Ingres® 9.3

Distributed Transaction Processing
User Guide

INGR=S

ING-93-DTP-01

This Documentation is for the end user's informational purposes only and may be subject to change or withdrawal
by Ingres Corporation ("Ingres") at any time. This Documentation is the proprietary information of Ingres and is
protected by the copyright laws of the United States and international treaties. It is not distributed under a GPL
license. You may make printed or electronic copies of this Documentation provided that such copies are for your
own internal use and all Ingres copyright notices and legends are affixed to each reproduced copy.

You may publish or distribute this document, in whole or in part, so long as the document remains unchanged and
is disseminated with the applicable Ingres software. Any such publication or distribution must be in the same
manner and medium as that used by Ingres, e.g., electronic download via website with the software or on a CD-
ROM. Any other use, such as any dissemination of printed copies or use of this documentation, in whole or in part,
in another publication, requires the prior written consent from an authorized representative of Ingres.

To the extent permitted by applicable law, INGRES PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IN NO EVENT WILL INGRES BE LIABLE TO THE
END USER OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USER OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF INGRES IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The manufacturer of this Documentation is Ingres Corporation.

For government users, the Documentation is delivered with "Restricted Rights" as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Copyright © 2009 Ingres Corporation. All Rights Reserved.

Ingres, OpenROAD, and EDBC are registered trademarks of Ingres Corporation. All other trademarks, trade names,
service marks, and logos referenced herein belong to their respective companies.

Contents

Chapter 1: Introduction 7
T I 1 T3 U o = P 7
Y 8 T 11T o =P 7
Y o L=Tol =1 I o] g FjTe (=] =Y o o] I PP 8
LT Y=t o= | AT o Tt o [o = PP 8
Syntax Conventions Used iN ThisS GUIAEiuiiiieiiiiiiii e e e ee e nnanes 8
Chapter 2: Introducing Ingres DTP 9
LAY = Lo = g e =T B I P 9
The X/0pen DTP Standardcouiieiieiiiiiiiiie ettt s e s s e e e s e e e st re s e st rnesneaeenenes 9
Transaction ProCeSSiNg ProdUCESuuiiii it et e e e e e s e s a e sn e sneaneaaneannes 10
The X/OPEN DTP MOGEL.ueeiiii i ettt e e e e e e e e e e a e e e e e e e eaaeaeanes 11
D AN Y o] o] [Tt=1 u o o T N oY L= PP 11
T [T) = 13
Installation ReQUITEMENES et e e e e e e e e e e neees 13
Chapter 3: Programming Ingres DTP Applications 15
Application Server Registration ROULINEcviiiiiiii i e 15

Open String Argument - Binding to Database Servers.........coviiiiiiiiiii s 15
How You Create an Ingres DTP AppliCationoouiieiiiiiii e e 16

THhe INCIUAE FilES . uuitiii i e raas 17

The Xa_SWItCh_t StrUCTUIE. ..o e e it it ee e eeaas 17

SQL Statement ReStriCHiONS ... 18

Transaction Context REStriCLIONSvviiiiiiii i 19
Multiple Resource Manager INSTANCEScuiueieiieieeiaee et e e e e e e ae s e e s e e raaeaaansaeanae e anenanss 20
IR 2 24 1= 5= e 1 0 1 21
How Ingres DTP Applications Handle Errors ... e e e a e e 21

[0 gl 1T 71 T 1= 21

Database Access in Error HANAIESoviiriiii e e e e aeas 22

] 50T [22
How to Design Your AppPliCation SEIVEL ... i et e e e e aeaeeaas 22
Chapter 4: Troubleshooting and Tuning Ingres DTP Applications 23
How You Obtain Trace and Error INformation.......coouvieiiiiiiiii i e e ea e 23
L =T= Lot [o A Yo] PP 26
L= o g 4 T=T a Ul =N U o 1 ' PP 26

Contents iii

1Y S17= Lo T =Tl TSI 111 5 1L 26

Performance-Related Settings......ccviiiiiiii i e 27
Appendix A: Building CICS/6000 Programs on UNIX 29
How Ingres DTP Works with CICS/6000ciuiiniieiiiiiiiiiie et s e saese e saese e e re e reanens 30
How You Configure CICS/6000 With INGres DTP ...uiiiiiiiiiiii i i e e e e e e e v reeneeaeas 30

Step 1: Update the CICS/6000 Region Environment Filecoieiiiiiiiiiiiii e 31

Step 2: Add the INGreS CICS USEIE ...ttt et ettt et sttt e e e e st e s e e s e s e e s 32

Step 3: Register Databases with @ CICS/6000 REGION.....iiuiiiiiiiiiiii i i i eiaeeaees 32

Step 4: Build the SWItch Load Fileoneieii it e e e 33

Step 5: Compile and Link the Switch Load Fileoiiiiiiii e 34
(R [o XA (o U IAYa o M@0] 210] I Y] o]0 o] o PR 34

Step 1: Create an Exports List for the Ingres Librarycoooieiiiiiii s 35

Step 2: Modify the LNk SCHIPE ..o 35

Step 3: Rebuild the CICS/6000 COBOL RuUN TimMe SYSLEM ..iiviiiiiiiiiii i sieeseesnecneaneas 36
How You Build CICS/6000 APPliCAtIONS .. .cueeie ittt e e e e e e e e s e e e e aaaeanenaeaens 36

LG Y o] o] 1= o o =P 37

(G{0]=10 Y o] o] I Tor= | u o] o F- 3PP 37
How You Configure Multiple Resource Manager INStanCesuviieiiiiiiiii i 38
Appendix B: Building Encina Programs on UNIX 39
How You Build Programs fOr ENCIiNa....cciiiii i e e e s e e e anes 39

Step 1: Prepare the DCE ENVIFONMENT. et e e e e e e e eaaens 40

Step 2: Register the Resource Manager INStanCes......cviiiiiiiiiii i e rnaeraes 40

Step 3: Create the ENCIiNG Code .ottt r e e e reeanes 41

Step 4: Compile and Link the Program ...t e e e e e 42

Step 5: Enable Tracing (Optional). ..o 43

Step 6: RUN The Program .o s e 43

Step 7: Verify the Results (Optional)eeieieiii i e e e 43
LI 2N N T OO o T T=] [[T = o [0 o PP 44
Appendix C: Building Tuxedo Programs on UNIX 45
PrOCESS ArCNITECTIUIE ...ttt ettt et et e s st s e e e e e e e e e e e e e anaees 45
Installation ReQUINTEMIENESui ittt et e e e e e e e e 46
How You Configure the TUXEAO Sy St ...ttt et e e e e e e e e aeeneaanenns 46

