Ingres® 9.3

Database Administrator Guide

INGR=S

ING-93-DBA-05

This Documentation is for the end user's informational purposes only and may be subject to change or withdrawal
by Ingres Corporation ("Ingres") at any time. This Documentation is the proprietary information of Ingres and is
protected by the copyright laws of the United States and international treaties. It is not distributed under a GPL
license. You may make printed or electronic copies of this Documentation provided that such copies are for your
own internal use and all Ingres copyright notices and legends are affixed to each reproduced copy.

You may publish or distribute this document, in whole or in part, so long as the document remains unchanged and
is disseminated with the applicable Ingres software. Any such publication or distribution must be in the same
manner and medium as that used by Ingres, e.g., electronic download via website with the software or on a CDO
ROM. Any other use, such as any dissemination of printed copies or use of this documentation, in whole or in part,
in another publication, requires the prior written consent from an authorized representative of Ingres.

To the extent permitted by applicable law, INGRES PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IN NO EVENT WILL INGRES BE LIABLE TO THE
END USER OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USER OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF INGRES IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The manufacturer of this Documentation is Ingres Corporation.

For government users, the Documentation is delivered with "Restricted Rights" as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Copyright © 2009 Ingres Corporation. All Rights Reserved.

Ingres, OpenROAD, and EDBC are registered trademarks of Ingres Corporation. All other trademarks, trade names,
service marks, and logos referenced herein belong to their respective companies.

Contents

Chapter 1: Introducing Database Administration 15
| TR I o 1 T3 U o = PR 15
8 T 11T o =P 15
Database Administrator Responsibilities......cvviiriiii i 16
Database AdminisStration SUMMAIY ... e e e e e e e e et e e neeananeananss 16
LT g = o 1O I == T I o T 1 1 P 18
Query Language Used in This GUIdEiuiiiiiiiiii i i a s e et e e e e e e eeannans 19
System-specific TeXt in thisS GUIAE ...t e e 19
Terminology Used in this GUIAE ...t eeens 19
Syntax Conventions Used iN this GUIAE ... c.iiiuiiiiii i i i i i e e a e e an e aaneaaes 20
Chapter 2: Creating Databases and Using Alternate Locations 21
Types of Files in @an INgres Databaseieiiiiiiii i 21
Working With Database ObjeCtS. . ..uuiuiiiiii i et a e e aneans 22
Createdb Privilege .. . e et 22
[(o XV B = [=] o= EY I K O =T) (=T P 23
Extend and Unextend a Databasec.cvviiiiiiiiiiiiii 24
Relocate Database Files ..uuiiuiiriiiii i et 24
HOW a Database IS DIrOPPEAcuiiiiiiiii ittt ettt e e e s e e e aaeas 25
(o Tor=) 0] g FR=] T L = 1= 25
(D] = YUl o Yo o o 1= PP 25
P L= g = L < o o= o o =P 27
WOrKing With LOCationS .. .uuiiii it e a et a e ane e ane e aneaanes 33
(101 [1T TSS90 Yo] gl W IS] T T [o o= | (o o = 33
AT o G I Yot o 1= 35
Chapter 3: Managing Tables and Views 37
BIE=] o (I =T g =T 1< 0 1= o 37
Tools for Creating @ Tableot 38
Data Type Conversion Functions for Default Valugscviiiiiiiii i ea 44
(0 11 o = 1 =P 46
Techniques for Changing Table ColUMNS. ... e e 55
Techniques for Moving a Table to @ New LoCationccviviiiiiiiii e 58
Assign an Expiration Date t0 @ Table ... 59
Purge EXpired Tables ... 59
VB S ettt 60
NVl e B =T g 1T o] o I PP 60

Contents iii

Working With View ODJeCS ... e e s 61

(8]0 =Y =T o] g IV A 1= L PP 61
1S ol = 0 = 1= P 62
Tools for Managing SChEMAS ... i e eas 63
Synonyms, Temporary Tables, and ComMmMENES.uiieiiiiiiiiii i e e aeeaeeaeans 63
3V T)V 0 63
LKL 0T = V2 = 0 = PP 64
Comments to Describe Tables and VIEWSviiiiiiiiiiiii i 66
Chapter 4: Populating Tables 69
Methods of PoOpUlating Tablescouiiniii i et 69
(0] o) A w1 =T =T oY Y 1= P 70
Copy Into (Unload Data) and Copy From (Reload Data)ccoviieiniiiiiiiiieiiie e e e e 70
File Name Specification on the Copy Statemento 71
With-Clause Options of the Copy Statement.. ..o e 71
Copy Statement Operationo 72
Binary and Formatted CopYing ... oot 72
18] q=Ta o I L aTelg=Tn g T=T] =1 I Go] o) A PP 73
Copy Permissions and INTegrities. ...t e e e 74
LOCKING DUFNNG @ COPY -ttt ete ettt st et et e s e st st s e s e st s e s e s e s e s e s e s e ae s e sneananess 74
[T =10V @] o)7 | o T 75
Copy Data into @ BiNAry FIle ... e et e e e e e e e e aneas 75
Reload a Table in Binary FOrmMat. ... e e aes 76
[2lo] g g g F= uut=To I @] oY1 [« HFS PP 76
Column Name and Format SpecifiCationsccouiiiiii e e e 76
Copy Statement and NUIIS ... e 81
Copy Data into @ Formatted File....cooreiiii i i e e e e e ees 82
[Lo =T I oY g g Tt =Ta [B - = 83
BUIK 0P thiititiii ittt aanarans 84
(S 10] @{eT)V] aTe 2 =Ta [U 11 /=T 0 1 1=] oL PP 84
Transaction Logging During Bulk and Incremental CopYcouvviiieiiiiiiiiiiiiieiiie et e e e 84
Bulk and Incremental CopY ProCESSING . .c.uiiiiiii ittt e e e eneas 85
BUIK COPY With=ClaUSES ..ttt ittt s st e e et e et et e et e tae et e e s e e s e e tae e san e saneraneraneranesn 86
Example: Perform a Bulk Copy to Create a Hash Table ... 88
Example: Perform Bulk Copy and Create B-tree Tablec.coviiiiiiiiiiiiiii e 89
Example: Perform Bulk Copy into @ Heap Table ..coiiiiiiiiiii e 89
L= 1 (o= T I @0 = = o [o O 90
Requirements for Using Fastload ... 90
Perform a Fastload Operationc.ciiiiiii i e e 91
Data Loading in @ Multi-CPU ENVIFONMENTottt e e et s e e s s e e s e e e e naanens 92
Advanced Use of the Copy Statement.o 92
Populate Multiple Database Tables Using Multiple FII@Scviiiiiiiiiiiiiicicccri e 93

iv Database Administrator Guide

Load Fixed-Length and Binary RECOIASiiuiiuiiiiiiiii it e e eeneas 95

Considerations When Loading Large ObJectS ...uvvviiiiiiiiiii i as 96
Large Data Loads with the Set Nologging Statement...... ..o 98
Suspend Transaction LOGGINGciuiiiiiiiiiii ittt st e st e e e n et e e e s 98
Effects of the Set Nologging StatemeEntcoiiiiiiii i e e aaeas 98
Before Using the Set Nologging Statementccouiiiiiiiii e e s 99
Restore Transaction LOGQGiNg ... ittt s e aaeaaaeens 99
Example: Use a Set Nologging Application to Load a New Database..........cccoevviiiiiiiiiinnnnne, 100
Example: Use a Set Nologging Application to Load an Existing Databaseccoeoviviininnns 100
Successful Use of the Copy Statement. ... 101
How to Check for INTegrity ErTOrS .ottt e et r e r e s re e re e reeaaes 101
] Lo T=Te I gV =] o] o] 1= 0 1= P 102
Error Handling with the Copy Statement..... ..o e 104
Troubleshooting Tips for Data Loading ...c.viieiiiiiiiii i s a e e e e eanens 106
Chapter 5: Loading and Unloading Databases 107
(6] 9] oT=To I=Tq o I @e] 0) A O] oT= o= (o] o 1= PP 107
Privilege Required for Unload Operationceiiiiiiiii i s e r e sree s e eaneeaneenes 108
Privilege Required for Copy OPerationo.ic i e e e e e e s e e e e aeans 108
18] Lo = o @7 o= = f o 1A 108
Objects That Are Unloadedc.cviiiiiii i i i e e e e a e e e aaneaaneaaneans 109
Ways to Perform the Unload Database Operation........c.ccouiiieiiiiiiiiiiii e e eee 109
Options on the Unload Database Operationcoviiiiiiiiiii e aaeaeas 110
Files Created During the Unload Database Operation.........ccciviiiiiiiiiiiiiic e 110
Unload in ASCII Or Binary FOrMAt.....ouiuieiii it et e e e e e e e e e 111
Floating Point Specification for Unload.........ccoiuiiiiiiiiii e 111
Unload to ANOther INSEANCE ..u.uiuiiiiiiiii e e 112
Locking While Unloading @ Databasec.oieiiiiiiiiiiiii e e e e e e 112
(O00T)V @ o= o= o [0 o N 113
Ways to Perform the Copy Database Operationcvvieiiiiiiiiiii i i i eeans 113
Options on the Copy Database Operationccouiiiiiiiiiiii e e enaaas 113
Objects that Are Copied ... e 114
Scripts Produced by the Copy Database Operationcccooiiiiiiiiiii e 115
Copy in ASCII or Binary FOrMatoiuiiniiiiii i e e e naenaeas 117
Floating Point Specification for Copy Databasec.coiiiiiiii s 117
Copy a Database to ANOther INStaNCE ...vviiiiiiii i e e aneaeans 118
Locking While Copying @ Databasecc.iuiiiiiiiiiiiii et e e 118
Copy Individual Database ObJeCES.....c.iiuiieiiiiii i e e e e 119
(o] aa] anT= g Te B e ol o] = PPN 119
Prepare to Copy @ Database ObJECEoeieiiiiiii e e 119
How to Copy @ Database ObjJeCtcoviiiiiiiiii e 120
(0] o) VA =1 o 1= 13 PP 120

Contents v

(00T) 0T o o 1= 121

(0] 0} VAV o] o] Tor= | u {o] o - PPN 122
L0071 =T 0T o 123
Increase Object Limit 0N CoOMMaNAS.....ouiiriieiiiiiiii e e e e aneneeens 123
Ways to Copy and Relocate a Databasecovvviiiiiiii e 124
Example: Copy a Database to a New Database.......ccovviiiiiiiiiii e 124
Example: Copy a Database to a New Database and Use New LocationS.........ccvevviivininnnnnnnn. 124
Example: Copy a Database to a New Database and Swap Contents of Locations.................... 125
Generate XML and Import XML Operationsciuieeiuieiiieieeireeeae e e e e se e e e rarne e sneereanes 125

Chapter 6: Changing Ownership of Databases and Database Objects 127

(DN T o= [SR @ ATV =] o] o1 o PN 127
How to Change Ownership of @ Database ObJeCtccouiiiiiii e 127
Prepare to Change Ownership of a Database Object.......ccoviviiiiiiiiiiii e 128
Change Ownership of @ Database Objectcocviiiiiiiiii e 128
Change Ownership of Tables. ... e raas 129
Change Ownership of ApPlCatiONS .. .oiviiiiiii e e aeaaens 130
Change OWNErship Of FOMMIS vttt s et a e e e e e e a e aneanneaaneans 130
Change OWNership Of REPOITSt e e e e e naaas 131
How to Change Ownership of @ Databaseccoiuiiiiiiiiiii e 132
Chapter 7: Maintaining Databases 135
Ways to View Database ObJeCES.o e e e 135
View Database Objects that Belong to Another User.......c.viviiiiiiiiiiii e 135
Ways to Delete Database ObDJECES ..iiuiiiriiiii i i e 136
Routine Database MaintenanCe TIPS «...uiue et e e et et e s eerrae e aneanenaeaens 137
Operating System MainteNaNCe TIPS .. .uiuiii i et re e e raesne e e anens 138
A S 1Y g Lo A D E 1 0= o = [T PP 139
Databases Shared AmMONg MUILIPIE USEIS......couiuiiiiie it e e aneeeaas 140
How File Names Are Assigned for Tableso e e s 140
Select File Names Associated with Tablesccviiiiiiiiii 140
Retain Templates of IMportant Tables ... e e eeas 141
Chapter 8: Ensuring Data Integrity 143
Data Integrity Through Integrities, Rules, and EVENtScooiiiiiiiiiiiiiiici e a s 143
= o = 143
Constraints Compared with INtegritiesooiiniiiii s 144
Working with Integrity ODbjJects. . .cvirii i e 145
HOW INtEgrities Are USEA ...cuvieiieiiii i et e e e et e e a e e e e e e e aeens 145
AT E== T o I =T | == 146

vi Database Administrator Guide

] = 146
Rules and Database ProCeAUIESuiuiiieii it e e e e e e e aenes 147
Working With RUlE ObDJECESueiiiii e reeaeas 147
HOW RUIES AF@ USEA ..viuiiiiiiiiiiii it e et es 147
U LT3 T o Lo B N =Y 1= Lot o [] o = PP 149
Enforcing Referential INtegrityc.ocoiiiiiii s 149
Enforcing General INtegrities ..uuiiuiii i e 154
Enforcing General-PUurpoSe RUIES.t 154
The Copy Statement and ENforcing RUIESvieiiiiiiii e 157
[1= o] I | = 157

(D= = [o1 Tl Y=Y oL PP 158
Working wWith Dbevent ObJeCES . ..o e e e aeraeas 158
How Database EVENTS WOIKuiuiiiiiiiiiii e 159

Chapter 9: Choosing Storage Structures and Secondary Indexes 165

Storage Structure TermMiNOIOgYo vt e r e e e e sneaernernens 165

Storage Structure and PerfOrmMaNCe t.uuiii ittt it et e e et e st e e seestesn e snerneaneanns 166

Types Of SEOrage SErUCTUINES e ettt e e e e e e ra e e aneneeanan 166

Default Storage Structure of New Tables.o e 167

[[eT=T o IS o r= T TSI o F [LB | o = 167
Structure of @ HEap Table ... e 168
Heap as Structure for Loading Dataccocviiiiiiiiiii i e s e e aeas 169
L e L= R o T U= [T T o PPN 170
[=TT o 0 I 018 o] 1= T Yo] 1 T R 170

Hash StOrage StrUCTUIE ... v e e e e e s e e e e raernens 171
Structure of @ Hash Table......vuiiiii 172
Retrievals Supported by Hash ... e 175
WHhen T0 USE Hash ..ot e r e e s e s e s e e s e s s e e rn e sn e sn e snneanneannenns 176
[1] A T I oYU o] 1= [T [T PSP PP 176

ISAM SEOrage SErUCKUNE. ...ttt e st e e st e e e e 177
Structure of @n ISAM Table. ... e e e 178
Retrievals SUPPOrtad DY IS AM . ..ttt a et e e e e e e an e s an e san e aan e aaneaans 180
WHEN 10 USE IS AM Lttt et ettt e ettt e e et et e et e e e s e e e e e e e e eeeeeeanes 181
ISAM TroublesShOOtiNg . ..o e e 181

L ST o] =T [Tl o [ol 1 = P 182
Structure of @ B-tree Table ... e 183
Associated Data Pages in @ B-tree Table.....ccoiviiiiiiiii 185
Index Growth in @ B-tree Tableoviiiiii 185
[WoTelq gl =T T = B =T 1= o = 186
Sorted Order in @ B-tree Table ... 186
Deleted ROWS iN @ B-tree Tableiiiriiiiiii e 187

Contents vii

LT TS I o T T ST = L o T 187

B-tree TroubleshOOting ...cuiiii i e e 188
LS AN 0Tl = T o =T 7 188
When to Choose ISAM OVEr B-trEe. ..o e e eaes 189
When to Choose B-tree Over ISAM. ... e 189
Storage Structure CompariSON SUMMAY ...uuiuieiiiiiiiairsetsasae e asaas s taaarasatsataasaassanans 190
S22 191
LGS} 2 L0111 0] o 1= PRSP 191
] <Tole] gL =T o VA = V=R 193
Y =Tolo] T =1 2 {a Ua [0t <N 194
(o] g g o IR g T LYo [0 (o PPN 195
Implementation and Overhead of Secondary INAEXEeScuviviiiiiiiiiiiiii e 195
L Wy =TI S] <Tolo T o [= T oY g Lo 1=t G PP 197
Secondary Indexes and PerformanCe ..uovui it iii i e e 199
Forced Use Of SECONAAry INAEXESue ettt et et e e e s e e e e e e eeaaanenes 201
L e YTl a e F=T v £ T = (= 201
LI = 202
Chapter 10: Maintaining Storage Structures 205
Storage Structures and PerformancCecouviiiiiii e 205
L1 (ST =T [PRI 206
Display the Number of Pages in @ Table.... ..o e 207
Limitations of Heap STrUCTUNE ..o e 208
[\ oo 1V od e Tel=Ta [U1 PP 209
Key Columns @and PerfOrmManCe. ittt et e e e et e e e e e r e e e e eaanees 209
Tools for Modifying StOrage StrUCLUIESiiviii i e e e e e raeas 209
Cautions When Using the Modify ProCedUIe......ciiuiiiiiii i s e anea s 210
Options to the Modify ProCEAUIE.c.iieiiie et e e et a e e e e e aeeraans 210
ShriNKiNG @ B-tre@ INAeX . .cuiiniiiiii i e e e e eaeas 224
Extending @ Table Or INAeX. ..o a e 226
Modifying SECONAAry INAEXESuiuieiie ittt et e et et e e e e ae e s ean e aneananenes 226
Remodifying B-tree Tablescouoiiiiii i 228
Common Errors During the Modify ProCedureooieiiiiiii i i i eaeaas 230
(@Y= (o N VA N7 =T = o =T o 4T o o P 230
Measure the AmMount Of OVErflOW. ... e 231
REPEtitiVE KBY OVeI T OW ettt e et er e e st e s e e s e r e e re e rnerneanes 232
Poorly Distributed OVErflOWceieiiiii et et e e e e e e nee e 233
Overflow and ISAM and Hash Tables ..o e aae e 233
B-tree Tables and OVErflOW ... 235
Secondary Indexes and OVEIrflOWieieiiieiii et e e e e ee e 236

viii Database Administrator Guide

Chapter 11: Using the Query Optimizer 237

Data and Query Optimization ...oo.eiiri i i aas 237
Database StatiStiCS . uue e e aaa 239
Generate StatistiCS. . .ui i e 239
Assumptions of the QUEry OptimMizZer. ..ot e e e eareaanens 240
Resources Required During Optimizationoooieiiii i e 241
System Modification After Optimizationc.oiiiiiii e 241
Information Collected by the Optimizer ... e 242
Types of Statistics t0 GENErate ... e 243
(O00] 18] o1 0 TS = o =] = PP 248
Histogram (Optimization OUETPUL) ..iieiiiiiiiii i e a e e anes 249
[T e [=T 0 T O 1 PP 253
Statistics and Global Temporary Tables ..o e 254
When to Rerun Optimization ... e e e e e 256
Example: Before and After Optimizationoiieiniiini e 257
L@ TUT=T oV =Tl | o o T =] 1= o 1= N 258
INFOrmMation ON @ QE P ..uiiii i i et aaraaas 259
YTV T =t 260
LIS O T T A] = 261
(=] o] a1 et= 1 @] = PP 262
Types Of NOAES iN @ QEP ...t ettt e e et e e e e e s e e s e e rn e e rnaneananennns 263
1o ol Lo o 1T T o T= 1] = S 263
NON-JOIN NOAES N @ QE P ... it et a e ae e ae e aneeanes 264
JOIN NOAES 1N @ QEP 1ttt e e et e e a e e aas 268
Multiple Query EXeCULION Plansot 281
1o SR @00 gY o] LoD @]] = PP 282
Parallel QUENY EXECULION ... cuei ettt ettt e et et e et e e e e e e e e s a s e e e s e e e e e sneeananenenss 283
Types Of ParalleliSIm ... et 284
Enabling Parallel QUEINY Plans . ..ottt ettt et ae e et ae e e e an e s n e ean e raneaaes 285
Sample Parallel QEPS.ot aeas 286
(@ o) o]0 01 4= g T g =0 YU N 288
(o] g} o] MOTolula T4 gl Nl o g (=T LU | PP 288
Greedy OpPtimMIzZation ...t e 289
Control Greedy Optimizationco.iieiii e 290
Summary for EValuating QEPSuiiiiii it e 291
Specialized StatiStiCS PrOCESSING .. .cuiui ittt et e e e e e ra e e nana e rae e anenes 291
Display Optimizer StatistiCs .. cvueiiiii it aaas 292
o= Lo E o Lot T T I = o T = 294
Sampled Optimizer StatiStiCS ... e 297
(O00Tg aF oo] =T o 111 0 T | or= o =N 299

Contents ix

Chapter 12: Understanding the Locking System 301

(o] aTel] g ¢=] oAV A1 0 Te M @fe] a1 11 (=] o) PP 301
Locking System ConfigUIrationcoeiiieiiie ittt e e e e e s e e e e e e e rnae e 302
o T ol QR 1NV == PP 302
o T Q0T 1= 303
o Yol S I PP 304
How the LocKing SYstem WOrKSttt e e e eeas 305
[Yol [2 =T [B 1= PP 306
Available Locks in the System ... o e 306
[Yol Q€] = | PP 306
Lock Mode Compatibility ..ovueuieiii i e 307
How the Default Lock Mode is Determinedciueiiiiiiiiiii i aaeaaans 308
How the Locking Level is Determinedc.oieiiniiiiiii et e e e eaeas 308
SUMMANY Of DEfaUIt LOCKS . .utiiiiiiiiii ittt e e e e s s e s a e e an e an e an e anneanneannens 310
] =TT [g T e) X Yo C= P 312
Example: Single User LOCKING ...ttt st st e e e e e e e e raesneas 313
Example: Multiple User LOCKING «.vuiiriiiii i ettt e e s s e e a e e n e e a e anneans 314
LA LT e 0T il o Yol PP 317
Ways t0 AVOIA LOCK DEIAYS ...vieiieiitiiti ittt s e e st e s e s e s e s e s e e e s e snesaeaneaneanens 317
User-Controlled Locking—SET LOCKMODE......ictiiiitiiitiite ittt tite e siaessesaessessesnneanneanneans 318
Ways to Specify a Set Lockmode Statement..........oviniiiiiiii e 318
Range of the Set Lockmode Statement.o 319
When to Change the LOCKING LeVEl .. .uiiiiiii i e e e anea s 320
The MaXIOCKS ValUE ... ettt e et et e et eneaneans 321
Timeout Value for @ LOCK Wailveiiriiie i i v e e v eeree s ee s e reeraernnernesnernennns 321
(2T To | (o Yol X @] o) o o [P PP 324
| K] F= 1o T I PP 328
[0 L= T | o T o 331
(D 1T To | Lo ol S =t =10 41 o] L= T PP 332
Deadlock in Single QUery TransSaCtioNsciuiiieiii et e e e 333
Deadlock in APPlICAtIONS ... 336
ReTe] E30 (o] g\ o] aTi o] g1 g Lo I Mool 1{1 1 [PR PP 338
< o] g aaT=TaTel=l (oY) o] PP 338
Set |0CK _trace StalemM N .. i i e e 339
[oYol S o = ol O 18 | of o 10 | PP 340
[Tl S = T TN == 0]] L= PP 342
Performance DUFNG CONCUITENCY ...ttt ettt et e e e e st e e et st s e e e sae st e s saesaesassanaaneaneanens 344
Approaches for Handling Heavy Concurrent USAge ...c.viiiiiiiiiiieiiiiiie i it eiie i iiaesnnenanenanens 344
The Never Escalate ApProach. ...t e e e e 345
The Table LOCK APPrO@Chui e e e e s r e ae s e e n e e anens 346

x Database Administrator Guide

Chapter 13: Performing Backup and Recovery 347

RN (SR L=T=Te IR] gl = 1= Tl (U o T PPN 347
LI gl o= T o = | B 2 =Tl o Y 7= o 348
oo [|1 Ta S V=1 o < o o P 348
[o1 0 Te I t=Tol 111 Y/ PP 348
LOg SPace RESEIVALION ..uuiuiiiiii e 349
R COV Y PrOCESS .t ittt e e s e e s e e 349
AT CIV I PrOCESS 1ttt e 349
Data Verification Before BaCKUPuiuie ittt e e e e s e e e e e e aeaneaaeaeas 350
Methods of Verifying Data AcCessSibility.....ccovuiiiiiiiiii e 350
StatiC OF DYNaAMIC BaCKUPD .ttt e et e e e e s e e e e te e sae e sae e eae e aneernnerneas 350
(2=l (8T o 30 o) V2 ©1 g 1= T d o o T 1 =1 351
Table-level CheCKPOINTS ... e r s n e e e aneeas 352
Checkpoint @ Databasevv i e e 352
Checkpoint Selected Tables ...t e st e e e eeans 352
Checkpoint and Roll Forward of Tables ... 353
The Checkpoint TeMPIate File ..o e e e e e et e e e eee e 353
Online and Offline CheCKpPoints.c.ueie e e ee e 353
Checkpoints @nd LOCKINGuiei it e st e e et e e ra e sreaneaneanernans 354
Delete Outdated CheCKpOintsuiii i e e e e e an e raneaaes 355
Checkpoints and Destroyed Databasesc.ouieiiiiiiiii e 356
Parallel Checkpointing in UNIX ..ot e e e raeas 356
Putting Checkpoints on Tape in WiNAOWSiiuiiieiii i e e a e e anes 358
Putting Checkpoints on Tape in UNIX ..o e e e e e e e e e e ns 358
Putting Checkpoints on Tape in VMS ... ae e 363
0o 0T = 364
Tools for Performing JOUMMalingveie it e e e e e e e e e e e e enaaes 364
Database or Table-level JoUrNalingoooiiiiiiiii e e e 364
(D 1F=1 o] (=T 1o 101 o o =1 1 [PP 366
Stop Journaling 0N @ Table ... s 366
Methods for Stopping Journaling on All Tables ... e 367
Database Characteristics Affected by Alterdbceoiiiiiiii 369
Audit Trails With JOUMNAIS ...t e e e e e e e e e aneaes 373
o 1= Lol U I 02 @] 0 3V 1 o T NP 378
Back Up Tables with Copydb Commandoceiiiiiiiiiiiii i e e e eaes 379
(2=l 18] o 30)2 ¥ o1 Fo = o [1o Vo [0 380
LT 1< 380
o111 o] atVE= [e I @] =] =] o] o [PPSR 381
Tools for Performing a Roll Forward Operation.........o.ve i e 381
Recover a Journaled Databaseccooiiiiiiii s 382
Recover a Non-Journaled Databaseoovviiiiiiiiiiiiii 382
Recover a Database from Tape CheCKPOINTSciuiiieiiiii e e ee e 383

Contents xi

Parallel Roll Forward from Disk (UNIX)iueieiiiiiiiiii et e e anneaneaans 383

Parallel Roll Forward from Tape (UNIX) .ottt e s e e e e re e re e reene e ne e aneennes 384
Table Recovery Using ROI FOrWard ...t e e e e e e e e e e 385
Retract Changes Using ROI FOrWard.......co.oiiiiiiiiiii it st e e e e eaeas 385
Recover a Subset of Data Using RoIl FOrwardccoiiiiiiiiiiiii e 386
Recover a Database from an Old CheCkpOint.......o.viieiiiiii e 387
Recover from the Loss of the Transaction Log File........ccooviiiiiiiiiii e 388
Checkpoint Template File DeSCriprion ...t e et e e e reree e 389
(OfaT=Tol o] [a1l =Ta o] F= 1 =3 @Yo [= TP 389
SUDSEITULION Parameters. .. 391
Valid Code Combinations in the Checkpoint Template Filecccoviiiiiiiiiiiiii e 392
Format of the Checkpoint Template File in WiNdOWSoiuiiieiiiiii e 394
Format of the Checkpoint Template File in UNIXo 395
Format of the Checkpoint Template File in VMS ... e 396
Backup and Recovery of the Master Database (iidbdb)ooeiiiiiiiiii e 396
The iidbdb and Checkpointingcoviiiii e e 396
Set Log_Trace Statement—Trace LOg WHitesS ..ocveiiiiiiiii i e e nneeanas 397
Chapter 14: Calculating Disk Space 399
Space Requirements fOr Tables.o et 399
Calculate Space Requirements for Heap Tables.....ouiiiiiiiiii i i eeaas 400
Calculate Space Requirements for Hash Tables.........coviiiiii i 400
Calculate Space Requirements for ISAM Tablesooviiiiiiiii e 401
Calculate Space Requirements for B-tree Tablescciiiiiiiiiiiii i e 402
Calculate Space Requirements When ROWS Span Pagesooviiiiiiiiiiiiiiiiiii e 403
Space Requirements for Compressed Tablesoiiiiiiiii e 404
Tracking of Used and Fre@ Pages ...ouiiiiiiie ittt ittt ettt e et e e e e s aerre et e eneeeeanees 404
Calculation of Allocated Table Size.....i.iiiiiii i e a e aneaneanans 405
Space Requirements for JoUurnal Files e 405
Space Requirements for Modify Operationsoiiviiiiiiiii i e e 406
Factors Affecting Space Requirements for Modify Operationsccooeviiiiiiiiiiiiii e 407
Summary of Space Requirements for Modify Operationscccovviiiiiiiiiiii i i reens 407
SpPace ReqUIrEMENES fOr SOITS vttt ittt ittt e s e e e tee s eeseeeaeernerneaneas 408
IR T T =T oY o Y o =T O 409
Orphaned SOt Files. ..ottt 409
Factors Affecting Sort PerfOrmManCe .. cui it e e a e a e an e e ean e eaneaans 409
Chapter 15: Improving Database and Query Performance 411
Locking @and CONCUITENCY ISSUESuiiuiiiiiie ittt ettt et st r e st st st st st st s e e e sea e e e aneaneans 411
Lock Waits and PerformanCe.......vuiuiiriiiiii 412
Multi-query Transactions and PerformManCe.ve i e 413

xii Database Administrator Guide

(0 1Y Z=] il 10XV Uo I = =1 {0 1.2 = 1= 414

Set Statements and LOCKING STrategy ..o.vviiiiiiiii i i i i i 415
Database MaiNteNaNCe ISSUEBSuiueieiiie ittt et e e e e e e e e e a s e aesneernaeananeananaeaenn 416
Optimization @and PerfOrmManCeoiiiiii i e e e 416
Table and Index Modification and PerformancCecocvuiiiiiiiiiiiiii 417
System Modification and PerfOrmManCeo.iuiiieiii it as 417
Verification and PerfOrmanCe ..o et e et e et e e e rr e e e 418
[DIY (o] I K ST = Ta o B o= 0] 0 g T=] o Lol TP R 418
Hierarchy for Diagnosing Design-based Performance Problemsccoooiiiiiiiiiiiiiiiiieen, 419
Storage Structures and Index Design and Performanceoooviiiiiiiiiiiiiiiiii s 419
[GYADI o] g 1= 1o Lo B 2=1 o] 0 1 4 1= 1 [0l I PP 419
Query Design and PerformanCeot 422
Information Needed By CUSTOMEr SUPPOIT ...uiieiiiii e e e e e e aaens 422
Isolate and Analyze the Problem QUEIY ... i e as 423
(O ST L = TR I =y A =] S 424
Appendix A: System Catalogs 425
Standard Catalog INTer ate ..uuiri it et e e e e e e 426
Example of HELP VIEW and HELP Statements........o.vieiiiiiiiiii i e e e 427
Standard Catalogs for All Databasescoviieiiiiiiiiii e 428
Standard Catalogs for iidbdb.......c.eiiiii e 469
Mandatory and Ingres-Only Standard Catalogsooeiuiiieiii i 484
Mandatory Catalogs With Entries Required.........ccoieiiiiiiiiiii e 484
Mandatory Catalogs Without Entries Requiredccoviviiiiiiiiii e 485
g To =TT @] oY VA @] = Lo o =P 485
Extended System Catalogs ...oi.viiiiiiiiii s 486
Organization of Extended System Catalogscuvviriiiiiiiiii i 486
D=1 = B D (ot o] g = VA = 1 =1 Lo T - P 488
Object IDs in Extended System Catalogso.viviiiiiiiiiiiiiii e aaeaens 489
Copying the Extended System Catalogs....oouiiiiiiiiiiii i i i i e e aneanans 489
Catalogs Shared by All INGres TOOIS .. .uuuii it et e e e e e eeaaans 490
Sample Queries for the Extended System Catalogs for SQLoiviiiiiiiiiiiii e 495
Example: Find Information on Every Report in the Databasecccoviiiiiiiiiiiici e 495
Example: Find the Name and Tabbing Sequence Number of Fields on a Form........................ 495
Example: Find Information on Every ABF Application.........c.ccviiiiiiiiiii e 496
Example: Find Information on All Frames and Procedures in an Applicationccocvveene. 496
Example: Select Object INformation. 497
FOrms System Catalogsoiuiieiii i s 497
ii_encoded_forms Catalog .o.uuiiiiii i s, 497
[T =] (o E= = =1 oY O 498
L e T =1 =1 [T 501
L o 1 g IO =] [o T PP 503

Contents xiii

ABF System Catalogsueiieiiiii s 504

(=1 o] o = 1Y ST O | = | [Yo PP 504
ii_abfdependencies Catalogccouiiieii i 505
ii_abfobJects Catalog .. .oviui i e 506
ii_sequence_Vvalues Catalog .. occiiiiii i 508
(0]] YAy = 0 T = =1 (oo 3P 509
Ii_JOINdefs Catalog . .couiiii i e 509
(o]] at=1aa L= OF] =] Lo e PR 511
Report-Writer System Catalogs .. .oue e et aaa 511
1i_rcommands Catalogcoueiuiiiiii e 512
[=] o Yo] g g O | =] Lo Yo [PP 513
VA (o] A IS A (< g = | =1 Lo Yo 1 P 514
1 framevars Catalog ... i e 515
[g T=Ta IS F=1 g FSI O 1 =] Lo o FE PP 515
T2 011 TR @ = Lo e P 516
Hi_VAtabeols Catalogcoueieiiiii i s 516
(TR e | = | o] [T O] =] Lo T A PP 518
Additional Vision Catalog Information........couviieiiii e 520
DBMS System Catalogs .ouiuiiiiiii i e 520
System Catalogs for All Databasescviuiiiiiiiiii i e e e e ieeaieeannens 520
System Catalogs for iidbdb ... e 522
Miscellaneous System Catalogscoviiiiiiiii e 523
Appendix B: Ingres Limits 525
SUMMIANY Of LIS ettt et a et s e e e a e e e e s e e e e e aaae e e enenanes 525
Index 527

xiv Database Administrator Guide

Chapter 1: Introducing Database
Administration

This section contains the following topics:

In This Guide (see page 15)

Audience (see page 15)

Database Administrator Responsibilities (see page 16)
Database Administration Summary (see page 16)
What You Need to Know (see page 18)

Query Language Used in this Guide (see page 19)
System-specific Text in this Guide (see page 19)
Terminology Used in this Guide (see page 19)

Syntax Conventions Used in this Guide (see page 20)

In This Guide

This guide provides Ingres® database administrators with information about
creating, maintaining, backing up, and recovering databases.

Audience

This guide is primarily intended for database administrators. In some cases,
however, the responsibilities of the database administrator and the system
administrator overlap. Therefore, some of the tasks and responsibilities
described in this guide require permissions typically given to the system
administrator, but not necessarily given to database administrators. In these
cases, you must work with your system administrator to carry out these
responsibilities.

Introducing Database Administration 15

Database Administrator Responsibilities

Database Administrator Responsibilities

In Ingres, anyone who creates a database becomes the database administrator
(DBA) for that database. Furthermore, there is no limit on the number of DBAs
that can exist at a site.

Note: Before you can create a database, you must have the createdb
privilege.

The DBA has permission to do the following:

m Create and destroy databases

® Manage public database objects

® Maintain database and query performance

® Monitor locking to maximize concurrency

® Back up and recover the database

®m Authorize databases to use alternate locations

® Manage user access to data through grants on tables, views, procedures,
and other objects.

For information on managing user access, see the Security Guide.

Database Administration Summary

The following table is a quick reference to the statements, commands, and
utilities used to perform database administration tasks. Refer to the
appropriate chapter for details. Most of these tasks can be also performed
using the Visual Tools on Windows.

Task

Statement, Command, or Utility

Authorize user access

CREATE USER

(For details, see the Security Guide.) ALTER USER
DROP USER
accessdb

Create and delete databases createdb
destroydb

Define locations and extend a database to use CREATE LOCATION

alternate locations

ALTER LOCATION
DROP LOCATION

16 Database Administrator Guide

Database Administration Summary

Task Statement, Command, or Utility
accessdb
Change locations of or duplicate a database relocatedb

Create tables, views, and schemas

CREATE TABLE
CREATE VIEW
CREATE SCHEMA AUTHORIZATION

Use supplementary table statements as needed

DECLARE GLOBAL TEMPORARY TABLE

Copy data from tables into files COPY INTO
Populate tables with data COPY FROM
INSERT
Unload and then copy data from one database to unloaddb
another copydb
Change ownership of a database or database object unloaddb
copydb
copyform
copyrep
Maintain database tables verifydb
Grant permissions for access to tables, views, and GRANT
database procedures REVOKE

(For details, see the Security Guide.)

Grant database privileges

(For details, see the Security Guide.)

GRANT ON DATABASE
REVOKE

Create, alter, drop groups and roles

(For details, see the Security Guide.)

CREATE GROUP
ALTER GROUP
DROP GROUP

CREATE ROLE
ALTER ROLE
DROP ROLE

Create, execute, and drop database procedures

CREATE PROCEDURE
EXECUTE PROCEDURE
DROP PROCEDURE

Set the levels of security auditing and monitor the
security audit log file

ENABLE SECURITY_AUDIT

DISABLE SECURITY_AUDIT

CREATE | DROP | HELP SECURITY_ALARM
REGISTER TABLE

Introducing Database Administration 17

What You Need to Know

Task

Statement, Command, or Utility

REMOVE TABLE

Establish integrity constraints for data

ALTER TABLE...ADD CONSTRAINT
CREATE RULE

DROP RULE

CREATE PROCEDURE

Define database events

CREATE DBEVENT and other DBEVENT
statements

Select storage structures of tables and create
secondary indexes

SET RESULT_STRUCTURE
CREATE TABLE AS
CREATE INDEX

Change storage structures and minimize overflow to MODIFY
maintain r rformanc

aintain query performance usermod
Optimize database performance by collecting optimizedb
statistics for the query optimizer, rebuilding system

. L sysmod

catalog table indexes, and monitoring query
execution plans statdump

Manage locking strategies implemented by
application developers

SET LOCKMODE

Back up and recover the database

ckpdb
auditdb

rollforwarddb

Monitor and improve performance of database
queries

Various statements, commands, and utilities

What You Need to Know

This guide assumes that you are familiar with the windowing system on the
target platform of the installation, including terminology, navigational
techniques, and working with standard items, such as menus and dialogs.

18 Database Administrator Guide

Query Language Used in this Guide

Query Language Used in this Guide

The industry standard query language, SQL, is used as the standard query
language throughout this guide. Ingres is compliant with ISO Entry SQL-92.
For details about the settings required to operate in compliance with ISO Entry
SQL-92, see the SQL Reference Guide.

System-specific Text in this Guide

Generally, Ingres operates the same way on all systems. When necessary,
however, this guide provides information specific to your operating system. For
example:

UNIX: Information is specific to the UNIX environment.

VMS: Information is specific to the VMS environment.

Windows: Information is specific to the Windows environment.

When necessary for clarity, the symbol 3 is used to indicate the end of
system-specific text.

For sections that pertain to one system only, the system is indicated in the
section title.

Terminology Used in this Guide

This guide uses the following terminology:
m A command is an operation that you execute at the operating system level.
m A statement is an operation that you embed in a program or execute

interactively from a terminal monitor.

Note: A statement can be written in Ingres 4GL, a host programming
language (such as C), or a database query language (SQL or QUEL).

Introducing Database Administration 19

Syntax Conventions Used in this Guide

Syntax Conventions Used in this Guide

This guide uses the following conventions to describe command and statement

syntax:

Convention

Usage

Monospace

Indicates keywords, symbols, or punctuation that
you must enter as shown.

Italics

Represent a variable name for which you must
supply a value.

[1 (brackets)

Indicate an optional item.

{ } (braces)

Indicate an optional item that you can repeat as
many times as appropriate.

| (vertical bar)

Separates items in a list and indicates that you
must choose one item.

20 Database Administrator Guide

Chapter 2: Creating Databases and Using
Alternate Locations

This section contains the following topics:

Types of Files in an Ingres Database (see page 21)
Working With Database Objects (see page 22)
Locations and Areas (see page 25)

Types of Files in an Ingres Database

An Ingres database consists of several types of files:
Data
Data files contain the following:

m User tables and indexes created by an authorized user. These are
referred to as user data files. For details, see the chapter “Managing
Tables and Views.”

m The system catalogs. These are dictionary tables that contain
information about the database, such as descriptions of its tables,
columns, and views. For a complete description of the system catalogs,
see the appendix "System Catalogs.”

Checkpoint

Checkpoint files contain a static copy of your entire database. A checkpoint
file is created each time you take a checkpoint of your database.

Journal

Journal files contain dynamic records of changes made to the journaled
tables in your database.

Dump

Dump files contain records of changes to the database that occurred
during the checkpoint process. These files are used to recover a database
that was checkpointed online.

For additional information about checkpoint, journal, and dump files, see
the chapter “Performing Backup and Recovery.”

Work

Work files are used for system work, such as sorting and creating
temporary tables.

Creating Databases and Using Alternate Locations 21

Working With Database Objects

Working With Database Objects

A database object specifies the database name, database type, file locations,
and other attributes.
You can perform the following basic operations on database objects:
m Create and alter database objects
Note: You can create as many databases as your operating system allows.

m View existing database objects, including the detailed properties of each
individual object

® Drop database objects

You can accomplish these tasks using the createdb, catalogdb, relocatedb,
infodb, and destroydb system commands. For details, see the Command
Reference Guide.

In VDBA, use the Databases branch in the Database Object Manager window.

Createdb Privilege

The createdb privilege is required to create a database. This privilege is
required to use the createdb system command (or to use the equivalent
operation in VDBA). This subject privilege is granted by default to the system
administrator, who in turn can grant it to other users, such as database
administrators.

22 Database Administrator Guide

Working With Database Objects

How a Database Is Created

When you create a database the following occurs:

The system catalogs in the master database (iidbdb) are updated.

A new subdirectory is created, with the name of the database, under the
database location for the database. Later, similar subdirectories are
created under the work, journal, dump, and checkpoint locations for the
database, as needed.

The configuration file (aaaaaaaa.cnf) and the core system catalogs
(aaaaaaax.t00, x=b through e) are copied to the new database directory.

The DBMS system catalogs for the new database are created and modified.
The standard catalog interface is created.

The user interface system catalogs (restricted by any -f flag options) are
created.

If creating a distributed database, Ingres Star system catalogs for the
database are initialized and modified.

Select permission for the system catalogs is granted to public.

Creating Databases and Using Alternate Locations 23

Working With Database Objects

Extend and Unextend a Database

You can extend a database to use additional data and work locations. Locations
must exist prior to this operation and must be specified with a Usage Type of
database or work.

To extend a database, use either the extenddb command or the Alter Database
dialog in VDBA. For details on the extenddb command, see the Command
Reference Guide.

After extending to another data location, create new tables and indexes in the
extended location, and modify existing tables and indexes to use the extended
location. For details on creating and moving tables, see the chapter "Managing
Tables and Views.”

When you extend to a new work location, the system spreads the workload
between the initial location (specified at create time) and the extensions.

Unextending a database reverses the extend operation and deletes the entry
from the configuration files so the location can be used again.

Note: After unextending a database location, you should checkpoint the
database. Previous checkpoints cannot be used because they reference a
location that is no longer accessible to the database.

To unextend a database, use either the unextenddb command or the Alter
Database dialog in VDBA. For additional information, see the Command
Reference Guide and online help, respectively.

Relocate Database Files

You can relocate journal, checkpoint, and dump work files for an existing
database. Locations must exist prior to this operation and must be specified
with an appropriate Usage Type (that is, journal, checkpoint, or dump,
depending on the type of file you want to relocate). When you relocate
checkpoint, journal, or dump files, the existing files are moved to the new
location and any new files are created there.

To relocate database files, use the Alter Database dialog in VDBA. For more
information, see the online help topic Altering a Database.

You can also accomplish this task using the relocatedb system command. For
more information, see the Command Reference Guide.

24 Database Administrator Guide

Locations and Areas

How a Database Is Dropped

When you drop a database, the following occurs:

® The database, checkpoint, journal, dump, and work directories for the
database are deleted.

m All traces of the database are removed from the master database (iidbdb).

m The Application-By-Forms object file directories for any applications
associated with the database (but not the source code directories) are
deleted.

Caution! Do not set ING_ABFDIR to be your default login directory or other
directory that contains your own files. Your files can be inadvertently destroyed
if a destroydb dbname command is issued and dbname is the same name as
the ING_ABFDIR directory.

Locations and Areas

Each database file type (data, checkpoint, journal, and so on) is associated
with a location, which maps to a specific disk volume or directory, called an
area.

Default Locations

During installation, default storage locations and underlying areas are
established for each type of database file.

When you create a database, the Ingres default locations are assumed unless
you specify alternate locations.

The following table shows the default locations and the Ingres environment
variables that identify the areas to which the locations are mapped:

File Type Location Name Area

Data ii_database II_DATABASE
Checkpoint ii_checkpoint II._ CHECKPOINT
Journal ii_journal IT_JOURNAL
Dump ii_dump II_DUMP

Work ii_work II_WORK

Creating Databases and Using Alternate Locations 25

Locations and Areas

In each case, the Ingres environment variable points to a specific disk volume
or directory that has a particular structure, which is shown in the following

tables.

Windows:

File Type

Structure

Data

ingres\data\default

Checkpoint

ingres\ckp\default

Journal

ingres\jni\default

Dump

ingres\dmp\default

Work

ingres\work\default

For example, using the default location for data files causes them to be stored
in the ji_database\ingres\data\default directory, where ii_database is the value
displayed by the ingprenv command for the II_DATABASE environment

variable. @

UNIX:

File Type

Structure

Data

ingres/data/default

Checkpoint

ingres/ckp/default

Journal

ingres/jnl/default

Dump

ingres/dmp/default

Work

ingres/work/default

For example, using the default location for dump files causes them to be
stored in the ii_dump/ingres/dmp/default directory, where ii_dump is the value
displayed by the ingprenv command for the II_ DUMP environment variable. =

VMS:

File Type

Structure

Data

[INGRES.DATA]

Checkpoint

[INGRES.CKP]

Journal

[INGRES.INL]

Dump

[INGRES.DMP]

26 Database Administrator Guide

Locations and Areas

File Type Structure

Work [INGRES.WORK]

For example, using the default location for work files causes them to be stored
in the jii_work:[INGRES.WORK] directory, where ii_work is the value displayed
by the show logical command for the II_WORK environment variable. ®

Alternate Locations

You can use alternate locations for a new database, but first you must create
the area (directory structure) where the files will be stored, and then define
their location.

You create a location's area using the facilities of the host operating system.

Each area must have a specific subdirectory structure, depending on the file
types with which it is associated. This structure parallels that of the
corresponding default location area, as summarized in Default Locations (see
page 25).

Creating Databases and Using Alternate Locations 27

Locations and Areas

Create an Area in Windows

An area must be created before you can define an alternate location for a new
database.

Note: If you use the extenddb command with the —aarea_dir flag, the area is
created for you. You do not have to create the directory path below the ingres
root directory.

To create an area in Windows, follow these steps:

1. Change location to the drive and directory where you create the new
directory structure. For example, to create the new directory structure on
the D: drive under the \otherplace directory, issue the following commands
at the command prompt:

D:
cd \otherplace

2. Create a new subdirectory. For example, to make a subdirectory named
new_area, issue the following command at the command prompt:

mkdir new_area

3. Create subdirectories for the types of database files that use the new area.
For example, to create a subdirectory for data files in new_area, issue
these commands at the command prompt:
mkdir new_area\lingres

mkdir new_arealingres\data
mkdir new_area\ingres\data\default

To make subdirectories for checkpoint, journal, dump, or work files,
substitute ckp, jnl, dmp, or work for data when issuing these commands.

In these steps, you created the area D:\otherplace\new_area, which you can
now specify as the Area when defining a new location using the Create
Location dialog in VDBA. The subdirectories you created in Step 3 determine
which Usage Types you can select in this same dialog (and in the Alter
Location dialog). For example, creating ingres\data\default allows you to
enable Database as a Usage Type, and creating ingres\work\default allows you
to enable Work as a Usage Type.

28 Database Administrator Guide

Locations and Areas

Create an Area in UNIX

An area must be created before you can define an alternate location for a new
database.

Note: If you use the extenddb command with the —aarea_dir flag, the area is
created for you. You do not have to create the directory path below the ingres
root directory.

To create an area in UNIX, follow these steps:

1.

Log in as the installation owner.

By using this account, this user becomes the owner of the subdirectories
created in this procedure.

Change location to the directory where you create the new directory
structure. For example, to create the new directory structure in the
otherplace directory, issue the following command at the operating system
prompt:

cd /otherplace

The installation owner account must be able to create a directory below
this directory; this means permissions set to at least 755. If this number
needs to be changed, see your system administrator. Top-level directories
are usually managed by root.

Create a new subdirectory. For example, to make a subdirectory named
new_area, issue the following command at the operating system prompt:

mkdir new_area

Create subdirectories for the types of database files that use the new area.
For example, to create a subdirectory for data files in new_area, issue
these commands at the operating system prompt:

mkdir new_area/ingres

mkdir new_area/ingres/data
mkdir new_area/ingres/data/default

To make subdirectories for checkpoint, journal, dump, or work files,
substitute ckp, jnl, dmp, or work for data when issuing the above
commands.

Place the appropriate permissions on the new directories and
subdirectories, as shown in the following example. Limit access to the data
directory to the user account for the installation owner only:

chmod 755 new_area

chmod 755 new_area/ingres

chmod 700 new_area/ingres/data

chmod 777 new_area/ingres/data/default

To place permissions on new directories for checkpoint, journal, dump, or
work files, substitute ckp, jnl, dmp, or work for data when issuing the
above commands.

Creating Databases and Using Alternate Locations 29

Locations and Areas

Raw Area in UNIX

In these steps, you created the area /otherplace/new_area, which you can now
specify as the Area when defining a new location using the Create Location
dialog in VDBA. The subdirectories you created in Step 4 determine which
Usage Types you can select in this same dialog (and in the Alter Location
dialog). For example, creating ingres/data/default allows you to enable
Database as a Usage Type, and creating ingres/work/default allows you to
enable Work as a Usage Type.

A raw area contains data from a single database only.

A raw location can be assigned a usage of database only, cannot be used as
the root location of a database, and can contain data for one table only.

The maximum size of a table is bound by the smallest raw location to which it
is assigned.

A raw area can contain many locations; each location can contain the data for
one table. A raw location is the equivalent of a cooked database file, which
contains data of one table only.

To set up a raw area file, use the mkrawarea utility. For more information, see
the Command Reference Guide.

How to Change from Raw to Cooked (Non-raw) Transaction Log

If your installation uses a raw transaction log file and you want to change to a
cooked transaction log file, follow this process:

1. Destroy the existing transaction logs, including dual logs if present.
2. Define the locations to be used for the new transaction logs.

3. Create the new transaction logs.
4

Test the new transaction logs by restarting Ingres.

30 Database Administrator Guide

Locations and Areas

Create an Area in VMS

An area must be created before you can define an alternate location for a new
database.

To create an area in VMS, follow these steps:

1.
2.

Log into the VMS system account.

Create the top level [INGRES] directory on the new device with the
protection mask set to equal (S:RWE,O:RWE,G,W:RE) and ownership set
to [INGRES] by executing the following command at the operating system
prompt:

CREATE/DIR device: [INGRES]/OWNER_UIC=[INGRES] -
/PROT=(S:RWE,O:RWE,G,W:RE)

Substitute the name of the new device for device in the command. Also, do
not set the protections any more restrictive than recommended here,
because doing so can result in errors later.

Make sure the master file directory [000000] on the new device has at
least W:E protection by executing the following command at the operating
system prompt:

DIR/PROT device:[0,0]1000000.dir

If the protection is incorrect (for example, the WORLD has no access),
correct this with the following command:

SET FILE/PROT=(S:RWE, O:RWE, G, W:E) -
device: [0,0]000000.dir

Define a logical name for the new area at the system level:

DEFINE/SYSTEM/EXEC/TRANS=CONCEALED -
logical_name device

Substitute the name of the new area for logical_name. This is useful if you
ever reconfigure your system or move data between systems, because it is
much easier to redefine one logical than to re-point all references to a
device.

For example, the following command defines a new altareal for device
DUAL1 at the indicated subdirectory:

DEFINE/SYSTEM/EXEC/trans=concealed -
altareal dual:[MYDIRECTORY.SUBDIRECTORY.]
@II_SYSTEM: [INGRES.UTILITY]INGDEFDEV.COM

The definition in Step 4 lasts until the next system boot. Add the same
DEFINE statement to SYS$MANAGER:SYSTARTUP_V5.COM or
II_SYSTEM:[INGRES]IISTARTUP1.COM so that it is executed on future
boots.

Exit the VMS system account.

Log in to the system administrator’s account.

Creating Databases and Using Alternate Locations 31

Locations and Areas

8. Create the subdirectories and set the appropriate protections on these
directories by executing the INGDEFDEV command procedure at the
operating system prompt:

9. When INGDEFDEV prompts you, provide the device name and the file type
(data, journal, checkpoint, dump, or work) that resides in this area.
Because you can specify only one file type each time you run INGDEFDEV,
you must run INGDEFDEV once for each file type and device name pairing.

Depending on the type of file that resides in this area, INGDEFDEV creates
one of the following directories, where device is the name of the new
device from Step 2:

-device:[INGRES.DATA] (for data files)
-device:[INGRES.CKP] (for checkpoint files)
-device:[INGRES.JNL] (for journal files)
-device:[INGRES.DMP] (for dump files)
-device:[INGRES.WORK] (for work files)

In these steps, you created an area corresponding to the /ogical_name
identified in Step 4, which you can now specify as the area nhame when
defining a new location using the create location statement. The directories
created by INGDEFDEV in Step 9 determine which usage types you can specify
for both the create location and alter location statements. For example,
creating [INGRES.DATA] allows you to specify usage = database, and creating
[INGRES.WORK] allows you to specify usage = work.

32 Database Administrator Guide

Locations and Areas

Working with Locations

After you have created an area for a location, you must than create the
location.

A location object specifies the location name, associated area, and the types of
files that reside in the location.

You can perform the following basic operations on location objects:

m Create and alter location objects

m View existing location objects, including the detailed properties of each
individual object

® Drop location objects

In SQL, you can manage locations using the CREATE LOCATION, ALTER
LOCATION, and DROP LOCATION statements. For details, see the SQL
Reference Guide.

In VDBA, use the Locations branch in the Database Object Manager window.
For detailed steps, see online help for VDBA.

To work with locations, you need the maintain_locations privilege. This subject
privilege is granted by default to the system administrator, who in turn can
grant it to other users, such as database administrators, who need to manage
locations. For more information on subject privileges, see the Security Guide.

Guidelines for Using Locations

After you have set up the underlying area and mapped it to a location by
creating a location object, use the new location as summarized below:

® When you create a new database, specify the location for the database’s
data dump, checkpoint, journal, and work files.

m Extend a database to include the new location for its data and work files.

®m After extending a database to use an alternate location designated for data
files, move existing user data files (that is, user tables and indexes, but
not the system catalogs) to it, and place new user data files in it. For more
information, see the chapter “*Managing Tables and Views.”

Creating Databases and Using Alternate Locations 33

Locations and Areas

The following file types can use only a single location (that is, these file
types are not affected when you extend a database):

- Checkpoint files
- Journal files
- Dump files

The initial location of the following file types is determined when you
create a database, but you can move each to a new location (see page 24)
if the need arises:

- Checkpoint files
- Journal files
- Dump files

Store the data, checkpoint, journal, dump, and work files for a database in
the same locations or in different locations.

- If the default locations are used when you create the database, all
these files are stored in the same area.

- We strongly recommend that you store data files on a different disk
from those used to store checkpoints, journals, and dumps. Doing so
helps to protect your data in the event of disk failure and to maximize
disk drive performance.

The following table summarizes some of these guidelines:

File Type Extend to Use Multiple Change Locations?
Locations?

Data Yes Yes (user tables and
indexes)
No (system catalogs)

Checkpoint No Yes

Journal No Yes

Dump No Yes

Work Yes No

34 Database Administrator Guide

Locations and Areas

Work Locations

All databases use work files for sorting, which can occur when queries are
executed (SELECT or FETCH statements with ORDER BY clauses) or when
tables are restructured (for example, using the MODIFY statement or
equivalent operation in VDBA). While small sorts are performed in memory,
larger sorts use temporary sort files. Depending on the size of the tables
involved in the sort, the temporary disk space requirements can be large (see
page 408).

Initial and Extended Work Locations

You specify the initial, or primary, location (or use the default location) for
work files when you create a database. The area mapped to this location is
used for all work files.

To use additional locations, extend a database. When you extend a database in
this manner, sort space can be spread among multiple work locations.

Note: We recommend that you put work locations on scratch disks so that
sorting activity does not contend with other database I/O and data disks do
not become excessively fragmented.

Classification of Extended Work Locations
When extending a database to use additional work locations, classify them as

follows:

m Work (also known as defaultable) locations are used for all user sorts on a
database.

®m Auxiliary locations are not used unless explicitly requested by a SET WORK
LOCATIONS statement.

After a database has been extended to use an additional work location, you
can subsequently modify the work area’s classification using the Alter
Database dialog in VDBA.

Creating Databases and Using Alternate Locations 35

Locations and Areas

Work Locations for a Session

A session automatically uses all defaultable work locations to which the
database has been extended (including the initial work location). In addition,
the session can issue SET WORK LOCATIONS statements to specify auxiliary
work locations to use. Using this statement, a session can dynamically add and
drop work locations and replace the set of locations currently in use. The set
work locations statements affect the current session only—their effects
disappear when the session ends.

For more information on using set work locations, see the entry for the SET
statement in the SQL Reference Guide.

Note: To list the set of work locations used in a given session, you can use a
trace point, DM1440. For information on setting trace points, see the SET
[NO]JTRACE POINT statement description in the SQL Reference Guide.

36 Database Administrator Guide

Chapter 3: Managing Tables and Views

This section contains the following topics:

Table Management (see page 37)

Views (see page 60)

Schemas (see page 62)

Synonyms, Temporary Tables, and Comments (see page 63)

This chapter discusses how to manage tables, views, and schemas. It includes
information on table limits, handling duplicate rows in tables, manipulating
columns, modifying tables in various ways, and rules for updating views. It
also discusses synonyms, temporary tables, and comments, which are features
for manipulating table data and referencing tables.

Table Management

You can perform the following basic operations on tables:
®m Create and alter table objects

® View existing table objects, including details such as the rows, columns,
statistics, and other properties

® Modify table objects to change file locations
® Drop table objects

In VDBA, you use the Tables branch for a particular database in the Database
Object Manager window.

In SQL, you can accomplish these tasks using the CREATE TABLE, ALTER
TABLE, HELP TABLE, MODIFY TABLE, and DROP statements. For more
information, see the SQL Reference Guide.

Managing Tables and Views 37

Table Management

Tools for Creating a Table

Table Ownership

Table Location

You can create a table by issuing a CREATE TABLE statement from any of the
following tools:

® A terminal monitor

® Interactive SQL

® An embedded SQL program

m Application-By-Forms and Ingres 4GL

For details on the CREATE TABLE statement, see the SQL Reference Guide.

You can also use the Tables utility to create tables. This utility lets you build
and destroy tables, inspect their structure, and run queries and reports on
their data.

UNIX: For a discussion of the Tables utility, see the Character-based Querying
and Reporting Tools User Guide. =

VMS: All users can create tables unless explicitly restricted from doing so
using a nocreate_table database grant. ®

The new table is owned by the user who creates it. The owner of the table is
allowed to perform certain operations on the table that other users are not. For
example, only the owner (or a user with the security privilege impersonating
the owner) can alter or drop a table.

If other users need access to the table, the table owner can grant that
permission using table grants. Table grants are enabling permissions—if no
permission is granted, the default is to prohibit access.

When you create a table, it is placed in the default location designated for the
database’s data files, unless you specify otherwise.

38 Database Administrator Guide

Table Management

Requirements for Using an Alternate Location for a Table
Before using an alternate location for a table, the following requirements must
be met:
® The location must exist and must be designated to hold data files

® The area to which the location name points must exist with correct
permissions and ownership

® The directory indicated by the area must have the appropriate subdirectory
structure with correct permissions

® The database must be extended to the location
® You must be the table owner (or a user with the security privilege
impersonating the owner).

Alternate Location for a Table

To create a table in an alternate location, click Options in the Create Table
dialog in VDBA. This opens the Options dialog, where you choose one or more
alternate locations. For details, see online help.

If you specify only one location, the entire table is stored in that location. If
you choose more than one location, the table spans multiple locations. For
example, if you designate two locations, the table is extended over two
alternate locations. As rows are added to the table, they are added to each
area in alternate blocks.
The blocks are:

Windows: 16-page blocks (approximately 32 KB)

UNIX: 16-page blocks (approximately 32 KB)

VMS: 8 pages (32 disk blocks)

The table is considered out of space if the next receiving area in turn does not
have a sufficient block.

Note: After creating a table, you can change its location, as described in
Techniques for Moving a Table to a New Location (see page 58).

Managing Tables and Views 39

Table Management

Enable or Disable Journaling

When you create a table, journaling can be enabled by default, depending on
the setting of default_journaling in the Ingres DBMS Server class your session
is attached to.

In VDBA, you can verify whether journaling is enabled or disabled by clicking
Options in the Create Table dialog. This opens the Options dialog, which
contains a Journaling check box. If it is checked, journaling is on (enabled); if
is not checked, journaling is off (disabled).

By disabling the Journaling check box, you turn off journaling for an individual
table, but use caution. For additional information about journaling and the
ramifications of disabling journaling at the table level, see the chapter
“Performing Backup and Recovery.”

Duplicate Rows in Tables
A table contains duplicate rows when two or more rows are identical.

When you create a table, specify the handling of duplicate rows by clicking
Options in the Create Table dialog. This opens the Options dialog, which
contains a Duplicates check box. By default, duplicate rows are allowed in any
new table that you create, which is indicated by the fact that the Duplicates
check box is initially enabled. If you disable this check box, duplicate rows are
not allowed in the table. If a user attempts to insert a duplicate row into a
table where duplicate rows are not allowed, an error is generated.

Note: Duplicate rows are enforced only when the table has a keyed storage
structure. For a description of storage structures, see the chapter “Choosing
Storage Structures and Secondary Indexes.”

Depending on whether duplicates are allowed, the following tasks are
performed differently:

®m Restructuring or relocating a table with the MODIFY statement or the
equivalent operation in VDBA

® Adding new rows into a table with the INSERT statement
® Bulk loading a table with the COPY statement

®m Revising existing rows in a table with the UPDATE command

40 Database Administrator Guide

Table Management

Duplicate Rows When Adding New Rows or Modifying a Table

If a table was originally created to allow duplicates, the duplicate rows are
preserved, even when the table is modified to another structure.

If a table allows duplicates, duplicate rows can always be inserted.

If a table does not allow duplicates:
m Duplicate rows can be added if the table uses a heap storage structure.

m Single row inserts (insert . . . values) are silently discarded if a duplicate
row occurs on a keyed structure.

m Multiple row inserts (insert . . . select) generate an error if a duplicate row
occurs on a keyed structure. The entire statement is rolled back.

® When a table is modified from a heap structure to a keyed structure,
duplicates are eliminated.

Duplicate Rows When Bulk Copying Rows in a Table
If a table allows duplicates, duplicate rows can always be loaded.

If a table does not allow duplicates, duplicate rows:
® Can be loaded if the table uses a heap storage structure

® Are silently removed if the table has a keyed structure

Managing Tables and Views 41

Table Management

Duplicate Rows in Updated Tables

If a table allows duplicates, rows can always be updated to duplicate other
rows.
If a table does not allow duplicates:

m Rows can be updated to duplicate other rows if the table uses a heap
storage structure.

® Rows cannot be updated to duplicate other rows if the table is a keyed
structure. The update is rejected and an error is generated.

If you use the following “bulk increment” update in which the info column has
values 1, 2, 3, and so on, every row in the table is updated:

update data set info = info+l;

If duplicates are not allowed, this update fails due to duplicate rows being
created.

The new values for the first row are prepared, changing the info column value
from 1 to 2. Before inserting the new values, a check is made to see if they
violate any constraints. Because the new value, 2, duplicates the value in an
existing row, thus violating the criterion stating that duplicates are not
allowed, an error is generated and the update is rolled back.

To solve this problem, use either of the following techniques:

® Allow duplicates when creating the table

® Modify the table to use a heap storage structure before performing the
update

42 Database Administrator Guide

Table Management

Remove Duplicate Rows

In this example, assume the table from which you want to remove the
duplicates is named has_dups. This example creates one table based upon the
contents of another. For more information, see online help.

Follow these steps to remove duplicate rows:

1.
2.
3.

Create a new table named temp.

Enable Create Table As Select in the Create Table dialog.
In the Select Statement edit control, enter:

select distinct * from has_dups

Drop the has_dups table.

Create a new table named has_dups, using the Options dialog to disable
the Duplicates check box.

Enable Create Table As Select in the Create Table dialog.
In the Select Statement edit control, enter:

select * from temp

Drop the temp table.

Note: If a table was originally created to allow duplicate rows, but you no
longer want the table to allow duplicate rows, you must perform Steps 1-8
above. However, because duplicate row checking is only performed for
tables having a keyed structure, you must also perform this additional
step:

Modify the table to a keyed structure (hash, ISAM, or B-tree).

Managing Tables and Views 43

Table Management

Page Size Specification
A page is a block of physical storage space.

When you create a table, specify its page size by clicking Options in the Create
Table dialog. This opens the Options dialog, which contains a Page Size drop-
down list box. If you need assistance, see online help for details.

The default page size is determined by the DBMS configuration parameter,
default_ page_size. The corresponding buffer cache for the installation must
also be configured with the page size you specify or you receive an error. For
more information, see the chapter “"Configuring Ingres” in the System
Administrator Guide.

Note: After creating a table, if you later need to add or drop a column, the
page size of the table must be larger than 2 KB. If you anticipate that a
particular table needs to be altered in either of these ways, create the table
using a larger page size or modify its storage structure before attempting to
alter the table. For more information, see the chapter “Maintaining Storage
Structures.”

Data Type Conversion Functions for Default Values

When you create or alter a table, specify a default value for any column, which
is used when no value is specified for the column. Instead of specifying a
typical default value of zero or quoted spaces for a column, substitute a
particular value as the default value for the new column. To do this, use the
associated conversion function for the data type assigned to the new column.

The following table lists the data type and an example of its associated
conversion function for creating a column:

Data Type Conversion Function
char(1) char('")

cl c(""

varchar(7) varchar('"')

long varchar long_varchar(' ')
nchar nchar(' ")

nvarchar nvarchar (' ")

text(7) text(' ')

byte(binary) byte(0)

long byte (binary) long_byte(0)

44 Database Administrator Guide

Table Management

Data Type Conversion Function

byte varying (binary) varbyte(0)

integer (integer4) int4(0)

smallint (integer2) int2(0)

integerl int1(0)

float (float8) float8(0)

float4 float4(null)

decimal decimal(0)

ansidate ansidate(") or ansidate(null)

time with time zone

time_with_tz(' ') or time_with_tz(null)

time without time zone time_wo_tz(' ') or time_wo_tz(null)

time with local time zone time_local(' ') or time_local(null)

timestamp with time zone timestamp_with_tz(' ') or

timestamp_with_tz(null)

timestamp without local time timestamp_wo_tz(' ") or

zone

timestamp_wo_tz(null)

timestamp with local time zone

timestamp_local(' ') or
timestamp_local(null)

interval day to second

interval_dtos(' ') or interval_dtos(null)

interval year to month

interval_ytom(' ') or
interval_ytom(null)

ingresdate ingresdate(' ') or ingresdate(null)
money money(0)

object_key object_key('01")

table_key table_key('01")

Managing Tables and Views 45

Table Management

Constraints

Constraint Types

If the new column is created with no conversion function, the defaults are:
®m varchar for character strings

m float (float8) for floating point humbers

m Either smallint (integer2) or integer (integer4) for integer numbers

(depending on the size of the number)

To initialize a column’s value to null, specify the default value of null in any of
the numeric conversion functions or the date function. Doing so makes the
column nullable.

Important! Do not use null as a default value for character fields—this causes
an attempt to create a character field of null length, which cannot be done,
and returns an error.

When you create or alter a table, define constraints for the table. Constraints
are used to check for appropriate data values whenever data is entered or
updated in the table.

Constraints are checked at the end of every statement that modifies the table.
If the constraint is violated, the DBMS returns an error and aborts the
statement. If the statement is in a multi-statement transaction, the transaction
is not aborted.

Note: For other mechanisms used to ensure the integrity of data in a table,
including integrities and rules, see the Security Guide.

In VDBA, define constraints using the Create Table or Alter Table dialog.

There are several types of constraints:
® Unique
® Check

m Referential

46 Database Administrator Guide

Table Management

Unique Constraints

Check Constraints

You can define unique constraints at both the column and the table level.
Columns that you specify as unique or that you use as part of a table-level
unique constraint cannot be nullable. Column-level unique constraints ensure
that no two rows in the table can have the same value for that column. At the
table level, you can specify several columns, all of which are taken together to
determine uniqueness.

For example, if you specify the department number and location columns to be
unique at the table level, no two departments in the same location can have
the same name. On the other hand, specifying the department name and
location columns to be unique at the column level is more restrictive—in this
case, no two departments can have the same name, regardless of the location,
and no two locations can have the same name either.

There is a maximum of 32 columns that you can specify in a table-level unique
constraint; however, a table can have any number of unique constraints.

In VDBA, define column-level unique constraints by enabling the Unique check
box for the column in either the Create Table or the Alter Table dialog. You
define table-level unique constraints using the Table Level Unique Constraint
dialog.

Check constraints ensure that the contents of a column fulfills user-specified
criteria.

Specify check constraints by entering a Boolean expression involving one or
more columns using the Table Level Check Constraint dialog in VDBA.

For example, enter the following expression to ensure that only positive values
are accepted in the salary column:

salary > 0

The next example ensures that only positive values are accepted in the budget
column and that expenses do not exceed the budget:

budget > 0 and expenses <= budget

Managing Tables and Views 47

Table Management

Referential Constraints

Referential constraints are used to validate an entry against the contents of a
column in another table (or another column in the same table), allowing you to
maintain the referential integrity of your tables. You specify referential
constraints by making selections in the Table References dialog in VDBA. For
information on referential action options, see the SQL Reference Guide.

When defining a referential constraint, you must consider the following points:

® The table that you intend to reference must exist, with the appropriate
primary key or unique constraint defined.

m Referencing columns from the table in which the constraints are being
defined are compared to columns that make up the primary key or a table-
level unique constraint in the referenced, or parent, table. The data types
of the columns must, therefore, be comparable, and the referencing
columns must correspond in humber and position to those in the
referenced table.

® You must have references permission for the referenced columns.

48 Database Administrator Guide

Table Management

Example: Define a Referential Constraint

The following example of a referential constraint assumes that the employee
table exists with a primary key constraint defined involving a name and an
employee number column.

This example verifies the contents of the name and empno columns in the
manager table against the primary key columns in the employee table, to
ensure that anyone entered into the table of managers is on file as an
employee.

To accomplish this, follow these steps:

1.
2.

Open the Table References dialog in VDBA.

Click New to create a new referential constraint, and optionally enter a new
name for the constraint in the Constraint Name edit control.

Select the name column in the Table Columns list box, and click the
double-right arrow (>>) to add the column to the Referencing Columns list
box.

Select the empno column in the Table Columns list box, and click the
double-right arrow (>>) to add the column to the Referencing Columns list
box.

Select the employee table from the Reference to Parent Table drop-down
list box.

By default, the Primary Key option is selected and the primary key, which
includes comparable name and employee number columns, appears in the
edit control at the bottom of the box.

Click OK to add this referential constraint to the table definition.

Managing Tables and Views 49

Table Management

Primary Key Constraint

An example of a referential constraint is a Primary key constraint.

Primary key constraints can be used to denote one or more columns, which
other tables reference in referential constraints.

Note: Primary key constraints can be used as an alternative and slightly more
restrictive form of unique constraint, but need not be used at all.

To define a primary key, you choose which columns are to be part of the key
and assign to each a particular position in the key. Columns that are part of
the primary key cannot be nullable, and the primary key is implicitly unique. A
table can have only one primary key, which can consist of many columns.

In VDBA, you define primary key constraints using the Primary Key button in
the Create Table or Alter Table dialog. Clicking this button opens the Primary
Key dialog, where you can control which columns are part of the primary key,
as well as the order of the columns in the primary key. For details, see online
help.

Example: Define a Primary Key Constraint

For example, in the partnumbers table, define the partno column as the
primary key. Assuming the inventory table had a comparable column named
ipartno, define a referential constraint on the inventory table based on the
partnumbers table.

To accomplish this, follow these steps:
1. Open the Table References dialog in VDBA.

2. Click New to create a new referential constraint, and optionally enter a new
name for the constraint in the Constraint Name edit control.

3. Select the ipartno column in the Table Columns list box, and click the
double-right arrow (>>) to add the column to the Referencing Columns list
box.

4. Select the partnumbers table from the Reference to Parent Table drop-
down list box.

By default, the Primary Key option is selected and the partno column,
which was previously defined as the primary key for the partnumbers
table, appears in the edit control at the bottom of the box.

5. Click OK to add this referential constraint to the table definition.

In this case, the part numbers in the inventory table are checked against those
in the partnumbers table. When defining this referential constraint, you did not
have to specify the column to be referenced in the parthumbers table because
it was defined as the primary key.

50 Database Administrator Guide

Table Management

Indexes for Constraints

Special indexes are created whenever you specify a unique, primary key, or
referential constraint for a table. No user—including the table owner—can
explicitly drop these system-generated constraint indexes, because they are
used internally to enforce the constraints.

For primary key and unique constraints, the index is built on the constrained
columns as a mechanism to detect duplicates as rows are added to or updated
in the table.

For referential constraints, the index is built on the referencing columns of the
constraint. This index ensures that the internal procedures that enforce the
constraint when a referenced row is deleted or referenced columns are
updated can be executed efficiently. When a referencing row is inserted or
referencing columns are updated, the unique constraint index built on the
referenced columns is used to ensure the efficiency of enforcing the constraint.

Note: If you create an index, and then create a constraint that uses the index,
the index cannot be dropped (but the constraint can be dropped). If you create
a constraint using the WITH INDEX=name clause but do not create the index
(which causes the system to generate the named index), and you drop the
constraint, the index is also dropped, because the index is a system index and
not a user index.

Managing Tables and Views 51

Table Management

Options for Constraint Indexes

During table creation, specify options in VDBA for the constraint indexes, with
similar options available when you alter a table. For example, the Table Level
Unique Constraint dialog (accessible from both the Create Table and the Alter
Table dialogs) has an Index button that allows you to fine tune the index used
to enforce unique constraints. For additional information about the various
dialog options, see online help.

These options give you more control over the index that is created, including
the ability to specify:

The location of the index

Constraint indexes are, by default, stored in the default location for data
files. Because of storage space or concurrency considerations, they can be
stored in an alternate location.

The storage structure type and other structure-specific characteristics

By default, a B-tree storage structure is used for constraint indexes, but in
some cases, a different structure can be more efficient. For more
information on storage structures, see the chapter “"Choosing Storage
Structures and Secondary Indexes.”

That an existing secondary index be used instead of generating a new
index

You can save the overhead of generating an unnecessary index if you have
an appropriate secondary index available. Simply indicate the name of the
secondary index, and it is used to enforce the constraint instead of
generating a new one.

To use an existing secondary index for referential constraints, the
referencing columns must match the first n columns of the index (although
not necessarily in order).

To use an existing secondary index for unique or primary key constraints,
the index must be defined on exactly the same columns as the constraint,
it must be a unique index, and it must specify that uniqueness is checked
only after the UPDATE statement is completed.

Note: Indexes enforcing uniqueness constraints in the ANSI/ISO style, as
required by referenced columns of a referential constraint, must specify
the "unique_scope = statement" option in the corresponding "create index"
statement.

For more information on creating a secondary index and specifying the
scope for uniqueness checking, see the chapter "Choosing Storage
Structures and Secondary Indexes” and online help.

52 Database Administrator Guide

Table Management

In the case of referential constraints, that no index be generated

The index built for referential constraints is used only to improve the
efficiency of the internal procedures that enforce the constraint when a
referenced row is deleted or referenced columns are updated. Because the
procedures can execute in its absence, the index is optional.

In the absence of a referential constraint index, the internal procedures
use a secondary index, if one is available that is defined on the referencing
columns, and so the efficiency of the procedures can not be compromised.
However, if no such secondary index exists, a full-table scan of the
referencing table is necessary. Thus, choosing not to generate a referential
constraint must be reserved for special circumstances, such as when:

- An appropriate secondary index is available

- Very few rows are in the referencing table (as in a prototype
application)

- Deletes and updates are rarely (if ever) performed on the referenced
table

That the base table structure be used for constraint enforcement

This option requires a table that uses a keyed storage structure. Because
heap, which is a non-keyed structure, is the default when you create a
table, this option cannot be specified for constraints added at that time.
The ability to use the base table structure for constraint enforcement is
available only for constraints that are added when altering an existing
table.

Before you can specify the base table structure in lieu of a constraint
index, you need to modify the table to change its storage structure type
and to specify key columns to match the constraint columns it is used to
enforce. If the base table structure is being used to enforce a primary key
or unique constraint, you must also specify that uniqueness is checked
only after the update statement is completed.

Note: Indexes enforcing uniqueness constraints in the ANSI/ISO style, as
required by referenced columns of a referential constraint, must specify
the "unique_scope = statement" option in the corresponding "create index"
statement.

For more information on modifying a table’s storage structure, specifying
key values, and specifying the scope for uniqueness checking, see the
chapter “"Maintaining Storage Structures.”

Managing Tables and Views 53

Table Management

Delete Constraints

In VDBA, the Create Table dialog allows you to delete any constraint as you
are designing your table, without restrictions. After you have saved the table,
remove constraints using the Alter Table dialog; however, removing
constraints is more complicated when altering a table, because of the
possibility of dependent constraints.

For this reason, each dialog in VDBA that allows you to work with constraints
gives you two delete options when altering a table. These same dialogs give
you only one delete option when creating a table:

m Delete performs a restrictive delete, assuming that there are no dependent
constraints. If you delete a constraint using this button, the constraint is
dropped only if there are no dependent constraints; otherwise, if there are
dependent constraints, the delete operation results in an error.

m Del Cascade performs a cascading delete by also dropping all dependent
constraints. This is not available—and not needed—when creating a table.

For example, a unique constraint in one table can have a dependent referential
constraint in another table. In this case, if you altered the table in which the
unique constraint was defined and attempted to perform a Delete operation in
the Table Level Unique Constraint dialog, it results in an error due to the
existence of the dependent referential constraint. To delete the unique
constraint successfully, use Del Cascade, which also deletes the referential
constraint in the other table.

Note: In VDBA, column-level unique constraints are defined directly in the
Create Table or Alter Table dialog. You cannot, however, remove a column-
level unique constraint simply by disabling its Unique check box in the Alter
Table dialog. To remove a column-level unique constraint, you must use the
Table Level Unique Constraint dialog.

54 Database Administrator Guide

Table Management

Techniques for Changing Table Columns

The examples here describe how to change table columns, including:
® Renaming a column
® Inserting a column

® Changing the data type of a column

There are no direct equivalents for changing columns in VDBA or in a single
SQL statement.

Note: Renaming a column in a table or changing its data type does not change
anything else that is dependent on the column. You need to update any
objects, such as reports, forms, and programs, which are dependent on the old
column name or data type. In addition, all of the procedures shown here
require that you drop the original table, at which point certain other dependent
objects, such as integrities, views, indexes, and grants, are also dropped. You
must recreate these objects.

Important! We recommend that you back up your tables before changing
them. If a problem occurs, you can then restore the original table and repeat
the procedure. For additional information, see the chapter “Performing Backup
and Recovery.”

Managing Tables and Views 55

Table Management

Example: Rename a Column

The following example renames two columns, name and addr, to employee
and address. The salary column is not renamed. For assistance with any of
these steps, see online help.

1.

N o v A

8.

Assuming the table test already exists with columns name, addr, and
salary, create a temporary table named temp.

Enable Create Table As Select in the Create Table dialog.

In the Select Statement edit control, enter the following select statement
to rename the desired columns:

select name as employee, addr as address, salary
from test

Drop the original table, test.
Create a new table named test.
Enable Create Table As Select in the Create Table dialog.

In the Select Statement edit control, enter:

select * from temp

Drop the temporary table, temp.

Be sure to update any objects, such as reports, forms, and programs that are
dependent on the old column name, and recreate integrities, views, indexes,
grants, and other dependent objects that were destroyed when the original
table was dropped in Step 4.

56 Database Administrator Guide

Table Management

Example: Insert a Column

When you add a column to an existing table using the Alter Table dialog, the
column is placed after the last previously existing column in the table. To
insert a new column between existing columns, you must follow a procedure
similar to that outlined for renaming a column.

The following example illustrates inserting a new column, newcol, in the middle
of an existing table with previously defined columns. If you need assistance
with any of these steps, see online help.

1. Create a temporary table named temp.
2. Enable Create Table As Select in the Create Table dialog.

3. In the Select Statement edit control, enter the following select statement,
inserting the new column:

select coll, col2, varchar(' ') as newcol,
col3, cold from test

Drop the original table, test.
Create a new table named test.

Enable Create Table As Select in the Create Table dialog.

N o v A

In the Select Statement edit control, enter:

select * from temp
8. Drop the temporary table, temp.

Be sure to recreate integrities, views, indexes, grants, and other dependent
objects that were destroyed when the original table was dropped in Step 4.

Note: To rearrange the current column order of a table without adding new
columns, use this same procedure, selecting the columns in the desired order
in Step 3.

Managing Tables and Views 57

Table Management

Techniques for Moving a Table to a New Location

Relocate a Table

As a database grows, it can become necessary to move some of its tables to
an alternate location. If a table has grown so large that you can no longer
work with it at the current location, or the table needs to be distributed across
multiple disks to improve performance, modify the table to use an alternate
location.

Note: Before modifying the table, make sure you have met the requirements,
as described in Requirements for Using an Alternate Location for a Table (see
page 39).

You can modify a table's location using one of the following techniques:
m Relocate a table

m Reorganize a table

In VBDA, use the Modify Table Structure dialog. For a detailed procedure, see
online help. For other uses of this dialog, see the chapter “Maintaining Storage
Structures.”

Using the Modify Table Structure dialog in VDBA, you can move the data files
for a table from one location to another. This is accomplished using the
Locations button available when the Relocate radio button is enabled, which
opens the Relocate Table dialog. For information on using this dialog, see
online help.

Using this operation, it is possible to change one or more of the locations
currently used by the table, without changing the number of locations used.
For example:

= If a table is currently using a single location, choose a new location and the
data files for the table are moved to the new location.

= If a table is currently using multiple locations, selectively specify which
ones you want to change.

58 Database Administrator Guide

Table Management

Reorganize a Table

You can increase or decrease the number of locations currently used by a table
for its data files.

To do this, use the modify to reorganize SQL statement. In VDBA, use the
Modify Table Structure dialog. Use the Locations button, which is available
when the Change Locations radio button is enabled, which opens the Change
Locations dialog. For specific information on using this dialog, see online help.

This operation requires more overhead than simply relocating a table because
it performs a table reorganization in addition to moving files. Using this
operation, you can:

m Expand a table that is currently using a single location to use multiple
locations, including the option of no longer using the original location.

m Shrink a table that is currently using multiple locations to use a single
location, including the option of no longer using any of its original
locations.

m Reorganize a table that is currently using multiple locations to extend over
a different number of locations, including the option of no longer using one
or more of the original locations.

Afterwards, the table is reorganized to spread equally, in sized blocks, over the
specified locations.

Assign an Expiration Date to a Table
By default, when you create a table, it has no expiration date. To give a table
an expiration date, use the SAVE statement as described in the SQL Reference
Guide.

A table is not automatically destroyed on its expiration date.

Purge Expired Tables

To purge expired tables, select Expired_Purge as the Operation in the Verify
Database dialog in VDBA. For details on using this dialog, see online help.

Note: The Verify Database dialog has many other uses. For specific
information on using this dialog, see online help.

Managing Tables and Views 59

Views

Views

A view can be thought of as a virtual table. Only the definition for the view is
stored, not the data. A table on which a view operates is called a base table.

A view definition can encompass 1 to 31 base tables. It can involve multiple
tables joined together by their common columns using a where qualification.

A view can be created on other views or on physical database tables, including
secondary indexes.

Primary uses for views include:

®m Providing security by limiting access to specific columns in selected tables,
without compromising database design

m Simplifying a commonly used query

m Defining reports

Because a view is a device designed primarily for selecting data, all selects on
views are fully supported. Simply use a view name in place of a table name in
the SELECT statement. Updating views is also supported (see Updates on
Views), but updating a database by means of a view is not recommended.

Views and Permissions

Any user can create a view on any other user’s tables or views, provided they
have the permissions required to execute the SELECT statements that define
the view. Any user can grant permissions on their views to any other user,
provided they either own the base tables in the view or have the with grant
option on the permissions they are granting. The granting of permissions is
described in the Security Guide.

60 Database Administrator Guide

Views

Working with View Objects

You can perform the following basic operations on views:
m Create view objects

m View existing view objects, including details such as the view definition,
grantees, and rows

® Drop view objects

In SQL, you can accomplish these tasks using the SQL statements CREATE
VIEW, HELP VIEW, and DROP VIEW. For details, see the SQL Reference Guide.

In VDBA, use the Views branch for a particular database in the Database
Object Manager window.

Note: To drop a view the cache size that was needed to create the view must
be enabled.

Updates on Views

Only a limited set of updates on views is supported because of problems that
can occur. Updates are not supported on views that have more than one base
table, or on any column whose source is not a simple column name (for
example, set functions or computations). If the view was created using the
With Check Option enabled in the Create View dialog, no updates or inserts are
allowed on columns that are in the qualification of the view definition. For more
information on the With Check Option control, see online help for the Create
View dialog.

Updating is supported only if it can be guaranteed (without looking at the
actual data) that the result of updating the view is identical to that of updating
the corresponding base table.

Note: Updating, deleting, or inserting data in a table using views is not
recommended. You cannot update or insert into a view with Query-By-Forms.
You can update, delete, or insert with SQL statements, but you must abide by
the following rules, keeping in mind that an error occurs if you attempt an
operation that is not permitted.

