERSION = value

value

Controls which tcp_ip protocol driver or which version of IP addresses to
use, as one of the following:

ALL

(Default) Uses both IPv4 and IPv6 addresses.

VMS: The default behavior is to use both IPv4 and IPv6 addresses,
and to map the IPv4 addresses as IPv6.

6

Uses IPv6 addresses only.

VMS: The IPv6 versions of the listen, accept, and connect are used.

4

Windows: Uses only IPv4 addresses with IPv6-capable functions.

Linux, UNIX, VMS: Uses the IPv4-only version of the protocol driver.

46

Linux and UNIX: Uses only IPv4 addresses with IPv6-capable
functions.

IPv6 Configuration 407

Parameters for Controlling IPv6 Support

II_GC_PROT Environment Variable—Set IPC Communications Protocol (Linux
and UNIX Only)

On Linux and UNIX, the II_GC_PROT environment variable sets the local IPC
communications protocol. This variable can be set using the ingsetenv
command.

This variable has the following format:

II_GC_PROT = protocol

protocol

Specifies the local IPC communications protocol as one of the following:

TCP_IP

(Default) Uses the current TCP_IP protocol driver.

TCP_IPV4

Uses the previous version of the TCP_IP protocol driver, which
supports IPv4 addresses only.

408 Connectivity Guide

Options for Disabling IPv6 Support

ii.hostname.gcX.*.protocol.status Resource—Set Network Communications
Protocol

This resource in config.dat sets the network communications protocol for the
designated server (gcX) to the appropriate Ingres network protocol driver. The
gcX server can be gcc, gcd, or jdbc. The resource can be set by using the
iiisetres command.

The format is as follows:

ii.hostname.gcX.*.protocol.status

and

ii.hostname.gcX.*.protocol.port

protocol

Specifies the Ingres network protocol driver, which can be one of the
following:

tcp_ip

(All environments except VMS) (Default) Uses the current TCP_IP
protocol driver.

tcp_ipv4

(Linux and UNIX only) Uses the previous version of the TCP_IP
protocol driver, which supports IPv4 addresses only.

wintcp

(Windows only) Uses the previous version of the TCP_IP protocol
driver, which supports IPv4 addresses only.

tcp_dec

(VMS only) Uses the current TCP_IP protocol driver.

Options for Disabling IPv6 Support

Two approaches can be used to disable IPv6 support:

� Restrict the tcp_ip protocol driver to only use IPv4 addresses

� Completely back out the enhanced tcp_ip protocol driver and use the old
version of the driver.

IPv6 Configuration 409

Options for Disabling IPv6 Support

Use IPv4 Addresses Only

The tcp_ip protocol driver can be restricted to listen and connect only with
IPv4 style addresses. (IPv4 is the standard IP version that was used prior to
IPv6).

To restrict the tcp_ip protocol driver to use IPv4 addresses only:

Use any one of the following options, which are functionally equivalent:

� Set the II_TCP_VERSON operating system variable as follows:

Windows:

set II_TCPIP_VERSION=4

Linux and UNIX:

set II_TCPIP_VERSION=46

� Set the Ingres II_TCPIP_VERSION environment variable as follows:

Windows:

ingsetenv II_TCPIP_VERSION 4

Linux and UNIX:

ingsetenv II_TCPIP_VERSION 46

� Set the Ingres resource as follows:

If using Ingres Net:

iisetres ii.machine.gcc.*.tcp_ip.version 4

If using Data Access Server:

iisetres ii.machine.gcd.*.tcp_ip.version 4

� (VMS only) (Optional) Set the “lnm” (logical name) attribute to cause
II_TCPIP_VERSION to be defined when the servers start up:

iisetres ii.machine.lnm.ii_tcpip_version 4

410 Connectivity Guide

Options for Disabling IPv6 Support

Back Out IPv6 Support

To completely back out IPv6 support, you must use the old driver, which
supports IPv4 only. The old driver is renamed to tcp_ipv4 on UNIX and Linux,
and is wintcp on Windows. The old driver is expected to be made obsolete in a
future release of Ingres.

To back out the enhanced tcp_ip Ingres protocol driver

1. Back out network protocol for servers with tcp_ip.status = ON

Linux, UNIX, Windows:

iisetres ii.machine.gcc.*.tcp_ip.status OFF (All platforms)

iisetres ii.machine.gcc.*.tcp_ipv4.status ON (Unix/Linux)

iisetres ii.machine.gcc.*.tcp_ipv4.port II (Unix/Linux)

iisetres ii.machine.gcc.*.wintcp.status ON (Windows)

iisetres ii.machine.gcd.*.tcp_ip.status OFF (All platforms)

iisetres ii.machine.gcd.*.tcp_ipv4.status ON (Unix/Linux)

iisetres ii.machine.gcd.*.tcp_ipv4.port II7 (Unix/Linux)

iisetres ii.machine.gcd.*.wintcp.status ON (Windows)

Set the port value to same as that used by the same server for tcp_ip.

VMS:

define/group II_TCPIP_VERSION 4

or

define/system II_TCPIP_VERSION 4

2. Back out local IPC protocol (Linux and UNIX only):

ingsetenv II_GC_PROT tcp_ipv4

3. Back out network and local IPC protocol (Linux and UNIX only):

set II_TCPIP_VERSION=4

or

ingsetenv II_TCPIP_VERSION 4

Note: This step is equivalent to steps 1 and 2 above, and is the simplest
way to back out to the IPv4-only driver on Linux and UNIX.

IPv6 Configuration 411

Options for Disabling IPv6 Support

iicvtwintcp Command—Convert wintcp to tcp_ip Protocol Setting

The iicvtwintcp command converts vnode definitions and GCx server protocol
settings in config.dat from the deprecated wintcp network protocol to the
newer tcp_ip protocol. This utility runs automatically during an upgrade, but
can also be run standalone.