Step 1: Modify the Resource Manager Definition File ..o 47

Step 2: BUild the TMS SeI VeI . ittt e e e eenes 47
How You Create a Tuxedo APPlCation i e e e e e e as 47

Step 1: Build APPliCAtioN SEIVEIS ...t et e e e e r e e e naeaaanens 48

Step 2: Edit the Application Configuration File ..o 49

iv Distributed Transaction Processing User Guide

Step 3: Edit the ENVFILE ...viuiiiiiiii s 50

How You Start and Shut Down Application SEIrVErS ...cuviiiiii i e aes 51
HOW YOU Verify Server STartUp......ooe ittt et e e e e s e e e e e s asne e raaereanens 51
Application Development GUIAEINESt e e eeas 52
Placement of Transaction Demarcation Callscooiveiiiiiiiiii s 52
L] ol o = T 1o T R 52
[1=T=T | T Yol g =1 o Vo | 1o e RPN 52
JLIL S OL0 N {1 1 53
Index 55

Contents v

Chapter 1: Introduction

In This Guide

Audience

This section contains the following topics:

In This Guide (see page 7)

Audience (see page 7)

Special Considerations (see page 8)

General Restrictions (see page 8)

Syntax Conventions Used in This Guide (see page 8)

Ingres Distributed Transaction Processing (DTP) is a set of libraries and
programming extensions that enable you to create X/Open DTP-compliant
applications that access Ingres database servers. The X/Open DTP standard
defines how transaction processing is performed in a distributed, open
environment.

This guide introduces Ingres DTP and contains information on the following
topics:

®m Features that Ingres DTP provides for developing X/Open DTP-compliant
applications

® Troubleshooting and tuning information to help you use Ingres DTP more
effectively

® Appendices for building CICS/6000, Encina, and Tuxedo programs in a
UNIX environment

This guide is designed for programmers who want to use Ingres DTP to
develop database applications that comply with the X/Open DTP standard, and
for database administrators who must administer Ingres DTP installations. To
use Ingres DTP, you should:

m Understand Ingres products and embedded SQL programming
® Understand the X/Open DTP standard

m Be familiar with your particular transaction processing product

Introduction 7

Special Considerations

Special Considerations

For details about the X/Open DTP model and XA standard, refer to the X/Open
CAE specification, available from the X/Open Company, Ltd:

Distributed Transaction Processing: The XA Specification
ISBN: 1 872630 24 3
X/0Open document number XO/CAE/91/300

Your primary resource for creating X/Open DTP-compliant applications is the
documentation provided by your Transaction Processing system vendor.

General Restrictions

This release of Ingres DTP does not support the following XA options:

m Multithreaded database client libraries

® Dynamic registration

® Asynchronous XA operations

Syntax Conventions Used in This Guide

This guide uses the following conventions to describe command and statement

syntax:

Convention

Usage

Monospace

Indicates keywords, symbols, or punctuation that you
must enter as shown

Italics

Represent a variable name for which you must supply an
actual value

[1 (brackets)

Indicate an optional item

{ } (braces)

Indicate an optional item that you can repeat as many
times as appropriate

| (vertical bar)

Separates items in a list and indicates that you must
choose one item

8 Distributed Transaction Processing User Guide

Chapter 2: Introducing Ingres DTP

This section contains the following topics:

What Is Ingres DTP? (see page 9)

The X/Open DTP Standard (see page 9)
Transaction Processing Products (see page 10)
The X/Open DTP Model (see page 11)

XA Application Model (see page 11)

Ingres Star (see page 13)
Installation Requirements (see page 13)

What Is Ingres DTP?

Ingres DTP is a library of routines, header files and programming extensions
that enable you to create applications that interact with Ingres database
servers in an X/Open DTP environment. Ingres DTP requires that you observe
specific programming restrictions (described in this guide) when you create
your application code. Your Ingres DTP application looks much like a standard
Ingres embedded SQL application.

The X/Open DTP Standard

The X/Open DTP standard defines how transaction processing is performed in a
distributed, open environment. In this environment, three logical components
interact to execute global transactions (logical transactions that may span
multiple hardware and software platforms):

L Resource manager

The resource manager (RM) manages access to data (and possibly other
shared resources). In an Ingres DTP installation, the resource manager is
an Ingres database server acting in combination with Ingres DTP library
routines linked into the application.

® Transaction manager

The transaction manager (TM) oversees the execution of global
transactions. The transaction manager performs the following functions:

- It accepts global transaction start, commit, and rollback calls from the
application program. (Transaction rollback can also be initiated by the
transaction manager itself or by the resource manager.)

- It directs resource managers to start, end, prepare, commit, and
rollback global transactions. To communicate with resource managers,
the transaction manager calls XA routines provided by the resource
managers.

Introducing Ingres DTP 9

Transaction Processing Products

m Application program
The application program performs the following functions:
- It interacts with the end-user.

- It notifies the transaction manager when it wants to begin, commit, or
abort a transaction. To communicate with the TM, the application
program calls routines supplied by the TP vendor.

- It performs database access. To interact with an Ingres database
server, the application program uses Ingres embedded SQL.

Transaction Processing Products

Transaction processing (TP) products provide the following benefits:

® They enable developers to create applications that perform transaction
processing across multiple hardware platforms, operating systems,
database management systems, and TP monitor environments.

® They can maintain high availability by performing a variety of
administrative tasks transparently, such as replicating data, rerouting
transactions, and restarting servers that have failed.

m They can be scaled to coordinate transaction processing for a large number
of users.

® They can be tuned and monitored for performance.
Many software vendors have introduced X/Open DTP-compliant transaction

processing products. For details about using Ingres DTP with a specific TP
product, refer to the appendices at the end of this guide.

10 Distributed Transaction Processing User Guide

The X/Open DTP Model

The X/Open DTP Model

The following diagram illustrates how the logical components of the X/Open
DTP model interact:

Application
Program
R Inferface Transacion
(sol) D o e *
Resulls Stalus
II
XA Calls
Resource Managers ||[* 1 Transaction
{Ingres DEMS,
for example) Stals > Manager
* These oallz ac TH
vemdor ropsiciary

XA Application Model

Application programs are typically divided into application clients and
application servers:

Application clients

Application clients interact with the end user and request services from
application servers through the transaction processing system's transaction
manager. The application client demarcates transactions using routines
supplied by the transaction processing software vendor. The application
client should not interact directly with underlying database management
systems.

Application servers

Application servers perform services on behalf of remote application
clients. Typically these services are registered with the transaction
manager. The transaction manager relays transaction demarcation events
to the resource manager by calling XA routines.