Managing Tables and Views 61

Schemas

Types of Updates Not Permitted on Views

Schemas

You cannot perform the following types of updates on a view:

® One that involves a column that is a set function (aggregate) or derived
from a computational expression

In the following example of a SELECT statement used to define a view, you
cannot update the tsal column because it is a set function:

select dept, sum(sal) as tsal
from deptinf group by dept

® One that causes more than one table to be updated

Consider the following example of a SELECT statement used to define a
view:
select e.name, e.dept, e.div, d.bldg

from emp e, deptinf d
where e.dept = d.dname and e.div = d.div

Updates to this data must be done through the underlying base tables, not
this view.

® You can update a column that appears in the qualification of a view
definition, as long as the update does not cause the row to disappear from
the view. For example, if the WHERE clause is as follows, update the
deptno from 5 to 8, but not from 5 to 20:

where deptno < 10

A schema is a collection of any of the following database objects:

® Tables
® Views
® Grants

Each user can have only one schema consisting of definitions of the above
types of database objects that the user owns. The database objects belong to
the specific schema.

By default, the current user’s schema is always assumed.

62 Database Administrator Guide

Synonyms, Temporary Tables, and Comments

Tools for Managing Schemas

You can manage schemas directly using the SQL statement, CREATE SCHEMA.
This statement allows you to create a schema, create the tables and views in
that schema, and grant appropriate permissions as a unit. For more
information on this statement, see the SQL Reference Guide.

Various SQL statements allow you to specify a schema name to indicate a table
or view belonging to a schema other than the one associated with the current
user, as described in the SQL Reference Guide.

In VDBA, a schema is created for you automatically, and objects that you
create are added to your schema. View the contents of your schema using the
Schemas branch for a particular database in the Database Object Manager
window.

Synonyms, Temporary Tables, and Comments

Synonyms

The following features are available to the DBA and other users to assist in
manipulating table data and referencing tables:

® Synonyms for table names
® Temporary tables local to an individual session

® Comments for documenting and describing tables

The DBA or any user is allowed to create synonyms for tables, views, and
indexes. These alternate names, or aliases, can be used to define shorthand
names in place of long, fully qualified names.

After a synonym is created, it can be referenced the same way as the object
for which it was created. For example, if you create a synonym for a table or
view, issue SELECT statements using the synonym name, just as you use the
table or view name.

Managing Tables and Views 63

Synonyms, Temporary Tables, and Comments

Working with Synonym Objects

You can perform the following basic operations on synonyms:
m Create synonym objects

® View existing synonym objects, including the detailed properties of each
individual object

® Drop synonym objects

In SQL, you can accomplish these tasks using the statements CREATE
SYNONYM and DROP SYNONYM. For details, see the SQL Reference Guide.

In VDBA, use the Synonyms branch for a particular database in the Database
Object Manager window.

Temporary Tables

Temporary tables are useful in applications that need to manipulate
intermediate results and minimize the processing overhead associated with
creating tables.

Temporary tables reduce overhead in the following ways:

® No logging or locking is performed on temporary tables.

® No page locking is performed on temporary tables.

m Disk space requirements are minimized. If possible, the temporary table is
created in memory and never written to disk.

® No system catalog entries are made for temporary tables.

Because no logging is performed, temporary tables can be created, deleted,
and modified during an online checkpoint.

Temporary tables are:

®m Visible only to the session that creates them

m Deleted automatically when the session ends

®m Declarable by any user, whether or not the user has the create_table

permission

The DECLARE GLOBAL TEMPORARY TABLE statement is used to create
temporary (session-scope) tables. In VDBA, use the Create Table dialog.

All temporary tables are automatically deleted at the end of the session. To
delete a temporary table before the session ends, issue a DROP TABLE
statement.

64 Database Administrator Guide

Synonyms, Temporary Tables, and Comments

Temporary Table Declaration and the Optional SESSION Schema Qualifier

The DBMS Server supports two syntaxes for declaring and referencing global
temporary tables:

With the SESSION Schema Qualifier

If the DECLARE GLOBAL TEMPORARY TABLE statement defines the table
with the SESSION schema qualifier, then subsequent SQL statements that
reference the table must use the SESSION qualifier.

When using this syntax, the creation of permanent and temporary tables
with the same name is allowed.

Without the SESSION Schema Qualifier

If the DECLARE GLOBAL TEMPORARY TABLE statement defines the table
without the SESSION schema qualifier, then subsequent SQL statements
that reference the table can optionally omit the SESSION qualifier. This
feature is useful when writing portable SQL.

When using this syntax, the creation of permanent and temporary tables
with the same name is not allowed.

Note: In both modes, a session table is local to the session, which means that
two sessions can declare a global temporary table of the same name and they
do not conflict with each other.

Note: Syntaxes cannot be mixed in a single session. For example, if the table
is declared with SESSION the first time, all declarations must use SESSION.

Examples of Working with Temporary Tables

To create two temporary tables, names and employees, for the current
session, issue the following statements:

declare global temporary table session.names
(name varchar(20), empno varchar(5))
on commit preserve rows
with norecovery
declare global temporary table session.employees as
select name, empno from employees
on commit preserve rows
with norecovery

Note: The “session.” qualifier in the example is optional. If omitted, the name
of the temporary table cannot be the same as any permanent table names.

The names of temporary tables must be unique only in a session.
For more information on working with temporary tables, see the descriptions

for DECLARE GLOBAL TEMPORARY TABLE and DROP statements in the SQL
Reference Guide.

Managing Tables and Views 65

Synonyms, Temporary Tables, and Comments

Comments to Describe Tables and Views

When using VDBA, tables and views are self-documenting. For example, you
can see the definition of a view at a glance, as well as its rows and the grants
that have been defined. For a table, you can view its rows and columns, as
well as properties, statistics, and other pertinent information.

When working with tables and views in applications, however, it is helpful to
include commentary about the structure and uses of tables and views.
Tables and views can be commented with:

® Comment lines in SQL or a host language, for example, “/*comment*/” or
“--comment”

® Comments specified with the COMMENT ON statement
® Comments in embedded SQL (ESQL) programs specified with the DECLARE
TABLE statement

The Comment On Statement

The COMMENT ON statement allows you to add commentary to SQL programs.
Using this statement, you can create a comment for the table as a whole and
for individual columns in the table.

For example, to add a remark on the name column and on the status column
of the employee table:

comment on column employee.name is
'name in the format: lastname, firstname';

comment on column employee.status is

'valid codes are:
01, exempt; 02, non-exempt; 03, temp';

To delete a comment, specify an empty string. For example, the comment on
the status column can be deleted by the statement:

comment on column employee.status is '';

For complete details, see the comment on statement in the SQL Reference
Guide.

66 Database Administrator Guide

Synonyms, Temporary Tables, and Comments

The Declare Table Statement

The DECLARE TABLE statement can be used to describe the structure of a table
in ESQL programs. With this statement, you can document the columns and
data types associated with a table.

For example, the employee table can be described with a DECLARE TABLE
statement as follows:

exec sql declare userjoe.employee table

(

emp_number integer2 not null not default,
last_name varchar (20) not null,
first_name varchar(20),

birth_date date not null not default
);

For complete details, see the entry for the DECLARE TABLE statement in the
SQL Reference Guide. For information on ESQL programs, see the chapter
“Embedded SQL" in the SQL Reference Guide.

Managing Tables and Views 67

Chapter 4: Populating Tables

This section contains the following topics:

Methods of Populating Tables (see page 69)

Copy Statement Syntax (see page 70)

Copy Statement Operation (see page 72)

Binary Copying (see page 75)
Formatted Copying (see page 76)

Bulk Copy (see page 84)
Fastload Operation (see page 90)

Advanced Use of the Copy Statement (see page 92)

Large Data Loads with the Set Nologging Statement (see page 98)

Successful Use of the Copy Statement (see page 101)

This chapter describes how to use the COPY statement, which is the fastest
and most flexible method of loading data into tables. It also discusses the
fastload operation and the SET NOLOGGING statement as other methods of
loading data.

Methods of Populating Tables

You can load data into tables using the following methods:

COPY statement

The COPY statement is a good method to use for loading large quantities of
data quickly from files, and is flexible in dealing with record formats.

INSERT statement
Use the INSERT statement to enter a small amount of data.
Append mode of Query-By-Forms (QBF)

Use QBF for interactive data entry.

The INSERT statement and the QBF append mode, as alternatives to the COPY
statement, provide the most potential for customized validity checking and
appending to more than one table at a time. For more information on these
alternatives, see the SQL Reference Guide and the Character-based Querying
and Reporting Tools User Guide, respectively.

Populating Tables 69

Copy Statement Syntax

Copy Statement Syntax

To load data from a table into a file or from a file into a table, use the COPY
statement.

Each COPY statement must specify only one table name. An optional schema
name can be specified. The TABLE keyword is optional and can be included for
readability.

The table name is followed by a list in parentheses containing none, one, or
more column format specifications, up to the total number of columns in the
table. The column specifications depend on the type of copy being performed.

For details on the COPY statement, see the SQL Reference Guide.

Copy Into (Unload Data) and Copy From (Reload Data)

The COPY statement is bidirectional; it unloads data from a table and loads
data into a table.

The INTO and FROM keywords specify the direction of data movement:

m The COPY INTO statement performs the unload operation, copying the data
into a file from the database. For example, to copy the horx table into the
pers.data file, use the following statement:

copy table horx (name=char(20), code=integer)
into 'pers.data’';

® The COPY FROM statement performs the reload operation, copying the
data from a file into the database. For example, to copy the agent table
from the myfile.in file into the database, use the following statement:

copy table agent (ano=integer, code=integer2)
from 'myfile.in';

A common use of COPY is to unload a table for backup to tape or for transfer
to another database. In either case, there is the possibility of reloading the
data into a database later.

70 Database Administrator Guide

Copy Statement Syntax

File Name Specification on the Copy Statement

Only one file can be specified in the copy operation. If the file does not exist
when copying to a file, it is created.

Windows: If the file exists, copy overwrites it. When specifying a file name,
always enclose it in single quotation marks. Omit the drive and directory
portion of the file name if the file is in the current directory. Otherwise, provide
a full path name with drive and directory. The following example shows a full
path name; this is an example of Binary Copying (see page 75):

copy emp() from 'D:\users\fred\emp.lis’; ™

UNIX: If the file exists, copy overwrites it. When specifying a file name,
always enclose it in single quotation marks. Omit the full path name if the file
is in the current directory. Otherwise, provide a full path name. The following
example shows a full path name; this is an example of Binary Copying (see
page 75):

copy emp() from '/usr/fred/emp.lis';

Important! The COPY statement is not able to expand $HOME or recognize
the UNIX variables set in your environment. Do not use these variables to
specify a path name for the COPY statement. For example, the following COPY
statements do not work:

copy emp () from '~fred/emp.lis'; /* dnvalid */
copy emp () from '$HOME/emp.lis'; /* invalid */ ™

VMS: If the file exists, COPY creates another version of the file. When
specifying a file name, you can optionally give a VMS file type:

into | from 'filenamel, typel'

where type is text, binary, or variable. =

With-Clause Options of the Copy Statement

A with-clause can be used to further describe and control the copy being
performed. For a description of the syntax for the with-clause, see the SQL
Reference Guide. For valid with-clause options, see the Command Reference
Guide.

Populating Tables 71

Copy Statement Operation

Copy Statement Operation

The COPY statement allows you to do the following:
® Copy all of a table or selected columns
® Rearrange columns

® Manipulate data formats of the column data

Binary and Formatted Copying

A special form of the COPY statement is used to perform a fast copy of an
entire table with no format changes.

m A binary copy is a fast method of copying an entire table.
No column names are specified in a binary copy. For example:
table emp ()

The entire table is moved, byte for byte, with no record delimiters or data
type conversions.

m A formatted copy is performed on selected columns of data (which can
include all columns), with type conversions being performed as necessary
during the copy.

One or more column names are specified in a formatted copy. For
example:

table emp (eno=integer, ename=char(10))
Although this type of copy is not as fast as a binary copy, it allows you to

fully control the columns copied, the column order, and the data type
conversions to be performed.

72 Database Administrator Guide

Copy Statement Operation

Bulk and Incremental Copy

When copying data to a table, the COPY FROM statement can run in either of
the following modes:

Bulk copy

A bulk copy is a copy operation optimized for speed that allows the DBMS
Server to exploit group writes and minimal transaction logging. Bulk
copying is done whenever the characteristics of the target table allows.
The bulk copy can be performed from any source file, either binary or
formatted.

Doing a bulk copy from a binary file is the fastest method to copy large
amounts of data.

Incremental copy

In incremental mode, data is added to the table using inserts, causing
single-page writes and full transaction logging. Incremental mode is used
for the copy whenever the characteristics of the target table do not allow a
bulk copy to be performed.

Populating Tables 73

Copy Statement Operation

Copy Permissions and Integrities

The COPY statement itself does not require permissions to run. However, you
must have permission to access the table being copied. At least one of the
following must apply:

B You own the table.

® You have been granted select (for COPY INTO) or insert (for COPY FROM)
privilege on the table.

® The table has select (for COPY INTO) or insert (for COPY FROM) permission
granted to public.

To copy data in and out of the database as quickly as possible, the COPY

statement does not check for:

® Permissions other than select/insert as described above

® Integrities

When copying data into a table, copy ignores any integrity constraints
(defined with the CREATE INTEGRITY statement) against the table.

® Constraints

When copying data into a table, COPY ignores ISO Entry SQL92 check and
referential constraints (defined using the CREATE TABLE and ALTER TABLE
statements), but does not ignore unique and primary key constraints.

® Rules
The COPY statement does not fire any rules defined against the table.

For information on integrities, constraints, and rules, see the chapter “Ensuring
Data Integrity.”

Locking During a Copy
When you use the COPY statement, the locking system takes one of the
following actions:
®m A Shared lock on the table while data is being copied into a file

® An Exclusive lock on the table during bulk copies to the table, for
maximum speed

® An Intended Exclusive lock on the table during an incremental copy to the
table. Because inserts are used to update the table, the copy can
encounter lock contention.

For a complete explanation of locking, see the chapter “Understanding the
Locking System.”

74 Database Administrator Guide

Binary Copying

Binary Copying

The binary copy is designed for reloading data into tables that have exactly the
same record layout as those from which the data was unloaded. Those tables
must be on a machine with the same architecture as that from which they
were unloaded.

The utilities designed for quick unloading and reloading of tables or
databases—copydb and unloaddb (and their VDBA equivalent features)—both
use the binary form of COPY by default. They automate the process so you can
easily recreate and reload tables of identical layout. For information on copydb
and unloaddb, see the Command Reference Guide.

Copy Data into a Binary File

The quickest form of the COPY statement to code and execute for unloading
data into a file is a binary copy. A binary copy always creates a file of type
binary. This statement has the following format:

COPY [TABLE] [schema.]tablename () INTO 'output_filename'
[standard-with-clauses]

You omit the column list from the COPY statement. For example, the following
statement copies the entire dept table into the dept_file file in binary format:

copy dept () into 'dept_file';

The binary COPY INTO statement copies all rows of a table to the output file in
a proprietary binary format, using the order and format of the columns in the
table. It places no delimiters between fields or between records. It performs no
type conversions; all data items retain the type they had in the table.

Unloading data in binary format for backup can be inconvenient if you need to
inspect the file data later.

Note: If any columns have a type other than character, they are not readable
as characters in the output file.

If you unload a table in binary format, the data must subsequently be reloaded
in binary format. You cannot use unloaded binary data to later load tables that
have a different column order, number of columns, data types, or table
structure. To perform these functions, use formatted COPY statements.

Populating Tables 75

Formatted Copying

Reload a Table in Binary Format

Use the following form of the COPY statement to reload a table from a file
containing data in binary format:

COPY [TABLE] [schema.]tablename () FROM 'output_filename'
[standard-with-clauses]
[bulk-copy-with-clauses]

This form of the COPY FROM statement must be used to reload from a binary
file (that is, one created with an empty column list in the COPY INTO
statement).

For example, the following statement copies the binary data from the dept_file
file into the new_dept_table table:

copy new_dept_table () from 'dept_file'

The table is recreated with the same column and data type format
specifications as in the original table. If the table characteristics allow, include
bulk copy (see page 84) WITH clauses.

Formatted Copying

Formatted copying provides a flexible means of copying tables.

Column Name and Format Specifications

When using the COPY statement to do formatted copying, specify the column
name and the format in which that column’s data is to be copied, as follows:

column_name = format [null-clause]

where:
column_name

Specifies the column from which data is read or to which data is written.
The name in the copy target must be the same as in the copy source; you
cannot change column names in the COPY statement.

format

Specifies the storage format in which the column values are stored and
delimited. The storage format is based on the data type. The COPY
statement can copy all data types except logical keys.

The column names and their formats must be separated by commas, and the
list must be in parentheses.

76 Database Administrator Guide

Formatted Copying

Summary of Data Types and Storage Formats

A summary of data types and their storage format characteristics is given in
the table below. For detailed information on storage formats and data
conversions of the various data types, see the SQL Reference Guide.

Class Data Types Description and Copy Notes

Character data char Fixed-length strings with blank padding at the end.

m char(0)[delim] copies the string without
requiring a specified length, with a default or
specified delimiter as an end of record.

m char(n) copies n = 1 to x characters. “x”
represents the lesser of the maximum
configured row size and 32,000.

Character data varchar Variable-length strings preceded by a length.

= varchar(0) copies the string and its stored
length.

= varchar(n) copies n = 1 to x characters and its
stored length, with null padding at the end. “x”
represents the lesser of the maximum
configured row size and 32,000.

Character data long varchar Stored in segments and terminated by a zero length
segment. Each segment is composed of an integer
specifying the length of the segment, followed by a
space and the specified number of characters. The
end of the column data is specified through a
termination, zero length segment (that is, an
integer O followed by a space).

The following example shows two data segments,
followed by the termination zero length segment.
The first segment is 5 characters long, the second
segment is 10 characters long, and the termination
segment is 0 character long. The maximum length
of each segment is 32737.

5 abcdel10 abcdefghij 0 (with a space after the
terminating 0 character)

(In this example, the effective data that was in the
column is abcdeabcdefghij)

If the long varchar column is nullable, specify the
WITH NULL clause. An empty column is stored as
an integer 0, followed by a space.

Populating Tables 77

Formatted Copying

Class Data Types Description and Copy Notes

Unicode data nchar Fixed-length Unicode strings in UTF-8 format
(padded with blanks if necessary).

Unicode data nvarchar Variable-length Unicode string in UTF-8 format

preceded by a 5-character, right-justified length
specifier.

Unicode data

long nvarchar

Stored in segments, and terminated by a zero
length segment. Each segment is composed of an
integer specifying the length of the segment,
followed by a space and the specified humber of
Unicode characters in UTF-8 format. The end of the
column data is specified through a termination, zero
length segment (that is, an integer 0 followed by a
space). The maximum length of each segment is
32727 bytes.

Note: The "number" of Unicode characters in a
segment will be less than 32767. For example, each
UTF-16 character in Basic multilingual plane can
occupy 1 to 3 bytes in UTF-8 format.

If the long nvarchar column is nullable, specify the
WITH NULL clause. An empty column is stored as
an integer 0, followed by a space.

The UTF-8 encoded long nvarchar data segments
are similar to long varchar data segments. For an
example of the encoded data segment, see the
description for long varchar.

Binary data byte Fixed-length binary data with padding of zeroes at
the end.
m byte(0)[delim] copies the data without requiring
a specified length, with a default or specified
delimiter as an end of record.
m byte(n) copies n= 1 to x bytes. “"x” represents
the lesser of the maximum configured row size
and 32,000.
Binary data byte varying Variable-length binary data preceded by a length.

m byte varying(0) copies the data and its stored
length.

m byte(n) copies n= 1 to x bytes and its stored
length, with zero padding. “x” represents the
lesser of the maximum configured row size and
32,000.

78 Database Administrator Guide

Formatted Copying

Class Data Types Description and Copy Notes

Binary data long byte Binary data stored in segments, and terminated by
a zero length segment. Each segment is composed
of an integer specifying the length of the segment,
followed by a space and the specified number of
characters. The end of the column data is specified
through a termination, zero length segment (that
is, an integer 0 followed by a space).

The following example shows two data segments,
followed by the termination zero length segment.
The first segment is 5 characters long, the second
segment is 10 characters long, and the termination
segment is 0 character long. The maximum length
of each segment is 32737.

5 abcde10 abcdefghij 0 (with a space after the
terminating 0 character)

(In this example, the effective data that was in the
column is abcdeabcdefghij)

If the long byte column is nullable, specify the
WITH NULL clause. An empty column is stored as
an integer 0 followed, by a space.

Numeric data integerl Integer of 1-byte length (-128 to +127).

Numeric data smallint Integer of 2-byte length
(-32,768 to +32,767).

Numeric data integer Integer of 4-byte length
(-2,147,483,648 to +2,147,483,647).

Numeric data decimal Fixed-point exact humeric data, up to 31 digits.
Range depends on precision and scale. Default is
(5,0): -99999 to +99999.

Numeric data float4 Single precision floating point number of 4-byte
length (7 digit precision),
-1.0e+38 to +1.0e+38.

Numeric data float Double precision floating point humber of 8-byte
length (16 digit precision),
-1.0e+38 to +1.0e+38).

Date/time data ansidate 4-byte binary
Date/time data time 8- or 10-byte binary
Date/time data timestamp 12- or 14-byte binary
Date/time data interval year to 3-byte binary

month

Populating Tables 79

Formatted Copying

Class

Data Types

Description and Copy Notes

Date/time data

interval day to
second

12-byte binary

Abstract data types ingresdate Date of 12-byte length, 1-jan-1582 to 31-dec-2382
(for absolute dates) and -800 years to 800 years
(for time intervals).

Abstract data types money Exact monetary data of 8-byte length,
$-999,999,999,999.99 to $999,999,999,999.99

Copy statement only d Dummy field.

m dOdelim on COPY INTO copies the delimiter into
the (empty) field.

m dO[delim] on COPY FROM skips the data in the
field, up to the default or specified delimiter.

m dn on COPY INTO copies the name of the
column n times. On COPY FROM, skips the field
of n characters.

User-defined data types

(UDTs)

Use char or varchar.

80 Database Administrator Guide

Formatted Copying

Copy Statement and Nulls

When you copy data from a table to a file or vice versa, the WITH NULL clause
of the COPY statement allows you to substitute a value for nulls.

When you use variable length data formats when copying, you must replace
the null values with some string that represents nulls; for example:

copy table personnel (name=char(20),
salary=char(0) with null ('N/A"),
dummy=don1l)
into 'pers.data’';

After executing this statement, the pers.data file contains *N/A"” for each null
salary.

With other data formats, you are not required to substitute a value for nulls.
However, if you do not, your file contains unprintable characters.
When substituting a value for nulls, the value:
® Must not be one that occurs in your data
® Must be compatible with the format of the field in the file:
- Character formats require quoted values
- Numeric formats require unquoted numeric values

Do not use the word NULL if you are copying to a numeric format. The file does
not accept an actual null character or the word NULL for numeric format.

Populating Tables 81

Formatted Copying

Copy Data into a Formatted File

Use the following COPY statement to copy table data into a formatted file:

COPY [TABLE] [schema.] tablename
([column_name = format [WITH NULL [(value)]]
{, column_name = format [WITH NULL[(value)]l}1)
INTO 'output filename' [standard-with-clauses]

One or more column names appear, with format specifications. The column
names must be the same as those in the table. However, the order of the
columns can be different from the order in which they are currently stored in
the table (except as noted below). Also, the format does not have to be the
same data type or length as their corresponding entries in the table. The data
is copied with any column reorganization or format conversions being made as
necessary.

Note: When copying from a table that includes long varchar or long byte
columns, you must specify the columns in the order they appear in the table.

Two major categories of data that can be unloaded into files are fixed-length
fields and variable-length fields.

Data with Fixed-Length Fields

Fixed-length fields can use implicit or explicit specification of the field length.

m If you use the (0) notation for fixed-length character or byte data, the
length is implicitly specified. For example, if you use char(0), character
columns are copied into the file using the full length of the column.

m Columns containing numeric data (such as integer or float data types) can
be explicitly formatted using the -i or -f SQL option flags. For details on
these flags, see the sql command description in the Command Reference
Guide.

m If you use a length specifier, the field length is explicit. For example, for
char(n), the COPY INTO statement stores exactly n characters. Excess
characters are discarded and shorter columns are padded with blanks.

m The varchar(n) format stores exactly n characters with a leading length
indicator in ASCII format, discarding any excess characters. Shorter
columns are padded with null bytes.

82 Database Administrator Guide

Formatted Copying

Data with Variable-Length Fields

Variable-length data items are written to a file by the COPY statement with the
formats:

varchar(0)

long varchar(0)
byte varying(0)
long byte(0)
nvarchar(0)
long nvarchar(0)

An ASCII length is written preceding the data. The length of the data copied
corresponds to the number of characters or bytes in the column, not the width
of the column specified in the CREATE statement. Varchar(0) compresses the
data, whereas char(0) does not.

Reload Formatted Data

Use the following form of the COPY statement to reload a table from a file
containing formatted data:

COPY [TABLE] [schema.] tablename
([column_name = format [WITH NULL [(valuve)]]
{, column_name = format [WITH NULL[(value)]l}1)
FROM '7nput_filename' [standard-with-clauses]
[bulk-copy-with-clauses]

The input file name can contain user-created data for reading in new data to a
table, or a formatted file created by a COPY INTO statement. You must specify
the column names in sequence according to the order of the fields in the
formatted file (that is, the same order in which they appeared in a COPY INTO
statement). The format does not have to be the same data type or length as
their corresponding entries in the file. The target table can be empty or
populated; in the latter case, the COPY FROM operation merges the new data
from the file with the existing table data. If the table characteristics allow,
include bulk copy (see page 84) WITH clauses.

Populating Tables 83

Bulk Copy

Bulk Copy

The COPY statement to reload a table whose characteristics allow a bulk copy
to be performed has the following format:

COPY [TABLE] [schema.] tablename
([column_name = format [WITH NULL [(valuve)]]
{, column_name = format [WITH NULL null[(value)]1l}1)
FROM ' 7nput_filename'
[WITH [standard-with-clauses]
[, allocation = n]l [, EXTEND = n] [, ROW_ESTIMATE = n]
[, FILLFACTOR=n] [, MINPAGES=n] [, MAXPAGES=n]
[, LEAFFILL=n] [, NONLEAFFILE=n]]

If the file is formatted, you must specify columns in the column list as
described for reloading formatted data. If the file is binary, use an empty
column list.

Bulk Copying Requirements
To perform a bulk copy when loading data from a file into a table, the table
must have the following characteristics:
® The table has no secondary indexes.
® The table is not journaled.
® The table is not partitioned.

® The table is either a heap table (the data from the file is appended to the
end of the heap table) or empty and less than 18 pages in size if the table
is hash, B-tree, or ISAM (the table is rebuilt with the new data from the
file).

If these requirements are not met, the copy is performed in incremental mode.

Transaction Logging During Bulk and Incremental Copy
The bulk copy requires only minimal transaction logging.

Note: A transaction is still entered into the log file and normal logging occurs
for the associated system catalogs.

In contrast, an incremental copy can generate a large amount of transaction
log records. The incremental copy requires logging for every record transfer
and every structural change to the table.

An alternative method to reducing logging is described in Large Data Loads
with the Set Nologging Statement (see page 98).

84 Database Administrator Guide

Bulk Copy

Bulk and Incremental Copy Processing

The processing for a bulk copy is similar to a MODIFY statement, except that
the data comes from an external source rather than an existing table. For a
bulk copy, the following occurs:

1. The COPY statement reads all data from the source.

2. The COPY statement deposits the data in the Data Manipulation Facility
(DMF) sorter.

3. The sorter sorts all data into the required order.
Note: For a heap table, no sorting is done.

4. The COPY extracts the data from the sorter, builds the table, and
populates the table.

In contrast, for an incremental copy, the sequence is as follows:

1. Reads one record from the external file.

2. Adds to the table as an insert.

3. Repeats these steps until the data has been copied.

Populating Tables 85

Bulk Copy

Bulk Copy With-Clauses

The WITH clause options on the COPY statement for bulk copy operate like the
corresponding clauses in the MODIFY statement.

If these clauses are omitted, the table default values in the system catalogs
are used. If any of these clauses are specified, the values become the new
defaults for the table in the system catalogs.

The following clauses can be used only with a bulk copy:

Note: If these clauses are used with a COPY statement with columns specified,
an error message is returned and the copy is not performed.

= WITH ALLOCATION

A bulk copy from can preallocate table space with the allocation clause.
This clause specifies how many pages are preallocated to the table. This
clause can be used only on tables with B-tree, hash, or ISAM storage
structures.For example, preallocate 1000 pages for bulk copying from the
emp.data file into the emp table:

copy emp() from 'emp.data' with allocation = 1000;

VMS: Preallocating space with the allocation clause is important
particularly in VMS installations to increase loading efficiency. =

= WITH EXTEND

A bulk copy from can extend table space with the extend clause. This
clause specifies how many pages the table is extended. This clause can be
used only on tables with B-tree, hash, or ISAM storage structures.

For example, extend table emp by 100 pages for bulk copying from the
emp.data file:

copy emp() from 'emp.data' with extend = 100;
= WITH ROW_ESTIMATE

A bulk copy can specify an estimated number of rows to be copied during
the bulk copy. It can be a value from 0 to 2,147,483,647 ((231-1). This
clause can be used only on tables with B-tree, hash, or ISAM storage
structures.

For example, set the row estimate on the emp table to one million for bulk
copy from the emp.data file:

copy emp() from 'emp.data' with row_estimate = 1000000;

86 Database Administrator Guide

Bulk Copy

Providing a row estimate can enhance the performance of the bulk copy by
allowing the sorter to allocate a realistic amount of resources (such as in-
memory buffers), disk block size, and whether to use multiple locations for
the sort. In addition, it is used for loading hash tables in determining the
number of hash buckets. If you omit this parameter, the default value is 0,
in which case the sorter makes its own estimates for disk and memory
requirements.

To obtain a reasonable row estimate value, use known data volumes, the
HELP TABLE statement, and information from the system catalogs. For
more information, see the chapter "Maintaining Storage Structures.” An
over-estimate causes excess resources of memory and disk space to be
reserved for the copy. An under-estimate (the more typical case,
particularly for the default value of 0 rows) causes more sort I/0 to be
required.

WITH FILLFACTOR

A bulk copy from can specify an alternate fillfactor. This clause specifies
the percentage (from 1 to 100) of each primary data page that must be
filled with rows during the copy. This clause can be used only on tables
with B-tree, hash, or ISAM storage structures.

For example, set the fillfactor on the emp table to 10% for bulk copy from
the emp.data file:

copy emp() from 'emp.data' with fillfactor = 10;
WITH LEAFFILL

A bulk copy from can specify a leaffill value. This clause specifies the
percentage (from 1 to 100) of each B-tree leaf page that must be filled
with rows during the copy. This clause can be used only on tables with a B-
tree storage structure.

For example, set the leaffill percentage on the emp table to 10% for bulk
copy from the emp.data file:

copy emp() from 'emp.data' with leaffill = 10;
WITH NONLEAFFILL

A bulk copy from can specify a nonleaffill value. This clause specifies the
percentage (from 1 to 100) of each B-tree non-leaf index page that must
be filled with rows during the copy. This clause can be used only on tables
with a B-tree storage structure.

For example, set the nonleaffill percentage on the emp table to 10% for
bulk copy from the emp.data file:

copy emp() from 'emp.data' with nonleaffill = 10;

Populating Tables 87

Bulk Copy

m WITH MINPAGES, MAXPAGES

A bulk copy from can specify minpages and maxpages values. The
MINPAGES clause specifies the minimum number of primary pages that a
hash table must have. The MAXPAGES clause specifies the maximum
number of primary pages that a hash table must have. This clause can be
used only on tables with a hash storage structure.

If these clauses are not specified, the primary page count for the bulk copy
is determined as follows:

- If the COPY statement has a ROW_ESTIMATE clause, that size, along
with the row width and fill factor, is used to generate the number of
primary pages.

- Otherwise, the table’s default in the system catalogs is used.

The following example sets the number of primary data pages (hash
buckets) for bulk copying from the emp.data file into the emp table:

copy emp() from 'emp.data' with minpages = 16384, maxpages = 16384

For further details on these WITH clause options, see the chapter “Maintaining
Storage Structures.”

Example: Perform a Bulk Copy to Create a Hash Table

The following sequence of statements allows a bulk copy to be performed. This
example creates a hash table:

create table tmpl
(coll integer not null,
col2 char(25))
with nojournaling;
modify tmpl to hash;
copy tmpl() from 'tmpl.saved'
with row_estimate = 10000,
maxpages = 1000,
allocation = 1000;

Bulk copy is chosen for the copy because the table is not journaled (it is
created with nojournaling), it has no indexes (none have yet been created),
and the table has under 18 pages (it is a newly created table that has not yet
been populated with data).

The MODIFY...TO HASH operation is quick because the table is empty at this
point. The ROW_ESTIMATE parameter allows a more efficient sort than if the
default estimate (of 0 rows) is used. Additionally, for the hash table,
ROW_ESTIMATE enables the number of hash buckets to be calculated
efficiently. This calculation uses the row width (set by the CREATE TABLE
statement), ROW_ESTIMATE , MAXPAGES, and the (default) FILLFACTOR. The
COPY statement includes an ALLOCATION clause to preallocate disk space for
the table to grow, increasing efficiency of later row additions.

88 Database Administrator Guide

Bulk Copy

Example: Perform Bulk Copy and Create B-tree Table

The following example of a bulk copy uses a B-tree table:

create table tmp2
(coll integer not null,
col2 char(25));. . .
Populate table. . .
Save any data needed in table
modify tmp2 to truncated;
modify tmp2 to btree;
set nojournaling on tmp2;
copy tmp2() from 'tmp2.saved'
with row_estimate = 10000,
leaffill = 70,
fillfactor = 95,
allocation 1000;

The existing table tmp2 is truncated to assure it has fewer than 18 pages. This
also removes any indexes. Journaling is disabled for the table with the SET
NOJOURNALING statement. The table meets the bulk copy requirements and a
bulk copy is performed.

The COPY statement includes a row estimate for efficient sorting during the

copy. The LEAFFILL and FILLFACTOR clauses allow the B-tree table to be set
up as specified during the copy operation. The allocation clause provides for
efficient future table growth.

Example: Perform Bulk Copy into a Heap Table

When a heap table is unjournaled and has no indexes, all copies are performed
using bulk copy, regardless of the size of the table. Bulk copying into a non-
empty heap table is allowed by logging the last valid page before starting the
copy. If an error or rollback occurs, all new pages are marked as free.

Note: The table is not returned to its original size.

For example, in the following sequence of statements, all of the copy
operations into the heap table are done as bulk copies:

m Create a heap table

® Copy to the heap table (table is empty)

® Copy to the heap table (append to the table)

Perform inserts, updates, and deletes

® Copy to the heap table (append to the table)

Populating Tables 89

Fastload Operation

Fastload Operation

The fastload operation loads data from a binary format file into a single table
in a single database. It loads each contiguous n bytes of data into a new row in
the target table.

The fastload operation can be performed using the fastload command (see the
Command Reference Guide) or in VDBA using the Fastload Table dialog. In
VDBA, you select the desired table from a database and choose a file from
which you want to load the data in the Fastload Table dialog.

Requirements for Using Fastload

The following requirements must be met to perform a fastload:

® Since the fastload command creates its own server, if simultaneous access
to the database is required for additional sessions, the following DBMS
parameter changes are required for any DBMS that has access to the same
database:

- cache_sharing ON
- fast_commit OFF
- sole_server OFF

m The fastload operation must be able to obtain an exclusive lock on the
table or fastload exits.

® The file's data format must match the table’s data format.

If the formats do not match, incorrect data are loaded into the table. For
example, if each record in a file contains a 5-byte char and a 4-byte
integer—and this file is loaded into a table that has a 4-byte char field
followed by a 4-byte integer field—fastload reads 8-bytes of the file and
load it as a row into the table. This means that the integer field does not
contain the actual integer in the original file because the last byte of the 51
byte char field plus 3-bytes of the integer field are interpreted as a 4-byte
integer. The problem grows as more data is read because the data are off
by one more byte for each row.

Check that the record length in the file matches the record length expected
by the table. For tables that do not include large object columns (such as
long varchar and long byte), the record length should match the row
width, as given by the SQL HELP TABLE statement.

In many cases, fastload is unable to determine the record size of a binary
file (this is the case on all UNIX platforms); in these cases, fastload
generates a message warning that no format checking can be performed.
The warning also contains the expected size of records in the binary file.

90 Database Administrator Guide

Fastload Operation

Be aware of the extra data added by the Ingres varchar data type and all
nullable fields. Fastload expects to read a 2-byte integer at the beginning
of a varchar field that contains the length of the varchar data. All nullable
fields must be terminated with a single byte null indicator that determines
whether the field is null.

Fastload supports all standard table structures when loading into empty
tables. It can also load data into heap tables that already contain rows.

All other table types that contain data require a data sort that merges the
loaded data with the existing data. Fastload does not perform this function.
The data always loads fastest into a heap table with no secondary indexes.

Fastload does not support complex data types such as intlist, ord_pair, or
udts.

Binary format files cannot be transported between byte-swap and non-byte
swap machines. The data can be generated programmatically, but you
should be careful to generate the correct record format, taking into
account additional bytes needed for some field types.

Perform a Fastload Operation

To perform a fastload operation (load binary format files into a table), perform
the following steps:

1.

Make a backup of the table’s content.

You need a backup because it can be difficult to fix or eradicate loaded
data that is incorrect.

Always check manually that the data has been loaded correctly.

Generate a copy of the file you want to fastload by copying it from an
Ingres table that has the same format as the target table, or by creating it
programmatically.

Do the copy in binary format, for example:

copy test() into 'test.out'

Enter the fastload command, for example:

fastload fload -file=test.out -table=test
The table “test” in the database “fload” is loaded from the file “test.out”.

Observe that a summary of the load displays the row size, number of rows
loaded, and the number of bytes read.

Verify manually that the data has been loaded correctly.

Populating Tables 91

Advanced Use of the Copy Statement

Data Loading in a Multi-CPU Environment

It can be faster to use COPY instead of fastload if the load is being done in a
multi-CPU environment. Copy is faster because it uses two processes and can
use two CPUs, whereas fastload uses only one CPU. Use COPY if a large
amount of sorting is required to load the data. If there is more than one CPU
available on the system, fastload can become CPU-bound on a single CPU.

Advanced Use of the Copy Statement

You can perform advanced functions with the COPY statement using variations
of the statement.

Examples in this section use a database that looks like the following:

Table Name Column Name Data Type
Header Orderno integer2
Date date
Suppno integer2
Status char(1)
Suppinfo Suppno integer2
Suppinfo char(35)
Detail Orderno integer2
Invno integer2
Quan integer2
Iteminfo Invno integer2
Descript char(20)
Priceinfo Invno integer2
Suppno integer2
Catno integer2
Price money

92 Database Administrator Guide

Advanced Use of the Copy Statement

Populate Multiple Database Tables Using Multiple Flles

Suppose that the information for the database previously described was stored
in data files outside Ingres, and that those files, “filel1” and “file2,” have the
record formats shown below:

orderno,date, suppno, suppinfo,status

orderno,invno,catno,descript,price,quan

The COPY statement can be used to load the data from these files into a five-
table database. Assume that the files are entirely in ASCII character format,

with fields of varying length terminated by commas, except for the last field,
which is terminated by a newline.

The following COPY statement loads the header table from the first file:

copy table header
(orderno = char (0)comma,
date = char(0)comma,
suppno = char (0)comma,
dummy = d@comma,
status = char(0)nl)
from 'filel';

Each column of the header table is copied from a variable-length character
field in the file. All columns except the last are delimited by a comma; the last
column is delimited by a newline.

Specification of the delimiter, although included in the statement, is not
needed because the COPY statement looks for the first comma, tab, or newline
as the field delimiter by default.

The notation dO used in place of char(0) tells the COPY statement to ignore the
variable-length field in that position in the file, rather than copying it. COPY
ignores the column name (in this case dummy) associated with the field
described as d format.

Populating Tables 93

Advanced Use of the Copy Statement

Load a Table from Multiple Files

Loading the priceinfo table presents special difficulties. The COPY statement
can read only one file at a time, but the data needed to load the table resides
in two files.

The solution to this kind of problem varies with the file and table designs in
any particular situation. In general, a good solution is to copy from the file
containing most of the data into a temporary table containing as many
columns of information as needed to complete the rows of the final table.

To load data from the files into the priceinfo table, do the following:

1.

Create a temporary table named pricetemp that contains the orderno
column, in addition to all the columns of the priceinfo table:
create table pricetemp (orderno integer2,

invno integer2,

suppno integer2,

catno integer2,
price money);

Adding the orderno column to the temporary table is that it enables you to
join the temporary table to the header table to get the supplier number for
each row.

Copy the data from file2 into the pricetemp table:

copy table pricetemp (orderno = char(0), invno =
char(0), catno char(0), dummy = dO, price =
char(0), dummy = dO) from 'file2';

Insert into the priceinfo table all rows that result from joining the
pricetemp table to the header table. (In VDBA, use an SQL Scratchpad
window to execute the statement.)
insert into priceinfo (invno, suppno, catno,price)

select p.invno, h.suppno, p.catno,

p.price from header h, pricetemp p
where p.orderno = h.orderno;

Destroy the temporary table pricetemp:

drop pricetemp;

94 Database Administrator Guide

Advanced Use of the Copy Statement

Multi-line File Records

Another feature of the COPY statement is that it can read multi-line records
from a file into a single row in a table. For instance, suppose that for viewing
convenience, the detail file is formatted so that each record requires three
lines. That file looks like this:

1, 5173

10179A, No.2 Rainbow Pencils
0.29

1, 5175

731227, 1998 Rainbow Calendars
4.90

Load these values into the pricetemp table with the following COPY statement:

copy table pricetemp (orderno = char(0)comma, invno = char(0)
nl, catno = char(@)comma, descript = dOnl, price =
char(@)nl) from 'file2';

It does not matter that newlines have been substituted for commas as
delimiters within each record. The only requirement is that the data fields be
uniform in number and order, the same as for single-line records.

Load Fixed-Length and Binary Records

The COPY statement can also load data from fixed-length records without any
delimiters in or between the data. In addition, numeric items in the file can be
stored in true binary format. For example, the value 256 can be stored in a 20
byte integer instead of 3 characters. The order header file has the following
record layout:

orderno date suppno suppinfo status
The data type formats for each of the fields is as follows:

(2-byte int) (8 chars) (2-byte int)
(35 chars) (1 char)

In this case, you code the COPY statement to load the header table as follows:

copy table header (orderno = integer2,
date = char(8),
suppno = integer2,
dummy = char(35),
status = char(1))
from 'filel';

It is also possible to copy data from files that contain both fixed and variable-
length fields.

Populating Tables 95

Advanced Use of the Copy Statement

Considerations When Loading Large Objects
Large objects are long varchar and long byte data types. Long varchar is a
character data type, and long byte is a binary data type with a maximum
length of 2 GB.
There are additional considerations when copying large objects into a table.
Considerations for Copying Formatted Large Objects
A column with large objects is specified for copying with the formats:
long varchar(0)
long byte(0)
long nvarchar(0)
Note: You cannot use a length specifier or a delimiter.
To handle the large size, copy deals with these data types in a similar manner
as the data handlers: the data is broken up into segments for copying to a
data file.
Each segment consists of the length, followed by a space delimiter, followed by
the data. There is no space following a data segment (because copy knows

how many bytes of data to read).

The basic structure of a formatted segment is:

integer = length of segment
space = delimiter
char|byte(len) = data

The last segment, or an empty object, is denoted by a zero length, followed by
its space delimiter:

0
space

length of segment
delimiter

Thus, the data is segmented as:

lengthl segmentl segmentllength2 segment2...lengthn segmentn®
N

N A N N A

space space space space space space

The segments of the long nvarchar are UTF-8 transformation of Unicode
values.

For formatted copies on large object data that contain nulls, the WITH NULL
clause must be specified with a value.

96 Database Administrator Guide

Advanced Use of the Copy Statement

Example: Copying Formatted Large Objects

Consider the sample table, big_table, that was created with the following
CREATE TABLE statement:

create table big_table

object_id integer,
big _col long varchar);

This table can be copied to the big_file file with the following COPY statement:

copy table big_table (object_id integer, big_col long varchar) into 'big_file';
Considerations for Binary Copying a Large Object

The data file format is slightly different when you copy a large object in a
binary copy (that is, without column specifications).

The binary file has an extra character after the end of the last segment of a
nullable column. (A nullable column is one that was created with null). The
length is not followed by a space character. The basic structure of a binary
segment is:

integer2
char|byte(len)

length of segment
data

The last segment, or an empty object, is denoted by a zero length, followed (if
the column is nullable) by a character indicating whether the column is null
(=0) or not null (=1):

0
[char (1)

length of segment
0 column is not null
1 column is null]

Thus, a non-nullable column is segmented as:

lengthl segmentl segmentl length2 segment2...lengthn segmentn®

A nullable column is segmented as:

lengthl segmentl segmentl length2 segment2...lengthn segmentn® 0O
N

1 character

Empty and null strings appear as follows:
® A non-nullable empty string consists solely of the zero integer length.

® A nullable empty string consists solely of the end zeros: the zero integer
length and the zero “not null” character indicator.

® A null indicator consists of "01”: an end zero integer length and the null
character indicator of “1.”

Populating Tables 97

Large Data Loads with the Set Nologging Statement

Large Data Loads with the Set Nologging Statement

The SET NOLOGGING statement allows you to bypass the logging and recovery
system. This can be time-efficient for certain types of batch update operations
but must always be used with extreme care.

The SET NOLOGGING statement is intended to be used solely for large
database load operations for which the reduction of logging overhead and log
file space usage outweigh the benefits of having the system recover
automatically from update errors.

Suspend Transaction Logging

To suspend transaction logging for the current session, issue the following
statement:

set nologging

This statement can be issued only by the DBA of the database on which the
session is operating and cannot be issued while currently executing a multi-
statement transaction.

Effects of the Set Nologging Statement

After the SET NOLOGGING statement is issued, updates performed by the
current session are not recorded in the log file or journal files. Updates are not
reapplied if the database is rolled forward from a checkpoint, and updates do
not appear in an audit trail.

When transaction logging is suspended:

® Any error (including interrupts, deadlock, lock timeout, and force-abort, as
well as any attempt to roll back a transaction) results in an inconsistent
database.

® The rollforwarddb operation from journals is disabled until the next
checkpoint.

98 Database Administrator Guide

Large Data Loads with the Set Nologging Statement

Before Using the Set Nologging Statement

To use the SET NOLOGGING option, you as the DBA must:

m Obtain exclusive access on the database to ensure that no updates (other
than those performed by the batch update operation) can occur during the
operation.

® Prepare to recover the database before suspending logging. There are two
cases:

- For existing databases, checkpoint the database prior to executing the
operations that use the SET NOLOGGING statement. If an error halts
processing, the database can be restored from the checkpoint and the
process restarted.

- If loading a new database, no checkpoint is required. You can handle
consistency errors by destroying the inconsistent database, creating a
new database, and restarting the load operation.

Important! Do not use the SET NOLOGGING statement in an attempt to
improve performance during everyday use of a production database. Because
the recovery procedures for failed nologging transactions are non-automated
and require full database restoration, you must consider other methods if
database load performance needs improving. For assistance, see the chapter
“Improving Database and Query Performance.”

Restore Transaction Logging

To resume logging, issue the following statement:
set logging

The SET LOGGING statement re-enables logging for a session for which the
SET NOLOGGING statement was issued.

After SET LOGGING is executed, automatic database recovery is again
guaranteed.

If you use SET NOLOGGING on a journaled database, take a new checkpoint
immediately after completion of the SET LOGGING operations to establish a
new base from which to journal updates.

When a session operation in SET NOLOGGING mode disconnects from a
database, a SET LOGGING operation is implicitly executed to bring the
database to a guaranteed consistent state before completing the disconnect.

Populating Tables 99

Large Data Loads with the Set Nologging Statement

Example: Use a Set Nologging Application to Load a New Database

Here is an example sequence of using a SET NOLOGGING application to load a
new database:

1.
2.

Create the database.

Start the program to load the new database with data. The program
includes a SET NOLOGGING statement to bypass transaction logging
during the data load.

If any errors are encountered, destroy the database and repeat Steps 1
and 2.

Issue a SET LOGGING statement to resume normal operations.

Checkpoint the database and enable journaling to enable rollforward
recovery on this database.

Example: Use a Set Nologging Application to Load an Existing Database

The following sequence uses a SET NOLOGGING application to load data to an
existing database:

1.

Checkpoint the database and disable journaling by entering the following
command at the operating system prompt:

ckpdb -j dbname
(In VDBA, use the Checkpoint dialog.)

Start the program to load the database with the new data. The program
does the following:

m Locks the database exclusively to prevent other applications from
using the database until the load is complete.

m Includes a SET NOLOGGING statement to bypass transaction logging
during the data load.

If any errors are encountered, restore the database from the checkpoint
(you can use the Database Rollforward DB menu in VDBA) and repeat Step
2.

Issue a SET LOGGING statement to resume normal logging operations.

Turn journaling back on for the database by checkpointing the database:

ckpdb +j dbname

This establishes a new point from which rollforwarddb processing can be
done.

The load is complete. The database can be made accessible to other
applications.

100 Database Administrator Guide

Successful Use of the Copy Statement

Successful Use of the Copy Statement

How to Check for

When using the COPY statement, you should avoid common problems and
learn to use the statement correctly. Specifically, you should understand how
to do the following:

®m Check integrity errors
® Avoid reloading problems
m Control error handling

® Troubleshoot data loading

Integrity Errors

When you use the COPY statement, the data being copied is not checked for
integrity errors.

To check the integrity of your data before using the COPY statement, follow
these steps:

1. Use the CREATE INTEGRITY statement (or the equivalent feature in VDBA)
to impose the integrity constraint. For example:

create integrity on personnel
is name like '\[A-Z\]%' escape '\';

If the search condition is not true for every row in the table, an error
message is returned and the integrity constraint is rejected.

2. 1If the integrity constraint is rejected, find the incorrect rows; for example:

select name from personnel
where name not like '\[A-Z\]%' escape '\';

Use Query-By-Forms to quickly scan the table and correct the errors.
4. After ensuring that the data is correct, use the COPY statement to load or

unload your table.

As an additional check that the information was copied correctly, apply the
integrity constraint after copying the table.

For more information on integrity checking and integrity constraints, see the
chapter “Ensuring Data Integrity.”

Populating Tables 101

Successful Use of the Copy Statement

Reloading Problems
When using the COPY FROM statement, the following problems in the copy file
are the most frequent causes for error messages:
= Invalid data
® Miscounting fixed-length field widths
® Neglecting the nl delimiter in the COPY statement
® Omitting delimiters between fields

® Including too many delimiters
Invalid Data in the Copy File
If you try to load invalid data into a field, the row is rejected.

For example, the following record is rejected because February has only
twenty-eight or twenty-nine days:

559-58-2543,31-feb-1998,Weir, 100000.00, Executive
Miscounted Fixed-Length Field Widths in the Copy File

If the widths of fixed-length fields are not correct, the COPY statement can try
to include data in a field that it cannot convert to the appropriate format.

For example, you receive an error message if you try to copy this row:

554-39-2699 01-0ct-1998 Quinn 28000.00 Assistant

with the following COPY statement:

copy table personnel (ssno = char(20),
birthdate = char(11),
name = char(11l),
salary = char(9),
title = char(@)nl)
from 'pers.data';

Because you specified char(20), or 20-character positions, for the ssno field,
the COPY statement includes part of the birth date in the value for the ssno
field. When the COPY statement tries to read the birth date, it reads

“998 Quinn 2” which is not a valid date if birth date is defined as a date field; if
defined as a char field, you get an “unexpected EOF” error.

102 Database Administrator Guide

Successful Use of the Copy Statement

No nl Delimiter in the Copy File

When using fixed-length specifications in the COPY statement, you must
account for the “nl” (newline) character at the end of the record.

For example, you receive an error message if you try to copy these records:

554-39-2699 01-oct-1998 Quinn 28000.00 Programmer
335-12-1452 23-jun-1998 Smith 79000.00 Sr Analyst

with the following COPY statement:

copy table personnel (ssno = char(12),
birthdate = char(12),
name = char(6),
salary = char(9),
title = char(10))
from 'pers.data';

The format specified for the title field is char(10), which does not account for
the newline character. The newline characters are converted to blanks, and the
extra characters force the COPY statement to begin reading a third record that
ends abnormally with an unexpected end of file. Use char(10)nl to avoid this
problem.

Omitted Delimiters Between Fields in the Copy File
If you omit delimiters between fields in the data file, the record is rejected.

For example, the first record below has no delimiter between the employee’s
name and her salary:

123-45-6789,01-jan-1998,Garcia33000.00,Programmer246-80-1357,02-jan-
1998, Smith,43000.00,Coder

If you try to copy these records with the following COPY statement, you
receive an error message because the COPY statement attempts to read
“Programmer” into the “salary” field:

copy table personnel
(ssno = char(0),
birthdate = char(0),
name = char(0),
salary = char(0),
title = char(@)nl)
from 'pers.data';

Populating Tables 103

Successful Use of the Copy Statement

Too Many Delimiters in the Copy File

Be careful not to include too many delimiters in the data file. This mistake
frequently occurs when you use the comma as a delimiter and it also appears
in the data.

For example, in the first row, the salary value contains a comma:
123-45-6789,01-jan-1998,Garcia,33,000.00,Programmer

246-80-1357,02-jan-1998,Smith,43000.00,Coder

If you try to copy these records with the following COPY statement, you
receive an error message:

copy table personnel
(ssno = char(0),
birthdate = char(0),
name = char(0),
salary = char(0),
title = char(0))
from 'pers.data';

You receive an error because the COPY statement reads:
m “33” as the “salary”
® “000.00" as the “title”

® “Programmer” as the next “ssno”
It attempts to read “246-80-1357" as the birthdate, which produces the error.

If you specified “title = char(0)nl”, the COPY statement still reads “33" as the
salary, but it reads “000.00,Programmer” as the title. This is because it looks
for a newline rather than a delimiter at the end of the title. It reads the next
row correctly. Although an error message is not generated, the title field for
one row is incorrect.

Error Handling with the Copy Statement

When using the COPY statement, use the various options on the WITH clause
to control how invalid data is handled.

104 Database Administrator Guide

Successful Use of the Copy Statement

Stop or Continue the Copy

Use the WITH ON_ERROR clause to stop or continue copying the data when an
error occurs. In the following example, the copy continues after finding an
error:

copy table personnel
(name= char(0Q),
dept = char(0)nl)
from 'pers.data’
with on_error = continue;

The default is to terminate at the first error.

Stop the Copy After a Specified Number of Errors

Roll Back Rows

To stop the copy after a certain number of errors, specify an error count with
the ERROR_COUNT=n clause. For example:

copy table personnel
(name = char(0),
dept = char(0)nl)
from 'pers.data'
with error_count = 10;

The default ERROR_COUNT is 1.

This clause is not meaningful when used with the ON_ERROR=CONTINUE
clause. See the Error_ Count Option for the COPY statement in the SQL
Reference Guide.

By default, copying data stops after finding an error. If you do not want to
back out the rows already copied, specify with WITH ROLLBACK=DISABLED.
For example:

copy table personnel
(name = char(0),
dept = char(0)nl)
from 'pers.data'
with rollback = disabled;

Use the WITH ROLLBACK clause on the COPY FROM statement only. Rows are
never backed out of the copy file if copy into is terminated. For more
information, see the SQL Reference Guide.

Populating Tables 105

Successful Use of the Copy Statement

Log Errors During Copy

Use the WITH LOG clause to put invalid rows into a log file for future analysis.
The following query is terminated after ten errors, and these errors are placed
in a log file named badrows.data:

copy table personnel
(name = char(0),
dept = char(0)nl)
from 'pers.data’
with error_count = 10,
log = 'badrows.data';

Continue the Copy and Log Errors

By using both LOG and ON_ERROR = CONTINUE in the clause, put invalid rows
in a log file and continue to process valid ones. Correct the rows in the log file
and load them into the database. For example:

copy table personnel
(name = char(0),
salary = char(0)nl)
from 'pers.data’
with on_error = continue,
log = 'badrows.data';

Troubleshooting Tips for Data Loading

Follow these tips if you have trouble loading your data into the designated
tables:

® Try loading two rows from the data file to the table until you succeed.
Check the database table to be sure the results are accurate and copy the
entire file.

m Use the COPY statement options to continue on error and log records that
fail; examine the records later. Details are described in Control Error
Handling with the Copy Statement (see page 104).

If you are not able to load data from binary files:

® Make sure that the data comes from exactly the same machine
architecture. Integer and floating point formats can differ between
machines.

®m Pick apart your data column by column, using dummy delimiters for the
rest of the row until the COPY statement succeeds.

m If all else fails, get an ASCII copy of the data so you can correct errors.

106 Database Administrator Guide

Chapter 5: Loading and Unloading
Databases

This section contains the following topics:

Unload and Copy Operations (see page 107)

Unload Operation (see page 108)

Copy Operation (see page 113)

Copy Individual Database Objects (see page 119)

Ways to Copy and Relocate a Database (see page 124)
Generate XML and Import XML Operations (see page 125)

This chapter provides information on how to unload and reload a database or
selected tables using the unload database and copy database operations of
Ingres. It also describes the genxml and xmlimport utilities, which are used to
convert and transfer data in XML.

Unload and Copy Operations

The unload database and copy database operations are most often used to
copy or move a database or selected tables from one instance to another. They
allow you to copy or move data from one instance to another instance with the
same or different hardware or operating system.

You can also use these commands to:

m Copy a database or tables from one database to another on the same
instance

m Document your database or specific tables using the “create” scripts
produced by these operations

® Make static copies of your database or selected tables for the purpose of
recovery

m Archive data that you want to purge from the database or reload later

Loading and Unloading Databases 107

Unload Operation

The unload database and copy database operations generate scripts that
enable you to:

® Unload an entire database to external binary or ASCII files

m Copy selected tables, or all the tables, views, and procedures that you own
to external binary or ASCII files

m Reload the database or objects from these files

m Export table data into XML format using the genxml utility

® Import XML data files into Ingres, using the xmlimport utility

Both the unload database and copy database operations are two-phase
operations, as follows:

1. Create a script to unload or copy the table or database.

2. Execute the script to copy data out of a database and into another
database.

Privilege Required for Unload Operation

To unload a database, you must be the DBA for the database or a privileged
user impersonating the DBA.

Privilege Required for Copy Operation

To copy a database, you can be any user to copy selected tables or all the
tables, views, and procedures that you own in the database.

Unload Operation

The unload database operation allows you to completely unload a database
and reload it. You can unload an entire database or merely the objects owned
by a particular user.

The unload database operation destroys the extended system catalogs and
recreates them before loading the data. This is done to guarantee that the
data is loaded into system catalogs identical to the ones from which they were
unloaded.

108 Database Administrator Guide

Unload Operation

Objects That Are Unloaded

The unload database operation unloads all of the objects and system catalogs
in your database, including:

Tables

Views

Database procedures

Forms

Reports

Graphs

Application-By-Forms definitions
JoinDefs

QBFNames

Associated permissions, integrities, and indexes
Rules

Dbevents

Comments

Synonyms

When iidbdb (the Ingres master database) is the database being unloaded, the
following objects are also included:

Groups
Roles

Database-level privileges

Ways to Perform the Unload Database Operation

You can unload and reload a database using system commands or VDBA.

At the command line, use the unloaddb and sgl commands. For details, see the
Command Reference Guide.

In VDBA, start by using the Generate unload.ing and reload.ing dialog. This
dialog is invoked by selecting a database and choosing the Database menu,
Generate Scripts, and Unloaddb. For the detailed steps, see VDBA online help.

Loading and Unloading Databases 109

Unload Operation

Options on the Unload Database Operation

Some of the options that are available for unloading and reloading are:
m Create printable data files

® Directory name

m Source directory

m Destination directory

Files Created During the Unload Database Operation

When you unload a database, several files are created. To ensure compatibility
across all systems, the names of the generated files are truncated to twelve
characters.

The generated files are as follows:

unload

Contains operating system commands to invoke a terminal monitor and
execute the copy.out script

copy.out
Contains COPY statements to copy out system catalogs and all user objects
reload

Contains operating system commands to invoke a terminal monitor and
execute the copy.in script

copy.in
Contains statements to destroy, create and copy in system catalogs and all

user objects

The unload and reload command files have the .bat extension on Windows
systems and the .ing extension on UNIX and VMS systems.

110 Database Administrator Guide

Unload Operation

Unload in ASCII or Binary Format

When unloading a database, you should unload the files in ASCII format unless
you are copying the database to another instance on the same machine or to a
binary-compatible machine. In these cases, use binary format.

If you are not sure, use ASCII format.

Unloading in ASCII format allows you to:
B Move databases to an instance with a different machine architecture

m Edit the data files before reloading them into a database

To unload the database files in ASCII format, specify the -c option (create
printable data files) on the copydb command. (In VDBA, use the Create
Printable Data Files option in the Generate copy.in and copy.out dialog.)

To unload the database files in binary format, do not specify the -c option.

Note: The -c option can affect the value of floating point numbers. More
information can be found in Floating Point Specification for Unload (see
page 111).

Note: Copying between releases of Ingres with different major release
identifiers can cause problems if new columns were added to a later release to
support new features. If you have made use of these new features in the later
release and attempt to unload and reload into an earlier release that did not
support the new feature, the reload produces an error. A simple editing of the
reload scripts to avoid loading the non-existent columns avoids this problem.

Caution! If you unload the files in binary format, do not edit them. Editing
prevents you from reloading them.

Floating Point Specification for Unload

In the unload and reload command files, the floating point specification
defaults to maximum precision and length (-f8F79.38).

To reduce precision or length, edit the floating point specification in these files.
If you do not, zeros with no significance can consume disk space in the
external data files. If overflow occurs, you can specify another flag for the
output format, for example, N instead of F in the floating point specification.

Precision of formatted character output of floating point numbers is also
controlled with the -f flag of the sql command. For details, see the Command
Reference Guide.

Loading and Unloading Databases 111

Unload Operation

Unload to Another Instance

When you unload a database with the Destination Directory and/or Source
Directory options specified in the Generate unload.ing and reload.ing dialog,
direct where the data is copied to and from. This can be on the same machine
or a different machine.

When you run the unload command file, the copy.out script is executed. The
copy.out script generates the data files in the destination directory. If you have
specified a source directory, you must move the copy.in script and the data
files to this directory. When you run the copy.in script, the user objects are
created and the tables are populated with the data from the source directory.

Locking While Unloading a Database

When you perform the unload database operation or execute the unload
command file, the locking system takes shared locks on the system catalogs
and tables being unloaded.

When you execute the reload command file, the locking system takes exclusive
locks on the system catalogs and user tables being reloaded.

Inconsistent Database During an Unload

There are two major ways that a database can become inconsistent during the
unloading of a database:

m By default the database is not exclusively locked while the unload database
scripts are being created or the unload command file is running. Because
of this default, a user can alter tables that are not locked during this time.

® A user can alter the database after you have created the unload database
scripts but before you have executed the unload command file.

If a user drops a table in this interval, it generates an error message.
However, if a user makes either of the following changes during this time,
no error message is generated, and you do not know about the change:

— Adds or deletes rows from a table
- Adds a table

To ensure the consistency of the database while it is being unloaded, lock it
exclusively.

112 Database Administrator Guide

Copy Operation

Lock Database Exclusively During Unload

To lock the database exclusively during an unload operation, edit the unload
script and add the sql command -I flag to the script, before running the unload
command file.

Doing this ensures the consistency of the database.

Copy Operation

The copy database operation enables a DBA or non-DBA to copy the following:
m Selected tables and views in a database

m All of the user objects, including tables, views, and procedures, that you
own in a database

Ways to Perform the Copy Database Operation

To perform the copy database operation at the command line, use the copydb
command. For details, see the Command Reference Guide.

In VDBA, you use the Generate copy.in and copy.out dialog. This dialog is
invoked by selecting a database and choosing the Database menu, Generate
Scripts, and Copydb. For detailed steps, see VDBA online help.

Options on the Copy Database Operation

Some of the options that are available for copying a database are:
®m Specify tables

®m Create printable data files

® Directory name

® Source directory

m Destination directory

Loading and Unloading Databases 113

Copy Operation

Objects that Are Copied

The database objects copied in the copy database operation depend on
whether tables are specified for the operation.

The following table shows what is copied in each situation:

Options Specified What Is Copied

No options specified. All tables, views, and procedures (owned by the
user who performed the copy database operation)
and associated indexes, integrities, events,
permissions, and rules.

Table/views specified. Specified tables or views (owned by the user who
performed the copy database operation) and
associated indexes, integrities, and permissions.

For further flexibility in the statements written to the copy.in script, you can
use additional flags so that the generated scripts contain statements to
manipulate only certain database objects. The flags can be used with the
specified tables or views to print statements for any particular table or view.

For example, use the —with_index flag to print statements only related to
index.

For more information on these flags, see the copydb command description in
the Command Reference Guide.

114 Database Administrator Guide

Copy Operation

Scripts Produced by the Copy Database Operation

When you perform the copy database operation, the following two scripts are
produced:

copy.out

The copy.out script contains query language statements to copy your
tables to operating system files. The script contains a copy statement for
each table being copied

copy.in

The copy.in script contains query language statements to recreate your
tables, views, procedures, and associated indexes, permissions, and
integrities, and copy the table’s data from the operating system files into a
database.

To copy the tables out of the database, you run the copy.out script. To copy
them into the same or another database, you run the copy.in script.

If you specify a particular table or view, the copy.in script contains statements
to recreate the specified table or view only (along with applicable permissions
and so on). The script does not contain statements to create all tables, views,
and procedures.

Ingres tables can also be copied into XML format, as described in Generate and
Import XML Operations (see page 125).

Loading and Unloading Databases 115

Copy Operation

Reloading Order

When using the copy.in script, database objects are reloaded in the following
order:

Users, groups, and roles (only when recreating the iidbdb)
Tables

ALTER TABLE statements are used as needed for deferred creation of
referential integrities.

Data

The unload database operation (using the unloaddb command) handles all
data types, including decimal data, large objects, and User Data Types
(UDTs). More information can be found in Considerations When Loading
Large Objects (see page 96) and Column Name and Format Specifications
(see page 76).

Table permissions

Permissions are recreated to the original time stamp order, and can or
cannot be those of the table owner (depending on the grant options for the
table).

Indexes, index modifications, and integrities

Views and related permissions

Like tables, these are recreated to the original time stamp order.
Synonyms

Database procedures and related permissions

Procedures depend on tables, views, events, and synonyms. Procedures
can also see other procedures. To handle reloading of procedures, two
passes are made during the unload database process through the
iiprocedures catalog (see page 453).

Comments

116 Database Administrator Guide

Copy Operation

Copy in ASCII or Binary Format

When copying a database, you should copy the files in ASCII format unless you
are copying the database to another instance on the same machine or to a
binary-compatible machine. In these cases, use binary format.

If you are not sure, use ASCII format.

Copying the files in ASCII format allows you to:

® Move the tables you own to an instance with a different machine
architecture

m Edit the data files before copying them into a database

To copy the database files in ASCII format, specify the -c option (create
printable data files) on the copydb command. (In VDBA, use the Create
Printable Data Files option in the Generate copy.in and copy.out dialog.)

To copy the database files in binary format, do not specify the -c option.

Note: The -c option can affect the value of floating point numbers, as
described in Floating Point Specification for Copy Database (see page 117).

Note: Copying between releases of Ingres with different major release
identifiers can cause problems if new columns were added to a later release to
support new features. If you have made use of these new features in the later
release and attempt to copy out and copy in to an earlier release that did not
support the new feature, the copy in operation produces an error. Additionally,
new reserved words can have been added and can require renaming tables
and/or columns. To avoid this problem, simply edit the copy.in script to avoid
loading the non-existent columns, or renamed tables or columns.

Caution! If you copy the files in binary format, do not edit them; doing so
causes problems.

Floating Point Specification for Copy Database

When you execute the sql command to run the copy.out and copy.in scripts,
the floating point specification defaults to 10 positions with 3 to the right of the
decimal. If your data requires more precision, change the precision mask by
using the -f flag with the sgl command when you run the copy.out and copy.in
scripts.

For a description of the floating point (-f) flag parameters that is used with the
sgl command, see the Command Reference Guide.

Loading and Unloading Databases 117

Copy Operation

Copy a Database to Another Instance

When copying a database, you can direct where the data is copied to and from
by specifying a destination directory and a source directory. The directories
can be on the same machine or different machines.

When you run the copy.out script, the data files are generated in the
destination directory. If you have specified a source directory, you must move
the copy.in script and the data files to this directory. When you run the copy.in
script, the user objects are created and the tables are populated with the data
from the source directory.

In VDBA, use the Destination Directory and/or Source Directory options
specified in the Generate copy.in and copy.out dialog.

Locking While Copying a Database

When you create the copy database scripts or execute the copy.out script, the
locking system takes shared locks on the tables being copied.

When you execute the copy.in script, the locking system takes exclusive locks
on the tables being copied in.

Inconsistent Database During Copy Operation
There are two major ways that the database can become inconsistent during

the creation of copy database scripts or the execution of the scripts:

m Because shared locks are taken on the tables being copied while the copy
scripts are being created or copy.out is being executed, a user can alter
the tables that are not locked during this time.

m A user can alter the tables being copied after you run the copy.out script,
but before you have run the copy.in script.

If a user drops a table in this interval, it generates an error message.
However, if a user makes either of the following changes during this time,
no error message is generated, and you do not know about the change:

— Adds or deletes rows from a table
- Adds a table

To ensure the consistency of the tables being copied, lock them exclusively
while they are being copied.

118 Database Administrator Guide

Copy Individual Database Objects

Lock Database Exclusively When Copying
Locking ensures the consistency of the tables being copied.

To lock tables exclusively when copying them, use the sql command with -I
flag when you run the copy.out script, as follows:

sql -1 dbname <copy.out

Copy Individual Database Objects

Tables, forms, and other user objects can be moved or copied from one
database to another by using various copying techniques.

Note: Make sure that there is a current backup of the database before
performing any of the procedures. If there is a problem in moving the object,
restore the original. For details, see the chapter “Performing Backup and
Recovery.”

To transfer a database object from one database to another, use the
appropriate copy method, as described.

Command Scripts

The copy command creates scripts that do the following:
® Copy out the object from the current database

m Recreate the object and copy back the saved data into the new database

Prepare to Copy a Database Object

Before you copy a database object, check whether the user already owns an
object by the same name in the new database.

In the case of a table, it must be destroyed before proceeding.

Caution! If you fail to do this, the new table cannot be successfully created,
and you can potentially populate the existing table with unwanted data.

For other user objects (forms, reports, and applications) be aware that the
object being moved can replace an object with the same name in the new
database.

Loading and Unloading Databases 119

Copy Individual Database Objects

How to Copy a Database Object

Follow these basic steps to copy a database object:

1.

Copy Tables

Check for duplicate objects, as described in Prepare to Copy a Database
Object (see page 119).

Log in as the DBA of the old database or as a privileged user who can
impersonate the DBA (by using the -u flag for commands or by using the
Users branch in the Virtual Nodes window in VDBA).

Use the relevant copy method to copy the object out of the database into
an intermediate file.

Set the protections on the file copy.in or intermediate file and the data files
so that you can access them after you log in as the DBA of the new
database.

Log in as the DBA of the new database.

Using the relevant copy method in input mode, copy the intermediate file
into the new database.

There are now two copies of the object, one in each database.

To remove the original object, the DBA or privileged user must use the
applicable Ingres tool as the original owner (by using the -u flag for
commands or by using the Users branch in the Virtual Nodes window in
VDBA) and delete the copy of the object.

To copy or move data between databases, copy the relevant tables from the
current database into another database.

To accomplish these tasks using system commands, use the copydb and sql
commands.

In VDBA, use the Generate copy.in and copy.out dialog, invoked from the
Copydb command from the Database Generate Scripts submenu. The detailed
steps for performing these procedures can be found in VDBA online help.

120 Database Administrator Guide

Copy Individual Database Objects

Example: Move a Table to Another Database

Copy Forms

In this example, the DBA moves the customers table, owned by John, from the
accounts database to the orders database:

1. Enter the following command at the operating system prompt:

copydb -ujohn accounts customers
The copy.in and copy.out scripts are generated.

2. Enter the following commands in sequence:

sql -ujohn accounts <copy.out
sql -ujohn orders <copy.in

There are now two copies of the customers table: one in the accounts
database and one in the orders database.

3. The DBA removes the old table by logging into the Terminal Monitor (sql)
as -ujohn and issues the following statement:

DROP TABLE customers

Copy or move one or more forms from one database to another using the
copyform command.

There are two forms of syntax, one without the -i flag, which copies the forms
from a database to a file. The next form, using the -i flag, copies the forms
from the text file into a database.

If you are copying a form that already exists in the new database and you do
not use the -r flag, you are prompted as to whether you want to overwrite the
existing form. To do so, you select Yes. If the -r flag is specified with
copyform, the form is automatically overwritten.

The copyform command can also be used with -q and -j flags, for copying
QBFNames and JoinDefs. For a complete description of the flags and
parameters for this command, see the Command Reference Guide.

Loading and Unloading Databases 121

Copy Individual Database Objects

Example: Move Forms to Another Database

Assume the DBA wants to move two forms owned by the DBA, customers and
parts, from the accounts database to the orders database. The name forms.txt
is selected as the intermediate file name. The following commands perform the
move:

copyform accounts forms.txt customers parts
copyform -i orders forms.txt

At this point, there are two copies of the forms, one in accounts and one in
orders. To remove the old forms, enter the Visual Forms Editor and delete
them.

Copy Applications

Copying or moving an application from one database to another can be done
using the copyapp command.

The copyapp command syntax has two forms: copyapp out and copyapp in.

The copyapp out command copies database objects associated with a specific
application from the database to a text file. These objects are entities such as
forms, reports, and join definitions.

The copyapp in command copies these database objects into the desired
database.

Copyapp does copy all of the following:

® Forms referenced in 4GL, Query-By-Forms, and report frames

m Reports referenced in report frames

m JoinDefs referenced in Query-By-Forms frames

Copyapp does not copy any of the following:

® Forms (compiled or non-compiled) referenced by the 4GL-call gbf
command or used in embedded query language procedures

m Reports referenced by the call report, call sreport, or call rbf 4GL command
® Graphs referenced by the call graph 4GL command

For a complete description of the flags and parameters for this command, see
the Command Reference Guide.

122 Database Administrator Guide

Copy Individual Database Objects

Copy Reports

Move single or multiple reports from one database to another by using the
copyrep command to copy the reports out and the sreport command to copy
them into the second database.

The sreport command overwrites existing reports with the same names as
those copied. You must check whether you have any reports with the same
names as the ones being copied. If you do not want to overwrite them, edit
filename.rw and change the report names.

For a complete description of the flags and parameters for copyrep and
sreport, see the Forms-based Application Development Tools User Guide. Also,
see the copyapp command in the Command Reference Guide.

Example: Copy Reports to Another Database

Assume the DBA wants to copy two reports she owns, parts_restock and
parts_on_order, from the inventory database to the orders database. The file
name textfile.rw is selected as the temporary file name. The following
command at the operating system prompt copies the reports out to a file:

copyrep inventory textfile.rw parts_restock parts_on_order

The following command at the operating system prompt copies the reports into
the orders database:

sreport orders textfile.rw

Increase Object Limit on Commands

Certain utilities like copydb, copyform, repcfg, genxml and convtouni limit to
100 the number of tables or views that can be specified on the command line.
If this limit is insufficient for your application, the utexe.def file found in
$II_SYSTEM/ingres/files can be modified.

To increase the 100 object limit in utexe.def file

1. Back up the utexe.def file in case you want to revert to the original file.

2. Open $1I_SYSTEM/ingres/files/utexe.def for editing.

3. Search for the string %100S in the parameter description list directly
under the command you want to modify.

4. Change the string to %nS where n is an integer defining the new limit.

5. Save the file and test.

Loading and Unloading Databases 123

Ways to Copy and Relocate a Database

Ways to Copy and Relocate a Database

Database locations can be moved, for example when a disk fills or is swapped
out. You can also copy an entire database. Any location in the original
database can be moved to a new location in the new database.

You can accomplish this task using the relocatedb command. For details, see
the Command Reference Guide.

To do this in VDBA, use the Duplicate Db menu. For detailed steps, see the
VDBA online help.

Example: Copy a Database to a New Database

The following series of operations copies the empdata database to a new
database, empdev:

1.

In a Database Object Manager window in VDBA, select a database
(empdata).

Choose Database, Duplicate Db.
The Duplicate Database dialog appears.

In the New Database edit control, enter the name of the new database
(empdev).

Click OK.

Example: Copy a Database to a New Database and Use New Locations

The following example copies the empdata database to a new database,
empdev, and specifies the new locations—empdatl and empdat2—for the
existing ii_database and edata locations:

1.

Follow Steps 1-3 in the Example: Copy a Database to a New Database
(see page 124).

Enable the Reassign Location check box.

The locations that are currently being used by the empdata database
(ii_database and edata) are displayed in the Initial Location column.

In the New Location column, double-click on the location to be changed
and select the new location from the drop-down list box that appears.

For example, double-click on the ii_database location in the New Location
column and select empdatl. Change the edata location to empdat2.

4. Click OK.

124 Database Administrator Guide

Generate XML and Import XML Operations

Example: Copy a Database to a New Database and Swap Contents of
Locations

The following example copies the empdata database to a new database,
empdev, and swaps the contents of the locations ii_database and locl in the
new database:

1. Follow Steps 1-3 in Example: Copy a Database to a New Database (see
page 124).

2. Enable the Reassign Location check box.

The locations that are currently being used by the empdata database
(ii_database and locl) are displayed in the Initial Location column.

3. In the New Location column, double-click on the location to be changed
and select the new location from the drop-down list box that appears.

For example, double-click on the ii_database location in the New Location
column and select locl. Change the locl location to ii_database.

4. Click OK.

Generate XML and Import XML Operations

The genxml and xmlimport utilities let you transfer data in XML format.

XML is a cross-platform, software and hardware independent format for
transmitting information across the Internet. The XML data files produced can
also be processed by other XML-enabled databases and applications.

The genxml utility converts the table data, including metadata information,
into XML and places it in an XML file. You can export the whole database or
specific tables into XML files. The generated XML file conforms to the generic
Ingres DTD.

The xmlimport utility imports the data from an XML file into an existing Ingres
database. This utility parses an XML document and prints the data and scripts
into files. The script can be run to upload and store the data from the XML file
into the Ingres table. The XML file for upload is validated against the Ingres
DTD. Only XML files that conform to the Ingres DTD can be imported into an
Ingres database.

The genxml and xmlimport database operations are run as system commands.
For more information, see the Command Reference Guide.

Related visual tools are the Import Assistant and Export Assistant, which are
used for importing and exporting data in various formats, including XML.

Loading and Unloading Databases 125

Chapter 6: Changing Ownership of
Databases and Database Ob_jects

This section contains the following topics:

Database Ownership (see page 127)
How to Change Ownership of a Database Object (see page 127)
How to Change Ownership of a Database (see page 132)

Database Ownership

Ingres supports an ownership scheme for databases, the tables that make up
the database, and related database objects, including forms and reports.

The hierarchy of ownership involves the following user classes:

® The primary system administrator

= The DBA

m The end user

Each class has a different set of ownership privileges. For details, see the
Security Guide.

Two important rules of database ownership are:

®m Objects cannot be shared among users, unless they have been granted
access to the objects.

m Objects cannot be shared between databases.

At times it may be necessary to change the ownership of a database or
database object, for example, when staff changes occur in your organization.

How to Change Ownership of a Database Object

When changing ownership of an object, use the appropriate copy method to:
1. Copy out the object from the database into an intermediate file

2. Copy in the object under new ownership

Changing Ownership of Databases and Database Objects 127

How to Change Ownership of a Database Object

Prepare to Change Ownership of a Database Object

Before changing ownership of a database object, take the following
preparatory steps:

1.
2.

Make sure you have a current backup of the database.

Check whether the user already owns an object with the same name as the
object whose ownership you are changing.

If this is the case, the existing duplicate object must be destroyed before
proceeding.

Important! If you fail to do this, the new object, owned by the new user,
cannot be successfully created, and you can potentially corrupt the existing
object with unwanted data.

Change Ownership of a Database Object

Follow these basic steps to change ownership of a database object:

1.

Take preparatory steps, as described in Prepare to Change Ownership of a
Database Object (see page 128).

Log in as the DBA of the database.

Use the relevant copy method to copy the object out of the database into
an intermediate file.

Using the relevant copy method in input mode, copy the intermediate file
into the new database as the new owner (by using the Users branch in the
Virtual Nodes toolbar in VDBA, or by using the -u flag for commands).

There are now two copies of the object in the database, one owned by the
original owner and one owned by the new owner.

To remove the original object, the DBA or privileged user uses the
applicable Ingres tool as the original owner (by using the Users branch in
the Virtual Nodes toolbar in VDBA, or by using the -u flag for commands)
and deletes the original object.

128 Database Administrator Guide

How to Change Ownership of a Database Object

Change Ownership of Tables

Follow these steps to change the ownership of a table:

1.

2.
3.

Generate the executable scripts. In VDBA, use the Generate copy.in and
copy.out dialog box, invoked from the Copydb command from the
Database Generate Scripts submenu.

Execute the copy.out script, copying the table as the current owner.

Execute the copy.in script, copying the table back in as the new owner.

For detailed steps for performing these procedures in VDBA, see online help.

These tasks can also be accomplished using the copydb and sql commands.
For more information, see the Command Reference Guide.

For more information on copying tables and other database objects, see the
chapter “Loading and Unloading Databases.”

Example: Change Ownership of Table

The following example changes the ownership of any table from the currently
selected user, John, to the user named dba.

1.

In VDBA, open the Generate copy.in and copy.out dialog box for the
database in which the table is located. For more information, see online
help.

Click Tables to invoke the Specify Tables dialog box. Enable the check box
for the table whose ownership you want to change and click OK.

Click OK to create the copy scripts.

At the operating system prompt, enter the following command to copy the
table from the database mydb into an intermediate binary file in the
current directory:

sql -ujohn mydb <copy.out

Edit the copy.in file to change the table reference in the GRANT statement
from john.<table> to <dbaname>.<table>. If you do not do this, the
GRANT statements refer to John's table.

Note: The GRANT statements are present only if grants are defined for the
table being copied.

There are now two copies of the table, one owned by the user john and the
other owned by the user dba. In the usual case, John’s version is no longer
needed and can be removed. For example, the user john (or another user
impersonating john) can easily drop the table in VDBA. For more
information, see online help.

Changing Ownership of Databases and Database Objects 129

How to Change Ownership of a Database Object

6. At the operating system prompt, enter the following command to copy the
table from the intermediate binary file in the database as user dba:

sql -udba mydb <copy.in

You also need to grant access permissions to the new table owned by user
dba. For more information, see the Security Guide.

Change Ownership of Applications

To change the ownership of an application (created with Applications-By-Forms
or Vision) from any current owner to any new owner, use the copyapp
command.

The command syntax has two forms: copyapp out and copyapp in. To change
the ownership, you issue the first form of the command under the current
ownership, and the second form under the new ownership.

Example: Transfer Ownership of an Application to Another User

Assume the user john wants to transfer ownership of the application named
appl in the database mydb to the user dba. The following commands, entered
at the operating system prompt, accomplish this, using the default
intermediate text file and the current working directory:

copyapp out mydb appl -ujohn
copyapp in mydb iicopyapp.tmp -a -udba

At this point, there are two copies of the application, one owned by the user
john and the other owned by the user dba. In the usual case, John's
application is no longer needed and can be removed using Vision or
Application-By-Forms.

For a complete description of the flags and parameters for this command, see
the copyapp entry in the Command Reference Guide.

Change Ownership of Forms

Change the ownership of a form from any current owner to any new owner
using the copyform command. There are two forms of syntax, one without the
—i flag, which copies the forms from a database to a file. The next form, using
the -i flag, copies the forms from the text file into a database. To change the
ownership, issue the first form of the command under the current ownership,
and the second form under the new ownership, as shown in the example that
follows.

130 Database Administrator Guide

How to Change Ownership of a Database Object

Example: Transfer Ownership of Forms to Another User

Assume the user john wants to transfer ownership of the forms named
customers and parts in the database mydb to the user dba. The following
commands, entered at the operating system prompt, accomplish this:

copyform -ujohn mydb forms.txt customers parts
copyform -i -udba mydb forms.txt

For a complete description of the flags and parameters for this command, see
the copyform entry in the Command Reference Guide.

At this point, there are two copies of each form, one owned by the user john
and the other owned by the user dba. In the usual case, John’s forms are no
longer needed and can be removed in Visual Forms Editor.

Change Ownership of Reports

Change the ownership of a report from any current owner to any new owner
using the copyrep and sreport commands. The copyrep command copies the
reports out under the current ownership, and sreport copies them back in
under the new ownership, as shown in the example that follows.

Example: Transfer Ownership of Reports to Another User

Assume the user john wants to transfer ownership of the reports named
parts_restock and parts_on_order in the database mydb to the user dba. The
following commands, entered at the operating system prompt, accomplish
this:

copyrep -ujohn -f mydb text.rw parts_restock parts_on_order
sreport -udba mydb text.rw

For a complete description of the flags and parameters for copyrep and
sreport, see the Forms-based Application Development Tools User Guide.
These commands are also described in the Command Reference Guide.

At this point, there are two copies of each report, one owned by the user john
and the other owned by the user dba. In the usual case, John’s reports are no
longer needed and can be removed in Report-By-Forms.

Changing Ownership of Databases and Database Objects 131

How to Change Ownership of a Database

How to Change Ownership of a Database

At times, you may need to change the ownership of an entire database, for
example, when a database moves from development to production or when
the current DBA moves to a different project.

To change the ownership of a database, you must have permission to
impersonate another user and to update system catalogs.

To change the ownership of a database, follow this process:

Note: In this process, the user name of the current owner is user_old and user
name of the new owner is user_new.

1.

Be sure that there is a current backup of the database, preferably a
checkpoint. For more information, see the chapter “Performing Backup and
Recovery.” If there is a problem in changing ownership, restore the original
database.

Log in as the current DBA of the database.

Create a temporary working directory to hold the files that can be created.
Move to that directory. Be certain that the temporary directory is not in the
path pointed to by ING_ABFDIR or you will lose your unloaded files during
destroydb.

Create the unload and reload scripts using VDBA.

Note: If you are also moving the database to a machine with a different
processor you must unload the database with the Create Printable Data
Files option enabled. Doing so produces data files in a portable, ASCII
format.