A backup file is created (or appended to) that can be used in subsequent
iicvtwintcp commands to restore converted protocol entries to their previous
settings.

Note: Dynamic vnodes are not affected by this utility.

The iicvtwintcp command has the following format:

iicvtwintcp [-help] [-verbose] [-noupdate] [-force]
 [-action convert_wintcp | convert_tcp_ip | restore]
 [-bf filename] [-nf filename]
 [-scope all | vnodes | config]

-help

Displays command usage information.

-verbose

Displays each record affected. If not specified, only totals are displayed.

-noupdate

Reports what the impact of running the utility will be, but does not update
Name Server or backup files.

If the Name Server is running, the –force parameter must also be used.

When used with the -verbose parameter, produces a report from which the
vnode updates can be done manually from one of the Ingres network
configuration utilities.

-force

Runs iicvtwintcp even if the Name Server or another instance of the
program is currently running. A warning message is issued. This parameter
is useful with the -noupdate parameter or when running against a copy of
the Name Server node file.

Note: Use this parameter with caution.

-action

Specifies the action to be performed:

convert_wintcp

Converts wintcp to tcp_ip.

412 Connectivity Guide

Options for Disabling IPv6 Support

convert_tcp_ip

Converts tcp_ip to wintcp.

restore

Restores converted protocol entries back to prior values.

Note: If no action is specified, displays usage, which prevents
unintentional conversion if command with no parameters is entered.

-bf

Specifies the name of the restore (back off) file. If not specified, the
default is:

%II_SYSTEM%\ingres\files\name\IINODE_hostname.BK

Can be specified with or without path name. If no path is specified,
defaults to %II_SYSTEM%\ingres\files\name.

Note: Written to as output if -action is convert_wintcp or convert_tcp_ip.
Read from as input if -action is restore, and is required for a successful
restore operation.

-nf

Specifies the name of the Name Server connection (NODE) file that
contains the vnode definitions that will be updated. If not specified, the
default is:

%II_SYSTEM%\ingres\files\name\IINODE_hostname

Can be specified with or without path name. If no path is specified,
defaults to %II_SYSTEM%\ingres\files\name.

-scope

Converts or restores the following entities:

all

(Default) Vnode definitions and config.dat file

vnodes

Vnode definitions only

config

Config.dat file only

Return codes:

>=0

Indicates the program succeeded, where return code is the number of
records modified.

Indicates the program failed.

IPv6 Configuration 413

-1

IPv6 in the JDBC Driver and Ingres .NET Data Provider

iicvtwintcp Examples

In these examples of the iicvtwintcp command, the command should be run
while the Name Server (iigcn) is stopped.

1. Convert wintcp to tcp_ip in current Ingres installation:

iicvtwintcp -action convert_wintcp

2. Restore records converted to tcp_ip back to wintcp:

iicvtwintcp -action restore

3. Convert tcp_ip to wintcp in current Ingres installation.

This example is similar to Example 2 except that all tcp_ip records will be
set to wintcp, not just the ones that were originally converted by -action
convert_wintcp. Such a command is likely to be used if a restore is
wanted but the backup file is lost.

iicvtwintcp -action convert_tcp_ip

4. List connection (NODE) information for all vnodes:

iicvtwintcp -action convert_wintcp -noupdate –verbose

IPv6 in the JDBC Driver and Ingres .NET Data Provider

No Ingres parameters control or restrict IPv6 in the JDBC driver or the .NET
Data Provider. The DAS (server side of the connection) can be configured as
documented in Options for Disabling IPv6 Support (see page 409). However,
there are some Java-specific networking system properties that can by set to
control the IPv6 behavior in the Ingres JDBC driver (and other Java
applications).

To return IPv6 addresses before IPv4 addresses:

java.net.preferIPv6Addresses=true

To restrict driver to IPv4 only:

java.net.preferIPv4Stack=true

414 Connectivity Guide

Examples of Disabling IPv6 Support

Examples of Disabling IPv6 Support

In the following examples, assume: machine=host1, Ingres installation id=AA,
startup count is 1 for Ingres Net and Data Access Server.

1.	 Revert to the old IPv4-only driver

Linux and UNIX:

ingsetenv II_GC_PROT tcp_ipv4

iisetres ii.host1.gcc.*.tcp_ip.status OFF

iisetres ii.host1.gcc.*.tcp_ipv4.status ON

iisetres ii.host1.gcc.*.tcp_ipv4.port AA

iisetres ii.host1.gcd.*.tcp_ip.status OFF

iisetres ii.host1.gcd.*.tcp_ipv4.status ON

iisetres ii.host1.gcd.*.tcp_ipv4.port AA7

Windows:

iisetres ii.host1.gcc.*.tcp_ip.status OFF

iisetres ii.host1.gcc.*.wintcp.status ON

iisetres ii.host1.gcd.*.tcp_ip.status OFF

iisetres ii.host1.gcd.*.wintcp.status ON

Note: wintcp port is typically already set correctly on Windows.

VMS:

define/group II_TCPIP_VERSION 4

or

define/sys II_TCPIP_VERSION 4

Optionally, set the “lnm” (logical name) attribute to cause
II_TCPIP_VERSION to be defined when the servers start up:

iisetres ii.machine.lnm.ii_tcpip_version 4

2.	 Restrict all remote communications to IPv4 addresses only on Windows,
Unix or Linux:

ingsetenv II_TCPIP_VERSION 4

IPv6 Configuration 415

Index

.