Introducing Ingres DTP 11

XA Application Model

Both application clients and application servers must be linked with libraries
provided by the transaction processing software vendor. Application servers
must also be linked with the Ingres DTP XA library routines. Applications
programmers need not be concerned with the XA routines, because these calls
are performed by the TP system on behalf of the application program. For
details about the calls that your application must issue to demarcate
transactions, refer to the programmer documentation supplied by your
transaction processing software vendor.

The following figure illustrates the structure of a typical Ingres DTP application:

End User

ﬁ"“ﬁ:n dalainier

Aplplic.atil:l_'l Client

|user-written)

TF library
Service e] Sece]
I'u'mﬁmﬁ'l-%:ﬁm Inrmiml?ﬁm
allemenia / ailemenia
Application Server 1 A pplication Server 2 \\
TP library TP library
KACals Swvo lEaII; XACals SwCalls
|]]
l‘ Usar-written Uaer—*.‘l.jriter
Ingres service Orther XA service
XA Nbrary routines library routines
\\ (SQL) \\ (5QL)
TrereseciEm Treescim
dermencalin 50 e 500
y f== y R
[Ingres Servers] [Other Server]

This figure shows an application client that accepts data and other commands
from an end user. The application client requests service from two application
servers. One of the application servers communicates with several Ingres
DBMS servers, and the other with a single, non-Ingres DBMS server. The
application client is linked with a library of routines provided by the TP vendor.
The application servers are linked with libraries provided by the TP vendor and
libraries provided by Ingres Corporation or the non-Ingres DBMS vendor.

12 Distributed Transaction Processing User Guide

Ingres Star

Ingres Star

Ingres Star enables you to operate on a combination of local and remote
Ingres databases operating in a variety of hardware and software
environments. Ingres Star performs two phase commit for distributed Ingres
transactions. Ingres DTP applications can participate in two phase commit
transactions coordinated by TP monitors in environments that include both
Ingres and other database management systems. Ingres DTP applications and
Ingres Star applications can operate simultaneously against the same Ingres
DBMS server. The following table compares Ingres Star with Open TP systems:

Feature Ingres Star Open TP System

Typical Distributed decision Distributed online transaction

application support applications processing (OLTP)
applications

Scope and Enterprise-wide Mission-critical

nature of

typical

application

Transaction Two phase commit across Heterogeneous two phase

commitment multiple Ingres databases = commit coordinated by

protocol external transaction
managers

Application SQL SQL plus TP system

programming application programmer

interface interface (API)

Installation Requirements

The following table lists the software versions and requirements for Ingres

DTP:

Feature Requirement

Ingres database Version 2.0 or later

Ingres DTP libraries Version 2.0 or later

Ingres Net Version 2.0 or later

ESQL preprocessor Version 2.0 or later

Database requirements Ingres database with system catalogs

upgraded to Version 2.0 or later

Introducing Ingres DTP 13

Installation Requirements

14 Distributed Transaction Processing User Guide

Chapter 3: Programming Ingres DTP
Applications

This section contains the following topics:

Application Server Registration Routine (see page 15)
How You Create an Ingres DTP Application (see page 16)
Multiple Resource Manager Instances (see page 20)

Two Phase Commit (see page 21)

How Ingres DTP Applications Handle Errors (see page 21)
How to Design Your Application Server (see page 22)

This chapter describes Ingres DTP features you can use to create X/Open DTP-
compliant programs that access Ingres database servers. This chapter
assumes you are familiar with your XA transaction management programming
environment.

Application Server Registration Routine

At run time, application servers must register with the transaction manager for
each resource manager they intend to access. The transaction processing
software vendor provides a proprietary mechanism for this purpose. The
binding of an application server to a resource manager is referred to as a
resource manager instance (RMI).

Open String Argument - Binding to Database Servers

The application server registration routine requires an argument called the
open string.

The Ingres open string has the following format:

INGRES [vnodename: :]databasename [as connection_name]
[options = flag {, flag}]

Note: The open string can contain a maximum of 256 characters and must be
null-terminated (C string). (For CICS/6000, the open string is specified as
resource information in a stanza file, and therefore cannot be null-terminated.)

Programming Ingres DTP Applications 15

How You Create an Ingres DTP Application

vnodename

(Optional.) Defines the name of the vnode on which the Ingres database
resides. (A “vnode” is the Ingres term for “virtual node,” a location for a
database. For information about vnodes, see the Connectivity Guide.)

databasename
(Required.) Defines the name of the Ingres database.
connection_name

(Optional.) Defines a unique string that is associated with a specific binding
of a TM with an RMI. If your TP vendor supports multiple RMIs, the
connection name is used by your application to switch between RMIs. If no
connection name is specified, the default connection name is
[vnode::]database.

flag

(Optional.) Defines connect-time flags for the Ingres DBMS. For
information about these flags, see the description of the sql command in
the Command Reference Guide.

Examples: Valid open strings

INGRES pxal2zbf as personnel
INGRES usa::sec23xyzzy as security options = '-ualex'

Examples: Invalid open strings

In the Ingres DTP environment, an application server can bind to more than
one resource manager instance but can have only one binding to each
resource manager instance. For example, the following bindings would be
illegal for a specific application server:

INGRES ny::pxal2zbf
INGRES usa::pxal2zbf

Assuming that the “ny” and “usa” vhodes represent the same installation,
these open strings erroneously bind to the same database.

How You Create an Ingres DTP Application

You create an Ingres DTP application using SQL statements embedded in C or
COBOL programs (depending on what your TP vendor supports). For details
about creating embedded SQL programs, see the Embedded SQL Companion
Guide. For details about configuring and operating specific TP products with
Ingres DTP, see the appendices of this guide.

16 Distributed Transaction Processing User Guide

How You Create an Ingres DTP Application

The overall process for creating an Ingres DTP application is as follows:

1. Create or modify the source code according to conventions described in
your TP vendor documentation and in this guide.

2. Preprocess the source code using the ESQL preprocessor. For details, see
the Embedded SQL Companion Guide.

3. Compile the resulting source code. For details, see the Embedded SQL
Companion Guide.

4. Link the resulting object module with the following libraries:
m TP libraries
m Ingres DTP libraries (which provide XA entry points for the TM)
» Ingres embedded SQL libraries. For details, see the Embedded SQL

Companion Guide

Note: Application servers must include an SQLCA. For details, see the SQL
Reference Guide. To correctly build an application server, you must have read
access to the $II_SYSTEM/ingres/files subdirectory.