Unload the database by executing the unload script at the operating
system prompt. The name of this file is described in Files Created During
the Unload Database Operation (see page 110).

On UNIX, change permissions, as follows, so the new database owner can
work with these files:

chmod 744 *

Destroy the original database by dropping it from within VDBA. For more
information, see online help.

Log in as the new database owner or impersonate the new owner by
selecting the appropriate user name from the Users branch in the Virtual
Nodes toolbar in VDBA.

Create a fresh database in VDBA, which can be owned by the user chosen
is Step 8. For details, see online help.

132 Database Administrator Guide

How to Change Ownership of a Database

10.

11.

12,

13.

14.

Log in as the installation owner and go to the directory containing the
reload script created in Step 4. The name of this file is described in Files
Created During the Unload Database Operation (see page 110).

The reload script contains a line for each user who owns objects (tables,
indexes, or views).

Edit the reload script:

a. Change those lines that reload objects with the user flag of the old
owner, so that they can load with the user flag of the new owner.

b. Take ownership of the database objects of any or all users by changing
each user line so that it loads with the new user flag.

Caution! The user flag for user $ingres must never be changed. $ingres is
a special user ID that is used internally for the system catalogs.

Reload the database by executing the reload script. For more information,
see online help.

Run system modification to update the query optimizer information. For
more information, see the chapter “Using the Query Optimizer.”

At this point all objects (including tables, indexes, and views) are owned
by the new DBA; however, database objects (forms, reports, applications,
and so on) need special attention to make them accessible to everyone,
because they are still owned by their old owners.

Update the ii_objects catalog to change ownership of these objects to the
new DBA:

a. Make sure that the new DBA does not already own any objects (forms,
reports, and so on) with names identical to those you are about to
reassign. If there are two identically named objects for the same
owner, the original is overwritten and destroyed.

Run the following query to select the database objects for the old
owner, user_old:
select object_id, object_owner

from ii_objects
where object_owner = 'user_old';

Run the following query to select the database objects for the new
owner, user_new:
select object_id, object_owner

from ii_objects
where object_owner = 'user_new';

b. Compare the object list for the new owner with the list for the new
owner. If duplicates are found, eliminate them by deleting or copying
and renaming the objects.

c. After you have copied and renamed or destroyed any duplicates, rerun
the queries to ensure that there are no longer any duplicate objects.

Changing Ownership of Databases and Database Objects 133

How to Change Ownership of a Database

15. Execute the following query to transfer ownership of existing database
objects, for example from the VDBA SQL Scratchpad window:

update ii_objects set object_owner = 'user_new'
where object_owner = 'user_old';

Note: You can execute this query from a terminal monitor only if you
invoke it using the +U flag, which allows you to update the system
catalogs and secondary indexes.

16. Test the database and remove the temporary working directory and the
associated work files.

134 Database Administrator Guide

Chapter 7: Maintaining Databases

This section contains the following topics:

Ways to View Database Objects (see page 135)

Ways to Delete Database Objects (see page 136)
Routine Database Maintenance Tips (see page 137)
Operating System Maintenance Tips (see page 138)
Verifying Databases (see page 139)

Databases Shared Among Multiple Users (see page 140)
How File Names Are Assigned for Tables (see page 140)
Retain Templates of Important Tables (see page 141)

Maintaining your databases keeps them in good condition and helps you to
more quickly identify any problems.

Ways to View Database Objects

The DBA must make sure important database objects, such as tables and
views, are available, devise a way to separate temporary objects from
important objects, and keep private objects to a minimum.

You can view database objects using the HELP statement. By using options
such as INDEX, TABLE, and VIEW, you can obtain information on various types
of database objects. For details, see the SQL Reference Guide.

In VDBA, you can view a list of database objects in the Database Object
Manager window. You can view details for any object in the tree by selecting it
and using the panes to the right of the tree structure. By default, when you
open a Database Object Manager window, only the objects belonging to you
are visible. For more information, see VDBA online help.

View Database Objects that Belong to Another User

To view and work with database objects belonging to another user, you must
impersonate that user (which requires the security privilege).

To impersonate another user, select that user from the Users branch in the
Virtual Nodes window in VDBA and open a Database Object Manager window.
The objects belonging to that user and those belonging to the DBA appear in
the window, where you can view and manage them.

Maintaining Databases 135

Ways to Delete Database Objects

List All Tables and Their Owners

The iifile_info view (see page 140) permits you to select all tables and their
owners.

For example, the following query lists all user tables not owned by the DBA:

select tablename, table_owner, table_type
from jitables
where table_owner != '$INGRES' and
table_owner != 'DBA';

Ways to Delete Database Objects

Database objects, such as tables, views, secondary indexes, and synonyms,
can be deleted (dropped). When you drop a table, objects that are directly
dependent on that table, such as indexes and views, are automatically
dropped.

In SQL, you can accomplish this task using the DROP statement. For details,
see the SQL Reference Guide.

In VDBA, you can perform these tasks in the Database Object Manager
window. The online help topic Dropping Objects gives a generic description for
dropping any type of database object. Each type of object has its own help
topic, such as Dropping a Table or Dropping a View. If for some reason you
cannot drop tables in VDBA, you can use another method. More information
can be found in Verifying Databases (see page 139).

136 Database Administrator Guide

Routine Database Maintenance Tips

Routine Database Maintenance Tips

To keep your tables in good condition, we recommend that you run the
following maintenance tools periodically:

Modify database tables periodically if they are subject to frequent updates
or inserts. Frequent updates and inserts to all table structures except B-
tree cause overflow data pages to be created, which are inefficiently
searched.

Note: B-tree tables with 2K pages can develop overflow from leaf pages
with highly duplicate keys; B-trees with larger pages cannot develop
overflow.

If you do not have enough disk space to modify a large B-tree table,
modify the table to shrink the B-tree index. This improves the structure of
the B-tree index pages, but does not require the amount of free disk space
required by other modify options.

For details on how to modify tables, see the chapter “Maintaining Storage
Structures.”

Note: Choosing the correct storage structure for your needs makes
maintaining the database easier. For a discussion of the four main storage
structures, see the chapter "Choosing Storage Structures and Secondary
Indexes.” If the storage structure you are using is not the best one, modify
it using the information in the chapter “Maintaining Storage Structures.”

Run system modification on the database if the database is active (that is,
users frequently create or modify tables, views, or other database
objects). Both system catalog data page overflow and locking contention is
reduced by regular use of system modification. For details, see Example:
Before and After Optimization in the chapter “Using the Query Optimizer.”

Use optimization to help maintain databases. When you optimize a
database, data distribution statistics are collected that help queries run
more quickly and use fewer system resources. We recommend that you
optimize your database when its data distribution patterns change.

Optimization cannot be run on all columns of all tables in your database.
Instead, run it only on those columns that are commonly referenced in the
WHERE clauses of queries. Collecting more statistics than you need
consumes extra disk space and requires the query optimizer to consume
more system resources to arrive at an appropriate query execution plan.

For details on optimization, see Database Statistics in the chapter “Using
the Query Optimizer.”

Note: You can set up these routine maintenance tasks to be done inside
maintenance batch jobs to avoid the need to run them interactively.

Maintaining Databases 137

Operating System Maintenance Tips

Operating System Maintenance Tips

It is important for you, as the DBA, to monitor the operating system. If you
are not also the system administrator, you must work closely with your system
administrator so that you are aware of any operating system problems.

Ingres relies on the operating system to access data in tables. If the operating
system develops problems, such as system resource shortages, lack of free
disk space, or hardware errors, this can affect the responsiveness of the Ingres
system and its ability to process requests on behalf of its clients.

Disk errors, memory errors, or operating system resource shortages are the
problems most likely to affect the quality of operation. Most hardware errors
are dependably logged by the operating system. Make sure that the system

administrator is aware of your concern about the efficiency of the operating

system.

The operating system offers tools to check and verify the health of the
hardware. These include disk drive verification programs and diagnostic
programs for memory boards.

Windows: Windows lets the system administrator check for and optionally fix
problems in a file system. Free disk space and system configuration can be
monitored with the Windows Diagnostics. System-wide performance data, such
as CPU usage, can be monitored using the Performance Monitor. Certain
system-wide errors and events are monitored in the Event Log, which can be
viewed with the Event Viewer. For information on these and other
administrative tools, see the Windows documentation. =

UNIX: Most UNIX vendors have a fsck program to check for unreferenced disk
blocks, unreferenced inodes, and inconsistencies in operating system tables.
Free disk space in your file systems is easily monitored with operating system
tools such as df and du. The pstat (BSD) or sar (System V) UNIX commands
have options to show the use and distribution of various operating system
resources. Every vendor also provides a variety of system maintenance utilities
that are menu-driven and easy to use, but which are generally specific to a
particular operating system vendor. Make full use of any operating system
tools such as these. =

VMS: VMS offers the analyze command which, among other operations,
analyzes readability and validity of files and disk volumes. The show device
command shows the amount of free disk space. The VMS Monitor Utility
(MONITOR) monitors classes of system-wide performance data, such as CPU
usage, at a specified interval. These are only a few of the system maintenance
utilities that VMS provides. Consult the VMS Help facility and your VMS System
Manager for more information on these and other useful operating system
tools. =

138 Database Administrator Guide

Verifying Databases

Verifying Databases

The Verify Database operation lets you verify the integrity of a database and
repair certain table-related problems.

You can verify one or more databases by specifying an operation, and then
choosing an appropriate scope and mode for that operation. Operations
include:

m Checking specified tables for inconsistencies and recommending ways to
repair them

m Checking database system catalogs for inconsistencies and recommending
ways to repair them

®m Purging temporary tables, which can be left on the disk inadvertently when
the system does not have time to shut down in an orderly fashion (for
example, if the machine is rebooted or stops due to power loss)

® Purging expired tables

® Dropping tables that cannot be dropped in the normal manner (for
example, if the underlying disk file for the table was deleted at the
operating system level) by removing all references to them from the
database system catalogs

m Checking the specified databases to determine if they can be and indicates
whether the user can connect to the database accessed

In VDBA, use the Verify Database dialog. For details on how to specify an
operation using the Verify Database dialog, see online help.

You can also accomplish these tasks using the verifydb system command. For
more information, see the Command Reference Guide.

To use the verify database operation, you must be the DBA for all the
databases you want to verify, or a user with the security or the operator
privilege.

Maintaining Databases 139

Databases Shared Among Multiple Users

Databases Shared Among Multiple Users

Follow these rules for databases that are shared among multiple users:

Have users use only application programs to access data in the database.
Discourage users from using Ingres tools, such as a terminal monitor or
VDBA, to access data. Permitting users to access data only by means of an
application program guarantees that the executing queries were written by
an application programmer and are not ad hoc queries that can damage or
delete data, or cause lock contention delays.

Ensure that reports are run with readlock=nolock (see page 325). You can
do this by including all reporting tools in application programs and setting
readlock there, or by running all reports from operating system scripts,
which set lockmode before the report runs. Doing this avoids locking
contention problems that can lead to severe concurrent performance
problems in the database.

How File Names Are Assigned for Tables

A naming algorithm is used to assign underlying file names for tables. There
are two columns in the iirelation table used to produce names:

reltid, a unique table identifier assigned in sequential order

reltidx, a unique index identifier associated with each base table

The algorithm for creating the name is as follows:

1.

Convert reltid (for base tables) or reltidx (for secondary indexes) to an 801
digit hexadecimal number.

Assign letters to each of the resulting hexadecimal digits:

0,1, 2, ..., Fisassignedtoa, b, c, ..., p

For example, a reltid of 129 converted to an 8-digit hex number is
“00000081". Substituting letters gives a file name of aaaaaaib.tnn, where
nn=00, 01, ..., for first (or only) location, second location, and so on.

Select File Names Associated with Tables

As the DBA, you can select the names of the disk files associated with tables
by using the iifile_info view, as shown in this example:

select table_name, owner_name, file_name, file_ ext

from iifile_info;

140 Database Administrator Guide

Retain Templates of Important Tables

Retain Templates of Important Tables

A good practice is to periodically generate copy scripts for important tables and
views. The copy.in scripts are useful if you need to recreate new, empty
tables, or the entire database.

To generate copy scripts, use the unloaddb or copydb commands, or use the
Generate copy.in and copy.out dialog in VDBA.

Maintaining Databases 141

Chapter 8: Ensuring Data Integrity

This section contains the following topics:

Data Integrity Through Integrities, Rules, and Events (see page 143)
Integrities (see page 143)

Rules (see page 146)

Database Events (see page 158)

Data Integrity Through Integrities, Rules, and Events

The following mechanisms can be used to enforce data integrity:

®m Integrities

® Rules

m Database events

You can use these mechanisms to enforce a variety of relationships—such as
referential integrity and general integrity constraints—or for more general

purposes, such as tracking all changes to particular tables or extending the
Ingres permission system.

Data integrity in the form of constraints was introduced in the chapter
“Managing Tables and Views.”

Integrities

The integrity mechanism is similar to the referential, unique, check, and
primary key constraints for ensuring data integrity when you create or alter a
table.

Ensuring Data Integrity 143

Integrities

Constraints Compared with Integrities

Constraints check for appropriate data values whenever data is entered in the
table. For more information, see the chapter "Managing Tables and Views.”

Integrity refers to integrity objects defined after the table is created to check
on update requests before they are allowed to affect the database.

Both mechanisms can be used to ensure data integrity.

Note: Constraints are the ISO Entry SQL92-compliant methods for maintaining
database integrity and are, therefore, recommended over integrities. We
recommend that you not define both constraints and integrities in the same
table.

Differences in Error Handling Between Integrities and Constraints

Constraints and integrities differ in their error-handling characteristics:

m If a constraint is defined for a table, an attempt to update the table with a
row containing a value that violates the constraint causes the DBMS to
abort the entire statement and issue an error.

m If an integrity is defined for a table, an attempt to update the table with a
row containing a value that violates the constraint causes the invalid row
to be rejected, but no error is issued.

Important! If you mix constraints and integrities in the same table, the
integrities are checked first. If a row violates both an integrity and a
constraint, the row is filtered out by the integrity before the constraint is
checked, and thus does not generate an error message.

Differences in Null Handling Between Integrities and Constraints
Constraints and integrities handle nulls differently. Check constraints allow

nulls by default, whereas integrities do not allow nulls by default. Instructions
on how to allow nulls are described in Nulls and Integrities (see page 146).

144 Database Administrator Guide

Integrities

Working with Integrity Objects

An integrity object defines an automatic check that allows you to closely
monitor any update requests before they are allowed to affect the database.

You can perform the following basic operations on integrity objects:
m Create integrity objects

® View existing integrity objects, including the detailed properties of each
individual object

® Drop integrity objects

In SQL, you can accomplish these tasks with the CREATE INTEGRITY, HELP
INTEGRITY, and DROP INTEGRITY statements. For complete details, see the
SQL Reference Guide.

In VDBA, use the Integrities branch for a particular table in the Database
Object Manager window. For detailed steps, see online help.

How Integrities Are Used

Immediately after you define an integrity object, the table is checked to make

sure that the condition is true for all existing rows. If not, an error is returned,

and the integrity object is rejected. If your table is very big, it takes some time
to scan each row to determine whether the integrity can be applied.

After successfully creating an integrity object, all subsequent operations on the
table must satisfy the specified condition. Changes to the database (that is,
updates, inserts, and deletes) that are not applied because of an integrity
violation are not specifically flagged or reported as errors—they are simply not
performed:

®m If a change applies to a set of rows, this means that only some of the rows
were actually updated.

= If the change is for a single row, a returned row count of zero is a clue that
the update did not take place.

Ensuring Data Integrity 145

Rules

Nulls and Integrities

If you create an integrity involving a column that is nullable (has been created
using the WITH NULLS clause so the user can insert a NULL), the condition
must take into consideration the possibility of encountering a null value. For
more information on nullable columns, see the chapter "Managing Tables and
Views.” For example, suppose the number column in a particular table is
nullable, and you define an integrity with the following condition that restricts
number values to 50 or less:

number <= 50

Null is not in itself a value, so the comparison evaluates to false for any row in
which the number column already has a null entry. You must create this
integrity on a nullable column before the column contains any nulls.
Otherwise, the integrity is rejected. Furthermore, with this integrity defined,
the number column, even though it is defined as nullable, does not allow nulls.

To to allow nulls in the column, you need to define the integrity with a NULL
clause to ensure proper handling of nulls with the integrity constraints:

number <= 50 or number is null

The Copy Statement and Enforcing Integrities

Rules

If you use the COPY statement where integrities are involved, after the copy
operation you must check for and replace or delete rows with values violating
the integrities. Alternatively, you can copy to a temporary table and create an
INSERT statement that uses a subselect statement on the temporary table.

Note: Constraints defined when you create or alter a table are also ignored in
this situation and must be dealt with in a similar manner.

A rule is a user-defined mechanism that invokes a database procedure
whenever the database changes in a specified way, for example by insert,
update, or delete.

A rule is a general-purpose mechanism that can be implemented for many
purposes. For example, integrities can be implemented by rules. With
integrities, violations are not specifically flagged or reported as errors. With
rules, however, you can control exactly what happens when a violation occurs
by defining in the database procedure the actions to take.

146 Database Administrator Guide

Rules

Rules and Database Procedures

A rule is always associated with a database procedure that is executed when
the rule is fired. Before creating a rule, you must create its corresponding
database procedure, and you must have execute privileges for the database
procedure invoked by the rule. For details, see the Security Guide.

Working with Rule Objects

You can perform the following basic operations on rules:
®m Create rule objects

® View existing rule objects, including the detailed properties of each
individual object

= Drop rule objects

In SQL, you can accomplish these tasks using the CREATE RULE statement,
DROP RULE statement, and the RULES and NORULES options of the SET
statement. For complete details, see the SQL Reference Guide.

In VDBA, use the Rules branch for a particular table in the Database Object
Manager window. For the detailed steps, see the Procedures section of online
help.

How Rules Are Used

After a rule object is created, the rule is stored with the table in the database
and is applied continuously. Whenever the execution of a statement satisfies
an existing rule condition, that rule is fired, meaning that the database
procedure associated with the rule is executed. There is no need for application
code to explicitly enforce the rule.

It is also possible for a statement in a rule-invoked database procedure to fire
another rule. Rules can be nested in this manner up to a maximum level
specified by the DBMS configuration parameter, rule_depth.

Any user who has the privilege to access the table through the operation
specified by the rule has implicit permission to fire the rule and execute its
associated database procedure. For information on privileges and how they are
defined, see the Security Guide.

Ensuring Data Integrity 147

Rules

Before and After Rules

Rules can be defined to execute before or after the effect of the triggering
statement is applied. AFTER rules are more common and are used to perform
auditing operations, integrity checks, and other operations on the updated
rows. BEFORE rules can be used to validate and replace values in an inserted
or updated row before the row is stored in the database. Both types of rules
can be used to inhibit the execution of the triggering statement if an error
condition is encountered, although BEFORE rules can typically do so more
efficiently.

Example: Use a Rule to Implement the Equivalent of an Integrity

For example, if you wanted to implement a rule equivalent to an integrity in
which the condition was salary <= 50000, create the rule by filling in the VDBA
Create Rule dialog as follows:

1. For Rule Name, enter check_salary.

2. For After, enable Insert and Update. This way, the rule is fired when new
rows are added and when existing rows are updated.

3. For Specify Columns for Update, enable salary, because that is the only
column you need to check after an update.For Where, enter
new.salary > 50000.

Here, “new” is a correlation name, and “new.salary” is a correlation
reference. With any column name, you can specify whether you want to
use its value before or after the update using the correlation name “old” or
“new,” respectively.

Note: Unlike an integrity check, which specifies a condition that cannot be
violated, a rule specifies a where condition that must be met. Thus, the
integrity condition (salary <= 50000), and the rule where condition (shown
in the step above), are opposites.

4. For Procedure Name, enter the name of the database procedure to execute
when this rule is fired (for example, salary_too_big). This procedure
must exist when the rule is created.

5. For Parameters, enter any parameters required by the salary_too_big
procedure.

The specified database procedure is executed and sent any specified
parameters when the salary column has a value that is too big (that is, greater
than $50,000). The procedure can be written to reject the operation, causing it
to be rolled back; log the error, but allow the operation; or modify the value so
that it is less than or equal to $50,000, and log that action.

148 Database Administrator Guide

Rules

Rules and Transactions

The statement that fires a rule and the database procedure invoked by the rule
are considered part of the same single query transaction. Consequently, the
database procedure invoked by the rule is executed before the statement that
fired the rule completes. Because of this, you cannot issue a COMMIT or
ROLLBACK statement in a database procedure invoked by a rule.

If the database procedure does not exist when the rule is invoked, or if an
error occurs in the execution of a rule, the response is as if the statement
firing the rule has experienced a fatal error. Any changes made to the

database by the statement and any made by the fired rule are rolled back.

Enforcing Referential Integrity

A referential integrity asserts a relationship between two tables such that the
values in a column of one table must match the values in a column of the
second table. Traditionally, the two tables have a parent-child relationship:

® The parent table has a column, called the primary key, containing values
against which other values are compared. The primary key is normally
unique.

® The child table has a column, called the foreign key, whose values must
match those of the primary key in the parent table.

A primary key does not have to be referenced by a foreign key (that is, there
can be a parent without a child). However, every foreign key must match a
primary key. There cannot be a child without a parent (that is, an orphan)—
this constitutes a referential integrity violation.

For example, for the parent table, create a rule to fire on an update or delete
of the primary key (an insert simply creates a parent without a child, which is
not an integrity violation). The database procedure can check for foreign keys
that reference the primary key and enforce the referential integrity.

For example, for the child table, create a rule to fire on an update or insert of
the foreign key. The database procedure checks to make sure there is a
parent.

The advantage of using a rule (as opposed to a constraint) to enforce
referential integrity is that the actions performed by a rule can be more
complex than merely checking for the existence of a primary key in a parent
table. For example, a rule can fire a procedure to create an appropriate parent
record if one does not already exist.

There are a number of ways that a referential integrity violation can be
handled. Three common techniques are to reject, nullify, or cascade the firing
statement.

Ensuring Data Integrity 149

Rules

Reject Technique for Enforcing Referential Integrity

Rejecting a value that violates an integrity constraint rolls back the statement
that fired the rule. The raise error statement performs this function, informing
the application that the results from the statement firing the rule violated
some specified condition or constraint. The response to a raise error statement
is the same as if the statement that fired the rule experienced a fatal error—
the firing statement is aborted and any changes to the database resulting from
the statement and subsequent rule firing are rolled back.

Example: Enforce Referential Integrity Between an Employee and Manager

For example, the following database procedure can be invoked by a rule to
enforce referential integrity between an employee and the employee’s
manager and department. The code for the procedure, which has a procedure
name of valid_mgr_dept, is shown as it is entered in the VDBA Create
Procedure dialog:

Parameters

ename varchar (30),

mname varchar (30),

dname varchar (10)
Declare Section

msg varchar(80) not null;
check_val integer;

mgr_dept varchar(10);

150 Database Administrator Guide

Rules

Statements

/* Check to see if there is a matching manager */

select count(*) into :check_val from manager

where name = :mname and dept = :dname;
if check_val = 0 then
msg = 'Error 1: Manager "' +
:mname + '" not found in that dept.';
raise error 1 :msg;
return;
endif;

/* Check to be sure there is a matching dept */
select count(*) into :check_val

from dept where name = :dname;
if check_val = @ then
msg = 'Error 2: Department "' +
:dname + '" not found.';
raise error 2 :msg;
return;
endif;
msg = 'Employee "' + ename + '" updated ' +
"(mgr = "' + mname + '", dept = "' + dname + '")';

message :msg;
insert into emplog values (:msg);

This procedure checks the manager table to make sure that the employee’s
manager manages the department to which the employee is assigned. It
checks the department table to see that the department is valid. If any of
these checks fail, an error is issued and the new employee is not inserted into
the employee table. If the constraint is met, a message is displayed and a log
record is inserted into a journal table.

After defining this database procedure, create a rule to invoke it after updates
and inserts, and enter the following for the procedure parameters:

ename = new.name, mname = new.mgr, dname = new.dept

Note: Any value referring to a column name in a parameter list must be
preceded by a correlation name. Using the correlation name “old” or “new,”
specify whether you want to use the column value before or after the
operation, respectively.

Ensuring Data Integrity 151

Rules

Nullify Technique for Enforcing Referential Integrity

Nullifying is a second course of action in response to a violation of a referential
integrity constraint if a foreign key does not have a matching primary key.
(Nullifying means that the columns in the records in violation of the constraint
are made null, as opposed to deleting the records or returning an error that
the constraint was violated.)

You are not restricted to nullifying the foreign key. You can modify the value to
another defined value. Because null is not a value, it traditionally does not
participate in the referential integrity relationship. Thus, a child row with a null
foreign key value is not generally considered an orphan. However, rules
provide you with the facilities to do such things as simulate matches on nulls.

For example, the following database procedure, nullify_children, can be
invoked by a rule, when a parent row is deleted, to nullify all child entries
belonging to that parent:

Parameters

me varchar (10)

Declare Section

msg varchar (80) not null;

Statements

msg = 'Nullifying child(ren) of "' + :me + '"'";
message :msg;

update person set parent = NULL where parent = :me;

if iirowcount > 0 then
msg = 'Nullified ' + varchar(:iirowcount) +

' child(ren) from "' + :me + '"';
else
msg = 'No children nullified from "' + :me + '"';
endif;

message :msg;

After defining this database procedure, create a rule to invoke it after deletes,
and enter the following for the procedure parameters:

me = old.name

152 Database Administrator Guide

Rules

Cascade Technique for Enforcing Referential Integrity

Cascading is the third available option in response to a violation of a referential
integrity constraint. (Cascading means that the original update applies to other
records that violate the constraint.) If the statement that violates the
constraint is:

® An insert or update, cascading consists of inserting the offending foreign
key into the primary key column.

m A delete, cascading means not only deleting the primary key, but also
deleting all foreign keys that match that primary key.

The database procedure shown in this example, delete_children, can be used
to implement a cascading delete rule. The procedure can be invoked by a rule,
when a parent row is deleted, to delete all child entries belonging to that
parent:

Parameters

me varchar (10)

Declare Section

msg varchar (80) not null;

Statements

msg = 'Deleting child(ren) from "' + :me + '"';
message :msg;

delete from person where parent = :me;

if iirowcount > O then

msg = 'Deleted ' + varchar(:iirowcount) +
' child(ren) from "' + :me + '"';
else
msg = 'No children deleted from "' + :me + '"";
endif;

message :msg;

After defining this database procedure, create a rule to invoke it after deletes,
and enter the following for the procedure parameters:

me = old.name

When the rule is fired after the initial delete statement, it executes the
delete_children database procedure, which deletes all children whose parent is
the current person. Each delete statement in the delete_children procedure, in
turn, also fires the delete rule, until a particular person has no descendants.
The message statements that are executed before and after a row is deleted
demonstrate the order in which the tree is traversed.

Ensuring Data Integrity 153

Rules

Note: In this example, the person table is self-referencing, and functions like a
self-join. Referential integrity does not require two separate tables. Here the
primary key is name and the foreign key is parent, both of which are in the
person table.

Enforcing General Integrities

To set up tables that maintain data calculated from other tables, use views on
normalized tables. For functional, performance, or data distribution reasons,
the derived data must be maintained in another table or even in a specific
column of the same table.

A general integrity is any integrity check that is not a referential integrity.
General integrities can be used, for instance, to describe the relationship
between the original data and the derived data, and a rule can be used to
enforce the described relationship.

For example, consider two tables, employee and department. The employee
table contains employee information, including the name of the department in
which each employee works. The department table includes the number of
employees in each department. Given these tables, a useful general constraint
is that the number of employees listed for a row in the department table must
match the number of employees in the employee table who work in that
department.

This constraint can be enforced using rules to correctly update a row in the
department table whenever an employee is hired, leaves, or changes
departments. For example, if you create a database procedure that updates
the department table whenever a new employee is hired, define a rule to
invoke it after an insert, passing the department number as a parameter.

Enforcing General-Purpose Rules

General-purpose rules are those rules that do not fall in the category of either
referential or general integrity constraints.

154 Database Administrator Guide

Rules

Using a Rule to Apply External Resource Controls
You can use general purpose rules to apply external resource controls.

For example, if you have a table of items in stock, define a rule that fires after
an update to the in_stock column. The following WHERE clause causes the rule
to fire if the number of items in stock is reduced to less than a minimum value
of 100:

items.in_stock < 100

The rule executes a database procedure that reorders the item responsible for
firing the rule, passing as parameters an item identifier and the number of
items in stock. For example:

id = items.id, items_left = items.in_stock
Using a Rule to Extend the Permission System

A rule can be created to extend the permission system by ensuring that
unauthorized users cannot modify certain classified rows in the opcodes table.
The rule, which must be fired after inserts and deletes, is defined with the
following WHERE clause:

opcodes.scope = 'share' and user != 'system'

The database procedure invoked by this rule can issue an error (using the
RAISE ERROR statement, which rejects the statement that fired the rule) and
log the operation with the user name into a local log table for later review (the
next example demonstrates logging).

Ensuring Data Integrity 155

http:items.id

Rules

Example: Use a General Purpose Rule to Track Changes to Personnel Numbers

This example tracks changes to personnel numbers. When an employee is
removed, an entry is made into the manager table, which in turn causes an
entry to be made into the director table. Even if an entry is made directly into
the manager table, the director table is notified.

To implement this, two database procedures need to be defined. The first,
manager_emp_track, updates the manager table by reducing the number of
employees for a manager, and inserts an entry into a separate table, mgrlog,
to log which employee was deleted for the manager:

Parameters
ename varchar (30),
mname varchar (30)
Statements

update manager set employees = employees - 1

where name = :mname;
insert into mgrlog values ('Manager: ' +
:mname + ', Deleted employee: ' + :ename);

The second, director_emp_track, updates the director table by reducing the
number of employees for a director:

Parameters

dname varchar (30)

Statements

update director set employees = employees - 1

where name = :dname;

Two rules also need to be defined. The first one, defined for the employee
table, executes manager_emp_track after a delete operation, passing the
following parameters:

ename = old.name, mname = old.manager

156 Database Administrator Guide

Rules

The second rule, defined for the manager table, executes director_emp_track
after an update operation on the employees’ column that reduces the number
of employees by one. To implement the rule, the following WHERE clause must
be defined:

old.employees - 1 = new.employees

Director_emp_track must be defined as the database procedure with the
following parameters:

dname = old.director

This rule is fired by the manager_emp_track procedure, because it reduces the
number of employees by one, but it is also fired if the manager table is
updated directly.

The Copy Statement and Enforcing Rules

Disable Rules

If you use the COPY statement on a table with rules defined, the table’s rules
are completely ignored. Table integrities are ignored in this same manner. How
to effectively apply rules in this situation is described in The Copy Statement
and Enforcing Integrities (see page 146).

By default, rules are enabled. The SET NORULES statement enables you to
turn off rules when necessary (for example, when using a utility that loads or
unloads a database in which tables can be modified from scripts and files prior
to their processing by applications).

To issue this statement, you must be the DBA of the database to which the
session is connected.

The SET NORULES statement disables any rules that apply to statements
executed during the session or to the tables affected by the statements.
Existing rules as well as rules created during the session are disabled.

To re-enable rules, issue the SET RULES statement.
Warning! After you issue the SET NORULES statement, the DBMS does not
enforce check and referential constraints on tables, nor does it enforce the

check option for views.

For more information on using SET [NO]JRULES, see the entry for the SET
statement in the SQL Reference Guide.

Ensuring Data Integrity 157

Database Events

Database Events

A database event enables an application or the DBMS to notify other
applications that a specific event has occurred.

An event is any type of program-detectable occurrence.

Using database events, you can define an action that can be tied to a
programmed response for the purpose of sequencing multiple actions or
responding quickly to a specific database condition.

Working with Dbevent Objects
You can perform the following basic operations on dbevent (database event)
objects:
® Create dbevent objects

® View existing dbevent objects, including the detailed properties of each
individual object

® Drop dbevent objects

In SQL, you can accomplish these tasks using the CREATE DBEVENT and DROP
DBEVENT statements. For details, see the SQL Reference Guide.

In VDBA, use the Dbevents branch for a particular database in the Database
Object Manager window. For detailed steps, see the Procedures section of
VDBA online help.

158 Database Administrator Guide

Database Events

How Database Events Work

After a database event is defined for a table, it can be raised by all applications
connected to the database, assuming appropriate privileges have been
granted, as described in the Security Guide.

The event can be raised from interactive or embedded SQL applications, as a
result of triggering a security alarm, or in a database procedure (where it can,
in turn, be invoked by rules). It can also be received by all applications
connected to the database and registered to receive the event.

In general, database events work as follows:

® An application or the DBMS raises an event, that is, issues a notification
that a defined event has occurred.

m The DBMS notifies monitor applications that are registered to receive the
event.

® The receiving application responds to the event by performing the action
the monitor application designer specified when writing the program.

Note: You can also trace database events. For details, see the chapter “Using
Monitoring and Tracing Tools” in the System Administrator Guide.

Ensuring Data Integrity 159

Database Events

Raise an Event

To raise a database event, use the RAISE DBEVENT statement from interactive
or embedded SQL applications or from within a database procedure.

A session can raise any event that is owned by the effective user, and any
event for which the effective user, group, role, or public has been granted the
raise privilege. For more information on granting privileges, see the Security
Guide.

The RAISE DBEVENT statement requires you to specify an event_name
parameter, which is the same as the value you enter in the Create Database
Event dialog when you create the dbevent object using VDBA.

When the RAISE DBEVENT statement is issued, the DBMS sends an event
message to all applications that are registered to receive the specified
database event. If no applications are registered to receive the event, raising
the event has no effect.

The optional event_text parameter is a string that can be used to pass context
information or program handles to receiving applications. For example, use
event_text to pass the name of the application that raised the event. You can
retrieve this value using INQUIRE_SQL.

The WITH [NO]SHARE parameter enables you to specify which of the
applications registered to receive the event are actually notified. If you specify
WITH SHARE or omit this parameter, the DBMS notifies all registered
applications when the event is raised. If you specify WITH NOSHARE, the
DBMS notifies only the application that raised the event (assuming the
program was also registered to receive the event).

If a transaction issues the RAISE DBEVENT statement and the transaction is
subsequently rolled back, event queues are not affected by the rollback. The
raised event remains queued to all sessions that registered for the event. The
event queue is described in Receive an Event (see page 161).

For the complete statement syntax and additional information about using the
RAISE DBEVENT statement, see the SQL Reference Guide.

160 Database Administrator Guide

Database Events

Register to Receive an Event

To register to receive a database event, use the REGISTER DBEVENT
statement from interactive or embedded SQL applications or from within a
database procedure. For each event, the registration is in effect until the
session removes the event registration or disconnects from the database.

A session can register for any event that is owned by the effective user, and
any event for which the effective user, group, role, or public has been granted
the register privilege. Sessions must register for each event to be received. For
more information on granting privileges, see the Security Guide.

The DBMS issues an error if:

m A session attempts to register for a non-existent event.

m A session attempts to register for an event for which the session does not
have register privilege.

m A session attempts to register twice for the same event.

If the REGISTER DBEVENT statement is issued from within a transaction that is
subsequently rolled back, the registration is not rolled back.

For the complete statement syntax and additional information about using the
REGISTER DBEVENT statement, see the SQL Reference Guide.

Receive an Event

To receive event information, an application must perform two steps:

1. Remove the next event from the session’s event queue (using GET
DBEVENT, or implicitly, using WHENEVER DBEVENT or SET_SQL
DBEVENTHANDLER).

2. Inquire for event information (using INQUIRE_SQL).
Get the Next Event from the Event Queue

The GET DBEVENT statement gets the next event, if any, from the queue of
events that have been raised and for which the application has registered.

For the complete statement syntax and additional information about using the
GET DBEVENT, see the SQL Reference Guide.

Ensuring Data Integrity 161

Database Events

Obtain Event Information

To obtain event information, your application must issue the INQUIRE_SQL
statement. With this statement, you specify one or more parameters to
determine the type of information to retrieve. For example, to retrieve the text
specified in the event_text parameter when the event was raised, use
INQUIRE_SQL (DBEVENTTEXT).

For the complete statement syntax and additional information about using the
INQUIRE_SQL statement, see the SQL Reference Guide.

162 Database Administrator Guide

Database Events

Example: Using Database Events with Rules

The following example illustrates the use of database events in conjunction
with rules in @ manufacturing application. In this case, an event is used to
detect when a drill gets too hot; the drill is then taken offline:

1.

Create a database event named drill_hot to be raised when the drill
overheats.

Create a database procedure that raises the drill_hot event; the procedure
is executed when the rule defined in step 3 is triggered.

For example, the following procedure, take_drill_down, logs the time at
which the drill was disabled and raises the drill_hot event:

Parameters
drill_id
Statements

insert into drill_log
select date('now'), 'OFFLINE', drill.*
from drill where id = :drill_id;
raise dbevent drill_hot;

Create a rule named drill_hot that is triggered whenever the drill
temperature is logged. (This presumes another application that monitors
and logs drill temperatures. This is created in the next step.)

For example, create a rule to execute the take_drill_down procedure
(created in step 2) after any update operation in which the temperature
column was changed. Using the following WHERE clause causes the rule to
be fired if the temperature exceeded 500 degrees:

new.temperature > 500

The drill_id parameter must be passed as shown below:

drill_id = drill.id

Finally, create an application that monitors the status of the drills.

In the following example, the monitor application registers to receive the
drill_hot event and checks for events. If the monitor application receives
the drill_hot event, it sends mail to a supervisor and sends the signals
required to disable the drill:

exec sql register dbevent drill_hot;

exec sql get dbevent
exec sql inquire_sql (:evname = eventname,);
if (evname = 'drill_hot') then
send mail
take drill offline
endif;

Ensuring Data Integrity 163

Database Events

The various pieces function together as follows:

1. The drill monitor application periodically logs the drill temperature to the
drill log table.

2. When the drill monitor application logs a drill temperature in excess of 500
degrees, the drill_hot rule fires.

3. The drill_hot rule executes the take_drill_down database procedure, which
raises the drill_hot event.

4. Finally, the event monitor process detects the drill_hot event, sends mail
to notify the responsible user, and sends a signal that disables the
overheated drill.

Remove an Event Registration

To remove a database event registration, use the REMOVE DBEVENT
statement from interactive or embedded SQL applications or from within a
database procedure.

Using REMOVE DBEVENT simply “unregisters” an application for a particular
database event. The event is still defined for the database and can be received
by other applications that are still registered.

After an event registration is removed, the DBMS does not notify the
application when the specified event is raised. Pending event messages are not
removed from the event queue.

For the complete statement syntax and additional information about using the
REMOVE DBEVENT statement, see the SQL Reference Guide.

Drop Database Events

You can drop a dbevent object from the database, in which case it cannot be
raised and applications cannot register to receive it. Pending event messages
are not removed from the event queue.

If an event is dropped while applications are registered to receive it, the event
registrations are not dropped until each application disconnects from the
database or removes its registration for the dropped event. If the event is
recreated (with the same name), it can again be received by registered
applications.

164 Database Administrator Guide

Chapter 9: Choosing Storage Structures
and Secondary Indexes

This section contains the following topics:

Storage Structure Terminology (see page 165)

Storage Structure and Performance (see page 166)
Types of Storage Structures (see page 166)

Default Storage Structure of New Tables (see page 167)
Heap Storage Structure (see page 167)

Hash Storage Structure (see page 171)

ISAM Storage Structure (see page 177)

B-tree Storage Structure (see page 182)

ISAM or B-tree? (see page 188)

Storage Structure Comparison Summary (see page 190)
Keys (see page 191)

Secondary Indexes (see page 194)

Tids (see page 202)

This chapter describes storage structures, secondary indexes, and keys. It will
help you decide on the best structure and corresponding options to suit your
needs.

Storage Structure Terminology

A storage structure is a file arrangement providing a way to access data in a
database table.

Keyed storage structures provide fast access to a particular row or set of rows
in a database table.

A key is the field or fields that the table is indexed on. Specifying this key
gives you quick access to the rows you are looking for.

An index contains the contents of the key fields.

A secondary index allows you to specify an additional key.

Choosing Storage Structures and Secondary Indexes 165

Storage Structure and Performance

Storage Structure and Performance

Ingres provides multiple types of storage structures. Each storage structure
provides optimal performance for particular types of queries and applications.
Choosing the best storage structure is essential to maintaining good
performance.

When you create or modify a table, you can choose the appropriate storage
structure and specify options to fine-tune the structure.

Types of Storage Structures

The types of storage structures are summarized here:
Heap

The non-keyed storage structure with sequential data entry and access.
There is also a compressed heap structure (cheap) with trailing blanks
removed.

Hash

A keyed storage structure with algorithmically chosen addresses based on
key data values. There is also a compressed hash structure (chash) with
trailing blanks removed.

ISAM

A keyed storage structure in which data is sorted by values in key columns
for fast access. The index is static and needs remodification as the table
grows. There is also a compressed ISAM structure (cISAM) with trailing
blanks removed.

B-tree

A keyed storage structure in which data is sorted by values in key
columns, but the index is dynamic and grows as the table grows. There is
also a compressed B-tree structure (cB-tree) with trailing blanks removed.

For more information on the compressed structure for each of the above types,
see the chapter “Maintaining Storage Structures.”

Another storage structure, R-tree, can be used only on secondary indexes, as
described in R-tree Secondary Index (see page 197).

166 Database Administrator Guide

Default Storage Structure of New Tables

Default Storage Structure of New Tables

The default storage structure of a newly created base table is determined by
the setting of the configuration parameter table_auto_structure in combination
with the presence of constraint definitions in the CREATE TABLE statement.

When table_auto_structure is ON, the storage structure of a base table is
automatically determined based on the syntax used for the CREATE TABLE
statement. If the CREATE TABLE statement includes at least a primary key,
unique constraint, or referential (foreign key) constraint, the base table
structure is set to B-tree on the constrained columns and the usual secondary
index is not built for the constraint.

If the table definition includes more than one constraint, it chooses the
primary key constraint over a unique constraint, and the first unique constraint
over any referential constraint. For primary key or unique constraints, it also
adds the UNIQUE_SCOPE=STATEMENT attribute to the base table structure. A
dependency is added between the constraint and the base table structure so
that the constraint must be explicitly dropped and re-added if the base table
structure is modified.

When table_auto_structure is OFF or if there are no accompanying constraint
definitions, the default storage structure of all new base tables is heap.

Heap Storage Structure

In a heap structure, the table has no key—it is simply a heap of data. When
you add a row, it is added to the end of the heap. This makes heap the fastest
storage structure to use when you are initially loading tables or adding a large
quantity of data.

However, when you want to retrieve a particular row from a heap table, you
must search through every row in the table looking for rows that qualify. This
makes heap relatively slow for retrieval if tables have more than a few pages.
For more information, see the chapter “Maintaining Storage Structures.”

Note: The heapsort structure is like heap, but with the rows sorted and
duplicates removed (unless duplicates are allowed).

Choosing Storage Structures and Secondary Indexes 167

Heap Storage Structure

Structure of a Heap Table

A heap table consists of a chain of pages. The layout of the sample heap table,
employee, is shown below:

empno name age salary comment

S
Page 0 | 17| Shigio | 29| 28000.000|

| 9| Blumberg | 33] 32000.000]|

| 26| Stover | 38| 35000.000]|

| 1| Mandic | 46| 43000.000]|

| ___
Page 1 | 18] Giller | 47| 46000.000]|

| 10| Ming | 23] 22000.000]|

| 27| Curry | 34| 32000.000]|

| 2| Ross | 50| 55000.000]|

| ___
Page 2 | 19| McTigue | 44| 41000.000|

| 11| Robinson | 64| 80000.000]|

| 28] Kay | 41| 38000.000]|

| 3| Stein | 44| 40000.000|

| ___
Page 3 | 20| Cameron | 37| 35000.000]|

| 12| Saxena | 24| 22000.000]|

| 29| Ramos | 31| 30000.000]|

| 4| Stannich | 36| 33000.000]|

| ___
Page 4 | 21| Huber | 35| 32000.000]|

| 13] Clark | 43| 40000.000]|

| 30| Brodie | 42| 40000.000]|

| 5| Verducci | 55| 55000.000]|

| ___
Page 5 | 22| Zimmerman | 26| 25000.000|

| 14| Kreseski | 25| 24000.000]|

| 31| Smith | 20| 10000.000|

| 6] Aitken | 49| 50000.000]|

| ___
Page 6 | 23| Gordon | 28] 27000.000]|

| 15| Green | 27| 26000.000|

| 7| Curan | 30| 30000.000| Fire

| 24| Sabel | 21| 21000.000|

| ___
Page 7 | 16| Gregori | 32] 31000.000|

| 8| McShane | 22| 22000.000]|

| 25| Sullivan | 38| 35000.000]|

|

168 Database Administrator Guide

Heap Storage Structure

Because table scans are expensive, heap is not a good structure to use while
querying large tables. A retrieval of this type must look at every page in the
employee table:

Select * from employee
where employee.name = 'Sullivan';

A retrieval like this also scans the entire table, even though Shigio’s record is
the first row of the first page:

Select * from employee
where employee.name = 'Shigio';

Because heap tables do not eliminate duplicate rows, the entire table must be
scanned in case there is another employee named Shigio on another page in
the table.

Heap as Structure for Loading Data

If the configuration parameter auto_table_structure is set to OFF, heap is used
as the default storage structure when a table is first created, because it is
assumed that a newly created table is likely to be loaded with data.

Loading is optimized by not doing “per row” logging. Therefore, you must load
into an empty table. This can be a table that was just created and into which
no data has ever been added or deleted. Or it can be an existing table that was
truncated by clicking Delete All Data in the Modify Table Structure dialog or by
using the MODIFY TO TRUNCATE statement.

The empty table must also have the following characteristics:
® The table must not be journaled or have secondary indexes.
® The table must not have system-maintained keys.

B You must have an exclusive lock on the table.

Heap is also the best structure to use for adding data. Additions to a heap
table progress quickly because inserted rows are added to the end of the heap.
There is no overhead of calculating what page the row is on. The disadvantage
is that the heap structure does not make use of deleted row space except at
the end of the table.

Aside from compressed storage structures, the heap structure produces tables
with the smallest number of pages. This is because every page in a heap table
is filled as completely as possible. This is referred to as a 100% fill factor. A
heap table is approximately half the size of the same table modified to hash
because hash uses a 50% default fill factor instead of 100%.

Choosing Storage Structures and Secondary Indexes 169

Heap Storage Structure

After loading or adding the data, you can modify the table to another storage
structure. (Do not modify an empty table to another storage structure before
loading the data.)

To free deleted space, remodify the table to heap using the Modify Table
Structure dialog or the modify statement.

Very small tables can usually be left as heap tables. If the table fits on one to
five pages as a heap, there is no speed advantage to modifying it to a different
structure.

Note: The heap structure is sometimes used for large tables in conjunction
with a secondary index. This can be useful in a situation where the table is so
large it cannot be modified, but an accelerated access method is needed.

When to Use Heap

Heap is a good storage structure to use in any of these cases:

® You are bulk-loading data into the table.

m The table is only a few pages long (a lookup table).

® You always retrieve every row in the table without sorting.

® You are using a secondary index on a large table and must conserve

space.

Do not use heap for large tables when query performance is the top priority.
Heap is also a poor storage structure to use if you look up particular rows by
key value.

Heap Troubleshooting

The following are problems encountered with heap storage structure, and their
solutions:

Problem Solution

Access is slow on a table created Change the storage structure of the
from another table (for example, table from which you are selecting the
using the CREATE TABLE...AS data, or specify a storage structure
SELECT statement or the Create other than heap for the table you are
Table as Select check box in the creating.

Create Table dialog).

Space once used by deleted rows Modify the table to reclaim the deleted
is never reused. row space (for example, using the
modify statement or the Modify Table

170 Database Administrator Guide

Hash Storage Structure

Problem Solution

Structure dialog). In this case, you can
still choose heap as the storage
structure.

Selects and updates are slow. If the table is not small, modify it to
another storage structure. Heap is used
only for small tables because the entire
table is always scanned. Alternatively,
you can create a secondary index.

Inserts are not concurrent. Use row locking if the page size is
greater than 4 KB, or modify to another
structure. All inserts to a heap table are
sent to the last page.

Hash Storage Structure

Hash is the keyed storage structure that calculates a placement humber or
address by applying a hashing algorithm to the key data value. A hashing
algorithm is a function that does mathematical computations to a piece of data
to produce a number. It always produces the same number for the same piece
of data.

Hash is the fastest access method for exact match queries (that is, with no
pattern matching). A quick calculation is used to determine which pages to
search, but there is no additional I/O necessary for index scanning, as there is
in an ISAM or B-tree table. However, hash is more limited in the types of
queries it can handle, because the hashing algorithm is not useful in looking
for ranges of values, handling partial key restrictions, or doing pattern
matching. For these types of queries, the entire table must be scanned.

Using the Modify Table Structure dialog or the MODIFY statement, you can
change any table to the hash storage structure. When you modify a table to
hash, you should specify a key; otherwise, the first column is used as a key.

Modifying a table to hash involves several calculations. Taking the number of
rows currently in the table, and calculating how many rows can fit on a 20000
byte page, modify calculates how many main pages are necessary. (Main
pages are data pages where the rows are actually stored.)

To help the hashing algorithm distribute the data evenly, as well as to allow
plenty of room to add new data, this figure is doubled (referred to as 50% fill
factor). This is the number of main pages assigned to the table. The hashing
algorithm decides on which main page the row resides by calculating its
hashing address.

Choosing Storage Structures and Secondary Indexes 171

Hash Storage Structure

Structure of a Hash Table

An example illustrates how a hash table is structured and what hashing
means:

® The example uses an employee table that has 31 rows, 500 bytes each.

® The table is modified to hash on the age field, using the Structure of Table
dialog. For a full description of modify procedures, see the chapter
“Maintaining Storage Structures.” You can also use this MODIFY
statement:

modify employee to hash on age;

The number of main pages needed is calculated. The number chosen is always
at least seven, no matter how small the table is. The humber of main pages
chosen is approximately twice the number of pages required if the table were a
heap. Normally hash uses a 50% fill factor, although if the row width is greater
than 1000 bytes, it uses a 100% fill factor.

The calculation used is this:
Main pages = (Rows_in_Table / Rows_per_page) * 2

31 rows_in_table / 4 rows_per_page = 8 (round up)
8 * 2 =16;

Main pages for employee table = 16

The main pages calculation is checked against the Min Pages and Max Pages
values. If these were specified, the result must fall in this range.

When a table is modified to hash, a skeletal table is set up with an appropriate
number of main pages. Although 16 pages can actually be used, as shown in
the calculation above, for illustration purposes assume 10 main pages are
chosen. The table is built by placing each row on the page where its key
hashes.

The chart in the following example illustrates what a table looks like after
modifying to hash on age. Remember that the actual hashing function is a
complex algorithm that supports all of the data types. For simplicity, however,
the following examples use the module function as a hashing algorithm.

Here is an example of a hashing function:
Main Page = Key MOD Main_Pages

Ross, Age 50 50 mod 10 = 0; hashes to page 0
McShane, Age 22 22 mod 10= 2; hashes to page 2

172 Database Administrator Guide

Hash Storage Structure

After this hashing process is completed for all 31 rows, the table looks like
this:

i +
Page 0 | 50|Ross | 55000.000]|
20	Smith	10000.000
30	Curan	30000.000]
20	Sabel	21000.000]
[--mmmmmmmmmmmm		
Page 1		
[=mmmmmmmm e		
Page 2	22	McShane
32	Gregori	31000.000
42	Brodie	40000.000]
R LRy	Overflow Chain for Page 3	
Page 3	33	Blumberg
43	Clark	40000.000
23	Ming	22000.000]
43	Kay	38000.000]
R		
Page 4	24	Saxena
34	Curry	32000.000]
44	Stein	40000.000
64	Robinson	80000.000
=m oo		
Page 5	55	Verducci
35	Huber	32000.000]
25	Kreseski	24000.000]
[=mmmmmmmmm e		
Page 6	26	Zimmerman
46	Mandic	43000.000]
36	Stannich	33000.000]
[=--mmmmmmmmmmmm e		
Page 7	37	Cameron
47	Giller	46000.000
27	Green	26000.000
[==mmmmmmmmm e		
Page 8	38	Stover
38	Sullivan	35000.000]
28	Gordon	27000.000]
[--mmmmmmmmmmmm		
Page 9	49	Aitken
29	Shigio	28000.000
B +

Choosing Storage Structures and Secondary Indexes 173

Hash Storage Structure

To retrieve the employee data about employees who are 49 years old:

Select * from employee
Where employee.age = 49;

The table is hashed on age, and the qualification has specified an age. The
hashing algorithm is used to determine the main page on which rows with ages
of 49 are located:

49 mod 10 = 9

The lookup goes directly to Page 9, instead of looking through the entire table,
and returns the row requested.

To find all employees who are age 53, the calculation is:

53 mod 10 = 3

These rows are found on main Page 3. However, a search through the page,
looking for 53, shows it is not there. There is an overflow page, though, and
searching this page finds the row. Overflow pages are associated with a
particular main page. They can slow down processing time because searches
are required not only on the main page but the overflow chain connected to
the main page as well.

Inserts, updates, and deletes work the same way retrievals do. If you want to
append a new row, the row is placed on the page the new employee’s age
hashes to. Therefore, if you add an employee with age 22, 22 mod 10 is 2, so
this employee is placed on main Page 2.

To find all employees who are older than 50, there is no way of directly
locating these rows using the hashing algorithm; you must hash on every
possible value greater than 50. Instead, the table is treated as a heap table
and every page is scanned, starting from Page 0 through to Page 9 including
all overflow pages, looking for qualifying rows.

To retrieve the row where the employee’s name is Shigio, does the age key
help? Because the table is not hashed on name, and Shigio’s age is unknown,
the entire table must be scanned, from Page 0 through Page 9, looking for
rows where the employee name is Shigio. This retrieval treats the table like a
heap table, scanning every main and overflow page. To retrieve a row you
need without scanning the entire table, specify the value of the key for the
row.

174 Database Administrator Guide

Hash Storage Structure

Retrievals Supported by Hash

The hash storage structure allows multi-column keys, but every column in the
key must be specified in a query to take advantage of the hash access method.
For instance, to hash the employee table on both age and name, use the
Structure of Table dialog.

Alternatively, use the following MODIFY statement:

modify employee to hash on age,name;

The following queries make use of the hash key:

select * from employee
where employee.age = 28
and employee.name = 'Gordon';

select * from employee
where employee.age = 28

and employee.name = 'Gordon'
or employee.age = 29
and employee.name = 'Quan';

The next queries do not use the hash key, because the entire key has not been
specified:

select * from employee
where employee.age = 28;

select * from employee
where employee.name = 'Gordon';

select * from employee
where employee.age = 28
and employee.name like 'Gor%';

select * from employee
where employee.age = 28
or employee.name = 'Gordon';

Choosing Storage Structures and Secondary Indexes 175

Hash Storage Structure

When to Use Hash

Hash is the fastest structure to use when you specify an exact match of the
whole key value. Hash does not efficiently support pattern matching, range
searches, or partial key specification with multi-column keys. For these queries

the entire table must be scanned.

Hash is a good storage structure to use if you always retrieve the rows based
on a known key value, such as order number or employee number.

Hash is a poor storage structure to use in any of these cases:

® You use pattern matching.

® You retrieve ranges of values.

® You specify part of a multi-column key.

Hash Troubleshooting

The following are problems encountered with hash storage structure, and their

solutions:

Problem

Solution

Pattern matching and range scans
used; performance slow.

Use ISAM or B-tree instead.

Partial key of multi-column key
used; performance slow.

Use ISAM or B-tree instead.

Overflow pages occur in table after
adding rows.

Remodify.

Overflow pages occur in newly
modified table.

If key is repetitive, this is normal but
undesirable. If key is unique, hashing
algorithm does not distribute data
well; try increasing minpages. If
column is a character column that
only partially varies (for example,
AAAAA1 AAAAA2), consider using
ISAM instead.

176 Database Administrator Guide

ISAM Storage Structure

ISAM Storage Structure

ISAM is a keyed storage structure in which data is sorted by the value in the
key column, and the index is static.

ISAM is a more versatile storage structure than hash. It supports pattern
matching, range scans, and partial key specification, as well as exact match
retrievals.

ISAM tables use a static index that points to a static number of main pages.
The index contains key ranges and pointers either to other index pages or to
the data page where rows with that key range are found.

Using the Modify Table Structure dialog or the MODIFY statement, you can
change any table to the ISAM storage structure. When you modify a table to
ISAM, you must specify a key; otherwise, the first column is used as a key.

Choosing Storage Structures and Secondary Indexes 177

ISAM Storage Structure

Structure of an ISAM Table

Here is a simple example that illustrates how the ISAM structure works. The
employee table, which has 31 rows with a byte-width of 500, is modified to
ISAM on employee number. The results are shown in the following table:

empno name age salary
Index Pages B e
|1 |[Mandic |46 43000.000|
<=4 |2 |Ross 150 55000.000|Data Page 1
=Page 1 |3 |Stein |44 40000.000|
<=4 |4 | Stannich |36] 33000.000]|
? [e e T
>=5 >4 and |5 |Verducci |55] 55000.000|
<=8 |6 |Aitken |49 50000.000|Data Page 2
<=8 =Page 2 |7 |Curan 130] 30000.000|
? |8 |[McShane |22] 22000.000|
>8 [=== mm e m e e el
>8 and 19 |Blumberg 133] 32000.000|
<=12 |10 |Ming 123] 22000.000|Data Page 3
=Page 3 |11 |Robinson | 64| 80000.000|
<=12 |12 |Saxena |24 22000.000|
? R e
>=13 >12 and |13 |Clark |43 40000.000|
<=16 |14 |Kreseski 125] 24000.000|Data Page 4
<=16 =Page 4 |15 |Green |27 26000.000|
? |16 |Gregori |32] 31000.000|
>16 [e e
|17 |Shigio |35] 32000.000|
<=20 >16 and |18 |Giller |47 46000.000|Data Page 5
? <=20 |19 |McTigue |44] 41000.000 |
>20 =Page 5 |20 |Cameron 137] 35000.000|
| __
|21 |Huber |135] 32000.000|
<=24 >20 and |22 |Zimmerman |26] 25000.000|Data Page 6
? <=24 |23 |Gordon |28 27000.000|
>24 =Page 6 |24 |Sabel 121] 21000.000|
| __
|25 |Sullivan |38] 35000.000|
>24and |26 |Stover 138] 35000.000|Data Page7
<=28 <=28 |27 |Curry |134] 32000.000|
? =Page7 |28 |Kay |41 38000.000|
>28 [e
|29 |Ramos 131] 30000.000|
>28 |30 |Brodie 42| 40000.000|Data Page8
=Page8 |31 |Smith 120] 10000.000|

Suppose you want to retrieve the employee data about employee number 11.
Starting at the beginning of the index (at the left in the example), follow the
index over to data Page 3, which contains rows of employees with employee
numbers greater than 8 and less than or equal to 12. Scanning this page, you
find employee number 11’s row.

178 Database Administrator Guide

ISAM Storage Structure

If you want to find all employees with employee numbers greater than 24, use
the index, which directs you to Page 7, where you begin scanning the
remainder of the table looking for qualifying rows.

To retrieve the row where the employee’s name is Shigio, empno key does not
help, because the index was constructed on empno and not on name. You
must scan the entire table, from Page 0 through Page 9.

To append a new employee with an empno of 32, the search scans through the
index to the largest key value less than 32. On the page with that key (Page
8), the new row is placed on the first available space on that page. If no room
is left on that page, the row is placed on an overflow page.

Choosing Storage Structures and Secondary Indexes 179

ISAM Storage Structure

Retrievals Supported by ISAM

ISAM can limit a scan if you specify at least the leftmost part of the key for the
desired rows. ISAM also limits the pages scanned if you are looking for ranges
of the key.

m If the key is a character key, ISAM supports character matching with
limited scan if you specify at least the leftmost part of the key.

m If the key is a multi-column key, ISAM limits the pages scanned only if you
specify at least the leftmost part of the key.

For instance, assume you modified the employee table to ISAM on name and
age using the Structure of Table dialog. Alternatively, you can use the
following MODIFY statement:

modify employee to ISAM on name, age;

The following retrievals make use of the ISAM key:

select * from employee
where employee.name like 'S%';

select * from employee
where employee.name = 'Shigio'
and employee.age > 30;

In contrast, the following retrievals do not make use of the ISAM key, because
the leftmost part of the key (name) is not restricted:

select * from employee
where employee.age = 32;

select * from employee
where employee.name like '%S'
and employee.age = 32;

select * from employee
where employee.name like '%higio%';

180 Database Administrator Guide

ISAM Storage Structure

When to Use ISAM

ISAM is a versatile storage structure because it supports both exact match and
range retrievals. ISAM indexes and main pages are static—if you are
appending many rows, remodify to avoid overflow pages. For tables that are
mostly static, ISAM can be preferable to B-tree.

Because ISAM indexes are static, no locking needs to be done on the ISAM
index. In a heavily concurrent update environment, this feature makes ISAM
more appealing than B-tree, where pages of the index must be locked when
splitting or updating occurs.

ISAM is a good storage structure to use when the table is relatively static, and
retrievals tend to use any of the following:

m Pattern matching

m Ranges of key values

® Only the leftmost part of a multi-column key

ISAM is a poor storage structure to use in any of these cases, which causes
overflow pages:

m The table is growing at a rapid rate.

® The table is too large to modify.

® The key is sequential, that is, each key number is higher than the last and
the data is not static. This is because adding data with sequential keys
adds a lot of overflow pages at the last main page.

ISAM Troubleshooting

The following are problems encountered with the ISAM storage structure, and
their solutions:

Problem Solution

You try to use pattern matching, but *F* does not use the ISAM index,

do not specify the leftmost character. whereas F* does. If you cannot
modify the search condition, the
entire table must be scanned.

You try to use just part of a multi- If you cannot modify the search
column key, but do not specify the condition, create a secondary index
leftmost column. with only the columns on which you

are searching.

The table is growing quickly and new Use B-tree instead.
rows are added to overflow pages.

Choosing Storage Structures and Secondary Indexes 181

B-tree Storage Structure

B-tree Storage Structure

B-tree is the keyed storage structure in which data is sorted by value in the
key column for fast access on the exact value and range retrievals, and the
index is dynamic. It is the most versatile storage structure. The B-tree
structure allows for keyed access and supports range searches and pattern
matching. The B-tree index is dynamic, growing as the table grows. This
eliminates the overflow problems that static structures like ISAM and hash
present as they grow. It is possible for a B-tree table using 2K pages to
develop overflow from a leaf page with sufficient duplicate key values. B-tree
secondary indexes never develop overflow because the key is always physically
unique (it includes the tidp column in non-logically-unique indexes). B-tree
also allows for maximum concurrent use of the table.

B-tree design incorporates a sparse index that points to pages in a leaf level.
The leaf level is a dense index that points to the rows on the data pages in the
table. The benefit of this indexing approach is that it minimizes splitting cost:
when splitting does occur, the actual data rows need not move. Only the leaf
and index levels require reorganization, as described in Index Growth in a B-
tree Table (see page 185).

If the configuration parameter table_auto_structure is set to ON, and if the
CREATE TABLE statement includes at least a primary key, unique constraint, or
referential (foreign key) constraint, the base table structure is set to B-tree on
the constrained columns and the secondary index is not built.

182 Database Administrator Guide

B-tree Storage Structure

Structure of a B-tree Table

A B-tree can be viewed as four separate parts:

m A free list header page, which is used to keep track of allocated pages that
are not currently being used

® One or more index pages, which contain leaf page numbers and the range
of key values to expect on each leaf page

® One or more leaf pages, which identify the data page and row where the
data is stored

® One or more data pages, where the user data is actually stored
The smallest B-tree has four pages, one of each type.

Note: If a secondary index is modified to B-tree, it cannot contain data pages.
Instead, the leaf pages of the secondary index reference the main table’s data
pages. For more information, see Secondary Indexes (see page 194).

The index level is similar to the ISAM index, except that the ISAM index points
to data pages, whereas the B-tree index level points to leaf pages. The number
of index pages is dependent on the width of the key and the number of leaf
pages, because eventually the index pages point to a particular leaf page.
Usually the index level is small, because it needs to point to only the leaf
pages.

The leaf page level is considered a dense index because it tells the location of
every row in the table. In dense indexes, rows on data pages do not move
during a split; that causes their tids to change. Tids identify every row on
every data page. For a complete discussion of tids, see Tids (see page 202).

The index level is considered a sparse index, because it contains only a key
value and a pointer to a page.

The following diagram illustrates the three B-tree levels: index page, leaf page,
and data page. It illustrates the relationship between the three levels, but
cannot be realistic. In actuality, if the key width name were only 30
characters, the row width were 500 bytes, and there were only 31 employees,
this B-tree has only a free list header page, one index page, one leaf page, and
8 data pages (instead of 4 leaf pages and 3 index pages).

Choosing Storage Structures and Secondary Indexes 183

B-tree Storage Structure

B SR +
| ROOT |
| |
| <= McShane |
INDEX PAGE B e E e e e T T +
LEVEL / \
/ \
R S g +
| Key Leaf Page | | Key Leaf Page |
| [|
| <= Giller 1 | | > McShane <= Shigio 3 |
| > Giller <= McShane 2 | | > Shigio 4 |
g s +
LEAF PAGE LEVEL
Leaf Page 1 Leaf Page 2 Leaf Page 3 Leaf Page 4
Aitken 1,0 Gordon 3,0 McTigue 5,0 Smith 7,0
Blumberg 1,1 Green 3,3 Ming 5,1 Stannich 7,1
Brodie 1,3 Gregori 3,2 Ramos 5,2 Stein 7,2
Cameron 1,2 Huber 3,1 Robinson 5,3 Stover 7,3
Clark 2,0 Kay 4,0 Ross 6,0 Sullivan 8,0
Curan 2,1 Kreseski 4,1 Sabel 6,1 Verducci 8,1
Curry 2,2 Mandic 4,2 Saxena 6,2 Zimmerman 8,2
Giller 2,3 McShane 4,3 Shigio 6,3
DATA PAGE LEVEL
R et +
Page 1 0 |Aitken | 1] 49| 50000.000 |
1 |Blumberg | 2| 33| 32000.000 |
2 |Cameron | 4| 37| 35000.000 |
3 |Brodie | 3] 42| 40000.000 |
| == |
Page 2 0 |Clark | 5] 43| 40000.000 | Associated Data
1 |Curan | 6] 30| 30000.000 | Page for Leaf
2 |Curry | 7| 34| 32000.000 | Page 1
3 |Giller | 8| 47| 46000.000 |
| = |
Page 3 0 |Gordon | 9| 28| 27000.000 |
1 |Huber | 12| 35| 32000.000 [
2 |Gregori | 11| 32| 31000.000 |
3 |Green | 10| 27| 26000.000 |
| =mmmmmmmmmsoooeo |
Page 4 [C] | Kay | 13| 41| 38000.000 | Associated Data
1 |Kreseski | 14| 25| 24000.000 | Page for Leaf
2 |[Mandic | 15| 46| 43000.000 | Page 2
3 |McShane | 16| 22| 22000.000 |
| =mmmmmmo |
Page 5 0 +McTigue | 17| 44| 41000.000 +

To look for an employee named Kay, the search starts from the root node,
where a name that precedes McShane in the alphabet directs you down the left
side of the index.

The index page on the left shows that leaf Page 2 is the appropriate page on
which to look, because Kay comes between Giller and McShane in the
alphabet.

184 Database Administrator Guide

B-tree Storage Structure

On leaf Page 2, Kay's record is identified as being on data Page 4, row 0.
Going directly to data Page 4, row 0, Kay's record is located.

Associated Data Pages in a B-tree Table

Every leaf page has an associated data page. The associated data page is
where new rows are added. A leaf page can actually point to several different
pages, but new data is only added to the associated data page. When an
associated data page fills up, a new associated data page is attached to the
leaf page. If you delete rows that exist on the current associated data page,
the deleted space is reused.

Having one associated data page per leaf page provides a good chance for
rows with similar key ranges to exist on the same data page, thereby
increasing the likelihood that data references occur on the same data page.

Index Growth in a B-tree Table

The major difference between ISAM and B-tree is that the B-tree index grows
as the table grows. If you added these five new employees to the ISAM
employee table, keyed on name: Zanadu, Zentura, Zilla, Zorro, Zumu, these
names are put on the last page of the ISAM table. Because they do not all fit
on the last page, they are put onto an overflow page attached to the last page.

If you added these five nhew employees to the B-tree table, you add the new
names to the appropriate leaf page (Page 4, in this case) and their records go
on the associated data page for leaf Page 4. Because the associated data page
fills up, a new associated data page is assigned to Page 4. If the leaf page is
full, and cannot hold all five names, the leaf page splits into two leaf pages,
and a reference to the new leaf page in the index is added. If the index page
can no longer hold a reference to another leaf page, the index is split as well.

Splitting in a B-tree Table

Splitting occurs fairly frequently while the table is small and growing. As the
table gets larger, splitting occurs less frequently (unless a sequential key is
used) and usually only in the leaf or lowest index level.

Repeated inserts into the right-most leaf of a B-tree table create empty leaf
pages rather than half-full ones. This improves insert and retrieval
performance, and increases disk space efficiency.

Choosing Storage Structures and Secondary Indexes 185

B-tree Storage Structure

Locking and B-tree Tables

Sorted Order in a

During normal B-tree traversal, leaf and data pages are logically locked until
the end of the transaction. B-tree index pages are only temporarily locked
during query execution. The index page lock is released after the page has
been searched.

When searching the B-tree index, ladder locking is used: a lock is taken on the
first index page, which points to another index page. The next index page is
locked and, once it is locked, the first lock is dropped, and so on down the
index to the leaf level.

The locking system always locks the leaf and data pages when accessing B-
tree tables. Because of this, locking in a B-tree table requires twice as many
locks as locking an ISAM or hash table. It is wise to set the maxlocks
escalation factor higher than the default when using the B-tree storage
structure. For details, see the SET LOCKMODE statement in the SQL Reference
Guide.

B-tree Table

In the diagram in Structure of a B-tree Table (see page 183), rows for Huber
and Green are not in sorted order on the data page. This happens if Huber’s
record was appended before Green’s. They both end up on the same data
page, but slightly out of order. This happens in ISAM as well. However, if you
tried the following retrieval, you retrieve the rows in sorted order if the
employee table was a B-tree. This is because the leaf pages are used to point
to the data rows, and the leaf pages maintain a sorted sequence:

select * from employee
where employee.name like 'G%';

The data on the data pages is not guaranteed to be sorted, but the access,
which is always through the leaf pages, guarantees that the data is retrieved in
sorted order. (This is not true for ISAM.)

Because the leaf entries are in sorted order, the maximum aggregate for a B-
tree key does not require a table scan. Instead the index is read backwards.

186 Database Administrator Guide

B-tree Storage Structure

Deleted Rows in a B-tree Table

If rows are deleted on the associated data page, the space is reused the next
time a row is appended to that page. If rows are deleted from a data page that
is no longer associated, the space is not reused. If all the rows on a non-
associated data page are deleted, the page is immediately added to the free
list and becomes available for reuse.

Note: The only way to free up unused data pages completely and return disk
space to the operating system is to change the storage structure to B-tree.
You can do this using the Modify Table Structure dialog or using the MODIFY
statement.

The reason that deleted space on a non-associated data page is not
automatically reused is to speed the append operation. Appending to one
particular page (the “associated data page”) is faster than tracking and
checking all the available free space on non-associated data pages; appending
to the associated data page also provides better key clustering when data
addition occurs in sorted key order. Because appends generally occur more
frequently than deletes, preserving the performance of the append operation
seems wiser than reusing deleted space from non-associated data pages.

When to Use B-tree

B-tree is the most versatile storage structure, as it supports both exact match
and range retrievals and includes a dynamic index, so that frequent
remodification is not necessary.

B-tree is a good storage structure to use in any of these cases:

® The table is growing at a rapid rate.

® You use pattern matching.

® You retrieve ranges of key values.

® You retrieve using only the leftmost part of a multi-column key.

B-tree is a poor storage structure to use if:
® The table is relatively static.

® The table is small, static, and access is heavily concurrent.

Choosing Storage Structures and Secondary Indexes 187

ISAM or B-tree?

B-tree Troubleshooting

The following are problems encountered with the B-tree storage structure, and

their solutions:

Problem

Solution

You tried to use pattern matching,
but did not specify the leftmost
character.

Specify the leftmost part of the key;
F does not use the B-tree index,
but F* does. If you cannot modify
the search condition, the entire table
must be scanned.

You tried to use just part of a multi-
column key, but did not specify the
leftmost column.

Specify the leftmost column of the
multi-column key. If you cannot
modify the search condition, create
a secondary index with only the
columns on which you are
searching.

You are deleting frequently, as well
as adding data.

To reclaim space, periodically select
Shrink B-tree Index in the Modify
Table Structure dialog, or use the
MODIFY TO MERGE or MODIFY
statements.

ISAM or B-tree?

The B-tree and ISAM data structures share many of the same advantages over

the other storage structures, but they differ in important respects.

188 Database Administrator Guide

ISAM or B-tree?

When to Choose ISAM over B-tree

The ISAM storage structure has the following advantages over B-tree:

ISAM is better for static tables (ones that have no updates on key fields,
appends, or deletes) where no overflow chains exist.

ISAM requires fewer disk operations to visit a data page than B-tree,
because B-tree has an additional leaf level.

ISAM is much better for small tables. B-tree requires a minimum of a free
list header page, a root page, a leaf page, and a data page. ISAM requires
only a root and a data page. B-trees for less than 10 to 15 pages are
better stored as ISAM. B-tree tables take up more space than do ISAM
tables; this is most noticeable when tables are small.

ISAM requires no locking in the index pages, while B-tree incurs index
locking; therefore concurrent performance in the index of a B-tree is not as
good as concurrent performance in the index pages of an ISAM. However,
concurrent usage in B-tree data pages is better than concurrent usage in
ISAM data pages if the ISAM table has long overflow chains.

When to Choose B-tree over ISAM

The B-tree storage structure has the following advantages over ISAM:

B-tree is essential in tables that are growing at a rate that quickly causes
overflow in an ISAM structure (for example, situations where there are
ever-increasing keys).

B-tree is better when sorting on the key is required, because sequential
access (for example, SELECT * FROM emp) to data in B-tree is automatic;
there is no need to add a SORT clause to queries if you are sorting on the
primary key. B-tree also eliminates sorting of the joining column when
joining on key columns; sort-merge queries are more efficient if the tables
joined are B-tree.

Choosing Storage Structures and Secondary Indexes 189

Storage Structure Comparison Summary

Storage Structure Comparison Summary

The following chart is a quick reference for deciding which storage structure to
use.

Why a particular storage structure is good or bad for the condition listed is
described under the section Storage Structures and Performance (see
page 205). Information on secondary indexes is described in Secondary
Indexes (see page 194).

Ratings in the following chart are as follows: 1-Excellent, 2-Good, 3-0OK,
4-Bad, N/A-not applicable.

Requirement Heap Hash ISAM B-tree
Pattern matching 4 4 1 1
Range searches 4 4 1 1
Exact-match keyed retrievals 4 1 2 2
Sorted data (without sort-by) 4 4 2 1
Concurrent updates 4 1 1 2
Addition of data without needing to 2 3 3 1
modify

Sequential addition of data (incremental 1* 2 4 1
key)

Initial bulk copying of data 1 2 2 2
Table growth: none, static N/A 1 1 2
Table growth: some, periodically plan to N/A 1 1 2
modify

Table growth: great deal — too fast to 3 3 3 1
modify

Table size: small (under 15 main pages) 2 1 1 3
Table size: medium (disk space available 4 1 1 1
for any modify)

Frequent deletions 4 1 1 3
Frequent updates 4 1 1 2
Secondary index structure N/A 1 1 1

* Refers to secondary indexes used with a heap table.

190 Database Administrator Guide

Keys

Keys

Key Columns

Structures that provide fast access to particular rows or sets of rows require
that one or more columns be specified as the key of the table. The key column
or columns are used to index the table. When specifying a value for this key, a
partial value (the leftmost part of the key) is allowed unless the structure is
hash.

When a key value is specified, instead of scanning the entire table, the search
uses the index (or hashes the key) to go directly to the page in the table
where the row with that key resides.

Choosing which columns to use as key columns is not always clear cut. To
understand what a key column does, let us look again at the employee table.
Consider the query:

select * from employee
where name = 'Shigio';

The column called name (assuming it is unique) is a good candidate for the
key for the employee table. If the employee table is keyed on name, finding
the employee record where the name is Shigio is faster than scanning the
entire table.

Good columns for keys are columns referenced in the WHERE clause portion of
the query, not the target list. Columns that restrict the number of rows
returned and joining columns, demonstrated in the two examples below, are
candidates for keys:

where name = 'Shigio’
where e.dept = d.dept

A join qualification by itself is not restrictive, so if there also exists a restrictive
qualification in the WHERE clause, choose the restriction as the key column.
For example:

select empno from employee
where employee.name = dept.manager
and dept.name = 'Technical Support';

The most restrictive qualification in this WHERE clause is:

dept.name = 'Technical Support'

Choosing Storage Structures and Secondary Indexes 191

Keys

The dept table is keyed on name. Keying dept on manager is not necessary for
this query, because once the row for the department named Technical Support
is identified, you know the manager. The employee table is also keyed on
name, because once the manager of the dept table is known, the search can
do a keyed lookup into the employee table. Empno is not a key candidate in
this query, because it appears in the target list, not the WHERE clause.

Note: The order of qualifications in the WHERE clause is not important, as the
Ingres optimizer decides the appropriate order of execution.

Often, there are multiple candidate keys in a single query. Generally, the most
restrictive column is the best key. The following example illustrates this:

Select empno from employee
Where employee.sex = 'F'
And employee.salary > 20000'>
And employee.name like 'Shigi%';

In this case, there are three columns that are potential keys. However, these
first two qualifications are not very restrictive because "M” and “F” are the only
two values for the key sex, and many employees are likely to have the
selected salary qualification:

employee.sex = 'F'

employee.salary > 20000

The most restrictive qualification is probably:

employee.name like 'Shigi%'

Thus, name is chosen as the key column. Once you find all rows with names
beginning with Shigi, it takes little time to determine which of these rows are
female and make more than 20000, because the number of rows you are
looking at is only a small subset of the employee records.

192 Database Administrator Guide

Keys

Secondary Keys

When evaluating multiple queries, you find situations where one table needs
more than one key. Secondary indexes (see page 194) can provide a
secondary key and can be employed in these circumstances, but indexes must
be used with discretion, as they add overhead to update, delete, and insert
operations.

For example, perhaps the administration department decides empno is the
appropriate key for the employee table, but the shipping department prefers
address as the key column of the table. Secondary indexes can alleviate this
problem, but you have to weigh factors, such as the number of times a
particular query is executed, the acceptable response time for a query, the
time of day the query is likely to be executed, and the importance of a query
in the global view of the application.

In evaluating how to key the employee table, each query type is ranked as in
the following example:

Query Number Acceptable Time of
Executed Response Day
Per Day Time
1 select * from employee 2000 1 second 7-4
where empno = 123;
KEY = empno
2 select name from 1 2 hours after 5
employee order by
empno;

no key, but sorted by
empno

3 select salary from 20 30 sec 9-5
employee where name =
'Shigio';

KEY = name

4 select name from 1 30 sec 9-5
employee where comment
= 'Fire';

KEY = comment

Choosing Storage Structures and Secondary Indexes 193

Secondary Indexes

The most important query to key in this list is Query 1 because it is executed
frequently, requires fast response, and is pivotal to the application. The key
choice for employee table is the empno column.

Query 2 does not contain a restriction, so no key decision must be made. Also,
this report can be run at night, so CPU time is not crucial. Therefore, B-tree on
empno is a good choice of storage structure and key, because both Query 1
and Query 2 benefit.

Query 3 is important, but it is not executed as frequently, nor does it require
as immediate a response. A secondary key on name is appropriate.

Query 4 is not executed frequently, and although the importance rating for this
guery was high, it is advantageous to either work out a different
implementation strategy or discourage the user from using this query often.
The comment field is particularly large and empty and, therefore, is not a good
key choice. A separate fired table can be set up that lists the employees who
had been fired that day; this table is joined to the employee table.

Secondary Indexes

Secondary indexes provide a mechanism for specifying an additional key to the
base table.

For instance, assume that an employee table containing name (employee’s
name) and empno (employee number) columns is hashed on empno, but
occasionally data must be retrieved based on the employee’s name rather than
the employee number. You can create a secondary index on the name column
of the table.

194 Database Administrator Guide

Secondary Indexes

Working with Indexes

You can perform the following basic operations on indexes:
m Create index objects

m View existing index objects, including the detailed properties of each
individual object

® Drop index objects

Indexes are dropped automatically when the base table is destroyed.
Indexes are also dropped when the base table is modified, unless the
Persistence option is specified for the index.

In SQL, you can accomplish these tasks using the CREATE INDEX, HELP
INDEX, and DROP INDEX statements. For details, see the SQL Reference
Guide.

In VDBA, use the Indexes branch for a particular table in the Database Object
Manager window. For detailed steps, see the Procedures section of online help.

Implementation and Overhead of Secondary Indexes

Secondary indexes are actually tables that are automatically tied to the base
table. Secondary indexes must be updated whenever the base table is
changed, so they must be used sparingly. The user need not explicitly
reference the secondary index for it to be used in a query. In fact, you cannot
directly update a secondary index and probably never reference it. If the
Ingres optimizer sees that an index is available to help solve the query,
generally the index is used.

By default, secondary indexes are created as ISAM tables. You can change the
storage structure of the index by modifying the secondary index once it is
created, or by specifying another structure when you create the index.

In VDBA, you create indexes using the Create Indexes dialog and modify them
using the Modify Index Structure dialog. For more information on modifying an
existing index, see the chapter “Maintaining Storage Structures.”

Choosing Storage Structures and Secondary Indexes 195

Secondary Indexes

The following example shows the relationship of a secondary index to a base
table:

Select * from xnameselect name,tid from employee

|name | tidp| |name |tid |
| =mmmmm e [=mmmmmmmm e |
|Aitken |3072| |Gregori | 0]
|Blumberg | 512||Sabel | 1]
|Brodie |3584| |Blumberg | 512]
|Cameron |1024| |Kay | 513]
|Clark |4096]| |Shigio | 514
|Curan |1536| |Cameron 11024
|Curry |4608| |[Mandic 11025
|Giller |2048]| | Stannich 11026
|Gordon |5120| |Curan 11536
|Green | 2560 |[McTigue 11537
|Gregori | 0| |Stover 11538]
|Huber |3073]|Giller 12048
| Kay | 513||Ramos 12049
|Kreseski |3585]| |Verducci 12050
|Mandic |1025| |Green 12560
|McShane |4097| |Ross 12561
|McTigue | 1537 |Aitken 13072
|Ming |4609| |Huber 13073
|Ramos |2049| | Saxena 13074
|Robinson |5121] |Brodie |3584|
|Ross |2561| |Kreseski 13585]
Sabel	1		Smith 13586	
Saxena	3074]	Clark 14096		
Shigio	514		McShane 14097	
Smith	3586]		Stein	4098
Stannich	1026]	Curry	4608	
Stein	4098		[Ming 14609	
Stover	1538	Sullivan 14610		
Sullivan	4610		Gordon 15120	
Verducci	2050		Robinson 15121	
Zimmerman	5122		Zimmerman 15122	

There is a row in the secondary index xname for every row in the employee
table. There is also a column called tidp. This is the tid of the row in the base
table. Tids identify every row on every data page. For a complete discussion of
tids, see Tids (see page 202). The tidp entry for an employee is the tid of the
employee’s record in the base table.

There are no limits to the number of secondary indexes that can be created on
a table. However, there is overhead involved in the maintenance and use of a
secondary index that you must be aware of:

® When you add a row to the base table, you add an entry into every
secondary index on the table as well.

® When a row in the base table moves, causing the tid to change, every
secondary index must be updated to reflect this change. In a base table,
rows move when the key is updated or if the table is compressed and a
row is replaced that no longer fits in the same page.

196 Database Administrator Guide

Secondary Indexes

Note: For a compressed table, when a varchar(width) column is updated
and then recompressed, the row size can change.

® When the base table is updated, so that there is a change of the value in a
column, which is used as the key of a secondary index, the key of the
secondary index has to be updated as well.

® When processing a query execution plan for a query, the more indexes and
plans possible for the query, the longer it takes to decide what query
execution plan to use.

R-tree Secondary Index

An R-tree storage structure is a secondary index for multi-dimensional object
management extension data types that can provide the requisite functions (nbr
and hilbert).

The R-tree index is a secondary index only. The access method of the base
table is B-tree, hash, heap, or ISAM. The R-tree index uses two functions to
describe and sort its data. The R-tree index is built on the nbr (normalized
bounding rectangle) function of the original object, not the object itself. The
nbr function describes the location of each object. The hilbert function sorts
the nbr values so that nbr records describing close locations are close to one
another in the R-tree index table.

For more information on the nbr and hilbert functions and for more information
on handling objects, see the Object Management Extension User Guide.

An R-tree index allows Ingres to answer range queries, such as: “find all
records where its position overlaps this spot,” quickly. Without an R-tree index,
the whole database must be read. Consider two tables: Table A is a table of
houses, and Table B contains park information and location. The query, “select
all houses where the house intersects a park” is an example of a spatial join.
Without an R-tree index, the spatial join reads Table B entirely for each row in
Table A.

When creating an R-tree index (for example, using the Create Indexes dialog
or the CREATE INDEX statement) you must include range values, which specify
the minimum and maximum values of the index column.

Choosing Storage Structures and Secondary Indexes 197

Secondary Indexes

The following example illustrates an R-tree index:

select shape, hex(hilbert), tidp from xfio_shape_ix;

i Fom e Fommmm - +
| shape |col2 |tidp |
R oo - Fommmmm - +
| ((6644550,2412235), (6651911,2425562)) 1182343433792 | 0]
| ((5711593,7469490) , (5720615,7473074)) | 2CBBAFCO85E® | 1541
| ((5755540,7431379), (5765798,7468084)) | 2CBC38CC815C| 1543
| ((5764642,7468084) , (5776333,7489652)) | 2CCEABAE4E25 | 1542
| ((5760044,7471142), (5775065,7492024)) | 2CCEAC433EF1| 1544 |
| ((4392392,7367220), (4392773,7368251)) | 2F0514CC452B | 3]
| ((4393222,7381338), (4393696,7382470)) | 2FO5ECE43CAS | 1536
| ((6105365,8716914), (6119516,8719411)) | 7BC8BO2F74CE | 1539
| ((6104208,8719411),(6123227,8733088)) | 7BC8B47DB378 | 1538
| ((6082882,8707086) , (6104747,8708099)) | 7BCAG43955D6 | 1540|
| ((8995748,12135179), (8999981,12144160)) |8F8235359771| 1537
| ((9289826,13632441),(9325335,13663808)) | 9356B0O3B9AA0 | 1]
| ((9268185,13666317), (9286628,13724240)) |93591514F7A8| 4]
((9396304,16145868), (9397279,16148181)) 195C328081C95	2	
((11623892,4873084), (11624345,4874079))	DF6722ADDB47	7
((11624186,4871079), (11624855,4871713))	DF6727BOC6DO	6
((11622165,4875404), (11624949,4877801))	DF672D336FDD	8
((11621206,4874079), (11624345,4876640))	DF672D738440	10
((11621807,4874417), (11624499,4877759))	DF672D7B50C1	9
((11610646,4875871),(11612145,4878603))	DF67321EEFB6	5]
o B R Fommmm - +
(20 rows)

The shape column contains the nbr coordinates. The col2 column contains the
hilbert number for the nbr. The tidp column corresponds to the tid value of the
object in the base table. Tids (see page 202) identify every row on every data

page.