.NET data provider

classes • 264

data types • 320

integration with Visual Studio • 330

sample program • 269

troubleshooting applications • 340

.NET System.Data.DbType

data types • 320

mapping to EdbcType • 321

mapping to IngresType • 321

A

accessing remote installations • 50

AIX SNA Services/6000

installation requirements • 41

sample configuration file • 373

architecture

.Net Data Provider • 260

Ingres Net • 28

attributes, configuring vnode • 64, 92

authentication_mechanism (vnode attribute) •

64, 92

authorization

distributed databases • 51

of users • 49

remote user • 30, 50

autocommit

alternative processing modes • 238

transactions • 238

B

BLOB columns • 245

Bridge Server • 131

described • 22

monitoring • 137

starting options • 135

starting using command line • 136

stopping with ingstop • 138

stopping with IVM • 138

Bridge, starting • 134

BYREF parameters • 244

C

cbf (utility)

configuration parameters • 47, 119

classes

IngresCommand • 265

IngresConnection • 273

IngresDataAdapter • 297

IngresDataReader • 290

IngresError • 300

IngresErrorCollection • 302

IngresException • 304

IngresInfoMessageEventArgs • 306

IngresInfoMessageEventHandler • 307

IngresParameter • 309

IngresParameterCollection • 313

IngresRowUpdatedEventArgs • 315

IngresRowUpdatedEventHandler • 316

IngresRowUpdatingEventArgs • 317

IngresRowUpdatingEventHandler • 318

IngresTransaction • 318

client installation

NFS • 42

setup parameters • 42

cluster

and Ingres Net • 21, 24

Name Server files • 120

running netutil • 51

commands

used with Ingres Net • 102

Communications Server

described • 22, 23

inbound/outbound session limits • 110

listen address • 127

starting • 105

stopping • 106, 384, 401, 403

Configuration Manager • 47

configuration parameters • 47

Data Access Server • 144

default values • 119

default_server_class • 100

described • 47

inbound_limit • 110

named and unnamed • 243

outbound_limit • 110

Index 417

remote_vnode • 114

configuring a data source

Windows • 153

connect statement • 101

connecting to a data source • 156

connection data • 57, 59

described • 29

global and private • 31

listen address • 29

table • 57, 59

connection data entries

creating • 67, 91

deleting • 69, 70

editing • 72, 73

valid protocol keywords • 58

connection errors

local • 127

remote • 128

connection pooling

.NET • 260, 263, 334

Data Access Server • 144

ODBC • 148, 155, 208, 209

connection string keywords • 156, 277

connection_type (vnode attribute) • 64, 92

connectivity problems • 122

constructors

IngresConnection class • 267, 276, 300,

312

conventions

syntax • 19

create user statement • 49, 103

cursors

and result set characteristics • 239

and select loops • 242

scrollable • 189, 239

D

Data Access Server (DAS)

configuring • 144

described • 22

parameters • 144

starting • 115

stopping • 115

tracing support • 146

data provider namespaces • 261

data provider user ID options • 281

data retrieval

strategies • 262

using DataAdapter • 262

using DataReader • 262

data types

.NET data provider • 320

.NET System.Data.DbType • 320

database

access syntax • 98

procedures • 243

DataSource tracing • 255

DataTable

GetSchemaTable • 293, 326

date/time columns • 249

DECnet

installation requirements, VMS • 39

listen address • 359

default_server_class (configuration parameter)

• 100, 119

defined • 14

direct connect feature • 64, 92

Driver Manager • 150, 255

E

encryption • 64, 92

encryption_mechanism (vnode attribute) • 64,

92

encryption_mode (vnode attribute) • 64, 92

Enterprise Access products

with Ingres Net • 25

with Ingres Star • 26

errlog.log • 111, 122

errors

connection • 127

diagnose • 111, 122

local connection • 127

Net registration • 129

remote connection • 128

security and permission • 129

events

IngresConnection class • 276

IngresDataAdapter class • 299

G

GCF (General Communication Facility)