The Include Files

All Ingres DTP application servers must include the “xa.h” and “iixa.h” header
files, located in the $II_SYSTEM/ingres/files subdirectory. To include the
required header files, use the following lines of C code:

#include <xa.h>
#include <iixa.h>

When you compile your application, you must specify the following option on
the cc command line:

-i $II_SYSTEM/ingres/files

The xa_switch_t Structure

The “xa_switch_t” structure, described in the “xa.h” file, contains the set of
entry points that enables the transaction manager to call the standard XA
routines supplied by the resource manager. You use this structure to register
XA entry points with the transaction manager; your TP software vendor
provides the registration routine.

The “xa_switch_t"” structure is declared in the “iixa.h” include file. For details
about this structure, refer to the X/Open XA documentation.

Note: If you have already included a TP vendor-supplied “xa.h” from a
different location, omit the Ingres version.

Programming Ingres DTP Applications 17

How You Create an Ingres DTP Application

SQL Statement Restrictions

Ingres DTP applications must not issue the following statements in any
context: embedded SQL, dynamic SQL, or database procedures (including
procedures fired by rules).

Statement Description

call subsystem Restricted because a call to an Ingres tool
might violate transaction semantics.
(However, if your TP software permits forking
of processes, your application can issue the
call system statement. Call system performs
a temporary exit to the operating system.)

commit Restricted because the transaction manager
handles transaction commits.

connect and disconnect Restricted because connections to databases
are replaced by Transaction Processing
software vendor-supplied server initialization
and shutdown routines.

prepare to commit Restricted because the transaction manager
coordinates two phase commit.

rollback Restricted because the transaction manager
handles transaction commits. (However, your
application can issue the rollback to savepoint
statement.)

set autocommit Restricted because the transaction manager
handles transaction commits.

set_sql (session) Use set connection instead.

In Ingres DTP applications, the preceding statements cause run-time errors. If
the Ingres DTP application executes a database procedure that contains one of
these restricted statements, the offending global transaction is rolled back.
Note: The following obsolete Ingres SQL statements are also restricted:

® begin transaction

®m end transaction

® abort

Do not use these statements in your application.

18 Distributed Transaction Processing User Guide

How You Create an Ingres DTP Application

Transaction Context Restrictions
Your application must not issue the following statements in an Ingres
multistatement transaction:
®m set session authorization
m enable/disable security_audit
®m set lockmode
m set [no]logging

® set session with on_error

However, when your application issues these statements, they must be issued
with an XA transaction, demarcated as required by your TP vendor software.
To determine whether your application is in a transaction, issue the following
Ingres SQL statement:

inquire_sqgl(transaction)

Example: inquire_sql(transaction) statement

begin_xa_transaction();

exec sql inquire_sql (:trxflag = transaction);

i trxflag = @
{

exec sql set lockmode. ..
exec sql set session with on_error...

For details about inquire_sql, see the SQL Reference Guide.
Environment Variables

To avoid conflicts with Ingres transaction states, you can use environment
variables to specify a set of SQL statements to be sent to the Ingres DBMS
whenever Ingres DTP creates a connection to an Ingres database. The
following environment variables are listed in the order in which their
corresponding statements are sent to the DBMS:

ING_SYSTEM_SET

Executed for all connections
ING_SET_DBNAME

Executed for connections to the specified database
ING_SET

Executed for all connections

Programming Ingres DTP Applications 19

Multiple Resource Manager Instances

For details about these environment variables, see the System Administrator
Guide. To set the environment variables for your entire Ingres installation, use
the following command:

ingsetenv

To set the environment variables for your current session, use the following
command:

setenv

Any set statements issued by your application after a connection is made
override the settings established by the preceding environment variables.

Non-DTP Ingres SQL applications establish connections by issuing the connect
statement. In Ingres DTP applications, the connect statement is not required
(and is not valid). Connections to databases are made by Ingres DTP on behalf
of your application-typically (though not always), a connection is established
the first time your application accesses the RMI for which the connection is
required.

Multiple Resource Manager Instances

An Ingres DTP application server can support multiple resource manager
instances (connections to different Ingres databases). Each connection
(binding) must be to a different Ingres database. Ingres DTP applications must
not issue the Ingres SQL connect statement. Database connections are defined
by registering databases using the open string as required by the Transaction
Processing software.

To interact with different databases, your application must issue the set
connection statement, described in the SQL Reference Guide. For applications
that use multiple sessions, service routines must issue the set connection
statement at the beginning of the routine (or when resuming a suspended
association). This practice ensures that the routine is interacting with the
correct resource manager instance.

20 Distributed Transaction Processing User Guide

Two Phase Commit

The following code illustrates the use of multiple resource manager instances
in a sample application. In this example, money is transferred from one
account to another.

Example: set connection statement

exec sql set connection 'connl';
exec sql update account

set balance = balance + :transfer_amount
where acct = :acct;
exec sql set connection 'conn2';
exec sql update account

set balance = balance - :transfer_amount
where acct = :acct;

Note: To determine whether your TP product supports multiple resource
manager instances, refer to your TP vendor documentation. Note that, even if
your application does not interact with multiple RMlIs, it must issue the set
connection statement before attempting to access an RM.

Two Phase Commit

Ingres DTP applications must not attempt to manage two phase commit. The
Transaction Manager assumes responsibility for global transactions and
performs two phase commit on behalf of the application, in a manner that is
not visible to the application.

How Ingres DTP Applications Handle Errors

The following sections explain how Ingres DTP applications handle errors, and
provide information on defining an error handling routine in your application.

Error Messages

By default, Ingres displays error messages on the terminal. To suppress
display of error messages you can define an error handling routine. Your
application program must issue the following statement to enable error

trapping:

set_sql(errorhandler)

Programming Ingres DTP Applications 21

How to Design Your Application Server

Database Access in Error Handlers

If your error handler performs database access (for example, logs errors to a
table), the error handler must explicitly set the connection upon entry and
restore the original connection before exiting. For details about handling errors
in Ingres SQL, see the SQL Reference Guide.

Note: To avoid the overhead of database access in a TP environment, consider
logging errors to flat files.

Error Codes

The values of the status variables SQLSTATE and SQLCODE are set after the
execution of an SQL statement. Until an SQL statement is executed, you
cannot assume that these values are significant. In particular, you should not
assume these values are significant upon entry to a service routine or after
suspending and then resuming an XA transaction.