198 Database Administrator Guide

Secondary Indexes

Secondary Indexes and Performance

Secondary indexes are generally used to index into the base table they see,
although if the query can be executed in the secondary index alone, the base
table need not be visited. Using secondary indexes to help complete queries
that are otherwise executed on the base table can dramatically reduce the
query execution time.

For example, assume a secondary index exists on the name column for the
employee table, and the following query is executed:

select empno, age, name
from employee
where name like 'A%';

First, records beginning with an “"A” in the secondary index are located, and

using the tidp column, each tidp is used to do a tid lookup into the employee
table, to get the rest of the information about the employee, namely empno
and age. Tids (see page 202) identify every row on every data page.

Both the secondary index and the base table are used in this query. However,
had the retrieval asked only for employee.name rather than empno and age,
the base table is not used, and the number of disk I/Os executed is reduced by
more than 50%.

Even in some situations requiring scans of the entire table, you can
dramatically improve performance by loading the columns retrieved into the
secondary index, so that probing the base table is not necessary. An example
is shown in Example: Loading Retrieved Columns into a Secondary Index to
Improve Performance (see page 200).

Choosing Storage Structures and Secondary Indexes 199

Secondary Indexes

Example: Load Retrieved Columns into a Secondary Index to Improve Performance
In this example, the table bigtable contains 100,000 rows and 20,000 pages.
First, follow these steps to modify the bigtable to use a B-tree structure keyed

on three columns:

1. In VDBA, open the Modify Table Structure dialog for bigtable. For more
information, see the chapter “"Maintaining Storage Structures” and online
help.

2. Enable Change Storage Structure and click Structure.
The Structure of Table dialog opens.

3. Select B-tree in the Structure drop-down list, enable coll, col2, and col3 in
the Columns group box to specify them as keys, and then click OK.

The Structure of Table dialog closes.
4. Click OK
The Modify Table Structure dialog closes.
Next, a SELECT statement is issued in which the key columns are specified in

the WHERE clause. This search requires a full table scan, even though the
three columns in question are key columns in the bigtable structure:

select coll, col2, col3 from bigtable
where coll = 'Colorado', col2 = 17, col3 = 'repo';

Creating a secondary index on the three columns alleviates this problem.

Follow these steps to create a secondary index, with name xbig:

1. In VDBA, open the Create Indexes dialog for bigtable. For more
information, see online help.

2. Enter xbig in the Index Name edit control.

3. For each of the key columns, coll, col2, and col3, select the column in the
Base Table Columns list box, and click the double-right arrow (>>) to add
it to the Index Columns list box, and then click OK.

The index xbig is 500 pages. Issuing the exact same query as before (shown
again below) now uses the secondary index, thereby reducing the scan from
20,000 pages to 500 pages:

select coll, col2, col3 from bigtable
where coll = 'Colorado', col2 = 17, col3 = 'repo';

200 Database Administrator Guide

Secondary Indexes

Aggregates on secondary indexes can be more efficient, because the index is
so much smaller than the base table. For example, if there was a secondary
index on coll, this aggregate is processed in much less time:

select avg(coll) from bigtable;

Forced Use of Secondary Indexes

You can force a secondary index to be used by referencing it in the query, but
the optimizer must ensure that this is never necessary. For example, consider
the following query:

select * from emp
where emp.name = 'Shigio’';

To force it to use a secondary index, change it to the following:

select * from emp, xname
where xname.tidp = emp.tid
and xname.name = 'Shigio';

Two Secondary Indexes

There is no reason for having two secondary indexes on the same column, for
example, one hash and one ISAM. Instead, use the index giving you the most
versatile access path because the overhead of maintaining and using two
indexes is more than the disk I/O saved for a few queries.

If you need two access paths, and you want one to be hash and the other to
be ISAM or B-tree, you can use ISAM (or B-tree) for the base table access
method and hash for the index. ISAM and B-tree cluster similar data on the
same data page, while hash randomizes data, so that ranges of values are not
clustered. With the base table as ISAM or B-tree, range retrievals find the
physical rows clustered on the same data pages, reducing the amount of disk
I/O needed to execute range queries. If the base table is hash, the ISAM index
points to the qualifying rows, but these rows are spread randomly about the
table instead of being clustered on the same data pages.

Choosing Storage Structures and Secondary Indexes 201

Tids

Tids

Every row on every data page is uniquely identified by its page and row,
known as its tid, or tuple identifier. Tids are designed to be used internally by
the data manager. They are not supported for use in user-written programs.

Note: Tids were not designed to provide unique row identifiers for user data or
to provide quick access. Tids are not stored, but are only calculated addresses,
so they are unreliable row markers and are likely to change; in short, they
must not be used by user programs or queries. We advise that you use tids for
informational debugging purposes only. For more information, see the chapter
“Understanding the Locking System.”

Tids can be used for direct access into tables. B-tree leaf pages use tids to
locate rows on data pages. Also, secondary indexes use tids to indicate which
row the key value is associated with in the base table. When a secondary index
is used to access a base table, the tid found in the tidp column is used to
locate the row immediately in the base table. (The tidp column corresponds to
the tid value of the object in the base table.) The base table’s index structure
is ignored and access is directly to the page and row.

A listing of the tids in the employee table illustrates tid numbering. The
employee table is 500 bytes wide, so four rows fit on each 2048-byte data
page.

Tid values start at 0 and jump by 512 each time a new page is encountered. In
a page, each row is sequentially numbered:

0,1, 2, 3,512, 513, 514, 515, 1024, 1025, and so on.

For example, the relationship of tids to empno’s in the employee table is
illustrated as follows:

| empno | tid]

R RREREEEEEEE |

| 1] 0| Page @ Row 0
| 2| 1| Row 1
| 3] 2] Row 2
| 4| 3] Row 3
| 5] 512| Page 1 Row 0
| 6| 513| Row 1
| 7| 514| Row 2
| 8| 515| Row 3
| 9| 1024| Page 2 etc.

| 10| 1025]

| 11| 1026

| 12| 1027|

| 13] 1536| Page 3

Tids are not stored as part of each row; they are calculated as the data page is
accessed.

202 Database Administrator Guide

Tids

If overflow pages are encountered, the tid values increase by more than 512;
after the overflow chain, they again decrease. Overflow chains are particular to
main data pages; however, they are always allocated at the end of the file as
they are needed.

To illustrate overflow, assume the employee table was hashed with maxpages
= 5. Given the following MODIFY and SELECT statements, the tid numbering is
as shown here:

modify emp to hash on empno
where maxpages = 5;
select name, tid from emp;

|name |tid]|

| =mmmmm |

|Clark | 0| Page 0

|Green | 1]

|Mandic | 2|

|Robinson [3]

|Smith |2560| OVERFLOW for Page 0O
|Verducci 12561

|Brodie | 512| Page 1

|Giller | 513]

| Kay | 514

|Ming | 515]

| Saxena |3072| OVERFLOW for Page 1

Every tid value is unique. When a table is heap, tids always increase in value,
because the pages always follow each other. B-tree data pages are not
accessed directly, so tid values are not accessed sequentially (data is always
sorted by key).

Tid values change as rows move; if a compressed row is expanded, its tid can
change; if a key value is updated, the row is moved and the row’s tid changes.
Although tids are retrievable, their values are unreliable in application
programs. Use tids only to help to understand the structure of tables.

Choosing Storage Structures and Secondary Indexes 203

Chapter 10: Maintaining Storage
Structures

This section contains the following topics:

Storage Structures and Performance (see page 205)
Table Pages (see page 206)

Modify Procedures (see page 209)

Overflow Management (see page 230)

Storage Structures and Performance

A major responsibility of the database administrator is to maintain good
performance. Performance-enhancing tasks related to storage structures
include:

® Modifying the database tables

m Compressing storage structures

® Managing overflow

You should understand when and how to use the modify procedures to change
storage structures for tables and secondary indexes. As part of regular system

maintenance, you should use modify procedures to eliminate overflow pages
and recover disk space for deleted rows.

For additional information on database performance, see the chapter
“Improving Database and Query Performance.”

Maintaining Storage Structures 205

Table Pages

Table Pages

The data for each table is stored in a file on disk. Tables consist of pages with
a size that you define when you create the table. For example, you can specify
a page size of 2 KB, 4 KB, and so forth by powers of two up to 64 KB. Each
page has a certain amount of overhead, which depends on the page size.
Relevant values and how they are calculated for each possible page size are
described in Space Requirements for Tables (see page 399).

Each page stores a number of rows. The number of rows per page varies,
according to the row width, the storage structure of the table, whether or not
the table is compressed, and how much data has been added or deleted
because the table was last modified. Rows cannot span pages, limiting the
maximum row width to the per-page data size.

The page is an important concept in understanding query performance because
it affects the amount of disk I/O a query does, as well as the amount of CPU
resources required to read through a table.

206 Database Administrator Guide

Table Pages

Display the Number of Pages in a Table

To see how many pages are in a table, you can use either VDBA or an SQL

statement.

In VDBA, select a table and select the Pages tab.

In SQL, use the help table statement. For more information, see the SQL

Reference Guide.

A display for a B-tree table is shown in this example:

Name:

Owner:

Created:

Location:

Type:

Version:

Page size:

Cache priority:
Alter table version:

Alter table totwidth:

Row width:

Number of rows:
Storage structure:
Compression:
Duplicate Rows:
Number of pages:
Overflow data pages:
Journaling:

Base table for view:
Permissions:
Integrities:

Optimizer statistics:

Column Information:

emp
ingres
22-sep-2006 10:27:00
ii_database
user table
119.0

2048

[C]

[C]

70

70

32

B-tree

none

not allowed
6

[C]

enabled

yes

none

none

none

Key
Column Name Type Length Nulls Defaults Seq
name varchar 20 no no 1
title varchar 15 no yes
hourly_rate money no yes
manager varchar 20 yes null

Secondary indexes:

none

Maintaining Storage Structures 207

Table Pages

Limitations of Heap Structure

Without help from the storage structure, when you want to retrieve a
particular row from a table, you must search through every row to see if it
qualifies. (Searching through every row is called scanning the table.) Stopping
at the first row that qualifies is not enough, because multiple rows can qualify.

Consider the data shown in a sample heap table:

empno name age salary comment

S
Page © | 17 | Shigio | 29| 28000.000]|

| 9 | Blumberg | 33| 32000.000]|

| 26 | Stover | 38| 35000.000]|

| 1 | Mandic | 46| 43000.000]|

| ___
Page 1 | 18 | Giller | 47| 46000.000]|

| 10 | Ming | 23| 22000.000]

| 27 | Curry | 34| 32000.000]|

| 2] Ross | 50| 55000.000]|

| ___
Page 2 | 19 | McTigue | 44| 41000.000|

| 11 | Robinson | 64| 80000.000]|

| 28 | Kay | 41| 38000.000]|

| 3 | Stein | 44| 40000.000]|

| ___
Page 3 | 20 | Cameron | 37| 35000.000]|

| 12 | Saxena | 24| 22000.000]

| 29 | Ramos | 31| 30000.000]|

| 4 | Stannich | 36| 33000.000]|

| ___
Page 4 | 21 | Huber | 35| 32000.000]|

| 13 | Clark | 43| 40000.000]|

| 30 | Brodie | 42| 40000.000]|

| 5| Verducci | 55| 55000.000]|

| ___
Page 5 | 22 | Zimmerman | 26| 25000.000|

| 14 | Kreseski | 25| 24000.000]|

| 31 | Smith | 20| 10000.000]|

| 6 | Aitken | 49| 50000.000]|

| ___
Page 6 | 23 | Gordon | 28| 27000.000]|

| 15 | Green | 27| 26000.000|

| 7] Curan | 30| 30000.000|Fire

| 24 | Sabel | 21| 216000.000]|

| ___
Page 7 | 16 | Gregori | 32| 31000.000|

| 8 | McShane | 22| 22000.000]|

| 25 | Sullivan | 38| 35000.000]|

|

S

With this heap structure, a retrieval such as the following looks at every page
in the emp table:

select * from emp where emp.name = 'Sullivan';

208 Database Administrator Guide

Modify Procedures

Although the Shigio record is the first row in the table, the following retrieval
also looks at every row in the table:

select * from emp where emp.name = 'Shigio';

Because the table is not sorted, the entire table must be scanned in case there
is another employee named Shigio on another page in the table.

Retrieval from a large table can be costly in time and system resources. To
understand the performance consequences of a scan of a large table, assume
that the emp table is actually 300,000 pages, rather than 8. Further, assume
the disks can manage approximately 30 disk I/Os per second. Assume one disk
I/0 per page. With a heap storage structure, the example select operation
takes 300,000 / 30 = 10,000 seconds (or 2 hours, 46 minutes) in disk access
time alone, not counting the CPU time taken to scan each page once it is
brought in from disk, and assuming no other system activity.

For a large table, a different storage structure is needed. A production system
cannot tolerate a three-hour wait to retrieve a row. The solution is to provide a
storage structure that allows for keyed access, like hash, ISAM, or B-tree.

Modify Procedures

To improve performance, you can change tables to a more effective storage
structure by using modify procedures.

Key Columns and Performance

For hash, ISAM, and B-tree structures, you must specify key columns. (Heap
and heapsort tables do not have key columns.) There is no limit to the number
of key columns that can be specified, but as key columns increase,
performance declines slightly.

Tools for Modifying Storage Structures

In VDBA, to change a table from one storage structure to another, use the
Modify Table Structure dialog. By enabling the Change Storage Structure radio
button and clicking Structure, you activate the Structure of Table dialog, where
you can specify the parameters for the storage structure type and other
structure-specific characteristics. For secondary indexes, the Modify Index
Structure dialog offers a similar option to enable the Structure of Index dialog.
For more information, see Modifying Storage Structures in online help.

Using SQL, you can accomplish this task with the MODIFY statement. For more
information, see the SQL Reference Guide.

Maintaining Storage Structures 209

Modify Procedures

Cautions When Using the Modify Procedure

Keep in mind the following effects of the modify procedure when you are
modifying the storage structure:

Locking—During the modify procedure, the table is exclusively locked and
inaccessible to other users.

Secondary Indexes—Secondary indexes are destroyed when you modify
the base table storage structure. Modifying Secondary Indexes (see
page 226) provides more information.

Disk Space—When a table storage structure is modified, temporary sort
files are created. Before the old table can be deleted, a new table must be
built. Once it is completely built, the old table is deleted, and the
temporary file is renamed with the old table name. Space Requirements
for Modify Operations (see page 406) provides more information.

Partitioned tables—Modifying a table with a large number of partitions
requires a large amount of space in the transaction log file. It is possible to
fill the log file with a modify of a partitioned table.

Options to the Modify Procedure

The modify procedure provides several options:

Min Pages
Max Pages
Allocation
Extend
Fillfactor
Leaffill
Nonleaffill
Unique

Compression

The MinPages, MaxPages, Allocation, Fillfactor, Leaffill, and Nonleaffill options
take effect during the modify procedure only, but are remembered in the
system catalog description of the table. They will be applied again by a future
modify-to-reconstruct, and will be output as part of the table description by
copydb and unloaddb. The Extend, Unique, and Compression options are
continuously active throughout the life of the table.

In VDBA, these options are in the Structure of Table and Structure of Index
dialogs.

210 Database Administrator Guide

Modify Procedures

Number of Pages

Min Pages and Max Pages are valid options only when you are modifying the
table to hash. These options allow you to control the hashing algorithm to
some extent, extending the control offered by the Fillfactor option.

The Min Pages option is useful if the table will be growing rapidly or if you want
few rows per page to increase concurrency so multiple people can update the
same table.

You can achieve nearly the same effect by specifying a low value for the
Fillfactor option, but the fill factor is based on the current size of the table, as
described in Alternate Fill Factors (see page 216).

To force a specific number of main pages, use the Min Pages option to specify
a minimum number of main pages. The number of main pages used are at
least as many as specified, although the exact number of Min Pages specified
is not used.

Example: Modify Structure and Force a Higher Number of Main Pages for a Table

For example, for the emp table in the previous chapter you can force a higher
number of main pages by specifying the minimum number of main pages when
you modify the table to hash. If you specify 30 main pages for the table, which
has 31 rows, you have approximately one row per page.

Follow these steps to modify the storage structure of the emp table:

1. In VDBA, open the Structure of Table dialog for the table. For more
information, see online help.

2. Select Hash from the Structure drop-down list.
3. Enter 30 in the Min Pages edit control.

4. Enable the age column in the Columns list.

To specify a maximum number of main pages to use, rather than the system
choice, use the Max Pages option. If the humber of rows does not completely
fit on the number of pages specified, overflow pages are allocated. If fewer
pages are needed, the lesser number is used. Max Pages is useful mainly for
shrinking compressed hash tables more than otherwise happens.

You can achieve nearly the same effect by specifying a high value for the
Fillfactor option, but the fill factor is based on the current size of the table, as
described in Alternate Fill Factors (see page 216).

Maintaining Storage Structures 211

Modify Procedures

Example: Specify a Maximum Number of Main Pages for a Table

Allocation of Space

The following example modifies the emp table, specifying a Max Pages value.

1. In VDBA, open the Structure of Table dialog for the table. For more
information, see online help.

2. Select Hash from the Structure drop-down list.
3. Enter 100 in the Max Pages edit control.

4. Enable the empno column in the Columns list.

Remember that Max Pages controls only the number of main pages; it does
not affect overflow pages. For example, assume your data takes 100 pages in
heap. If you modify the table to hash and limit the number of main pages to
50, the remainder of the data goes onto overflow pages.

Use the Allocation option to pre-allocate space. You can modify the table to an
allocation greater than its current size to leave free space in the table. (The
default is four pages if no allocation has been specified.)

Doing this allows you to avoid a failure due to lack of disk space, or to provide
enough space for table expansion instead of having to perform a table extend
operation. Extending a Table or Index (see page 226) provides more
information.

The allocated size must be in the range 4 to 8,388,607 (the maximum number
of pages in a table). The specified size is rounded up, if necessary, to make
sure the allocation size for a multi-location table or index is always a multiple
of sixteen.

Note: If the specified number of pages cannot be allocated, the modify
procedure is aborted.

After an allocation is specified, it remains in effect and does not need to be
specified again when the table or index is modified.

Example: Allocate 1000 Pages to a Table

The following example specifies that 1000 pages be allocated to table
inventory:

1. In VDBA, open the Structure of Table dialog for the table. For more
information, see online help.

2. Select B-tree from the Structure drop-down list.
3. Enter 1000 in the Allocation edit control.

The space allocated is 1008, due to rounding.

212 Database Administrator Guide

Modify Procedures

Extension of Space

The Extend option allows you to control the amount of space by which a table
is extended when more space is required. (The default extension size is 16
pages.)

The size must be in the range 1 to max_size, where the max_size is calculated
as:
8,388,607 - allocation_size.

The specified Extend size is rounded up, if necessary, to make sure the size for
a multi-location table or index is always a multiple of sixteen.

Note: If the specified number of pages cannot be allocated, the operation fails
with an error.

After an extend size has been specified for the table or index, it remains in
effect and does not need to be specified again when the table or index is
modified.

Example: Extend a Table in Blocks of 1000 Pages
The following example specifies that the table inventory be extended in blocks

of 1000 pages:

1. In VDBA, open the Structure of Table dialog for the table. For more
information, see online help.

2. Select B-tree from the Structure drop-down list.
3. Enter 1000 in the Extend edit control.

The extension space is 1008, due to rounding.

Maintaining Storage Structures 213

Modify Procedures

Guidelines for Choosing an Extend Size

Default Fill Factors

When choosing an extend size, keep the following in mind:

When extending a table, not only the physical extension must be
performed, but the extension must also be recorded. Therefore, avoid an
excessively small extend size that requires many additional small
extensions.

In an environment that is short of disk space, a large extend size can
cause an operation to fail, even when there is sufficient disk space for the
particular operation.

Windows: On a file system that requires the underlying files to be written
to when allocating disk space, a large extend size can be undesirable
because it affects the performance of the operation that causes the
extension.

UNIX: On a file system that requires the underlying files to be written to
when allocating disk space, a large extend size can be undesirable because
it affects the performance of the operation that causes the extension.

VMS: On file systems that provide calls for allocating disk space, a large
extend size helps reduce the amount of table fragmentation.

Each storage structure has a different default fill factor. The term fill factor
refers to the number of rows that are actually put on a data page divided by
the number of rows that fit on a data page for a particular structure.

The various fill factors enable you to add data to the table without running into
overflow problems. Because the data pages have room to add data, you do not
have to remodify.

For instance, a heap table fits as many rows as possible on a page; this is
known as 100% fill factor. However, ISAM and B-tree data pages are filled only
to 80% capacity, leaving room to add 20% more data before a page is
completely full.

214 Database Administrator Guide

Modify Procedures

The default data page fill factors are as follows:

Storage Structure Default Fill Multiply Number of Pages
Factor Heap Size Needed for 100 Full
by Pages
B-tree 80% 1.25 125 + index pages
compressed B-tree 100% 1 100 + index pages
hash 50% 2 200
compressed hash 75% 1.34 134
heap 100% 1 100
compressed heap 100% 1 100
ISAM 80% 1.25 125 + index pages
compressed ISAM 100% 1 100 + index pages

The default B-tree index page fill factors are as follows:

Storage Structure

Default Fill Factor

B-tree leaf

70%

B-tree index

80%

The first table shows that if a heap table is 100 pages and you modify that
table to hash, the table now takes up 200 pages, because each page is only

50% full.

Note: Depending on the system allocation for tracking used and free pages,
the number of pages can be approximate. For more information, see the
chapter “Calculating Disk Space.”

Maintaining Storage Structures 215

Modify Procedures

Alternate Fill Factors

You can tailor the fill factor for various situations. For instance, if the table is
not going to grow at all, use a 100% fill factor for the table. On the other
hand, if you know you are going to be adding a lot of data, you can use a low
fill factor, perhaps 25%. Also, if your environment is one where updates are
occurring all the time and good concurrency is important, you can set the fill
factor low.

Note: Fill factor is used only at modify time. As you add data, the pages fill up
and the fill factor no longer applies.

When specifying a fill factor other than the default, you must keep the
following points in mind:

m Use a high fill factor when the table is static and you are not going to be
appending many rows.

m Use a low fill factor when the table is going to be growing rapidly. Also, use
a low fill factor to reduce locking contention and improve concurrency. A
low fill factor distributes fewer keys per page, so that page level locks lock
fewer records.

Specifying fill factor is useful for hash and ISAM tables. However, for B-tree
tables, because data pages only are affected, the Fillfactor option must be
used with the Leaffill or Nonleaffill options. See Leaf Page Fill Factors (see
page 218) and Index Page Fill Factors (see page 219).

For hash tables, typically a 50% fill factor is used for uncompressed tables.
You can raise or lower this, but raising it too high can cause more overflow
pages than desirable. You must always measure the overflow in a hash table
when setting a high fill factor—fill factors higher than 90% are likely to cause
overflow.

If you are using compressed ISAM tables and are adding data, make sure you
set the fill factor to something lower than the default 100%, or you
immediately add overflow pages.

Normally, uncompressed ISAM tables are built with an 80% fill factor. You can
set the fill factor on ISAM tables to 100%, and unless you have duplicate keys,
you cannot have overflow problems until after you add data to the table.

In VDBA, you control the fill factor of the data pages using the Fillfactor option
in the Structure of Table and Structure of Index dialogs.

216 Database Administrator Guide

Modify Procedures

Example: Set Fill Factor to 25% on a Hash Table
This example sets the fill factor on a hash table to 25%, rather than the
default of 50%, by modifying the emp table:

1. In VDBA, open the Structure of Table dialog for the table. For more
information, see online help.

2. Select Hash from the Structure drop-down list.
3. Enter 25 in the Fillfactor edit control.

4. Enable the empno column in the Columns list.
Example: Set Fill Factor to 100% on an Uncompressed ISAM Table

This example sets the fill factor on an uncompressed ISAM table to 100%:

1. In VDBA, open the Structure of Table dialog for the table. For more
information, see online help.

2. Select Isam from the Structure drop-down list.
3. Enter 100 in the Fillfactor edit control.

4. Enable the name column in the Columns list.

Maintaining Storage Structures 217

Modify Procedures

Leaf Page Fill Factors

It is possible to specify B-tree leaf page fill factors at modify time. This is the
percentage of the leaf page that is used during the modify procedure. The
remaining portion of the page is available for use later when new rows are
added to the table.

The purpose of the fill factor is to leave extra room on the leaf pages to do
inserts without causing leaf page splits. This is useful if you modify a table to
B-tree and plan to add rows to it later.

In VDBA, you control these values using the Leaffill options in the Structure of
Table dialog.

The Leaffill option specifies the percentage of each leaf page to be filled at the
time the table is modified to B-tree or cB-tree. The Leaffill default is 70, which
means that 70% of the leaf page is filled at modify time and 30% remains
empty for future use.

For example, assume that the key-tid pair requires 400 bytes of storage. This
means that five key-tid pairs fit on a single 2 KB B-tree leaf page. However, if
the leaf page fill factor is specified at 60%, only three key-tid pairs are
allocated on each B-tree leaf page at modify time. If subsequent updates to
the table cause two new rows on this leaf page, they are placed in the empty
space on the leaf page. The key-tid pairs are reordered on the leaf page from
min to max. If more than two new rows need to be added to this leaf page,
there is not enough space and the leaf page has to split.

218 Database Administrator Guide

Modify Procedures

Index Page Fill Factors

It is possible to specify B-tree index page fill factors at modify time. This is the
percentage of the index page that is used during the modify procedure. The
remaining portion of the page is available for use later when new rows are
added to the table. The purpose of the fill factor is to leave extra room on the
index pages to do inserts without causing index page splits. This is useful if
you modify a table to B-tree and plan to add rows to it later.

In VDBA, you control these values using the Nonleaffill options in the Structure
of Index dialog.

The Nonleaffill option specifies the percentage of each index page that is to be
filled at the time the table is modified to B-tree. That is, it is similar to Leaffill,
but for index pages instead of leaf pages. The Nonleaffill default is 80. This
means that 80% of the index page is used at modify time and 20% remains
empty for future use.

For example, assume that the key-tid pair requires 500 bytes of storage. This
means that four key-tid pairs fit on a single B-tree index page. However, if the
index page fill factor is specified at 75%, only three key-tid pairs are allocated
on each 2 KB B-tree index page at modify time. If subsequent updates to the
table cause another leaf page to be allocated, the empty space on the index
page is used to hold a key-tid pair for that new leaf page. If there are enough
new rows to cause two new leaf pages to be added to that index page, the
index page must split. For more information, see Tids (see page 202).

Setting a fill factor of lower than 60 on leaf pages can help reduce locking
contention when B-tree leaf pages are splitting, because index splitting is
reduced. Setting Leaffill low for small but quickly growing B-trees is advisable.

When you specify a high Leaffill, index splitting is almost guaranteed to occur
because leaf pages immediately fill up when data is added. Thus, you want to
avoid a high fill factor unless the B-tree table is relatively static. Even in this
case, use an ISAM table.

Ensuring Key Values Are Unique

Unique keys can be enforced automatically for hash, ISAM, and B-tree tables
using the modify procedure.

Maintaining Storage Structures 219

Modify Procedures

Benefits of Unique Keys

Benefits of unique keys are:
® A good database design that provides unique keys enhances performance.

® You are automatically ensured that all data added to the table has unique
keys.

® The Ingres optimizer recognizes tables that have unique keys and uses this
information to plan queries wisely.
In most cases unique keys are an advantage in your data organization.

Disadvantages of Unique Keys

The disadvantages of unique keys include a small performance impact in
maintaining uniqueness. You must also plan your table use so that you do not
add two rows with the same key value.

Specify Unique Keys
In VDBA, unique keys can be specified as Row or Statement in the Unique
group box in the Structure of Table and Structure of Index dialogs:
® Row indicates that uniqueness is checked as each row is inserted.
m Statement indicates that uniqueness is checked after the update statement
is executed.
If you do not want to create a unique key, select the No option.
Example: Prevent the Addition of Two Names with the Same Number
The following example prevents the addition of two employees in the emp
table with the same empno:

1. In VDBA, open the Structure of Table dialog for the emp table. For more
information, see online help.

2. Select Isam from the Structure drop-down list.

3. Enable Row in the Unique radio button group box.

4. Enable the empno column in the Columns list.

If a new employee is added with the same employee number as an existing

record in the table, the row is not added, and you are returned a row count of
zero.

Note: An error is not returned in this case; only the row count shows that the
row was not added. Be aware of this if you are writing application programs
using unique keys.

220 Database Administrator Guide

Modify Procedures

Example: Modify a Table to Hash and Prevent the Addition of Two Names with the Same

Number

Table Compression

The following example modifies the emp table to hash and prevents the
addition of two employees in the emp table with the same empno.

1. In VDBA, open the Structure of Table dialog for the emp table. For more
information, see online help.

2. Select Hash from the Structure drop-down list.
Enable Row in the Unique radio button group box.

4. Enable the empno column in the Columns list.

The rows in the following example have unique keys. Although employee #17
and #18 have the same records except for their employee numbers, the
employee numbers are unique, so these are valid rows after the modification:

Empno Name Age Salary

17	Shigio	29	28000.000
18	Shigio	29	28000.000
1	Aitken	35	50000.000]

The following two rows do not have unique keys. These two rows cannot both
exist in the emp table after modification to hash unique on empno:

Empno Name Age Salary
| 17 | Shigio | 29| 28000.000|
| 17 | Aitken | 35| 50000.000]|

All storage structures—except R-tree secondary index and heapsort—permit
tables and indexes (where present) to be compressed.

Compression is controlled using the Key and Data options in the Compression
group box in the Structure of Table and Structure of Index dialogs. By default,
there is no compression when creating or modifying.

Not all parts of all storage structures can be compressed, as summarized in
the table below:

Storage Structure Data Key

B-tree Base Table Yes Yes
Secondary Index No Yes

hash Base Table Yes No
Secondary Index Yes No

Maintaining Storage Structures 221

Modify Procedures

Storage Structure Data Key
heap Base Table Yes No
Secondary Index N/A N/A
heapsort Base Table No No
Secondary Index N/A N/A
ISAM Base Table Yes No
Secondary Index Yes No
R-tree Base Table N/A N/A
Secondary Index No No

Note: In VDBA, selecting Data in the Compression group box in the Structure
of Table dialog does not affect keys stored in ISAM or B-tree index and leaf
pages—only the data on the data pages is compressed. To compress index
entries on B-tree index pages, select Key instead.

ISAM index pages cannot be compressed.

Compression of tables compresses character and text columns. Integer,
floating point, date, and money columns are not compressed, unless they are
nullable and have a null value.

Trailing blanks and nulls are compressed in character and text columns. For
instance, the emp table contains a comment column that is 478 bytes.
However, most employees have comments that are only 20 to 30 bytes in
length. This makes the emp table a good candidate for compression because
478 bytes can be compressed into 30 bytes or fewer, saving nearly 450 bytes
per row.

Furthermore, as many rows are placed on each page as possible, so that the
entire emp table (31 rows) that normally took eight 2KB pages as a heap,
takes just one page as a compressed heap. In this example, pages were
limited to four rows per page, but by using compression, many more rows can
be held per page.

There is no formula for estimating the number of rows per page in a
compressed table, because it is entirely data dependent.

222 Database Administrator Guide

Modify Procedures

When to Compress a Table

When a table is compressed, you can reduce the amount of disk I/O needed to
bring a set of rows from disk. This can increase performance if disk I/0 is a
query-processing bottleneck.

For instance, having compressed the emp table from eight pages down to one
page, the following query performs only one disk I/O, whereas prior to
compression as many as eight disk I/Os were required:

select * from emp;

In a large table, compression can dramatically reduce the number of disk I/Os
performed to scan the table, and thus dramatically improve performance on
scans of the entire table. Compression is also useful for conserving the amount
of disk space it takes to store a table.

Compression Overhead

Compression must be used wisely, because the overhead associated with it can
sometimes exceed the gains.

If a machine has a fast CPU, disk I/O can be the bottleneck for queries.
However, because compression incurs CPU overhead, the benefits must be
weighed against the costs, especially for machines with smaller CPUs.
Compression can increase CPU usage for a query because data must be
decompressed before it is returned to the user. This increase must be weighed
against the benefits of decreased disk I/O and how heavily loaded the CPU is.
High compression further reduces disk I/O, but uses even more CPU resources.

There is overhead when updating compressed tables. As rows are compressed
to fit as many as possible per page, if you update a row so that it is now larger
than it was before, it must be moved to a new spot on the page or even to a
new page. If a row moves, its tid, or tuple identifier, also changes, requiring
that every secondary index on the compressed table also be updated to reflect
the new tid. For more information, see Tids (see page 202).

For example, if you change Shigio’s comment from “Good” to “Excellent,”
Shigio’s record length grows from 4 bytes to 9 bytes and does not fit back in
exactly the same place. His record needs to be moved to a new place (or
page), with updates made to any secondary indexes of this table (if the emp
table was B-tree, the appropriate B-tree leaf page is updated instead).

Maintaining Storage Structures 223

Modify Procedures

Compressed tables must be avoided when updates that increase the size of
text or character columns occur frequently, especially if there are secondary
indexes involved—unless you are prepared to incur this overhead. If you do
compress and are planning to update, use a fill factor lower than 100% (75%
for hash); the default fill factor for compressed tables is 75% for hash with
data compression, 100% for the others. With free space on each page, moved
rows are less likely to be placed on overflow pages. For more information, see
Options to the Modify Procedure (see page 210).

Page Size

The default page size is 8 KB. The corresponding buffer cache for the
installation must also be configured with the page size you specify or you
receive an error. For more information, see the “Configuring Ingres” chapter in
the System Administrator Guide.

For more information on page size see Table Pages (see page 206).

Shrinking a B-tree Index

To maintain good concurrency and performance, the B-tree index is not rebuilt
after deletions. Deletions occur at the leaf and data page level, but an empty
leaf page is not released. If your environment is one where many deletions are
performed, you must occasionally update the index

In VDBA, you do this using the Shrink B-tree Index option in the Modify Table
Structure and Modify Index Structure dialogs.

In SQL, you accomplish this task with the MODIFY statement. The TO MERGE
clause is the same as the Shrink B-tree Index option. For more information,
see the SQL Reference Guide.

The Shrink B-tree Index option is also important for users with incremental
keys, which can incur lopsided indexes after heavy appends to the end of the
table.

Not updating the index to reflect unused leaf pages can cause the index to be
larger than necessary.

224 Database Administrator Guide

Modify Procedures

For example, if the emp table is keyed on empno (ranging from 1 to 31), and
you fire all employees with employee numbers less than 16, the B-tree index
does not shrink, but is unbalanced. This is shown in the following "Before"
diagram:

Before
<=16 >16
/ \
<=8 >8 <=24 >24

/ \ / \
<=4 >4 <=12 >2 <=20 >20 <=28 >28
Page 1 Page 2 Page 3 Page 4
(deleted (deleted valid valid
data) data) data data

To re-balance the index level, you can use the Shrink B-tree Index option. It
also reclaims unused leaf pages that otherwise are never reused. This is shown
in the following "After" diagram:

After
<= 24 >24
/ \
<=16 >16 <=28 >28
Page 3 Page 4
valid valid
data data

Free page list: 1,2

The index is rebuilt, and empty leaf pages are marked as free, but otherwise
leaf and data pages remain untouched. Therefore, this procedure is neither as
time-consuming nor as disk-space intensive as modifying the table structure
using the Change Storage Structure option. Shrink B-tree Index, however,
does not re-sort the data on the data pages. Modifying the structure to B-tree
is the only option for resorting data on data pages.

Maintaining Storage Structures 225

Modify Procedures

Extending a Table or Index

You can extend (add pages to) a table or index. You must specify the number
of pages you want to add. Using this option does not rebuild the table or drop
any secondary indexes.

In VDBA, you can extend a table or index by enabling the Add Pages radio
button in the Modify Table Structure or Modify Index Structure dialogs and
specifying the number of pages to add.

In SQL, you can accomplish this task with the MODIFY statement. The WITH
EXTEND clause is the same as the Add Pages option. For more information, see
the SQL Reference Guide.

Modifying Secondary Indexes

Secondary indexes are destroyed by default when you modify the base table
storage structure. They are destroyed automatically because secondary
indexes use the tidp column to reference the row of the base table to which
they are pointing. When you modify a table, all the tids of the rows in the base
table change, rendering the secondary index useless. For more information,
see Tids (see page 202).

Persistence Option

You can use the Persistence option when creating or modifying a secondary
index to specify that the index be recreated whenever the base table is
modified. By default, indexes are created with no persistence.

In SQL, you can accomplish this task with the CREATE INDEX and MODIFY
statements, and the [NOJPERSISTENCE clause. For more information, see the
SQL Reference Guide.

In VDBA, this option is found in the Structure of Index and the Create Indexes
dialogs.

Example: Enable the Persistence Option

For example, assuming the secondary index empidx was created without
enabling the Persistence option, you can modify it to enable this feature, as
follows:

1. In VDBA, open the Structure of Index dialog for the empidx index. For
more information, see online help.

2. Select B-tree from the Structure drop-down list.

3. Enable the Persistence check box.

226 Database Administrator Guide

Modify Procedures

Changing the Index Storage Structure

The default storage structure for secondary indexes is ISAM; you can choose a
different structure when creating an index.

To do this in VDBA, use the Create Indexes dialog.

You can also modify the index to another storage structure after it has been
created.

To do this in VDBA, use the Structure of Index dialog.

If a secondary index is modified to B-tree, it cannot contain any data pages.
Instead, the leaf pages in the secondary index point directly to data pages in
the main table.

Overflow can occur in hash and ISAM secondary indexes, as well as base
tables, and must be monitored. One way to eliminate overflow is to use B-tree
as the default index structure. If overflow is not a problem, hash or ISAM can
be preferable because the indexes are smaller, require less locking, and reuse
deleted space.

Secondary indexes are smaller and can be modified more quickly than the base
table. When they are used, overflow occurs less frequently because only key
values are stored, rather than the entire row.

Because it is quicker to build secondary indexes than to modify the base table,
it is easier to experiment with different choices of secondary indexes and
different storage structures for them. Remember, however, that it can take
longer to update a table with secondary indexes than one without them.

A high degree of duplication in a secondary key can lead to overflow in the
secondary index. Repetitive keys are not recommended. Performance benefits
can be derived by the inclusion of another column in the secondary index that
makes the entire key less repetitive. The less repetitive key reduces the
likelihood of overflow chains, resulting in better performance when updates
made to the base table require updates to the secondary index. Because
overflow chains are reduced, locking and searching overhead is lessened.

If the secondary index to be stored is ISAM or B-tree and the key is not
unique, the tidp column is automatically included in the key specified when the
index is modified. This achieves key uniqueness without any loss of
functionality when the key is used for matches.

Maintaining Storage Structures 227

Modify Procedures

Example: Create a B-tree Index for a Table

The following example creates a B-tree index for the emp table:

1. In VDBA, open the Create Indexes dialog for the table. For more
information, see the online help. Also see the chapter “"Choosing Storage
Structures and Secondary Indexes.”

2. Enter an appropriate name in the Index Name edit control.
3. Select B-tree from the Structure drop-down list.

4. Select an appropriate key column in the Base Table Columns list box, and
click the double-right arrow (>>) to add the column to the Index Columns
list box.

Example: Modify an Existing Index to B-tree

This example modifies an existing index to use the B-tree storage structure
(assuming it was created using another storage structure):

1. In VDBA, open the Structure of Index dialog for the index. For more
information, see online help.

2. Select B-tree from the Structure drop-down list.

3. Enable the appropriate columns in the Columns list.

Remodifying B-tree Tables

If you suspect that the data on the data pages is scattered over several data
pages, you can modify the table to B-tree again. You can check this by
retrieving the tids as well as the column values, and looking at the pages they
reflect.

Remodifying sorts the data and builds the B-tree index, placing like keys on
the same data pages, which can slightly reduce the number of disk I/Os
required to access the data. For more information, see Tids (see page 202).

This type of modification is especially useful when the key size is small, the
row size is large, and the data has not been appended in sorted order.
Remodifying a B-tree is also useful when you have deleted many rows and
must reclaim disk space. For more information, see Tracking of Used and Free
Pages (see page 404).

228 Database Administrator Guide

Modify Procedures

Examples: Remodifying a Table to B-tree

The first example represents the table before modification, and the second
example shows it after modification.

The following retrieval touches all three data pages before modification but
only one page after modification:

select * from emp where emp.age = 35;

The following table shows the leaf and data pages prior to modification. The
records with a key of 35 are found on several data pages:

Leaf Page

key page,row (tid)
35 1,2 (514)

35 2,2 (1026)

35 3,3 (1539)

36 2,3 (1027)

37 3,2 (1538)

Data Pages

Page 1 Page 2 Page 3

1,1 (513) 29 2,1 (1025) 29 3,1 (1537) 30
1,2 (514) 35 2,2 (1026) 35 3,2 (1538) 37
1,3 (515) 30 2,3 (1027) 36 3,3 (1539) 35

The following example modifies the emp table, respecifying B-tree as its
structure.

1. In VDBA, open the Structure of Table dialog for the table. For more
information, see online help.

2. Select B-tree from the Structure drop-down list.
3. Enable the age column in the Columns list.

After you perform this modification, the table looks as follows. All records with
a key of 35 are clustered together on Page 2:

Page 1 Page 2 Page 3

1,1 (513) 29 2,1 (1025) 35 3,1 (1537) 36
1,2 (514) 29 2,2 (1026) 35 3,2 (1538) 37
1,3 (515) 30 2,3 (1027) 35

Maintaining Storage Structures 229

Overflow Management

Common Errors During the Modify Procedure

When using the modify procedure, the most common errors include:

m A “duplicate key” error message when you use the Unique option (or the
TO UNIQUE clause of the MODIFY statement).

To resolve this problem, determine which rows have duplicate keys and
delete these rows. You can locate these rows with the following query:

select key col, count(*) as repeat_number
from table_name
group by key_col
having count(*) > 1;
m An error when modifying a table.

You may be out of disk space on the file system the modify procedure is
trying to use. Clear up disk space on this file system.

Overflow Management

Overflow chains can slow down performance considerably. Overflow must be
monitored and prevented as much as possible.

Preventing or reducing overflow requires you to do the following:

m Carefully monitor overflow in both primary tables and secondary indexes

® Avoid the use of repetitive keys, including both primary keys and
secondary index keys

® Modify table structure to redistribute poorly distributed overflow

® Understand the overflow implications when choosing a particular storage
structure

230 Database Administrator Guide

Overflow Management

Measure the Amount of Overflow
You can monitor overflow using either VDBA or an SQL statement.

In VDBA, select a table or secondary index in the Database Object Manager
window, and click the Pages tab.

In SQL, you can monitor overflow with the help table statement. For more
information, see the SQL Reference Guide.

For tables, overflow data is displayed in red in the pie chart, as indicated in the
legend. Heap tables are considered as one main page, with an overflow chain
attached to the main page. For B-tree tables, overflow occurs only at the leaf
level and only with duplicate keys.

The iitables catalog (a view into the iirelation catalog) includes one row for
each table in the database. It contains pertinent information for evaluating
overflow.

For example, the following query results in the information shown in the table:

select table_name, storage_structure,
number_pages, overflow_pages
from iitables

table_name storage_structure number_pages overflow_pages

manager hash 22 4
department B-tree 5 0
parts B-tree 5 0
orders heap 3 0

The above figures are approximate; they are updated only when they change
by a certain percentage (5%) to prevent performance degradation by
continuously updating these catalogs. Also, if transactions that involve many
new pages are backed out during a recovery, the page counts cannot be
updated. Page counts are guaranteed to be exact only after modification.

In evaluating overflow, if the number of overflow pages is greater than 1000
15% of the number of data pages, expect performance degradation. Overflow
must be regularly monitored to ensure that performance does not degrade as
rows are appended to tables.

Maintaining Storage Structures 231

Overflow Management

Repetitive Key Overflow

Storage structures other than heap that have a high degree of duplication in
the key values are likely to have overflow because duplicate keys are stored in
overflow pages. Keys with a high degree of duplication are not recommended.
This applies to secondary index keys as well as primary keys.

Repetitive key overflow occurs, for example, if the emp table is keyed on sex,
resulting in two primary pages for the values "“M” and “F.” The remainder of
the pages are overflow pages to these two primary pages.

Consider if the following query is run:

select * from student
where student.sex = 'F'
and student.name = 'Baker';

The key is used to find the first primary page. The search goes down the entire
overflow chain for “F” looking for all names Baker. Every page is checked.
Because this query looks restrictive, the locking system probably chooses to
page level lock. The query locks 10 pages and eventually escalates to a table
level lock. Wait for the table level lock if other users are updating. Finally, the
search finishes scanning the overflow chain and returns the row.

Retrieval performance with a duplicate key is still better than for a heap table
because only half the table is scanned.

However, update performance suffers. If a user wants to append a new female
student, the locking system starts by exclusively locking pages in the “F”
overflow chain. If another 10 pages need to be locked eventually, the locking
system attempts to escalate to an exclusive table level lock. If only one user is
updating the table, the lock is easily obtained. If multiple users are trying to
update the table at the same time, deadlock is likely.

Userl and User2 both exclusively hold 10 pages in the table. Userl wants to
escalate to an exclusive table level lock so the query can continue, but Userl
cannot proceed until User2 drops the exclusive page level locks User2 holds.
User2 also wants to obtain an exclusive table level lock, but cannot proceed

until Userl releases the locks. This is deadlock, which can seriously degrade

update performance. For more information, see the chapter “Understanding

the Locking System.”

232 Database Administrator Guide

Overflow Management

Poorly Distributed Overflow

Overflow that is not uniformly distributed, that is, it is concentrated around
one or two primary pages, is poorly distributed. A classic example of poorly
distributed overflow occurs when new rows are added to a table with a key
that is greater than all the keys that already exist in the table (for example, a
time stamp). If this table has an ISAM structure, the table builds up overflow
in the last primary page, and all operations involving this overflow chain can
exhibit poor performance. This type of table is best stored as a B-tree or hash.

Overflow and ISAM and Hash Tables

In hash and ISAM tables that have had a large amount of data added and have
not been remodified, overflow and the resulting performance degradation is
easy to understand. A keyed retrieval that normally touches one page now has
to look through not only the main data page, but also every overflow page
associated with the main data page. For every retrieval, the amount of disk
I/0 increases as the number of overflow pages increases.

Overflow pages are particular to a main data page for ISAM and hash tables,
not to the table itself. If a table has 100 main pages and 100 overflow pages,
it is likely that the overflow pages are distributed over many main data pages
(that is, each main data page has perhaps one overflow page). A keyed
retrieval on such a table possibly causes only one additional I/O rather than
100 additional I/0s.

For more information on overflow in hash tables, see Alternate Fill Factors (see
page 216).

For ISAM tables, because the ISAM index is static, if you append a large
number of rows, the table can begin to overflow. If there is no room on a page
to append a row, an overflow page is attached to the data page. For example,
if you wanted to insert empno #33, there is no more room on the data page,
so an overflow page is allocated for the data page as shown in the following
diagram:

Page 8 Overflow Page for Primary Page 8

| 29 |Ramos | 31| 30000.000 |
| 30 |Brodie | 42| 40000.000 | --->
| 31 |Smith | 20| 10000.000 |
| 32 |Horst | 26| 50000.000 |

33 |Quinn | 33| 20000.000

For hash and ISAM tables, one way of looking at overflow is by looking at the
tids of rows and analyzing the way the tids grow in a sequential scan through
the table. For more information, see Tids (see page 202).

Maintaining Storage Structures 233

Overflow Management

Example: Showing Overflow Distribution

The sample code shown here can be customized to show overflow distribution.
Each time a primary page is encountered, the tid’s value grows by 512. If a
primary page has associated overflow pages, the tid’s value jumps by more
than 512. So if you run the embedded SQL/C program shown in Sample Code
to Show Overflow, the output looks like that shown in Output from Sample
Code.

Sample Code to Show Overflow

page_val = 0;
exec sql select key, tid
into :key_val, :tid_val
from tablename
exec sql begin;
if (tid_val == page_val)
{
printf("Primary Page %d, tid = %d,", (page_val/512)+1, tid_val);
printf (" Starting key value = %d0", key_val);
page_val = page_val + 512;
old_tid_val = tid_val;
overflow_page = 0;
}
else
{
if (tid_val > old_tid_val + 1)
{
overflow_page++;
printf("\n Overflow page %d,tid = %d0",over_page,tid_val);
}
old_tid_val = tid_val;
}

exec sql end;

Output from Sample Code

Primary Page 1, tid = 0, Starting Key Value = 123
Overflow page 1,tid = 2048

Overflow page 2,tid = 2560

Overflow page 3,tid = 3072

Overflow page 4,tid = 3584

Primary Page 2, tid = 512, Starting Key Value = 456

Overflow page 1,tid = 4096
Overflow page 2,tid = 4608
Overflow page 3,tid = 5120

Overflow page 4,tid = 5632

234 Database Administrator Guide

Overflow Management

B-tree Tables and Overflow

Eliminating overflow is one of the major benefits of the B-tree storage
structure. Overflow in a B-tree occurs only at the leaf level, only when the
page size is 2K, and only if you have a significant number of repetitive keys.

Note: The absence of overflow in a B-tree does not guarantee efficiency: it is
still necessary to search all the rows for the specified repetitive key value
across adjacent leaf pages.

For example, if 30 new employees all joined the company and all had the last
name Aitken, the attempt is made to add their records to leaf page 1. In this
case, because leaf page 1 can hold only 8 keys (remember that the leaf page
can actually hold 2000/(key_size + 6)), an overflow leaf page is added to hold
all the duplicate values. This is different than splitting the leaf page, because
the same index pointer can still point to the same leaf page and be accurate.
There are no additional key/leaf page entry added to the index.

In B-tree tables, you can look at overflow in the leaf level by running a query
of the following type, substituting your B-tree table name for t, your B-tree
keys for the keycol values, and the width of the key for key_width:

select keycoll, keycol2, overflow =
(count (*)/keys per_page)-1
from tablename ¢
group by keycoll, keycol2;

Notes:

® This query is not needed for a B-tree index, in which the automatic
inclusion of the tidp column in the key prevents overflow.

® For B-tree tables with key compression selected, in the SELECT statement
you can substitute an estimate of the average key size for key_width.

®m For keys_per_page calculations, see the chapter “Calculating Disk Space.”

The results of this query give an approximation of the amount of overflow at
the leaf level, per key value. The query works by calculating the number of
keys that fit on a page and dividing the total humber of particular key
incidents—grouped by key—by this value. For instance, if there are 100
occurrences of a particular key and 10 keys fit on each page, there are nine
overflow pages at the leaf level.

Other tables can incur overflow pages for reasons other than duplicate keys;
hence, overflow distribution can involve more than simply running a query.

Maintaining Storage Structures 235

Overflow Management

Secondary Indexes and Overflow

Overflow must be monitored in secondary indexes, as well as in the primary
tables. Even if the base table has a low overflow percentage, the secondary
indexes can badly overflow. Except when the base table is a heap or B-tree
table, the base table generally overflows before the secondary index.

Secondary indexes need to be monitored and modified at interim points—even
between base table modifications—to ensure a low percentage of overflow
pages. More information is provided in Modifying Secondary Indexes (see
page 226).

236 Database Administrator Guide

Chapter 11: Using the Query Optimizer

This section contains the following topics:

Data and Query Optimization (see page 237)
Database Statistics (see page 239)

Query Execution Plans (see page 258)

Types of Nodes in a QEP (see page 263)
Multiple Query Execution Plans (see page 281)
More Complex QEPs (see page 282)

Parallel Query Execution (see page 283)
Optimizer Timeout (see page 288)

Greedy Optimization (see page 289)
Summary for Evaluating QEPs (see page 291)
Specialized Statistics Processing (see page 291)
Composite Histograms (see page 299)

This chapter describes the query optimizer and how to use its features to
obtain the best performance for your queries.

Data and Query Optimization

Ingres uses a query optimizer to develop sophisticated query execution
strategies. The query optimizer makes use of basic information such as row
size, number of rows, primary key fields and indexes defined, and more
specific data-related information such as the amount of data duplication in a
column.

The data-related information is available for use by the query optimizer only
after statistics (see page 239) have been generated for the database. Without
knowing exactly what data you have stored in your table, the query optimizer
can only guess what your data looks like.

Consider the following examples:

select * from emp where empno = 13;
select * from emp where sex = 'M';

In each query, the guess is that few rows can qualify. In the first query, this
guess is probably correct because employee numbers are usually unique. In
the second query, however, this guess is probably incorrect because a
company typically has as many males as females.

Using the Query Optimizer 237

Data and Query Optimization

Why do restricted assumptions about your query make a performance
difference? For a single-table, keyed retrieval where you are specifying the
key, there is probably no difference at all. The key is used to retrieve your
data. However, in a multi-table query with several restrictions, knowing what
your data looks like can help determine the best way to execute your query.
The following example shows why:

select e.name, e.dept, b.address
from emp e, dept d, bldg b
where e.dept = d.dname
and d.bldg = b.bldg
and b.state = 'CA’
and e.salary = 50000;

There are many ways of executing this query. If appropriate keys exist, the
probable choice is to execute the query in one of these two ways:

m Retrieve all the employees with a salary of 50000. Join the employees with
a salary of 50000 to the department table, join the employees with their
valid departments to the valid buildings. The tables are processed in the
following order:

emp --> dept --> bldg

m Retrieve all the buildings with a state of CA. Join the valid buildings with
the department table, and join the qualifying departments to the valid
employees. The tables are processed in the following order:

bldg --> dept --> emp

The difference between these two possibilities is the order in which the tables
are joined. Which method is preferable? Only if you knew exactly how many
employees made $50,000, how many buildings were in California, and how
many departments were in each building, can you pick the best strategy.

The best (that is, the fastest) query execution strategy can be determined only
by having an idea of what your data looks like—how many rows qualify from
the restriction, and how many rows join from table to table.

Query Execution Plans (QEPs) (see page 258), generated by the query
optimizer each time you perform a query, illustrate how a query is executed.
By optimizing your database, you can optimize the QEPs that are generated,
thereby making your queries more efficient.

238 Database Administrator Guide

Database Statistics

Database Statistics

When you generate statistics for a database, you are optimizing the database,
which affects the speed of query processing. More complete and accurate
statistics generally result in more efficient query execution strategies, which
further result in faster system performance.

The extent of the statistics to be generated for a database can be modified by
various options, including restricting the tables and columns that are used.

Note: Deleting all the rows in a table does not delete the statistics.

Generate Statistics

You can generate database statistics by issuing the optimizedb command at
the command line. For more information, see the Command Reference Guide.

In VDBA, select a database, right-click, and choose Generate Statistics. On the
Optimize Database dialog, select the desired options. For more information,
see the VDBA online help.

Using the Query Optimizer 239

Database Statistics

Assumptions of the Query Optimizer

If a database has not been optimized, the query optimizer assumes that:

m All exact match restrictions return 1% of the table, except where a key or
index is defined to be unique, in which case one row is returned for the
indexed attribute:

where emp.empno = 275

Note: To override the default of 1% for exact match qualifications, use the
Configuration-By-Forms opf_exact_key parameter.

= All range qualifications (<, <=, >=, >) and like predicates, in which the
first character is not a wild card, return 10% of the table for each
qualification. Thus, if there are three (non-exact match) qualifications, the
following amount of the table is selected:

1/10 x 1/10 x 1/10 = 1/1000

Note: To override the default of 10% for range qualifications, use the CBF
opf_range_key parameter.

® Al “not equals” qualifications (<>) and like predicates, in which the first
character is a wild card, return 50% of the table for each qualification. The
default 50% for these qualifications can be overidden by the Configuration-
By-Forms opf_non_key parameter.

All joins are assumed to be one-to-one, based on the smaller data set; for
example, when tablel with 100 rows is joined with table2 with 1000 rows,
the estimated result is 100 rows.

® When there are restrictions on the join tables, the number of resulting
rows is greater than or equal to the lower bound of 10% of qualifying rows
from the smaller table.

If these assumptions are not valid for your data, you must optimize the
database by generating statistics for it.

240 Database Administrator Guide

Database Statistics

Resources Required During Optimization

Optimizing a database generally requires disk space, because temporary tables
are created.

While the optimization process is running, the locking system takes an
exclusive lock for a brief period on the user table being optimized. Whenever
possible, tables on which statistics are created are not locked while statistics
are gathered. This means that updates to the optimized table are not disabled
for long periods. However, it is recommended that you optimize the database
during off-hours.

When running optimizedb from the command line, the “-o filename” option can
be used to write the statistics to an external file rather than to the system
catalogs, so as to not require any catalog locks. At a later, more convenient
time, the statistics can be loaded into the catalog with the “-i filename"” option,
using the same external file. Optimizedb -o requires read locks and optimizedb
-i requires a brief exclusive lock on the user table. For more information on the
optimizedb command, see the Command Reference Guide.

System Modification After Optimization

Because optimizing a database adds column statistics and histogram
information to the system catalogs, you should run the system modification
operation on your database after optimizing it.

Running system modification modifies the system tables in the database to
optimize catalog access. You should do this on a database periodically to
maintain peak performance.

Using the Query Optimizer 241

Database Statistics

Run System Modification

To run system modification, use either of the following methods.

Att
the

he command line, use the sysmod command. For more information, see
Command Reference Guide.

In VDBA, use the System Madification dialog, as described in online help topic
Optimizing System Tables. For a complete description of all the options, see
online help for the System Modification dialog.

Exa

mple: Run System Modification in VDBA

To specify only those system tables affected by the optimization process, do

the
1.
2.
3.

following:
Open the System Modification dialog in VDBA.
Enable Specify in the Tables group box.

Enable iihistogram and iistatistics in the resulting list box, and click OK.

Information Collected by the Optimizer

When you optimize a database, the following information is collected:

The

The number of unique values in those columns selected for optimization
A count showing what percentage of those column values are NULL

The number of duplicate values there are in those columns in the whole
table, on average, or whether all values are unique. This is termed the
repetition factor.

A histogram showing data distribution for each of those columns. Sample
histograms and further information on their contents can be found in
Optimization Output (see page 249).

query optimizer can use this information to calculate the cost of a

particular QEP.

242 Database Administrator Gu

ide

Database Statistics

Types of Statistics to Generate

When optimizing a database, you can create several types and levels of
statistics by specifying options.

First, you can specify what set of data the statistics are gathered on:

® Non-sampled statistics—all rows in the selected tables are retrieved

m Sampled statistics—a subset of rows from the selected tables is retrieved
Next, either of the following can be created, based on the selected data set.

This division determines how much information about the distribution of data
the statistics can hold:

m Full statistics—a histogram for the whole range of column values is created

® Minmax statistics—a histogram showing only minimum and maximum
values is created

Non-Sampled and Sampled Statistics

When generating statistics for a database, by default all rows of the selected
tables are used in the generation of statistics. These non-sampled statistics
represent the most accurate statistics possible, because all data is considered.

When the base table is large, you must use sampled statistics. With a sufficient
sampling, statistics created are almost identical to statistics created on the full
table. The processing for sampled statistics is discussed in greater detail in
Sampled Optimizer Statistics (see page 297).

Note: By default, optimizedb uses sampled statistics for tables that have more
than 500,000 rows.

Generate Sampled Statistics
In VDBA, to specify a percentage of rows to be sampled, enable Statistics on

Sample Data check box, and specify the percentage using the Percentage
control in the Optimize Database dialog.

Using the Query Optimizer 243

Database Statistics

Full Statistics

When optimizing a database, full statistics are generated by default. Full
statistics carry the most information about data distribution (unless the data is
modified significantly after statistics are collected).

The cost of their creation (in terms of system resources used), however, is the
highest of all types. For each selected column the table is scanned once, and
the column values are retrieved in a sorted order. Depending on the
availability of indexes on the selected columns, a sort can be required,
increasing the cost even further.

The process of generating such complete and accurate statistics can require
some time, but there are several ways to adjust this.

Generate Full Statistics on Sample Data

Minmax Statistics

You can shorten the process of creating full statistics by enabling the Statistics
on Sample Data check box in VDBA.

This example generates full statistics with a sampling of 1% rows of the emp
table:

1. In VDBA, open the Optimize Database dialog for the database. (For more
information, see online help.) Specify the following:

» Enable the Statistics on Sample Data check box.
» Enter 1 for the Percentage.
» Enable the Specify Tables check box, and then click Tables.
The Specify Tables dialog appears.
2. Enable the emp table, and click OK.
You are returned to the Optimize Database dialog.

3. Click OK.

Minmax statistics are “cheaper” than full statistics to create. In most cases
they require only one scan of the entire table. Statistics created have
information only about minimum and maximum values for a column. This can
be acceptable if the distribution of values in the column is reasonably even.
However, if the values of a particular column are skewed, minmax statistics
can mislead the query optimizer and result in poor query plan choices.

In VDBA, to specify minmax statistics, enable the Min Max Values check box in
the Optimize Database dialog.

244 Database Administrator Guide

Database Statistics

Example: Generate Statistics with Only Minimum and Maximum Values for a Table

This example generates statistics with only minimum and maximum values for
the employee table:

1.

Key Column Statistics

o v A N

In VDBA, open the Optimize Database dialog for the table. For more
information, see online help.

Enable the Min Max Values check box.

Enable the Specify Tables check box.

Click Tables to open the Specify Tables dialog.
Enable the employee table, and click OK.
Click OK.

Key column statistics create full or minmax statistics on key or indexed
columns only. These statistics are generated by enabling the Gen Statistics on
Keys/Index check box in the Optimize Database dialog. The effect of this
option is the same as specifying key and index columns for a table using the
Specify Columns dialog. For more information, see Generating Database
Statistics in online help. Using the Gen Statistics on Keys/Index check box
saves you some work by determining from the catalogs which columns are
keys and indexed.

Using the Query Optimizer 245

Database Statistics

Examples: Create Statistics on Key or Indexed Columns Only
This example generates full statistics for all key and indexed columns in the
employee table:

1. In VDBA, open Optimize Database dialog for the table. For more
information, see online help.

Enable the Gen Statistics on Keys/Index check box.
Enable the Specify Tables check box.

Click Tables to open the Specify Tables dialog.
Enable the employee table, and click OK.

Click OK.

o v A N

To generate minmax statistics on a 1% sampling, do the following in the
Optimize Database dialog:

1. Enable the Gen Statistics on Keys/Index check box.
Enable the Min Max Values check box.

Enable the Statistics on Sample Data check box.
Enter 1 for the Percentage.

Enable the Specify Tables check box.

Click Tables to open the Specify Tables dialog.
Enable the employee table, and click OK.

Click OK.

® N O A W N

All key and indexed columns in the table are processed regardless of any
column designations specified using the Specify Columns dialog. For example,
assume that dno is a data column and kno is a key column in the employee
table.

246 Database Administrator Guide

Database Statistics

The following example for generating full statistics is the same as the first
example in this section, except that in addition to key and index columns,
statistics are generated also for the dno column:

Enable the Gen Statistics on Keys/Index check box.
Enable the Specify Tables check box.

Click Tables to open the Specify Tables dialog.
Enable the employee table, and click OK

Click Columns to open the Specify Columns dialog.

1.

2

3

4

5. Enable the Specify Columns check box.

6

7. Enable the dno and kno columns, and click OK.
8

Click OK.

The kno column designation in Step 6 is superfluous, because this is a key
column and the Gen Statistics on Keys/Index check box is enabled.

Statistics from an Input Text File

Statistics can be read in from a text file. The input file must conform to a
certain format, which is identical to that produced when you direct output to a
file when displaying statistics. Display Optimizer Statistics (see page 292)
provides more information.

The file can be edited to reflect changes in data distribution as required, before
submitting the file for use during the optimization process. However, this can
potentially mislead the query optimizer into generating poor query plans.
Manually editing statistics must be done only if you have a full understanding
of the data and how the statistics are used in Ingres.

Details on creating and using text files as input when optimizing a database
are provided in Statistics in Text Files (see page 294).

Using the Query Optimizer 247

Database Statistics

Column Statistics

Collecting statistics is generally a time-consuming process because a large
amount of data must be scanned. The techniques described so far—except for
Key Column Statistics (see page 245)—collect statistics on all columns of the
indicated tables.

It is not necessary, however, to choose all columns in all tables in your
database when optimizing. The query optimizer uses statistics on a column
only if the column is needed to restrict data or if it is specified in a join.
Therefore, it is a good idea to limit creation of statistics only to those
columns used in a WHERE clause.

The DBA or table owner usually understands the table structure and content
and is able to predict how the various columns are used in queries. Thus,
someone familiar with the table can identify columns that are used in the
WHERE clause.

Given these queries:

select name, age from emp
where dept = 'Tech Support';

select e.name, e.salary, b.address
from emp e, bldg b, dept d
where e.dept = d.dname
and d.bldg = b.bldg;

Candidate columns for optimization are:

emp table: dept
dept table: dname, bldg
bldg table: bldg

Based on their use in these sample queries, there is no reason to obtain
statistics on employee name, age, salary, or building address. These columns
are listed in the target list only, not the WHERE clause of the query.

Columns used in the WHERE clause are often indexed to speed up joins and
execution of constraints. If this is the case, specify the Gen Statistics on
Keys/Index option to create statistics on key (that is, indexed) columns.
However, it is often just as important to create statistics on non-indexed
columns referenced in WHERE clauses.

Create Statistics on Keys

In VDBA, to create statistics on key (that is, indexed) columns, enable the Gen
Statistics on Keys/Index check box in the Optimize Database dialog.

248 Database Administrator Guide

Database Statistics

Histogram (Optimization Output)
When you optimize a database, output is generated to show the statistics.

For example, if the Print Histogram option was enabled when optimizing the
database, and you chose to optimize the name and sex columns of the emp
table, the following output is typical:

*** statistics for database demodb version: 00850

*** table empl rows:1536 pages:50 overflow pages:49

*** column name of type varchar (length:30, scale:0, nullable)
date:2000_02_24 15:40:38 GMT unique values:16.000

repetition factor:96.000 unique flag:N complete flag:0

domain:0® histogram cells:32 null count:0.0000 value length:8

cell: 0 count:0.0000 repf:0.0000 value:Abbot \037
cell: 1 count:0.0625 repf:96.0000 value:Abbot
cell: 2 count:0.0000 repf:0.0000 value:Beirne \037
cell: 3 count:0.0625 repf:96.0000 value:Beirne
cell: 4 count:0.0000 repf:0.0000 value:Buchanam
cell: 5 count:0.0625 repf:96.0000 value:Buchanan
cell: 6 count:0.0000 repf:0.0000 value:Cooper \037
cell: 7 count:0.0625 repf:96.0000 value:Cooper
cell: 8 count:0.0000 repf:0.0000 value:Dunham \037
cell: 9 count:0.0625 repf:96.0000 value:Dunham
cell: 10 count:0.0000 repf:0.0000 value:Ganley \037
cell: 11 count:0.0625 repf:96.0000 value:Ganley
cell: 12 count:0.0000 repf:0.0000 value:Hegner \037
cell: 13 count:0.0625 repf:96.0000 value:Hegner
cell: 14 count:0.0000 repf:0.0000 value:Jackson\037
cell: 15 count:0.0625 repf:96.0000 value:Jackson
cell: 16 count:0.0000 repf:0.0000 value:Klietz \037
cell: 17 count:0.0625 repf:96.0000 value:Klietz

cell: 18 count:
cell: 19 count:
cell: 20 count:

.0000 repf:0.0000 value:Myers \037
.0625 repf:96.0000 value:Myers
.0000 repf:0.0000 value:Petersom

cell: 21 count:0.0625 repf:96.0000 value:Peterson
cell: 22 count:0.0000 repf:0.0000 value:Rumpel \037
cell: 23 count:0.0625 repf:96.0000 value:Rumpel
cell: 24 count:0.0000 repf:0.0000 value:Singer \037
cell: 25 count:0.0625 repf:96.0000 value:Singer

cell: 26 count:
cell: 27 count:
cell: 28 count:
cell: 29 count:

.0000 repf:0.0000 value:Stec \037

.0625 repf:96.0000 value:Stec

.0000 repf:0.0000 value:Washings

.0625 repf:96.0000 value:Washingt

cell: 30 count:0.0000 repf:0.0000 value:Zywicki\037

cell: 31 count:0.0625 repf:96.0000 value:Zywicki

unique chars: 14 9 11 11 9 11 6 3

char set densities: 0.5200 0.3333 0.4762 0.6667 0.0952 0.1111 0.0633 0.0238

[cNo)

*** statistics for database demodb version: 00850

*** table emp rows:1536 pages:50 overflow pages:49

*** column sex of type char (length:1, scale:0, nullable)
date:23-feb-2000 10:12:00 unique values:2.000
repetition factor:768.000 unique flag:N complete flag:0

domain:® histogram cells:4 null count:0.0000000 value length:1
cell: 0 count:0.0000000 repf:0.0000000 value:E
cell: 1 count:0.0006510 repf:1.0000000 value:F

Using the Query Optimizer 249

Database Statistics

cell: 2 count:0.0000000 repf:0.0000000 value:L
cell: 3 count:0.9993489 repf:1535.0000000 value:M
unique chars: 2

char set densities: 0.1428571

The items in the histogram are as follows:
database

Database name
version

Version of the catalog from which statistics were derived. Shown only if
version is 00605 or later.

table

Table currently processing
rows

Current number of rows in table as stored in the iitables catalog
pages

Number of pages (from the iitables catalog)
overflow pages

Number of overflow pages (from the iitables catalog)
column

Column currently processing
type

Column data type. The length, scale, and nullable indicators are obtained
from the iicolumns catalog.

date

Time and date when statistics were created
unique values

Number of unique values found in the table
repetition factor

Average number of rows per unique value. The repetition factor times the
number of unique values must produce the row count.

unique flag

“Y” if unique or nearly unique, “N” if not unique

250 Database Administrator Guide

Database Statistics

complete flag

All possible values for the column exist in this table. When this column is
used in a join predicate with some other column, it tells the query
optimizer that every value in the other column must be a value of this
column as well. This knowledge enables the query optimizer to build more
accurate query plans for the join.

domain

Not used
histogram cells

Number of histogram cells used (0 to 500 maximum)
null count

Proportion of column values that are NULL, expressed as a real number
between 0.0 and 1.0

value length
Length of cell values
cell

For each cell, a cell number, count (proportion of rows whose values fall
into this cell: between 0.0 and 1.0), average number of duplicates per
unique value in the cell, and the upper bound value for the cell

unique chars

Number of unique characters per character position. Shown only for
character columns.

char set densities

Relative density of the character set for each character position. Shown
only for character columns.

The number of unique values the column has is calculated. The count listed for
each cell is the fraction of all the values falling between the lower and upper
boundaries of the cell. Statistics for the sex column show that there are no
rows with values less than or equal to ‘E,’ 0.06510% of rows with values equal
to 'F,’ no rows with values in the ‘G’ to ‘L’ range, and 99.93% of the rows with
values equal to ‘M.” The cell count includes those rows whose column values
are greater than the lower cell bound but less than or equal to the upper cell
bound. All cell counts must add to 1.0, representing 100% of the table rows.

Using the Query Optimizer 251

Database Statistics

Looking at the cells for the name column, you see that between the lower
bound cell 0, “"Abbot \037”, and cell 1, "Abbot”, 6.25% of the employee’s
names are located:

cell: 0 count:0.0000000 repf:0.0000000 value:Abbot \037
cell: 1 count:0.0625000 repf:96.000000 value:Abbot

A restriction such as the following brings back about 6.25% of the rows in the
table:

where emp.name = 'Abbot'

The character cell value \037 at the end of the string is octal for the ASCII
character that is one less than the blank. Therefore, cell 0 in the hame
example represents the value immediately preceding ‘Abbot’ in cell 1. This
indicates that the count for cell 1 includes all rows whose name column is
exactly ‘Abbot.’

In addition to the count and value, each cell of a histogram also contains a
repetition factor (labeled “repf” in the statistics output). This is the average
number of rows per unique value for each cell, or the “per-cell” repetition
factor. The query optimizer uses these values to compute more accurate
estimates of the number of rows that result from a join. This is distinct from
the repetition factor for the whole column displayed in the header portion of
the statistics output.

252 Database Administrator Guide

Database Statistics

Histogram Cells

A histogram can have up to 15,000 cells. The first cell of a histogram is always
an “empty” cell, with count = 0.0. It serves as the lower boundary for all
values in the histogram. Thus, all values in the column are greater than the
value in the first cell. This first cell is usually not included when discussing
number of cells, but it is included when statistics are displayed.

A histogram in which there is a separate cell for each distinct column value is
known as an “exact” histogram. If there are more distinct values in the column
than cells in the histogram, some sets of contiguous values must be merged
into a single cell. Histograms in which some cells represent multiple column
values are known as “inexact” histograms.

You can control the number of cells used, even for inexact histograms. You can
choose to set the number of inexact cells to the same number you chose for an
exact histogram, or to another number that seems appropriate. If your data is
unevenly distributed, the data distribution cannot be apparent when merged
into an inexact histogram with the default 100 cells. Increasing the number of
cells can help.

You can control the number of cells your data is merged into even if you go
above the maximum number of histogram cells you requested. You can choose
to set the default merging number to the same number you chose for the
maximum, or a lesser number, if the default of 100 cells seems inappropriate.
If your data is unevenly distributed, the data distribution cannot be apparent
when merged into the default 100 cells, and controlling the merging factor can
help.

To control the maximum histogram cells, use the Max Cells “"Exact” Histogram
option in the Optimize Database dialog (the maximum value accepted is
14,999). You can control the number of cells that your data is merged into if
you go beyond the maximum number of unique values using the Max Cells
“Inexact” Histogram option in the Optimize Database dialog. By default, the
number of cells used when merging into an inexact histogram is 100, and the
maximum value is 14,999.

For example, set the maximum number of unique histogram cells to 200, and
if there are more than 200 unique values, merge the histogram into 200 cells.
To do this, set both the Max Cells “Exact” Histogram and the Max Cells
“Inexact” Histogram options in the Optimize Database dialog to 200.

Set the maximum number of unique histogram cells to 100, and if there are

more than 100 unique values, merge the histogram into 50 cells. To do this,

set Max Cells “"Exact” Histogram to 100 and Max Cells “Inexact” Histogram to
50.

Using the Query Optimizer 253

Database Statistics

When using these options, remember that the goal is to accurately reflect the
distribution of your data so that there can be an accurate estimate of the
resultant number of rows from queries that restrict on these columns. The
query optimizer uses linear interpolation techniques to compute row estimates
from an inexact histogram and the more cells it has to work with, the more
accurate are the resulting estimates. The cost of building a histogram is not
dependent on the number of cells it contains and is not a factor when
determining how many cells to request.

Statistics and Global Temporary Tables

Because global temporary tables only exist for the duration of an Ingres
session, Optimize Database cannot be used to gather statistical information
about them. Without histograms, the query optimizer has no knowledge about
the value distributions of the columns in a global temporary table. Ingres
maintains a reasonably accurate row count for global temporary tables, and
this row count can be used by the query optimizer to compile a query which
accesses a global temporary table.

The row counts alone are usually enough to permit the compilation of efficient
query plans from queries that reference global temporary tables, in particular
because they often contain relatively small data volumes. The lack of
histograms on global temporary tables, however, can cause poor estimates of
the number of rows that result from the application of restriction or join
predicates. These poor estimates can in turn cause the generation of inefficient
query plans. Inefficient query plans typically occur with large global temporary
tables or tables with columns having skewed value distributions, which are not
handled well by the default estimation algorithms of the query optimizer.

To help deal with such situations, there is a mechanism available to associate
“model” histograms with global temporary tables.

254 Database Administrator Guide

Database Statistics

How to Associate “"Model” Histograms with Global Temporary Tables

Associating "model” histograms with global temporary tables can help alleviate
the generation of inefficient query plans that can typically occur with large
global temporary tables or tables with columns having skewed value
distributions.

To associate "model” histograms with global temporary tables, follow these
steps:

1. Create a persistent table with the same name as the global temporary
table being modeled. The schema qualifier for the table must be either the
user ID of the executing user of the application creating and accessing the
global temporary table, or the special user ID “_gtt_model”. Its column
definitions must include at least those from the global temporary table for
which histograms are to be built. The column names and types must
exactly match those of the global temporary table.

2. Populate the persistent table with a set of rows, which is representative of
a typical instance of the global temporary table.

3. Run optimizedb on those columns of the persistent table for which
histograms are desired (typically, the columns contained in WHERE clauses
in any referencing queries).

4. After the histograms have been built, the persistent table can be emptied
of rows, to release the space it occupies. This must be done with a DELETE
FROM xxx statement, to delete the rows but leave the catalog definition
(and histograms).

When the query optimizer analyzes WHERE clause predicates with columns
from a global temporary table, it looks for the catalog definition of a similarly
named persistent table with a schema qualifier matching the ID of the
executing user or _gtt_model. If one is found, it looks for histograms on
similarly named columns whose type and length exactly match those of the
global temporary table columns. If these conditions are satisfied, it uses the
model histograms.

Not all faulty query plans involving global temporary tables can be improved
this way. The modeling technique depends on the fact that all or most
instances of the global temporary table have similar value distributions in the
histogrammed columns. If this is not true, a single instance of the table (as
with the model persistent table) will not be representative of them all, and can
improve the query plans in some executions of the application, but degrade
other executions.

Using the Query Optimizer 255

Database Statistics

When to Rerun Optimization

Optimization does not necessarily need to be run whenever data is changed or
added to the database. Optimization collects statistics that represent
percentages of data in ranges and repetition factors. For instance, the
statistics collected on employee gender show that 49% of the employees are
female and 51% are male. Unless this percentage shifts dramatically, there is
no need to rerun optimization on this column, even if the total number of
employees changes.

You must rerun optimization if there are modifications to the database that
alter the following:

m Repetition factor

® Percentage of rows returned from a range qualification (that is, your
histogram information is incorrect)

For example, if you had run complete statistics on the empno column early in
your company’s history, your repetition factor is correct because all employees
still have unique employee numbers. If you used ranges of employee numbers
in any way, as you added new employees your histogram information is less
accurate.

If your company originally had 100 employees, 10% of the employees have

employee numbers greater than 90. If the company hired an additional 100

employees, 55% of the employees have employee numbers greater than 90,
but the original histogram information does not reflect this.

Columns that show this type of “receding end” growth and are used in range
queries can periodically need to have optimization run on them (exact match
on employee number is not affected, because the information that says all
employee numbers are unique is still correct).

Even if the statistics are not up-to-date, the query results are still correct.

256 Database Administrator Guide

Database Statistics

Example: Before and After Optimization

If statistics are available on a column referenced in a WHERE clause, the query
optimizer uses the information to choose the most efficient QEP.
Understanding how this information is used can be helpful in analyzing query
performance. For more information, see Query Execution Plans (see

page 258).

Two QEPs showing the effect of optimization are presented here. The first is a
QEP before optimizing; the second shows the same query after optimization.
The query used is a join, where both the r and s tables use the B-tree storage
structure:

select * fromr, s
where s.a > 4000 and r.a = s.a;

QEP Before Optimization

Before obtaining statistics, the optimizer chooses a full sort-merge (FSM) join,
because it assumes that 10% of each table satisfies the qualification “a >
4000,” as shown in the QEP diagram below:

QUERY PLAN 4,1, no timeout, of main query
FSM Join(a)

Heap
Pages 1 Tups 267
D15 C44
/ \
Proj-rest Proj-rest
Sorted(a) Sorted(a)
Pages 5 Tups 1235 Pages 1 Tups 267
D11 C12 D4 C3
/ /
r s
B-Tree(a) B-Tree (a)

Pages 172 Tups 12352 Pages 37 Tups 2666

Using the Query Optimizer 257

Query Execution Plans

QEP After Optimization

After obtaining statistics, the optimizer chooses a Key join, because only one
row satisfies the qualification “a > 4000,” as shown in the QEP diagram below:

QUERY PLAN 4,1, no timeout, of main query

K Join(a)
Heap
Pages 1 Tups 1
D4 C1
/ \
Proj-rest r
Sorted(a) B-Tree(a)
Pages 1 Tups 1 Pages 172 Tups 12352
D2 C1
/
s
B-Tree(a)

Pages 37 Tups 2666

The cost of the key join is significantly less than the cost of the FSM join
because the join involves far fewer rows.

Query Execution Plans

When the query optimizer evaluates a query (such as the SQL statements
SELECT, INSERT, UPDATE, DELETE, and CREATE TABLE...AS), it generates a
QEP showing how the query is executed. Once the QEP has been generated, it
can be used one or more times to execute the same query. Because there are
often many different ways to optimize a given query, choosing the best QEP
can have a significant impact on performance.

You can display a diagram or graph of the QEP selected, which can be used to
gain insight into how queries are handled by the query optimizer. Knowing how
to read and analyze QEPs can allow you to detect, and often avoid, hidden
performance problems. After examining a QEP you can, for example, decide
that you need to optimize your database to provide the optimizer with better
statistics, as described in Database Statistics (see page 239).

Note: Examining QEPs can help you understand what is involved in executing
complex queries in single-user situations. For multi-user performance issues,
see the chapter “Understanding the Locking System.”

258 Database Administrator Guide

Query Execution Plans

Information on a QEP

The information that can appear on a QEP is as follows:
Table or Index Name

Indicates the table on which the query is being run or the secondary index,
if any is selected by the query optimizer for execution of the query. This
information is provided for orig nodes only (described under Type of Nodes
in a QEP below).

Label

Indicates the type of node. For example, Proj-rest identifies a projection-
restriction node (described under Type of Nodes in a QEP below).

Storage Structure

Indicates the storage structure in use, as follows, where key is the primary
key, and NU indicates that the key structure cannot be used:

B-tree(key|NU)
Hashed(key|NU)
Heap
Isam(key|NU)
Total Number of Pages and Tuples

Indicates the total number of pages involved at the node, and the total
number of tuples (rows).

Query Cost Information

Indicates the cumulative amounts of cost that are anticipated at each
stage in the execution of the query. This cost is a blend of the CPU
consumption and the number of disk I/Os involved in plan execution. The
information is shown in the following form:

» Dx estimates the disk I/O cost. x approximates the number of disk
reads to be issued.

m Cy estimates the CPU usage, which has been subjected to a formula
which turns it into an equivalent number of disk I/Os. y units can be
used to compare amounts of CPU resources required.

m Nz is shown for Star databases only. z represents the network cost of
processing the query.

Because these values are cumulative up the tree, the top node carries the
total resources required to execute the query. The cost involved in
executing a specific node is, therefore, the values for that node, minus
those of the child node (or both child nodes in the case of a join node).

The QEP graph you see in VDBA indicates both the cumulative cost and the
cost for the individual node. For more information, see Viewing QEP Node
Information in online help.

Using the Query Optimizer 259

Query Execution Plans

View a QEP
In general, it is a good idea to test run a query (that is, view the QEP).
In VDBA, if you open the SQL Scratchpad window and click Execute QEP, you
automatically see the query execution plan in a graphical form. For step-by[
step instructions, see Viewing the Query Execution Plan in online help.
From a terminal monitor or embedded SQL, you can see the QEP by using the
SET QEP statement. On the SET statement, the [NO]JOPTIMIZEONLY, [NO]QEP,
and JOINOP [NO]TIMEOUT clauses pertain to QEPs. For more information, see
the SQL Reference Guide. The QEP is displayed in text-only format when using
SQL.

Control QEP Generation Using a Environment Variable

To control whether QEPs are generated using an operating system
environment variable, issue the following commands:

Windows:

set ING_SET=set gep
UNIX:

C shell:

setenv ING_SET "set gep"
Bourne shell:

ING_SET = "set qgep"
export ING_SET

VMS:

define ING_SET "set gep"

260 Database Administrator Guide

Query Execution Plans

Text-Only QEP

In a terminal monitor, a QEP is displayed as a tree, where each node has one
or two children:

Parent
/ \
Child Child
/
Parent
/ \
Child Child

Only join nodes have two children. Other nodes have a left child only.
Information on node types is provided in Types of Nodes in a QEP (see
page 263).

The tree is read from bottom to top and from left to right, starting with the
child nodes at the bottom, going up to the intermediate child nodes, if any,
and finally up to the first parent node:

QEPs as Data Flow Trees

The bottom up approach in the tree diagram mirrors the flow of data during
the execution of a query plan.

Rows are read in the leaf nodes of the query plan, WHERE clauses are applied
to reduce the number of rows as soon as possible, with qualified rows being
passed up through the remaining nodes of the query plan.

Intermediate plan nodes can sort the data or join it to rows from other tables.
Each successive node performs some refinement on the rows received from

below. The final result rows emerge from the top of the plan as requested by
the query.

Modes for Showing Tree Diagrams

In the SQL Scratchpad window, you can show the tree diagram in one of two
modes:

® Preview mode gives you a condensed version of the tree, where you can
point to a particular node to see its detailed information.

® Normal mode displays the detailed information as part of the tree diagram.

Note: A query that has been modified to include views, integrities, and/or
grants, is more involved. The QEP diagram for an involved query (as shown by
set gep) can be very wide. On a printout, the diagram can even wrap so that
similar levels in the tree appear on different levels. You can find it easier to
read such a QEP if you cut and paste the diagram into the correct levels.

Using the Query Optimizer 261

Query Execution Plans

Graphical QEP

In VDBA, QEP diagrams appear in the query information pane as a graph.

For a detailed description of each element in the graph and the meaning of the
colors, see Viewing QEP Node Information in online help.

sa: Ingres Visual DBA [II] - [(local) - SOL Scratchpad - 1]

@' File View MNode Query Window Help

e ¢ talE @ F B

== m |demodb v| i |@| ‘

Com: | Exec: n/a Blap: n/a Cost: p/a

%@@@ﬂ@
Ba[ale)a(e
= D MNodes
54 (local)

select = from aifine

5%2|E1||15Tmce|

1.1 main queny]

Temporary Table: l:l Time Cut Large Temporares Float/Integer

Hashed{NLU)

ERE] g 42

Connected Server(s): 1 | Objects: nfa NUM

262 Database Administrator Guide

Types of Nodes in a QEP

Types of Nodes in a QEP

Each node in a QEP has detailed information associated with it, depending on
the type of node.