Bridge Server • 22

Communications Server • 22

Data Access Server • 22

described • 22

General Communications Area (GCA) • 22

Name Server • 22

418 Connectivity Guide

servers, dynamic tracing • 113, 146

GetSchemaTable

DataTable • 293, 326

global registration types • 31

Global Temporary Table parameters (JDBC) •

244

H

HP-UX SNAplus

installation requirements • 40

sample configuration file • 379

I

II_GCA_LOG • 112

iicvtwintcp command • 412, 414

iigcb

described • 22

starting • 135

iigcc

described • 22, 23

inbound/outbound session limits • 110

listen address • 127

starting • 105

stopping • 106, 384

iigcd

described • 22

starting • 115

stopping • 115

iigcn

database files • 120

described • 22

Name Server database • 120

starting • 135

iinamu (utility) • 127

inbound/outbound sessions

changing limits • 110

inbound_limit (configuration parameter) • 110,

119

Ingres

basic components • 16

installation, described • 17

server classes • 100

tools • 16

Ingres Bridge

Bridge Server component • 131

diagnosing problems • 139

installation configurations • 132

installing • 134

overview • 131

sample configuration • 133

sample configuration setup files • 140

security • 131

setting up client • 136

tracing a connection • 139

vs. Ingres Star • 132

Ingres Net

accessing remote databases • 97

architecture • 28, 34

benefits • 27

commands available • 102

configuration parameters • 47

described • 21

diagnosing problems • 122

Enterprise Access products • 25

establishing connections • 117

Ingres Star and • 25

NET_ADMIN privilege • 34

permission errors • 130

resolving connection errors • 127

sample configuration • 24

security • 23

security errors • 130

SERVER_CONTROL privilege • 34

setup parameters • 41

user roles • 33

using the connect statement • 101

Ingres Star

with Ingres Enterprise Access products • 26

with Ingres Net • 25

IngresCommand class • 265

IngresConnection class • 273

IngresDataAdapter class • 297

IngresDataReader class • 290

IngresError class • 300

IngresErrorCollection class • 302

IngresException class • 304

IngresInfoMessageEventArgs class • 306

IngresInfoMessageEventHandler class • 307

ingstart -iigcb • 136

ingstart -iigcc • 105

ingstart -iigcd • 115

ingstart -iigcn • 135

ingstop -iigcc • 106, 384

ingstop -iigcd • 115

ingvalidpw (executable) • 46, 130

installation

client • 17

server • 17

Index 419

types of • 25

installation code

format • 42

Installation Password

defining • 93

defining during installation • 41

defining on local installation • 74, 82

in constrast to login account password • 30

installing Ingres Bridge • 134

installing Ingres Net

for existing installations • 43

installation components • 37

setup parameters • 41

IPv6 • 342

ISO • 23

J

JDBC

and Data Access Server • 143

connectivity components • 221

implementation considerations • 237

JDBC Information Utility • 223

tracing • 255

unsupported features • 224

JDBC driver

accessing • 236

and cursor pre-fetch capabilities • 242

and updateable cursors • 239

BLOB columns • 245

class files • 225

cursors and select loops • 242

data source properties • 231

database procedures • 243

date/time columns • 249

driver properties and attributes • 226

National Character Set values • 251

properties generator (iijdbcprop) • 226, 230

support for parameter default values • 243

supported features • 222

L

LAN Manager

listen address • 361

listen address

configuration parameter • 119

DECnet • 359

defined • 29

LAN Manager • 361

SNA LU0 • 345

SNA LU62 • 347

SPX/IPX • 355

TCP/IP • 341

LOB locator • 245

local_vnode (configuration parameter) • 119

log_level (configuration parameter) • 119

logging

directing to a file • 112

levels • 111

Login/password data table

described • 55

Installation Password • 56

login account password • 56

M

mapping

.NET System.Data.DbType to IngresType •

321

methods

IngresCommand class • 267

IngresConnection class • 275

IngresDataAdapter class • 299

IngresDataReader class • 292

IngresError class • 302

IngresErrorCollection class • 303

IngresException class • 305

IngresParameter class • 312

IngresParameterCollection class • 314

IngresTransaction class • 319

mkvalidpw • 46, 130

MultiNet TCP/IP

installation requirements, VMS • 39

N

Name Server

database files • 120

described • 22

IICOMSVR_nodename • 120

IIINGRES_nodename • 120

IILOGIN_nodename • 120

iiname.all • 120

IINODE_nodename • 120

IISTAR_nodename • 120

namespace

data provider • 261

National Character Set values • 251

NET_ADMIN (privilege) • 34

420 Connectivity Guide

netu (utility)

aborting • 386

adding remote node definitions • 387

adding vs. merging remote node definitions

• 387

changing remote node definitions • 390

changing remote user authorizations • 397

defining remote user authorizations • 395

deleting remote node definitions • 389

deleting remote user authorizations • 396

described • 53

displayed remote node definitions • 393

displayed remote user authorizations • 401

merging remote node definitions • 387

retrieving remote node definitions • 392

retrieving remote user authorizations • 400

stopping Communications Server (iigcc) •

401

user interface • 384

netutil (non-interactive mode)

command line flags • 76

creating a connection data entry • 83

creating a remote user authorization • 78

defining local Installation Password • 82

deleting a connection data entry • 84

deleting a remote user authorization • 80

displaying connection data entries • 86

displaying remote user authorizations • 81

functions available • 75

input control file • 76

invariant fields • 77

quiescing the Communications Server • 88

stopping the Communications Server • 88

wildcards • 78

netutil (utility)