How to Design Your Application Server

To minimize the overhead required to make connections on behalf of global
transactions, you should group transactions that require access to the same
databases into application servers. For example, if the “display_employees”
and “print_employees” services require access to the “employees” database,
and the “process_payroll” and “process_raises” services require access to both
the “employees” database and the “accounting” database, design your
application servers as shown in the following diagram:

AS_1 AS_2

display_employees process_payroll

print_employees process_raises

employees
database

accounting
database

—

22 Distributed Transaction Processing User Guide

Chapter 4: Troubleshooting and Tuning
Ingres DTP Applications

This section contains the following topics:

How You Obtain Trace and Error Information (see page 23)

Transaction Aborts (see page 26)

Performance Tuning (see page 26)

How You Obtain Trace and Error Information

To obtain information about XA transaction execution and errors, use the
following features:

Ingres error logs

Error logs list errors that have occurred for an Ingres facility. For details
about enabling error logs, see the Database Administrator Guide.

Ingres trace files

Trace files contain messages issued by an Ingres facility, enabling you to
examine a history of the execution. The GC log records connections to the
DBMS, and is therefore of interest to the XA System Administrator. To
enable GC tracing, use the II_GCx_TRACE and II_GCA_LOG environment
variables. For details, see the System Administrator Guide.

II_ EMBED_SET environment variable

This environment variable allows you to enable a variety of tuning and
troubleshooting features. For details, see the System Administrator Guide.

Troubleshooting and Tuning Ingres DTP Applications 23

How You Obtain Trace and Error Information

m Logstat utility

The logstat utility, described in detail in the System Administrator Guide,
displays status information about the logging system. Logstat indicates XA
transactions by preceding the transaction ID with “XA.”

The following figure explains the format of logstat output for XA global
transactions. In this diagram, “%x"” denotes a 4-byte hexadecimal number.

XA transaction indicator

DIS TRAN ID: XA $x,<%x,8x>,<%x, 8x> BR<%X, $x>

A A A
FormatID41

Global Transaction ID Length
Transaction Branch Qualifier Length

Global Transaction 1D

Transaction Branch Qualifier

Branch Sequence Number

Branch Flag

m XA trace file

The XA trace file contains XA-related messages from the XA routines,
including queries issued by the application server and error messages
issued by the DBMS. To enable this feature, set the II_XA_TRACE_FILE
environment variable to a valid file name.

To include the process ID of the application server process in the trace file
name, specify “%p” as part of the name.

Example: XA trace file with process ID specified
setenv II XA TRACE_FILE svr_grp 1 %p.trc

The preceding setting produces trace files with names like
“svr_grp_1_23145.trc,” “svr_grp_1_23172.trc”, and
“svr_grp_1_23229.trc,” where “23145,” “23172,” and “23229" are the
process IDs. If you want to use the “%p” feature in a UNIX environment,
be sure that the file name you specify doesn't contain any other percent
signs (%).

You must set II_XA_TRACE_FILE before the application server is started.
When enabled, XA trace logging logs XA calls from the transaction
manager to the application server and SQL statements issued by the
application. For details about setting environment variables, see the
System Administrator Guide.

24 Distributed Transaction Processing User Guide

How You Obtain Trace and Error Information

Example: Portion of XA trace output
---- XA trace: Started at Mon Aug 9 12:08:48 1994 ---

XA_OPEN: flags = TMNOFLAGS

rmid: 5

OPEN string is: INGRES ticketing as ticketing options= -umoeh
return value: XA_OK

XA_OPEN: flags = TMNOFLAGS

rmid: 10

OPEN string 1is: INGRES personnel options = -umoeh

return value: XA_OK

XA_START: flags = TMNOFLAGS
XID: 00000001:4:1:4C4D6C6D:30000000: XA
rmid: 5
connected to ticketing (Ingres DTP session 1)
return value: XA_OK
XA_START: flags = TMNOFLAGS
XID: 00000001:4:1:4C4D6C6D:30000000: XA
rmid: 10
connected to personnel (Ingres DTP session 2)
return value: XA_OK
Appl Code:

set connection to rmi: personnel (Ingres DTP session 2)
Appl Code:

drop table employees
XA_CLOSE: flags = TMNOFLAGS
rmid: 10
CLOSE string is: INGRES personnel options = -umoeh
Last XA_CLOSE, shutting down XA and freeing session cache
disconnecting personnel (Ingres DTP session 4)
‘release session' sent to RM
disconnecting ticketing (Ingres DTP session 3)
'release session' sent to RM
disconnecting personnel (Ingres DTP session 2)
'release session' sent to RM
disconnecting ticketing (Ingres DTP session 1)
'release session' sent to RM
closing XA trace file...

Note: If you are using XA trace files with multiple application servers, you can
prevent them from overwriting each other's trace files by starting the servers

from different directories or by resetting the II_XA_TRACE_FILE logical before
starting each server.

Troubleshooting and Tuning Ingres DTP Applications 25

Transaction Aborts

Transaction Aborts

You can manually abort transactions using the lartool utility, described in detail
in the Command Reference Guide. If you use lartool to abort an XA
transaction, the transaction manager cannot use its recovery mechanisms to
gracefully abort or retry the transaction. If you manually abort a transaction
that is part of a global transaction being administered by a transaction
manager, you risk database inconsistency.

Performance Tuning

Performance tuning involves modifying configuration settings to optimize the
performance of your Ingres DTP applications. The following sections explain
these settings and instruct you on how to modify them.

Session Cache Limit

An application server maintains a number of free sessions in order to minimize
connection time when an application requires a connection. By default, Ingres
DTP accumulates sessions to a maximum of 32. To change the maximum
number of free sessions, set the II_XA_SESSION_CACHE_LIMIT variable. The
value you specify for II_XA_SESSION_CACHE_LIMIT cannot exceed the
session limit.

To calculate the maximum number of connections your application server will
require, use the following formula:

(# of RMI's per AS) * (# of concurrent transactions)

26 Distributed Transaction Processing User Guide

Performance Tuning

Performance-Related Settings

To modify configuration settings, use the Configuration-By-Forms (CBF) utility.
For Ingres DTP applications, the following CBF settings are relevant to
performance:

CBF Screen CBF Setting Description

Name Server session_limit Defines the maximum number
of connections that the Name
Server can accept. Connections
to the Name Server are made
when applications start up, so
consider the maximum number
of simultaneously starting
applications when configuring
this value.

DBMS Server connect_limit Defines the maximum number
of connections that a DBMS
Server can accept.

Communication inbound_limit Defines the maximum number

s Server of inbound connections that the
Communications Server can
accept.

outbound_limit Defines the number of
outbound connections that the
Communications Server can
create.