The types of nodes are as follows:

®m Orig (or leaf) node—describes a particular table

®m Proj-rest node—describes the result of a projection and/or WHERE clause
restriction applied to a subsidiary node

® Join node—describes a join. One of the following strategies is used:

Cartesian product

- Full sort merge

- Partial sort merge

- Key and tid lookup joins
- Subquery joins

m Exchange node—describes a point at which separate plan fragments
execute concurrently on different threads as part of a parallel query plan

Sort Nodes in a QEP

Many types of nodes can also be shown as sort nodes. A sorting node causes
the data to be sorted as it is returned. Any node other than an orig node can
appear with a sort indication. A query with a SORT clause has a sort node as
the topmost node in the QEP. This type of node displays:

m Total number of pages and tuples
® Query cost information

For a description of each of these parts of the display, see Information on a
QEP (see page 259).

Sort nodes make use of a sort buffer and so consume primarily CPU resources,
requiring disk I/O only when the volume of data to be sorted cannot be
accommodated in the sort buffer. The heapsort algorithm is used; it is very
fast on both unordered data and data which is nearly sorted.

Using the Query Optimizer 263

Types of Nodes in a QEP

Non-Join Nodes in a QEP

Types of non-join nodes are as follows:
= Orig
® Projection-restriction

® Exchange
Orig Nodes

Orig nodes are nodes with no children. When reading a QEP, you should first
find the orig nodes of the tree. Orig nodes are the most common type of QEP
node.

Orig nodes describe a base table or secondary index being accessed from the
query. This type of node displays the following:

® Table or index name

m Storage structure

®m Total number of pages and tuples

For a description of each of these parts of the display, see Information on a
QEP (see page 259).

264 Database Administrator Guide

Types of Nodes in a QEP

Projection-Restriction Nodes

Exchange Nodes

A projection-restriction (proj-rest) node describes the result of a projection
and/or WHERE clause restriction applied to a subsidiary node. It defines how a
subsidiary node is to key into the table and what qualification to use on the
table. This type of node displays the following:

m A label identifying it as a proj-rest node
m Storage structure (which is usually heap)
m Total number of pages and tuples

® Query cost information

m QOptionally, sort information (whether the data produced by this node is
already sorted or requires sorting)

For a description of each of these parts of the display, see Information on a
QEP (see page 259).

Proj-rest nodes are used to remove data irrelevant to the query from a table,
so that the minimum amount of data is carried around during the execution of
the query. Therefore, only those columns referenced in the target list and
WHERE clause for a table are projected, and only those rows that satisfy the
WHERE clause restrictions are retained for use higher in the plan.

All you see is the amount of disk I/O required to read the appropriate rows
from the node below, and that amount depends on what storage structures
were used and the number of pages accessed.

Exchange nodes appear in parallel query plans. An exchange node results in
one or more threads being spawned to execute the plan fragment beneath the
node. It allows different portions of a complex query plan to execute
concurrently, reducing the overall elapsed time taken to execute the query.
This type of node displays:

®m Estimated reduction in execution time due to the presence of the exchange
node

® Count of child threads spawned to execute the plan fragment below the
exchange node

® PC Join count, the number of join fragments performed by a partition
compatible join

For more information, see Parallel Query Execution (see page 283).

Using the Query Optimizer 265

Types of Nodes in a QEP

Examples of Non-join Nodes

Here are QEP examples that illustrate non-join nodes. The Sample Tables
section describes the tables and indexes used in these examples.

Sample Tables

In these examples, the following two tables are used:
1.

Table arel(coll, col2, col3):

Name:

Owner:

Created:

Location:

Type:

Version:

Row width:

Number of rows:
Storage structure:
Duplicate Rows:
Number of pages:
Overflow data pages:

Column Information:

Column

Name Type Length
coll integer 4
col2 integer 4
col3 varchar 400

Secondary indexes: aindex (col2)

Table brel(col1,col2):

Name :

Owner:

Created:

Location:

Type:

Version:

Row width:

Number of rows:
Storage structure:
Duplicate Rows:
Number of pages:
Overflow data pages:

Column Information:

Column

Name Type Length
coll integer 4
col2 integer 4

Secondary indexes: none

arel

supp60
26-0ct-1998 08:50:00
ii_database
user table
I112.5

413

156

hash
allowed

70

6

Key
Nulls Defaults Seq
yes no 1
yes no
yes no

structure: isam

brel

supp60
26-0ct-1998 08:53:00
ii_database
user table
I112.5

10

156

isam
allowed

3

1

Key
Nulls Defaults Seq
yes n 1
yes no

266 Database Administrator Guide

Types of Nodes in a QEP

Primary Key Lookup

This is an example of a simple primary key lookup. The QEP is shown below for
the following SQL query:

select coll, col2 from arel
where coll = 1234
order by col2;

QUERY PLAN 3,1, no timeout, of main query
Sort Keep dups
Pages 1 Tups 1
D1 Co
/
Proj-rest
Sorted(coll)
Pages 1 Tups 1
D1 Co
/
arel
Hashed(col1)
Pages 70 Tups 156

Reading this QEP diagram from bottom to top, Hashed(coll) means the row is
being read through the index to return only those rows for which “coll =
1234,” as opposed to Hashed(NU) where NU indicates that the key structure
cannot be used and all rows are returned. The projection-restriction node
selected the rows matching the where constraint and removed superfluous
columns. The final sort node reflects the SORT clause on the query.

Using the Query Optimizer 267

Types of Nodes in a QEP

Select on a Non-Keyed Field

The following is an example of a select on a non-keyed field. The QEP is shown
below for the following SQL query:

select coll, col2 from arel
where col3 = 'x'
order by coll;

QUERY PLAN 3,1, no timeout, of main query
Sort Keep dups
Pages 1 Tups 1
D9 Co
/
Proj-rest
Heap
Pages 1 Tups 1
D9 Co
/
arel
Hashed (NU)
Pages 70 Tups 156

In this example the Hashed(NU) implies that the table had to be scanned (that
is, all 70 pages had to be visited). Without optimization statistics, the query
optimizer uses a best guess approach (1% for equalities and 10% for non-
equalities).

The query optimizer takes into account disk read-ahead or group reads when
performing scans of tables—although 70 pages of data have to be read to scan
arel, the estimated disk I/O value is only nine reads (D9) due to this effect.
The query optimizer assumes a typical read-ahead of eight pages when
performing scans, so here 70/8 reads generates an estimate of nine disk
operations.

Join Nodes in a QEP

There is an inner and an outer tree beneath every join node, which function
similarly to an inner and outer program loop. By convention, the left-hand tree
is called the outer tree, and the right-hand tree is called the inner tree.

There are various types of join nodes, described individually below, but the
joining method is the same: for each row from the outer tree, there is a join to
all of the rows that can possibly qualify from the inner tree. The next row from
the outer tree is processed, and so on.

Any join node can have outer join information if an outer join is present.

268 Database Administrator Guide

Types of Nodes in a QEP

Cartesian Product Node

The Cartesian product, or cart-prod, strictly follows the un-optimized join
model, with each row in the outer node compared to all rows from the inner
node. This does not mean that all rows are actually read, only that all rows
that satisfy the conditions of the query are compared.

A typical abbreviated example of a QEP diagram involving a cart-prod is shown
below:

Cart-Prod
/ \
proj-rest table
/
table

This node is displayed with the following information on a QEP diagram:

®m A label identifying it as a cart-prod join node, along with the column(s) on
which processing is done

®m If an outer join has been requested, one of the following labels indicating
the type of join:

[LEFT JOIN]
[FULL JOIN]
[RIGHT JOIN]

®m Storage structure (which is usually heap)
®m Total number of pages and tuples
® Query cost information

m Optionally, sort information (whether the data produced by this node is
already sorted or requires sorting)

Using the Query Optimizer 269

Types of Nodes in a QEP

The cart-prod is most frequently observed in disjoint queries (that is, when use
of correlation variables and table names are mixed in the query). However, the
following cases can also generate cart-prods, without adversely affecting
performance:

m Queries involving ORs that can usually be decomposed into a sequence of
smaller queries

® No join specification (a disjoint table or no WHERE clause, so that there is
no relationship between the two tables)

® Small tables or amounts of data

® Non_equijoins, such as a query with the following WHERE clause:

where rl.coll > r2.col2

Cart-prods are sometimes associated with substantial estimates for disk I/0O
usage and affect performance adversely.

This example shows a QEP diagram with a cart-prod join node resulting from
the following simple disjoint query:

select arel.coll from arel, arel a
where a.coll = 99;

QUERY PLAN 7,1, no timeout, of main query

Cart-Prod
Heap
Pages 1 Tups 243
D9 C4
/ \
Proj-rest Proj-rest
Sorted(NU) Heap
Pages 1 Tups 2 Pages 1 Tups 156
D1 CO D8 C1
/ /
arel arel
Hashed(coll) Hashed (NU)
Pages 70 Tups 156 Pages 70 Tups 156

270 Database Administrator Guide

Types of Nodes in a QEP

Full Sort Merge Node

The full sort merge (FSM) is a more optimal join: it typically joins the inner
and outer subtrees with many fewer comparisons than the cart-prod requires.
This is done by assuring that both subtrees are sorted in the order of the join
columns. If one or the other is not already sorted (for example, by being read
from a B-tree index constructed on the join columns), the query plan can
include a sort to put the rows in the correct order. This allows the rows of the
outer subtree to be joined to the matching rows of the inner subtree with one
pass over each. The inner subtree is not scanned multiple times, as with the
cart-prod join.

A typical abbreviated example of a QEP diagram involving an FSM is shown

below:

join
/ \

sort sort
/ /

proj-rest proj-rest
/ /
table table

This node is displayed with the following information on a QEP diagram:

® A |abel identifying it as a FSM join node, along with the column(s) on which
join processing is done

m If an outer join has been requested, one of the following labels indicating
the type of join:

[LEFT JOIN]
[FULL JOIN]
[RIGHT JOIN]

m Storage structure (which is usually heap) or a list of sort columns if the
data is being sorted

m Total number of pages and tuples
® Query cost information
m QOptionally, sort information (whether the data produced by this node is

already sorted or requires sorting)

The FSM is most common when a “bulk” join takes place with no row
restrictions on either table involved in the join, as with a SELECT statement of
the following form:

select * from ri1, r2 where rl1.joincol = r2.joincol;

Using the Query Optimizer 271

Types of Nodes in a QEP

This example shows a QEP diagram with an FSM join node resulting from such
a bulk join:

select a.col2, b.col2 from arel a, brel b
where a.coll = b.coll;
QUERY PLAN 5,1, no timeout, of main query
FSM Join(coll)

Heap
Pages 1 Tups 156
D9 C40
/ \
Proj-rest Proj-rest
Sorted(eno) Sorted(eno)
Pages 1 Tups 156 Pages 1 Tups 156
D8 C1 D1 C1
/ /
arel brel
Hashed (NU) Isam (NU)
Pages 70 Tups 156 Pages 3 Tups 156

272 Database Administrator Guide

Types of Nodes in a QEP

Partial Sort Merge Node

The partial sort merge (PSM) is a cross between a full sort merge and a cart-
prod. The inner tree must be in sorted order. The outer tree can be sorted or
partially sorted. The outer tree in PSM scenarios can always be derived from
an ISAM table. Comparisons proceed as for the full sort merge until an outer
value is found to be out of order. At that point the inner loop is restarted.
Because ISAM tables are reasonably well ordered (depending on how many
rows have been added because the last reorganization), the number of inner
loop restarts is typically small.

A typical abbreviated example of a QEP diagram involving a PSM is shown

below:
Join
/ \
proj-rest sort
/ /
table proj-rest
/
table

This node is displayed with the following information on a QEP diagram:

® A |abel identifying it as a PSM join node, along with the columns on which
processing is done

m If an outer join has been requested, one of the following labels indicating
the type of join:

[LEFT JOIN]
[FULL JOIN]
[RIGHT JOIN]

m Storage structure (which is usually heap)
m Total number of pages and tuples
® Query cost information

m QOptionally, sort information (whether the data produced by this node is
already sorted or requires sorting)

Using the Query Optimizer 273

Types of Nodes in a QEP

The following example shows a QEP diagram with a PSM join:

select a.col2, b.col2 from arel a, brel b
where a.coll = b.col2;

QUERY PLAN 6,1, no timeout, of main query
PSM Join(coll)

Heap
Pages 1 Tups 156
D9 (26
/ \
Proj-rest Proj-rest
Heap Sort on(coll)
Pages 1 Tups 156 Pages 1 Tups 156
D1 C1 D8 C1
/ /
brel arel
Isam(col2) Hashed (NU)
Pages 3 Tups 156 Pages 70 Tups 156

274 Database Administrator Guide

Types of Nodes in a QEP

Hash Join Node

The hash is an optimized join that replaces the FSM join when one or both of
the subtrees must be sorted. It functions by loading the rows of one subtree
into a memory resident hash table, keyed on the values of the join columns.
The rows of the other subtree are hashed on their join key values into the hash
table, allowing very efficient matching of joined rows. By avoiding the sort(s)
of the FSM join, the hash join can be much more efficient.

A typical abbreviated example of a QEP diagram involving a hash join is shown
below:

Join
/ \
proj-rest proj-rest
/ /
table table

This node is displayed with the following information on a QEP diagram:

®m A label identifying it as a hash join node, along with the columns on which
join processing is done

®m If an outer join has been requested, one of the following labels indicating
the type of join:

[LEFT JOIN]
[FULL JOIN]
[RIGHT JOIN]

®m Storage structure (which is usually heap) or a list of sort columns if the
data is being sorted

®m Total number of pages and tuples
® Query cost information
m Optionally, sort information (whether the data produced by this node is

already sorted or requires sorting)

Like the FSM join, the hash join is most common when a bulk join takes place
with no row restrictions on either table involved in the join, as with a SELECT
statement of the following form:

select from rl,r2 where rl.joincol= r2.joincol;

Using the Query Optimizer 275

Types of Nodes in a QEP

This example shows a QEP diagram with hash join node resulting from such a
bulk join:

select a.col2, b.col2 from arel a, brel b
where a.coll = b.col2;

QUERY PLAN 1,1, no timeout, of main query
HASH Join(coll)

Heap
Pages 1 Tups 156
D9 C40
/ \
Proj-rest Proj-rest
Heap Heap
Pages 1 Tups 156 Pages 1 Tups 156
D8 C1 D1 C1
/ /
arel(a) brel (b)
Hashed (NU) Isam (NU)
Pages 70 Tups 156 Pages 3 Tups 156

276 Database Administrator Guide

Types of Nodes in a QEP

Key and Tid Lookup Join Node

In key and tid lookup joins, the outer and inner data set is not static. For each
outer row, the join selects values and forms a key to search in the inner join. A
key lookup join uses keyed access through the structure of the inner table or
index, and a tid lookup join uses the tuple identifier (tid) value. For more
information, see Tids (see page 202).

A typical abbreviated example of a QEP diagram involving this type of join is
shown below:

Join
/ \
sort btree (or hash or isam)
\
proj-rest
\
table

This node is displayed with the following information on a QEP diagram:

® A label identifying it as a key (K) or tid (T) lookup join, along with the
column(s) on which processing is done

m If an outer join has been requested, the following label indicating the type
of join:

[LEFT JOIN]
m Storage structure (which is usually heap)
m Total number of pages and tuples
® Query cost information
m QOptionally, sort information (whether the data produced by this node is

already sorted or requires sorting)

This case is seen most frequently where the outer subtree proj-rest returns
few rows, so it is faster to do a keyed lookup (on an ISAM, hash, or B-tree
table) than any of the sort merge operations.

Using the Query Optimizer 277

Types of Nodes in a QEP

The following example shows a QEP diagram with a key lookup join:
select b.coll, b.col2, a.col2
from arel a, brel b

where a.col3 = 'x' and a.coll = b.coll;

K Join(coll)

Heap
Pages 1 Tups 2
D3 Co
/ \
Proj-rest brel
Heap Isam(coll)
Pages 1 Tups 2 Pages 3 Tups 156
D1 Co
/
arel
Hashed (NU)

Pages 70 Tups 156

In the next example of a tid lookup join, access to the base table is through
the secondary index, and proj-rest collects tids for sorting. The tids are used
for a direct tid lookup in the base table. Therefore, the storage structure of the
base table is NU:

select a.coll, a.col2 from arel a
where a.col2 = 99
order by a.col2;

Sort(col2)
Pages 1 Tups 1
D4 C1
/
T Join(tidp)
Heap
Pages 1 Tups 1
D4 CO
/ \
Proj-rest arel
Sort on(tidp) Hashed (NU)
Pages 1 Tups 1 Pages 70 Tups 156
D2 Co
/
aindex
Isam(col2)

Pages 2 Tups 156

278 Database Administrator Guide

Types of Nodes in a QEP

Subquery Join Node

The subqguery join is specific to SQL because SQL allows subselects as part of a
query. These nodes join rows from a query to matching rows of a contained
subselect, thus allowing the subselect restrictions on the query to be
evaluated.

A typical abbreviated example of a QEP diagram involving a subquery join is
shown below:

SE join
/ \
proj-rest Tn
/
table

In this diagram, Tn identifies the QEP constructed to evaluate the subselect.

This node is displayed with the following information on a QEP diagram:

®m A label identifying it as a subquery (SE) join, along with the column(s) on
which processing is done

®m Storage structure (which is usually heap)
®m Total number of pages and tuples
® Query cost information

m Optionally, sort information (whether the data produced by this node is
already sorted or requires sorting)

The following example shows a QEP diagram with a subquery join:

select * from arel a
where a.col2 = (
select col2 from brel b
where a.coll = b.coll)
and coll = 5;

QUERY PLAN 3,1, no timeout, of T1

Proj-rest
Heap
Pages 1 Tups 1
D1 Co
/

brel

Hashed(coll)

Pages 3 Tups 156

Using the Query Optimizer 279

Types of Nodes in a QEP

QUERY PLAN 4,2, no timeout, of main query
SE Join(coll)

Heap
Pages 1 Tups 1
D2 Co
/ \
Proj-rest Tl
Heap Heap
Pages 1 Tups 1 Pages 1 Tups 1
D1 CO
/
arel
Hashed(coll)

Pages 70 Tups 156

In the QEP pane of the SQL Scratchpad window in VDBA, these two QEPs are
shown in separate tabs.

Subquery joins are reasonably expensive because the subselect must be
executed once for each row of the outer subtree. The query optimizer contains
logic to flatten various types of subselects into normal joins with the containing
query. This allows more optimal joins to be used to evaluate the subselect.

As an example of the subselect flattening enhancement features of the query
optimizer, consider the following subselect:

select r.a from r where r.c =
(select avg(s.a) from s
where s.b = r.b and r.d > s.d);

Instead of two scans of table r, the query optimizer has eliminated a scan of
table r by evaluating the aggregate at an interior QEP node. The QEP appears
similar to the previous example:

QUERY PLAN 7,1, no timeout, of main query
Hash Join(b)

avg(s.a)
Heap
Pages 2 Tups 359
D133 C171
/ \
Proj-rest Proj-rest
Sorted(b) Heap
Pages 1 Tups 359 Pages 40 Tups 359
D65 C112 D32 C3
/ /
r s
Btree (b,c) Hashed (NU)

Pages 44 Tups 359

Pages 44 Tups 359

280 Database Administrator Guide

Multiple Query Execution Plans

Multiple Query Execution Plans

The query optimizer can generate multiple QEPs if the query includes any of
the following objects:

® SQL subqueries (in, exists, all, any, and so on.)
® SQL UNION clause
® SQL GROUP BY clause

® Views that need to be materialized

As an example of multiple QEPs, consider the processing of a view on a union.
The following statement creates the view:

create view viewl as

select distinct coll from arel
union

select distinct col2 from arel;

There are two selects, designated #1 and #2 in their respective QEPs below.
Now consider the query optimizer action in evaluating the following query:

select * from viewl;

This generates three QEPs, which are shown in order in the example QEP
diagrams that follow:

1. The first select in the union
2. The second select in the union

3. Main query—the merged result of the two unioned selects

QUERY PLAN of union view TO
Sort Unique
Pages 1 Tups 156
D1 C10
/
Proj-rest
Heap
Pages 1 Tups 156
D1 Co
/
aindex
Isam(col2)
Pages 2 Tups 156

Using the Query Optimizer 281

More Complex QEPs

QUERY PLAN of union subquery
Sort Unique
Pages 1 Tups 156
D4 C10
/
Proj-rest
Heap
Pages 1 Tups 156
D4 Co
/
arel
Hashed (NU)
Pages 70 Tups 156

QUERY PLAN of main query
Sort Unique
Pages 1 Tups 156
D19 C20
/
Proj-rest
Heap
Pages 1 Tups 156
D12 C11
/
T0
Heap
Pages 1 Tups 156

In the QEP pane of the SQL Scratchpad window in VDBA, these QEPs are
shown in separate tabs.

More Complex QEPs

The previous series of QEPs on the different classes of joins involved only two
tables. More complex QEPs involving joins with three or more tables can be
read as a sequence of two-table joins that have already been described, with
the query optimizer deciding what is the optimal join sequence. The key to
understanding these complex QEPs is recognizing the join sequences and the
types of joins being implemented.

282 Database Administrator Guide

Parallel Query Execution

Parallel Query Execution

With its thread support, Ingres has long supported the concurrent execution of
separate queries. For short OLTP style queries, this permits a many fold
increase in the number of such queries that can be executed in a given unit of
time.

Ingres has the additional capability to split up the execution of individual long
running queries over multiple threads. This parallel execution of a single
complex query reduces the time to execute it.

Parallel query plans are implemented in Ingres by the introduction of the
exchange node type. For more information, see Sample Parallel QEPs (see
page 286).

An exchange node marks the boundary between processing threads in a query
plan. It can spawn one or many threads to execute the query plan fragment
below the exchange node concurrent with the fragment above the exchange
node. The exchange node itself passes or exchanges rows from threads below
the node to the thread above the node.

Using the Query Optimizer 283

Parallel Query Execution

Types of Parallelism

Ingres compiles exchange nodes into queries to implement any of three types
of parallelism:

Inter-node (pipelined) parallelism - an exchange node that spawns a
single thread effectively pipelines rows from the plan fragment below the
node to the plan fragment above the node. For example, an exchange
node below a sort node allows the plan fragment below to generate rows
at the same time as sorting is being done for previous rows. Plan
fragments that produce and consume rows at the same rate can effectively
overlap their processing, reducing the overall execution time for the query.

Inter-node (bushy) parallelism — exchange nodes inserted over essentially
independent query plan fragments allow those fragments to execute
independently of one another. A specialized case of bushy parallelism
occurs in union queries when a single exchange node is placed above the
unioned selects. One thread is created for each of the select plan
fragments, allowing the selects to be processed concurrently.

Intra-node (partitioned table) parallelism - a single exchange node is
placed above the orig node for a partitioned table. The exchange node
creates several (4, 8, and so forth) child threads, each one of which
retrieves data from a subset of the partitions of the table. This allows the
concurrent reading of rows from the different partitions, clearly reducing
the elapsed time required to process the table. A variation on partitioned
parallelism (called a partition compatible join) occurs when two partitioned
tables with the same number of partitions are joined using their respective
partitioning columns. The query optimizer places the exchange node above
the join in the query plan, resulting in mini-joins being performed between
the rows of compatible pairs of partitions. These mini-joins are performed
concurrently on different threads.

284 Database Administrator Guide

Parallel Query Execution

Enabling Parallel Query Plans

The generation of parallel query plans is controlled by several configuration
parameters, as well as a session level SET statement. The opf_pq_dop
parameter defines the degree of parallelism or maximum number of exchange
nodes that can be compiled into a query plan. A value of 0 or 1 prevents the
generation of parallel plans, but any other positive value enables them. The
session level set parallel <n> statement can be used to override the CBF
parameter, where <n> is the degree of parallelism for queries compiled in the
session.

The opf_pq_threshold parameter is a companion to opf_pq_dop and defines
the cost threshold of a query plan before exchange nodes are inserted into it.
Because there are slight overheads in initiating parallel query plans, compile
only plans that benefit from parallel processing. The Ingres query optimizer
currently compiles a serial query plan as it always has. If the degree of
parallelism is defined to permit exchange nodes to be added to the plan, the
cost estimate of the serial plan must still exceed the threshold value before a
parallel plan is generated. The cost estimate is computed as the sum of the C
and D numbers at the top of the query plan.

Using the Query Optimizer 285

Parallel Query Execution

Sample Parallel QEPs

The following example shows a QEP diagram with a 1:n exchange node above
a join node. It shows eight threads being created to divide the work of the
join.

Two joins each of pairwise compatible partitions of the underlying tables are
performed by each thread, all in parallel.

select a.coll, b.col2
from aprel a, bprel b
where a.coll = b.coll

and b.col2 between 500 and 1500

Exchange

Heap

Pages 319 Tups 14012
Reduction 4301

Threads 8
PC Join count 16
D689 (6386

/

Hash Join(coll)

Heap

Pages 319 Tups 14012
PC Join count 16

D689 (C6386
/ \

Proj-rest Proj-rest

Heap Heap

Pages 73 Tups 10000 Pages 83 Tups 14012

D384 C100 D305 C140

/ /aprel bprelB-Tree (NU) B-Tree(col2)

Pages 768 Tups 10000 Pages 12872 Tups 299814
Partitions 128 Partitions 16
PC Join count 16 PC Join count 16

286 Database Administrator Guide

Parallel Query Execution

This example shows a union select in which the exchange node generates one
thread to process each of the selects.

select a.coll from arel a
union all select b.col2 from brel b

QUERY PLAN 1,3, no timeout, of union subquery

Proj-rest
Heap
Pages 25 Tups 8197
D283 (€82
/
brel
(b)
Heap

Pages 1132 Tups 8197

QUERY PLAN 1,2, no timeout, of union subquery

Proj-rest
Heap
Pages 16 Tups 5126
D218 C51
/
arel
(a)
Heap

Pages 872 Tups 5126
QUERY PLAN 1,1, no timeout, of main query

Exchange

Heap

Pages 54 Tups 17886
Reduction 242

Threads 2
D501 C266
/
Proj-rest
Heap
Pages 54 Tups 17886 D501 C266
/
T3
Heap

Pages 16 Tups 17886

Using the Query Optimizer 287

Optimizer Timeout

Optimizer Timeout

If the query optimizer believes that the best plan it has found so far takes less
time to execute than the time it has taken evaluating QEPs, then it times out.
It stops searching for further QEPs and returns the best plan is has found up to
that point.

To tell if the query optimizer timed out, you can check either of the following:

® The QEP pane of the SQL Scratchpad window in VDBA. In the QEP pane,
the Timeout check box is enabled if the optimizer timed out (and disabled
if the optimizer did not time out).

® The header of the QEP for set gep diagrams. In QEP diagrams generated
using set gep, the keywords "timed out" and "no timeout" are indicated in
the QEP diagram header.

Note: The fact that the query optimizer has timed out on a particular query
does not guarantee that a better QEP is found; it indicates that not all QEPs
have been checked, and so potentially, a better QEP can be found.

Because it is elapsed CPU time that is being measured, QEPs that time out can
change, depending on machine load.

Control Optimizer Timeout

By default, the optimizer times out, but you can turn the timeout feature off to
enable the query optimizer to evaluate all plans.

To control optimizer timeout

To turn the timeout feature off, issue the following SQL statement (for
example, from the VDBA SQL Scratchpad window, from a terminal monitor, or
from within an embedded SQL application):

set joinop notimeout

To turn the timeout feature back on, issue the corresponding statement:

set joinop timeout

To control this feature using an operating system environment variable:
Windows:

set ING_SET=set joinop notimeout

288 Database Administrator Guide

Greedy Optimization

Unix:
C shell:

setenv ING_SET "set joinop notimeout"

Bourne shell:
ING_SET = "set joinop notimeout"

export ING_SET

VMS:

define ING_SET "set joinop notimeout"

Greedy Optimization

The Ingres query optimizer performs an exhaustive search of all possible plans
for executing a query. It computes a cost estimate for each possible plan and
chooses the cheapest plan according to the cost algorithms.

Such a process is very fast for relatively simple queries. For queries involving
large numbers of tables, however, the number of possible plans can be very
large and the time spent enumerating the plans and associating costs with
them can be significant.

While the Optimizer Timeout (see page 288) feature is useful in shortening
processing time, the optimizer can take an unacceptable length of time to
identify an efficient query plan in the case of very large queries, especially for
queries with large numbers of potentially useful secondary indexes and queries
whose tables have large numbers of rows (leading to very expensive plans that
do not timeout quickly).

The query optimizer includes an alternative mechanism for generating query
plans, called greedy optimization, that can greatly reduce the length of compile
time. Rather than enumerate all possible query plans (including all
permutations of table join order, all combinations of tables and useful
secondary indexes, and all “shapes” of query plans), the “greedy” enumeration
heuristic starts with small plan fragments, using them as building blocks to
construct the eventual query plan. The chosen fragments are always the
lowest cost at that stage of plan construction, so even though large numbers
of potential plans are not considered, those that are chosen are also based on
cost estimation techniques.

Using the Query Optimizer 289

Greedy Optimization

Note: The Optimizer Timeout feature does not work with greedy optimization.
Unlike exhaustive enumeration, which constructs and costs whole query plans
as it proceeds, greedy enumeration performs most of its work before it has
any valid plan. Because of this, the optimizer timeout feature is ineffective and
does not work with greedy enumeration. However, the speed of optimization
using greedy enumeration is so great, there is no need for a timeout.

Control Greedy Optimization

By default, greedy optimization is used if the query meets the following two
criteria:

1. The number of base tables is at least 5.

2. The combination of base table and potentially useful secondary indexes is
at least 10.

For example:

Query Greedy Used By Default?
7 tables and no indexes No

3 tables and 7 indexes No

7 tables and 3 indexes Yes

The greedy heuristic typically chooses very good query plans, especially when
considering the vastly reduced compile time. However, for the rare cases in
which greedy optimization produces a much slower plan, it can be turned off.

To control whether greedy optimization is used

To turn greedy optimization off for the session, issue the following SQL
statement (for example, from the SQL Scratchpad window in VDBA, from a
terminal monitor, or from within an embedded SQL application):

[exec sql] set joinop nogreedy

To turn greedy optimization back on, issue the corresponding statement:

[exec sql] set joinop greedy

To turn off greedy optimization for the installation, set the opf_new_enum
configuration parameter (in CBF or VCBF) to OFF.

290 Database Administrator Guide

Summary for Evaluating QEPs

Summary for Evaluating QEPs

The main points to check when evaluating a QEP are as follows:

Cart-prods can be caused by errors due to disjoint queries or queries that
involve certain types of OR operations. Also, joins involving calculations,
data type conversions, and non-equijoins can generate cart-prods.
Alternative ways of posing the query is often advised under these
circumstances.

The NU on the storage structure part in the orig node description is not a
good sign if you believe the storage structure must have been used to
restrict the number of rows being read.

Verify that the appropriate secondary indexes are being used. Running the
optimization process to generate statistics on the indexed columns allows
the query optimizer to better differentiate between the selectivity powers
of the different indexes for a particular situation.

If there is little data in a table (for example, less than five pages) the
query optimizer can consider a scan of the table rather than use any
primary or secondary indexes, because little is to be gained from using
them.

Check that row estimates are accurate on the QEP nodes. If not, run the
optimization process to generate statistics on the columns in question.

Specialized Statistics Processing

Optimizer statistics can be reviewed and processed by several utilities. You
can:

View and delete statistics

Unload statistics to a text file

Load statistics from a text file

Copy a table and its associated statistics to another database

Create sampled statistics

Using the Query Optimizer 291

Specialized Statistics Processing

Display Optimizer Statistics

In VDBA, you use the Display Statistics dialog to view and delete statistics that
have already been collected. For more information, see the online help topic
Viewing Database Statistics.

You can also accomplish this task using the statdump system command. For
more information, see the Command Reference Guide.

The usual output is based on statistics generated by the optimization process,
as described in Database Statistics (see page 239).

Display Optimizer Statistics for Individual Tables and Columns

By default, optimizer statistics are shown for all tables and columns in the
current database, but you can view statistics for specific table columns.

In VDBA, you use the Specify Tables and Specify Columns check boxes in the
Display Statistics dialog. For example, specify that statistics be displayed only
for the empno column of the emp table.

Delete Optimizer Statistics

You can delete statistics by enabling the Delete Statistics from Syscat check
box.

Using this check box in conjunction with the Specify Tables and Specify
Columns check boxes, you can specify the tables and columns for which to
delete statistics.

For example, enable the Delete Statistics from Syscat check box, specify the
empno and sex columns from the emp table and the empno column from the
task table.

292 Database Administrator Guide

Specialized Statistics Processing

Floating Point Precision in Optimizer Statistics Display

You can specify the precision with which floating point nhumbers are displayed
in the statistics by enabling the Set Precision Level to check box and entering a
value in the corresponding edit control to determine the number of decimal
digits in the text format of the floating point numbers.

For example, assume a table, t_float, is defined with a column named c_float
of type float, and that the following statements are used to insert values (all of
which are approximately 1.0):

insert into t_float values (0.99999998);
insert into t_float values (0.99999999);
insert into t_float values (1.0);

insert into t_float values (1.00000001);
insert into t_float values (1.00000002);

You can create statistics for this table using the optimization procedure
described in Database Statistics (see page 239).

With its default floating point precision, the standard output is show seven
places after the decimal point. For greater precision, you can enable the Set
Precision Level check box and enter a larger value.

For example, specifying a precision level of 14 generates output similar to the
following, in which there is sufficient precision to maintain a visible difference
in the values:

*** statistics for database demodb version: 00850

*** table t_float rows:5 pages:3 overflow pages:0

*** column c_float of type float (length:8, scale:0, nullable)
date:2000_02_24 15:15:30 GMT unique values:5.000

repetition factor:1.000 unique flag:Y complete flag:0

domain:® histogram cells:10 null count:0.00000000000000 value length:8

cell: 0 count:0.00000000000000 repf:0.00000000000000 value:0.99999997999999
cell: 1 count:0.20000000298023 repf:1.00000000000000 value:0.99999998000000
cell: 2 count:0.00000000000000 repf:0.00000000000000 value:0.99999998999999
cell: 3 count:0.20000000298023 repf:1.00000000000000 value:0.99999999000000
cell: 4 count:0.00000000000000 repf:0.00000000000000 value:0.99999999999999
cell: 5 count:0.20000000298023 repf:1.00000000000000 value:1.00000000000000
cell: 6 count:0.00000000000000 repf:0.00000000000000 value:1.00000000999999
cell: 7 count:0.20000000298023 repf:1.00000000000000 value:1.00000001000000
cell: 8 count:0.00000000000000 repf:0.00000000000000 value:1.00000001999999
cell: 9 count:0.20000000298023 repf:1.00000000000000 value:1.00000002000000

This can be useful when statistics are output to a text file or input from a text
file. For more information, see Statistics in Text Files (see page 294). When
reading statistics from a text file, the optimization process assumes that all cell
values are in ascending order. You can use the Set Precision Level option to
preserve sufficient precision for floating point numbers.

Using the Query Optimizer 293

Specialized Statistics Processing

Statistics in Text Files

The optimization process can directly read a set of optimizer statistics from an
external text file, rapidly updating the statistics for specific database tables.
This can be useful when:

m Information is being moved from one database to another (for example,
using copydb), and you want to copy the statistics for the tables as well.

® You know the distribution of the data in a table and want to read or input
these values directly, instead of letting the optimization process generate
them for you.

The actual table data is ignored. This gives you a modeling ability, because the
table can actually be empty but there are statistics that indicate the presence
of data and its distribution. The query optimizer uses those false statistics to
determine a QEP. For more information, see Query Execution Plans (see

page 258). This gives the DBA the ability to verify correctness of QEPs without
having to load data into tables.

The text file read by the optimization process can be created in one of two
ways:

® When displaying statistics, you can unload statistics that already exist in
the database and use the generated file as input to the optimization
process.

® You can create an input file from scratch or by editing a file created when
displaying statistics.

Unload Optimizer Statistics to a Text File

To unload optimizer statistics to a text file, you use the Direct Output to Server
File option in the Display Statistics dialog in VDBA. The generated file is in an
appropriate format so that it can be used as input to the optimization process.
This allows:

m Statistics to be easily moved from one database to another
m A default text file to be created if you are generating your own statistics
For example, to dump all statistics from the current database into the file

stats.out, enable the Direct Output to Server File check box and enter
stats.out in the corresponding edit control.

294 Database Administrator Guide

Specialized Statistics Processing

Unload Statistics for Selected Tables or Columns

To unload statistics for selected tables or columns, use the Read Statistics
from Server File option in conjunction with the Specify Tables and Specify
Columns check boxes in the Display Statistics dialog in VDBA.

For example, if you want the stats.out file to contain statistics for the entire
arel table and the coll column in the brel table, enable the Specify Tables
check box, and choose only the arel and brel tables from the Specify Tables
dialog. Enable the Specify Columns check box and choose only the coll column
for brel from the Specify Columns dialog.

Sample Text File Statistics

A sample output file generated using the Direct Output to Server File option of
the Display Statistics dialog is shown below. This same text file can be used as
input to the optimization process, as described in the next section, Loading
Optimizer Statistics from a Text File:

*** statistics for database demodb version: 00850

*** table brel rows:151 pages:3 overflow pages:1

*** column coll of type integer (length:4, scale:0, nullable)
date:2000_02_24 16:04:37 GMT unique values:132.000
repetition factor:1.144 unique flag:N complete flag:0

domain:® histogram cells:16 null count:0.0000000 value length:4
cell: 0 count:0.0000000 repf:0.0000000 value: 0
cell: 1 count:0.0728477 repf:1.3750000 value: 23
cell: 2 count:0.0728477 repf:1.8333334 value: 31
cell: 3 count:0.0728477 repf:1.3750000 value: 59
cell: 4 count:0.0728477 repf:1.1000000 value: 138
cell: 5 count:0.0728477 repf:1.0000000 value: 151
cell: 6 count:0.0728477 repf:1.0000000 value: 162
cell: 7 count:0.0728477 repf:1.0000000 value: 173
cell: 8 count:0.0662252 repf:1.2500000 value: 181
cell: 9 count:0.0662252 repf:1.1111112 value: 193
cell: 10 count:0.0662252 repf:1.2500000 value: 202
cell: 11 count:0.0662252 repf:1.0000000 value: 214
cell: 12 count:0.0662252 repf:1.0000000 value: 224
cell: 13 count:0.0662252 repf:1.0000000 value: 236
cell: 14 count:0.0662252 repf:1.2500000 value: 256
cell: 15 count:0.0264901 repf:1.0000000 value: 261

Load Optimizer Statistics from a Text File

To load optimizer statistics from a text file, you use the Read Statistics from
Server File option in the Optimize Database dialog. For example, if the file
arelbrel.dat contains statistics for the arel and brel tables, these are loaded
into the database by enabling the Read Statistics from Server File check box
and entering arelbrel.dat in the corresponding edit control.

Using the Query Optimizer 295

Specialized Statistics Processing

Load Statistics for Selected Tables or Columns

If the input file contains statistics for multiple tables, you can load selected
tables or columns by using the Read Statistics from Server File option, in
conjunction with the Specify Tables and Specify Columns check boxes in the
Optimize Database dialog.

For example, if the file arelbrel.dat contains statistics for the arel and brel
tables, just the statistics for arel are loaded into the database by enabling the
Specify Tables check box and choosing only the arel table from the Specify
Tables dialog.

To load only statistics for column col3 of the arel table, enable the Specify
Columns check box and choose only the col3 column from the Specify Columns
dialog.

Update Row and Page Counts

The input file for the optimization process contains information about the
number of rows, as well as primary and overflow page counts in a table.
However, because these values are critical to correct operation, these input
values are normally disregarded when creating statistics, leaving the catalog
values untouched.

You can force the values in the input file to be used when loading the statistics
by enabling the Read Row and Page check box in the Optimize Database
dialog.

Important! This option must be used with extreme care, because it sets
critical values.

This option can be useful for certain specialized processing, such as query
modeling and performance problem debugging. Bear in mind that the row
count value can be modified for the table and its indexes. However, the page
count is modified for the table only—the index page count values remains
unchanged.

296 Database Administrator Guide

Specialized Statistics Processing

Copy a Table and Associated Statistics

You can copy a table and its associated optimizer statistics from one database
to another using copydb and statistics that have been unloaded to a text file.
This is usually much faster than copying only the table and rerunning the
optimization process to recreate the statistics.

Note: Doing this makes sense only if the statistics are up-to-date.

First, unload the table and its statistics to text files, as described in the steps
below:

1. Enter the following command to generate copy.in and copy.out scripts for
the arel table:

copydb olddb arel

2. Copy the arel table out of the olddb database:
sql olddb <copy.out
3. Use the Display Statistics dialog in VDBA to unload the statistics for the

arel table to a text file named arel.dat. For more information, see online
help.

Next, copy the table and statistics back into the new database:

1. Copy the arel table into the new database:

sql newdb <copy.in

2. Use the Optimize Database dialog in VDBA to load the statistics for the
arel table from the text file arel.dat in Step 3 of the previous example.
For more information, see online help.

Sampled Optimizer Statistics

The optimization process allows you to create sampled optimizer statistics on
database tables. For large tables, sampled statistics are usually much faster to
generate than full statistics, and if the percentage of rows to be sampled is
chosen appropriately, they can be nearly as accurate.

Sampled statistics are generated by only looking at a certain percentage of the
rows in a table. The percentage must be chosen so that all significant
variations in the data distribution are likely to be sampled.

The sampled rows are selected by randomly generating values for the tuple
identifier (tid), so tid values are required to support this functionality.

Using the Query Optimizer 297

Specialized Statistics Processing

Create Sampled Statistics

To specify sampled statistics and the percentage of rows to be sampled, you
use the Statistics on Sampled Data check box and the Percentage control in
the Optimize Database dialog. For example, to optimize the table bigtable,
sampling 3% of the rows, perform the following steps. For more information,
see online.

Enable the Statistics on Sample Data check box.
Enter 3 for the Percentage.

Enable the Specify Tables check box.

Enable the bigtable table, and click OK.

1
2
3
4. Click Tables to open the Specify Tables dialog.
5
6. Click OK.

When sampling, the query optimizer chooses rows randomly from the base
table and inserts them into a temporary table. Rows are selected in such a way
that uniqueness of column values are preserved (conceptually, when sampling,
a row can be selected not more than once). Full statistics, or minmax if
requested, are created on the temporary table and stored in the catalogs as
statistics for the base table. The temporary table is deleted. Be sure you have
enough free disk space to store this temporary table, and that create_table
permission has been granted to the user running the optimization process. For
more information on granting privileges, see the Security Guide.

You have control over the percentage of rows that are sampled. It is
worthwhile to experiment with this percentage. When the percentages are too
small for a good sampling, the statistics created change as percentage figures
change. As you increase the percentage, eventually a plateau is reached where
the statistics begin coming out almost the same. The smallest percentage that
provides stable statistics is the most efficient number.

298 Database Administrator Guide

Composite Histograms

Composite Histograms

Optimization is usually performed on individual columns. However, it is
possible for Ingres to create and use histograms created from the
concatenation of the key column values of a base table key structure or a
secondary index. Such histograms are called composite histograms.

Composite histograms are useful in ad hoc query applications in which there
are WHERE clause restrictions on varying combinations of columns. Such
applications can have a variety of secondary indexes constructed on different
permutations of the same columns with the goal of allowing the query
optimizer to pick an index tailored to the specific combination of restrictions
used in any one query.

For example, consider a table X with columns A, B, C, D, E, etc. and secondary
indexes defined on (A, B, C), (B, C, D), (B, A, E). Consider a query with a
WHERE clause such as "A = 25 and B = 30 and E = 99”. With histograms on
the individual columns, the Ingres query optimizer finds it difficult to
differentiate the cost of solving the query using the (A, B, C) index and the (B,
A, E) index. This is because of the technique used to determine the combined
effect of several restrictions on the same table. However, with composite
histograms defined on each index, the optimizer combines the three
restrictions into a single restriction on the concatenated key values, and the
(B, A, E) index clearly produces the best looking query plan.

Composite histograms can be created on the concatenated key values of a
secondary index and on the concatenated key values of a base table index
structure.

Using the Query Optimizer 299

Chapter 12: Understanding the Locking

ﬂ/stem

This section contains the following topics:

Concurrency and Consistency (see page 301)
Locking System Configuration (see page 302)
Lock Types (see page 302)

Lock Modes (see page 303)

Lock Levels (see page 304)

How the Locking System Works (see page 305)
Example: Single User Locking (see page 313)
Example: Multiple User Locking (see page 314)
Ways to Avoid Lock Delays (see page 317)
User-Controlled Locking—SET LOCKMODE (see page 318)
Deadlock (see page 331)

Tools for Monitoring Locking (see page 338)
Performance During Concurrency (see page 344)

Concurrency and Consistency

Ingres is a concurrent database system, which means it allows multiple users
to access the same data at the same time.

In any database management system with multiple users, there is a trade-off
between concurrency and consistency. Ideally, you want all users to be able to
access any data at virtually any time (concurrency) but you must ensure that
changes to the database are done in an orderly sequence that maintains the
underlying structure of the data (consistency).

The task of the locking system is to manage access to resources shared by
user databases, tables, and pages to guarantee the consistency of the shared
data. Various types of /locks are used to ensure that the database does not
become inconsistent through concurrent accesses.

Understanding the Locking System 301

Locking System Configuration

Locking System Configuration

The locking system works with the Ingres DBMS Server to coordinate access to
databases.

The system administrator can initially configure the locking system during
installation by setting parameters (typically system_lock_level and
system_maxlocks). The locking parameters are installation-wide. They can be
changed after installation only by the system administrator.

On UNIX systems, shared memory and semaphores are used as resources
during lock control. The shared memory and semaphores used by your
installation are configured in the operating system when the UNIX kernel is
configured.

Lock Types

The locking system grants two types of locks:
Logical locks

Are held for the life of a transaction. The logical lock is held until you
commit, roll back, or abort the transaction.

A transaction is a group of statements processed as a single database
action and can consist of one or more statements.

Physical locks

Can be used and released in a transaction. The locking system uses them
to synchronize access to resources.

302 Database Administrator Guide

Lock Modes

Lock Modes

A lock has a mode that determines its power—for example, whether it
prevents other users from reading, or only from changing, the data.

The six lock modes are as follows:

X

IX,

Exclusive locks or write locks. Only one transaction can hold an exclusive
lock on a resource at any given time. A user of this lock is called a writer.

Update locks. Only one transaction can hold an update lock on a resource
at any given time. This lock mode is used for update cursors. Update lock
protocols are used by Ingres to increase concurrency and reduce
deadlocks, because update locks can be converted to shared locks for rows
and pages that are not updated.

Shared locks or read locks. Multiple transactions can hold shared locks on
the same resource at the same time. No transaction can update a resource
with a shared lock. A user of this lock is called a reader.

IS

Intended exclusive and intended shared locks. Whenever the locking
system grants an exclusive (X) or shared (S) lock on a page in a table, it
grants an intended exclusive (IX) or intended shared (IS) lock on the
table. An intended lock on a table indicates finer locking granularity (that
pages in the table are being accessed). An IX lock indicates that pages are
being updated, while IS indicates that pages are being read.

SIX

Shared intended exclusive locks. These locks specify a resource as “shared
with intent to update.” They can be considered as combining the
functionality of S (shared) locks and IX (intended exclusive) locks. SIX
locks are used in table locking strategies, where possible, to minimize the
extent of exclusive locking required. The Ingres DBMS Server’s buffer
manager uses these locks to modify pages in its cache.

Null locks. These are locks that do not block any action but preserve the
number in the value block of the locks or preserve data structures for
further use.

Understanding the Locking System 303

Lock Levels

Lock Levels

Locks can be of several levels. The level of a lock refers to the scope of the
resource on which the lock is requested or used, for example, whether the lock
affects:

A single row
A single page
A table as a whole

An entire database

The levels of locks subject to user control are row, page and table. Queries and
commands use other lock levels that affect concurrency, such as database and
table control locks.

Lock levels are as follows:

Row

Manages access to the row. Use row-level locking in situations where page
locking can cause unnecessary contention or where increased concurrency
is desired.

Row-level locking is not supported for tables that have a page size of 2 KB.
Maxlocks is ignored with row-level locking (it only refers to page-level
locks), but the number of row locks cannot exceed the maximum number
of locks allowed per transaction, as specified by the system administrator
when the locking system was configured. If it does, the row locks are
escalated to a table-level lock. For more information, see Escalation of
Locks (see page 309).

Page

Manages access to the data page, except by readers with the lockmode set
to readlock = nolock. For more information, see Readlock = Nolock Option
(see page 325).

Table

Manages all access to a table, except by readers with the lockmode set to
readlock = nolock. For more information, see Readlock = Nolock Option
(see page 325).

304 Database Administrator Guide

How the Locking System Works

Database

Affects the ability of all users to connect to that database. A user blocked
by an exclusive database lock is not able to connect to the database and
receives an error message indicating that an exclusive lock is held.

Control

Manages a table while its schema is changed or loaded. This lock is always
a physical lock.

For example, during the operation of data management utilities
(create/drop table, create/drop index, create table as, modify and modify
to relocate—or their equivalent operations in VDBA), an exclusive table
control lock is used. This combination of mode and level of lock insures
that no transaction can read a table while its schema is changed or loaded,
even though the lockmode of the user is set to readlock = nolock. For
more information, see Readlock = Nolock Option (see page 325).
Conversely, readers can block data management utilities during schema
read operations.

Value
When row locking, provides phantom protection for serializable users and
serializes duplicate checking for unique indexes.

Note: We recommend that you be aware of what resources you lock during
application development, database maintenance, and ad hoc queries.

For details on the set lockmode operation and user-controlled locking, see
User-Controlled Locking (see page 318). For details on the SET LOCKMODE
statement syntax, see the SQL Reference Guide.

How the Locking System Works

The locking system controls locking by doing the following:
® Managing and queuing lock requests

m Detecting deadlock situations

Understanding the Locking System 305

How the Locking System Works

Lock Requests

When you either issue a statement or a command or perform the equivalent
operation using VDBA, implicit requests for locks are made.

In addition, the locking system considers the following factors to determine
what mode and level of lock, if any, to take:

m Are there any locks available in the system?

® Does the query involve reading or changing data?

m What resources are affected by the query?

® Are any other locks held on the affected resources?

Available Locks in the System

Lock Grants

When the system administrator configures the logging and locking system, the
total number of available locks is set. As each lock is used, a counter is
decremented to reflect the number of locks still available. If a lock request is
received after all available locks have been used, the request cannot be
satisfied until a lock is freed.

If waiting for a free lock happens frequently, your system administrator can
reconfigure the maximum number of locks (system_maxlocks parameter).

Whether the locking system can grant a lock depends on whether another
transaction holds a lock on the resource requested and, if so, what mode of
lock that other transaction holds. If another transaction already holds an
exclusive lock on the resource in question, a new lock cannot be used. The
second request must wait.

The locking system uses intended shared and intended exclusive locks on a
table to determine quickly whether a table-level lock can be used on that table,
as follows:

® An intended shared lock on the table means that a shared lock has been
used on at least one page of the table; nevertheless, a shared lock, if
available, can still be used at either the page or table level.

® An intended exclusive lock on the table means that an exclusive lock has
been used on at least one page of the table; no table-level lock can be
used on the table on behalf of another user until the current page-level
lock has been released.

306 Database Administrator Guide

How the Locking System Works

Lock Mode Compatibility

The following table shows which granted lock modes are compatible with the
requested mode:

Granted Mode

Reqg. Mode | NL IS IX S SIX u X
NL Yes Yes Yes Yes Yes Yes Yes
IS Yes Yes Yes Yes Yes No No
IX Yes Yes Yes No No No No
S Yes Yes No Yes No No No
SIX Yes Yes No No No No No
U Yes No No Yes No No No
X Yes No No No No No No

For meaning of the lock mode abbreviations, see Lock Modes (see page 303).

Understanding the Locking System 307

How the Locking System Works

How the Default Lock Mode is Determined

The locking system determines the default lock mode as follows:

® When you perform a read operation from the database, such as a select
operation, a shared lock is requested on the affected resources for the
transaction.

® When you perform an operation that writes to the database, such as an
update, insert, or delete operation, the locking system requests an
exclusive lock on the affected resources for the transaction. Update lock
protocols are used by Ingres to increase concurrency and reduce
deadlocks, because update mode locks can be converted to shared locks
for rows and pages that are not updated. Update mode locks are converted
to exclusive locks for rows and pages that are updated.

The default state of the locking system ensures that no user can read data
being changed and no user can change data being read. However, users can
read data that is being read by other users. This means that the locking
system can grant an:

m S lock for User2 on resource R, provided Userl does not already hold an X
lock on R.

m X lock on resource R for User2, provided Userl does not already hold an S
or X lock on R.

m S lock on resource R for User2, even if Userl already holds an S lock on R.

This default strategy is adequate for most situations. When it is not, you can
establish a different strategy using the SET LOCKMODE statement. For details,
see User-Controlled Locking (see page 318).

How the Locking Level is Determined

By default, Ingres determines the best locking level to use. Ingres selects the
locking level as page or table, depending on the optimizer's estimates of the
number of pages to be read.

If the estimated number of pages to be read is greater than the session
maxlocks limit, or if the entire table is to be read, Ingres uses table level
locking. Otherwise, Ingres uses page level locking, and then escalates to table
level locking if the number of page locks requested exceeds the session
maxlocks per table, per query limit.

308 Database Administrator Guide

How the Locking System Works

Initial Locking Level

Escalation of Locks

In evaluating the query on which the lock is being requested, the Query
Optimizer determines the level of lock as follows:

m If a query involves a single table with only a primary key, page-level locks
are requested.

m If the optimizer estimates that no more than maxlocks pages are needed,
the page-level locks are requested.

m If the Query Optimizer estimates that a query is touching more than the
number of pages to which maxlocks is set, the query is executed with a
table-level lock.

m If the Query Optimizer estimates that a query is touching all the pages in
the table, the query is executed with a table-level lock.

This strategy saves the overhead of accumulating multiple page-level locks
and prevents the contention caused by lock escalation. For example, on a
query that is not restrictive or does not use a key to locate affected records,
the locking system grants a table-level lock at the beginning of query
execution.

When page locking, if the number of pages in a table on which locks are held
reaches maxlocks during a query, the locking system escalates to table-level
locks. To do this it:

® Stops accumulating page-level locks

®m Acquires an appropriate (S or X) table-level lock

m Releases all the page-level locks it has accumulated

The locking system also escalates to table-level locks in an attempt to
complete a transaction if it exceeds the maximum number of locks allowed or
the installation has run out of locks. If this occurs, an error is issued and the
transaction is backed out. To avoid this situation in the future, the system

administrator can bring down the installation and reconfigure the locking
system.

Note: The issuing of lock escalation messages is configurable.

Understanding the Locking System 309

How the Locking System Works

Methods for Changing How Locking is Handled

The following methods can be used to change how Ingres handles locking:

Set the system_lock_level parameter. The system administrator can
override the default locking level by setting the system_lock_level
parameter. This parameter sets the default locking level for an entire
Ingres instance.

By default, system_lock_level is set to DEFAULT, in which Ingres decides
the locking level. For details on the default behavior, see How the Locking
Level is Determined (see page 308). Other valid values for
system_lock_level are ROW, PAGE, and TABLE. Each of the default lock
levels is subject to escalation. For example, if system_lock_level is set to
PAGE, the default locking level is page, and then Ingres escalates to a
table-level lock if the number of page locks requested exceeds the session
maxlocks per table, per query limit.

Use the SET LOCKMODE statement to change parameters that determine
how locking is handled. For example, using maxlocks you can reset the
maximum number of page-level locks that can be requested per table per
query before escalating to a table-level lock.

Note: The set lockmode statement cannot be issued in a transaction.

For details, see User-Controlled Locking (see page 318).

Summary of Default Locks

The following table describes what mode and level of lock is invoked by default
when a query is issued.

Statement or Comment Mode Level
Command
create index On base table: X Table lock
X Control lock
On index: X Table lock
create rule On base table: X Table lock
create table On table: X Table lock
X Control lock
create view On view: X Table lock
X Control lock
On base table: X Table lock
drop On table: X Table lock
grant On base table: X Table lock

310 Database Administrator Guide

How the Locking System Works

Statement or Comment Mode Level
Command
modify On table: X Table lock
X Control lock
select For each table involved IS Table lock
in the select: and
S Page lock(s) on
pages in table
If query touches 50 (or S Control lock
maxlocks) pages: S Table lock
sysmod On database: X Database lock
update, insert, On table involved in IX Table lock
or delete update, insert, or delete: and
X Page lock(s) on
If query touches 50 (or pages in table
maxlocks) pages: X Table lock
On other tables used in
query but not being S See lock for

changed:

select statement

Understanding the Locking System 311

How the Locking System Works

Releasing of Locks

A transaction accumulates locks on resources until you commit or roll back.
When a transaction is committed, the results are written to the database, and
all the locks accumulated during the transaction are released. A rollback aborts
the transaction and releases accumulated locks.

You commit transactions during a session by doing one of the following:

m Issuing the COMMIT statement after one or more SQL queries

®m Using the set autocommit on statement. This causes a commit to occur
after every SQL query that was successfully executed during the session.

For details on the set statement using the autocommit parameter, see the
SQL Reference Guide.

After a commit is executed, the current transaction is terminated and you are
in @ new transaction as soon as the next SQL statement is issued.

All open transactions are automatically committed when you end your session.

Important! If you do not issue the commit statement during a session when
the set autocommit is off, all locks requested on the resources affected by your
queries are held until your session ends. Your entire session is treated like one
transaction and can cause concurrency problems.

312 Database Administrator Guide

Example: Single User Locking

Example: Single User Locking

This example illustrates the use of locking when a single user initiates a
transaction.

In this example, a user issues a single query transaction (SQT) consisting of:

® An SQL statement to read data on the employee named Jeff from the table
named EMP

= A commit

Here is the sequence of operations:

1. The user issues a SELECT statement followed by a COMMIT statement:

select * from emp where name = 'Jeff';
commit;

2. An“IS” lock is used on the EMP table and a page-level *S” lock on the
page containing the Jeff row.

The query is restrictive (only the row specified in the WHERE clause is to
be retrieved), and the table itself has an ISAM structure indexed on
‘name’, so the entire table does not have to be scanned. The locking
system can use the index to go directly to the row for Jeff. Thus, an S lock
on the entire table is not necessary; an IS table-level lock and an S lock on
the page containing the row for Jeff are sufficient.

3. The Jeff row is retrieved.

4. The transaction is terminated and the locks held are released.

After retrieving the row for Jeff, if the user were to issue an UPDATE statement
and change that record before issuing the commit, and if there were no other

shared locks on the page, the locking system converts the shared page-level
lock to an exclusive lock, and the IS lock on the table to an IX lock.

Understanding the Locking System 313

Example: Multiple User Locking

Example: Multiple User Locking

This example illustrates locking when multiple users initiate concurrent
transactions against the same tables. In this case, users must wait for
appropriate locks.

The first user (Userl) initiates a transaction to update the salary of each
employee in the Techsup department to 30000. Another user (User2) issues a
query to read the salary and floor of the employee named Dan. Both users end
their transactions with a COMMIT statement.

Both transactions affect the tables:

® Emp, which is keyed on name with a secondary index on deptno

® Dept, which is keyed on dname

Because of the way these tables are indexed, only a few pages in the tables
need to be accessed, so page-level locking is used.

The following tables show the first four pages of the EMP and DEPT tables.
EMP Table

The EMP table is an ISAM structure keyed on the name column, and with a
secondary index on the deptno column:

Page Name Salary Deptno
1 Andy 55000 9
Candy 50000 6
Dan 25000 7
2 Ed 20000 2
Fred 20000 8
Jeff 35000 4
3 Kevin 40000 3
Lenny 30000 6
Marty 25000 8
4 Penny 50000 9
Susan 20000 1
Tami 15000 6

314 Database Administrator Guide

Example: Multiple User Locking

DEPT Table

The DEPT table is an ISAM structure keyed on the dname column:

Page Deptno Dname Floor
1 1 Accting 5
2 Admin 4
3 Develop 4
2 4 Mgr 3
5 Prod 2
6 Sales 3
3 7 Shipping 2
8 Techsup 1
4 9 VP 5
10 WP 5

Locks Granted

The following shows the locks that are requested on behalf of both users:

Table Page User 1 Locks User 2 Locks
Emp Entire table IX IS
1
2 X
3 X
4
Dept Entire table IS IS
1
2
3 S S
4

Understanding the Locking System 315

Example: Multiple User Locking

Here is the sequence of operations:

1. Userl issues the following statements:

update emp set salary = 30000 where deptno in
(select deptno from dept
where dname = 'Techsup');

commit;

2. User2 issues the following statements:

select e.salary, d.floor from emp e, dept d
where d.deptno = e.dept
and e.name = 'Dan’;

commit;

3. On behalf of Userl, the following locks are requested:
= An IS lock on the DEPT table

m An S lock on the third page of the DEPT table where the record for the
Techsup department is located

The subselect statement starts executing, which retrieves the Techsup
record.

4. On behalf of User2, the following locks are requested:
= An IS lock on the EMP table

m An S lock on the first page of the EMP table where the record for the
employee named Dan is located

s An IS lock on the DEPT table

m An S lock on the third page of the DEPT table where the Shipping
record is located

The select statement starts executing, which retrieves the salary for
employee Dan from the EMP table and the floor on which he works from
the DEPT table, using the deptno value 7.

5. On behalf of Userl, the following locks are requested:
= An IX lock on the EMP table

= An X on the second and third page of the EMP table where the updates
is made

The update statement starts executing, setting the value of the salary
column for all employees in the Techsup department to 30000.

6. On behalf of User2, the commit statement is executed; releasing all locks
held in User2’s behalf.

7. On behalf of Userl, the commit statement is executed; committing all
updates and releasing all locks held in Userl’s behalf.

316 Database Administrator Guide

Ways to Avoid Lock Delays

Waiting for Locks

If an IX lock is taken on a table on behalf of Userl, User2 must wait to retrieve
all the values from the table until Userl completes his transaction and releases
all locks. This occurs because one user is updating at least one page in a table
and the default is that no other user can read the entire table.

For example, assume that User2 in the previous example had issued the
following statements instead:

select * from emp;
commit;

In this simple case, the waiting time is negligible, but had User1 issued a
complicated update on a large number of rows in the EMP table, User2 must
wait a long time.

Ways to Avoid Lock Delays

To prevent delays due to lock waits, there are several approaches:

m Keep transactions as short as possible. Use SET AUTOCOMMIT ON if
possible.

m Set the READLOCK-NOLOCK lockmode when possible, to avoid waiting for
shared locks.

m Use the SET LOCKMODE parameter timeout to indicate how long to wait for
a lock. The default is to wait forever. If the timeout is reached, an error is
returned and the current statement (not the transaction) is aborted. You
must check for this error in your application code.

For details on the SET LOCKMODE statement, see User-Controlled Locking (see
page 318).

Understanding the Locking System 317

User-Controlled Locking—SET LOCKMODE

User-Controlled Locking—SET LOCKMODE

User-controlled locking is available through the SET LOCKMODE option of the
SET statement. This option provides the following types of locking parameters:

®m | ocking behavior

®m | ocking mode requested when reading data

® Maximum number of page locks

® Maximum length of time a lock request can remain pending
Important! You cannot issue the set lockmode statement in a transaction.

You can issue it as the first statement in a session or after a COMMIT
statement.

For details on the syntax for the SET LOCKMODE statement, see the SQL
Reference Guide.

Ways to Specify a Set Lockmode Statement

There are several ways to specify the SET LOCKMODE statement:

m [ssue the SET LOCKMODE statement from a terminal monitor, for
example:

set lockmode session where readlock = nolock;

® Include the SET LOCKMODE statement in an embedded language program.
This affects only the session of the user issuing the statement.

m Specify SET LOCKMODE with any of the following environment variables or
logicals:

- ING_SYSTEM_SET—affects all users.

- ING_SET—if set at the installation-wide level, affects all users. If set at
the local level, affects the user who set it.

- ING_SET_dbname—same as ING_SET but affects only the specified
database.

- dbname_SQL_INIT—affects only the SQL terminal monitor for the
specified database. It can be set at the installation-wide level or the
local level.

318 Database Administrator Guide

User-Controlled Locking—SET LOCKMODE

For example, to specify READLOCK = NOLOCK for your sessions with the SET
LOCKMODE option using ING_SET, issue the following commands at the
operating system prompt:

Windows:

set ING_SET="set lockmode session where readlock = nolock"
UNIX:

C shell:

setenv ING_SET "set lockmode session where readlock = nolock"

Bourne shell:
ING_SET = "set lockmode session where readlock = nolock"

export ING_SET

VMS:
define ing_set

"set lockmode session where readlock = nolock"

The SET statements pointed to by the environment variables or logicals are
executed whenever a user connects to the server. The environment variables
or logicals can be set installation-wide or locally in each user’s environment.
For further details on setting these environment variables or logicals, see the
System Administrator Guide.

Range of the Set Lockmode Statement

With the SET LOCKMODE statement, you can:

m Set locking parameters for a particular table. For example:

set lockmode on emp where readlock = nolock;

m Set locking parameters for the duration of a session. For example:

set lockmode session where readlock = nolock;

If multiple SET LOCKMODE statements are issued for the same session or
table, the most recent statement is the one in effect. Setting a locking
parameter on a specific table has precedence over the session setting. Any
lockmode settings issued during a session end when that session ends.

Understanding the Locking System 319

User-Controlled Locking—SET LOCKMODE

When to Change the Locking Level

There are several situations where the page-level locking default is not
appropriate:

m If a query is not restrictive or does not make use of the key for a table,
scanning the entire table is required. In that case, the locking system
automatically starts with a table-level lock; you do not need to specify it.

m If there are a number of unavoidable overflow pages, it is preferable to set
table-level locking for reasons of efficiency.

m If, during execution of a query, more than maxlocks pages on a table must
be locked (often because of an overflow chain), the locking system
escalates to a table-level lock. It releases the page locks that have been
accumulated. Because accumulating page locks when a table lock was
really necessary is a waste of resources, table locking from the outset is
preferable.

m If multiple users are concurrently running queries to change data, deadlock
can occur.

Deadlock occurs when multiple transactions are waiting for each other to
release locks, and none of them can complete. For a discussion on
deadlock, see Deadlock (see page 331).

If page locking causes unnecessary contention, row-level locking can be
used.

Change the Locking Level with Set Lockmode
To specify table-level locking, use the following statement:
set lockmode session where level = table;
To specify row-level locking, use the following statement:

set lockmode session where level = row;

320 Database Administrator Guide

User-Controlled Locking—SET LOCKMODE

The Maxlocks Value

By default, the locking system escalates to a table-level lock after locking 50
pages in a table during a query.

Note: Lock escalation can lead to deadlock.

By changing the value for maxlocks to a number greater than 50, you can
reset the number of locks that are requested before escalation occurs.

Increasing this value requires more locking system resources, so the
installation configuration for the maximum number of locks must be raised;
but this can provide better concurrency in a table with unavoidable overflow
chains.

Change Maxlocks Value with Set Lockmode

The following statement changes the number of pages in the EMP table that
can be locked during a transaction from 50 to 70:

set lockmode on emp where maxlocks = 70;

With the new maxlocks value, the locking system escalates to a table-level
lock only after more than twenty pages have been locked in table EMP during a
query.

Timeout Value for a Lock Wait

By default, the locking system waits for a lock indefinitely. (The default is “0,”
that is, no timeout.) For example, if Userl is running a report and User2 issues
an INSERT statement for the table used for the report, the insert appears to
“hang” while waiting for a lock. User2’s transaction waits for a lock on the
table until Userl’s report has completed, no matter how long that takes.

If you are not certain how long users in your database wait for locks, you need
to limit the period of time (expressed in seconds) a user waits for a lock. This
can be done using the timeout option of the SET LOCKMODE statement.

If a lock is not used in the amount of time specified, the statement is rolled
back (not the entire transaction) and an error is returned. This error must be
trapped and handled in embedded SQL and 4GL programs.

To immediately return control to the application when a lock request is made
that cannot be granted without incurring a wait, use TIMEOUT=NOWAIT on the
SET LOCKMODE statement.

Understanding the Locking System 321

User-Controlled Locking—SET LOCKMODE

Set a Timeout Value for a Lock Wait

To limit to thirty seconds the time that a lock request remains pending, issue
the following statement:

set lockmode session where timeout = 30;

To immediately return control to the application when a lock request is made
that cannot be granted without incurring a wait, issue the following statement:

set lockmode session where timeout = nowait
Guidelines for Timeout Handling

If you embed a SET LOCKMODE WITH TIMEOUT in an application, timeout
must be carefully handled by the application. There are two cases, depending
on whether cursors are used in the embedded application:

® No cursors—if a timeout occurs while processing a statement in a multiple
query transaction, only the statement that timed out is rolled back. The
entire transaction is not rolled back unless the user specifies rollback in the
SET SESSION WITH ON_ERROR=ROLLBACK statement. For this reason,
the application must be able to trap the error, and either re-issue the
failed statement, or roll back the entire transaction and retry it starting
with the first query. For more information on the SET SESSION statement,
see the SQL Reference Guide.

m Cursors open—if one or more cursors are open when timeout occurs during
a multiple query transaction, the entire transaction is rolled back and all
cursors are closed.

We recommend that the timeout error handler check on the transaction status
so it can tell which case was used. This can be done with an INQUIRE_SQL
statement that retrieves the transaction state. For example, in the following
statement xstat has a value of 1 if the transaction is still open:

exec sql inquire_sql (:xstat = transaction);

For a detailed description of the INQUIRE_SQL statement, see the SQL
Reference Guide.

322 Database Administrator Guide

User-Controlled Locking—SET LOCKMODE

Example: Timeout Program

The following program example, written in ESQL/C and using the Forms
Runtime System, checks for timeout and retries the transaction.

The program assumes an interface using a form to enter the department
name, manager name, and a list of employees. The program inserts a new row
into the department table to reflect the new department and updates the
employee table with the new department name. An ESQL error handler checks
for timeout. If timeout is detected, the user is asked whether to try the
operation again.

/* Global variable used by main and by error handler */
int timeout;
main()
{
int myerror();
exec sql begin declare section;
char deptname[25];
char mgrname[25];
char empname[25];
char response[2];
exec sql end declare section;

exec sql set lockmode session where timeout = 15;
exec sql set_ingres(errorhandler=myerror);

/* Assume this activate block starts a new transaction */
exec frs activate menuitem 'addemp';
exec frs begin;
while (1)
{
timeout=0;
exec frs getform empform (:deptname=dept, :mgrname=mgr);
exec sql insert into dept (dname, mgr)
values (:deptname, :mgrname);
if (!timeout)
{
exec frs unloadtable empform emptbl (:empname=name);
exec frs begin;
exec sql update emp set dept = :deptname
where ename = :empname;
if (timeout)
exec frs endloop;
/* Terminate unloadtable */
exec frs end;
}

if (!timeout)

{
exec sql commit;
break;

}

else

Understanding the Locking System 323

User-Controlled Locking—SET LOCKMODE

exec sql rollback;

exec frs prompt ('Timeout occurred. Try again? (Y/N)',
:response);

if (*response == 'N')
break;

}

exec frs end;

}
int
myerror ()
{
#define TIMEOUT 4702
exec sql begin declare section;
int locerr;
exec sql end declare section;
exec sql inquire_sql (:locerr = dbmserror);
if (locerr == TIMEOUT)
timeout = 1;

Readlock Option

Pages locked for reading are normally locked with a shared lock. A shared lock
on a page does not prevent multiple users from reading that data concurrently.

However, a user trying to change data on the locked page must wait for all
shared locks to be released, because changing data requires exclusive locks.

This can be a problem if one user is running a long report that accesses a table
with a shared lock. No users can make changes to the locked table data until
the report is complete.

324 Database Administrator Guide

User-Controlled Locking—SET LOCKMODE

Readlock=Nolock Option

Setting the lockmode to READLOCK=NOLOCK on a table accessed by a user
running a long report allows others users to modify the table data while the
report is running. Using READLOCK=NOLOCK does not affect any query that
updates, deletes, or inserts rows in a table.

Note: If READLOCK=NOLOCK is set, and rows are changed while a report is
being run on the table, the report is not a consistent snapshot of the table.
Before using this strategy, consider the importance of the consistency and
accuracy of the data.

A table control lock is used to ensure that no reader of any type (including
when READLOCK=NOLOCK is set) can look at a table when:

®m It is being loaded using the COPY or the CREATE TABLE...AS SELECT
statement

m Jts schema is being created or changed, using any of the following
statements; a READLOCK=NOLOCK reader blocks the following operations:

- CREATE TABLE
- CREATE INDEX
- CREATE VIEW
- CREATE INTEGRITY
- DROP
- MODIFY
Whereas shared locks prevent other users from obtaining write locks and slow

down their performance, setting READLOCK=NOLOCK can improve concurrent
performance and reduce the possibility of deadlocks.

Set Readlock to Nolock

To set READLOCK to NOLOCK, issue the following statement:

set lockmode session where readlock = nolock;

Understanding the Locking System 325

User-Controlled Locking—SET LOCKMODE

When Readlock=Nolock is Beneficial

Setting readlock to nolock is beneficial when:

® Running a report to get an overview of the data, and absolute consistency
is not essential.

m Updates, inserts, or deletes to a table involve isolated operations on single
rows rather than multiple query transactions or iterative operations on
multiple rows.

m Reports are needed on tables that are being concurrently updated. Reports
slow down the updates and vice versa. Setting readlock = nolock on the
reporting sessions improves concurrency. (If the report must provide a
consistent snapshot, it is preferable to set readlock = exclusive and get the
report done quickly.)

® Running reports “in batch” with a low priority. Running reports this way
causes the locking of tables and pages for extended periods because of the
lower priority. Setting readlock = nolock allows reporting to run at a low
priority without disrupting other online users.

When Readlock=Nolock is Undesirable

Setting readlock to nolock is undesirable when:

®m QOther users are doing updates that use multiple query transactions or
iterative operations (for example, increase all salaries by 10%), yet it is
necessary that a report accurately take a “snapshot” of the table, either
before or after the complete transaction has taken place.

®m Using multiple query transactions that include updates that reference data
from other tables. Here you cannot guarantee the consistency of data
between the tables with readlock = nolock.

326 Database Administrator Guide

User-Controlled Locking—SET LOCKMODE

Readlock=Exclusive Option

A locking option that is useful in special circumstances is setting readlock to an
exclusive lock.

Here is an example where controlling the shared lock locking level is
necessary. Userl submits a multiple query transaction that retrieves data into
a table field that the user is allowed to change before writing changes back
into the table. At the same time, User2 submits a multiple query transaction to
retrieve the same set of data into his or her table field, makes changes to the
data, and writes the changes back to the table.

Eventually, the two users deadlock. Each is waiting for the other to finish and
release the shared lock, so that each one can get an exclusive lock to make
changes.

If the retrievals and changes had not been done with a multiple query
transaction, no deadlock has occurred, because the shared locks are released
before the requests for exclusive locks are made. But the exclusive lock
transaction is necessary to prevent data from changing between the times you
read the data and write to it.

It is preferable to exclusively lock the data when reading it into the table field,
so that no other user can also retrieve the same set of data until the first user
is finished. This can be achieved by setting exclusive readlock.

If it is likely that Userl holds these locks for a long time after retrieving into
the table field and before committing changes, set timeout. For this reason,
changing data inside a multiple query transaction is discouraged.

Set Readlock=Exclusive

To set READLOCK to EXCLUSIVE, using the following statement:

set lockmode session where readlock = exclusive;

Understanding the Locking System 327

User-Controlled Locking—SET LOCKMODE

Isolation Levels

Isolation levels allow users to specify an appropriate compromise between
consistency and concurrency. This feature makes it possible to increase
concurrency when the absolute consistency and accuracy of the data is not
essential.

Ingres supports four isolation levels defined by the ANSI/ISO SQL92 standard:
m Read Uncommitted (RU)

® Read Committed (R)

m Repeatable Read (RR)

m Serializable

The highest degree of isolation is called “serializable” because the concurrent
execution of serializable transactions is equivalent to a serial execution of the
transactions. Serializable execution is the default behavior of Ingres
transactions because it offers the highest degree of protection to the

application programmer. This highest degree of isolation, however, is the
lowest degree of concurrency.

At lower degrees of isolation, more transactions can run concurrently, but
some inconsistencies can occur.

An isolation level is set by using the SET SESSION ISOLATION LEVEL and SET
TRANSACTION ISOLATION LEVEL statements.

Inconsistencies During Concurrent Transactions

The ANSI/ISO specifies three inconsistencies that can occur during the
execution of concurrent transactions:

® Dirty Read—transaction T1 modifies a row. Transaction T2 reads that row
before T1 performs a commit. If T1 performs a rollback, T2 reads a row
that was never committed and is considered to have never existed.

® Non-repeatable Read—transaction T1 reads a row. Transaction T2 modifies
or deletes that row and performs a commit. If T1 attempts to reread the
row, it can receive the modified value or discover that the row has been
deleted.

® Phantom Rows—transaction T1 reads the set of rows N that satisfy some
search condition. Transaction T2 executes SQL statements that generate
one or more rows that satisfy the search condition used by transaction T1.
If transaction T1 repeats the initial read with the same search condition, it
obtains a different collection of rows.

328 Database Administrator Guide

User-Controlled Locking—SET LOCKMODE

Inconsistencies and Isolation Levels

The following table shows how the ANSI standard defines which inconsistencies
are possible (Yes) and impossible (No) for a given isolation level:

Isolation Level Dirty Read Non-Repeatable Phantom Rows
Read

Read Yes Yes Yes

Uncommitted

Read Committed No Yes Yes

Repeatable Read No No Yes

Serializable No No No

For programmers who are aware of possible inconsistencies, lower degrees of
isolation can dramatically improve throughput.

The most commonly cited example of this is a cursor-based program that
scans through a large table, examining many rows, but updating only a few
rows. Under normal serializable execution, this transaction takes share locks
on all rows or pages that it reads—typically, it takes a shared lock on the
entire table—thus locking out all update activity on the table until the
transaction commits or aborts.

Read Uncommitted Isolation Level

The Read Uncommited (RU) isolation level provides greatly increased read and
write concurrency, but it suffers from the “dirty read” anomaly. Greater
concurrency is achieved because the RU transaction does not acquire locks on
data being read and other transactions can immediately read or/and modify
the same rows. RU is ideal for applications where the reading of uncommitted
data is not a major concern.

Understanding the Locking System 329

User-Controlled Locking—SET LOCKMODE

Read Committed Isolation Level

The Read Committed (RC) isolation level is well suited to allowing increased
concurrency that is more controlled than at the RU level. RC transactions do
not perform dirty reads but rather hold a lock on data while reading the data.
For “cursored” queries, a lock is held on the current data item (page or row)
pointed to by the cursor. The lock is automatically released when the cursor is
positioned to the next item or closed. However, if any data on the current item
of the cursor is changed, the lock must be held until the transaction commits.
Such locking strategy is called cursor stability, and it defines an isolation level
slightly stronger than “classical” RC.

The reason for cursor stability at the RC isolation level is to prevent cursor lost
updates that are possible if locks are released immediately after data is read.
The problem occurs when a transaction T1 running at the “classical” RC
isolation level reads a data item; transaction T2 updates the data item and
commits; T1 updates the data based on its earlier read value and also
commits. T2's update is lost! Because of cursor stability, this problem does not
exist in Ingres at the RC and higher isolation levels. At the same time, the RC
mode does not guarantee that a transaction sees the same data if it repeats
the initial read.

Cursor stability assumes that whenever the user is accessing a row with a
cursor, this row is locked. However, if the user issues a complex cursor
declaration that involves a join, and the results of the join are placed into a
temporary buffer to be sorted before being updated, the assumption can be
wrong. The problem exists because, in this case, the FETCH statement returns
rows to the user, not from the base table, but from the temporary buffer.
When the user attempts to update the “current” row of the cursor, the server
locates the proper row of the base table by its TID taken from the temporary
buffer. The user expects a lock to be held on the base table row until the row
has been processed, but at the RC isolation level, the lock is released when the
row is placed into the temporary buffer. Therefore, the row to be updated no
longer exists or no longer meets the criteria in the WHERE clause. To prevent
this problem, the server automatically upgrades the isolation level from “RC”
to "RR” when the query is initiated.

Repeatable Read Isolation Level

In Repeatable Read (RR) isolation mode, locks are automatically released from
data opened for reading but never read. With this option, if the application
process returns to the same page and reads the same row again, the data
cannot have changed. At the same time, repeatable read does not prevent
concurrent inserts: if the same SELECT statement is issued twice (in the same
transaction), “phantom rows”can occur.

330 Database Administrator Guide

Deadlock

Serializable Isolation Level

Deadlock

The Serializable isolation mode requires that a selected set of data not change
until transaction commit. The page locking protocols prevent phantoms
because the page locks cover the pages that hold the phantom. Simple row-
level locking can provide repeatable read, but preventing phantoms in the
serializable mode requires extra locks. These locks include data page locks for
the ISAM and heap tables, value locks for the hash table, and leaf page locks
for the B-tree table.

An isolation level is automatically increased from RC and RR to serializable for
any operation on system catalogs and during the checking of integrity
constraints or the execution of actions associated with referential constraints.
This is necessary to ensure data integrity. However, if an integrity constraint is
implemented by a user-defined rule, it is the user’s responsibility to provide
the appropriate isolation level.

Deadlock is a different condition than waiting for a lock. It occurs when one
transaction is waiting for a lock held by another transaction at the same time
that the other transaction is waiting for a lock held by the first. Both
transactions block each other from completing. One of the transactions must
be aborted to break the deadlock and allow the other to proceed.

Deadlock should be avoided.

Understanding the Locking System 331

Deadlock

Deadlock Example

This example (where the SET AUTOCOMMIT option is off) depicts a situation
that produces deadlock.

Userl initiates a multiple query transaction to read all the data from the
employee table and insert a record with the department name Sales into the
DEPT table. Shortly after, User2 initiates a multiple query transaction to read
all the data from the DEPT table and to insert a record with the employee
name Bill into the EMP table.

Here is the sequence of operations:

1. Userl issues the statement:

select * from emp;

2. On behalf of Userl’s transaction, a shared lock is requested on the EMP
table and execution of the SELECT statement begins.

3. User2 issues the statement:

select * from dept;

4. On behalf of User2's transaction, a shared lock is requested on the DEPT
table and execution of the SELECT statement begins.

5. Userl enters the following statement:

insert into dept (dname) values 'Sales';

6. User2 enters the following statement:

insert into emp (name) values 'Bill';

7. Userl’s implicit request for an IX lock on the DEPT table is blocked because
there is a shared lock on the table.

8. User2’s implicit request for an IX lock on the EMP table is blocked because
there is a shared lock on the table.

Userl’s transaction must wait for User2’s transaction to release the shared lock
on the department table, but this can never happen unless User2’s transaction
can finish. To finish, User2’s transaction needs to obtain an exclusive lock on
the employee table, which it cannot get until Userl’s transaction releases its
shared lock on it.

Thus, both transactions are waiting for each other. Neither transaction can
finish until the locking system checks on all transactions waiting for locks to
make sure deadlock has not occurred.

When a deadlock is discovered, the locking system aborts one of the
transactions, allowing the other transaction to continue. The user whose
transaction was aborted receives an error.

332 Database Administrator Guide

Deadlock

All updates made by the transaction are backed out. For this reason, the
deadlock error must be trapped and the transaction retried in an application
program.

Deadlock does not occur frequently if transactions are concise and no lock
escalation occurs (either page to table or shared lock to exclusive lock). A
deadlock is always logged to the error log.

Deadlock in Single Query Transactions

Because the locking system uses page-level locking, accumulating locks one by
one, deadlock can occur even when single query transactions are being used.
At least two transactions must be accessing the database, and at least one
user must be modifying rows. Deadlock does not occur when only SELECT
statements are executing, because shared locks do not conflict with each
other.

It is possible for deadlock to occur during a single query transaction when:

m Different access paths to pages in the base table are used

® |Lock escalation occurs

Lock escalation deadlock can be caused by any of the following:
m Converting shared lock to exclusive lock

® QOverflow chains

m System lock limits exceeded

® maxlocks exceeded

® B-tree index splits

Understanding the Locking System 333

Deadlock

Different Access Paths as a Source of Deadlock

Multiple transactions updating table data using different access paths can
cause single query deadlocks.

Consider the following example in which the EMP table has an ISAM structure
indexed on name and a hash secondary index on empno.

1. Userl, accessing the EMP table through the secondary index, grants an
exclusive lock on the fourth page of the table.

2. User2, accessing the EMP table by way of the ISAM key on the base table,
grants an exclusive lock on the third page.

3. Userl needs an exclusive lock on the third page, but cannot get one
because User2 already has a lock on it.

4. User2 needs an exclusive lock on the fourth page, but cannot get one
because Userl already has a lock on it.

334 Database Administrator Guide

Deadlock

Lock Escalation as a Source of Deadlock

When multiple transactions are updating a table, and lock escalation occurs,
they can deadlock. This escalation is probably caused by one of three
situations:

® A transaction has run into a lock limit and can only continue by escalating
to table-level locks.

® More than maxlocks pages need to be locked during the course of a query.

® There are long overflow chains.

If you are running into locking limits, either raise these limits or shorten the
multiple query transactions.

If lock escalation deadlock is occurring frequently, consider using the SET
LOCKMODE statement to force table-level locking on the table or to increase
maxlocks.

To understand how lock escalation can produce deadlock, consider the
following example in which two users are trying to insert into the same table
that has many overflow pages:

Userl tries to insert a record, and because of the long overflow chain
exclusively locks ten pages. Meanwhile, User2 also tries to insert a record and
grants locks down another overflow chain.

During the processing of Userl’s query, the transaction reaches maxlocks
pages and needs to escalate to an exclusive table-level lock; but, because
User?2 still holds an intent exclusive (IX) lock on the table, Userl’s request
must wait.

User2’s query also needs to lock more than maxlocks pages, so a request is
made to escalate to an exclusive table-level lock. User2’s request is also
blocked, because Userl is holding an intent exclusive (IX) lock on the table.

Deadlock occurs in that neither user can proceed because each is blocking the
other.

When many concurrent users are inserting into a small B-tree table, index
splits are likely to occur and deadlock can occur because the locking level in
the index must be escalated to exclusive.

Understanding the Locking System 335

Deadlock

Overflow Chains and Locking

Tables with excessive overflow pages can cause locking problems because all
overflow pages must be searched. Each page is locked individually and locks
are kept all the way down the overflow chain. Escalation to table-level locking
while locking an overflow chain can cause deadlock in heavily concurrent
environments, as well as slow down the query processing time. If you have a
table with many unavoidable overflow pages (that is, they are still present
after a remodify), use the SET LOCKMODE statement to do the following:

m Establish table-level locking as the default for that table

® Increase maxlocks

Deadlock in Applications

The following program sample checks for deadlock after each statement of a
multiple query transaction. If deadlock occurs when a statement is issued, and
that statement is the victim, the entire transaction containing the statement
aborts and the application is sent back to the beginning of the transaction,
where it is retried until it completes without deadlock.