accessing • 51

adding vnode attributes • 64

clusters and • 51

Connection data table • 57, 59

creating a connection data entry • 53, 67,

136

creating a remote user authorization • 53,

68

defining a local Installation Password • 74

deleting entries • 68

editing entries • 70

establishing and testing a connection • 62

global and private registration types • 31

list of user tasks • 60

Login/password data table • 55

non-interactive mode • 75

startup screen • 53

stopping the Communications Server • 108

tables • 53

virtual node name (vnode) table • 54

network

installing and testing • 37

protocol types • 58

terms and concepts • 14

network address • 57, 59

network protocol • 58

Network Utility

accessing • 51

adding vnode attributes • 92

altering vnodes • 89

creating a private remote user authorization

• 92

creating vnodes • 89

deleting vnodes • 89

list of user tasks • 89

O

ODBC

CLI implementation considerations • 158

connection pooling • 208

Data Source Administrator • 153

Driver Manager • 150

ODBC driver

configuring a data source (Windows) • 153

described • 147

read-only option • 149

requirements • 149

Open Systems Interconnect • 23

OSI • 28, 34

outbound_limit (configuration parameter) •

110, 119

P

parameters

BYREF • 244

Global Temporary Table (JDBC) • 244

passwords

defining a local Installation Password • 74,

82

private registration types • 31

privileges, user • 103

procedures, executing • 244

properties

Index 421

IngresCommand class • 266

IngresConnection class • 274

IngresDataAdapter class • 297

IngresDataReader class • 291

IngresError class • 301

IngresErrorCollection class • 303

IngresException class • 304, 307

IngresParameter class • 311

IngresParameterCollection class • 314, 315,

317

IngresTransaction class • 319

protocol

configuration parameter • 119

keywords • 58

Q

query builder • 336

R

RDBMS (Relational Database Management
System) • 16

read-only ODBC driver • 149

region and time zone, defined • 42

remote databases

command syntax for accessing • 98

remote installation

access, requirements • 50, 51

remote user authorization

creating • 68

defining during installation • 41

deleting • 69

described • 30

editing • 71

global and private • 31

IILOGIN_nodename • 120

Installation Password and login account

password • 30

storage of • 120

remote_vnode (configuration parameter) •

114, 119

S

security

.NET Data Provider • 264

Ingres Net • 23

resolving problems • 130

select loops and cursors • 242

server class keywords • 100

server classes • 95

default • 100

server connections, establishing • 117

server installation

setup parameters for a • 42

SERVER_CONTROL (privilege) • 34

servers

Bridge • 131

Communications • 105

Data Access • 143

DBMS • 16

Name • 22

tasks related to • 95

set host command • 39

SNA LU0

listen address • 345

SNA LU62

listen address • 347

SunLink Gateway configuration files • 363

SPX/IPX

installation requirements • 38

listen address • 355

SQL statement

connect • 101

Star Server

IISTAR_nodename • 120

SunLink Gateway

sample configuration file • 363

SunLink SNA Peer-to-Peer

installation requirements, Solaris and Sun-4

• 40

T

TCP/IP

installation requirements, Windows • 38

listen address • 341

time zone and region, defined • 42

toolbar, virtual nodes • 89

tools

for managing Net • 32

Ingres • 16

tracing

Data Access Server • 146

Driver Manager • 255

enabling using Ingres JDBC Driver methods

• 255

Ingres Bridge connection • 139

JDBC DataSource • 255

422 Connectivity Guide

levels • 146 setting a default • 114
trace IDs • 255 simple, defined • 90

transaction mode testing a connection • 94
autocommit • 238 tools for defining • 51

troubleshooting
connectivity problems • 122
remote connection failure • 127
security and permission errors • 129
UNIX installation checklist • 124
VMS installation checklist • 126
Windows installation checklist • 123

U

-u command flag • 103
unixODBC Driver Manager • 150

V

vcbf (utility)
configuration parameters • 47

virtual node name (vnode)
described • 28
table • 54

virtual nodes toolbar
in Network Utility and VDBA • 89

Visual DBA
accessing • 51
adding vnode attributes • 92
altering vnodes • 89
creating vnodes • 89
deleting vnodes • 89
list of user tasks • 89

vnodes
adding attributes for • 64, 92
advanced, defined • 90
altering using Network Utility • 89
altering using VDBA • 89
creating using netutil • 62
creating using Network Utility • 89
creating using VDBA • 89
deleting using netutil • 69
deleting using Network Utility • 89
deleting using VDBA • 89
disconnecting from • 94
editing using netutil • 71
naming rules • 54
opening a utility window • 94
private vs. global • 90
refreshing • 93

Index 423

	Bookshelf
	Ingres Connectivity Guide
	Contents
	1: Introducing Ingres Connectivity
	In This Guide
	Connectivity Solutions Not in This Guide
	Basic Networking Concepts
	Ingres Components and Tools
	Ingres Instance
	Server Installation
	Client Installation

	System-specific Text in This Guide
	Terminology Used in This Guide
	Syntax Conventions Used in This Guide

	2: Exploring Net
	Ingres Net
	General Communication Facility
	Communications Server

	Net Security

	Installation Configurations That Require Net
	Net and Other Ingres-related Products
	Net and Enterprise Access and EDBC Products
	Net and Ingres Star
	Net Product Integration Summary

	Benefits of Net
	Net Concepts
	Virtual Nodes
	Connection Data
	Listen Address

	Remote User Authorizations
	Global and Private Definitions

	Net Management Tools
	Net and Bridge Users
	System Administrator and Ingres Net
	Database Administrator and Ingres Net
	End Users and Ingres Net

	GCA Privileges

	3: Installing and Configuring Net
	Installation Components
	How You Prepare for Installation
	Network Installation and Testing
	TCP/IP Installation (Windows)
	SPX/IPX Installation (Windows)
	TCP/IP Installation (UNIX)
	TCP/IP Services Installation (VMS)
	DECnet Installation (VMS)
	MultiNet TCP/IP Installation (VMS)
	SunLink SNA Peer-to-Peer Installation (Solaris and Sun-4)
	HP-UX SNAplus (HP-UX 9.0)
	AIX SNA Services/6000 (IBM RS/6000)

	Setup Parameters for Net
	Installation Password and Remote User Authorization
	Setup Parameters for a Server Installation
	Setup Parameters for a Client Installation

	How Net Setup Works on an Existing Installation
	How Communications Are Enabled
	How You Install Net
	ingvalidpw Program
	Create Password Validation Program (UNIX)

	Net Configuration Parameters--Customize Ingres Net

	4: Establishing Communications
	How User Access Is Established
	Requirements for Accessing Remote Instances
	Requirements for Accessing Distributed Databases

	Access Tools for Defining Vnodes
	Netutil (Net Management Utility)
	Netutil Startup Screen
	Virtual Node Name Table in Netutil
	Naming Rules for Vnodes

	Login and Password Data Table in Netutil
	Task-Specific Values for the Login/Password Data Fields

	Connection Data Table in Netutil
	Network Protocol Keywords

	Other Attribute Data Table in Netutil
	Netutil Operations
	Prerequisites to Establish and Test a Remote Connection
	Establish and Test a Remote Connection Using Netutil
	Configure Vnode Attributes
	Multiple Connection Data Entries
	Additional Remote User Authorization

	Delete an Entry
	Delete All Vnode Information
	Delete a Connection Entry for a Vnode
	Delete a Remote User Authorization for a Vnode
	Delete an Attribute Associated with a Vnode