Troubleshooting and Tuning Ingres DTP Applications 27

Appendix A: Building CICS/6000
Programs on UNIX

This section contains the following topics:

How Ingres DTP Works with CICS/6000 (see page 30)

How You Configure CICS/6000 with Ingres DTP (see page 30)

How You Add COBOL Support (see page 34)

How You Build CICS/6000 Applications (see page 36)

How You Configure Multiple Resource Manager Instances (see page 38)

This appendix explains how to build Ingres DTP applications for CICS/6000 on
the UNIX platform. Where necessary, these instructions refer to related
CICS/6000 documentation. The How You Configure CICS/6000 with Ingres DTP
(see page 30) and How You Add COBOL Support (see page 34) sections in this
appendix are of particular relevance to system administrators. The How You
Build CICS/6000 Applications (see page 36) section in this appendix contains
information required by application programmers.

Building CICS/6000 Programs on UNIX 29

How Ingres DTP Works with CICS/6000

How Ingres DTP Works with CICS/6000

The following figure shows how Ingres DTP functions in a CICS/6000
environment:

ClCEma00

CICS Application Semver

Application Application
Client Tranzaction

-

EXEC
CICE
Stmits

WA Calls

Inores ' +

ESGL Libraries Ingres
A Library

SaL

Ingres DBMS Server

How You Configure CICS/6000 with Ingres DTP

Note: you must have installed CICS/6000, the Ingres DBMS Server, and the
Ingres DTP software prior to configuring CICS/6000 with Ingres DTP.

The overall process for configuring CICS/6000 with Ingres DTP is as follows:
1. Update the CICS/6000 region environment file

2. Add the CICS user to Ingres

30 Distributed Transaction Processing User Guide

How You Configure CICS/6000 with Ingres DTP

3.
4.
5.

Register databases
Build the Ingres DTP SwitchLoadFile
Compile and link the Ingres DTP SwitchLoadFile

In addition to the above required steps, you can optionally add COBOL support
as part of the configuration process. For details about COBOL support, see How
You Add COBOL Support (see page 34) in this appendix.

The following sections describe these steps in detail.

Step 1: Update the CICS/6000 Region Environment File

To update the CICS/6000 environment file

1.

Declare the environment variables used by Ingres tools (such as Query-
By-Forms) or Ingres applications in the following CICS/6000 file:

/var/cics_regions/region_name/environment

Replace the value region_name with the name of the CICS region being
configured. In this file, the entries must be in the form variable=value.
Variable substitution is not permitted; the entries must be specified in full.

The following sample environment file illustrates the entries required for an
Ingres installation located in the “/install/65” directory.

Example: CICS/6000 environment file

INGRES Definitions

#

II_SYSTEM=/install/65
PATH=/1install/65/ingres/bin:other_path_entries...
LIBPATH=/1install/65/ingres/lib:other_library_entries...

After updating the environment file, define the transactions and associated
programs to the CICS/6000 region as described in the CICS/6000
Customization and Operation Guide.

Building CICS/6000 Programs on UNIX 31

How You Configure CICS/6000 with Ingres DTP

Step 2: Add the Ingres CICS User

By default, CICS/6000 applications access Ingres databases using the effective
Ingres user name “cics” (unless the 'options =-uusername' flag is specified in
the XA open string).

To add the “cics” user to the Ingres installation

1. Invoke the SQL Terminal Monitor at the operating system prompt, and
connect to the iidbdb:

isql iidbdb
2. Issue the following create user statement:

create user cics
with privileges = (createdb,security,operator);

For more information on the create user statement, see the SQL Reference
Guide.

Step 3: Register Databases with a CICS/6000 Region

For each database that your Ingres DTP application intends to access, you
must add resource definitions to the CICS/6000 stanza file for the region in
which the application will operate. You can add resource definitions to stanza
files using either SMIT panels or the cicsadd command. (For details about SMIT
panels, refer to the CICS/6000 documentation.)

The following example adds an XAD resource definition called “ingres” to a
CICS/6000 region named “demo1l”, using the cicsadd command. (For a full
description of the XAD attributes, refer to the CICS/6000 Customization &
Operation Guide.)

Example: Adding a resource definition using the cicsadd command

cicsadd -c xad -r DEMO1l -P INGRES \
ActivateOnStartup=yes
ResourceDescription="INGRES XA Sample Definition" \
SwitchLoadFile=iixa
XAOpen="1ingres demoldb as 'connl'"
XAClose="" '\
XASerialize=all_operations;

The preceding example specifies a switch load file named “iixa” that resides in
the cics default directory, and an open string that maps the “"demodb1”
database to the “connl1” connection name. For details about the open string,
see Open String Argument - Binding to Database Servers (see page 15). For
details about the switch load file, see Step 4: Build the Switch Load File (see
page 33) in this appendix.

32 Distributed Transaction Processing User Guide

How You Configure CICS/6000 with Ingres DTP

Step 4: Build the Switch Load File

The SwitchLoadFile attribute (illustrated in the cicsadd command shown in the
preceding step) must specify an object file that contains the “xa_switch_t"
structure definition. This structure provides a table of XA entry points for use
by the transaction monitor (TM) libraries. The Ingres DTP switch load file must
be defined to:

m Set “cics_xa_switch” to point to the XA switch structure

® Call the CICS XA function cics_xa_init

You can use the following C code to build an Ingres DTP switch load file. To
correspond with the cicsadd example in the preceding step, store this code in a
text file named “iixa.c”.

Example: Ingres DTP switch load file built with C code

/* diixa.c */
#include <stdio.h>
#include <xa.h> /* Encina XA header file */
#include <iixa.h> /* INGRES XA header file */
extern struct xa_switch_t RegXA xa_switch;
extern struct xa_switch_t *cics_xa_switch;
struct IIXA SWITCH *iixa(void)
{
cics_xa_switch = &iixa_switch;
cics_xa_init();
return(&RegXA_xa_switch);
}

Building CICS/6000 Programs on UNIX 33

How You Add COBOL Support

Step 5: Compile and Link the Switch Load File

The Ingres DTP switch load file must be compiled and linked into the module
name and location that is specified in the CICS/6000 XAD, (the XAD stanza file
that holds the XA definitions for the CICS/6000 region).

To compile and link the Ingres DTP switch load file
1. Compile and link “iixa.c” into the “iixa” file located in the current directory
by issuing the following command:

xlc_r -v -0 iixa -e iixa \
-I/usr/lpp/encina/include/tmxa \
-L/usr/1pp/cics/v2.0/1ib \ /*CICS library version specific*/
-L$II_SYSTEM/ingres/lib \
-I$II_SYSTEM/ingres/files \
-lregxart -1Im \
-1g.1 \ /*INGRES XA library*/
iixa.c

Refer to the CICS/6000 documentation to determine the CICS/6000 library
version.

2. Compile and link your applications written in C. For details on how to verify
that the configuration has been successfully completed, see C Applications
(see page 37) in this appendix.