This sample program is written in embedded SQL/Fortran:
exec sql include SQLCA;
exec sql whenever sqglerror goto 100;
exec sql whenever not found continue;
exec sql begin declare section;
integer*4 x;
exec sql end declare section;
X = 0;
exec sql commit;
10 continue;
exec sql select max(empno) into :x from emp;
exec sql insert into emp (empno) values (:x + 1);
exec sql commit;

goto 200;

100 if (sqlcode .eq. -4700) then goto 10
endif

200

336 Database Administrator Guide

Deadlock

In this example, if deadlock occurs, there is no need to issue the rollback
statement, because the transaction has already been aborted.

If deadlock was not checked for and handled, and the select statement to
retrieve the maximum employee number failed with a deadlock, the program
flow continues and the next statement issued, the insert statement, is
completed:

insert into emp (empno) values (:x + 1)

Because the select statement did not complete, this statement inserts the
value “1,” which probably is not the maximum employee number.

The default behavior in embedded SQL programs is to continue when an error
occurs, and that errors are not printed by default. To handle an error, you
need to specify the desired behavior in the whenever sqlerr statement or to
check the sqlca.sglcode manually after each SQL statement.

Ingres 4GL provides the while and endloop statements that perform the
function of a goto statement and allow for checking and handling of deadlock.
The following is an example of Ingres 4GL:

initialize(flag=integer2 not null,
err=integer2 not null) =
{
}
'Go' = {
flag := 1;
a: while 1=1 do
b: while flag=1 do
repeated update empmax
set maxempno=maxempno + 1;
inquire_ingres (err = errno);
if err = 49900 then
endloop b; /* jump to endwhile of loop b */
endif;
repeated insert into emp (empno)
select maxempno from empmax;
inquire ingres (err = errorno);
if err = 49900 then
endloop b; /* jump to endwhile of loop b */
endif;
flag := 0; /*resets flag if MST successful */
endwhile; /* end of loop b */
if flag = 0 then
commmit
endloop a; /* jump to endwhile of loop a */
endif;
endwhile; /* end of loop a */

Understanding the Locking System 337

Tools for Monitoring Locking

Tools for Monitoring Locking

You can identify problems with concurrency using one of the following lock
monitoring tools:

m The Performance Monitor utility in VDBA, which displays locking data in a
GUI environment

m The lock_trace trace flag, which displays specific locking activity

m The lockstat utility, which provides a summary listing and a “snapshot” of
all of the locking activity in your installation

® The Interactive Performance Monitor (IPM), which provides locking data in
a forms-based monitoring utility

Performance Monitor

The Performance Monitor utility allows you to view locking information in an
easy-to-use GUI environment. By clicking on the Locking System branch in the
window, you can immediately see a summary of the locking system
information in the Detail pane.

Locking information you can view in the Performance Monitor includes:
m |ock lists

m |ocked resources (databases, tables, pages, and others)

m Information about a lock (including the lock list, server, session, and

resource of the lock)

The navigational tree in the left pane allows you to drill down to the
information you need quickly, making it easy to identify locking conditions that
need attention.

VDBA provides an alternative set of system administration tools, including
monitoring performance. For instructions on using VDBA screens to monitor
performance, see VDBA online help.

For more information on using the Performance Monitor utility, see the System
Administrator Guide.

338 Database Administrator Guide

Tools for Monitoring Locking

Set lock_trace Statement

The SET LOCK_TRACE statement enables you to start and stop lock tracing at
any time during a session. This statement has the following syntax:

set [no]lock_trace

Important! Use SET LOCK_TRACE as a debugging or tracing tool only. The
LOCK_TRACE option is not a supported feature. This means that you must not
include this feature in any application-dependent procedure.

To use SET LOCK_TRACE you can:

m Jssue the SET LOCK_TRACE statement from a terminal monitor. For
example, to start tracing locks, issue the following statement:

set lock_trace;
To stop tracing locks, issue the following statement:

set nolock_trace;

® Include the SET LOCK_TRACE statement in an embedded language
program.

m Specify SET LOCK_TRACE with an environment variable or logical. For
example, to start lock tracing with ING_SET issue the following statement
at the operating system prompt:

Windows:

set ING_SET=set lock_trace
UNIX:

C shell:

setenv ING_SET "set lock_trace"

Bourne shell:

ING_SET="set lock_trace"
export ING_SET

VMS:

define ing_set "set lock_trace"

The same methods are used for SET LOCKMODE. For details on these
methods, see Ways to Specify a Set Lockmode Statement (see page 318).

When you use SET LOCK_TRACE during a session, you receive information
about locks used and released by your statements. This information is
displayed with the results of your statement.

If you use an environment variable/logical to set the LOCK_TRACE flag, you
receive output for utility startup queries as well as for query language
statements.

Understanding the Locking System 339

Tools for Monitoring Locking

lock_trace Output

An example of lock_trace output is shown here. The column headings above
the example are added in this guide to help describe the output.

Action Level Qual. Mode Timeout Key

LOCK: PAGE PHYS Mode: S Timeout: 0O Key: (inv,iiattribute,21)
UNLOCK: PAGE Key: (inv,iiattribute,21)

LOCK: PAGE PHYS Mode: S Timeout: 0O Key: (inv,iiindex,11)

UNLOCK: PAGE Key: (inv,iiindex,11)
LOCK: TABLE PHYS Mode: IS Timeout: 0O Key: (inv,parts)
LOCK: PAGE Mode: S Timeout: 0O Key: (inv,parts,0)

The lock_trace output is in the following format:

action Tlevel qualifiers Mode: Timeout: Key:

where:
action

Is the action, which can be LOCK, UNLOCK, or CONVERT. For example, a
lock was used (LOCK) or released (UNLOCK).

level
Is the lock level, which can be TABLE, PAGE, ROW, or VALUE.

Other strings may appear, such as SV_PAGE or BM_DATABASE, which are
internal cache control locks.

qualifiers
Specify more information about the lock. The qualifier can be:
NOWT—Do not wait if the lock is unavailable.
PHYS—Lock can be released prior to end of transaction (physical lock).
Blank—Lock is held until the transaction commits or aborts (logical lock).
Other qualifiers that may appear have internal meaning only.

Mode

Is the lock mode. Values can be:

S = shared lock
U = update lock
X = exclusive lock

IS = intended share
IX = intended exclusive
N = null lock

SIX = shared intended exclusive

340 Database Administrator Guide

Tools for Monitoring Locking

Timeout
Is the default timeout or the timeout set with SET LOCKMODE statement.
Key

Describes the resource being locked. It consists of the database name,
table name, partition and page number (shown as P.p where P is the
physical partition number, and p is the page number), and (for row
locking) the row number.

For VALUE level locks, the Key is database name, table name, and three
numbers describing the value being locked. If the table is partitioned, the
table name may be shown as an internal partition name, which looks like
“iiXXX ppPPP-table name” where XXX is an internally assigned number,
and PPP is the physical partition number. For example:

LOCK: TABLE PHYS Mode: IX Timeout: 0 Key: (emp,iill9 pp2-range_1)

Understanding the Locking System 341

Tools for Monitoring Locking

lock_trace Example

The set lock_trace output for the following transaction is shown here.

select * from parts where color = 'red';
update parts set price = 10 where partno = 11;
commit;

This guide numbers the lines of output in the example. Each line number is
explained.

Note: If you run the same query several times, you begin to receive less set
lock_trace output because the system catalog information is being cached.

select * from parts where color = 'red'

[R [R — oo - L ey [gy, +
|partno|partname |color |wt |price|

3k %K X %k 3k %k %k K X XK %k %k 3k 5 X X %k % % 5k X X % % % 3k X X % % % % % X X% % % 3% % X X % % 3% 5% % X % % % % % X % % % % % % % % % % % % % % % % % % X % % % % % X % % %

(1) LOCK: PAGE PHYS Mode: S Timeout: @ Key: (inv,iirelation,1l)
(2) LOCK: PAGE PHYS Mode: S Timeout: @ Key: (inv,iiattribute,21)
(3) UNLOCK: PAGE Key: (inv,iiattribute,21)

(4) LOCK: PAGE PHYS Mode: S Timeout: Key: (inv,iiattribute,19)
(5) UNLOCK: PAGE Key: (inv,iiattribute,19)

(6) UNLOCK: PAGE Key: (inv,iirelation,l1l)

(7) LOCK: PAGE PHYS Mode: S Timeout: @ Key: (inv,iiindex,11)

(8) UNLOCK: PAGE Key: (inv,iiindex,11)

(9) LOCK: TABLE PHYS: Mode: IS Timeout: O Key: (inv,parts)

(10) LOCK: PAGE Mode: S Timeout: @ Key: (inv,parts,0)

3k %k X %k 3k 3k 3k 5k X Xk 3k %k 3k 5k X X %k %k 3k 5k X X %k %k 3k 3k % % % %k 3k 3 % % % % % % 5 % % % %k % 5 5% % % %k % % 5% % % %k %
|1A12 |Truck | red 1290.000 | $16.00 |

|1B5 |Bean bag | red 1198.000 | $18.00 |

120G |Laser | red 1165.000 | $15.80 |

Eapep—— B TS Fommmm oo - Fommmm e oo Fommmm oo +

(3 rows)

update parts set price = 10 where partno = 20G

%k 3k 3 %k %k %k %k %k %k %k %k %k % 5 %k %k %k 3% % %k 3k % % % % % % % % % % % % % % % % % % 3 % 5% % % % % % % % % % 5% %
(11)LOCK: TABLE PHYS Mode: IX Timeout: 0 Key: (inv,parts)

(12)LOCK: PAGE Mode: U Timeout: O Key: (inv,parts,0)

(13)LOCK: PAGE Mode: X Timeout: O Key: (inv,parts,0)

3 %k % %k %k %k X %k X 3 % % K % % X 3k X % X 3 % % % % 5 % % % 3% % 3% % 3% % % % % 3% X % % % % % % % % % % X 3% X 3% % % % % % % % % % % % % % % X % Xk % X % % % % % % % %

(1 row)

commit
3k %k %k %k 3k %k %k 5k X %k >k %k %k 5k X X %k %k %k 5k X % %k %k 3k 3k % % % %k 3k % % % % %k % % % % % % %k % % 5% % % %k % % 5% % % %k %

(14)UNLOCK: ALL Tran-id: 092903CB0OA7

% %k 3k %k 3k %k X % % % 5%k % % 3k % % 3 % % % 3 % % 5% % 5% % %k X 3 % % 5% % 5% % % % % % % % 3 % 3% % % % % % X 3% %

End of Request

342 Database Administrator Guide

Tools for Monitoring Locking

The following is an explanation of the lock_trace output:

1.

10.
11.
12,
13.
14.

A shared physical lock was taken on page 11 of the iirelation table of the
inv (inventory) database.

Remember that physical locks are internal and are released as soon as
possible.

A shared physical lock was taken on page 21 of the iiattribute table of the
inventory database.

The lock on page 21 of the iiattribute table was released.

A shared physical lock was taken on page 19 of the iiattribute table of the
inventory database.

The lock on page 19 of the iiattribute table was released.
The lock on page 11 of the iirelation table was released.

A shared physical lock was taken on page 11 of the iiindex table of the
inventory database.

The lock on page 11 of the iiindex table was released.

An intended shared lock was taken on the parts table.

This is the first lock in this example that was placed on a user table.
A shared lock was taken on page 0 of the parts table.

An intended exclusive lock was taken on the parts table.

An update lock was taken on page 0 of the parts table.

An exclusive lock was taken on page 0 of the parts table.

All locks used during this transaction were released.

Understanding the Locking System 343

Performance During Concurrency

Performance During Concurrency

When multiple users are performing selects, updates, inserts, and deletes on
the same set of tables concurrently, consider the following when evaluating
performance:

If there are no users changing data in a set of tables, multiple, concurrent
users reading data have no performance problems associated with
concurrency. There are no deadlock problems, either.

Once a writer mixes with the readers of a table, concurrent performance is
affected, because the writer can acquire exclusive write locks on pages or
tables. Deadlocks can occur, causing reduced performance for users who
are “backed out” from the deadlock.

Remember that locks acquired during a multiple query transaction are held
until the COMMIT statement is executed. This can affect concurrent
performance. Query-By-Forms uses multiple query transactions.

Whenever possible, users must work in their own tables or download into
their own tables with CREATE TABLE...AS SELECT statements. Doing so
offloads tables where there is heavy concurrent activity.

Nolock can be beneficial in certain situations.

Use can be made of the Visual Forms Editor’s form validations, rather than
table-lookup validations that lock the reference table, because they are
read only at form start-up time.

Approaches for Handling Heavy Concurrent Usage

In a heavy concurrent usage situation, there are two approaches:

The “never-escalate-at-any-cost” approach

Concurrent users are working in different regions of the table. Extreme
care is taken by the person whose role it is to deal with concurrency
problems (the system administrator or the DBA, or both), to ensure that
nobody escalates to a table-level lock.

The “table lock” approach

This approach, which minimizes the occurrence of deadlock, applies when
there is much concurrent activity on smaller tables or in one part of a
larger table.

344 Database Administrator Guide

Performance During Concurrency

The Never Escalate Approach

The "never-escalate" approach is appropriate when the users are working in
different parts of the table, they are running simple queries and updates, and
making full use of primary and secondary indexes. The goal is to have users
coexist as much as possible in the same tables, where no one impedes another
user’s performance by acquiring table locks.

Considerations of the “never escalate” approach include:

m A single-table keyed query starts with page locking, unless the SET
LOCKMODE statement has been issued. Page locks are acquired until
maxlocks is reached, at which point lock escalation occurs. By checking the
tuple identifiers (tids) of rows visited, you can estimate the number of
pages visited in a specific table.

® More complex queries can remove a table-level lock, if the query optimizer
thinks that maxlocks pages are used.

® Make sure that you are using primary and secondary indexes effectively.
Check how many pages are returned from a keyed, primary or secondary
lookup to check that it is less than maxlocks for that table. The optimize
database operation must be run at least on primary and secondary keys to
help the optimizer make estimates.

® Monitor overflow levels in tables with ISAM and hash primary and
secondary indexes.

m [t is advisable to reduce fillfactors to lower than the default if tables with
ISAM or hash storage structures are used, because this provides more
room in the table after the modify.

® Make sure maxlocks is set to an appropriate figure, such as ten percent of
table size.

When choosing storage structures while using the “never escalate” approach,
the basic principle is that ISAM or hash structures with little or no overflow are
better than small B-trees in a concurrent environment. The reason is that
growing B-trees involve some locking when index pages split.

However, as the percentage of overflow builds up in the hash or ISAM
structure, they become inferior to B-trees, because locks are held down
overflow chains. In particular, if any overflow chain being visited is greater
than maxlocks, escalation to table locks can occur. This increases the risk of
deadlocks when there are multiple users in the same table.

At what point the trade-off occurs depends on the circumstances, such as how
frequently MODIFY statements can be performed. Experimentation is advised.
Overflow buildup must be checked in secondary indexes as well as primaries.

Concurrent performance analysis is much more difficult to analyze than single
user performance. Be prepared to experiment using the guidelines presented.

Understanding the Locking System 345

Performance During Concurrency

The Table Lock Approach

The “table lock” approach is used only when there are unsolvable bottlenecks.
The philosophy behind the approach says that it is better to have users queue
up in an orderly manner to get into a table, thereby avoiding the risk of
deadlock, than have them waste time backing out of deadlock situations.

Important! Before using this approach, ensure that lock escalation and
transaction size are minimized.

This approach is appropriate when extensive table scanning is needed, as with
set functions such as max and min. In these cases it is advisable to keep an
extra table around containing max and min values, or to search for max and
min values directly in a secondary index without reference to the base table.

In multiple query transactions, table-level locks reduce the likelihood of
deadlocks but do not eliminate them. The following statement reduces the
likelihood of deadlock in a multiple query transaction:

set lockmode on tablename
where level = table;

This also applies to B-tree tables when they are small.

Under some circumstances setting READLOCK=EXCLUSIVE is useful. For
example, when running a SELECT followed by an UPDATE statement.

346 Database Administrator Guide

Chapter 13: Performing Backup and
Recovery

This section contains the following topics:

The Need for Backup (see page 347)

Full or Partial Recovery (see page 348)

Logging System (see page 348)

Data Verification Before Backup (see page 350)

Static or Dynamic Backup (see page 350)

Backup by Checkpoints (see page 351)

Journals (see page 364)

Backup by Copying (see page 378)

Backup by Unloading (see page 380)

Recovery (see page 380)

Checkpoint Template File Description (see page 389)
Backup and Recovery of the Master Database (iidbdb) (see page 396)
Set Log Trace Statement—Trace Log Writes (see page 397)

This chapter describes the following backup and recovery features of Ingres:
m Checkpointing and journaling to back up a database or selected tables
® Unloading a database

® Copying a database to back up particular tables or all objects you own in a
database

m Using operating system backups to replace current or destroyed tables in a
database

® Roll forward of a database to recover a database or selected tables from
checkpoints and journals

The Need for Backup

You should back up your database regularly so that you can recover your data
if necessary. Databases or tables can be damaged accidentally by hardware
failure or human error. A disk crash, power failure or surge, operating system
bugs, or system crashes, for example, can destroy or damage your database
or tables in it.

Performing Backup and Recovery 347

Full or Partial Recovery

Full or Partial Recovery

Ingres allows you to perform full recovery, which involves recovering an entire
database, or partial recovery, which recovers selected tables in a database.

Partial recovery entails recovering data from a backup copy at a level of
granularity finer than the entire database. In the event of failure, Ingres can, if
possible, mark less than the whole database physically inconsistent. The
advantage of partial recovery is that it reduces recovery times by requiring
only recovery of logically or physically invalid data.

Logging System

The logging system keeps track of all database transactions automatically. It is
comprised of the following facilities and processes:

®m | ogging facility, which includes the transaction log file
m Recovery process (dmfrcp)

m Archiver process (dmfacp)

Logging Facility

Each installation has an installation-wide transaction log file that keeps track of
all transactions for all users. The log file can be distributed among up to
sixteen partitions (locations), although Ingres treats the files as one logical file.

With dual logging enabled, the installation has an alternate log file. With dual
logging, a media failure on one of the logs does not result in the loss of data or
the interruption of service. If one of the log file disks fail, the logging system
automatically switches to the other log without interrupting the application.

When log files are properly configured, the use of dual logging has a negligible
impact on system performance.

Note: If your system is configured for Ingres Cluster Solution, each node in
the Ingres cluster maintains a separate Archiver and Recovery error log. Each
log is distinguished by having _nodename appended to the base log name,
where nodename is the Ingres node name for the host machine as returned by
iipmhost. Dual logging is also provided on clusters.

348 Database Administrator Guide

Logging System

Log Space Reservation

Recovery Process

Archiver Process

During normal online processing, space is reserved in the transaction log file
for possible use during recovery when it is rolling back transactions. The
reserved space is used to write Compensation Log Records (CLRs), which
describe the work performed during the rollback.

Generally, the logging system reserves approximately as much log file space to
perform the rollback as was required to log the original operation. Exceptions
are insert and update operations, which require less reserved space than the
original log.

In the Log File page in the Performance Monitor window, you can see a close
approximation of the log file space required for both normal log writes and for
CLRs. Also displayed is the number of log file blocks reserved for use by the
recovery system at any point in time. To access the Log File page, you click on
the Log Information branch in the Performance Monitor window, and click the
Log File tab in the Properties pane.

You can also accomplish these tasks using the sysmod command and the SET
LOG_TRACE statement. For more information on the sysmod command, see
the Command Reference Guide. For more information on the SET LOC_TRACE
statement, see Set Log_Trace Statement (see page 397) and the SQL
Reference Guide.

The recovery process (dmfrcp) handles online recovery from server and
system failures. The logging system writes consistency points into the
transaction log file to ensure that all databases are consistent up to that mark
and to allow online recovery to take place when a problem is detected. While a
transaction is being rolled back, users can continue working in the database.

The recovery process is a multi-threaded server process, similar to a normal
DBMS server. However, the recovery process does not support user
connections. The process must remain active whenever the installation is
active.

The archiver process (dmfacp) removes completed transactions from the
transaction log file and, for journaled tables, writes them to the corresponding
journal files for the database. Each database has its own journal files, which
contain a record of all the changes made to the database after the last
checkpoint was taken. The archiver process “sleeps” until sufficient portions of
the transaction log file are ready to be archived or until the last user exits from
a database.

Performing Backup and Recovery 349

Data Verification Before Backup

Data Verification Before Backup

As the DBA, you must know that the data in your database is good (can be
accessed) before backing it up. Doing so can ensure that a successful recovery
can be made if it becomes necessary to restore the database from the backup

copy.

Methods of Verifying Data Accessibility

One method of verifying the accessibility of your tables is to write a script that
automatically checks each of the tables and system catalogs in your database.
Otherwise, you can use one of the following suggested methods:

® Modify system tables to predetermined storage structures using the
sysmod command.

® Modify user table storage structures using the modify command.

m Use any procedure that affects all the rows that are being backed up in
each table. (For example, select all the rows from the tables.)

If rows in a table are not accessible, you receive an error message. If this
happens, restore the table from an earlier checkpoint before doing a new
backup.

® Check the integrity of specific tables using the verifydb -mreport -otable
tablename command.

For more information on these commands, see the Command Reference Guide.

Static or Dynamic Backup

You can make static (snapshot) backups of your entire database, or selected
tables by using checkpoints.

To make a dynamic backup of your database, use checkpointing in
combination with journaling.

These backup methods enable you to restore data up to the last checkpoint, or
the last journaled transaction, respectively.

350 Database Administrator Guide

Backup by Checkpoints

Backup by Checkpoints

Checkpoints provide you with a snapshot of the database at the time you took
the checkpoint.

Each time you perform a checkpoint operation, a new checkpoint of the
database is taken. Checkpointing can be performed at the database level and
table level.

A record of up to 99 checkpoints can be maintained at any point. We
recommend that at least one database-level checkpoint be included in this
record.

We encourage that you use the infodb command to verify the status of the
database and checkpoints. This ensures that a valid database checkpoint is
always available.

Running a checkpoint (without any flags on the command) does not affect the
current state of journaling for the database. For details on how to enable and
disable journaling with a checkpoint, see Database Journaling (see page 364)
and Disable Journaling (see page 366).

Tables that have had journaling enabled after the previous checkpoint have
their journaling status changed from “enabled after next checkpoint” to just
“enabled.”

To checkpoint a database or tables, you must be a privileged user (operator
privilege or system administrator).

Performing Backup and Recovery 351

Backup by Checkpoints

Table-level Checkpoints

Generally, full database checkpoints are recommended over table-level
checkpoints.

You should use table-level checkpoints only as a supplement to—not a
substitute for—database-level checkpoints.

Note: Table-level checkpoints and recovery should be used cautiously. When
using table-level checkpoints and restores, it is important—at the very least—
to back up all dependent tables with a full checkpoint.

Recovery when using table-level checkpoints is restricted when the
checkpointed table has been dropped or the table has been modified through
any DDL statement. In these cases, the table-level checkpoint is rendered
unusable. There is also danger in compromising the referential integrity of the
database when rolling forward a table without journaling.

Performing table-level checkpoints on system catalogs is not permitted. We
strongly encourage frequent database checkpointing of the iidbdb database.

Checkpoint a Database
A checkpoint is a snapshot of the database.
To checkpoint a database

Issue the following command at the operating system prompt:

ckpdb dbname

The ckpdb command creates a new checkpoint for the named database.

Checkpoint Selected Tables

Use table-level checkpoints only as a supplement to database-level
checkpoints.

To checkpoint selected tables

Issue the following command at the operating system prompt:

ckpdb dbname [-table=tablename {, tablename}]

The ckpdb command takes a checkpoint of the selected tables in the database.

352 Database Administrator Guide

Backup by Checkpoints

Checkpoint and Roll Forward of Tables

Whenever a database is rolled forward, we recommend that a new checkpoint
be taken to allow subsequent table-level roll forward activities.

When a roll forward is performed at the table level, you can choose either to
roll forward the table excluding or including all secondary indexes. You cannot
specify a secondary index name as a table.

If it is necessary to do a roll forward with the No Secondary Index option, the
base table’s secondary index in the RDF cache become inconsistent. To clear
the inconsistency, do one of the following:

® Drop or recreate the inconsistent secondary index

m Restart Ingres to refresh the RDF cache

If additional assistance is required, call Ingres Technical Support.

The Checkpoint Template File

A file called the checkpoint template file, cktmpl.def, drives the checkpoint and
roll forward operations. The cktmpl.def file allows you to customize backup and
recovery processes and provides additional information tracking. It is possible
to modify the backup process so that the names of the tables that are specified
during a table-level backup are written to a text file.

The II_CKTMPL_FILE environment variable overrides the default cktmpl.def file
for a particular user. This override must be used when testing modifications to
the cktmpl.def file before it is made available to the entire installation so that
other users in the installation are not affected.

For checkpoint template codes and parameters, see Checkpoint Template File
Description (see page 389).

Online and Offline Checkpoints
Checkpoints can be performed online or offline.
An online checkpoint, which is the default, can be performed while sessions are
connected to the database. An online checkpoint stalls until any transactions
running against the database are committed. Any new transactions started
during the stall phase of the online checkpoint cannot run until the stall phase

is completed.

An offline checkpoint can be performed when no one is using the database.

Performing Backup and Recovery 353

Backup by Checkpoints

Perform an Offline Checkpoint
A checkpoint taken offline is performed when no one is using the database.
To perform an offline checkpoint

Issue the following command at the operating system prompt:

ckpdb -1 dbname
The -I flag causes the checkpoint to be taken offline.

When using the -I flag, you can also use the "wait" flag (+w or -w):
+w

Waits for as long as necessary for the database to be free before taking
the checkpoint.

"))

(Default) Returns an error message if the database is busy.

Checkpoints and Locking

By default, an exclusive lock is not taken on the database when you take a
checkpoint. Other users who are using the database at the time of the
checkpoint can continue working online. During this time, transactions in
progress are placed in the dump file for the database.

When you perform a roll forward, the dump files are used to restore the
database to its state when the checkpoint was taken. It updates the database
from journals, if the database is journaled.

The following options on the ckpdb command, however, cause an exclusive
database lock to be taken:

m -] to take the checkpoint offline

® +jor -j to enable or disable journaling

If you want to continue the present journaling status, use neither journaling
option.

354 Database Administrator Guide

Backup by Checkpoints

Delete Outdated Checkpoints

After you take a new checkpoint, you can delete previous checkpoints and
journals.

To delete previous checkpoints and journals after you take a new
checkpoint

Issue the following ckpdb command at the operating system prompt:

ckpdb -d dbname
Up to 98 checkpoints can be deleted.
Manual Deletion of Checkpoints

If you have taken more than 98 checkpoints since the last time you ran ckpdb
-d, you must delete the additional old checkpoints manually using an operating
system command.

Observe the following cautions when manually deleting checkpoints:

®m Do this only after running ckpdb -d.

® Be sure that you do not delete the most recent checkpoint. You can

identify the most recent checkpoint by its version number.

Checkpoint File Version Numbers

When you checkpoint a database, a checkpoint file is created for each location
on which the database is stored. The names of the checkpoint files are in the
format shown by the following example:

CoeO 00 1.ckp

where v shows the version humber of the checkpoint sequence and / shows the
location number of the data directories. The most recent checkpoint file has
the highest version number.

The latest version number is stored in the configuration file for the database.
To determine this number, issue the following command at the operating
system prompt:

infodb dbname

Performing Backup and Recovery 355

Backup by Checkpoints

Delete Outdated Checkpoints Manually

If you have taken more than 98 checkpoints since the last time you ran ckpdb
-d, you must delete the additional old checkpoints manually.

To delete old checkpoints manually
Use an operating system command, as follows:

Windows: Use the Windows del command from the
II_CHECKPOINT\ingres\ckp\dbname directory.

UNIX: Use the UNIX rm command from the ii_checkpoint/ingres/ckp/dbname
directory, where ii_checkpoint is the value of II_CHECKPOINT as displayed by
the ingprenv command.

VMS: Use the VMS delete command.

Delete the Oldest Checkpoint

To delete the oldest checkpoint

Issue the format command at the operating system prompt:

alterdb dbname -delete_oldest_ckp

The oldest full database checkpoint, along with associated journal and dump
files, are deleted.

Checkpoints and Destroyed Databases

Important! A checkpoint is a backup of an existing database. If you destroy
the database (with the destroydb command), you cannot recreate it from a
checkpoint, because this deletes a database’s associated checkpoints as well.

To destroy your database and recreate it, use the unloaddb command. For
more information, see the chapter “Loading and Unloading Databases.”

Parallel Checkpointing in UNIX

In UNIX, you can checkpoint to a disk or a tape in parallel.

356 Database Administrator Guide

Backup by Checkpoints

Checkpoint to Disk

Checkpoint to Tape

To checkpoint a multi-location database to disk in parallel, issue the ckpdb
command with the #m flag followed by the number of parallel checkpoints to
be run. For example, to save two data locations at a time to the
II_CHECKPOINT location, the command is as follows:

ckpdb \#m2 dbname

To checkpoint a multi-location database to tape in parallel, in the Checkpoint
dialog, specify multiple table devices to be used in the Tape Device edit
control. For example, enter the following:

/dev/rmt/0m,/dev/rmt/1m

This saves one location per tape—the first location can be stored on device
0Om; the second on device 1M. The third location can be stored on whichever
device is finished first. The remaining locations can be stored on the next free
device. The operator is prompted to insert a new tape for each location.

When performing parallel checkpointing to tape in UNIX, keep in mind the
following:

m Recovery does not have to be in parallel if a checkpoint was done in
parallel.

m Each tape label must include the checkpoint number, database name, and
location number.

m Each tape device must be the same medium, that is, all 4mm or all 8mm;
mixing is not permitted.

" The maximum number of devices that can be used is limited by the
system’s input and output bandwidth.

Performing Backup and Recovery 357

Backup by Checkpoints

Putting Checkpoints on Tape in Windows

In Windows, the backup system uses the Windows backup utility to create
checkpoints on tape. This utility allows you to back up on multiple tapes. The
program prompts you for more tapes as needed during the checkpoint
procedure.

The backup uses the commands in the following batch file:

%II_SYSTEM%\ingres\bin\ckcopyt.bat

You can tailor these commands to meet your needs (for example, to meet local
conventions such as tape labeling).

For detailed information on backing up to tape, please see your Windows
documentation on backup utilities.

Putting Checkpoints on Tape in UNIX

In UNIX, the backup system uses an operating system utility, such as tar
(Berkeley UNIX) or cpio (System V), to create checkpoints. Both cpio and tar
are limited to handling files that fit on a single tape. Because checkpoints of
larger databases abort at the end of the first tape, you must estimate both the
checkpoint size and the tape capacity before checkpointing these databases. If
you estimate that the checkpoint exceeds the tape size, follow instructions in
Checkpointing to Multiple Tapes in UNIX (see page 361).

358 Database Administrator Guide

Backup by Checkpoints

How to Estimate Checkpoint File Size in UNIX

A separate checkpoint file is created for each location to which a database has
been extended.

Follow these steps to estimate the size of checkpoint files:

1.

Issue the following command at the operating system prompt:

du 77 _database/ingres/data/default/dbname

where ji_database is the value of the environment variable II_DATABASE
displayed by the ingprenv command.

For other locations, substitute the name of the directory associated with
the location name.

If your operating system uses tar, increase the resulting block size of the
directory by 5%.

The du command displays the directory size in blocks. To get the file size
in bytes, multiply the block size by the number of bytes in a block on your
operating system.

For information on the number of bytes in a block on your system, see your
operating system manual.

Tape Capacity in UNIX

The capacity of a tape depends on the following:

Density at which the tape is written
Length of the tape
Size of the blocks written on the tape

Length of the inter-record gap (IRG)

Standard 9-track tape drives write at either 800, 1600, or 6250 bits per inch
(bpi), so the bits per inch specification is the same as bytes per inch. The
standard tape length is 2400 feet.

Block sizes, which are not standardized, are important because of what is
between the blocks—the IRG. A typical IRG is .75 inches of empty tape
separating each block from the next.

Performing Backup and Recovery 359

Backup by Checkpoints

Estimate Tape Capacity in UNIX

You can use the following formula to estimate the size of the file in bytes that

a tape can accommodate:

F=(B + (I*D))/(12*B*D *L)

where:

m F s the file size in bytes

m B is the block size in bytes

m D is the density in bits per inch
m | is the length of the tape in feet
m [is the IRG in inches

The sample file sizes in the following table were calculated for a standard 2400

foot tape, assuming an IRG of .75:

Tape Size IRG Block Size Density File Size (MB)
2400 .75 512 1600 13.8

2400 .75 512 6250 17.7

2400 .75 8192 1600 40.2

2400 .75 8192 6250 114.5

After using this formula to calculate the file size, you need to add an arbitrary

amount to allow for miscalculations. You do not want a tape to run off the reel
because you miscalculated the size of the file that fits. A reasonable amount to
add is 5% of a tape’s capacity.

If your system uses a cartridge tape or other storage media, contact the
vendor for the specifications that allow you to make the calculations described

above.

360 Database Administrator Guide

Backup by Checkpoints

Checkpointing to a Single Tape in UNIX

To checkpoint a database to a single tape:

1.
2.

Mount a tape reel.

In the Checkpoint dialog, enter the name of the tape drive in the Tape
Device edit control.

The equivalent ckpdb command at the operating system prompt is as
follows with a tape drive named “/dev/rmt8”:

ckpdb -m/dev/rmt8 dbname

The backup created by this checkpoint writes over everything that was on the
tape previously.

Checkpointing to Multiple Tapes in UNIX

When checkpoint files exceed the tape size, follow the appropriate procedure
depending on whether the file fits on a disk.

When Checkpoint File Fits on a Disk

If the checkpoint file exceeds the size of the tape, but fits on a disk, follow
these steps:

1.
2.

Follow normal procedures for checkpointing to disk.

Have your operating system administrator move the checkpoints from disk
to tape. Use a standard system backup method, such as cpio or dump.

If some of the database’s tables are stored in alternate locations, separate
checkpoint files are created for them in the checkpoint location. These files
are small enough to be moves to single tapes.

Caution! To System V Users: It is possible for large checkpoints to exceed
the ulimit on your system. (The ulimit is a tunable operating system
parameter that sets a limit on file size.)

Performing Backup and Recovery 361

Backup by Checkpoints

When Checkpoint File Does Not Fit on a Disk

If the checkpoint file exceeds the size of the tape and does not fit on a disk,
you must checkpoint the database using the operating system. To successfully
checkpoint a database, you have to lock all users out during the entire
process.

To lock out all users and take the checkpoint, follow this procedure:

1. To synchronize journaling, checkpoint the database to a null device by
specifying the following options in the Checkpoint dialog:

s Exclusive Lock

s Wait

s Delete Previous

s Tape Device: /dev/null

The Wait option causes the checkpointing to wait until all user locks have
been released before beginning the checkpoint.

The Delete Previous option removes all previous checkpoints and journals.

The Tape Device specification causes the checkpoint to be placed in
/dev/null, which is a nonexistent device. This makes the database “think” it
is being checkpointed and causes journaling to be correctly synchronized.
At this time, all changes to the database are guaranteed to be on disk.

2. To lock the database, start a new process:
C shell:
After the first message from the checkpoint is printed, press Ctri+Z.
Bourne shell:
Log in at another terminal immediately after the checkpoint begins.

Start the new process by issuing the following command at the operating
system prompt:

ingres -1 +w dbname

The +w flag causes a wait until that lock is granted.
3. After the checkpoint finishes:

C shell:

If the checkpoint process is stopped (csh job control), put the job back in
the foreground; wait for the process to complete.

Bourne shell:
Wait for the process to complete.

4. Have your operating system administrator use standard system backup
methods to back up the database directory to tape.

362 Database Administrator Guide

Backup by Checkpoints

Make sure that the backup method used allows you to save the files and
recover them to their original places on the system. Some backup methods
have limitations. The volcopy command, for instance, requires that the
database disk device be unmounted and unavailable for use by any users
during the copy. Additionally, it saves files by saving the entire file system.

5. For the C shell:
Leave the second process stopped (csh).
For the Bourne shell:

Leave the second process at the SQL prompt (*) until the backup is
complete.

6. Quit from the SQL prompt held by the second process. =

Putting Checkpoints on Tape in VMS

To initiate a checkpoint in VMS, ready the tape and issue the ckpdb command
with the -m option. For more information about the ckpdb command, see the
Command Reference Guide.

The backup system uses the VMS BACKUP utility to create checkpoints. This
utility allows you to back up on multiple tapes. The program asks for more
tapes as needed during the checkpoint procedure.

The backup uses the following command in the script:

II_SYSTEM:[INGRES.FILES.CHECKPOINT]CKP_TO_TAPE.COM

You can tailor this command to meet your needs (for example, to meet local
conventions such as tape labeling).

For detailed information on backing up to tape, see your VMS backup
documentation.

Performing Backup and Recovery 363

Journals

Journals

For a dynamic backup of your database, use journals in combination with
checkpoints.

While checkpoints provide you with a snapshot of the database, journals keep
track of all changes made to journaled tables after the last checkpoint.

When you are journaling a database, you should do the following:

m Take regular checkpoints of your database to minimize recovery time.

m Periodically verify that your journaling data is correct by auditing the
database. For information, see Audit Trails (see page 373).

Tools for Performing Journaling

You can perform journaling tasks using system commands or in VDBA.

The system commands for journaling tasks are the ckpdb and alterdb
commands. For more information, see the Command Reference Guide.

For the detailed steps for performing journaling procedures in VDBA, see the
Procedures section of online help.

Database or Table-level Journaling
Journaling can be selected for an entire database or on a table-by-table basis.

Database Journaling

The recommended approach is to journal the entire database rather than
specific tables. Tables in journaled databases are created “with journaling” if
that is the default_journaling setting of the server class used by the Ingres
DBMS Server you are connected to.

Disable journaling on specific tables only if a rollforward recovery of those
tables is not important. You must exercise caution when creating nonO
journaled tables in journaled databases. Non-journaled tables cannot be
audited when the database is audited, in addition to their lack of roll forward
recovery. Following a roll forward recovery, the relationship between journaled
and non-journaled tables can be confusing.

364 Database Administrator Guide

Journals

Table-level Journaling
If you choose to journal selected tables, you are responsible for ensuring that

all related objects are also journaled (for example, that all tables associated
with a view are journaled).

Enable Journaling on an Entire Database
To journal an entire database

Issue the following command at the operating system prompt:

ckpdb +j dbname
or

Use the set journaling (or ING_SET "set journaling" equivalent) statement to
enable journaling of all activities associated with the database.

Note: The only tables that are enabled are those whose journaling status is
“enabled after next checkpoint.” Tables whose journaling status is “disabled”
cannot be enabled.

New Tables and Journaling

The journaling of new tables begins, as follows:

®m If you have enabled journaling on the database and the table is created
with journaling enabled, the new tables begin journaling immediately.

® If you have not enabled journaling on the database, the new tables begin
journaling after you take a checkpoint with the enable journaling option
(although tables created with journaling disabled are never enabled even
after journaling is enabled for the database as a whole).

Start Journaling on a Database Not Checkpointed
To start journaling on a database that has not yet been checkpointed

Issue this command:

ckpdb +j dbname

Performing Backup and Recovery 365

Journals

Journaling and Online/Offline Checkpoints

An explicit journaling option on the ckpdb command causes the checkpoint to
be taken offline and with an exclusive lock on the database.

The first time journaling is turned on in a particular database, you must
checkpoint the database with journaling enabled (ckpdb +j dbname). Doing so
ensures that the checkpoint is taken offline.

Once you have enabled journaling by checkpointing offline with the +j option,
you can maintain the “journaling on” status and take online checkpoints by not
subsequently setting the +j option when you take a checkpoint. Online
checkpoints permit users to continue using the database while the checkpoint
is being taken.

After you have enabled journaling for the database by checkpointing offline
with the +j option, you can take an offline checkpoint to start journaling of
tables for which journaling is enabled after the next checkpoint.

Disable Journaling

To disable journaling

Use either of these methods:

® With the WITH NOJOURNALING option of the CREATE TABLE statement on
new tables.

For example, to turn journaling off when you create the emp table, issue
this statement:

CREATE TABLE emp

name varchar(20),

age 2,

salary money)

WITH NOJOURNALING;

m By setting journaling off for an entire session with the SET NOJOURNALING
option of the SET statement, for example:

SET NOJOURNALING;

Stop Journaling on a Table

To stop journaling a particular table

Issue the following statement from the query language monitor:

SET NOJOURNALING ON tablename;

366 Database Administrator Guide

Journals

Methods for Stopping Journaling on All Tables
You can stop journaling all the tables in a database with either of the following
commands:
m Altering a database using the alterdb command.
m Creating a checkpoint using the ckpdb -j command.

Note: This takes effect immediately; therefore, it must be used only for
emergencies. For information, see Disabling Journaling When
Checkpointing (see page 367).

To re-enable journaling on a table or database that has had journaling
disabled, use the ckpdb command, as described previously.

Disable Journaling When Checkpointing

The following command issued at the operating system prompt stops
journaling of all the tables in a database:

ckpdb -j dbname

A checkpoint of the specified database is taken, and then journaling is stopped.

After journaling is stopped, you can still take periodic checkpoints of the
database.

Performing Backup and Recovery 367

Journals

Disable Journaling When Altering a Database

When you disable journaling using the alterdb command, journaling of a
database is halted immediately, regardless of whether users are connected to
the database.

This option is provided as a method for recovering from journaling system
problems that prevent the archiver from moving transaction log file records to
the database journal files, for example, if the disk partition containing the
journal files is not periodically purged of obsolete journal files and the partition
becomes full. If the logging system is unable to move records from the log file
to the journal files, the transaction log file eventually fills up, causing a
LOGFULL condition. When this occurs, no database activity can proceed until
the LOGFULL state is cleared.

Important! Using this option to disable journaling makes the displayed value
for the journaling status inconsistent. Tables are “journaling enabled,” even
though journaling is disabled for the database as a whole and you expect to
see “enabled after next checkpoint.”

To use alterdb to disable journaling

The following procedure must be run by the DBA of the database. It does not
require a database lock and can be run even while the log file is full
(LOGFULL).

1. To disable journaling on a database, issue the following command at the
operating system prompt:

alterdb dbname -disable_journaling
The database is no longer journaled.

Caution! Do not use rollforwarddb on a database that has journaling
disabled. Any transactions committed after the alterdb action, or that were
still in the transaction log file at the time journaling was disabled, will be
lost.

2. To check the database state, use the infodb command at the operating
system prompt:

infodb dbname
The infodb listing will indicate whether journaling has been disabled.

3. To restart archive processing after disabling journaling on the database,
issue the following command at the operating system prompt:

ingstart -dmfacp

4. Schedule a new checkpoint to re-enable journaling as soon as possible, by
using the following command at the operating system prompt:

ckpdb +j dbname

368 Database Administrator Guide

Journals

Database Characteristics Affected by Alterdb

Journal File Size

The alterdb command lets you disable journaling and change several database
characteristics, including:

® Change journal block settings
m Delete oldest checkpoint
m Set verbose mode

To perform this operation, you must be the owner of the database or have the
operator privilege.

Journal files are created by the archiver process by the first journal write after
a checkpoint takes place. Additional journal files are created as prior files are
filled.

By default, journal files are created with:

®m A target number of journal blocks of 512

® A block size of 16, 384 bytes

® An initial allocation of 4 blocks

This results in a target journal file size of 8 MB (16, 384 * 512 bytes).

Although most users find these parameters satisfactory, all three can be
modified by using the alterdb utility.

The alterdb command has the following syntax for altering block sizes:

alterdb dbname -target_jnl_blocks=n | -jnl_block_size=n | -init_jnl_blocks=n

Performing Backup and Recovery 369

Journals

Target Journal Size

The alterdb command specifies the target journal size in the the following
format:

alterdb dbname -target_jnl_blocks=n
where n is the number of blocks between 32 to 65536.

A journal file is closed and a new one is created when either a checkpoint is
taken (actually, when the first write after a checkpoint is taken) or when the
journal file fills.

The -target_jnl_blocks=n option of alterdb allows some control over when the
logging system declares a journal file full. This parameter is known as the
“target journal file size” because the exact size of a journal file cannot be
easily predicted. The archiver closes off journal files, if they grow larger than
the target number of blocks, only at the completion of an archive cycle. Longer
archive cycles imply more variation in journal file sizes.

Upon successful completion of this command, a message is written to the
errlog.log. The updated block value can be observed as the infodb parameter

“Target journal size”.

The command takes effect immediately (or more accurately, the next time the
archiver reads the configuration file).

The initial journal size (init_jnl_blocks) may be affected by this command.

370 Database Administrator Guide

Journals

Journal Block Size

The alterdb command specifies the journal block size in the format:

alterdb dbname -jnl_block_size=n

Only one database name is required. Valid journal block sizes are 4096, 8192,
16384, 32768, and 65536 bytes.

Archiver (dmfacp) performance is affected by the journal file block size. You
normally change the block size (Size edit control) in conjunction with the
number of target journal blocks (-target_jnl_blocks). Doing so allows you to
target the creation of journal files of a given size. Changing the block size
without also changing the number of blocks in a journal file changes the target
size of the file.

You typically change the journal block size immediately after the database is
created, before the initial checkpoint is taken with the journaling option.
Thereafter, changing the journal block size is generally required only for
installations with a relatively high volume of journaled data. You can only
change the journal block size when journaling is not currently enabled.

To change the journal block size on a database that is currently
journaled

1. Take a checkpoint and disable journaling:
ckpdb -j dbname

2. Set the journal block size:
alterdb dbname -jnl_block_size=n

3. Take a checkpoint and enable journaling:
ckpdb +j dbname

When this operation completes successfully, a message is written to the
errlog.log. The updated journal file block size can be observed as the
infodb “Journal block size” parameter.

Performing Backup and Recovery 371

Journals

Initial Journal Size

The alterdb command specifies the initial journal size in the format:

alterdb dbname -init_jnl_blocks=n

where n is a humber of blocks from 0 to the current target journal size (which
can be obtained using infodb). Only one database name is required. The [
init_jnl_blocks=n option allows a measure of control over when journal file disk
space allocation takes place, but only for the first journal file created after a
ckpdb command.

This alterdb command can be issued at any time, and takes effect when the
next database journal file is created. In the case of an offline checkpoint, this
can be some time after the ckpdb command is issued. In the case of an online
checkpoint, the file allocation occurs during execution of the checkpoint.

Upon successful completion of this command, a message is written to the
errlog.log. The updated block value can be observed as the infodb “Initial
journal size.”

Considerations When Resizing Journal Files

Preallocating space in journal files using alterdb can reduce the likelihood of
running out of journal file disk space.

Filling a journal file causes the archiver to stop, and if left untreated,
eventually causes the log file to fill, which brings the system to a halt.

With the alter database operation you can, for example, request creation of
journal files of a given size and also request preallocation of the entire file. If
the file is sufficiently large, this eliminates the possibility of running out of
journal disk space during normal online processing.

This can, however, cause unused journal space to be wasted. If excessive
space is allocated during journal file creation, that disk space can be made
unavailable when a subsequent checkpoint operation takes place.

If it is necessary to control journal file size more accurately, the archiver must
be awakened more frequently. This can be accomplished with smaller
consistency point (CP) intervals, allowing more frequent archiver “wake-ups.”
The consistency point interval can be configured using CBF (or the
Configuration Manager, if available). Smaller CP intervals can affect system
performance, although the processing involved is for a short interval of time.

372 Database Administrator Guide

Journals

Considerations When Resizing Journal Files on UNIX

On UNIX systems, disk space must be physically written when a journal file is
extended. When a journal file is filled, a new one is created. It is undesirable
for performance to be affected by file allocation that occurs at unplanned
intervals.

You can use the alter database space preallocation features to manage when
the allocation takes place, allowing control over when the allocation time delay
occurs. A significant amount of journal file I/O can occur when the first journal
file is created, with the archiver being unavailable during this time. This can be
observed as an online checkpoint taking a long time to complete, or the
archiver performing a large amount of work when the first journal write after
an offline checkpoint takes place.

Audit Trails with Journals
In addition to using journals for recovery, you can use journals to produce
audit trails of changes to a database. You must be the DBA for the database or
have the security privilege to perform an audit on a database.
Audit your database periodically to verify that your journals are correct.

Tools for Auditing a Database

The audit database operation is performed using the auditdb command. For
complete details, see the Command Reference Guide.

In VDBA, this operation is performed using the Audit Database dialog, invoked
by the Operations Audit menu command. For the detailed steps for performing
this procedure, see the Procedures section of online help.

Performing Backup and Recovery 373

Journals

Understanding the Audit Operation

The auditdb command lets you produce a listing or file of changes made to
journaled tables after the last checkpoint. This listing may not include all
changes that have been made after the last checkpoint for the following
reasons:

® Because auditdb does not exclusively lock the database, other users can
complete a transaction while the audit is running.

m If other users are using the database when you perform an audit, a
completed transaction may not have been moved to the journal files.

The audit database operation scans journal files twice. A prescan is performed
to filter out undesired information (for example, aborted transaction data). The
second scan outputs journal records of interest. To improve program
performance, the -e option (Before edit control value in VDBA) terminates both
scans when an End Transaction record is found that has a time later than that
specified.

The -inconsistent option lets you view journals that the database has marked
as inconsistent. Note: The audit database operation can still fail if core
catalogs are inconsistent.

The -wait option makes the audit wait until journals are current. “"Current” in
this context means either of the following:

m No further archiving is required on the database.

® The archiver has copied all log file information up to the log file end-of-file

when the audit database request was initiated.

Note: If a large amount of unarchived information remains in the log file when
this request is initiated, a significant delay in processing can occur.

374 Database Administrator Guide

Journals

How to Load an Audit Trail as a Table

To make querying the data easier, you can create an audit trail as a file in your
current directory and load the file into a table in your database.

To do this, follow these steps:

1. When you create the audit trail, use the -file flag to create an audit trail
file in the current directory.
Note: You must have first specified at least one table. Also, you can
specify files only if the table you are auditing has fewer than 1940 bytes
per row.
In the following example, auditdb extracts a record of the changes to the
employee table from the journal for the demodb database. It places the
changes in the current directory in a file named empaudit.trl.
auditdb -table=employee -file=empaudit.trl demodb
2. To copy the file into a database table, create a table to hold the audit trail
data.
When creating the table, include the audit trail and employee table
columns shown below. Enter the audit trail columns before the table’s
columns, in the order shown. If you do not, the copy operation can fail
when you try to copy the audit trail data into the table.
Column Data Type Description
Name
date date not null Date and time of the beginning of the
with default multi-query transaction that contained
the operation
username char(32) not User name of the user who performed
null with the operation
default
operation char(8) not Insert, update, or delete operation
null with
default
tranidl integer not Transaction identification number.
null with Concatenated with tranid2.
default
tranid2 integer not Transaction identification number.
null with Concatenated with tranid1l.
default
table_id1 integer not Table identification humber. Corresponds
null with to value in table_reltid column of iitables
default system catalog for specified table.

Performing Backup and Recovery 375

Journals

Column Data Type Description

Name

table_id2 integer not Table identification number. Corresponds
null with to value in table_reltidx column of
default iitables system catalog for specified table.

name varchar(20) Employee name

age integer Employee age

salary money Employee salary

dname varchar(10) Department name

manager varchar(20) Employee manager

376 Database Administrator Guide

Journals

In the following example, a table named empaudit is created to hold the
data from the empaudit.trl file:

create table empaudit

(date date not null with default,
username char(32) not null with default,
operation char(8) not null with default,
tranidl integer not null with default,
tranid2 integer not null with default,
table_idl integer not null with default,
table_id2 integer not null with default,
name varchar (20),

age integer,

salary money,

dname varchar (10),

manager varchar(20));

The last five columns are from the employee table.

Use the COPY statement to load the new table with the data from the file
from Step 2.

In the following example, the data in the empaudit.trl file is copied to the
empaudit table:

Windows:

copy empaudit() from 'C:\users\joe\empaudit.trl';

UNIX:

copy empaudit() from '/usr/joe/empaudit.trl';
VMS:

copy empaudit() from '[usr.joelempaudit.trl';

The table created from the audit trail (in this example, the empaudit table)
contains:

= A row for each row added to the employee table
= A row for each row removed

m Two rows for each update: one showing the row before the update and
the other showing the row after the update

Performing Backup and Recovery 377

Backup by Copying

Backup by Copying

You can copy a database (using the copydb command) to back up the tables,
views, and procedures that you own in a database.

Because any user authorized to use a database can use the copy database
operation, this is a useful backup method for a non-DBA, who can use it to
back up tables, views, and procedures.

By default, all of the tables, views, and procedures that you own in the
database are copied. If you specify table names, only those tables are copied.

For a complete explanation of the copy database operation, see the chapter
“Loading and Unloading Databases.”

378 Database Administrator Guide

Backup by Copying

Back Up Tables with Copydb Command

Before using this procedure, see the “Loading and Unloading the Database” to
understand how copydb works.

To back up tables with copydb

1.

Create a temporary working directory for the copy.in and copy.out scripts
and move to this directory. For example, you might issue the following
commands at the operating system prompt:

Windows:

mkdir D:\tmp\mydir.backup
D:

cd \tmp\mydir.backup

UNIX:

mkdir /tmp/mydir.backup
cd /tmp/mydir.backup

VMS:

create/dir MYDIR.BACKUP
set default [MYDIR.BACKUP]

To back up specified tables, issue the following command at the operating
system prompt:

copydb dbname tablename {tablename}

To back up all the tables, views, and procedures that you own in the
database, issue the following command at the operating system prompt:

copydb dbname
This creates copy.out and copy.in scripts for the objects copied.

To copy the data out of the database, issue the following command from
the operating system:

sql dbname <copy.out

This creates a copy of the objects copied from your database.You can store
these files on tape or leave them on disk.

To restore data from a copydb backup, you run the copy.in script.

Performing Backup and Recovery 379

Backup by Unloading

Backup by Unloading

Unloading a database is a time-consuming method for backing up and
recovering your database, because all of your database’s files must be
unloaded and reloaded. For this reason, we recommend that you use
checkpointing instead.

Unloading a database, however, can be useful as a backup tool because it
enables you to:

® Generate copy scripts, which can be used to recreate your database.

m Recover particular tables by editing the copy.in scripts. For a description of

the copy.in scripts, see the chapter “Loading and Unloading Databases.”

To accomplish this task using a system command, use the unloaddb command.
For more information, see the Command Reference Guide.

For the detailed steps for generating these scripts using VDBA, see the
Procedures section of online help. See the Creating Unload and Reload Scripts
topic.

Recovery

To recover a database from checkpoints and journals or from checkpoints only,
you use the roll forward operation. This operation lets you recover the
following:

® A non-journaled database from a checkpoint
® A journaled database from checkpoints and journals
m A database from a tape checkpoint

m Selected tables

380 Database Administrator Guide

Recovery

Rollforward Operation

Performing a roll forward of a database overwrites the current contents of the
database being recovered.

To perform a roll forward, you must be the DBA for the database or have the
operator privilege.

When you roll forward a database, the database is locked to prevent errors
from occurring. If the database is busy, the roll forward operation waits for the
database to be free before recovering it. (If you specify the wait [+w] option,
the rollforwarddb operation pauses until all users have left the database. If you
do not specify the wait option, you get a message that the database is in use.)

If the target checkpoint was taken online (when the database was in use), the
roll forward operation does the following:

m Restores the database from the checkpoint location to the database
location.

m Applies the log records in the dump location to the database, which
restores the database to the state when the checkpoint began. The log
records contain the transactions that were in progress when the checkpoint
was taken.

This step is not performed when restoring a database from an offline
checkpoint because there were no transactions in progress during an
offline checkpoint.

m Applies the journal records to the database, if the database is journaled.

Note: A roll forward can write Compensation Log Records (CLRs) to the
transaction log file while executing the rollback phase of a roll forward
recovery. This happens rarely, only if incomplete transaction histories are
written to the journals. This is an unlikely condition except when the
transaction log file is lost (or, if running with dual logging, when both copies
are lost). In this case, it is possible for journal files to grow in size as a
consequence of performing a roll forward.

Tools for Performing a Roll Forward Operation

The system command to roll forward a database is the rollforwarddb
command. For details on this command, see the Command Reference Guide.

In VDBA, to roll forward a database, use the Roll Forward DB dialog, invoked
by the Database Rollforward DB menu command. For the detailed steps for
performing this procedure, see the Procedures section of online help for VDBA.
See the Recovering a Database from Checkpoints topic.

Performing Backup and Recovery 381

Recovery

Recover a Journaled Database

To recover a specific database from the last checkpoint and journal, where
both the checkpoints and journals are stored online, issue the following
command at the operating system prompt:

rollforwarddb dbname
Note: All journals since the last checkpoint must be present.
Apply Journals Incrementally to a Backup Database

As journal files are generated, you can apply them incrementally to a backup
copy of the database. Doing so minimizes downtime if the backup database is
needed for disaster recovery.

To apply journals incrementally

1. Start the incremental rollforwarddb by issuing the following command:
rollforwarddb dbname +c -j -incremental

2. Discover and apply new journals by issuing the following command:
rollforwarddb dbname -c +j -incremental -norollback

The database remains inconsistent and readonly. There may be open
transactions.

3. Discover and apply new journals and roll back open transactions by issuing
the following command:

rollforwarddb dbname -c +j -incremental -rollback
The -rollback flag ends the incremental rollforwarddb, and the database is
marked consistent and updatable.

Note: Incremental rollforwarddb requires that all journals since the last
checkpoint be present. For example, if you apply a batch of journal files, and
then delete the previous batch of journal files, rollfforwarddb -incremental
-rollback may fail.

For details on the -incremental and other flags, see the rollforwarddb
command description in the Command Reference Guide.

Recover a Non-Journaled Database

To recover a non-journaled database from the last checkpoint, issue the
following command from the operating system prompt:

rollforwarddb +c dbname

382 Database Administrator Guide

Recovery

Recover a Database from Tape Checkpoints

To recover a database whose checkpoints are on tape
1. Mount the tape reel containing the checkpoints.

2. Issue a rollforwarddb command at the operating system prompt, naming
the tape drive as the device:

rollforwarddb +c [+j] -mdevice dbname

The checkpoint is read from the tape and the journal files are applied, if
the database is journaled, to bring your database up to date.

Parallel Roll Forward from Disk (UNIX)

To roll forward a multi-location database to disk in parallel, issue the
rollforwarddb command the #m flag followed by the number of parallel
restores to be run.

For example, to restore two data locations at a time from the II_CHECKPOINT
location, the command is as follows:

rollforwarddb #m2 dbname

Performing Backup and Recovery 383

Recovery

Parallel Roll Forward from Tape (UNIX)

To roll forward a multi-location database from tape in parallel, specify the
devices to be used in the From Tape Device edit control. For example, the
following tape device can be specified:

/dev/rmt/0m,/dev/rmt/1m

This restores one location per tape—the first location can be restored from
device Om; the second location can be restored from device 1M. The third
location can be restored from whichever device is finished first. The remaining
locations can be restored from the next free device. The operator is prompted
to insert the numbered tape into the free device.

Some points to be aware of when performing parallel roll forward from tape in
UNIX include:

Recovery does not have to be in parallel if a checkpoint was done in
parallel.

Recovery can be in parallel if a checkpoint was not done in parallel.

Each tape label must include the checkpoint humber, database name, and
location number.

Each tape device must be the same medium, that is, all 4mm or all 8mm;
mixing is not permitted.

The maximum number of devices that can be used is limited by the
system’s input and output bandwidth.

384 Database Administrator Guide

Recovery

Table Recovery Using Roll Forward

You can specify that only certain tables are recovered during a roll forward
database operation. (Journals of tables in the database must be enabled.)
When doing table-level recovery, you can optionally move the table to a new
location.

Note: The database must be extended to the new locations before the
rollforward.

The format for recovering tables is as follows:

rollforwarddb dbname(/server_class]
[-table=tablename {, tablename}
[-nosecondary_index] [-on_error_continue]
[-relocate -location=locationname {, locationname}
-new_location=1Iocationname {, locationname}]]

Note: Table recovery is not allowed if structural changes have been made to
the table after the checkpoint (that is, if you have modified the table, created
indexes or altered the number of columns in the table).

Retract Changes Using Roll Forward

If a user makes a serious error in a table that is being journaled, the changes
can be retracted. Use the roll forward operation to restore the database up to
the beginning of the transaction in which the error occurred.

For example, to restore a database from the previous checkpoint to its
condition at 8:00 A.M. on August 15, 2008, issue the following command:

rollforwarddb -v +c +j -el5-apr-2008:08:00:00 dbname

This command retracts all changes made to the database after this time, not
just those made to the table with the error.

To ensure that the error is not reintroduced when you perform a roll forward in
the future, take a new checkpoint to reset the journals.

Performing Backup and Recovery 385

Recovery

Recover a Subset of Data Using Roll Forward

The roll forward end time option (specified with the -e flag) permits the
recovery of a subset of data in the journal file. The option is useful when
problems have been encountered in a full roll forward database operation or
when, for example, a critical piece of data has been inadvertently deleted.

Important! As this form of recovery does not restore the database to the
state reflected by the full set of journals, it is critical that a checkpoint of the
database be performed after the recovery completes. If not, another roll
forward performed later can leave the database in an inconsistent state.

The only recommended course of action after is rolling forward a database with
the -e option is:

m Roll forward the database again

m Checkpoint the database, preferably with the -d option (to delete previous
checkpoints)

Note: The rollforwarddb -b and -e (Before and End) options operate on End
Transaction timestamps, not on the time that a user may associate with an
update. The auditdb -e and -b (End and Before) options also operate on End
Transaction timestamps, and can be used to check anticipated roll forward
results.

386 Database Administrator Guide

Recovery

Recover a Database from an Old Checkpoint

If the most recent checkpoint has been damaged or is unreadable, it is
possible to recover from an older checkpoint. You can use either a specific
checkpoint number or the most recent usable checkpoint.

To recover the database from a particular checkpoint and apply all journals
after that time, issue the following command:

Windows:

rollforwarddb +j #cn dbname
UNIX:

rollforwarddb +j '#cn' dbname
VMS:

rollforwarddb +j #cn dbname

where n is the checkpoint number. For example the following command
requests recovery from checkpoint 4 for the Employee database:

rollforwarddb +j #c4 employee

The checkpoint sequence number must be a valid checkpoint number. You can
verify this number with the infodb command.

If the most recent checkpoint is unfinished and you want to recover using the
most recent usable finished checkpoint, issue the following command:

Windows:
rollforwarddb +j #c dbname

UNIX:

rollforwarddb +j '#c' dbname

VMS:

rollforwarddb +j #c dbname

The #c flag can also be used with the -b and -e flags s if you want to restore a
database to its state at some previous moment in time.

Performing Backup and Recovery 387

Recovery

Caution! You must exercise extreme caution with the -b and -e options.
Because these commands roll the database forward to a point in time other
than that fully represented by the journals, transactions that were performed
after the -e time or before the -b time are lost. Partially completed
transactions can be backed out by the roll forward process. Furthermore, a
checkpoint must always be performed after completion of such a roll forward,
thereby ensuring that obsolete journal data is not inadvertently reused in a
subsequent recovery (or by an audit database operation to produce inaccurate
auditing results).

Note: The audit database -b and -e flags behave in the same manner as the
equivalent roll forward flags, and can be used to predict roll forward results.

Recover from the Loss of the Transaction Log File

In the unlikely event of a loss of the transaction log file (or, if dual logging is
enabled, loss of both file copies), the following recovery procedure can be used
to restore as much database information as is possible. Follow these steps:

1. Create a new transaction log file. For more information, see the
Installation Guide.

2. The next action differs, depending on whether offline or online backups
take place. Included in the latter class of systems are those that employ
journaling capabilities.

m For offline backups

Installations using their own backup and recovery mechanisms
(implying no use of online checkpoint or journaling facilities) only need
to restore database directories and bring the system back up. No
directed recovery is needed, after backups are done during a period
when there is no system activity, and when all database information is
resident on disk.

m For online backups and roll forward

If you are using online checkpoints and journaled databases, bring the
installation back up with the newly initialized log file. All databases
open at the time of the failure can be marked inconsistent by the
recovery process. Each must be recovered in turn by the roll forward
database operation. The +j (Enable Journaling) option with roll forward
is specified for journaled databases; this option is not specified for
those databases that are not journaled.

Note: A roll forward operation restores databases to a consistent state even if
incomplete transaction histories have been copied to the journal files.

388 Database Administrator Guide

Checkpoint Template File Description

Checkpoint Template File Description

The checkpoint template file drives the checkpoint and roll forward operations.
If needed, you can tailor the file to meet the requirements of your site.

For example, if the database exists on multiple locations, checkpointing backs
up each location to a separate tape or disk and, in turn, roll forward restores
each location one at a time. If you want to use a different backup method or
only one tape for all locations, you can edit this command file.

Checkpoint Template Codes

In the checkpoint template file, a four-character uppercase code at the
beginning of each line provides the following information:

The first character indicates when the command is to be used. Valid characters
are:

B (Begin)—the command is to be executed before the device is used. It
indicates setup work done prior to the execution of the command.

P (Prework)—the command is to be executed before the work is executed.
I—the command begins table-level recovery (initializes only).

W (Work)—the command activates the device. It indicates the execution of
the command.

F—the command ends table-level recovery (comments only).

E (End)—the command is executed after the device is used. It indicates

cleanup work done after the operation is complete.
The second character indicates whether the command specifies several types
of checkpointing and roll forward options. Valid characters are:

S—the command is for checkpointing only.

R—the command is for roll forward only.

E—the command is for both checkpointing and roll forward.

D—the command is for delete file processing.

C—the command checks if a database checkpoint exists before the roll
forward.

J—journals are to be applied, for a roll forward.

U—dumps are to be applied, for a roll forward.

Performing Backup and Recovery 389

Checkpoint Template File Description

The third character specifies the device. Valid characters are:
T—the command on that line refers to reading from or writing to a tape.
D—the command refers to disk operations.

E—the command applies to both types of devices.

The fourth character specifies the data. Valid characters are:
D—the command is for a database.
A—the command is for all databases.
T—the command is for table(s).
E—the command is for either a database or table.
R—the command is for a raw location (database and table level are the
same)
Examples: Checkpoint Template Code

Here are examples of a checkpoint template code:

WSTD identifies the command line to use during the working (W) phase of a
checkpoint which is saving (S) a database to tape (T), for a database (D).

BRDT identifies the command line to use during the begin (B) phase of a roll
forward operation that is restoring (R) from disk (D) for a table (T).

390 Database Administrator Guide

Checkpoint Template File Description

Substitution Parameters
The checkpoint template file can optionally include substitution parameters
that can be filled in at run time, to specify things like:
® Which database directory to back up
® Which tape device the user specified in the Checkpoint dialog

The parameters consist of a "%" and a single uppercase character, as follows:
%T
The type of operation: 0 if to tape, 1 if to disk.
%N
The total number of locations being written.
%M

For the begin or end operations, the incremental/current location number.
For save or restore operations, this starts at 1 and is incremented after
each save or restore command.

%D
The path to the database directory being saved or restored.
%C

The path to the checkpoint directory of disk files or the device name if to
tape.

%F
The name of the checkpoint file created or read from.
%A

%C prepended to %F in a form to produce a fully specified file (that is, %A
= %C/%F).

%X

The name of the table, pertinent to the work commands executed under
table processing.

%B

Expanded during execution to represent the list of internal files that are
associated with a table checkpoint. This parameter is pertinent to the work
commands executed under table processing.

The “%" parameters in the commands are replaced by ckpdb and/or
rollforwarddb when the command is executed.

Performing Backup and Recovery 391

Checkpoint Template File Description

Valid Code Combinations in the Checkpoint Template File
The valid code combinations in the checkpoint template file are shown here:

[S,R,EJ,U] [T,D,E] [T,D,E,A]
[S,R] [T,D] [D,T]
[S,R,EJ,U,D,C] [T,D,E] [T,D,E,A]
[,R,E][T,D,E] [T,E]
[,R,E][T,D,E] [T,E]

[S,E] [T,D] [D,T,E]

I'I'I'H'—'E'UCU

For every entry with a first character of B, there must be an accompanying
entry beginning with E.

This section demonstrates how the codes are used in the checkpoint template
file to perform checkpointing and roll forward operations in a variety of ways.

Checkpointing

The checkpointing operation (ckpdb command) executes the following
sequence of codes in the cktmpl.def file:

Bsxy Beginning checkpoint
Wsxy Executed once for each location
Esxy Ending checkpoint

where:

x denotes D for disk, T for tape, or E for both.
y denotes D for database, T for table, or E for both.

392 Database Administrator Guide

Checkpoint Template File Description

Roll Forward

The roll forward operation (rollforwarddb command) processes the following
codes in the cktmpl.file:

WCxA for each location
If table processing is specified, the following codes are executed:

BRxT once per location

IRXT once per location

WDxT for each table

WRxXT for each table

FRxT once per location

EExE once (note that ERXT is executed if available)

If an entire database is being recovered (rather than specific tables), the
following codes are executed:

BRxD once for each location
WDxD once for each location
WRxD once for each location
EExE once (note that ERxD is executed if available)

For all roll forward operations, the following codes are executed:

BUxA if dumps are to be applied
WUXA

EEXE

BIxA if journals are to be applied
WIxXA

EEXE

Performing Backup and Recovery 393

Checkpoint Template File Description

Format of the Checkpoint Template File in Windows

The checkpoint template file uses the two batch files, ckcopyd.bat (for
checkpointing to disk) and ckcopyt.bat (for checkpointing to tape).

The checkpoint template file, cktmpl.def, can be found in the folder
%II_SYSTEM%\ingres\files.

Each line contains a command preceded by a four-character code that tells
when to use the command.

By altering this file, or the two batch files that it calls, you can change how
checkpoints are performed. You can add or delete flags to the underlying
operating system commands, or you can supply your own batch files to
perform the backup and restore steps.

For example, the command:

BSTD: echo Beginning checkpoint to tape %C of %N locations

indicates what is done initially, before the device is used (B), when
checkpointing is used to save (S) a database location to tape (T), for a
database (D).

As another example, when executing a checkpoint on a database that spans
multiple locations, one of the following commands is executed once for each
location (WSTD for backup to tape, WSDD for backup to disk):

WSTD: ckcopyt %N %D BACKUP

WSDD: ckcopyd %D %A BACKUP

The commands instruct the checkpoint operation to call either the ckcopyt.bat
or ckcopyd.bat batch command file to do the actual backup.

The checkpoint utility automatically substitutes the appropriate values for
“O/ON,” \\O/OD,II and “O/DA."

The ckcopyt.bat batch file calls the Windows backup backup command and
passes it the name of the directory for the location, and other operating
system flags.

394 Database Administrator Guide

Checkpoint Template File Description

Format of the Checkpoint Template File in UNIX

The checkpoint template file, cktmpl.def, uses the UNIX tar command. This file
can be found in $II_SYSTEM/ingres/files.

Each line is a command preceded by a four-character code that instructs the
checkpoint operation when to use the command.

By altering this file you can change how checkpoints are performed. You can
add or delete flags from the tar commands or you can supply your own shell
scripts to perform the backup and restore steps.

For example, the command:

BSTD: echo beginning checkpoint to tape %C of
%N locations

indicates what is done initially, before the device is used (B), when the
checkpoint operation is used to save (S) a database location to tape (T) for a
database (D).

As another example, when executing a checkpoint on a database that spans
multiple locations, the following command is executed once for each location:

PSTD: echo mount tape %N and press return;
read foo;

WSTD: cd %D; /bin/tar cbf 20 %C *
The command instructs the checkpoint operation to save each location on a
tape and to use the tar command with the parameter cbf 20. The checkpoint

utility automatically substitutes the appropriate value for “%N,"” “%D,"” and
“%C."

Alternate Checkpoint Template Files (UNIX and Linux)

UNIX: An alternate checkpoint template file, cktmpl_cpio.def, uses the UNIX
cpio command to back up and restore the database files. ®

Linux: An alternate checkpoint template file, cktmpl_ocfs.def, is for use with
the Oracle Cluster File System (OCFS) on Linux. @

The alternate file can be found in $II_SYSTEM/ingres/files.

To use an alternate template file and override the default cktmpl.def template
file, use the ingsetenv command. For example:

ingsetenv II_CKTMPL_FILE $II_SYSTEM/ingres/files/cktmpl_cpio.def

Performing Backup and Recovery 395

Backup and Recovery of the Master Database (iidbdb)

Format of the Checkpoint Template File in VMS

The checkpoint template file, cktmpl.def, can be found in
$II_SYSTEM:[INGRES.FILES].

The checkpoint template file uses the four-letter key described above to begin
each line. A line can specify an individual tape and disk handling command or
the name of a user-written command file to provide more complex processing
such as backing up all of a database’s locations concurrently.

Defaults are provided so that sites using standard processing do not need to
alter the checkpoint template file.

Here are some example lines from a cktmpl.def file:

WSTD: @ckp_to_tape "%N" "%D" "%C" "%F"
WSDD: @ckp_to_disk "%D" "%A"

WRTD: @rollfwd_from_tape "%N" "%D" "%C" "%F"
WRDD: @rollfwd_from disk "%A" "%D"

Each of these example lines specifies the name of a command file and
establishes requests for run-time information.

Backup and Recovery of the Master Database (iidbdb)

The iidbdb database is your Ingres installation’s master database. It contains
information about your installation as a whole, such as:

® Which databases exist in this installation
®m Where user databases are located

® Which locations can be used for files

®m Which users can access databases

The iidbdb also contains information about groups, roles, and database
privileges defined for your site.

The iidbdb is journaled by default.

The iidbdb and Checkpointing

You should regularly checkpoint and journal the iidbdb database. Ckpdb and
rollforwarddb are the supported utilities for recovering the iidbdb if it is lost or
damaged for any reason. The system catalogs containing the installation
information for groups, roles, and database privileges are stored in the iidbdb
database and can only be recovered from backups.

396 Database Administrator Guide

Set Log_Trace Statement—Trace Log Writes

Set Log_Trace Statement—Trace Log Writes

You can use the LOG_TRACE option of the SET statement to start and stop
tracing of log file writes. Using this option requires the trace privilege.

Important! Do not use set log_trace alone as a debugging or tracing tool. Do
not base applications on set log_trace output because it is not guaranteed to
remain the same across releases. The support of set log_trace is not
guaranteed in this or future releases.

To start tracing log writes, issue the following statement:

set log_trace;

To stop tracing log writes, issue the following statement:

set nolog_trace;

When you use SET LOG_TRACE during a session, you receive a list of the log
records written during execution of your query, along with other information
about the log. SET LOG_TRACE output includes:

® The length of the log and the amount of space reserved for its CLR. For
more information on CLRs, see Log Space Reservation (see page 349).

m If the log write is a normal log record (do/redo) or a CLR.
m If the log record can be copied to the journal file.

If the log is associated with a special recovery action.

Performing Backup and Recovery 397

Chapter 14: Calculating Disk Space

This section contains the following topics:

Space Requirements for Tables (see page 399)

Space Requirements for Journal Files (see page 405)
Space Requirements for Modify Operations (see page 406)
Space Requirements for Sorts (see page 408)

It is important to ensure that the Ingres installation has adequate disk space
for storing the system executables and data tables. Disk space is also used
during the execution of many commands.

This chapter discusses how to calculate the disk space needed for the various
files and operations of an Ingres installation.

Space Requirements for Tables

This section defines terms applicable to page size and gives calculations for
estimating the amount of disk space needed for tables. These are
approximations—your table can be much larger, depending on compression
and the size of key values.

The calculations are based on newly modified tables. Using the humber of rows
in the table to determine table size becomes less accurate after data has been
deleted or added.

VDBA provides a calculation tool that allows you to calculate disk space
requirements for any storage structure quickly and easily. For procedures, see
online help.

Calculating Disk Space 399

Space Requirements for Tables

Calculate Space Requirements for Heap Tables

Note: If rows in the table span pages, use the procedure in Calculate Space
Requirements When Rows Span Pages (see page 403) instead.

Use the following procedure to determine the amount of space needed to store
the data in a heap table:
1. Create the table.
2. Determine the number of rows that fit on a page.
select tups_per_page from iitables where table_name = 'tablename’;
3. Determine the total number of pages needed if the table is a heap.

total _heap _pages = num_rows / tups_per_page

Calculate Space Requirements for Hash Tables

Note: If rows in the table span pages, use the procedure in Calculate Space
Requirements When Rows Span Pages (see page 403) instead.

Follow these steps to determine the amount of space needed to store the data
in a hash table.
1. Create the table and modify it to hash.

2. Determine the number of rows that fit on a page, adjusted for the data
page fillfactor to be used.

select tups_per_page * table_dfillpct/100 from iitables where
table_name = ‘tablename’;

3. Determine the total number of pages needed for a hash table.
total_hash_pages = (num_rows/(tups_per_page)

Note: Because hashing does not guarantee an equal distribution of rows,
the actual number of pages required can be greater than calculated above.

400 Database Administrator Guide

Space Requirements for Tables

Calculate Space Requirements for ISAM Tables

Follow these steps to determine the amount of space needed to store the data
in an ISAM table:

1.
2.

Create the table and modify it to ISAM.

Determine the number of rows that fit on a page (adjusted for data page
fillfactor) and the number of keys that fit on an index page.

select tups_per_page * table_dfillpct/100, keys_per_page from iitables
where table_name = ‘tablename’;

Determine the number of data pages needed for the table:
data_pages = (num_rows / tups_per_page)

Note: When rows span pages, determine the number of data pages using
the calculation in Calculate Space Requirements When Rows Span Pages
(see page 403) instead.

Determine the number of index pages needed for the table:
index_pages = data_pages |/ keys_per_page

Note: When rows span pages, use the following calculation instead:
index-pages = num_rows / keys_per_page

Determine the total nhumber of pages needed for the table. The total
includes data pages and index pages. The total humber of allocated pages
in an ISAM table is never less than keys_per_page.

total isam_pages = data_pages + index_pages
if (total_isam_pages < keys_per_page)

total _isam_pages = keys_per_page

Calculating Disk Space 401

Space Requirements for Tables

Calculate Space Requirements for B-tree Tables
Follow these steps to determine the amount of space needed to store the data
in a B-tree table:
1. Create the table and modify it to B-tree.

2. Determine the number of rows that fit on a page, the number of keys that
fit on an index page, and the number of keys that fit on a leaf page
(adjusted by the appropriate fillfactors):

select tups_per_page * table_dfillpct/100, keys per_page *
table_ifillpct/100, keys_per _leaf * table_lIfillpct/100 from iitables where
table_name = 'tablename’;

3. Determine the number of leaf pages needed. Save the remainder of the
division because it is used later:

leaf_pages = (num_rows/keys_per_leaf)
remainder = modulo (num_rows / (keys_per._leaf)
4. Determine the number of data pages needed.
data_pages = leaf_pages * (keys_per_leaf / tups_per_page)

Note: When rows span pages, determine the number of data pages using
the calculation in Calculate Space Requirements When Rows Span Pages
(see page 403) instead.

5. 1If the remainder from Step 3 is greater than 0, adjust the number of leaf
and data pages:

a. leaf pages = leaf pages + 1
b. Round the division up to the nearest integer:
data_pages = data_pages + (remainder / tups_per_page)
Note: When rows span pages, Step 5b does not apply.
6. Determine the number of sprig pages.

sprig_pages: The number of index pages that have leaf pages as their next
lower level:

a. If leaf_pages <= keys_per _page, then sprig_pages = 0
b. Otherwise, calculate as follows, and round up to the nearest integer:

sprig_pages = (leaf_pages [/ keys_per._page)

402 Database Administrator Guide

Space Requirements for Tables

Determine the number of index pages.

index_pages: The number of index pages that are not sprig pages. This is
done iteratively. Do the following if sprig_pages > keys per_page:

X = sprig_pages

do
{
X = x [keys_per_page
index_pages = index_pages + x
>

while (x > keys_per_page>

Determine the total space required. The total includes data pages, leaf
pages, sprig pages, and index pages.

total_btree_pages = data_pages + leaf _pages + sprig_pages +
index_pages

Calculate Space Requirements When Rows Span Pages

Follow these steps to determine the amount of space needed to store the data
in a table with rows that span pages:

1.

Determine the number of pages per row, as follows:
pages_per_row = row_size / max row size

where max_row_size is the maximum row size for the table, as shown in
Maximum Row Size Per Page Size (see page 403).

Round up to the nearest integer.
Determine the number of data pages needed for the table, as follows:

data_pages = num_rows * pages_per_row

Maximum Row Size Per Page Size

Table rows span pages if the row size is greater than the maximum row size
for the table page size, as shown in this table:

Page Size Max Row Size
2048 (2 KB) 2008 bytes
4096 (4 KB) 3988 bytes
8192 (8 KB) 8084 bytes

16384 (16 KB)

16276 bytes

32768 (32 KB)

32660 bytes

Calculating Disk Space 403

Space Requirements for Tables

Page Size Max Row Size

65536 (64 KB) 65428 bytes

Space Requirements for Compressed Tables

Table size for compressed tables is not possible to determine by an algorithm
because the number of fields that can be compressed, and what percentage
they can be compressed, differ for every table.

To get any sort of estimate, you must guess the amount by which each record,
on the average, can be compressed. Use this estimated record width to
determine the size of the table as if it were uncompressed, using the rules set
forth above.

Tracking of Used and Free Pages

The DBMS space management handles used and free page tracking. A table
uses a combination of a single free header page (H) and one or more free map
pages (M) to track free and used pages.

Each free map page can track 16,000 pages, recording whether the page is
free or used. As tables are allowed to grow past 16,000 pages, there can be
more than one free map page in a table.

Free map pages are tracked by the free header page, whose location is
recorded in the system catalog entries for the table.

Free header and free map pages are additional pages required for each table
page count.

Note: All tables in the database can grow by a minimum of two pages. One
free map page is added per 16,000 pages.

In VDBA, to view the graphical display of the pages, select a table and select
the Pages tab.

Note: For B-tree tables, all empty disassociated data pages and any pages on
the old free list are marked as “used.” The only way to reclaim this space is to
select Shrink B-tree Index in the Modify Table Structure dialog in VDBA, or use
the MODIFY TABLE TO BTREE statement in SQL. For more information, see the
SQL Reference Guide.

404 Database Administrator Guide

Space Requirements for Journal Files

Calculation of Allocated Table Size

VDBA automatically calculates table size based on the number of allocated
pages. Using VDBA, select a table and select the Pages tab to view the pages
property sheet.

Alternatively, the allocated_pages field in the iitables standard catalog can be
used to calculate table size based on the number of allocated pages. You can
calculate:

m The size of the table on disk as:
iitables.allocated_pages * PageSize
® The number of free pages left in the table as:

iitables.allocated pages - iitables.number_pages

Space Requirements for Journal Files

Journal files are created in the database’s journal directory. This is a single
directory.

The archiver moves log file records for journaled tables affected by committed
transactions to the database’s journal file during periodic sweeps through the
log file. The journal files are never directly connected to user sessions—they
are written only by the archiver.

The following conditions cause a new journal file to be started:

® Once the journal file reaches a certain size (currently about 8 MB) a new
journal file is started.

® Each checkpoint starts a new journal file upon its successful completion,
because the journal files contain records of changes made after a specific
checkpoint was taken.

You can delete old, unneeded journal files using VDBA. For more information,
see Setting Checkpoints in online help.

To accomplish this task at the command line, use the ckpdb system command.
For more information, see the Command Reference Guide.

Calculating Disk Space 405

Space Requirements for Modify Operations

Space Requirements for Modify Operations

Modify operations require additional working disk space because a new version
of the table must be built before the old table can be removed. In most cases,
modify operations require about two or three times more space than the
original table size. This is only an approximation; the amount of disk space
actually needed can vary.

The free disk space is also required during modify to relocate and modify to
reorganize operations.

For information about relocating and changing the location of storage
structures, see the Modifying Storage Structures topic in online help for VDBA.
For details on the DBA use of these operations, see Techniques for Moving a
Table to a New Location (see page 58).

In SQL, you can accomplish these tasks with the MODIFY TO REORGANIZE and
MODIFY TO RELOCATE statements. For more information, see the SQL
Reference Guide.

The maintain_locations privilege is needed to perform the operation on location
objects in VDBA or to issue the MODIFY LOCATION statement in SQL. The
maintain_locations privilege allows users to do the following:

® Control the allocation of disk space
® Create new locations or allow new locations to be created

m Modify or remove existing locations

406 Database Administrator Guide

Space Requirements for Modify Operations

Factors Affecting Space Requirements for Modify Operations

The following are important factors that affect disk space requirements:

You need at least twice the disk space of the table (*2X"), one copy of the
original table and one copy of the new table.

The new table size can be increased if an index is being added. Conversely,
space can be freed if an index is no longer necessary. Index space can
vary widely depending on the size of the key.

If you are modifying to a sorted structure (ISAM, B-tree) or to hash, an
additional copy of the original table is needed, thus requiring three times
the disk space of the table ("3X").

If you are modifying a compressed table, calculate disk space based on the
uncompressed size. In the worst case, this is the row size times the
number of rows.

Usually going from a compressed structure to an uncompressed structure
increases the table size, and going the other way decreases its size. The
amount of change cannot be predicted and is dependent on the data in the
table. If many NULL values are present and if many string fields have
trailing blanks, the use or omission of compression is very noticeable.

Fill factor, minpages, leaffill, and nonleaffill also play a role in the resulting
table size. For details, see Options to the Modify Procedure (see page 210).

Summary of Space Requirements for Modify Operations

The following table provides a summary for estimating disk space
requirements.

In the table, "O+N" (Original+New tables) corresponds roughly to twice the
table size (2X) and "O+N+S" to three times the table size (3X). The space
required can be affected by whether an index is added ("I” in the table) or
existing index space freed (“U” in the table).

Original Modified to
Table
Structure

Heap Hash ISAM B-tree
Heap O+N O+N+S O+N+S+I O+N+S+I
Hash O+N O+N+S O+N+S+I O+N+S+I
ISAM O+N-U O+N+S-U O+N+S O+N+S
B-tree O+N-U O+N+S-U O+N+S O+N+S

Calculating Disk Space 407

Space Requirements for Sorts

Legend:

O = Original table size

N = New table size

S = A sort is required

I = Index is being added

U = Space freed because an index is no longer necessary

Note: Remember that numerous factors contribute to the actual disk space
used in a particular modify operation. Additional factors include compression
and the various fill values.

Space Requirements for Sorts

Sorting occurs commonly during many index, copy, and modify operations.
(Sorting also occurs in the processing of the equivalent SQL statements.)

When the size of the sort requires disk space, temporary work locations are
used.

A default work location area is defined during installation.

The disk space required for sorting depends on how much sorting needs to be
done. If the table to be sorted is badly out of sorted order, more space can be
used than if it is in nearly sorted order.

For a nearly sorted table, the amount of work location space is equal to the
uncompressed size of the table.