	Change an Entry
	Modify a Vnode Name
	Edit a Remote User Authorization
	Edit a Connection Data Entry
	Edit Vnode Attribute

	Define an Installation Password for the Local Instance

	Netutil Non-Interactive Mode
	Command Line Flags in Netutil Non-interactive Mode
	Input Control File
	Invariant Fields
	Wildcards

	Create Function--Create a Remote User Authorization
	Destroy Function--Destroy a Remote User Authorization
	Show Function--Display Remote User Authorizations
	Create Function--Define an Installation Password for the Local Instance
	Create Function--Create a Connection Data Entry
	Destroy Function--Destroy a Connection Data Entry
	Show Function--Display Connection Data Entries
	Stop and Quiesce Commands--Stop or Quiesce One or More Communications Servers

	Network Utility and Visual DBA
	Virtual Nodes Toolbar
	Simple and Advanced Vnodes
	Advanced Vnode Parameters
	Multiple Connection Data Entries
	Additional Remote User Authorization
	Vnode Attributes Configuration

	Installation Password Definitions for the Local Instance
	Changing Installation Passwords
	Additional Vnode-Related Tasks
	Refresh Vnodes
	Test Vnodes
	Disconnect from a Vnode

	Opening Utility Windows

	Server-related Tasks

	5: Using Net
	Connection to Remote Databases
	Database Access Syntax--Connect to Remote Database
	Dynamic Vnode Specification--Connect to Remote Node
	Server Classes

	Use of the SQL Connect Statement with Net

	Commands and Net
	User Identity on Remote Instance
	-u Command Flag--Impersonate User
	Verify Your Identity

	6: Maintaining Connectivity
	Start Communications Server
	Stop Communications Server
	Network Server Control Screen in Netutil
	Stop or Quiesce a Communications Server Using Netutil
	Inbound and Outbound Session Limits
	How You Set Inbound and Outbound Session Limits

	Logging Levels
	How You Change the Logging Level

	How You Direct Logging Output to a File
	GCF Server Management Using iimonitor
	Default Remote Nodes
	How You Set Default Remote Nodes

	Start Data Access Server (DAS)
	Stop Data Access Server (DAS)

	7: Troubleshooting Connectivity
	How Connection Between the Application and DBMS Server Is Established
	Where Ingres Net Information Is Stored
	config.dat--Store Net Configuration Values
	Name Server Database--Store Remote Access Information

	Causes of Connectivity Problems
	How You Diagnose Connectivity Problems
	General Net Installation Check
	How You Check Net Installation on Windows
	How You Check Net Installation on Linux and UNIX
	How You Check Installation on VMS

	Connection Errors
	Local Connection Errors
	How You Resolve Remote Connection Errors

	How You Resolve Net Registration Problems
	Security and Permission Errors
	How You Resolve Ingres Security Problems (UNIX)

	8: Exploring Bridge
	Ingres Bridge
	How the Bridge Server Works
	Tools for Configuring Bridge
	Installation Configurations That Require Bridge
	Sample Installation Configuration Using Bridge

	How Bridge Is Installed
	How Bridge Is Started
	config.dat File--Store Bridge Configuration
	ingstart Command--Start the Bridge Server
	iigcb Command--Start the Bridge Server

	How the Client Is Set Up
	vnode Definition--Enable Client Access to Remote Servers Through Bridge

	Bridge Server Monitoring
	Stop the Bridge Server
	How a Connection Is Established Through Bridge
	Bridge Troubleshooting
	Sample Bridge Server Configuration

	9: Configuring the Data Access Server
	Data Access Server
	Data Access Server Parameters--Configure DAS
	How You Enable Data Access Server Tracing
	Tracing Levels

	10: Understanding ODBC Connectivity
	ODBC Driver
	ODBC Call-level Interface
	Unsupported ODBC Features
	Read-Only Driver Option
	ODBC Driver Requirements
	ODBC Driver Manager Programs
	UnixODBC Implementation Considerations

	Support for Previously Released ODBC Drivers
	Backward Compatibility Issues for ODBC DSN Definitions

	Configure a Data Source (Windows)
	Configure a Data Source (UNIX and VMS)
	iiodbcadmin Utility

	Connection String Keywords
	ODBC CLI Implementation Considerations
	Configuration on UNIX, Linux, and VMS
	Optional Data Source Definitions

	Supported Applications
	ODBC Programming
	ODBC Handles
	How ODBC Applications Connect to a Database
	SQLConnect()--Connect Using a Data Source Name
	SQLDriverConnect()--Connect without Using a Data Source Name
	Connect Using Dynamic Vnode Definitions
	ODBC User Authentication
	User Name and Password
	Ingres Super Users
	Installation Passwords
	DBMS Passwords
	Kerberos
	Dynamic (Run-Time) Authentication (Windows Only)
	Connection Prompt Window--Using SQLDriverConnect()
	Connection Prompt Window--Using DSN Definition

	Specification of User Names and Passwords in ODBC
	SQLBrowseConnect()--Prompt for Connection Information

	Query Execution
	SQLExecDirect()--Execute Queries Directly
	SQLPrepare() and SQLExecute()--Prepare and Execute Queries
	Queries with Dynamic Parameters

	Database Procedures Execution
	Database Procedures that Return Values
	Database Procedures with Input Parameters
	Database Procedures with BYREF Parameters
	Database Procedures that Return Rows

	Fetched Data
	SQLFetch()--Fetch Single Rows
	SQLGetData() and SQLBindCol()--Bind Fetched Data
	SQLRecordScroll()--Fetch Record Sets
	Column-wise versus Row-wise Binding
	SQLSetCursorName()--Declare Cursor
	Updatable Cursors
	Cursors versus Select Loops
	SQLFreeStmt()--Close Fetch Loop