How You Add COBOL Support

Adding COBOL support is an optional step in the process of configuring
CICS/6000 with Ingres DTP. Before adding COBOL support, you must:

m Perform the steps described in How You Configure CICS/6000 with Ingres
DTP (see page 30) in this appendix.

m Install and configure COBOL as described in the CICS/6000 and COBOL
documentation.

The process for adding COBOL support is as follows:

1. Create an exports list for the Ingres shared libraries.

2. Modify the CICS/6000 link script.

3. Rebuild the CICS/6000 COBOL Run Time System (RTS).

The following sections describe these steps in detail.

34 Distributed Transaction Processing User Guide

How You Add COBOL Support

Step 1: Create an Exports List for the Ingres Library

You must create an exports list that contains a list of Ingres symbols that
enables the binding of the Ingres shared libraries into the COBOL Run Time
System.

To create the exports list
1. Log in as the installation owner.

2. At the operating system prompt, issue the following commands:

echo “#!1libcompat.l.a(libcompat.l.0)” > libingres.l.exp
/usr/ucb/nm -p $II_SYSTEM/ingres/1lib/libcompat.l.a | \
awk ' $2=="D”||$2=="B” { print $3 } ' | \

sort -u >> libingres.l.exp

echo “#!1ibg.1.a(libg.1.0)” >> libingres.l.exp
/usr/ucb/nm -g $II_SYSTEM/ingres/lib/1libg.1l.a | \

awk ' $2=="D”||$2=="B” { print $3 } ' | \

sort -u >> libingres.l.exp

echo “#!libframe.l.a(libframe.1l.0)” >> libingres.l.exp
/usr/ucb/nm -g $II_SYSTEM/ingres/lib/libframe.l.a | \
awk ' $2=="D"||$2=="B” { print $3 } ' | \

sort -u >> libingres.l.exp

The preceding commands extract symbol table information, remove
unnecessary entries, filter out the name column, and sort the resulting list.
The exports list will now exist in the current directory where the commands
were issued. The following steps assume that the exports list resides in the
$II_SYSTEM/ingres/lib directory.

Step 2: Modify the Link Script

You must modify the CICS/6000 “cicsmkcobol” script to include additional
linker commands that use the exports list that was created in the previous
step.

To modify the link script

1. Make a backup of the “cicsmkcobol” script file.

2. Log in under the “root” account.

Building CICS/6000 Programs on UNIX 35

How You Build CICS/6000 Applications

3. Edit the “cicsmkcobol” file. Change the following “cob” command from this:

cob -${FFLAG}x -o $OUTPUTFILE $OBJECTS -Q "$LDFLAGS"\
$LDPATH $CICSLIBS $ARGUMENTS $LIBRARIES

to this:

cob -${FFLAG}x -o $OUTPUTFILE $OBJECTS -Q "$LDFLAGS"\
$LDPATH -Q"-bE:$II_SYSTEM/ingres/lib/libingres.l.exp"\
-Q "-bM:SRE" -Q "-T512" -Q "-H512" \

$CICSLIBS $ARGUMENTS $LIBRARIES

Note: The value of $II_SYSTEM is hard-coded into the above command.

Step 3: Rebuild the CICS/6000 COBOL Run Time System

To rebuild the CICS/6000 COBOL Run Time System
1. Log in under the “root” account.

2. Run the “cicsmkcobol” script that you modified in Step 2, specifying the
names of the Ingres shared libraries as parameters. To do this, issue the
following commands:

cd /usr/lpp/cics/v2.0/bin
export DEBUG=1
cicsmkcobol $II_SYSTEM/ingres/1lib/libg.1.a\

$II_SYSTEM/ingres/lib/1ibcompat.1.a\
$II_SYSTEM/ingres/lib/1ibframe.1l.a

The “cicsmkcobol” script creates a file named “cicsprCOBOL” in the
/usr/lpp/cics/v2.0/bin directory.

After performing these steps, you can compile and link applications written in
COBOL. For details on how to verify that the configuration has been
successfully completed, see COBOL Applications (see page 37) in this
appendix.

How You Build CICS/6000 Applications

The process of building Ingres DTP applications to run with CICS/6000 involves
using a makefile to add the applications to the CICS/6000 environment. The
following sections illustrate a makefile used to add an application written in C,
and one used to add an application written in COBOL.

36 Distributed Transaction Processing User Guide

How You Build CICS/6000 Applications

C Applications

The following example illustrates the use of a makefile to add an embedded C
application to the CICS/6000 environment. In this example, the application
filename is “appl.sc”. To run the makefile, type the following commands:

make appl
make install

Example: makefile source

II_SYSTEM=/install/65

CICSREGION=DEMO1

INGHDRS=-I$(II_SYSTEM)/ingres/files

INGLIBS=-L$(II_SYSTEM)/ingres/lib -lcompat.l -1frame.l -linterp.l -1q.1

appl

appl: appl.ccs
CCFLAGS="$ (INGLIBS) -1m”; \
export CCFLAGS; \
cicstcl -e -d -1C appl.ccs
rm -f appl.c

appl.ccs: appl.sc
esqlc appl.sc
mv appl.c appl.ccs

install:
cicsadd -c td -r $(CICSREGION) -P APP1 ProgName=APP1 \
RSLCheck=none
cicsadd -c pd -r $(CICSREGION) -P APP1 PathName=$(PWD)/appl

COBOL Applications

The following example illustrates the use of a makefile to add an embedded
COBOL application to the CICS/6000 environment. In this example, the
application filename is “app2.scb”. To run the makefile, type the following
commands:

make app2
make install

Building CICS/6000 Programs on UNIX 37

How You Configure Multiple Resource Manager Instances

Example: makefile source

IT_SYSTEM=/install/65

CICSREGION=DEMO1

INGHDRS=-I$(II_SYSTEM)/ingres/files

INGLIBS=-L$(II_SYSTEM)/ingres/lib -lcompat.l -1frame.l -linterp.l -1q.1

app2: app2.ccp
cicstcl -e -d app2.ccp
rm -f app2.cbl
app2.ccp app2.scb
esqlchl app2.scb
mv app2.cbl app2.ccp

install:
cicsadd -c td -r $(CICSREGION) -P APP2 ProgName=APP2 \
RSLCheck=none
cicsadd -c pd -r $(CICSREGION) -P APP2 PathName=$(PWD)/app2

How You Configure Multiple Resource Manager Instances

Ingres DTP supports access to multiple resource manager instances (RMIs)
from a single CICS/6000 application server (AS). Follow these guidelines for
multiple RMI support:

®m Configure each RMI as a separate XAD definition. For more information on
configuring multiple RMIs, refer to the CICS/6000 Customization and
Operation Guide.