For a table that is badly out of order, the maximum work location space is two
times the uncompressed size of the table, and the space required per location
can be estimated by the formula:

(2 * uncompressed_table_size) / number_of_work_locations

408 Database Administrator Guide

Space Requirements for Sorts

Insufficient Sort Space

If any work location runs out of disk space during a sort, the sort fails and the
associated transaction is aborted.

To correct this situation, you can add additional work locations or provide more
space on the device that filled (by removing or relocating unneeded files).
Alternatively, the device that filled can be dropped through the SET WORK
LOCATIONS statement.

For information about work locations and the SET WORK LOCATIONS
statement, see Work Locations (see page 35). For a discussion on deleting
unneeded files, see the chapter “Maintaining Databases.”

Orphaned Sort Files
Sort files can be left in work locations after certain types of failures.

In VDBA, use the “verify database” procedure to remove these orphaned files.
For more information, see Verifying a Database in VDBA online help.

To accomplish this task at the command line, use the verifydb command. For
more information, see the Command Reference Guide.

Factors Affecting Sort Performance

The use of multiple work locations does not generally affect overall sort
performance.

In UNIX, the performance of very large sorts can be affected by the amount of
available operating system cache memory. While most aspects of server
performance are largely unaffected by the OS cache size, sorts employ the OS
cache, as well as the Ingres DBMS Server DMF cache. Sorting time can
sometimes be improved by configuring additional OS memory.

Calculating Disk Space 409

Chapter 15: Improving Database and
Query Performance

This section contains the following topics:

Locking and Concurrency Issues (see page 411)
Database Maintenance Issues (see page 416)

Design Issues and Performance (see page 418)
Information Needed By Customer Support (see page 422)

This chapter contains information on how to improve and optimize query and
database performance. Good performance requires planning and regular
maintenance.

The techniques and procedures in this chapter may help you to solve a
performance problem yourself or to accurately define the problem if you must
call customer support.

Note: This chapter assumes that Ingres is running satisfactorily. If you are
encountering problems with the operation of Ingres, first see the System
Administrator Guide for troubleshooting information.

Locking and Concurrency Issues

If your performance problem occurs in a multi-user environment or if the
query runs slowly or hangs intermittently, you can have a concurrency
problem.

Concurrency problems occur when several users access the same tables and at
least one is a writer. If your query needs to access objects that are locked, the
session waits indefinitely for locks to be released unless the lockmode timeout

is set or a deadlock occurs.

Improving Database and Query Performance 411

Locking and Concurrency Issues

Lock Waits and Performance

To monitor locks, use the Lock Information branch of the Performance Monitor
window in VDBA to monitor lock waits. For details, see Viewing Performance
Information in online help. The Performance Monitor can also be accessed by
choosing Ingres Visual Performance Monitor from the Ingres menu.

If you find lock waits, identify the queries that are holding locks on the
resources you are waiting to access. You must modify your locking strategy to
avoid future problems.

Pay particular attention to:

® maxlocks

® readlock = nolock

® timeout

m set lock_trace command

If the lock being waited on was created as the result of lock escalation, your

system is configured with too few system-wide locks. This is a configuration
issue; see the System Administrator Guide.

If lock escalation occurs because too many locks are taken on a given table’s
pages, a SET LOCKMODE statement can be issued to increase this threshold.
The default is 10 before escalation occurs. For more information, see the
chapter “Understanding the Locking System.”

412 Database Administrator Guide

Locking and Concurrency Issues

Multi-query Transactions and Performance

Remember that a transaction accumulates locks on resources until you roll
back or commit. A transaction that is waiting for locks, or that is not waiting
for a lock but nevertheless seems unusually slow, can be using excessive
server or system resources.

Here are suggestions:

m Keep your transactions as short as possible.

® Commit your transactions quickly:

- You create large multi-query transactions (MQTs) unless you use SET
AUTOCOMMIT ON or COMMIT after each statement. Statements
accumulate as one multi-query transaction until you commit.

- MQTs must not include prompts that hang the transaction until a user
responds, or sleeps that prevent your transaction from being released
quickly.

® Avoid bottlenecks in your transaction such as:
- Insert to heap table with secondary indexes
— Counter table updates
- Iterative deletes

- Unbounded long iterations

Improving Database and Query Performance 413

Locking and Concurrency Issues

Overflow and Performance

Overflow chains slow concurrent performance. Overflow pages are attached to
the main data page if a record must be added to a full main page. The query
that touches one main data page must now touch that page plus each
associated overflow page. This increases I/0, cause concurrency problems, and
uses up locking system resources.

Here are suggestions:

Monitor overflow chains.

Check the number of overflow pages for your tables and secondary
indexes. To monitor overflow in VDBA, select a table or secondary index in
the Database Object Manager window, and click the Pages tab. Use the
legend to interpret the information displayed.

If the number of overflow pages is greater than 10-15% of the number of
data pages, expect performance degradation.

Check for duplicate keys. Overflow problems are often caused by them.

Consider trying a different storage structure. Some table structures create
long overflow chains when much new data is added. For details, see
Storage Structure and Overflow (see page 415).

Decrease overflow
Here are ways to decrease overflow and improve concurrency:
- Use unique keys.

- Modify the table to reorganize it; with a B-tree structure, simply
specify the Shrink B-tree Index option.

— Consider tailoring the table’s fill factor.

For additional information, see the sections on overflow and fill factor in the
chapters “"Choosing Storage Structures and Secondary Indexes” and
“Maintaining Storage Structures.”

414 Database Administrator Guide

Locking and Concurrency Issues

Storage Structure and Overflow

Here are overflow considerations for each storage structure:

m Heap—Heap tables are created as one main page with an overflow chain.
There is no overflow management.

m Hash—Overflow pages occur in a newly modified table if the key is
repetitive; this is normal but undesirable. Check a freshly modified table. If
there is overflow, consider using ISAM instead.

m [SAM—ISAM has a fixed index that can cause long overflow chains. Modify
frequently or use B-tree for a non-static table. Use heap structure for large
bulk updates and modify back to ISAM to avoid update performance
problems.

m B-tree—No overflow if there are no duplicate keys, so consider making
keys unique. Overflow occurs only at the leaf level and only when 2K
pages are used. Use the Shrink B-tree Index option to reorganize it. Use
heap structure for bulk loads, modify to B-tree.

Set Statements and Locking Strategy

There are a variety of SET statements you can use to manage your locking
strategy.

Be sure you are using user-defined lockmodes and isolation levels to their
fullest to avoid concurrency and deadlock. For assistance with strategy, see
the chapter “Understanding the Locking System.” For command syntax, see
your query language reference guide.

Pay particular attention to:

® Deadlock

®m | ock_trace flag

m Maxlocks

®m Readlock = nolock

= Timeout

For additional information on the use of the SET statement to customize the
guery environment, see the System Administrator Guide.

Improving Database and Query Performance 415

Database Maintenance Issues

Database Maintenance Issues

If your query used to run quickly and is now slower, or the speed of the query
changes depending on the constants specified in the WHERE clause, your
problem can be poor database maintenance.

To optimize performance, set up maintenance procedures that run DBA
utilities.

The following features are especially useful in tracking performance problems:
® Optimization

m Modification of table and index structure

m System modification

m Verification

For discussions of maintenance issues, see the chapters “Maintaining

Databases,” “"Maintaining Storage Structures,” and “Using the Query
Optimizer.”

Optimization and Performance

The optimization feature collects statistics that are used by the query optimizer
to determine the best query execution plan (QEP) to use for your queries.
Follow these optimization guidelines:

®m Periodically run optimization on all your databases to generate statistics for
columns that are keys or indexed. List the other columns you need as an
argument to this command.

® Run full optimization statistics on columns referenced in WHERE clauses of
strategic queries that are having problems.

® For very large tables, create statistics based on sample data.

® When there are significant changes to your data distribution, run
optimization on the affected columns.

® Do not collect excessive statistics, because you build up large optimizer
tables with unused data.

® Run system modification after every optimization.

To perform optimization, use the optimizedb command or in VDBA use the
Optimize Database dialog.

416 Database Administrator Guide

Database Maintenance Issues

Table and Index Modification and Performance

You can modify a table or index to:

m Reorganize data on new data pages
® Free deleted record space

®m Reduce overflow chains

m Adjust the fill factor

Use the Shrink B-tree Index option (or MODIFY TO MERGE statement) to:
m Reorganize index pages of B-tree tables
m Reduce overflow chains

Use the Change Location option (or MODIFY TO RELOCATE statement) to move
your tables to balance disk access.

To perform modification, use the MODIFY statement or, in VDBA use the
Modify Table Structure and Modify Index Structure dialogs.

System Modification and Performance

The system modification feature modifies system catalogs to predetermined
storage structures.

® Run system modification on the iistatistics system catalog after
optimization.

® Run system modification on ii_rcommands if you create and update a lot of
Report-Writer reports.

m Regularly using system modification reduces overflow in your system
catalogs. Run it often if catalog changes are frequent due to development
or if you use many CREATE or DROP statements in your applications.

To perform system modification, use the sysmod command or, in VDBA, use
the System Modification dialog

Improving Database and Query Performance 417

Design Issues and Performance

Verification and Performance

Use the verification utility to:

m Destroy or list unrequired disk files, expired tables, or temporary tables in
your database

m (Clean up fragmented disk space

To perform verification, use the verifydb command or, in VDBA, use the Verify
Database dialog.

Design Issues and Performance

Good query performance requires planning.

Carefully plan the design of the following:

m Storage structures and indexes

m Keys

m Queries

For help in identifying performance issues, see the chapters “"Ensuring Data
Integrity,” “"Maintaining Databases,” “Maintaining Storage Structures,” and
“Using the Query Optimizer.”

Other important design issues are:

m Database design

®m Validation checks and integrities

® Grants and views

® Application design

418 Database Administrator Guide

Design Issues and Performance

Hierarchy for Diagnosing Design-based Performance Problems

A thorough performance analysis must include each item in the following list.
Areas are listed in the order of greatest gain. For example, if your database
design is flawed, perfect server configuration cannot help you avoid query
performance problems.

1. Database design

2. Storage structures and index design. See the chapter “"Choosing Storage
Structures and Secondary Indexes.”

3. Key design. See the chapter "Choosing Storage Structures and Secondary
Indexes.”

4. Constraints. See the chapter "Managing Tables and Views.”

Ui

Validation checks and integrities. See the Security Guide and the chapter
“Ensuring Data Integrity” in this guide.

Grants and views. See the Security Guide.
Query design.
Application design.

o ® N O

Concurrency. See the chapter “Understanding the Locking System” and the
System Administrator Guide.

10. DBA utilities and maintenance. See the chapter “Maintaining Databases.”

11. Operating system resources and tuning. See the System Administrator
Guide.

12. Server configuration. See the System Administrator Guide.

Storage Structures and Index Design and Performance

Choosing the correct table storage structure for your needs can improve
concurrency and query performance. Remember that there is no substitute for
testing and benchmarking your queries.

For tips on choosing storage structures and advantages and disadvantages of
the various storage structures, see the chapter "Choosing Storage Structures
and Secondary Indexes.” For information on modifying and compressing
storage structures and a discussion of overflow, see the chapter “Maintaining
Storage Structures.”

Key Design and Performance

Key design is a complex subject. For additional information on keys, see the
chapter “Choosing Storage Structures and Secondary Indexes.”

Improving Database and Query Performance 419

Design Issues and Performance

Characteristics of Good Keys

Good keys have the following features:
m Use columns referenced in the WHERE clauses and joins of your queries
® Are unique

Always document reasons for maintaining non-unique keys.

All keyed storage structures can enforce unique keys. They are:
m Short
m Static

= Non-nullable
Characteristics of Bad Keys

Bad keys have the following features:
= Wide
- Use wide keys with caution.
- You get fewer rows per page.
- Evaluating the hash function takes more time with wide keys.

- A wide key deepens the index level of B-tree and ISAM logarithmically,
with respect to key width. B-tree is the least affected table structure.

- Consider using a surrogate key as an alternative.
® Non-static

Updating the index can slow performance.
= Non-uniform duplication

A mix of high and low duplication can cause inconsistent query
performance.

®m Sequential
- Sequential keys must be used with care.

- ISAM tables can be lopsided and the overflow chains can cause
concurrency problems.

- Control sequential key problems with a frequent modify schedule.

420 Database Administrator Guide

Design Issues and Performance

Multi-Column Keys and Performance

Multi-column keys have special issues. If used improperly in your query, the
key cannot be used and the search does a full-table scan.
Keep the following in mind:

m Use the most unique and frequently used columns for the left member of a
multi-column key.

m Searches on B-tree and ISAM tables must use at least the leftmost part of
a multi-column key in a query, or a full-table scan can result.

m Searches on hash tables must use an exact match for the entire key in the
query, or a full-table scan can result.

m Optimizer statistics are approximated by adding the statistics of the
columns making up a multi-column key.

Surrogate Keys and Performance

When you use a short surrogate or internal key to replace a bad key, or
because there is no good key, consider the performance trade-offs. The set
processing of data includes the overhead of deriving the key.
Surrogate key types include:
= Natural
Universal (a social security number or zip code are examples)
= Environmental
These are local to an organization, like an employee number.
®m Design artificial. These are:
- Local to an application
- Hard to remember
- Hard for users to understand

— Can be hidden from users

Improving Database and Query Performance 421

Information Needed By Customer Support

Query Design and Performance
Query design is a complex subject. Following these tips will improve the
performance of your queries:

m Conversion joins are joins where two columns of different data types are
joined in a query, either explicitly or implicitly. These joins are frequently
the result of database design problems and must be avoided.

® Avoid using function joins.
- Functions in the WHERE clause force a full-table scan.
— Control uppercase and lowercase, and so on, at input time.
m Some complex OR queries can be rewritten as unions.
m Evaluate QEPs for critical queries:
Can large table scans be avoided?
- Is an additional index needed?
- Are Cartesian products with large tables used?
- Are function joins used?
m Use repeated queries for queries that are used many times.

® Do not forget to commit. Consider using SET AUTOCOMMIT ON.

Information Needed By Customer Support

If you have worked through the query performance evaluation and your
problem is not resolved, call customer support. Before calling, follow these two
procedures:

m Jsolate and analyze the suspect query

® Create a test case

422 Database Administrator Guide

Information Needed By Customer Support

Isolate and Analyze the Problem Query

To determine whether the problem is due to the user interface, the query
itself, or a software bug, follow these steps:

1.

Isolate a poorly performing query from your user interface using the trace
flag set printgry, which prints queries before they are optimized and
executed. Identify the query that seems to hang.

For details on setting printgry, see the System Administrator Guide.

Execute the query in a terminal monitor or from within the VDBA SQL
Scratchpad window, and determine if performance is the same. If
performance is only a problem when the query is executed from the user
interface, you have identified an application problem. If performance is the
same, continue.

In a terminal monitor, issue the following statements to display the QEP
without running the query:

set gep;
set optimizeonly;

Now, execute your query and save the output to a file for examination.
After running the query, exit the terminal monitor session or turn query
execution back on using:

set nooptimizeonly;
For details on these set statements, see the System Administrator Guide.

Review the Design Issues section and evaluate the QEP for your query. For
example, you can look for:

m Large table scans that can be avoided
= An additional index that is needed

m Cartesian products with large tables

= Function joins

m If you are not able to identify your problem and suspect a software
bug, submit your query and a test case to customer support.

Improving Database and Query Performance 423

Information Needed By Customer Support

Create a Test Case

To create a test case, follow these steps:

1. Verify that you are using the most recent release of Ingres available for
your platform.

2. Collect the information customer support needs to duplicate your problem.

Customer support needs the following information in ASCII files that you
can send by e-mail, UUCP, or on a tape:

The exact query that causes the error to occur
The QEP generated by the problem query

Dump optimizer statistics for all the tables in the query (use the Direct
Output to Server File option in the Display Statistics dialog in VDBA, or
the statdump command with the -o flag)

The help table tablename information for all the tables that the query
references (or equivalent information obtained from within VDBA)

The help index indexname information for all secondary indexes of
tables in the query (or equivalent information obtained from within
VDBA)

The help permit on table tablename information for grants on all the
tables in the query (or equivalent information obtained from within
VDBA)

A query of the system catalogs for information about each table. Look
at iirelation and select relpages, reltups, relmain, and relprim, where
the relid is equal to each table and index in the query.

The create scripts and data for all the tables, indexes, and grants that the
query references. When generating the scripts, you must specify the Create
Printable Data Files option. For information on generating these scripts, see
the chapter “Loading and Unloading Databases.”

424 Database Administrator Guide

Appendix A: System Catalogs

This section contains the following topics:

Standard Catalog Interface (see page 426)

Mandatory and Ingres-Only Standard Catalogs (see page 484)

Extended System Catalogs (see page 486)

Sample Queries for the Extended System Catalogs for SQL (see page 495)
Forms System Catalogs (see page 497)

ABF System Catalogs (see page 504)

QBF System Catalogs (see page 509)

Report-Writer System Catalogs (see page 511)

Vision System Catalogs (see page 514)

DBMS System Catalogs (see page 520)

This appendix describes the Standard Catalog Interface catalogs, the Extended
System catalogs, and the DBMS System Catalogs.

This appendix describes the catalogs for Ingres 9.2. For catalog formats of
other Ingres releases, see the appropriate documentation set.

Note: The DBMS System Catalogs and Extended System Catalogs are
unsupported and can change at any time. Information about these catalogs is
provided solely for your convenience. In providing this information, the
company makes no commitment to maintain compatibility with any feature,
tool, or interface. The company does not provide support, either through
customer support or release maintenance channels, for the resolution of any
problems or bugs arising from the use of unsupported features, tools, or
interfaces.

System Catalogs 425

Standard Catalog Interface

Standard Catalog Interface

Each database has a set of system catalog tables that store information (for
example, metadata) required by Ingres. The System Catalog Interface (SCI) is
a set of views on top of these system catalog tables, and a set of tables that
can be queried through SQL statements and therefore used in applications to
access (but not update) information about the database.

If you are developing applications that need to query the system catalogs, you
must use the Standard Catalog Interface, so that your applications will be
upwardly compatible.

All database users can read the Standard Catalog Interface catalogs, but only
a privileged user can update them.

To display the underlying view, use the SQL statement HELP VIEW. To display
the format of catalogs, use the SQL statement HELP (see page 427).

The length of character fields, as listed in the length column, is a maximum
length; the actual length of the field may be installation dependent. The values
are left-justified and the columns are non-nullable.

Unless otherwise stated, dates are displayed as Ingres dates, that is, 25-byte
character strings with the following format:

yyyy_mm_dd hh:mm:ss GMT

When developing applications that access SCI, storage should be allocated
based on the length shown in the Data Type column in the descriptions below.

426 Database Administrator Guide

Standard Catalog Interface

Example of HELP VIEW and HELP Statements

The following HELP VIEW statement displays information about the iisynonyms

view:
help view iisynonyms

Example output:

View: iisynonyms
Owner : $ingres
Check option: of f

View Definition:

create view iisynonyms(
synonym_name,
synonym_owner,
table_name,
table_owner)

as
select synonym name,
synonym_owner,

relid,

relowner
from "$ingres".iirelation,

"$ingres".iisynonym
where reltid = syntabbase
and reltidx = syntabidx

The following HELP statement displays the format of the iisynonyms catalog:

help iisynonyms
Example output:

Name:
Owner:
Created:
Type:
Version:

Column Information:

Column Name
synonym_name
synonym_owner
table_name
table_owner

iisynonyms

$ingres

17-dec-2007 10:11:56
system catalog

I119.0

Type
char
char
char
char

Key

Length Nulls Defaults Seq

32
32
32
32

no
no
no
no

no
no

yes
yes

System Catalogs 427

Standard Catalog Interface

Standard Catalogs for All Databases

The standard catalogs for all databases are as follows:

iiaccess iialt_columns ilaudittables
iicolumns iiconstraint_indexes iiconstraints
iidb_comments iidb_subcomments iidbcapabilities
iidbconstants iidistcols iidistschemes
iievents iifile_info iihistograms
iiindex_columns iiindexes iiingres_tables
iiintegrities iikeys iikey_columns
iillog_help iilpartitions iimulti_locations
iipermits iiphysical_tables iiprocedures
iiproc_access iiproc_params iirange
iiref_constraints iiproc_rescols iirules
iisecurity_alarms iiregistrations iisequences
iistats iisession_privileges iitables

iiviews iisynonyms

iiaccess Catalog

The iiaccess catalog holds information about permissions on tables, views, and

indexes.
Column Name Data Type Description
table_name char(32) Name of the table, view, or index
table_owner char(32) Owner of the table, view, or index
table_type char(1) T—Base table
V—View
I—Index
system_use char(1) S—System catalog object
U—User object
G—Generated
permit_user char(32) Name of grantee or empty string
permit_type char(64) Privilege granted

428 Database Administrator Guide

Standard Catalog Interface

iialt_columns Catalog

All columns defined as part of an alternate key have an entry in iialt_columns.

Column Name Data Type Description

table_name char(32) The name of the table

table_owner char(32) The name of the table owner

key_id integer The number of the alternate key for
this table

column_name char(32) The name of the column

key_sequence smallint Sequence of column in the key,

numbered from 1

iiaudittables Catalog

The iiaudittables catalog provides a list of currently registered security audit
log files for the database.

Column Name Data Type Description

table_name char(32) The name of the virtual security
audit table

table_owner char(32) The name of the table owner as
determined by the register table
statement

audit_log char(256) The full file name specification of the

underlying security audit log

register_date char(25) The date and time the audit table
was registered

iicolumns Catalog

For each queriable object in the iitables catalog, there are one or more entries
in the iicolumns catalog. Each row in iicolumns contains the information on a
column of the object. licolumns is used by Ingres tools and user programs to
perform dictionary operations and dynamic queries.

Column Name Data Type Description
table_name char(32) The name of the table.
table_owner char(32) The owner of the table.

System Catalogs 429

Standard Catalog Interface

Column Name

Data Type

Description

column_collid

smallint

The column's collation ID. Valid
values are:

-1 The default

1 for unicode

2 for unicode_case_insensitive
3 for sqgl_character

column_name

char(32)

The name of the column

column_datatype

char(32)

The data type of the column:
INT

INTEGER
SMALLINT
FLOAT

REAL

DECIMAL
DOUBLE PRECISION
C

CHAR
CHARACTER
VARCHAR

LONG VARCHAR
BYTE

LONG BYTE
TEXT

MONEY
INGRESDATE
ANSIDATE
TIME
TIMESTAMP
INTERVAL

column_length

integer

The length of the column. Displays
the precision for decimal data, zero
for money and date

column_scale

integer

Displays the scale for decimal data
type, zero for all other data types

column_nulls

char(1)

Y if the column can contain null
values, N if the column cannot
contain null values

column_defaults

char(1)

Y if the column has a default value
when a row is inserted, N if not

column_sequence

integer

The number, from 1, of the column
in the corresponding table's create
statement

430 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

key_sequence integer The order, numbered from 1, of
this column in the primary key for
a table. 0 if this column is not part
of the primary key

sort_direction char(1) A for ascending; used when
key_sequence is greater than 0

column_ingdatatype integer Contains the internal numeric

representation of the column's
external data type.

If the value is positive, the column
is not nullable.

If the value is negative, the
column is nullable.

If the installation has user-defined
data types (UDTs), this column
contains the data type that the
UDT is converted to when
returned.

The data types and their
corresponding values are:

INTEGER 30/-30
FLOAT 31/-31
C 32/-32
TEXT 37/-37
INGRESDATE* 3/-3

DECIMAL 10/-10
MONEY 5/-5

CHAR 20/-20
VARCHAR 21/-21
LONG VARCHAR 22/-22
BYTE 23/-23
LONG BYTE 25/-25
TABLE_KEY 12/-12
OBJECT_KEY 11/-11
ANSIDATE 4/-4

System Catalogs 431

Standard Catalog Interface

Column Name

Data Type

Description

TIME WITHOUT 6/-6
TIMEZONE

TIME WITH TIMEZONE 7/-7

TIME 8/-8

TIMESTAMP WITHOUT 9/-9
TIMEZONE

TIMESTAMP WITH
TIMEZONE

18/-18

TIMESTAMP 19/-19

INTERVAL YEAR TO
MONTH

33/-33

INTERVAL DAY TO
SECOND

34/-34

*Returned to applications as a
string.

column_internal_
datatype

char(32)

The internal data type of the
datatype column:

CHAR

C
VARCHAR
TEXT
INTEGER
FLOAT
DATE
DECIMAL
MONEY
TABLE_KEY
OBJECT_KEY

If the installation has user-defined
data types, this column contains
the user-specified name.

column_internal _
length

integer

The internal length of the column.
0 if the data type is date or money

Does not include the null indicator
byte for nullable columns or the 2
byte length specifier for varchar
and text columns

column_internal _
ingtype

smallint

The numeric representation of the
internal data type.

432 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

See column_ingdatatype for a list
of valid values.

If the installation has user-defined
data types, this column contains
the user-specified data type

number.
column_system_ char(1) Y if system-maintained
maintained N if not system-maintained
column_updateable char(1) Y if the column can be updated

N if the column cannot be updated
Blank if unknown

column_has_default char(1) Y if the column is defined with a
default value,
N if the column is defined as not
default,
U if the column is defined without a
default
Blank if unknown

column_default_val varchar(1501) The value of the default if the
column has one
Null if the default is not specified,
NOT DEFAULT, or not known

It contains surrounding and
embedded quotes for character
defaults, per ISO Entry SQL92
semantics.

security_audit_key char(1) Y if column is a security audit key
N if column is not a security audit
key

iiconstraint_indexes Catalog

The iiconstraint_indexes catalog contains information about constraint indexes.

Column Name Data Type Description
constraint_name char(32) The name of the constraint
schema_name char(32) The name of the schema
index_name char(32) The name of the index

System Catalogs 433

Standard Catalog Interface

iiconstraints Catalog

The iiconstraints catalog contains constraint information.

Column Name Data Type Description
constraint_name char(32) The name of the constraint
schema_name char(32) The name of the schema
table_name char(32) The name of the table
constraint_type char(1) The type of constraint:

U if Unique

P if Primary

C if Check

R if References

Blank
create_date char(25) The date the constraint was created
text_sequence integer8 The sequence number, from 1, for

the text_segment
text_segment varchar(240) The text of the constraint definition
system_use char(1) U if the object is a user object

G if generated by the system for the
user. A status of G is used for
constraints or views with check
option.

iidb_comments Catalog

The iidb_comments catalog contains table comments.

Column Name Data Type Description

object_name char(32) The name of the table, view or index

object_owner char(32) The owner of the table, view or
index

object_type char(1) Always T

short_remark char(60) The text of the short remark
Blank if none

text_sequence integer8 Always 1; the sequence number of
the long_remark

long_remark varchar The text of the long remark

(1600) If none, a zero-length string

434 Database Administrator Guide

Standard Catalog Interface

iidb_subcomments Catalog

The iidb_subcomments catalog contains column comments.

Column Name Data Type Description

object_name char(32) The name of the table, view or index

object_owner char(32) The owner of the table, view or
index

subobject_name char(32) The name of the column

subobject_type char(1) Always C

short_remark char(60) The text of the short remark
Blank if none

text_sequence integer8 Always 1; the sequence number of
the long_remark.

long_remark varchar(1600) The text of the long remark

If none, a zero-length string

iidbcapabilities Catalog

The iidbcapabilities catalog contains information about the capabilities provided

by the DBMS.

Column Name Data Type Description

cap_capability char(32) Contains one of the values listed in
the capability column of the table
below.

cap_value char(32) The contents of this field depend on

the capability; see the Value column
in the table below.

The cap_capability column contains one or more of the following values:

Capability

Value

COMMON/SQL_LEVEL

Deprecated. Use OPEN/SQL_LEVEL

DB_DELIMITED_CASE

The case of delimited identifiers:

LOWER for lowercase (Ingres setting)
MIXED for mixed case (ISO Entry
SQL92 setting)

If MIXED, an identifier must be enclosed

System Catalogs 435

Standard Catalog Interface

Capability

Value

in double quotes to maintain its original
case; otherwise, it is converted to
uppercase.

DB_NAME_CASE

The case of regular identifiers:

LOWER for lowercase (Ingres setting)
UPPER for uppercase (ISO Entry SQL92
setting)

DB_REAL_USER_CASE

The case of user names as retrieved by
the operating system.

LOWER for lowercase (Ingres setting)
MIXED for mixed case
UPPER for uppercase

DBMS_TYPE

The type of DBMS the application is
communicating with. Valid values are
the same as those accepted by the
WITH DBMS = clause.

Examples:
INGRES (default)
STAR

RMS.

DISTRIBUTED

Y if the database is distributed
N if database is local

ESCAPE

Y if DBMS supports the ESCAPE clause
of the LIKE predicate in the WHERE
clause

N if ESCAPE is not supported

INGRES

Y if the DBMS supports all aspects of
Release 6 and Ingres (the default)
N if not

INGRES/SQL_LEVEL

Version of SQL supported by the DBMS
Examples:

00600 6.0

00601 6.1

00602 6.2

00603 6.3

00604 6.4

00605 Openlngresl.x

00800 Openlngres 2.0 and Ingres II
2.0

00850 IngresII 2.5

00860 Ingres 2.6

436 Database Administrator Guide

Standard Catalog Interface

Capability

Value

00902 Ingresr3

00904 Ingres 2006

00910 Ingres 2006 Release 2
00920 Ingres 9.2

00000 DBMS does not support SQL

INGRES/QUEL_LEVEL

Version of QUEL supported by the DBMS
Examples:

00600 6.0

00601 6.1

00602 6.2

00603 6.3

00604 6.4

00605 Openlngresl.x

00800 Openlngres 2.0 and Ingres II
2.0

00850 IngresII 2.5

00860 Ingres 2.6

00902 Ingresr3

00904 Ingres 2006

00910 Ingres 2006 Release 2
00920 Ingres 9.2

00000 DBMS does not support QUEL

INGRES_RULES

Y if rules supported
N if rules not supported

INGRES_UDT

Y if user-defined data types supported
N if user-defined data types not
supported

INGRES_AUTH_GROUP

Y if group identifiers supported
N if group identifiers not supported

INGRES_AUTH_ROLE

Y if role identifiers supported
N if role identifiers not supported

INGRES_LOGICAL_KEY

Y if logical keys supported
N if logical keys not supported

MAX_COLUMNS

Maximum number of columns allowed in
a table. Current setting is 1024.

MIXEDCASE_NAMES

Y if case is significant in object names.
N if ABC, Abc, and abc are all
equivalent object names.

NATIONAL_CHARACTER_
SET

Y if Unicode supported
N if Unicode not supported

OPEN_SQL_DATES

Contains LEVEL 1 if the Enterprise

System Catalogs 437

Standard Catalog Interface

Capability

Value

Access Server supports the OpenSQL
date data type.

Absent if OpenSQL date data type is
implicitly supported when accessing a
standard DBMS server.

OPEN/SQL_LEVEL

Version of OpenSQL supported by the
DBMS

Examples:

00600 6.0

00601 6.1

00602 6.2

00603 6.3

00604 6.4

00605 Openlngresl.x
00800 Openlngres 2.0 and Ingres II
2.0

00850 IngresII 2.5
00860 Ingres 2.6
00902 Ingresr3

00904 Ingres 2006
Current setting is 00904.

Note: Use this name instead of the
deprecated COMMON/SQL_LEVEL.

OWNER_NAME

schema.table format is supported with
with optional quotes.
The default is QUOTED.

PHYSICAL_SOURCE

T indicates that iitables contains
physical table information.

P (a deprecated setting) indicates that
only iiphysical_tables contains the
physical table information.

T is the default and only current usage.

QUEL_LEVEL

Text version of QUEL support level.
Currently 119.2.0

SAVEPOINTS

Y if savepoints behave exactly as in
Ingres (default)
N if not

SLAVE2PC

Indicates if the DBMS supports Ingres
2-phase commit slave protocol:

Y for Release 6.3 and above
N for Star
N usually for Enterprise Access

438 Database Administrator Guide

Standard Catalog Interface

Capability

Value

If not present, Y is assumed.

SQL_MAX_NCHAR_COLUMN_
LEN

Maximum number of characters for an
NCHAR column - 16000

SQL_MAX_NVCHR_COLUMN_
LEN

Maximum number of characters for an
NVARCHAR column - 16000

SQL_LEVEL

Text version of SQL support level.
Currently I119.2.0

STANDARD_CATALOG_
LEVEL

Release of the standard catalog
interface supported by this database.

Valid values:

00602

00604

00605

00800

00850

00860

00902

00904

00920 (the current setting)

UNIQUE_KEY_REQ

Y if the database service requires that
some or all tables have a unique key.

N or not present if the database service
allows tables without unique keys.

SQL_MAX_BYTE_COLUMN_LEN

Maximum number of characters for a
BYTE column - 32000

SQL_MAX_BYTE_LITERAL_LEN

Maximum number of characters for a
BYTE LITERAL column - 32000

SQL_MAX_CHAR_COLUMN_LEN

Maximum number of characters for a
CHAR column - 32000

SQL_MAX_CHAR_LITERAL_LEN

Maximum number of characters for a
CHAR LITERAL column - 32000

SQL_MAX_COLUMN_NAME_LEN

Maximum number of characters for a
column name - 32

SQL_MAX_ROW_LEN

Maximum length of a row - 262144

SQL_MAX_SCHEMA_NAME_LEN

Maximum number of characters for a
schema name - 32

SQL_MAX_STATEMENTS

Maximum number of SQL statements

If O unlimited

System Catalogs 439

Standard Catalog Interface

Capability Value

SQL_MAX_TABLE_NAME_LEN Maximum number of characters for a
table name - 32

SQL_MAX_USER_NAME_LEN Maximum number of characters for a
user name - 32

SQL_MAX_VBYT_COLUMN_LEN Maximum number of characters for a
VARBYTE column - 32000

SQL_MAX_VCHR_COLUMN_LEN Maximum number of characters for a
VARCHAR column - 32000

iidbconstants Catalog

The iidbconstants catalog contains values required by the Ingres tools.

Column Name Data Type Description

user_name char(32) The name of the current user

dba_name char(32) The name of the database owner

system_owner varchar(32) The name of the catalog owner
($ingres)

iidistcols Catalog

The iidistcols catalog describes the columns that generate partitioning values
for a partitioned table. Each partitioned table has one row per partitioning
column per dimension in iidistcols. (Dimensions that do not use a value-based
partitioning scheme do not appear in iidistcols.)

Column Name Data Type Description

table_name char(32) The name of the partitioned table

table_owner char(32) The owner of the table

dimension smallint The dimension being described,
counting from 1

column_name char(32) The name of the partitioning column

column_sequence smallint The sequence of this column in this

dimension's partitioning value,
counting from 1

column_datatype char(32) The data type of the column:
INTEGER
SMALLINT

440 Database Administrator Guide

Standard Catalog Interface

Column Name

Data Type

Description

INT

FLOAT

REAL

DECIMAL
DOUBLE PRECISION
CHAR
CHARACTER
VARCHAR
LONG VARCHAR
BYTE

LONG BYTE

C

TEXT

DATE

MONEY

iidistschemes Catalog

The iidistschemes catalog describes the partitioning scheme of a partitioned
table. Each partitioned table has one row per partitioning dimension in

iidistschemes.

Column Name Data Type Description

table_name char(32) The name of the partitioned table

table_owner char(32) The owner of the table

dimension smallint The dimension being described,
counting from 1

partitioning_columns smallint The number of columns that make
up the partitioning value for a value-
based partitioning rule

logical_partitions smallint The number of logical partitions in
this dimension

partitioning_rule varchar(9) The partitioning rule:

AUTOMATIC
HASH

LIST

RANGE

System Catalogs 441

Standard Catalog Interface

iievents Catalog

The iievents catalog provides information about database events.

Column Name Data Type Description

event_name char(32) The name of the event

event_owner char(32) The owner of the event

text_sequence integer8 The sequence number from 1 for the
text_segment

text_segment varchar(240) The dbevent text definition

security_label char(8) Empty string

This column is deprecated.

iifile_info Catalog

The iifile_info catalog holds the file name for a table or index. One row is
returned for each location on which the table resides.

Column Name Data Type Description

table_name char(32) The name of the table

owner_name char(32) The owner of the table

file_name char(8) Name of the file that contains the
table

file_ext char(3) Extension of the file that contains an

extent of the table. The first extent is
named t00, succeeding extensions
are named t01, t02, and so on.

location char(32) The location of the file
base_id integer Reltid from iirelation
index_id integer Reltidx from iirelation

iihistograms Catalog

The iihistograms table contains histogram information.

Column Name Data Type Description

table_name char(32) The table for the histogram

442 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

table_owner char(32) The name of the owner

column_name char(32) The name of the column

text_sequence integer8 The sequence number from 1 for the
text_segment

text_segment char(228) The encoded histogram data created

by optimizedb

iiindex_columns Catalog

For indexes, any columns that are defined as part of the primary index key has
an entry in iiindex_columns. For a full list of all columns in the index, use the

iicolumns catalog.

Column Name Data Type Description

index_name char(32) The index containing column_name

index_owner char(32) The name of the index owner

column_name char(32) The name of the column

key_sequence smallint Sequence of column in the key,
numbered from 1

sort_direction char(1) Defaults to A for ascending

iiindexes Catalog

Each table with a table_type of I in the iitables table has an entry in iiindexes:

Column Name Data Description
Type
index_name char(32) The index name
index_owner char(32) The name of the index owner
create_date char(25) Creation date of index
base_name char(32) The base table name
base_owner char(32) The base table owner
storage_structure char(16) The storage structure for the index:

HASH
ISAM
BTREE

System Catalogs 443

Standard Catalog Interface

Column Name

Data
Type

Description

RTREE

is_compressed

char(1)

Y if the table is stored in compressed
format

N if the table is uncompressed

Blank if unknown

key_is_compressed

char(1)

Y if the table uses key compression
N if no key compression
Blank if unknown

unique_rule

char(1)

U if the index is unique
D if duplicate key values are allowed
Blank if unknown

unique_scope

char(1)

R if this object is row-level
S if statement-level
Blank if not applicable

system_use

char(1)

S if the object is a system object

U if user object

G if generated by the system for the user
Blank if unknown

Used by utilities to determine which
tables need reloading

persistent

char(1)

Y if the index re-created after a modify of
the table
N if not

index_pagesize

integer

The page size of an index

iiingres_tables Catalog

The iiingres_table catalog presents information about tables, views, and
indexes in a different format than iitables.

Column Name Data Type Description
table_name char(32) The name of the table
table_owner char(32) The owner of the table
expire_date char(25) How long to save this table
A value of 1970_01_01 00:00:00
GMT indicates table never expires.
table_integrities char(1) Y if integrities exist on this table

N if not

444 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

table_permits char(1) Y if permits exist on this table
N if not

all_to_all char(1) Y if any user can perform any
operation on this table
N if not

ret_to_all char(1) Y if any user can retrieve data from
this table

row_width integer Maximum width of tuple in bytes

is_journaled char(1) N if not journaled
Y if journaled.
C if journaled started/stopped after
next checkpoint

view_base char(1) N if a view never existed on this table
Y if at least one view existed for this
table or all views on this table are
dropped

modify_date char(25) Date of last modify performed on the
table
If never modified, the table creation
date

table_ifillpct smallint Fill factor for B-tree index pages
Otherwise unused

table_dfillpct smallint Fill factor for data pages if table does
not have HEAP structure

table_lIfillfct smallint Fill factor for B-tree leaf pages

table_minpages integer Minimum number of hash buckets to
use if modifying to HASH structure

table_maxpages integer Maximum number of hash buckets to
use if modifying to HASH structure

location_name char(32) Name of first location for data files

table_reltid integer Reltid from iirelation

table_reltidx integer Reltidx from iirelation

System Catalogs 445

Standard Catalog Interface

iiintegrities Catalog

The iiintegrities catalog contains one or more entries for each integrity defined

on a table.

Column Name Data Type Description

table_name char(32) The name of the table

table_owner char(32) The owner of the table

create_date char(25) The creation date of the integrity

integrity_number smallint The number of the integrity

text_sequence integer8 The sequence number from 1 for the
text_segment

text_segment varchar(240) The text of the integrity definition

iikeys Catalog

The iikeys catalog contains information about keys used in internal indexes to
support unique constraints and referential integrities.

Column Name Data Type Description

constraint_name char(32) The name of the constraint
schema_name char(32) The name of the schema
table_name char(32) The name of the table
column_name char(32) The name of the column
key_position smallint A number indicating the key position

iikey_columns Catalog

The iikey_columns catalog presents information about the key columns for
indexes and base tables not using a heap structure.

Column Name Data Type Description

table_name char(32) The name of the table key is on
table_owner char(32) The owner of the table

column_name char(32) Name of key component column
key_sequence smallint Position of column in key. 1 being the

most significant component

446 Database Administrator Guide

Standard Catalog Interface

iilog_help Catalog

Column Name

Data Type

Description

sort_direction

varchar(1)

A: Ascending sort. (Currently only
ascending indexes are supported.)

The iilog_help catalog presents information about table/view/index attributes
(columns) in an alternate format to iicolumns.

Column Name Data Type Description
table_name char(32) Name of the object column is part of
table_owner char(32) The owner of the object
create_date char(25) Date object was created
table_type char(8) T if attribute is part of a table

V if attribute is part of a view

I if attribute is part of an index
table_subtype char(1) Always N
table_version char(5) 119.0 for current release of product
system_use char(1) S if part of a system catalog

U if part of a user object
column_name char(32) Name of attribute.
column_datatype char(32) Long name of data type for this

column
column_length integer Size in bytes of data
column_nulls char(1) N if not nullable

Y if column supports nulls
column_defaults char(1) N if no default for this column

Y if a default value exists for this

column
column_sequence smallint Position of this column in table
key_sequence smallint Position in key for this table or zero

System Catalogs 447

Standard Catalog Interface

iilpartitions Catalog

The iilpartitions catalog describes each logical partition, and the partitioning
values or range associated with that partition. Each logical partition of a
partitioned table has at least one row in iilpartitions. Specifically, there is one
row per column component for each partitioning value and for each logical
partition in each dimension of the partitioned table.

Column Name Data Type Description

table_name char(32) The name of the partitioned table

table_owner char(32) The owner of the table

dimension smallint The dimension being described,
counting from 1

logical_partseq smallint The logical partition sequence
number in its dimension, counting
from 1

partition_name char(32) The name of the partition

If no name is assigned in the
partition definition, a name of the
form iipartNN is used, where NN is a
sequence number.

value_sequence smallint The partitioning value being
described:

RANGE then incremental from 1
LIST then incremental from 1
AUTOMATIC then one entry with a
zero value_sequence

HASH then one entry with a zero
value_sequence

column_sequence smallint The column component in the
partitioning value:

RANGE then incremental from 1
LIST then incremental from 1
AUTOMATIC then one entry with a
zero column_sequence

HASH then one entry with a zero
column_sequence

operator varchar(7) If the partitioning is based on:

RANGE then <, <=, =, >=, >
LIST then =, DEFAULT
AUTOMATIC then blank

HASH then blank

448 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description
value varchar If the partitioning is based on:
(1500)

RANGE then column value

LIST then column value (if DEFAULT,
then meaningless)

AUTOMATIC then NULL

HASH then NULL

Here is an example of using iilpartitions to view the partitioning values for a
table:

select dimension,
logical_partseq
value_sequence
column_sequence
operator varchar (value,30)
from jilpartitions
where table_name = 'partitioned_table’
and table_owner = 'thedba'
order by dimension, logical_partseq, value_sequence, column_sequence;

iimulti_locations Catalog
For tables located on multiple volumes, this table contains an entry for each

additional location on which a table resides. The first location for a table can be
found in the iitables catalog.

Column Name Data Type Description

table_name char(32) The name of the table

table_owner char(32) The owner of the table
loc_sequence integer The sequence of this location in the

list of locations specified in the modify
command. Numbered from 1.

location_name char(32) The name of the location

iipermits Catalog

The iipermits catalog contains one or more entries for each permit defined
against a table, view, or procedure.

Column Name Data Type Description
object_name char(32) The name of the table, view, or
procedure

System Catalogs 449

Standard Catalog Interface

Column Name Data Type Description

object_owner char(32) The owner of the table, view, or
procedure

permit_grantor char(32) The name of the user granting the
permit

object_type char(1) The type of the object:
T if a table

P if a database procedure
E if an event

V if a view
create_date char(25) The creation date of the permit
permit_user char(32) The user name to which this permit
applies
permit_depth smallint Indicates relative ordering distance of

the permit holder from the object
owner, as established in the grant
with grant option statements

permit_number smallint The number of this permit

text_sequence integer8 The sequence number from 1 for the
text_segment

text-segment varchar(240) The text of the permission definition

450 Database Administrator Guide

Standard Catalog Interface

iiphysical_tables Catalog

Caution! The iiphysical_tables catalog will not exist in the next major release.
Applications should query iitables for physical table information.

The information in the iiphysical_tables catalog overlaps with some of the
information in iitables. This information is provided as a separate catalog
primarily for use by Enterprise Access products. You can query the
physical_source column, in iidbcapabilities, to determine whether you must
query iiphysical_tables. If you do not want to query iidbcapabilities, you must
always query iiphysical_tables to be sure of getting the correct information.

If a queriable object is type T or I (index Ingres installation only), itis a
physical table and can have an entry in iiphysical_tables as well as iitables.

In most Enterprise Access products, this table is keyed on table_name plus
table_owner.

Column Name Data Type Description
table_name char(32) The name of the table
table_owner char(32) The owner of the table
table_stats char(1) Y if this object has entries in the
iistats table
table_indexes char(1) Y if this object has entries in
iiindexes that see this as a base
table
is_readonly char(1) Y if updates are physically allowed
on this object
concurrent_access char(1) Y if concurrent access is allowed
NUM_rows integer The estimated number of rows in
the table
-1 if unknown
storage_structure char(16) The storage structure of the table:
HEAP
BTREE
ISAM
HASH
is_compressed char(1) Y if the table is compressed

N if not compressed
Blank if unknown

key_is_compressed char(1) Y if the table uses key compression
N if no key compression

System Catalogs 451

Standard Catalog Interface

Column Name Data Type Description

Blank if unknown

duplicate_rows char(1) U if rows must be unique
D if duplicates are allowed
Blank if unknown

unique_rule char(1) U if the storage structure is unique
D if duplicates are allowed
Blank if unknown or inapplicable

number_pages integer The estimated number of physical
pages
-1 if unknown

overflow_pages integer The estimated number of overflow
pages
-1 if unknown

row_width integer The size in bytes of the
uncompressed binary value for the
row
-1 if unknown

allocation_size integer The allocation size, in pages
-1 if unknown

extend_size integer The extend size, in pages
-1 if unknown

allocated_pages integer The total number of pages allocated
to the table

row_security_audit char(1) Y if per-row security auditing is
enabled
N if not

table_pagesize integer The page size of a table

table_relversion smallint Table layout version. Starts at zero

when table is first created and is
incremented when column layouts
are altered; reset to zero when the
table is modified.

table_reltotwid integer Width of table record in bytes

label_granularity char(1) An empty string

This column is deprecated.

security_label char(8) An empty string

This column is deprecated.

452 Database Administrator Guide

Standard Catalog Interface

iiprocedures Catalog

The iiprocedures catalog contains one or more entries for each database
procedure defined on a database.

Column Name Data Type Description
procedure_name char(32) The name of the procedure
procedure_owner char(32) The owner of the procedure
create_date char(25) The creation date of the procedure
proc_subtype varchar(1) N if native
text_sequence integer The sequence number from 1 for the
test_segment
text_segment varchar(240) The text of the procedure definition
system_use char(1) U if the object is a user object
G if generated by the system for the
user
security_label char(8) An empty string
This column is deprecated.
row_proc char(1) Y if the procedure is row producing

N if the procedure is not row
producing

iiproc_access Catalog

The iiproc_access catalog contains information about database procedures.

Column Name Data Type Description

object_name char(32) Name of database procedure

object_owner char(32) Owner of database procedure

permit_grantor char(32) Grantor of privilege to this procedure

object_type char(1) Always P (database procedure)

create_date char(25) Procedure creation date

permit_user char(32) Name of the grantee

permit_depth smallint Depth of dependencies this procedure
permission depends on

permit_number smallint Reserved for future usage

System Catalogs 453

Standard Catalog Interface

Column Name Data Type Description

text_sequence integer8 Sequence number from 1 for the text
segment

text_segment varchar(240) The text of the procedure definition

iiproc_params Catalog

The iiproc_params catalog contains information about procedure parameters.

Column Name Data Type Description
procedure_name char(32) Name of database procedure
procedure_owner char(32) Owner of database procedure
param_name char(32) Name of parameter
param_sequence smallint Which argument this parameter
corresponds to (1 = first)
param_datatype char(32) Data type of parameter
param_datatype_code smallint Numeric representation of
datatype.

See column_ing_datatype in
iicolumns for these values.

param_length integer The column length
Displays the precision for
decimal data type, zero for
money and date

param_scale integer Displays the scale for decimal
data type, zero for all other data
types

param_nulls char(1) Y if this parameter is NULLable

param_defaults char(1) Y if this parameter has a default
value

param_default_val varchar(1501) Default value used if default

parameter provided

454 Database Administrator Guide

Standard Catalog Interface

iiproc_rescols Catalog

The iiproc_rescols catalog is a standard interface catalog with information
about the parameters and result columns of an Ingres database procedure. It
has one row for each parameter, the same as the rows of iiproc_params. It
also contains one row for each result column of a row producing procedure.

Column Name Data Type Description

procedure_name char(32) The name of the procedure

procedure_owner char(32) The owner of the procedure

rescol_name char(32) The name of the
parameter/result column

rescol_sequence integer Ordinal position of parameter or
result column in procedure
declaration

rescol_datatype char(32) Datatype of parameter/result
column

rescol_datatype_code smallint Numeric representation of
datatype

rescol_length integer Length of parameter/result
column

rescol_scale integer The second number in a two-
part user length specification;
for type name (lenl, len2) it is
len2

rescol_nulls char(1) Y indicates this parameter is
null

rescol_param char(1) Y indicates this is a parameter
N indicates this is a result
column

rescol_defaults char(1) Y indicates this parameter has a
default value

rescol_default_val varchar(1501) Default value used if default

parameter provided

System Catalogs 455

Standard Catalog Interface

iirange Catalog

The iirange catalog contains the range values for an rtree index.

Column Name Data Type Description

rng_baseid integer Identifier for the base table

rng_indexid integer Identifier for the rtree index table

rng_lI1 float8 Lower-left coordinate of range box
for the first dimension

rng_lI2 float8 Lower-left coordinate of range box
for the second dimension

rng_lI3 float8 Lower-left coordinate of range box
for the third dimension. This column
is currently not in use.

rng_l14 float8 Lower-left coordinate of range box
for the forth dimension. This column
is currently not in use.

rng_url float8 Upper-right coordinate of range box
for the first dimension

rng_ur2 float8 Upper-right coordinate of range box
for the second dimension

rng_ur3 float8 Upper-right coordinate of range box
for the third dimension. This column
is currently not in use.

rng_ur4 float8 Upper-right coordinate of range box
for the forth dimension. This column
is currently not in use.

rng_dimension smallint Dimension of range box
Currently, the value is 2.

rng_hilbertsize smallint The size of the hilbert function for
the range

rng_rangedt smallint The data type of the range box,
either box or ibox

rng_rangetype char(1) The data type of the range box's

coordinates:

I if integer
F if float

456 Database Administrator Guide

Standard Catalog Interface

iiref_constraints Catalog

The iiref_constraints catalog contains information about referential constraints.

Column Name Data Type Description
ref_constraint_name char(32) The name of the referential
constraint
ref_schema_name char(32) The name of the schema on
which the referential
constraint applies
ref_table_name char(32) The name of the table on
which the referential
constraint applies
unique_constraint_name char(32) The name of the unique
constraint
unique_schema_name char(32) The name of the schema on
which the unique constraint
applies
unique_table_name char(32) The name of the table on

which the unique constraint
applies

iiregistrations Catalog

The iiregistrations catalog contains the text of register statements used by Star
and Enterprise Access products.

Column Name Data Type Description

object_name char(32) The name of the registered table,
view, or index

object_owner char(32) The name of the owner of the table,
view, or index

object_dml char(1) The language used in the
registration statement
S if SQL
Q if QUEL

object_type char(2) Object type:

T if object is a table
V if a view
Iif an index

System Catalogs 457

Standard Catalog Interface

iirules Catalog

Column Name Data Type Description

object_subtype char(1) Describes the type of table or view
created by the register statement:
L if this is a link for Star
I if this is an imported object for
Enterprise Access

text_sequence integer8 The sequence number from 1 for the
text_segment

text_segment varchar The text of the register statement

(240)

The iirules catalog contains one row for each rule defined in a database.

Column Name Data Type Description

rule_name char(32) The name of the rule

rule_owner char(32) The name of the person who defined
the rule

table_name char(32) The name of the table that the rule
was defined against

text_sequence integer8 The sequence number for the text

segment

text_segment varchar(240) The text of the rule definition

system_use char(1) U if the object is a user object
G if generated by the system for the
user; used for constraints or views

with check option

iisecurity_alarms Catalog

The iisecurity_alarms catalog contains information about the security alarms
created on tables in the database. This catalog is a view of security alarm
information held in the system iiprotect table.

Column Name Data Type Description
alarm_name char(32) The name of the security alarm
object_name char(32) The name of the table to which the

security alarm applies

458 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description
object_owner char(32) The owner of the security alarm
object_type char(1) The type of object to which the
security alarm applies
Always T
create_date char(25) The date the security alarm was
created
subject_type char(1) U if the security_user is a user
G if a group
R if a role
P if a public identifier
security_user char(32) The user to which the security alarm
applies
security_number smallint The security alarm number
dbevent_name char(32) Database event associated with the
alarm
dbevent_owner char(32) Owner of the database event
dbevent_text char(256) Text of the database event
text_sequence integer8 The sequence number from 1 for the
text_segment
text_segment varchar(24 The text of the security alarm
0) statement definition

iisession_privileges Catalog

The iisession_privileges catalog contains information about subject privilege
statuses for the current session.

Column Name Data Type Description
priv_name char(32) The name of privilege
priv_access char(1) Y if privilege held

N if privilege not held

System Catalogs 459

Standard Catalog Interface

iisequences Catalog

The iisequences catalog contains information about all sequences defined in

the database.

Column Name Data Type Description
Seq_name char(32) The name of the sequence
Seq_owner char(32) The owner of the sequence
Create_date ingresdate The date on which the sequence was
created
Modify_date ingresdate The date on which the sequence was
last altered
Data_type varchar(7) The data type of the sequence
integer
bigint
decimal
Seq_length smallint The size in bytes of the sequence
value
Seq_precision integer The precision in decimal digits of the
sequence value
Start_value decimal(31) The start value (or restart value) of
the sequence
Increment_value decimal(31) The increment value of the sequence
Next_value decimal(31) The next sequence value to be
assigned
Min_value decimal(31) The minimum value of the sequence
Max_value decimal(31) The maximum value of the sequence
Cache_size integer The number of cached sequence
values
Start_flag char(1) Y if start value was defined
N if start value was not defined
Incr_flag char(1) Y if increment value was defined
N if increment value was not defined
Min_flag char(1) Y if minimum value was defined
N if minimum value was not defined
Max_flag char(1) Y if maximum value was defined
N if maximum value was not defined
Restart_flag char(1) Y if restart value was defined

460 Database Administrator Guide

Standard Catalog Interface

iistats Catalog

Column Name Data Type Description

N if restart value was not defined
Cache_flag char(1) Y if cache value was defined

N if cache value was not defined
Cycle_flag char(1) Y if cycle was defined

N if cycle was not defined
Order_flag char(1) Y if order was defined

N if order was not defined
Unordered_flag char(1) Y if unordered sequence

N if not unordered sequence
Seql_flag char(1) Y if sequential (not unordered)

sequence

N if not sequential sequence
Ident_flag char(1) Y if sequence associated with an

identity column
N if not

Th iistats catalog contains entries for columns that have statistics.

Column Name Data Type Description

table_name char(32) The name of the table

table_owner char(32) The owner of the table

column_name char(32) The column name to which the
statistics apply

create_date char(25) The date on which statistics were
gathered

num_unique float4 The number of unique values in the
column

rept_factor float4 The repetition factor

has_unique char(1) Y if the column has unique values
N if the column is not unique

pct_nulls float4 The percentage (fraction of 1.0) of
the table that contains NULL for the
column

num_cells smallint The number of cells in the histogram

column_domain smallint A user-specified humber signifying

System Catalogs 461

Standard Catalog Interface

Column Name Data Type

Description

the domain from which the column
draws its values; default is 0

is_complete char(1)

Y if the column contains all possible
values in the domain

N if the column does not contain all
possible values in the domain

stat_version char(8)

The version of the statistics for this
column, for example, 119.0

hist_data_length smallint

The length of the histogram boundary
values:

Either the specified length

Or length computed by optimizedb

iisynonyms Catalog

The iisynonyms catalog contains information about the synonyms.

Column Name Data Type Description

synonym_name char(32) The name of the synonym

synonym_owner char(32) The owner of the synonym

table_name char(32) The name of the table, view or index
for which the synonym was created

table_owner char(32) The owner of the table, view, or index

for which the synonym was created

iitables Catalog

The iitables catalog contains an entry for each table, view, or index in the

database.

Column Name Data Type Description

table_name char(32) The name of the table

table_owner char(32) The owner of the table

create_date char(25) The creation date of the object
Blank if unknown

alter_date char(25) The last time this table was altered.

Updated when the structure of the
table changes through changes to the

462 Database Administrator Guide

Standard Catalog Interface

Column Name

Data Type

Description

columns in the table or to the primary
key.

Physical changes to the table, such as
changes to data, secondary indexes,
or physical keys, do not change this
date.

Blank if unknown.

table_type

char(1)

Type of the query object:

T if table

V if view

Iif index

P if physical partition of a partitioned
table

Further information about views can
be found in iiviews.

table_subtype

char(1)

Specifies the type of table or view.

N if native for standard Ingres
databases

L if links for Star

I if imported tables for Enterprise
Access

Blank if unknown

table_version

char(5)

Version of the object; enables the
Ingres tools to determine where
additional information about this
particular object is stored. This
reflects the database type, as well as
the version of an object in a given
database. For Ingres tables, the value
for this field is 119.0.

system_use

char(1)

S if the object is a system object

U if user object

G if generated by the system for the
user

Blank if unknown

tups_per_page

integer

Maximum tuples per data page

keys_per_page

integer

Maximum keys per index page for
ISAM and BTREE tables

keys_per_leaf

integer

Maximum keys per leaf for BTREE
tables

System Catalogs 463

Standard Catalog Interface

The following columns have values only if the table_type is T, I, or P.
Enterprise Access products that do not supply this information:

® Numeric columns are set to -1

® Character columns are set to blank.

Column Name

Data Type

Description

table_stats

char(1)

Y if the iistats table has entries

N if the iistats table does not have
entries

Blank if query iistats to determine
if statistics exist.

table_indexes

char(1)

Y if this object has entries in
iiindexes that see this as a base
table

N if this object does not have
entries

Blank if query iiindexes on the
base_table column

is_readonly

char(1)

N if updates are allowed
Y if no updates are allowed
Blank if unknown

Used for tables defined to
Enterprise Access for retrieval only
(such as tables in a hierarchical
database).

If Y updates cannot occur,
irrespective of the permissions set
If N updates are allowed depending
on the permissions setting

concurrent_access

char(1)

Y if concurrent access is allowed

num_rows

integer

The estimated number of rows in
the table

-1 if unknown

If value is for a partitioned table,
this is the total for all partitions

storage_structure

char(16)

The storage structure of the table:
HEAP

HASH

BTREE

ISAM

is_compressed

char(1)

Y if the table is compressed
N if the table is uncompressed
Blank if unknown

464 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

key_is_compressed char(1) Y if the table uses key compression
N if no key compression
Blank if unknown

duplicate_rows char(1) D if the table allows duplicate rows
U if the table does not allow
duplicate rows
Blank if unknown
The table storage structure (unique
VS. non-unique keys) can override
this setting.

unique_rule char(1) D if duplicate keys are allowed. (A
unique alternate key exists in
iialt_columns and any storage
structure keys are listed in
iicolumns.)

U if the object is an Ingres object,
indicates that the object has
unique storage structure keys.

If the object is not an Ingres
object, it indicates that the object
has a unique key, described in
either iicolumns or iialt_columns.

Blank if uniqueness is unknown or
does not apply.

number_pages integer The estimated number of used
pages in the table
-1 if unknown
If the value is for a partitioned
table, this is the total for all
partitions.

overflow_pages integer The estimated number of overflow
pages in the table
-1 if unknown

partition_dimensions smalliint For a partitioned table, this is the
number of dimensions (partitioning
levels) in the table's partitioning
scheme.
In all other cases, this is zero.

phys_partitions smallint For a partitioned table, this is the
number of physical partitions.
For a physical partition, this is the
partition number

System Catalogs 465

Standard Catalog Interface

Column Name Data Type Description
In all other cases, this is zero.
row_width integer The size in bytes of the

uncompressed binary value for a
row of this query object

The following columns are used by the DBMS Server, except for those

preceded by an asterisk (*).

Columns preceded by an asterisk (*) have values only if table_type is T or I.

Where Enterprise Access entries do not supply this information:

® Numeric columns are set to -1

® Character columns are set to blank

Column Name Data Type

Description

expire_date integer

Expiration date of table

modify_date char(25)

The date when the table was last
modified
Blank if unknown or inapplicable

location_name char(32)

The first location of the table.

If there are additional locations for a
table, they are shown in the
iimulti_locations table and
multi_locations are set to Y.

table_integrities char(1)

Y if this object has Ingres style
integrities

Blank if query the iiintegrities table to
determine if integrities exist

table_permits char(1)

Y if this object has Ingres style
permissions

all_to_all char(1)

Y if this object has Ingres permit all
to all
N if not

ret_to_all char(1)

Y if this object has Ingres permit
retrieve to all
N if not

is_journalled char(1)

Y if journaling is enabled on this
object
N if journaling is disabled on this
object

466 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

C if journaling is enabled/disabled
after the next online checkpoint

view_base char(1) Y if object is a base for a view
definition
N if not
Blank if unknown

multi_locations char(1) Y if the table is in multiple locations
N if the table is single location

table_ifillpct smallint Fill factor, expressed as a percentage,
for the index pages
Specified in modify command
nonleaffill clause

table_dfillpct smallint Fill factor, expressed as a percentage,
for the data pages
Specified in modify command fillfactor
clause

table_lIfillpct smallint Fill factor, expressed as a percentage,
for the leaf pages
Specified in modify command leaffill
clause

table_minpages integer Minpages parameter from the last
execution of the modify command.
Used for hash structures only.

table_maxpages integer Maxpages parameter from the last
execution of the modify command.
Used for hash structures only.

table_relstamp1 integer High part of last create or modify
timestamp for the table

table_relstamp2 integer Low part of last create or modify
timestamp for the table

table_reltid integer Reltid from iirelation

table_reltidx integer Reltidx from iirelation

* unique_scope char(1) R if this object is row-level

S if statement-level
Blank if not applicable

* allocation_size integer The allocation size, in pages. Set to O
1 if unknown.

* extend_size integer The extend size, in pages
-1 if unknown

System Catalogs 467

Standard Catalog Interface

Column Name Data Type Description

* allocated_pages integer The total number of pages allocated
to the table

row_security_audit char(1) Y if row-level security auditing is
enabled
N if not

table_pagesize integer Page size of a table

table_relversion smallint Version of table

table_reltotwidth integer Width of the table, including all

deleted columns

table_reltcpri smallint Indicates a table's priority in the
buffer cache
Values can be between 0 - 8:
Zero is the default.
1 - 8 can be specified in the priority
clause of a create table or modify
table statement.

label_granularity char(1) Empty string

This column is deprecated.

security_label char(8) Empty string

This column is deprecated.

iiviews Catalog

The iiviews catalog contains one or more rows for each view in the database.

Column Name Data Type Description

table_name char(32) The name of the view

table_owner char(32) The owner of the view

view_dml char(1) The language in which the view was
created:
S if SQL
Q if QUEL

check_option char(1) Y if the check option was specified
N if not

Blank if unknown

text_sequence integer8 The sequence number from 1 for the
text_segment

468 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

text_segment varchar(240) The text of the view definition

Standard Catalogs for iidbdb

The master database (iidbdb) contains these additional Standard Catalogs:
iiaudit
iidatabase_info
iidbprivileges
iiextend_info
ii_location_info
ii_profiles
iirollgrants
iiroles
iisecurity_state
iiusers
iiaudit Catalog
The iiaudit catalog provides the information from which a user (with security
privilege) can read the security audit log. This catalog is a read-only virtual

representation of the underlying non-Ingres table.

For information on reading the audit log, see the Security Guide.

Column Name Data Type Description

audittime date The time when the security event occurred

user_name char(32) The effective name of the user that triggered the
security event

real_name char(32) The real name of the user

userprivileges char(32) Privileges associated with the user session, with
letters denoting the possession of a subject
privilege

objprivileges char(32) Privileges granted to the user, with letters
denoting the possession of a subject privilege

database char(32) The name of the database in which the event was
triggered

System Catalogs 469

Standard Catalog Interface

Column Name

Data Type

Description

auditstatus

char(1)

Y—the attempted operation was successful
N—the attempted operation was unsuccessful

auditevent

char(24)

The type of event:
select
insert
delete
update
copy into
copy from
execute
modify
create
destroy
security

objecttype

char(24)

The type of object being accessed:
database

role
procedure
table

location

view

security

user

security alarm
rule

event

objectname

char(32)

The name of the object being accessed

objectowner

char(32)

The owner of the object being accessed

description

char(80)

The text description of the event

sessionid

char(16)

The session associated with the event

detailinfo

char(256)

Detailed information about the event

detailnum

integer

The sequence number for multiple detail items
needed to describe the event

querytext_sequence

integer

Identifier for associated prepared query

470 Database Administrator Guide

Standard Catalog Interface

iidatabase_info Catalog

This catalog describes attributes for a database.

Column Name Data Type Description

database_name char(32) Name of the database

database_owner char(32) Owner of the database

data_location char(32) Default data location for this database

work_location char(32) Default work location for this database

ckp_location char(32) Default checkpoint location for this database

jnl_location char(32) Default journal location for this database

dump_location char(32) Default dump file location for this database

compat_level char(4) The compatibility level of the Ingres database
Currently 9.04

compat_level_minor integer Unused; defaults to 0

database_service integer Database services available (such as: Is the
database distributed? Can it be accessed through
gateways?)

Bitmask of database attributes:

0x00000000 Default

0x00000001 Distributed database

0x00000002 Coordinator database for a
distributed database

0x00000004 Gateway database

0x00010000 Regular IDs are translated to
upper case

0x00020000 Database created with LP64

0x00040000 Delimited IDs are translated
to upper case

0x00080000 Delimited IDs are not
translated

0x00100000 Real user IDs are not
translated

0x00200000 Unicode types in Normal
Form C can be stored in
database

System Catalogs 471

Standard Catalog Interface

Column Name Data Type Description
0x40000000 Database forced consistent
by verifydb
0x80000000 Unicode types in Normal
Form D can be stored in
database
security_label char(8) Empty string
This column is deprecated.
access integer Bitmask of database access attributes:
Bitmasks as follows:
0x00000000 Database is private
0x00000001 Database is globally
accessible
0x00000002 Unused
0x00000004 Database was/is in process
of being destroyed
0x00000008 Database was/is in process
of being created
0x00000010 Database is operational, i.e.
is accessible to users
0x00000020 Database was created in an
earlier Ingres release and
has not yet been upgraded
0x00000040 Database was created via an
earlier Ingres version and is
in the process of being
upgraded or the upgrade
attempt was made and failed
0x00000080 Database created with B1
security
0x00000100 Do not wait during destroydb
if the database is busy
0x00000200 Production mode
0x00000400 No online checkpoints
0x00000800 Database is read only
database_id integer Unique numeric identifier for this database in the

472 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

installation

iidbprivileges Catalog

The iidbprivileges catalog contains information about the privileges defined in a
database.

Column Name Data Type Description

database_name char(32) The name of the database on which the privilege
is defined

grantee_name char(32) The name of the grantee for which the privilege is
granted:
User
Group
Role
Public

gr_type char(1) Authorization type of the grantee:
U—user
G—group
R—role
P—public

cr_tab char(1) Indicates if the grantee has the create table
privilege:
U—undefined
Y—yes
N—no

cr_proc char(1) Indicates if the grantee has the create procedure
privilege:
U—undefined
Y—yes
N—no

Ik_mode char(1) Indicates if the grantee has the set lockmode
privilege:
U—undefined
Y—yes
N—no

db_access char(1) Y if grantee can connect to databases

up_syscat char(1) Y if grantee can update catalog tables

db_admin char(1) Indicates if the grantee has the db_admin
privilege:
U—undefined

System Catalogs 473

Standard Catalog Interface

Column Name Data Type Description
Y—yes
N—no

global_usage char(1) Reserved for future use

gry_io_lim integer The limit of I/O per query for the grantee if qry_io
isY

gry_io char(1) Indicates whether the query_io_limit privilege has
been defined for the database and authorization
type specified in database_name and
grantee_name, respectively:
Y—Ilimit exists
N—no limit
U—undefined

gry_row_lim integer The limit of query rows per query for the grantee
if gry_row is 'Y

qry_row char(1) Indicates whether the query_row_limit privilege
has been defined for the database and
authorization type specified in database_name
and grantee_name, respectively.
Y—Ilimit exists
N—no limit
U—undefined

sel_syscats char(1) Y if grantee has select_syscat privileges

tbl_stats char(1) Y if grantee has table_statistics privileges

idle_time char(1) Y if grantee has an idle time limit

idle_time_lim integer Idle time limit in seconds

conn_time char(1) Y if grantee has a connect time limit

conn_time_lim integer Connect time limit in seconds

sess_prio char(1) Y if grantee has the session priority privilege and
can alter session priorities

sess_pri_lim integer Highest priority to which a session owned by this

grantee can be set

474 Database Administrator Guide

Standard Catalog Interface

iiextend_info Catalog

The iiextend_info catalog provides information about which locations databases
have been extended to:

Column Name Data Type Description
location_name char(32) Location name for this extent
database_name char(32) Name of database extended to location_name
status integer Status of this extent
Bitmasks are as follows:
0x00000001 Database has been
successfully extended to this
location
0x00000002 Location is used as a data
location
0x00000004 Location is used as a work
location
0x00000008 Location is used as a
auxiliary work location
raw_start integer Default is 0
raw_blocks integer Default is 0

iilocation_info Catalog

The iilocation_info catalog contains information about the database locations.

Column Name Data Type Description
location_name char(32) The name of the location
data_usage char(1) Y if data location
N if not
jrnl_usage char(1) Y if journal location
N if not
ckpt_usage char(1) Y if checkpoint location
N if not
work_usage char(1) Y if work location
N if not
dump_usage char(1) Y if dump location

N if not

System Catalogs 475

Standard Catalog Interface

Column Name Data Type Description
awork_usage char(1) Y if auxiliary work location
N if not
location_area char(128) The location of the area, either:

IT_CHECKPOINT
IT_DATABASE
IT_WORK
IT_JOURNAL
II_DUMP

or

directory name

security_label char(8) Empty string

This column is deprecated.

raw_pct integer Percentage of the raw device allocated to this location

status integer What the location is used for:

Bitmasks as follows:

0x00000001 General purpose
0x00000002 Dump
0x00000008 Database
0x00000010 Work
0x00000020 Auxiliary work
0x00000040 Journal
0x00000200 Checkpoint

iiprofiles Catalog

liprofiles is the standard catalog interface to user profile information.

Column Name Data Type Description

profile_name char(32) Name of profile

createdb char(1) Y if profile gives by default the right to create
databases

R if this subject privilege is enabled by this profile,
but is not part of the default privileges for this
profile

N if profile does not give this right

476 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

trace char(1) Y if profile gives by default the right to enabling
usage of tracing and debugging features

R if this subject privilege is enabled by this profile,
but is not part of the default privileges for this
profile

N if profile does not give this right

audit_all char(1) Y if security audit of all user activity is enabled by
this profile
N if profile does not give this right

security char(1) Y if profile gives by default the right to use
security related functions such as the creation or
deletion of users

R if this subject privilege is enabled by this profile,
but is not part of the default privileges for this
profile

N if profile does not give this right

maintain_locations char(1) Y if profile gives by default the right to create and
change the characteristics of database and file
locations

R if this subject privilege is enabled by this profile,
but is not part of the default privileges for this
profile

N if profile does not give this right

operator char(1) Y if profile gives by default the right to perform
database maintenance operations

R if this subject privilege is enabled by this profile,
but is not part of the default privileges for this
profile

N if profile does not give this right

maintain_users char(1) Y if profile gives by default the right to create,
alter or drop users, profiles, groups, and roles,
and to grant or revoke database and installation
resource controls

R if this subject privilege is enabled by this profile,
but is not part of the default privileges for this
profile

N if profile does not give this right

maintain_audit char(1) Y if profile gives by default the right to enable,
disable, or alter security audit, and to change

System Catalogs 477

Standard Catalog Interface

Column Name Data Type Description
security audit privileges
R if this subject privilege is enabled by this profile,
but is not part of the default privileges for this
profile
N if profile does not give this right
auditor char(1) Y if profile gives by default the right to register,
remove and query audit logs
R if this subject privilege is enabled by this profile,
but is not part of the default privileges for this
profile
N if profile does not give this right
audit_query_text char(1) Y if security audit of query text is enabled for this
profile
N if profile does not give this right
expire_date date Date when profile expires
Blank if expiration date was not specified
lim_sec_label char(8) Empty string
default_group char(32) If specified, group to use if no explicit group was
specified when accessing the database and user
using this profile does not have an explicit default
group, or nogroup specified
internal_status integer Numeric representation of privileges associated

with this profile

Bitmasks as follows:

0x00000001 createdb
0x00000004 trace

0x00000200 operator
0x00000400 audit_all
0x00000800 maintain_locations
0x00002000 auditor
0x00004000 maintain_audit
0x00008000 security
0x00010000 maintain_users
0x01000000 audit_security_text

478 Database Administrator Guide

Standard Catalog Interface

iiroligrants Catalog

The standard catalog interface to information about role grants.

Column Name Data Type Description
roll_name char(32) Name of granted role
gr_type char(1) Type of grant:
U—user
G—group
R—role
P—public
Blank
grantee_name char(32) Name of grantee
admin_option char(1) Y if grantee can GRANT this role to others

N if not

iiroles Catalog

The standard catalog interface to information about role identifiers.

Column Name Data Type Description

role_name char(32) Name of this role

createdb char(1) Y if role provides right to create databases , N
otherwise

trace char(1) Y if role enables usage of tracing and debugging
features, N otherwise

audit_all char(1) Y if security audit of all user activity is enabled by
this role, N otherwise

security char(1) Y if role allows usage of security-related functions
such as the creation or deletion of users, N

maintain_locations char(1) Y if role allows the user to create and change the
characteristics of database and file locations, N

operator char(1) Y if role allows the user to perform database
maintenance operations, N

maintain_users char(1) Y if role enables the right to create, alter or drop
users, profiles, groups, and roles, and to grant or
revoke database and installation resource
controls, N

maintain_audit char(1) Y if role allows user to enable, disable, or alter

System Catalogs 479

Standard Catalog Interface

Column Name Data Type Description

security audit, and to change security audit
privileges, N

auditor char(1) Y if role enables the registering, removing, and
querying of audit logs, N

audit_query_text char(1) Y if security audit of query text is enabled by this
profile, N

security char(8) Empty string

lim_sec_label char(8) Empty string

internal_status integer Numeric representation of privileges associated

with this status.

Number is a bitmask as follows:

0x00000001 createdb
0x00000004 trace
0x00000200 operator
0x00000400 audit_all
0x00000800 maintain_locations
0x00002000 auditor
0x00004000 maintain_audit
0x00008000 security
0x00010000 maintain_users
0x01000000 audit_security_text
internal_flags integer Reserved for future use

iisecurity_state Catalog

The iisecurity_state catalog contains information about the security auditing
state of the Ingres installation.

Column Name Data Type Description

type char(16) Type of security audit activity:
Event - security-relevant events
Unknown

name char(32) The name of the security audit class:

Alarm
All

480 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

Database
Dbevent
Installation
Location
Procedure
Query_text
Resource
Role

Row

Rule
Security
Table

User

View
Unknown

state char(1) E if this security audit class is enabled
D if disabled

number integer Unique identifier for this activity-type / audit
class:

Database
Role
Procedure
Table
Location
View

Row
Security
User

11 Alarm

12 Rule

13 Dbevent
14 Installation
15 All

16 Resource
17 Query_text

oNOOU P~ WNH

(o]

iiusers Catalog

The iiusers catalog contains information about the privileges held by users.

Column Name Data Type Description

user_name char(32) The name of the user

System Catalogs 481

Standard Catalog Interface

Column Name

Data Type

Description

createdb

char(1)

Y if the user has the default right to create
databases

R if the user has the right but not by default

N if the user does not have the right

trace

char(1)

Y if the user has the default right to use
tracing and debugging features

R if the user has the right but not by default

N if the user does not have the right

audit_all

char(1)

Y if the user has the right to security audit all
user activity

N if the user does not have the right

security

char(1)

Y if the user has the default right to use
security-related functions such as creating and
deleting users

R if the user has the right but not by default

N if the user does not have the right

maintain_locations

char(1)

Y if the user has the default right to create and
change the characteristics of database and file
locations

R if the user has the right but not by default

N if the user does not have the right

operator

char(1)

Y if the user has the default right to perform
database maintenance operations

R if the user has the right but not by default

N if the user does not have the right

maintain_users

char(1)

Y if the user has the default right to create,
alter or drop users, profiles, groups, and roles,
and to grant or revoke database and
installation resource controls

R if the user has the right but not by default

N if the user does not have the right

maintain_audit

char(1)

Y if the user has the default right to enable,
disable, or alter security audit, and to change
security audit privileges

R if the user has the right but not by default

N if the user does not have the right

482 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

auditor char(1) Y if the user has the default right to register,
remove, and query audit logs

R if the user has the right but not by default

N if the user does not have the right

audit_query_text char(1) Y if the user can see query text, enabled if
security_audit=(query_text) was specified
when creating or altering the user

N if the user does not have the right

expire_date date Optional expiration date after which the user
cannot log on

profile_name char(32) The profile associated with this user or blank
lim_sec_label char(8) Empty string

default-group char(32) The user's default group or blank
internal_status integer Numeric representation of privileges

associated with this status.

Number is a bitmask as follows:

0x00000001 createdb
0x00000004 trace
0x00000200 operator
0x00000400 audit_all
0x00000800 maintain_locations
0x00002000 auditor
0x00004000 maintain_audit
0x00008000 security
0x00010000 maintain_users
0x01000000 audit_security_text
internal_def_priv integer Numeric representation of default privileges,

bitmask as above

internal_flags integer Numeric representation of Ingres system
privileges held by the user

System Catalogs 483

Mandatory and Ingres-Only Standard Catalogs

Mandatory and Ingres-Only Standard Catalogs

Mandatory catalogs are those catalogs that are required for all installations,
including Enterprise Access and non-Enterprise Access installations. Ingres
only catalogs are required for non-Enterprise Access installations.

Mandatory Catalogs With Entries Required
The following catalogs must be present on both Enterprise Access and non-
Enterprise Access installations. These catalogs must contain entries.
® jicolumns
®m jidbcapabilities
® jidbconstants
® jisynonyms

® jitables

484 Database Administrator Guide

Mandatory and Ingres-Only Standard Catalogs

Mandatory Catalogs Without Entries Required

The following catalogs must be present on both Enterprise Access and non-
Enterprise Access installations. However, these catalogs are not required to
contain entries.

® jialt_columns

= jiaudit

= jiaudit_tables

® jiconstraint_indexes
® jiconstraints

® jidb_comments

® jidb_subcomments

®m jihistograms

B jiindex_columns
B jiindexes
m jikeys

®m jiprocedures
®m jiref_constraints
B jiregistrations

®m jisecurity_alarms

® jistats
B jiviews
Ingres-Only Catalogs

The following catalogs are required by non-Enterprise Access Ingres
installations.

m jifile_info

® jiintegrities

= jilog_help

® jimulti_locations
® jipermits

® jirules

System Catalogs 485

Extended System Catalogs

Extended System Catalogs

Extended System catalogs are used by the Ingres tool products, such as ABF,
VIFRED, and RBF, to store information on user interface objects such as
applications, forms, and reports.

To add or upgrade the catalogs required by a product, you must use the
upgradefe command.

Organization of Extended System Catalogs

For the purpose of installing and upgrading products, extended system
catalogs are grouped into modules. Each product requires one or more of these
modules. The contents of a module are subject to change with a new release,
as catalogs are added or changed.

By default, when you create a database (using the createdb command) or
upgrade a product (using the upgradefe command), catalogs are created for all
products for which you are authorized. To create catalogs only for specific
products, you must specify the products on the createdb command line. Valid
products are:

® ingres (the base product)
® ingres/dbd
® vijsion

® windows/4gl

Each of these products requires one or more of the following modules:

Module Name Catalogs in Module

APPLICATION_DEVELOPMENT_1 ii_abfclasses

Base product catalogs ii_abfdependencies
ii_abfobjects
ii_encoded_forms
ii_fields

ii_forms

ii_gropts
ii_joindefs
ii_gbfnames
ii_rcommands
ii_reports
ii_sequence_values
ii_trim

Required by:
Ingres
Ingres Vision

APPLICATION_DEVELOPMENT_2 ii_applications
ii_components

486 Database Administrator Guide

Extended System Catalogs

Module Name Catalogs in Module
Catalogs for OpenROAD ii_dependencies
. . ii_incl_apps
gei:ggigy' ii_srcobj_encoded
P ii_stored_bitmaps
ii_stored_strings
APPLICATION_DEVELOPMENT_3 ii_framevars
Required by: !!_mgngargs
Ingres Vision n_vajoins
ii_vgtabcols
ii_vgtables
CORE ii_app_cntns_comp
Catalogs for Ingres and Ingres tools base ii_client_dep_mod
product ii_dict_modules
Required by: !!_enc-oldlngs
ii_entities
All products S
ii_id
ii_locks
ii_longremarks
ii_objects
DATA_MODEL ii_atttype
catalogs for distributed Ingres ii_atttype_version
INGRES/DBD version 1 L
ii_dbd_acl

ii_dbd_identifiers
ii_dbd_locations
ii_dbd_rightslist
ii_dbd_table_char
ii_domains
ii_enttype
ii_joinspecs
ii_key_info
ii_key_map
ii_limits
ii_rel_cncts_ent
ii_reltype
ii_sqlatts
ii_sqltables

METASCHEMA ii_atttype
ii_defaults
ii_databases
ii_domains
ii_enttype
ii_joinspecs
ii_key_info
ii_key_map

Required by:
INGRES/DBD version 2

System Catalogs 487

Extended System Catalogs

Module Name

Catalogs in Module

ii_limits
ii_rel_cncts_ent
ii_reltype
ii_sqlatts
ii_sqltables

PHYSICAL_DATA_MODELLING

Required by
INGRES/DBD version 2

ii_dbd_acl
ii_dbd_identifiers
ii_dbd_locations
ii_dbd_rightslist
ii_dbd_table_char

Data Dictionary Catalogs

Data dictionary catalogs contain the names of the catalogs installed for Ingres
tools (such as ABF, QBF, and VIFRED). When you invoke one of these
products, the product uses the data dictionary catalogs to determine if the
required catalogs are present; if the catalogs are not present, the product

cannot run.

The ii_client_dep_mod catalog lists the products that have been installed, and
the modules required by the product. The format of ii_client_dep_mod is as

follows:

Column Name Data Type Description

client_name
Ingres).

varchar(32) Name of the product (for example,

client_version integer

Release of the product.

module_name

varchar(32) Module required by the product.

module_version integer

Release of module required by this

release of the product.

short_remark
information.

varchar(60) Comment regarding product/module

The ii_dict_modules catalog lists the modules that are installed in the
database. (A module is a group of catalogs.) The format of ii_dict_modules is

as follows:

Column Name Data Type Description

module_name
example, CORE).

varchar(32) Name of the installed module (for

488 Database Administrator Guide

Extended System Catalogs

Column Name Data Type Description

module_version integer Release number of the installed
module.

short_remark varchar(60) Comment about the module.

Object IDs in Extended System Catalogs

Every user interface object (form, ABF frame, ABF application, report, QBF
JoinDef, and so on) is identified in the extended system catalogs by a unique
number, the object ID. The object ID is generated when the object is created.
For each database, the largest object ID issued to date is stored in the table
ii_id; this value is incremented and issued as the ID for each new object.

An object's name, owner, and other information are stored once only, in the
ii_objects catalog. In all other extended system catalogs, objects are identified
by their object ID.

User programs that insert objects into the extended system catalogs must
generate a unique object ID for each new object by incrementing the object_id
column in the ii_id catalog. Be sure to keep the transaction that updates
ii_id.object_id as short as possible and to recover properly from errors. For
information on handling errors in transactions, see the SQL Reference Guide.

Copying the Extended System Catalogs

Extended system catalogs must only be copied into new databases, and never
into existing databases that contain user interface objects (such as forms or
reports).

Copying extended system catalogs with the copy statement does not create
new object IDs for the copied objects. If the target database already contains
user interface objects, serious problems can result: different objects with the
same object ID (for example, both a form and a report with the same object
ID). Use the appropriate copy utility (copyform, copyrep) to copy objects to
existing databases; the copy utilities generate a new object ID for each object
copied into the target database.

System Catalogs 489

Extended System Catalogs

Catalogs Shared by All Ingres Tools

The following extended system catalogs are used by all Ingres tools:

® ji_encodings

= ji_id

® ji_locks

® ji_longremarks
®m ji_objects

ii_encodings Catalog

The ii_encodings catalog contains 4GL frames and procedures encoded into a
compact and portable form. Objects in this catalog are referred to as encoded
objects.

This catalog is structured as btree unique on the encode_object and
encode_sequence columns:

Column Name Data Type Description

object_id integer Currently not used. Is set to either 0
or the same value as the
encode_object column.

encode_object integer The object ID for this encoded
object. Various other information
about this encoded object (such as
name and owner) is kept in the
ii_objects catalog.

encode_sequence smallint A sequence number, starting from O,
for the rows comprising a single
encoded object. Because objects, for
example a 4GL frame, can be
arbitrarily long, an arbitrary number
of ii_encodings rows are required to
encode the object.

encode_estring varchar A segment of the encoded string.
(1990)

490 Database Administrator Guide

Extended System Catalogs

ii_id Catalog

ii_locks Catalog

The ii_id catalog is a heap table containing one column with a single row. The
value in this catalog is the highest object ID currently allocated in this
database. For a newly created database, this value is initialized to 10000 and
can grow as large as the largest positive integer value. Object IDs below
10000 are reserved for system use:

Column Name Data Type Description
object_id integer The highest current object ID in this
database.