	Scrollable Cursors
	Static Scrollable Cursors
	Keyset-driven Scrollable Cursors
	Scrollable Cursor Programming Considerations
	SQLFetchScroll()--Fetch from a Scrollable Cursor
	SQLSetPos()--Scroll Cursor to Absolute Position
	Static Scrollable Cursor Example
	Keyset-driven Scrollable Cursor Example

	Large Objects (Blobs) Support
	SQLPutData()--Send Data in Segments
	SQLGetData()--Fetch Data in Segments

	Transactions Handling
	SQLSetConnectAttr()--Enable Autocommit
	Simulated Autocommit for Cursors
	SQLSetStmtAttr()--Set Transaction Isolation Level
	Distributed (XA) Transactions
	Supported Data Types

	Date/Time Columns and Values
	National Character Set (Unicode) Columns
	Metadata (Catalog) Queries
	Error Reporting

	Termination and Clean-up
	ODBC CLI Connection Pooling
	ODBC Connection Pools: Per Driver and Per Environment
	ODBC Connection Pool Match Criteria: Strict and Relaxed
	ODBC Connection Pool Timeout

	Ingres ODBC and Distributed Transactions (Windows)
	How You Enable the Use of Distributed Transactions through the Ingres ODBC Driver
	Vnode Definitions When Using Distributed Transactions through ODBC
	Troubleshooting Distributed Transactions through ODBC

	ODBC Trace Diagnostics
	Standard ODBC Tracing
	Windows Environments
	UNIX, Linux and VMS Environments
	Ingres ODBC CLI
	UnixODBC Driver Managers
	ODBC Tracing on All Platforms--Internal ODBC Tracing
	Internal verses Standard ODBC Trace Logs
	Disable Tracing
	How You Disable Standard Tracing
	How You Disable Internal Tracing

	11: Understanding JDBC Connectivity
	JDBC Components
	JDBC Driver
	JDBC Information Utility--Load the JDBC Driver

	Unsupported JDBC Features
	JDBC Driver Interface
	JDBC Driver and Data Source Classes
	JDBC Driver Properties
	JDBC Driver Properties Generator (iijdbcprop)

	Data Source Properties
	Additional Data Source Properties
	System Properties
	How the Driver Is Loaded
	DriverManager.getConnection() Method--Establish JDBC Driver Connection

	JDBC Implementation Considerations
	JDBC User Authentication
	How Transactions Are Autocommitted
	autocommit_mode Connection Property--Set Autocommit Processing Mode

	Cursors and Result Set Characteristics
	Turn Off Bi-directional Updatable Scrollable Cursors

	Cursors and Select Loops
	Database Procedures
	Named and Unnamed Parameters
	Additional Parameter Considerations
	Executing Procedures
	BLOB Column Handling
	Large Data Objects
	LOB Data Streams
	LOB Locators
	Cached LOB Values

	Date/Time Columns and Values
	National Character Set Columns

	Data Type Compatibility
	JDBC Tracing
	Tracing Levels

	12: Understanding .NET Data Provider Connectivity
	.NET Data Provider
	.NET Data Provider Architecture
	Data Provider Data Flow
	Data Provider Assembly
	Data Provider Namespace
	Data Retrieval Strategies
	Connection Pooling

	Code Access Security
	.NET Data Provider Classes
	IngresCommand Class
	IngresCommand Class Declaration
	IngresCommand Class Example
	IngresCommand Class Properties
	IngresCommand Class Public Methods
	IngresCommand Class Constructors

	Sample Program Constructed with .NET Data Provider
	.NET 2.0 Programming Model
	.NET 1.1 Programming Model

	IngresCommandBuilder Class
	IngresCommandBuilder Class Declaration
	IngresCommandBuilder Class Properties
	IngresCommandBuilder Class Methods
	IngresCommandBuilder Class Constructors

	IngresConnection Class
	IngresConnection Class Declaration
	IngresConnection Class Example
	IngresConnection Class Properties
	IngresConnection Class Public Methods
	IngresConnection Class Events
	IngresConnection Class Constructors
	Connection String Keywords
	Data Provider User ID Options
	Enlistment in Distributed Transactions
	Enable XA Support in Windows

	System.Transactions Programming Models
	Implicit Automatic Enlistment using TransactionScope
	Explicit Enlistment by EnlistTransaction() Method
	Ingres Enlistment in a .NET Transaction

	IngresConnectionStringBuilder Class
	IngresConnectionStringBuilder Class Declaration
	IngresConnectionStringBuilder Class Properties
	IngresConnectionStringBuilder Class Methods
	IngresConnectionStringBuilder Class Constructors

	IngresDataReader Class
	IngresDataReader Class Declaration
	IngresDataReader Class Example
	IngresDataReader Class Properties
	IngresDataReader Class Public Methods
	GetSchemaTable Columns Returned
	Mapping of Ingres Native Types to .NET Types

	IngresDataAdapter Class
	IngresDataAdapter Class Declaration
	IngresDataAdapter Class Example
	IngresDataAdapter Class Properties
	IngresDataAdapter Class Public Methods
	IngresDataAdapter Class Events
	IngresDataAdapter Class Constructors

	IngresError Class
	IngresError Class Declaration
	IngresError Class Example
	IngresError Class Properties
	IngresError Class Public Methods

	IngresErrorCollection Class
	IngresErrorCollection Class Declaration
	IngresErrorCollection Class Example
	IngresErrorCollection Class Properties
	IngresErrorCollection Class Public Methods

	IngresException Class
	IngresException Class Declaration
	IngresException Class Example
	IngresException Class Properties
	IngresException Class Public Methods

	IngresFactory Class
	IngresFactory Class Declaration
	IngresFactory Class Public Fields
	IngresFactory Class Public Methods

	IngresInfoMessageEventArgs Class
	IngresInfoMessageEventArgs Class Declaration
	IngresInfoMessageEventArgs Class Example
	IngresInfoMessageEventArgs Class Properties

	IngresInfoMessageEventHandler Class
	IngresInfoMessageEventHandler Class Declaration
	IngresInfoMessageEventHandler Class Example

	IngresMetaDataCollectionNames Class
	IngresMetaDataCollectionNames Class Declaration

	IngresParameter Class
	IngresParameter Class Example
	IngresParameter Class Declaration
	IngresParameter Class Properties
	IngresParameter Class Public Methods
	IngresParameter Class Constructors

	IngresParameterCollection Class
	IngresParameterCollection Class Declaration
	IngresParameterCollection Class Example
	IngresParameterCollection Class Properties
	IngresParameterCollection Class Public Methods

	IngresPermission Class
	IngresRowUpdatedEventArgs Class
	IngresRowUpdatedEventArgs Class Declaration
	IngresRowUpdatedEventArgs Class Properties

	IngresRowUpdatedEventHandler Class
	IngresRowUpdatedEventHandler Class Declaration

	IngresRowUpdatingEventArgs Class
	IngresRowUpdatingEventArgs Class Declaration
	IngresRowUpdatingEventArgs Class Properties

	IngresRowUpdatingEventHandler Class
	IngresRowUpdatingEventHandler Class Declaration

	IngresTransaction Class
	IngresTransaction Class Declaration
	IngresTransaction Class Example
	IngresTransaction Class Properties
	IngresTransaction Class Methods

	Data Types Mapping
	DbType Mapping
	Coercion of Unicode Strings

	IngresDataReader Object--Retrieve Data from the Database
	Build the IngresDataReader
	IngresDataReader Methods
	Example: Using the IngresDataReader
	ExecuteScalar Method--Obtain a Single Value from a Database
	GetBytes Method--Obtain BLOB Values from a Database
	GetSchemaTable Method--Obtain Schema Information from a Database

	ExecuteNonQuery Method--Modify and Update Database
	IngresDataAdapter Object--Manage Data
	IngresDataAdapter Events

	How Database Procedures Are Called
	Row Producing Procedures

	Integration with Visual Studio
	Install the Data Provider into the Toolbox
	Start the Ingres Data Adapter Configuration Wizard
	Configure a Connection
	Connection String Editor (Data Adapter Configuration Wizard)

	Design a Query Using the Query Builder
	Server Explorer Integration

	Application Configuration File--Troubleshoot Applications

	A: TCP/IP Protocol
	Listen Address Format
	Network Address Format
	Connection Data Entry Information
	Windows
	UNIX
	VMS
	MVS

	B: SNA LU0 Protocol
	Listen Address Format
	MVS

	C: SNA LU62 Protocol
	Listen Address Format
	MVS
	Solaris
	HP-UX
	RS/6000

	D: SPX/IPX Protocol
	Listen Address Format
	Windows
	UNIX and VMS

	E: DECnet Protocol
	Listen Address Format
	VMS

	F: LAN Manager Protocol
	LAN Manager Listen Address--Enable Communications

	G: SunLink Gateway Configuration Files
	SunLink Gateway Configuration File
	Solaris Independent LUs
	Solaris Dependent LUs
	SunOS (or Sun-4) Independent LUs
	SunOS (or Sun-4) Dependent LUs

	H: AIX SNA Services/6000 Configuration Profiles
	Sample Configuration Profiles
	CONNECTION Profile for Independent LUs
	CONNECTION Profile for Dependent LUs
	LOCALLU Profile for Independent LU
	LOCALLU Profile for Dependent LU
	MODE Profile for Independent LUs
	MODE Profile for Dependent LUs

	I: HP-UX SNAplus Configuration
	Sample Configuration File Excerpts
	Independent LUs
	Dependent LUs
	Dynamically Loadable TP

	J: Netu Procedures
	Netu (Deprecated)
	Start Netu
	Netu User Interface
	Stop the Communications Server
	Modify Node Entry
	Modify Remote Authorization Entry
	Exit Netu

	Remote Node Definition Operations
	Add or Merge Remote Node Definitions
	Delete Remote Node Definitions
	How You Change Remote Node Definitions
	Overwrite an Existing Definition
	Delete Old and Add New Definition

	Retrieve Remote Node Definition Information
	Displayed Node Definition Examples

	Remote User Authorization Operations
	Define Remote User Authorizations
	Delete Remote User Authorizations
	Change Remote User Authorizations
	Overwrite an Incorrect Entry
	Delete and Add an Entry

	Retrieve Remote User Authorizations
	Displayed Remote User Authorization Examples

	Netu Options for Stopping the Communications Server
	Obtain GCF Address
	Stop Communications Server

	K: IPv6 Configuration
	IPv6 Configuration Overview
	TCP/IP and Ingres Communications
	Parameters for Controlling IPv6 Support
	II_TCPIP_VERSION Environment Variable--Specify Version of TCP/IP to Use
	II_GC_PROT Environment Variable--Set IPC Communications Protocol (Linux and UNIX Only)
	ii.hostname.gcX.*.protocol.status Resource--Set Network Communications Protocol

	Options for Disabling IPv6 Support
	Use IPv4 Addresses Only
	Back Out IPv6 Support
	iicvtwintcp Command--Convert wintcp to tcp_ip Protocol Setting
	iicvtwintcp Examples

	IPv6 in the JDBC Driver and Ingres .NET Data Provider
	Examples of Disabling IPv6 Support

	Index