The ii_locks catalog is used by ABF, Vision, and OpenROAD to manage
concurrent user access to applications and application components (such as
frames or procedures). The format of ii_locks is as follows:

Column Name Data Type Description

entity_id integer Object ID of the locked object
(application or application component).

session_id integer ID of the user session that locked the
object.

locked_by varchar(32) User ID that locked the object.

lock_date char(25) Date locked.

lock_type varchar(16) Type of lock:
write if an application component is
locked.

refresh if a concurrent application user
has changed the application flow
diagram (possibly affecting other users'
screens).

entry if no change to flow diagram.

System Catalogs 491

Extended System Catalogs

ii_longremarks Catalog

The ii_longremarks catalog contains the “long remarks” text associated with
user interface objects. Only those objects that have an associated long remark
are entered in this catalog. Consequently, unless all objects being selected
have a long remark entered, joins between ii_objects and ii_longremarks must
be outer joins. For an example of an outer join between the ii_objects and
ii_longremarks catalogs, see Sample Queries for the Extended System
Catalogs for SQL (see page 495). The current implementation restricts long
remarks to a single row; the sequence column is provided for a future
enhancement to allow remarks of arbitrary length.

The ii_longremarks catalog is structured as btree unique on the object_id and
remark_sequence columns:

Column Name Data Type Description

object_id integer Object ID of the user interface
object this remark belongs to.
Various other information about this
object (such as name, owner and
object class) is kept in the ii_objects
catalog.

remark_sequence integer A sequence number for (future)
representation of multiple segments
of text comprising one object's long
remarks.

long_remark varchar(600) The long remarks text associated
with the object.

remark_language integer Currently unused.

492 Database Administrator Guide

Extended System Catalogs

ii_objects Catalog

The ii_objects catalog contains a row for every user interface object in the
database. This catalog stores basic information about each object, such as
name, owner, object ID, object class, and creation date.

Objects in this table often have additional information represented in rows of
one or more other user interface catalogs; for example, form objects are also
represented by rows in ii_forms, ii_fields, and ii_trim. In all cases, the object
ID is the key column that is used to join information from multiple catalogs
about a single object.

The ii_objects catalog is a btree table, keyed on the object_class,
object_owner, and object_name columns. The ii_objects catalog has a

secondary index, btree unique, keyed on the object_id column:

Column Name Data Type Description

object_id integer The object identifier, unique among
user interface objects in the
database.

object_class integer The object's class. Tells what type of
object this is (form, report, and so
on). For object class definitions, see
Object Classes in the ii_objects
Catalog (see page 494).

object_name varchar(32) The name of the object.

object_owner varchar(32) The object owner's user name.

object_env integer Currently unused.

is_current smallint Currently unused.

short_remark varchar(60) A short descriptive remark associated
with the object.

object_language smallint Currently unused.

create_date char(25) The time and date when the object
was initially created.

alter_date char(25) The time and date when the object,
or associated information, was most
recently altered or saved.

alter_count integer A count of the number of times this
object has been altered or saved.

last_altered_by varchar(32) The name of the user who last altered

or saved this object.

System Catalogs 493

Extended System Catalogs

Object Classes in the ii_objects Catalog

Object class is a column in the ii_objects catalog. Each object class is as

follows:

Object Class Description

1002 JoinDef

1501 Generic Report

1502 Report-Writer Report
1511 RBF Report

1601 Form

2001 ABF Application

2010 4GL Intermediate Language Code
2021 Host Language Procedure
2050 4GL Procedure

2075 Database Procedure
2110 Global Variable

2120 Constant

2130 Record Definition
2133 Record Attribute
2190 Undefined Procedure
2201 QBFName

2210 4GL Frame

2219 Old 4GL Frame

2220 Report Frame

2230 QBF Frame

2249 GBF Frame

2250 Undefined Frame
2260 Vision menuframe
2261 Vision append frame
2262 Vision update frame
2264 Vision browse frame
3001 ABF Form Reference

494 Database Administrator Guide

Sample Queries for the Extended System Catalogs for SQL

Object Class Description

3501 Dependency Type: member of

3502 Dependency Type: database reference

3503 Dependency Type: call with no use of return code
3504 Dependency Type: call with use of return code

Sample Queries for the Extended System Catalogs for SQL

You can issue queries to get information from the extended system catalogs.
Each query specifies the class code for the type of object being selected.

For details on class codes, see Object Classes in the ii_objects Catalog (see

page 494).

Example: Find Information on Every Report in the Database

This query finds information on every report in the database.

select report=o.object_name, o.object_owner,
o.short_remark, r.reptype
from ii_objects o, ii_reports r
where (o.object_class = 1501 or

o.object class

= 1502 or

o.object_class = 1511)
/* object_classes 1501, 1502, 1511 = reports

*/

and o.object_id = r.object_id

Example: Find the Name and Tabbing Sequence Number of Fields on a Form

This query finds the name and tabbing sequence number of every simple field
and table field on form “empform” (empform is owned by user “susan”).

select form=o.object_name, f.fldname, f.flseq,

f.fltype

from ii_objects o, ii_fields f
where o.object class = 1601

/* object_class 1601 = "form" */
and o.object_name = 'empform'

and o.object_owner = 'susan'

and o.object_id = f.object_id

and (f.fltype = 0 or f.fltype = 1)
/* simple field or table field */
order by flseq

System Catalogs 495

Sample Queries for the Extended System Catalogs for SQL

Example: Find Information on Every ABF Application

This query finds information on every ABF application in the database.

select appname=object_name, object_owner
from ii_objects o
where o.object_class = 2001
/* object_class 2001 = "abf application" */

Example: Find Information on All Frames and Procedures in an Application

The following two queries require two correlation variables on the table
ii_objects. Two variables are required, because we need to find all the frames
and procedures in the application, plus object information on the selected
frames and procedures.

This query finds information on all frames and procedures in application lab.

select appname=o0.object_name, o2.object_class,
2.0object_name, o2.object_owner, o02.short_remark

from ii_objects o, ii_abfobjects a,

ii_objects o2

where o.object_name = 'lab’

and o.object_class = 2001

/* object_class 2001 = "abf application" */

and o.object_id = a.applid

and a.object_id = o2.object_id

This query finds dependency information for all frames and procedures in
application payables. Frames and procedures with no dependencies show up as
a row with ad.name=DUMMY.

select appname=o0.object_name, o2.object_class,
02.object_name, o2.object_owner,
02.short_remark, ad.abfdef_name,
ad.abfdef_deptype, ad.object_class
from ii_objects o, ii_objects o2,
ii_abfobjects a, ii_abfdependencies ad
where o.object name = 'payables’
and o.object_class = 2001
/* object_class 2001 = "abf application" */
and o.object id = a.applid
and a.object_id = o2.object_id
and a.object_id = ad.object_id
order by object_name

496 Database Administrator Guide

Forms System Catalogs

Example: Select Object Information

This query selects object information and long remarks, when available, by
performing an outer join of ii_objects with ii_longremarks.

select o.object_name, o.object_class,
o.object_owner, o.short_remark, 1.long_remark
from ii_objects o, ii_longremarks 1
where o.object_id = l.object_i
union all

select o.object_name, o.object_class,

0.object_owner, o.short_remark, ''

from ii_objects o

where not exists

(select *

from ii_longremarks

where ii_longremarks.object_id = o.object_id)
order by object_name

Forms System Catalogs

The forms system requires the following extended system catalogs:

B ji_encoded_forms
® ji_fields

® ji_forms

B ji_trim

ii_encoded_forms Catalog

The ii_encoded_forms catalog contains encoded versions of forms. The
encoding allows forms to be retrieved from the database faster.

The ii_encoded_forms catalog is structured as compressed btree unique on the
object_id and cfseq columns:

Column Name Data Type Description

object_id integer Unique identifier (object ID) for
identifying this form in the ii_objects
catalog. Other information about this
form (such as name, owner, and
object class) is stored in the
ii_objects catalog.

cfseq smallint Sequence number of this record for a

System Catalogs 497

Forms System Catalogs

Column Name Data Type Description

particular encoded form. Record
sequence numbering starts at zero

(0).

cfdatsize integer Number of bytes of actual data in
column cfdata.

cftotdat integer Total humber of bytes needed to hold
an encoded form.

cfdata varchar(1960) Data area used for holding an
encoded form.

ii_fields Catalog

The ii_fields catalog contains information on the fields in a form. For every
form, there is one row in this catalog for each field, table field and table field
column. As used below, the word field refers to a simple field, a table field or a
column in a table field. An example of a query that selects information about
fields on a form is in Querying the Extended System Catalogs for SQL (see
page 495).

The ii_fields catalog is structured as btree unique on the object_id and flsubseq

columns:

Column Name Data Type Description

object_id integer Unique identifier (object ID) for
identifying the form this field belongs
to in the ii_objects catalog. Other
information about the form (such as
name, owner, and object class) is
stored in the ii_objects catalog.

flseq smallint The sequence number of the field in
the form (or column in a table field).
This determines the tabbing order
among fields and among columns in a
table field.

fldname varchar(32) The name of the field.

fldatatype smallint The field's data type. Possible values

are listed below with nullable data
types being the negative of the listed
value:

3 date

498 Database Administrator Guide

Forms System Catalogs

Column Name Data Type Description
5 money
20 char
21 varchar
30 integer
31 floating point
32 C
37 text

fllength smallint The internal data length of the field in
bytes. This cannot be the same as the
user-defined length. This is the length
used by Ingres.

flprec smallint Reserved for future use.

flwidth smallint The number of characters displayed in
the field on the form including wrap
characters. For example, if the format
for the field is c20.10, flwidth is 20.
If the field is a table field, this value
is the number of columns in the table
field.

flmaxlin smallint The number of lines occupied by the
field (title and data).

flmaxcol smallint The number of columns occupied by
the field (title and data).

flposy smallint The y coordinate of the upper left
corner of the field.

flposx smallint The x coordinate of the upper left
corner of the field.

fldatawidth smallint The width of the data entry area for
the field. If field format is c20.10,
fldatawidth is 10.

fldatalin smallint The y coordinate position of the data
entry area relative to the upper left
corner of the field.

fldatacol smallint The x coordinate position of the data
entry area relative to the upper left
corner of the field.

fltitle varchar(50) The field title.

System Catalogs 499

Forms System Catalogs

Column Name Data Type Description

fltitcol smallint The x coordinate position of the title
relative to the upper left corner of the
field.

fltitlin smallint The y coordinate position of the title
relative to the upper left corner of the
field.

flintrp smallint Reserved for future use.

fldflags integer The field attributes, such as box and

reverse video. Valid (octal) values
are:

1 boxed field

04 query-only

10 keep previous values
20 mandatory

40 no row lines (table field)
100 force lowercase

200 force uppercase

400 reverse video

1000 blinking

2000 underline

4000 change intensity
10000 no autotab

20000 no echo

40000 no column title (table field
only)

fldflags (cont'd.)

200000 foreground color 1
400000 foreground color 2
1000000 foreground color 3
2000000 foreground color 4
4000000 foreground color 5
10000000 foreground color 6
20000000 foreground color 7
100000000 invisible

10000000000 row highlight (table

500 Database Administrator Guide

Forms System Catalogs

ii_forms Catalog

Column Name Data Type Description
field)
fld2flags integer More attributes for the field, including
scrolling:
0100 scrollable
01000 display-only
04000 derived field
fldfont smallint Reserved for future use.
fldptsz smallint Reserved for future use.
fldefault varchar(50) The default value for the field.
flformat varchar(50) The display format for the field (for
example, c10 or f10.2).
flvalmsg varchar(100) The message to be displayed if the
validation check fails.
flvalchk varchar(240) The validation check for the field.
fltype smallint Indicates if the record describes a
regular field, a table field or a column
in a table field. Possible values are:
0 simple field;
1 table field;
2 table field column;
flsubseq smallint A unique identifying record number

with respect to the set of records that
describe all the fields in a form.

The ii_forms catalog contains one row for each form in a database.

The ii_forms catalog is structured as btree unique, keyed on the object_id

column:

Column Name

Data Type

Description

object_id

integer

Unique identifier (object ID) for identifying

this form in the ii_objects catalog. Other
information about the form (such as name,
owner, and object class) is stored in the
ii_objects catalog.

frmaxcol

smallint

The number of columns the form occupies.

System Catalogs 501

Forms System Catalogs

Column Name

Data Type

Description

frmaxlin smallint The number of lines the form occupies.

frposx smallint The x coordinate for the upper left corner
of the form.

frposy smallint The y coordinate for the upper left corner
of the form.

frfldno smallint For forms saved before release 6.3/01,
contains the number of updatable regular
and table fields in the form. For forms
saved with or after release 6.3/01, contains
the number of regular and table fields in
the form.

frnsno smallint For forms saved before release 6.3/01, the
number of display-only regular fields in the
form.

frtrimno smallint The number of trim and box graphic trim
strings in the form.

frversion smallint Version number of the form.

frscrtype smallint Reserved for future use.

frscrmaxx smallint Reserved for future use.

frscrmaxy smallint Reserved for future use.

frscrdpix smallint Reserved for future use.

frscrdpiy smallint Reserved for future use.

frflags integer The attributes of the form, such as whether
this a pop-up or normal form. Valid (octal)
values are:
1 Display form with single-line border
200 Display form as pop-up
4000 Display form in narrow -screen
mode
10000 Display form in wide-screen mode

fr2flags integer More attributes for the form. Currently
unused.

frtotflds integer The total number of records in the ii_fields

catalog for the form.

502 Database Administrator Guide

Forms System Catalogs

ii_trim Catalog

The ii_trims catalog contains the trim strings and box graphic trim for a form.
There is one row for each trim string and for each box graphic trim.

The ii_trim catalog is structured as compressed btree unique on the object_id,

trim_col and trim_lin columns:

Column Name Data Type Description

object_id integer Unique identifier (object ID) for
identifying the form this trim string
belongs to in the ii_objects catalog.
Other information about the form
(such as name, owner, and object
class) is stored in the ii_objects
catalog.

trim_col smallint The x coordinate for the starting
position of the trim string or box
graphic trim.

trim_lin smallint The y coordinate for the starting
position of the trim string or box
graphic trim.

trim_trim varchar The actual trim string or encoding of

(150) box graphic trim size (number of rows

and columns).

trim_flags integer Attributes of the trim string:
01 box graphic trim
0400 reverse video
01000 blinking
02000 underline
04000 change intensity
0200000 foreground color 1
0400000 foreground color 2
01000000 foreground color 3
02000000 foreground color 4
04000000 foreground color 5
010000000 foreground color 6
020000000 foreground color 7

trim2_flags integer More attributes for the trim string.
Currently unused.

trim_font smallint Reserved for future use.

trim_ptsz smallint Reserved for future use.

System Catalogs 503

ABF System Catalogs

ABF System Catalogs

The extended system catalogs that are required by the ABF system are as

follows:

® ji_abfclasses

®m ji_abfdependencies
®m ji_abfobjects

® ji_sequence_values

ii_abfclasses Catalog

The ii_abfclasses catalog contains information on the attributes of ABF record
types. Name, owner, and class information is stored in ii_objects; information
about the record types is stored in ii_abfobjects:

Column Name

Data Type

Description

appl_id

integer

Object ID of the ABF application that
contains this object.

class_id

integer

Object ID of the record type
containing the attributes.

catt_id

integer

Object ID in the ii_objects catalog.

class_order

smallint

Unused.

adf_type

integer

Integer code representing the type of
the attribute (user frames,
procedures). Valid values are listed
below; NULLable data types are
represented as the negative of the
listed value:

0 none

3 date

5 money

30 integer

31 floating point

37 text

40 string

type_name

varchar(32)

Description of adf_type.

adf_length

integer

Length of return type.

adf_scale

integer

Scale factor of return type.

504 Database Administrator Guide

ABF System Catalogs

ii_abfdependencies Catalog

The ii_abfdependencies table describes how the objects listed in the
ii_abfobjects table depend on each other, and on other database objects such
as reports. To get a list of application dependencies, you must join this table
with ii_objects over the object_id column. For an example of joining
ii_abfdependencies with ii_objects, see Sample Queries for the Extended
System Catalogs for SQL (see page 495).

The ii_abfdependencies catalog is structured as btree, keyed on the
abfdef_applid and object_id columns:

Column Name Data Type Description

object_id integer Object ID of an ABF application object
that is dependent on another object.
Other information about this object
(such as name, owner and object
class) is stored in the ii_objects and
ii_abfobjects catalogs.

abfdef_applid integer Object ID of the ABF application that
contains this object.

abfdef _name varchar(32) Name of depended-upon object. If
the row indicates a frame or
procedure's dependence on an
ii_encodings entry, the name is fid
plus the object ID of the ii_encodings
entry. If the row only exists to avoid
an outer join problem between this
table ii_abfobjects and ii_objects, the
name is DUMMY.

abfdef_owner varchar(32) Catalog updater. Present for naming
consistency across user interface
catalogs, not currently important for
correct ABF operation.

object_class integer Object manager class of depended
upon object.

abfdef_deptype integer Type of dependency:

3502 Dependent on a database
object.

3503 Call with no use of return
code.

3504 Call with return code.
3505 Menu dependency.

System Catalogs 505

ABF System Catalogs

Column Name Data Type Description

3506 Dependency on a global
variable.

3507 Dependency on a record type.

3508 Dependency on table form
[type of table] declaration.

3509 Dependency on form [type of
form] declaration.

3510 Dependency on form [type of
table field] declaration.

abf_linkname varchar(32) Vision Menu item text for menu
dependency.
abf_deporder integer Vision Order of menu dependency.

ii_abfobjects Catalog

The ii_abfobjects catalog contains ABF-specific information on ABF objects.
Name, owner, and class information on each object is contained in the
ii_objects catalog, and is obtained by joining ii_abfobjects with ii_objects over
the ID column. For an example of joining ii_abfobjects with ii_objects, see the
Querying the Extended System Catalogs for SQL (see page 495). The ABF
application is also considered an object, and corresponds to a row in which
applid=object_id.

The ii_abfobjects catalog is structured as compressed btree unique on the
applid and object_id columns:

Column Name Data Type Description

applid integer Object ID of the ABF application that
contains this object.

object_id integer Unique identifier (object ID) for
identifying this object in the ii_objects
catalog. Other information about this
object (such as name, owner, and
object class) is stored in the
ii_objects catalog.

abf_source varchar Source file name (without path) for
(180) objects with source files; source path
for the application.

abf_symbol varchar(32) Linker symbol corresponding to
object, for objects that are compiled

506 Database Administrator Guide

ABF System Catalogs

Column Name Data Type Description
and linked (compiled forms, user
frames, procedures).
retadf_type smallint Integer code (ADT type) for return
type of objects that have return types
(user frames, procedures). Possible
values are listed below with NULLable
data types being the negative of the
listed value:
0 none
3 date
5 money
30 integer
31 floating point
37 text
40 string
rettype varchar(32) A textual description of retadf_type.
retlength integer Length of return type.
retscale integer Scale factor of return type.
abf_version smallint Release number for latest update of
object. Contains 0 for release 5.
abf_flags integer 32-bit flag variable; the flags describe
the state of the component.
abf_argl varchar(48) Object specific (field 1):
applications: Contains the executable
name.
report or QBF frames: Command line
flags (if specified).
procedures: The host language
(descriptive string only, derived from
fill extension).
constants: The language of the
constant (for example, English or
French).
abf_arg2 varchar(48) Object specific (field 2). If object is:

An application: this field contains its
default starting frame.

Report-writer: this field contains the
output destination (file)

QBF frames: this field contains the
joindef/table flag.

System Catalogs 507

ABF System Catalogs

Column Name Data Type Description

abf_arg3 varchar(48) Object-specific field 3. For
applications: The link option file.

abf_arg4 varchar(48) Object-specific field 4. For
applications: specifies the query
language (QUEL or SQL).

For 3GL or 4GL frame: contains the
date of the last unsuccessful compile.

abf_arg5 varchar(48) Object-specific field 5. For
applications: Contains the role under
which the application runs.

For Vision frames: Contains the date
and time the form was generated.

abf_arg6 varchar(48) Object-specific field 6. For Vision
frames: Contains the date and time
the code was generated.

ii_sequence_values Catalog
The ii_sequence_values catalog is used by the 4GL sequence_value function to
generate a series of increasing values (for example, in an application that

automatically assigns the next invoice number).

The format of ii_sequence_values is as follows:

Column Name Data Type Description

sequence_owner varchar(32) The owner of the table that receives
the sequence value.

sequence_table varchar(32) The table that receives the sequence
value.
sequence_column varchar(32) The column that receives the

sequence value.

sequence_value integer The last value generated by the
sequence_value function.

508 Database Administrator Guide

QBF System Catalogs

QBF System Catalogs

The QBF system requires the following extended system catalogs:

® ji_joindefs
® ji_gbfnames
ii_joindefs Catalog

The ii_joindefs catalog contains additional information about join definitions
(JoinDefs) used in QBF. Basic information about the JoinDef is contained in a
row in the ii_objects catalog. Each JoinDef can have several rows in ii_joindefs
associated with it. There are four type of records in ii_joindefs, identified by
the gtype column. The ii_joindefs catalog is structured as compressed btree
unique on the object_id and gtype columns:

Column Name

Data Type

Description

object_id

integer

Unique identifier (object ID) for
identifying this JoinDef in the ii_objects
catalog. Other information about the
JoinDef (such as its name, owner, and
object class) is stored in the ii_objects
catalog.

gtype

integer

The low order byte of this column
indicates the record type of this row, as
follows:

O0—Indicates if a table field is used in the
JoinDef.

1—Table information.
2—Column information.
3—Join information.

The high order byte is used as a
sequence number for multiple entries of
a particular record type.

Each JoinDef has exactly one row with
gtype = 0; it has one row with qtype =
1 for each table used in the JoinDef; it
has one row with qtype = 2 for each
field displayed in the JoinDef; it has one
row with qtype = 3 for each pair of
columns joined in the JoinDef.

ginfol

varchar(32)

If qtype = 0, ginfol indicates if the

System Catalogs 509

QBF System Catalogs

Column Name

Data Type

Description

JoinDef is built with a table field format
(Y = yes, N = no). If qtype = 1, ginfol
contains the name of a table used in the
JoinDef.

If qtype = 2, ginfol contains a
correlation name (range variable) for
the table used in the JoinDef that
contains the column named in ginfo2. If
gtype = 3, qginfol contains a correlation
name (range variable) for a column
named in ginfo2 that is joined to the
column referenced in ginfo3 and qinfo4.

ginfo2

varchar(32)

If gtype = 0, qginfo2 is not used. If qtype
= 1, ginfo2 indicates whether the table
named in ginfol is a Master (0) or Detail
(1) table. If gtype = 2, qinfo2 contains
the name of the column to be used in
conjunction with the correlation name in
ginfol. If qtype = 3, ginfo2 contains the
name of the column to be joined to the
column referenced in ginfo3 and qginfo4.

ginfo3

varchar(32)

If gtype = 0, ginfo3 is not used. If qtype
= 1, ginfo3 contains a correlation name
(range variable) for the table named in
ginfol. If qtype = 2, ginfo3 contains the
field name in the form corresponding to
the column identified by qginfo2. If gtype
= 3, qinfo3 contains a correlation name
(range variable) for a column named in
ginfo4 that is joined to the column
referenced in ginfol and ginfo2.

ginfo4

varchar(32)

If qtype = 0, ginfo4 is not used. If qtype
= 1, qinfo4 contains the delete rules for
the table named in ginfol (0 = no, 1 =
yes). If qtype = 2, ginfo4 contains the
status codes for the column identified by
ginfol and ginfo2. These status codes
are expressed as a 3-character text
string; the first character denotes
update rules for values in this column (0
= no, 1 = yes); the second character
denotes whether this column is part of a
join (0 = no, 1 = yes); the third
character denotes whether this column
is a displayed column (0 = no, 1 = yes).
Typically, if the column is not part of a

510 Database Administrator Guide

Report-Writer System Catalogs

Column Name

Data Type

Description

join the third character is not used by
QBF. If gtype = 3, ginfo4 contains the
name of the column to be joined to the
column referenced in ginfol and qinfo2.

ginfo5

varchar(32)

The owner of the table referenced by the
joindef.

ii_gbfnames Catalog

The ii_gbfnames catalog contains information used by QBF on the mapping
between a form and a corresponding table or JoinDef.

The ii_gbfnames catalog is structured as compressed btree unique on the

object_id column:

Column Name Data Type Description

object_id integer Unique identifier (object ID) for
identifying this QBFName in the
ii_objects catalog. Other information
about this QBFName (such as its
name, owner, and object class) is
stored in the ii_objects catalog.

relname varchar(32) The name of a table or JoinDef.

relowner varchar(32) the owner of the table referenced in
the QBFName.

frname varchar(32) The name of a form corresponding to
the table or JoinDef.

gbftype smallint Indicates if the QBFName is mapping

a form to a table (value 0) or JoinDef
(value 1).

Report-Writer System Catalogs

The Report-Writer requires the following extended system catalogs:

B ji_rcommands

" ji_reports

System Catalogs 511

Report-Writer System Catalogs

ii_rcommands Catalog

The ii_rcommands catalog contains the formatting, sorting, break, and query
commands for each report, broken down into individual commands.

The ii_rcommands catalog is structured as compressed btree unique, keyed on
the object_id, rcotype, and rcosequence columns:

Column Name

Data Type

Description

object_id

integer

Unique identifier (object ID) for
identifying the report this command
belongs to in the ii_objects catalog.
Other information about the report
(such as name, owner and object
class) is stored in the ii_objects
catalog.

rcotype

char(2)

Report command type. Valid values
are:

TA—Table for a .data command.

SQ—Piece of SQL query for the .query
command.

QU—Piece of QUEL query for the query
command.

SO—Sort column for a .sort command.

AC—Report formatting or action
command.

OU—Output file name, if specified.
BR—break command information.

DE—declare statement information.

rcosequence

smallint

The sequence number for this row, in
the rcotype.

rcosection

varchar(12)

The section of the report, such as
header or footer, to which the
commands refer if rcotype is AC. If
rcotype is QU or SQ, this refers to the
part of the query described. For other
values of rcotype, this field is unused.

rcoattid

varchar(32)

If rcotype is AC, this indicates either
the column name associated with the
footer/header section or contains the
value PAGE or REPORT or DETAIL.
If SO, this is the name of the sort

512 Database Administrator Guide

Report-Writer System Catalogs

Column Name Data Type Description

column.

If QU, the range variable names are
put in this column.

If BR, the name of the break column is
put in this column.

If DE, the name of the declared
variable is put in this column.

rcocommand varchar(12) Primarily used for the names of the
formatting commands when rcotype is
AC. Also used by SO rcotype to
indicate that the sort column is also a
break column.

rcotext varchar(100) If the rcotype is AC, this contains the
text of the formatting command.
If type OU, this contains the name of
the output file.
If QU or SQ, this contains query text.
If TA, this contains the table name.
If SO, this contains the sort order.
If DE, this contains the text of the
declaration.
If BR, this is unused.

ii_reports Catalog

The ii_reports catalog contains information about reports. There is one row for
every report in the database. Both reports created through RBF and reports
created through sreport contain entries in ii_reports. For an example of a
query that selects information about reports, see Sample Queries for the
Extended System Catalogs for SQL (see page 495).

The ii_reports table is structured as btree unique on the object_id column:

Column Name Data Type Description

object_id integer Unique identifier (object ID) for
identifying this report in the ii_objects
catalog. Other information about the
report (such as name, owner, and
object class) is stored in the
ii_objects catalog.

reptype char(1) The method used to create the
report; S if the report was created by
sreport, and F if the report was

System Catalogs 513

Vision System Catalogs

Column Name

Data Type

Description

created by RBF.

replevel

integer

The release level of the report, shown
on the copyrep header (not present in
earlier releases). Used internally by
Report tools.

0 for earlier releases
1 for the current release

The default is 0.

repacount

smallint

The number of rows in the
ii_rcommands catalog with an rcotype
of AC. This is used for internal
consistency.

repscount

smallint

The number of rows in the
ii_rcommands catalog with an rcotype
of SO. This is used for internal
consistency.

repgcount

smallint

The number of rows in the
ii_rcommands catalog with an rcotype
of QU. This is used for internal
consistency.

repbcount

smallint

The number of rows in the
ii_rcommands catalog with an rcotype
of BR. This is used for internal
consistency.

Vision System Catalogs

Vision requires the following catalogs. These catalogs comprise the
APPLICATION_DEVELOPMENT_3 module.

®m ji_framevars
® ji_menuargs
B ji_vqjoins

®m ji_vqgtabcols
®m ji_vqtables

514 Database Administrator Guide

Vision System Catalogs

ii_framevars Catalog

The ii_framevars catalog describes the local variables and hidden table fields of

a frame:

Column Name Data Type Description

object_id integer Object ID of the frame.

fr_seq smallint Sequence number (for ordering).
var_field varchar(32) Field name.

var_column varchar(32) Column name (if field is a table field).
var_datatype varchar(105) Data type of the field.

var_comment varchar(60) Comment for the variable.

ii_menuargs Catalog

The ii_menuargs catalog describes the arguments to be passed to a called
frame for a given menu choice:

Column Name Data Type Description

object_id integer Object ID of frame.

mu_text varchar(32) Menu item text.

mu_seq smallint Sequence number beginning at 0 (for
argument ordering).

mu_field varchar(32) Field name in called frame to assign
value to. If field name is of the form
X.Y, this contains the X portion only.

mu_column varchar(32) Portion of field name in called frame to
assign value to. Only used when field
name is of form X.Y, in which case this
contains the Y portion.

mu_expr varchar(240) 4GL expression (field, constant,

byref(), etc.) in the parent frame to
assign to field in the called frame.

System Catalogs 515

Vision System Catalogs

ii_vqjoins Catalog

The ii_vgjoins catalog describes the joins involved in a visual query:

Column Name

Data Type

Description

object_id

integer

Object ID of the frame.

vq_seq

smallint

Sequence number (for ordering).

join_type

smallint

Type of join specified by this row.
0 = Master/Detail join.

1 = Master/Lookup join.

2 = Detail/Lookup join.

join_tab1l

smallint

Index to table 1 of the join. Relative
table number in visual query
beginning with 0.

join_tab2

smallint

Index to table 2 of the join. Relative
table number in visual query
beginning with 0. (table 2 is always
below table 1 in visual query).

join_col1l

smallint

Join column for table 1. Index into
array of columns for table 1. (Same
as ii_vqtabcols.vqg_seq).

join_col2

smallint

Join column for table 2. Index into
array of columns for table 2. (Same
as ii_vqtabcols.vqg_seq).

ii_vqtabcols Catalog

The ii_vqtabcols catalog describes the columns of the tables involved in a

visual query:

Column Name Data Type Description

object_id integer Object ID of the frame.

vg_seq smallint Column sequence number (for
ordering).

tvg_seq smallint Sequence number of table in visual
query from ii_vgtables.

col_name varchar(32) Column name.

ref_name varchar(32) Name used on the form for field

containing data.

516 Database Administrator Guide

Vision System Catalogs

Column Name

Data Type

Description

adf_type

smallint

Type information for column. See
description of iicolumns.
column_ingdatatype for details.

adf_length

integer

Column size in bytes.

adf_scale

integer

Currently not used.

col_flags

integer

This column contains multiple pieces
of information about the column in a
bitmap format. The following values
are present (expressed in Hex):

1 = Column is to be used on
form/report.

2 = Column is joined to a detail table
and must be displayed.

4 = Column is joined to a lookup
table and must be displayed.

8 = Column is a subordinate join
field; therefore it cannot be displayed.

0x10 = Column is sequenced
(generate new surrogate key value
for INSERT statements).

0x20 = Column is descending (for
sort).

0x40 = Column is part of the table's
unique key.

0x100 = Set if column allows
defaults.

col_sortorder

smallint

Sort order for this column. Set to O if
not part of sort sequence. For lookup
tables, this gives the order of the
column in the lookup screen.

col_info

varchar(240)

Information entered by developer for
this column in visual query. For
Browse & Update frames, this is a
query restriction and is added to the
WHERE clause of the SELECT
statement. For Append frames, this
gives default value information and is
either used in 4gl assignment
statements for a displayed column, or
in the INSERT statement for a not-
displayed column.

System Catalogs 517

Vision System Catalogs

ii_vqtables Catalog

The ii_vqtables catalog describes the tables involved in a visual query:

Column Name Data Type Description

object_id integer Object ID of the frame.

vg_seq smallint Order of table in visual query.
vg_mode smallint This column contains multiple pieces

of information about the frame as a
whole, in a bitmap format (although
note that the first 4 entries below are
mutually exclusive; only one of them
can appear). Can contain the
following values (in Hex):

0 = Frame has no tables (menu
frame).

1 = Master/Detail frame.

2 = Master only in a table field.

3 = Master only in simple fields.

0x10 = If set, the Qualification
Processing frame behavior is Disabled
(can only be set for Browse & Update
frames)

0x20 = If set, the Next Master
Menuitem frame behavior is Disabled
(can only be set for Browse & Update
frames)

0x40 = If set, the“Hold Locks on
Displayed Data frame behavior is set
to Yes (can only be set for Update

frames).
tab_name varchar(32) Table name.
tab_owner varchar(32) Table owner.
tab_section smallint Visual query section table is in.

0 = table is in master section.
1 = table is in detail section.

tab_usage smallint How this table is used in the visual
query.
0 = Append table.
1 = Update table.
2 = Browse table.
3 = Lookup table.

tab_flags integer Bitmap flag that indicates the frame

518 Database Administrator Guide

Vision System Catalogs

Column Name Data Type Description

behaviors in the visual query. Valid
values (in Hex):

0x1 = For lookup table: lookup
requires a qualification screen. For
update table: insertions are allowed
into the table field (only relevant to
the detail table, and to masters in
table field)

0x2 = OK to Delete data in this table.
0x4 = If set: update of join field
cascades to detail; if clear: update of
join field not allowed if details exist.
0x8 = If set: delete of master
cascades to detail; if clear: delete of
master not allowed if details exist.
0x10 = Table does not have a unique
key.

0x20 = DBMS handles referential
integrity on details when join field is
changed. Generated code updates
master table only.

0x40 = DBMS handles referential
integrity on details when master is
deleted.

System Catalogs 519

DBMS System Catalogs

Additional Vision Catalog Information

The Application Flow Diagram and Escape Code provide additional Vision
Catalog information.

Vision's Application Flow Diagram is built from menu item information in the
ii_abfdependencies catalog. See ii_abfdependencies Catalog (see page 505).

Frame Escape Code is stored in the ii_encodings catalog. See ii_encodings
Catalog (see page 490).

All escape code for a frame is combined into one (possibly resequenced) entry
in iiencodings. Each piece of escape code in the entry is preceded by a type
code. For example:

1 = form-start

2 = form-end

3 = query-start

4 = query-new-date
5 = query-end

6 = append-start
7 = append-end

8 = update-start
9 = update-end

10 = delete-start
11 = delete-end

12 = menu-start

13 = menu-end

14 = field-entry
15 = field-change
16 = field-exit

17 = user-menuitem

DBMS System Catalogs

The table names of the DBMS System Catalogs can be used as arguments to
the sysmod command. These tables are not supported for any other use.
System Catalogs for All Databases

Following are the table names of DBMS System Catalogs for all databases. The
information in these catalogs is accessed by selecting from the standard

catalogs:

Catalog Description

iiattribute Describes the properties of each column of a table.
iidbdepends Describes the dependencies between views or

520 Database Administrator Guide

DBMS System Catalogs

Catalog

Description

protections and their base tables.

iidbms_comment

Contains text for comments on tables or columns.

iidefault Stores default values used by any attribute (column)
in any table residing in this database.

iidevices Describes additional locations when a user table
spans more than one location.

iidistcol Lists the partitioning columns for partitioned tables.

iidistscheme Contains information about partitioning schemes for
partitioned tables.

iidistval Contains the partitioning values and directives for
LIST or RANGE partitioned tables.

iievent Contains database event information.

iiextended_relation

Contains information about the association between
base tables and the extended tables used to store
long data types.

iigw06_attribute

Security audit gateway catalogs.

iigw06_relation

Security audit gateway catalogs.

iihistogram Contains database histograms that are collected by
the optimizedb program.

iiindex Describes all the indexes for a table.

iiintegrity Contains information about the integrities applied to
tables.

iikey Contains information about key attributes for unique
and referential constraints.

iipartname Contains logical partition names for partitioned
tables.

iipriv Contains information about privileges and their
dependent objects.

iiprivlist Contains list of privilege names.

iiprocedure Contains information about database procedures.

iiprocedure_ Contains information about database procedure

parameter parameters.

iiprotect Contains information about the protections applied to
tables.

iigrytext Contains the actual query text for views, protections,

and integrities.

System Catalogs 521

DBMS System Catalogs

Catalog Description

iirel_idx An index table that indexes the iirelation table by
table name and owner.

iirelation Describes each table in the database.

iirule Contains information about rules in the database.

iischema Contains the schema name, owner and ID.

iisecalarm Contains information about security alarms.

iisectype A lookup table for security event types.

iisequence Contains information about all sequences defined in

the database.

iistatistics Contains database statistics that are collected by the
optimizedb program.

iisynonym Contains information on the synonyms that have
been defined for tables, views and indexes.

iitree Contains the DBMS internal representation of query
text for views, protections, and integrities.

iixdbdepends An index table used to find the rows that reference a
dependent object in the iidbdepends catalog.

System Catalogs for iidbdb

Following are the table names of DBMS System Catalogs that exist only in the
master database (iidbdb). These tables can be used as arguments to the
sysmod command. They are not supported for any other use.

The information in these catalogs is accessed by selecting from standard
catalogs when connected to the iidbdb database:

Catalog Description

iicdbid_idx Index on iistar_cdbs

iidatabase Various attributes of the databases existing in this
installation.

iidbid_idx Index on iidatabase.

iidbpriv Contains information about database privileges.

iidbdb_netcost Contains costing information used by Ingres Star.

iidbdb_nodecost = Contains costing information used by Ingres Star.

522 Database Administrator Guide

DBMS System Catalogs

Catalog

Description

iiextend

Information about what locations databases have been
extended to.

iigw07_attribute

Ingres Management Architecture (IMA) catalog.

iigw07_index

Ingres Management Architecture (IMA) catalog.

iigw07_relation

Ingres Management Architecture (IMA) catalog.

iilocations Storage locations defined in this installation.

iiprofile User profiles defined in this installation.

iirole Roles defined in this installation

iirolegrant Information about which grantees have role privileges.

iisecuritystate Information relating to the security state of this
installation.

iistar_cdbs Information about Ingres Star coordinator databases in
this installation.

iiuser Users defined in this installation

iiusergroup Group definitions for this installation

Miscellaneous System Catalogs

Following are the table names of system catalogs that are created by default
and are owned by $ingres, but do not fit into any of the previous categories:

Catalog Description

iiocolumns An old system catalog interface that has been replaced
by iicolumns.

iiotables An old system catalog interface that has been replaced

by iitables.

iistar_cdbinfo

A standard catalog interface to data that describes
coordinator databases for Ingres Star. For more
information, see the Ingres Star User Guide.

System Catalogs 523

Appendix B: Ingres Limits

This section contains the following topics:

Summary of Limits (see page 525)

Summary of Limits

Following is a summary of Ingres limits:

Parameter

Limit

Maximum database size

1,000 EB (exabytes)

Maximum tables in a database

65,536

Maximum files per database

2 billion

Maximum files per instance

Limit based on file systems.

Maximum page size

64 KB

Maximum cache buffers

4 GB on 32-bit systems
16 EB on 64-bit systems

Limited by hardware/OS memory
architecture.

Maximum rows per table

34.5 trillion

Maximum row size per table

256 KB

Limit does not include LOBs.

Maximum fields (columns) per table 1024
Maximum indexes per table 126
Maximum file size per index 512 GB
Maximum fields (columns) per index 32
Maximum integer size 64 bits
Maximum decimal precision 39 digits

Maximum float precision

Hardware dependent

Maximum length of a character field

32,000 bytes

If II_ CHARSETxx=UTF8,16,000
bytes

Maximum length of a varchar field

32,000 bytes

Ingres Limits 525

Summary of Limits

Parameter

Limit

If II_CHARSETxx=UTF8,16,000
bytes

Maximum size of a CLOB 2 GB
Maximum size of a BLOB 2 GB
Maximum size of an SQL statement Unlimited
Maximum members in an IN list Unlimited
Maximum logical operators in a Unlimited
WHERE clause

Maximum join conditions Unlimited
Maximum tables in a join statement 126

Unicode support

UTF-8 and UCS-2 (UTF-16 without
surrogate support)

XML support

Consume and publish

526 Database Administrator Guide

Index

A

ABF system ¢ 504
allocation option e 212
alterdb (command)
-delete_oldest_ckp ¢ 356
-disable_journaling ¢ 368
altering
database characteristics ¢ 369
database objects ¢ 22, 33
table objects ¢ 37, 61, 64
applications
changing ownership ¢ 130
copying e 122
moving e 122
archiving process ¢ 349
area (database)
creating » 27, 28, 29, 31
defined o 25
ASCII format
copying ¢ 93
copying databases in e 117
unloading databases in e 111
auditing a database ¢ 373

backup
copying a database 378
dynamic e 350, 364
methods e 347
static ¢ 350
verifying data accessibility ¢ 350
binary copy ¢ 72, 75
binary format
copying databases in e 117
unloading databases in e 111
B-tree storage structure
choosing « 189
data pages « 185, 187
deletions 187
described o 182
examples o 183, 229
index o 182, 185
key o 182

leaf pages o 185
locking » 186
remodifying e 228, 229
sort order 186
structure o 183
tips 188
when to use ¢ 187

bulk copying 84

byte (data type)
conversion function e 44
copying ¢ 76

byte varying (data type)
conversion function e 44
copying e 76

C

C (data type) conversion function e 44
-c flag in unloaddb (command) ¢ 111
cartesian product in query execution plan e
269
char (data type)
conversion function e 44
copying e 76
character fields ¢ 44
check constraints e 47
checkpoint
sequence version number e 355
template file ¢ 389, 395
template file format e 394, 396
checkpoint files
alternate locations ¢ 33
default location e 25
described ¢ 21
checkpoints
and recovery ¢ 381
deleting ¢ 355
destroyed ¢ 356
dynamic backup e 364
file size 359
journal files e 405
locking ¢ 354
offline ¢ 354
on tape ¢ 358
setting e 351
columns (in tables)

Index 527

data types « 44

inserting e 57

keys o 191

modifying e 55

renaming e 55, 56
comment on (statement) e 66
commit (statement) ¢ 312
compression

copyapp in (command) e 122
copyapp out (command) e 122
copydb (command)

ASCII format e 117
binary format e 117
copying tables e 120, 129
creating scripts ¢ 129
files copied o 114

and table size 404
modify disk space e 407

concurrency

described ¢ 301
heavy e 344
improving ¢ 344
issues ¢ 411
tips « 344

conversion functions e 44
copy (statement)

binary records ¢ 95

bulk copy ¢ 73, 84

copy from e 70, 76, 83, 93, 95
copy into ¢ 70, 75, 82
described ¢ 70

errors ¢ 104

fixed-length records e 95
formatted copy ¢ 72
incremental copy e 73
integrity checks ¢ 74

loading data into tables ¢ 76, 83
nulls e 81

permissions ¢ 74

reading multi-line records e 95
reload operation ¢ 70

rollback ¢ 105

specifying file name ¢ 71
successful use of ¢ 101

syntax e 70

unload operation ¢ 70
unloading tables into files e 75
with allocation (clause) » 86
with error_count (clause) ¢ 105
with extend (clause) » 86

with fillfactor (clause) ¢ 86
with leaffill (clause) o 86

with log (clause) o 106

with maxpages (clause) ¢ 86
with minpages (clause) ¢ 86
with nonleaffill (clause) » 86
with on_error (clause) ¢ 105

copyapp (command) ¢ 130

inconsistent databases o 118
purpose ¢ 107
scripts e 115

uses ¢ 107
using e 113, 129
copying

applications e 122
binary copy e 72, 75
bulk copy ¢ 73, 84

copying QBFNames and JoinDefs o 121, 131

database objects e 120, 128

extended system catalogs e 489

fixed length ¢ 82, 102

format considerations e 76

formatted o 76

forms e 121

incremental copy ¢ 73

integrity checking « 101

locking « 74

reports e 123

tables « 120, 129

variable length e« 83
copying a database 378
copyrep (command) e 131
cpio (UNIX utility) 361
create table (statement)

duplicate rows e 40

inserting columns ¢ 57

renaming columns e 56
createdb (privilege) o 22
creating

database event e 158

database objects « 22, 33

indexes e 195

integrity objects e 145

rules e 147

table objects « 37, 61, 64

tables « 38

views e 60

528 Database Administrator Guide

D

d (data type) » 76
data
invalid e 102
loading » 69, 81, 106
data dictionary e 488
data files
default location ¢ 25
described o 21
locations ¢ 33
data types
byte e 76
byte varying e 76
changing ¢ 55
char « 76
de76
date ¢ 76
decimal e 76
float 76
float4 « 76
formats ¢ 76
integer ¢ 76
integerl ¢ 76
long byte ¢ 76
long char ¢ 76
money e 76
null indicator « 81
smallint « 76
varchar e 76
database administrator e 127
creating e 16
described o 16
ownership hierarchy ¢ 127
responsibilities e 16, 205
database events
creating e 158
described ¢ 158
dropping e 158, 164
example ¢ 163
raising e 159, 160
receiving ¢ 161
registering e 161
removing ¢ 164
using ¢ 159
Database Object Manager window
using e 22, 33
database objects
altering ¢ 22, 33

creating o 22, 33
deleting » 136
dropping e 22, 33
viewing e 22, 33, 135
databases
altering » 22, 33
audit trails « 373
changing ownership o 127
checkpointing ¢ 351
creating o 22, 33
destroying e 145
dropping e 22, 33
extending ¢ 24, 33
inconsistent ¢ 112, 118
keys ¢ 419
limits e 22
maintaining shared e 140
relocating « 24
roll forward e 381
unextending e 24
unloading « 108
viewing e 33
date (data type)
conversion function e 44
copying ¢ 76
date null(data type) conversion function e 44
dates in system catalogs e 426
DBMS system e 520, 522
dbname_SQL_INIT « 318
deadlocks e 331
decimal (data type)
conversion function e 44
copying ¢ 76
declare global temporary table (statement) e
64
declare table (statement) e 67
delimiters o 103
destroying objects ¢ 22, 33, 37, 61, 64, 136,
145, 158
disk space requirements ¢ 399
displaying e 292
drop table (statement) 64
dropping
database events ¢ 158
indexes o 195
objects e 22, 33, 37, 61, 64, 145, 158
rules e 147
dummy field 76
dump (UNIX utility) e 361
dump files

Index 529

default location e 25 G
described ¢ 21

use in recovery ¢ 354, 381 get dbevent (statement) ¢ 161
duplicates greedy optimization ¢ 289

in columns e 242

table rows e 40 H
E hash (storage structure)

defined » 166

environment variables or logicals e 318 described ¢ 171, 172
exclusive locks e 303, 327 examples e 172
expiration date (tables) ¢ 59 fillfactor e 216
extend option ¢ 213 hashing e 172
extended system e 486 key ¢ 171, 175
extending databases ¢ 24 secondary indexes e 227
F tips » 176

when to use ¢ 176
heap (storage structure)
defined » 166
described ¢ 167, 168
disk space required ¢ 400
examples ¢ 168
tips » 170
when to use ¢ 170
heapsort (storage structure) o 167
help table (statement) o 207

-f flag, sql (command) « 117

fastload (command)
described ¢ 90
performing e 91
requirements e 90

fields
fixed length ¢ 82
variable length ¢ 83

ﬁlef:opying to/from = 70, 71 histogram, See also statistics ® 253, 299
reload.ing (command file) e 111 I
table names ¢ 140
unload.ing (command file) ¢ 111 ii_abfclasses catalog ¢ 504
fillfactor e 214 ii_abfdependencies catalog ¢ 505
float (data type) ii_abfobjects catalog 506
conversion function e 44 II DUMP e 25
copying ¢ 76 ii_encoded_forms catalog e 497
float4 (data type) ii_encodings catalog ¢ 490
conversion function e 44 ii_fields catalog 498
copying ¢ 76 ii_forms catalog ¢ 501
floating point e 111, 117 ii_framevars catalog ¢ 515
formats ii_id catalog » 491
ASCII » 111, 117 ii_joindefs catalog ¢ 509
binary e 111, 117 II_JOURNAL e 25
forms ii_locks catalog e 491
changing ownership of e 130 ii_longremarks catalog ¢ 492
copying e 121 ii_menuargs catalog e 515
moving ¢ 121 ii_objects catalog e 493
forms system e 497 ii_gbfnames catalog 511

ii_rcommands catalog ¢ 512
ii_reports catalog 513
ii_sequence_values catalog e 508

530 Database Administrator Guide

ii_trim catalog « 503
ii_vqjoins catalog ¢ 516
ii_vqtabcols catalog e 516
ii_vqtables catalog e 518
ilaccess catalog « 428
iialt_columns catalog e 429
ilaudit catalog » 469
ilaudittables catalog e 429
iicolumns catalog e 429

iiconstraint_indexes catalog ¢ 433

iiconstraints catalog « 434
iidatabase_info catalog « 471
iidb_comments catalog 434

iidb_subcomments catalog ¢ 435

iidbcapabilities catalog » 435
iidbconstants catalog « 440
iidbdb

after dropping databases o 25

backup e 396

checkpointing « 396

recovery e 396
iidbprivileges catalog ¢ 473
iidistcols catalog ¢ 440
iidistschemes catalog ¢ 441
iievents catalog e 442
iiextend_info catalog ¢ 475
iifile_info catalog ¢ 442
iihistograms catalog e 442
iiindex_columns catalog ¢ 443
iiindexes catalog ¢ 443
iiingres catalog « 444
iiintegrities catalog ¢ 446
iikey_columns catalog e 446
iikeys catalog ¢ 446
iillocation_info catalog ¢ 475
iillog_help catalog 447
iilpartitions catalog ¢ 448
iimulti_locations catalog ¢ 449
iiocolumns catalog « 523
iiotables catalog ¢ 523
iipermits catalog ¢ 449
iiphysical_tables catalog ¢ 451
iiproc_access catalog e 453
iiproc_params catalog ¢ 454
iiproc_rescols catalog ¢ 455
iiprocedures catalog ¢ 453
iiprofiles catalog » 476
iirange catalog » 456
iiref_constraints catalog ¢ 457
iiregistrations catalog e 457

iiroles catalog ¢ 479
iirollgrants catalog ¢ 479
iirules catalog e 458
iisecurity_alarms catalog ¢ 458
iisecurity_state catalog « 480
iisequences catalog » 460
iisession_privileges catalog e 459
iistar_cdbinfo catalog 523
iistats catalog « 461
iisynonyms catalog ¢ 462
iitables catalog ¢ 462
iiusers catalog » 481
iiviews catalog e« 468
incremental copying e 84, 85
incremental rollforward ¢ 382
indexes

creating ¢ 195

design e 419

dropping e 195

secondary e 194

viewing e 195
infodb (command) e 355, 370, 371, 372
ING_SET » 318
ING_SET_dbname 318
ING_SYSTEM_SET e 318
INGDEFDEV o 31
Ingres Cluster Solution ¢ 348
inquire_sql (statement) o 162
integer (data type)

conversion function e 44

copying ¢ 76
integerl (data type)

conversion function e 44

copying ¢ 76
integrity

constraints e 46, 101, 143

general e 154

objects e 145, 158

violation e 145
intended exclusive locks e 303
intended shared locks « 303
ISAM (storage structure)

choosing « 189

defined ¢ 166

described o 178

examples o 178

fillfactor ¢ 216, 217

key e 177, 180

tips « 181

when to use o 181

Index 531

isolation levels
described o 328
read committed o 329, 330
read uncommitted o 329
repeatable read ¢ 329, 330
serializable ¢ 329, 331

J

journaling
described « 364
recovery e 381
starting « 364
starting a new file « 405
stopping ¢ 366
table creation e 40
journals
alternate locations e 33
audit trails e 373
default file location e 25
described ¢ 21
files e 405
purpose ¢ 364
resizing e 369, 372

K

keys
bad e 420
choosing columns ¢ 191
defined » 191
design ¢ 419
duplicate 232
examples ¢ 191
good « 420
multi-column e 421
secondary ¢ 193
surrogate e 421
unique e 219

L

-I flag in sql (command) 119
large objects, See also long byte and long

varchar e 96
leaffill ¢ 218
limits e 525

in unique constraint e 47

locations

alternate o 33, 39, 58

alternate (for tables) ¢ 39, 58
creating « 33

defined o 25

initial work location e 35
multi-location sorts e 35
multiple (for tables) ¢ 39

raw ¢ 30

locking

and the auditdb command « 374
and the copy statement ¢ 74
and the copydb command « 118
and the unloaddb command e 112
copy.in script ¢ 118

copy.out script e 118

deadlock 331, 411

defaults « 308

escalation e 335

levels o 304, 308, 320
maximum number of locks ¢ 308
maxlocks ¢ 308, 321

modes o 303, 307

monitoring ¢ 338

optimizer 309

overflow and e 335

page-level ¢ 304, 308

process ¢ 305

purpose ¢ 301

query statements ¢ 310
readlock ¢ 324

system o 302

table-level e 304, 310

timeout ¢ 321, 411
troubleshooting ¢ 411
user-controlled 318

waiting « 317, 411

locks

available 306

default » 310

exclusive « 303

granting e 306

intended exclusive e 303, 306
intended shared o 303, 306
logical « 302

modes ¢ 303

NL e 307

null « 303

physical e 302

releasing e 312

shared ¢ 303

shared intended exclusive ¢ 303

532 Database Administrator Guide

SIX ¢ 303 applications e 122

tracing e 338 forms e 121
types o 302 reports e 123
waiting for e 412 tables ¢ 120, 129
write e 303 multi-statement transactions (MST) e 46
lockstat (utility) e 338
logging N
bulk copying 84
file » 348 nonleaffill « 219
incremental copy ¢ 84 null values
nologging 98 and integrity constraints ¢ 146
system e 348 copying ¢ 81
long byte (data type) numeric conversion e 44
conversion function ¢ 44 (o)

copying ¢ 76, 96

long varchar (data type)
conversion function e 44
copying ¢ 76, 96

object ID ¢ 489
object key (data type) conversion function e 44

objects
M changing ownership ¢ 127, 128
copying e 113, 119
maxlocks destroying/dropping e 22, 33, 37, 61, 64,
changing « 321 145, 158
described « 309 loading ¢ 96
maxpages (clause) 211 sharing ¢ 127
minpages (clause) ¢ 211 updating e 55, 56
miscellaneous system e 523 optimization, greedy e 289
modify (statement) optimizedb (command)
allocation option ¢ 212 column selection ¢ 248
disk space requirement ¢ 210, 406 effect ¢ 239
extend option ¢ 213 examples e 257
fillfactor option e 214 text file input e 247
key columns e 209 uses ¢ 416
locking ¢ 210 when to rerun e 256
maxpages (clause) 211 optimizedb (command), See also statistics e
minpages (clause) » 211 2_56_
modify to hash e 172 optimizer
modify to merge o 224 timeout « 288
modify to relocate o 406 outer join e 268
modify to reorganize ¢ 406 overflow
options ¢ 210 and B-tree tables o 235
secondary indexes ¢ 210 and ISAM and hash tables « 233
tips ¢ 230 described ¢ 230
unique (clause) o 219 distribution e 233
uses ¢ 417 key o 232
modify to add_extend (statement) ¢ 226 managing ¢ 414
money (data type) secondary indexes and ¢ 236
conversion function e 44 ownership
copying ¢ 76 changing for application « 130
moving changing for forms ¢ 130

Index 533

changing for procedures e 127
changing for reports ¢ 131
changing for tables ¢ 129

P

page size in tables « 44
page-level locks e 304
pages (in tables)
FHDR page « 404
locking e 304, 320
number of e 207
overflow ¢ 336
used and free 404
parallel query execution e 283
parallel query execution plan
enabling e 285
sample ¢ 286
parallelism ¢ 284
performance
and B-tree index o 224
and overflow e 230, 232
and query execution e 237
and storage structures o 205, 206
improving e 411
query execution plan e 258
table scan ¢ 208
permissions
to create databases o 16, 22
privileges
createdb e 22

Q

QBF system e 509

query
design e 422
flattening ¢ 279
optimizing ¢ 237
performance o 411
troubleshooting e 422

query execution plan
cartesian product e 269
data flow trees o 261
described o 258
evaluating » 291
examples ¢ 266
exchange node ¢ 265
full sort merge o 271
join node « 268

key lookup join e 277
listing 260

lookup joins e 277
multiple table « 281
node types ¢ 263
partial sort merge ¢ 273
proj-rest node e 265
purpose e 237
reading e 261, 262
sort node ¢ 263
subquery join e 279
tid lookup join e 277

R

raise dbevent (statement) ¢ 160
readlock

setting e 324

setting to exclusive ¢ 327

setting to nolock ¢ 140, 325
recovery

about 380

checkpoints ¢ 383

from old checkpoint e 387

methods ¢ 347, 380

of database e 380

of journaled database o 382

of non-journaled database ¢ 382

process e 349
referential constraints ¢ 48
register dbevent (statement) e 161
relocating database files o 24
repetition factor e 242, 256
reports

changing ownership of e 131

copying ¢ 123

moving e 123
Report-Writer system e 511
roll forward

from specified checkpoint ¢ 387

incremental e 382

operation ¢ 381

procedure e 381

recovering subset of data ¢ 386
rolliforwarddb (command) e 385
rows (in tables)

duplicate « 40, 41, 42

locking » 304
rules

before and after o 148

534 Database Administrator Guide

cascade method e 153
creating o 147

defined o 146

disabling e 157

dropping e 147

general purpose o 154
nullify method e 152
prohibiting execution e 157
referential integrity e 149

referential integrity violation ¢ 149

reject method ¢ 150
using e 147
viewing e 147

S

schemas, creating o 62
scripts
copy.in e 115, 118
copy.out e 115, 118
secondary indexes
B-tree o 227
default structure o 227
described o 194
examples ¢ 194
for performance » 199
forcing use ¢ 201
implementation ¢ 195
modifying e 226, 227
multiple ¢ 201
overflow e 227, 232
overhead e 195
using e 199
secondary keys e 193
set (statement)
locking ¢ 415
nojournaling e 366
set autocommit (statement) ¢ 312
set lock_trace (statement) o 339
set lockmode (statement)

changing locking parameters ¢ 310

maxlocks parameter ¢ 321
preventing locking delays ¢ 317
range ¢ 319
readlock = nolock e 318
readlock parameter e 325
timeout parameter ¢ 317, 321
user-controlled locking e 318
using * 318

set log_trace (statement) e 397

set nologging (statement)
described ¢ 98
syntax e 98
set work locations (statement) ¢ 35
shared locks ¢ 303
smallint (data type)
conversion function e 44
copying ¢ 76
sorting
disk space required « 408
insufficient space » 409
sreport (command) ¢ 131
Standard Catalog Interface o 426
standard catalogs ¢ 425
statdump (command) e 292
statistics
column selection ¢ 248
copying e 297
deleting ¢ 292
full e« 244
histogram e 242, 256
key column e 245
minmax e 244
non-sampled o 243
sampled o 243, 297
text file input e 247, 294, 295
types ¢ 243
unloading ¢ 294
storage structures
and performance o 206
B-tree ¢ 166, 182
compressed o 221
default e 167
defined ¢ 165
hash e 166, 171
heap » 166, 167
ISAM e 166
keys o 165, 191
modifying ¢ 209
overflow ¢ 233, 235, 236
types ¢ 166
subselects, flattening e 279
synonyms e 63
sysmod (command)
optimizedb and « 416
uses o 417
system catalogs
ABF e 504
dates ¢ 426
DBMS e 520, 522

Index 535

T

defined o 21, 426

described o 425

extended « 486

forms e 497

miscellaneous e 523

QBF « 509

Report-Writer ¢ 511

Standard Catalog Interface ¢ 426
Vision e 514

table key (data type) conversion function e 44
table objects » 37, 61, 64
tables

allocated size 405

alternate locations e 39, 58
changing locations ¢ 39
changing ownership ¢ 129
checkpointing e 352
commenting e 66

compressed o 221, 404
copying e 70, 120, 129
creating « 38

creating with duplicates « 40, 41
creating with journaling e 40
creating with noduplicates ¢ 41
creating without duplicates ¢ 40
deleting » 136

disk space required o 399
expiration e 59

file name assignment e 140
journaling « 364

loading data into 76, 83, 90
loading from multiple files e 93
location ¢ 39, 58

locking e 304, 320, 336
maintaining e 138

modifying storage structure ¢ 209
moving ¢ 39, 58, 120, 129
multiple locations e 39

partial recovery o 348
retaining templates 141
routine maintenance ¢ 137
structure ¢ 206

utility 38

verify integrity e 139

viewing e 135

tape

capacity in UNIX e 359

use in backups e 358
temporary tables 64
text (data type) conversion function e 44
tids (tupleidentifiers)

described ¢ 202

examples ¢ 202

use ¢ 202

values ¢ 202
timeout

example ¢ 323

optimizer o 288

parameter on set lockmode statement ¢ 317

setting o 321
with/without cursors ¢ 322
tracing e 397
transaction log file
space reserved in e 349
when lost « 388
transactions
multi-query o 413
unlocking e 312
troubleshooting
design issues ¢ 418, 419
performance problems o 411
query performance o 411

U

UDTs (user-defined data types) o 76
unextending databases ¢ 24
unique (clause) » 219
unique constraints e 47
UNIX utilities e 138
unloaddb (command)
ASCII format » 111
binary format e 111
files generated by e 110
inconsistent databases o 112
objects unloaded by e 109
purpose ¢ 107
using « 108
unloading database e 380
updating views e 60
user
data types « 76
ownership hierarchy ¢ 127
utexe.def e 123

536 Database Administrator Guide

\'/

varchar (data type)
conversion function e 44
copying ¢ 76
verifydb (command) e 418
version of standard catalogs e 425
viewing
database objects » 22, 33, 135
indexes ¢ 195
integrity objects e 145, 158
rules o 147
table objects » 37, 61, 64
views
comments to describe ¢ 66
creating 60
defined 60
selecting data from e 60
updating e 60, 61
uses ¢ 60
Vision system ¢ 514
VMS utilities 138

W

Windows utilities e 138
with (clause), copy (statement) 71, 86
work
files, default location e 25
files, described o 21
location e 35
write locks « 303

Index 537

	Bookshelf
	Ingres Database Administrator Guide
	Contents
	1: Introducing Database Administration
	In This Guide
	Audience
	Database Administrator Responsibilities
	Database Administration Summary
	What You Need to Know
	Query Language Used in this Guide
	System-specific Text in this Guide
	Terminology Used in this Guide
	Syntax Conventions Used in this Guide

	2: Creating Databases and Using Alternate Locations
	Types of Files in an Ingres Database
	Working With Database Objects
	Createdb Privilege
	How a Database Is Created
	Extend and Unextend a Database
	Relocate Database Files
	How a Database Is Dropped

	Locations and Areas
	Default Locations
	Alternate Locations
	Create an Area in Windows
	Create an Area in UNIX
	Raw Area in UNIX
	How to Change from Raw to Cooked (Non-raw) Transaction Log

	Create an Area in VMS

	Working with Locations
	Guidelines for Using Locations
	Work Locations
	Initial and Extended Work Locations
	Classification of Extended Work Locations
	Work Locations for a Session

	3: Managing Tables and Views
	Table Management
	Tools for Creating a Table
	Table Ownership
	Table Location
	Requirements for Using an Alternate Location for a Table
	Alternate Location for a Table
	Enable or Disable Journaling
	Duplicate Rows in Tables
	Duplicate Rows When Adding New Rows or Modifying a Table
	Duplicate Rows When Bulk Copying Rows in a Table
	Duplicate Rows in Updated Tables
	Remove Duplicate Rows

	Page Size Specification

	Data Type Conversion Functions for Default Values
	Constraints
	Constraint Types
	Unique Constraints
	Check Constraints
	Referential Constraints
	Primary Key Constraint

	Indexes for Constraints
	Options for Constraint Indexes

	Delete Constraints

	Techniques for Changing Table Columns
	Example: Rename a Column
	Example: Insert a Column

	Techniques for Moving a Table to a New Location
	Relocate a Table
	Reorganize a Table

	Assign an Expiration Date to a Table
	Purge Expired Tables

	Views
	Views and Permissions
	Working with View Objects
	Updates on Views
	Types of Updates Not Permitted on Views

	Schemas
	Tools for Managing Schemas

	Synonyms, Temporary Tables, and Comments
	Synonyms
	Working with Synonym Objects

	Temporary Tables
	Temporary Table Declaration and the Optional SESSION Schema Qualifier
	Examples of Working with Temporary Tables

	Comments to Describe Tables and Views
	The Comment On Statement
	The Declare Table Statement

	4: Populating Tables
	Methods of Populating Tables
	Copy Statement Syntax
	Copy Into (Unload Data) and Copy From (Reload Data)
	File Name Specification on the Copy Statement
	With-Clause Options of the Copy Statement

	Copy Statement Operation
	Binary and Formatted Copying
	Bulk and Incremental Copy
	Copy Permissions and Integrities
	Locking During a Copy

	Binary Copying
	Copy Data into a Binary File
	Reload a Table in Binary Format

	Formatted Copying
	Column Name and Format Specifications
	Summary of Data Types and Storage Formats

	Copy Statement and Nulls
	Copy Data into a Formatted File
	Data with Fixed-Length Fields
	Data with Variable-Length Fields

	Reload Formatted Data

	Bulk Copy
	Bulk Copying Requirements
	Transaction Logging During Bulk and Incremental Copy
	Bulk and Incremental Copy Processing
	Bulk Copy With-Clauses
	Example: Perform a Bulk Copy to Create a Hash Table
	Example: Perform Bulk Copy and Create B-tree Table
	Example: Perform Bulk Copy into a Heap Table

	Fastload Operation
	Requirements for Using Fastload
	Perform a Fastload Operation
	Data Loading in a Multi-CPU Environment

	Advanced Use of the Copy Statement
	Populate Multiple Database Tables Using Multiple FIles
	Load a Table from Multiple Files
	Multi-line File Records

	Load Fixed-Length and Binary Records
	Considerations When Loading Large Objects
	Considerations for Copying Formatted Large Objects
	Example: Copying Formatted Large Objects

	Considerations for Binary Copying a Large Object

	Large Data Loads with the Set Nologging Statement
	Suspend Transaction Logging
	Effects of the Set Nologging Statement
	Before Using the Set Nologging Statement
	Restore Transaction Logging
	Example: Use a Set Nologging Application to Load a New Database
	Example: Use a Set Nologging Application to Load an Existing Database

	Successful Use of the Copy Statement
	How to Check for Integrity Errors
	Reloading Problems
	Invalid Data in the Copy File
	Miscounted Fixed-Length Field Widths in the Copy File
	No nl Delimiter in the Copy File
	Omitted Delimiters Between Fields in the Copy File
	Too Many Delimiters in the Copy File

	Error Handling with the Copy Statement
	Stop or Continue the Copy
	Stop the Copy After a Specified Number of Errors
	Roll Back Rows
	Log Errors During Copy
	Continue the Copy and Log Errors

	Troubleshooting Tips for Data Loading

	5: Loading and Unloading Databases
	Unload and Copy Operations
	Privilege Required for Unload Operation
	Privilege Required for Copy Operation

	Unload Operation
	Objects That Are Unloaded
	Ways to Perform the Unload Database Operation
	Options on the Unload Database Operation
	Files Created During the Unload Database Operation
	Unload in ASCII or Binary Format
	Floating Point Specification for Unload
	Unload to Another Instance
	Locking While Unloading a Database
	Inconsistent Database During an Unload
	Lock Database Exclusively During Unload

	Copy Operation
	Ways to Perform the Copy Database Operation
	Options on the Copy Database Operation
	Objects that Are Copied
	Scripts Produced by the Copy Database Operation
	Reloading Order

	Copy in ASCII or Binary Format
	Floating Point Specification for Copy Database
	Copy a Database to Another Instance
	Locking While Copying a Database
	Inconsistent Database During Copy Operation
	Lock Database Exclusively When Copying

	Copy Individual Database Objects
	Command Scripts
	Prepare to Copy a Database Object
	How to Copy a Database Object
	Copy Tables
	Example: Move a Table to Another Database

	Copy Forms
	Example: Move Forms to Another Database

	Copy Applications
	Copy Reports
	Example: Copy Reports to Another Database

	Increase Object Limit on Commands

	Ways to Copy and Relocate a Database
	Example: Copy a Database to a New Database
	Example: Copy a Database to a New Database and Use New Locations
	Example: Copy a Database to a New Database and Swap Contents of Locations

	Generate XML and Import XML Operations

	6: Changing Ownership of Databases and Database Objects
	Database Ownership
	How to Change Ownership of a Database Object
	Prepare to Change Ownership of a Database Object
	Change Ownership of a Database Object
	Change Ownership of Tables
	Example: Change Ownership of Table

	Change Ownership of Applications
	Example: Transfer Ownership of an Application to Another User

	Change Ownership of Forms
	Example: Transfer Ownership of Forms to Another User

	Change Ownership of Reports
	Example: Transfer Ownership of Reports to Another User

	How to Change Ownership of a Database

	7: Maintaining Databases
	Ways to View Database Objects
	View Database Objects that Belong to Another User
	List All Tables and Their Owners

	Ways to Delete Database Objects
	Routine Database Maintenance Tips
	Operating System Maintenance Tips
	Verifying Databases
	Databases Shared Among Multiple Users
	How File Names Are Assigned for Tables
	Select File Names Associated with Tables

	Retain Templates of Important Tables

	8: Ensuring Data Integrity
	Data Integrity Through Integrities, Rules, and Events
	Integrities
	Constraints Compared with Integrities
	Differences in Error Handling Between Integrities and Constraints
	Differences in Null Handling Between Integrities and Constraints

	Working with Integrity Objects
	How Integrities Are Used
	Nulls and Integrities
	The Copy Statement and Enforcing Integrities

	Rules
	Rules and Database Procedures
	Working with Rule Objects
	How Rules Are Used
	Before and After Rules
	Example: Use a Rule to Implement the Equivalent of an Integrity

	Rules and Transactions
	Enforcing Referential Integrity
	Reject Technique for Enforcing Referential Integrity
	Example: Enforce Referential Integrity Between an Employee and Manager

	Nullify Technique for Enforcing Referential Integrity
	Cascade Technique for Enforcing Referential Integrity

	Enforcing General Integrities
	Enforcing General-Purpose Rules
	Using a Rule to Apply External Resource Controls
	Using a Rule to Extend the Permission System
	Example: Use a General Purpose Rule to Track Changes to Personnel Numbers

	The Copy Statement and Enforcing Rules
	Disable Rules

	Database Events
	Working with Dbevent Objects
	How Database Events Work
	Raise an Event
	Register to Receive an Event
	Receive an Event
	Get the Next Event from the Event Queue
	Obtain Event Information

	Example: Using Database Events with Rules
	Remove an Event Registration
	Drop Database Events

	9: Choosing Storage Structures and Secondary Indexes
	Storage Structure Terminology
	Storage Structure and Performance
	Types of Storage Structures
	Default Storage Structure of New Tables
	Heap Storage Structure
	Structure of a Heap Table
	Heap as Structure for Loading Data
	When to Use Heap
	Heap Troubleshooting

	Hash Storage Structure
	Structure of a Hash Table
	Retrievals Supported by Hash
	When to Use Hash
	Hash Troubleshooting

	ISAM Storage Structure
	Structure of an ISAM Table
	Retrievals Supported by ISAM
	When to Use ISAM
	ISAM Troubleshooting

	B-tree Storage Structure
	Structure of a B-tree Table
	Associated Data Pages in a B-tree Table
	Index Growth in a B-tree Table
	Splitting in a B-tree Table

	Locking and B-tree Tables
	Sorted Order in a B-tree Table
	Deleted Rows in a B-tree Table
	When to Use B-tree
	B-tree Troubleshooting

	ISAM or B-tree?
	When to Choose ISAM over B-tree
	When to Choose B-tree over ISAM

	Storage Structure Comparison Summary
	Keys
	Key Columns
	Secondary Keys

	Secondary Indexes
	Working with Indexes
	Implementation and Overhead of Secondary Indexes
	R-tree Secondary Index
	Secondary Indexes and Performance
	Example: Load Retrieved Columns into a Secondary Index to Improve Performance

	Forced Use of Secondary Indexes
	Two Secondary Indexes

	Tids

	10: Maintaining Storage Structures
	Storage Structures and Performance
	Table Pages
	Display the Number of Pages in a Table
	Limitations of Heap Structure

	Modify Procedures
	Key Columns and Performance
	Tools for Modifying Storage Structures
	Cautions When Using the Modify Procedure
	Options to the Modify Procedure
	Number of Pages
	Example: Modify Structure and Force a Higher Number of Main Pages for a Table
	Example: Specify a Maximum Number of Main Pages for a Table

	Allocation of Space
	Example: Allocate 1000 Pages to a Table

	Extension of Space
	Example: Extend a Table in Blocks of 1000 Pages

	Guidelines for Choosing an Extend Size
	Default Fill Factors
	Alternate Fill Factors
	Example: Set Fill Factor to 25% on a Hash Table
	Example: Set Fill Factor to 100% on an Uncompressed ISAM Table

	Leaf Page Fill Factors
	Index Page Fill Factors
	Ensuring Key Values Are Unique
	Benefits of Unique Keys
	Disadvantages of Unique Keys
	Specify Unique Keys
	Example: Prevent the Addition of Two Names with the Same Number
	Example: Modify a Table to Hash and Prevent the Addition of Two Names with the Same Number

	Table Compression
	When to Compress a Table
	Compression Overhead

	Page Size

	Shrinking a B-tree Index
	Extending a Table or Index
	Modifying Secondary Indexes
	Persistence Option
	Example: Enable the Persistence Option

	Changing the Index Storage Structure
	Example: Create a B-tree Index for a Table
	Example: Modify an Existing Index to B-tree

	Remodifying B-tree Tables
	Examples: Remodifying a Table to B-tree

	Common Errors During the Modify Procedure

	Overflow Management
	Measure the Amount of Overflow
	Repetitive Key Overflow
	Poorly Distributed Overflow
	Overflow and ISAM and Hash Tables
	Example: Showing Overflow Distribution

	B-tree Tables and Overflow
	Secondary Indexes and Overflow

	11: Using the Query Optimizer
	Data and Query Optimization
	Database Statistics
	Generate Statistics
	Assumptions of the Query Optimizer
	Resources Required During Optimization
	System Modification After Optimization
	Run System Modification

	Information Collected by the Optimizer
	Types of Statistics to Generate
	Non-Sampled and Sampled Statistics
	Generate Sampled Statistics

	Full Statistics
	Generate Full Statistics on Sample Data

	Minmax Statistics
	Example: Generate Statistics with Only Minimum and Maximum Values for a Table

	Key Column Statistics
	Examples: Create Statistics on Key or Indexed Columns Only

	Statistics from an Input Text File

	Column Statistics
	Create Statistics on Keys

	Histogram (Optimization Output)
	Histogram Cells
	Statistics and Global Temporary Tables
	How to Associate “Model” Histograms with Global Temporary Tables

	When to Rerun Optimization
	Example: Before and After Optimization

	Query Execution Plans
	Information on a QEP
	View a QEP
	Control QEP Generation Using a Environment Variable

	Text-Only QEP
	QEPs as Data Flow Trees
	Modes for Showing Tree Diagrams

	Graphical QEP

	Types of Nodes in a QEP
	Sort Nodes in a QEP
	Non-Join Nodes in a QEP
	Orig Nodes
	Projection-Restriction Nodes
	Exchange Nodes
	Examples of Non-join Nodes

	Join Nodes in a QEP
	Cartesian Product Node
	Full Sort Merge Node
	Partial Sort Merge Node
	Hash Join Node
	Key and Tid Lookup Join Node
	Subquery Join Node

	Multiple Query Execution Plans
	More Complex QEPs
	Parallel Query Execution
	Types of Parallelism
	Enabling Parallel Query Plans
	Sample Parallel QEPs

	Optimizer Timeout
	Control Optimizer Timeout

	Greedy Optimization
	Control Greedy Optimization

	Summary for Evaluating QEPs
	Specialized Statistics Processing
	Display Optimizer Statistics
	Display Optimizer Statistics for Individual Tables and Columns
	Delete Optimizer Statistics
	Floating Point Precision in Optimizer Statistics Display

	Statistics in Text Files
	Unload Optimizer Statistics to a Text File
	Unload Statistics for Selected Tables or Columns

	Sample Text File Statistics
	Load Optimizer Statistics from a Text File
	Load Statistics for Selected Tables or Columns
	Update Row and Page Counts

	Copy a Table and Associated Statistics

	Sampled Optimizer Statistics
	Create Sampled Statistics

	Composite Histograms

	12: Understanding the Locking System
	Concurrency and Consistency
	Locking System Configuration
	Lock Types
	Lock Modes
	Lock Levels
	How the Locking System Works
	Lock Requests
	Available Locks in the System
	Lock Grants
	Lock Mode Compatibility
	How the Default Lock Mode is Determined
	How the Locking Level is Determined
	Initial Locking Level
	Escalation of Locks
	Methods for Changing How Locking is Handled

	Summary of Default Locks
	Releasing of Locks

	Example: Single User Locking
	Example: Multiple User Locking
	Waiting for Locks

	Ways to Avoid Lock Delays
	User-Controlled Locking--SET LOCKMODE
	Ways to Specify a Set Lockmode Statement
	Range of the Set Lockmode Statement
	When to Change the Locking Level
	Change the Locking Level with Set Lockmode

	The Maxlocks Value
	Change Maxlocks Value with Set Lockmode

	Timeout Value for a Lock Wait
	Set a Timeout Value for a Lock Wait
	Guidelines for Timeout Handling
	Example: Timeout Program

	Readlock Option
	Readlock=Nolock Option
	Set Readlock to Nolock
	When Readlock=Nolock is Beneficial
	When Readlock=Nolock is Undesirable

	Readlock=Exclusive Option
	Set Readlock=Exclusive

	Isolation Levels
	Inconsistencies During Concurrent Transactions
	Inconsistencies and Isolation Levels
	Read Uncommitted Isolation Level
	Read Committed Isolation Level
	Repeatable Read Isolation Level
	Serializable Isolation Level

	Deadlock
	Deadlock Example
	Deadlock in Single Query Transactions
	Different Access Paths as a Source of Deadlock
	Lock Escalation as a Source of Deadlock
	Overflow Chains and Locking

	Deadlock in Applications

	Tools for Monitoring Locking
	Performance Monitor
	Set lock_trace Statement
	lock_trace Output
	lock_trace Example

	Performance During Concurrency
	Approaches for Handling Heavy Concurrent Usage
	The Never Escalate Approach
	The Table Lock Approach

	13: Performing Backup and Recovery
	The Need for Backup
	Full or Partial Recovery
	Logging System
	Logging Facility
	Log Space Reservation
	Recovery Process
	Archiver Process

	Data Verification Before Backup
	Methods of Verifying Data Accessibility

	Static or Dynamic Backup
	Backup by Checkpoints
	Table-level Checkpoints
	Checkpoint a Database
	Checkpoint Selected Tables
	Checkpoint and Roll Forward of Tables
	The Checkpoint Template File
	Online and Offline Checkpoints
	Perform an Offline Checkpoint

	Checkpoints and Locking
	Delete Outdated Checkpoints
	Manual Deletion of Checkpoints
	Checkpoint File Version Numbers
	Delete Outdated Checkpoints Manually

	Delete the Oldest Checkpoint

	Checkpoints and Destroyed Databases
	Parallel Checkpointing in UNIX
	Checkpoint to Disk
	Checkpoint to Tape

	Putting Checkpoints on Tape in Windows
	Putting Checkpoints on Tape in UNIX
	How to Estimate Checkpoint File Size in UNIX
	Tape Capacity in UNIX
	Estimate Tape Capacity in UNIX
	Checkpointing to a Single Tape in UNIX
	Checkpointing to Multiple Tapes in UNIX
	When Checkpoint File Fits on a Disk
	When Checkpoint File Does Not Fit on a Disk

	Putting Checkpoints on Tape in VMS

	Journals
	Tools for Performing Journaling
	Database or Table-level Journaling
	Database Journaling
	Table-level Journaling
	Enable Journaling on an Entire Database
	New Tables and Journaling
	Start Journaling on a Database Not Checkpointed

	Journaling and Online/Offline Checkpoints

	Disable Journaling
	Stop Journaling on a Table
	Methods for Stopping Journaling on All Tables
	Disable Journaling When Checkpointing
	Disable Journaling When Altering a Database

	Database Characteristics Affected by Alterdb
	Journal File Size
	Target Journal Size
	Journal Block Size
	Initial Journal Size
	Considerations When Resizing Journal Files
	Considerations When Resizing Journal Files on UNIX

	Audit Trails with Journals
	Tools for Auditing a Database
	Understanding the Audit Operation
	How to Load an Audit Trail as a Table

	Backup by Copying
	Back Up Tables with Copydb Command

	Backup by Unloading
	Recovery
	Rollforward Operation
	Tools for Performing a Roll Forward Operation
	Recover a Journaled Database
	Apply Journals Incrementally to a Backup Database

	Recover a Non-Journaled Database
	Recover a Database from Tape Checkpoints
	Parallel Roll Forward from Disk (UNIX)
	Parallel Roll Forward from Tape (UNIX)
	Table Recovery Using Roll Forward
	Retract Changes Using Roll Forward
	Recover a Subset of Data Using Roll Forward
	Recover a Database from an Old Checkpoint
	Recover from the Loss of the Transaction Log File

	Checkpoint Template File Description
	Checkpoint Template Codes
	Examples: Checkpoint Template Code

	Substitution Parameters
	Valid Code Combinations in the Checkpoint Template File
	Format of the Checkpoint Template File in Windows
	Format of the Checkpoint Template File in UNIX
	Alternate Checkpoint Template Files (UNIX and Linux)

	Format of the Checkpoint Template File in VMS

	Backup and Recovery of the Master Database (iidbdb)
	The iidbdb and Checkpointing

	Set Log_Trace Statement--Trace Log Writes

	14: Calculating Disk Space
	Space Requirements for Tables
	Calculate Space Requirements for Heap Tables
	Calculate Space Requirements for Hash Tables
	Calculate Space Requirements for ISAM Tables
	Calculate Space Requirements for B-tree Tables
	Calculate Space Requirements When Rows Span Pages
	Maximum Row Size Per Page Size

	Space Requirements for Compressed Tables
	Tracking of Used and Free Pages
	Calculation of Allocated Table Size

	Space Requirements for Journal Files
	Space Requirements for Modify Operations
	Factors Affecting Space Requirements for Modify Operations
	Summary of Space Requirements for Modify Operations

	Space Requirements for Sorts
	Insufficient Sort Space
	Orphaned Sort Files
	Factors Affecting Sort Performance

	15: Improving Database and Query Performance
	Locking and Concurrency Issues
	Lock Waits and Performance
	Multi-query Transactions and Performance
	Overflow and Performance
	Storage Structure and Overflow

	Set Statements and Locking Strategy

	Database Maintenance Issues
	Optimization and Performance
	Table and Index Modification and Performance
	System Modification and Performance
	Verification and Performance

	Design Issues and Performance
	Hierarchy for Diagnosing Design-based Performance Problems
	Storage Structures and Index Design and Performance
	Key Design and Performance
	Characteristics of Good Keys
	Characteristics of Bad Keys
	Multi-Column Keys and Performance
	Surrogate Keys and Performance

	Query Design and Performance

	Information Needed By Customer Support
	Isolate and Analyze the Problem Query
	Create a Test Case

	A: System Catalogs
	Standard Catalog Interface
	Example of HELP VIEW and HELP Statements
	Standard Catalogs for All Databases
	iiaccess Catalog
	iialt_columns Catalog
	iiaudittables Catalog
	iicolumns Catalog
	iiconstraint_indexes Catalog
	iiconstraints Catalog
	iidb_comments Catalog
	iidb_subcomments Catalog
	iidbcapabilities Catalog
	iidbconstants Catalog
	iidistcols Catalog
	iidistschemes Catalog
	iievents Catalog
	iifile_info Catalog
	iihistograms Catalog
	iiindex_columns Catalog
	iiindexes Catalog
	iiingres_tables Catalog
	iiintegrities Catalog
	iikeys Catalog
	iikey_columns Catalog
	iilog_help Catalog
	iilpartitions Catalog
	iimulti_locations Catalog
	iipermits Catalog
	iiphysical_tables Catalog
	iiprocedures Catalog
	iiproc_access Catalog
	iiproc_params Catalog
	iiproc_rescols Catalog
	iirange Catalog
	iiref_constraints Catalog
	iiregistrations Catalog
	iirules Catalog
	iisecurity_alarms Catalog
	iisession_privileges Catalog
	iisequences Catalog
	iistats Catalog
	iisynonyms Catalog
	iitables Catalog
	iiviews Catalog

	Standard Catalogs for iidbdb
	iiaudit Catalog
	iidatabase_info Catalog
	iidbprivileges Catalog
	iiextend_info Catalog
	iilocation_info Catalog
	iiprofiles Catalog
	iirollgrants Catalog
	iiroles Catalog
	iisecurity_state Catalog
	iiusers Catalog

	Mandatory and Ingres-Only Standard Catalogs
	Mandatory Catalogs With Entries Required
	Mandatory Catalogs Without Entries Required
	Ingres-Only Catalogs

	Extended System Catalogs
	Organization of Extended System Catalogs
	Data Dictionary Catalogs
	Object IDs in Extended System Catalogs
	Copying the Extended System Catalogs
	Catalogs Shared by All Ingres Tools
	ii_encodings Catalog
	ii_id Catalog
	ii_locks Catalog
	ii_longremarks Catalog
	ii_objects Catalog
	Object Classes in the ii_objects Catalog

	Sample Queries for the Extended System Catalogs for SQL
	Example: Find Information on Every Report in the Database
	Example: Find the Name and Tabbing Sequence Number of Fields on a Form
	Example: Find Information on Every ABF Application
	Example: Find Information on All Frames and Procedures in an Application
	Example: Select Object Information

	Forms System Catalogs
	ii_encoded_forms Catalog
	ii_fields Catalog
	ii_forms Catalog
	ii_trim Catalog

	ABF System Catalogs
	ii_abfclasses Catalog
	ii_abfdependencies Catalog
	ii_abfobjects Catalog
	ii_sequence_values Catalog

	QBF System Catalogs
	ii_joindefs Catalog
	ii_qbfnames Catalog

	Report-Writer System Catalogs
	ii_rcommands Catalog
	ii_reports Catalog

	Vision System Catalogs
	ii_framevars Catalog
	ii_menuargs Catalog
	ii_vqjoins Catalog
	ii_vqtabcols Catalog
	ii_vqtables Catalog
	Additional Vision Catalog Information

	DBMS System Catalogs
	System Catalogs for All Databases
	System Catalogs for iidbdb
	Miscellaneous System Catalogs

	B: Ingres Limits
	Summary of Limits

	Index