® In an Ingres DTP application that accesses multiple RMIs, use the SQL set
connection statement to specify the RMI to which the application requires
access.

The example code below shows an Ingres DTP application with two RMIs,
identified as CONN1 and CONN2. The code updates both RMIs.

exec sql set connection 'connl';
exec sql update account

set balance = balance + :bal
where acct = :acct;
exec sql set connection 'conn2';
exec sql update account

set balance = balance - :bal
where acct = :acct;
exec cics syncpoint;

38 Distributed Transaction Processing User Guide

Appendix B: Building Encina Programs on

UNIX

This section contains the following topics:

How You Build Programs for Encina (see page 39)
TRAN-C Considerations (see page 44)

This appendix explains how to build Ingres DTP applications for Encina. Where
necessary, you are referred to related Encina and Ingres documentation. This
appendix assumes you are familiar with the Ingres database and Encina.

How You Build Programs for Encina

The overall process for creating an Ingres DTP application that runs with
Encina is detailed below. This appendix assumes you are familiar with Ingres
embedded SQL programming and with Encina Monitor programming.

Before performing the steps below, you must have:

m Installed and started Ingres 2.0 or later, and created the required
databases, users, and tables

m Installed DCE (distributed computing environment)
m Installed Encina (version 1.03B or later)

m Performed the Encina DCE configuration procedure (described in the Encina
documentation)

®m Started the Encina monitor

The process for creating and running an Ingres DTP application with Encina is
as follows:

Prepare the DCE environment.

Register the resource manager instances.

Create the Encina application program code.

Compile and link the application program.

Enable XA tracing (optional).

Run the program.

N v AL N

Verify the results (optional).

The following sections describe these steps in detail.

Building Encina Programs on UNIX 39

How You Build Programs for Encina

Step 1: Prepare the DCE Environment

Before performing the steps in this section, ensure that you have configured
DCE and Encina, and have the Encina Monitor (cell and node) manager servers
running. For more information, refer to the Encina Monitor System
Administrator's Guide and Reference.

To prepare the DCE environment

1. Modify your PATH variable to include your DCE and Encina bin directories,
as well as the Ingres “bin” directory, $II_SYSTEM/ingres/bin.

2. Create an 0OS account for the user that you want to run the application.

3. Create the corresponding Ingres user using the Terminal Monitor. Issue
the following commands:

sql iidbdb
* create user username with privileges=(createdb); \g
*\q

4. Login to DCE as the cell administrator, and create a special DCE account
and group from which to run your Ingres application servers:

% dce_login cell_admin cell_admin_password

% rgy_edit

Current site is:

rgy_edit=> domain group

Domain changed to: group

rgy_edit=> add dtp_group -f "DTP user's group"
rgy_edit=> domain principal

Domain changed to: principal

5. Add the DCE user:

rgy_edit=> add username -f "Ingres Applications Principal”
rgy_edit=> domain account

Domain changed to: account

rgy_edit=> add username -g dtp_group -o none \

-mp <cell_admin_pw> -pw ingapp_password \

-m "Ingres Applications Account"

rgy_edit=> exit

6. Add access control lists (ACLs) for the new group:
acl_edit /.:/encina -m group:dtp_group:rt

acl_edit /.:/encina -ic -m group:dtp_group:rt
acl_edit /.:/encina -io -m group:dtp_group:rt

Step 2: Register the Resource Manager Instances
To register your Ingres databases with Encina, use the Encina monadmin

utility. At the operating system prompt, issue the following command for each
database to which your application requires access:

% monadmin create rm INGRES -open "open string"

40 Distributed Transaction Processing User Guide

How You Build Programs for Encina

For details about the format of the open string, see Open String Argument -
Binding to Database Servers (see page 15) in the chapter “Programming
Ingres DPT Applications.” You must register each database to which your
application requires access.

Example: monadmin command

% monadmin create rm inventory \

-open "INGRES chicago::inv@7al as inventory"
% monadmin create rm billing \

-open "INGRES london::bill2c2 as billing"

Step 3: Create the Encina Code

To create an Ingres DTP-compatible application program, you must observe
the following requirements when coding:

1.

Your application must include the “iixa.h” file provided by Ingres. For
example, in a C program, use the following code:

#include <iixa.h>

Your application must include an SQLCA for error trapping; use the
following embedded SQL code:

exec sql include sqlca;

Your application must use Encina's mon_InitResourceManager function to
initialize each Ingres database to which it requires access. The argument
to the mon_InitResourceManager function must be the resource manager
name you specified in the monadmin command.

In applications that access multiple resource managers, use the Ingres
SQL set connection statement to specify the resource manager you want to
access. The connection nhame must be the connection name specified in the
open string. For example:

void check_inventory (...)

{

exec sql set connection 'inventory';
Perform database access

Building Encina Programs on UNIX 41

How You Build Programs for Encina

5. Encina requires your application server to provide a server_Init function
that initializes application servers. For details about server_Init, refer to
the Encina Monitor Programmer's Guide. The following code illustrates the
framework of a typical server_Init function:

include <xa.h>

include <iixa.h>

void server_Init(argc, argv)
int argc;

char *argvl[];

{

/* register resource mangers */

mon_ServerRecoverable() ;

1 (mon_InitResourceManager (&iixa_switch, "inventory")) != MON_SUCCESS)
{

handle error routine
}
if (mon_InitResourceManager (&iixa_switch, "billing"))
!= MON_SUCCESS)
{

handle error routine

}
}

If your application registers for more than one resource manager, your service
routines must issue the SQL set connection statement (to establish which RMI
they are accessing) before performing any database access.

Step 4: Compile and Link the Program

Encina applications are generally compiled using standard UNIX makefiles. For
details, refer to the Encina Monitor Programmer's Guide. To build application
servers that use Ingres Embedded SQL, you must modify the makefiles.

To modify the makefiles

1. Add the following lines to precompile your embedded SQL source into C
source.

sourcefile.c: sourcefile.sc
$(II_SYSTEM)/ingres/bin/esqlc sourcefile.sc

2. Add $II_SYSTEM/ingres/files to the header file list specified for the cc
command's -I flag.

3. Add $II_SYSTEM/ingres/lib/libingres.a to the end of the list of Encina
libraries. For example, in the Encina TPM demo “Makefile,” this list is
specified by the variable SYS_LIBS.

42 Distributed Transaction Processing User Guide

How You Build Programs for Encina

Step 5: Enable Tracing (Optional)

The Ingres DTP tracing feature enables you to verify that the database
connections required by your application were successful. (This step is
optional.)

To enable tracing

1. Switch to the window from which the Encina monitor was started.

2. Issue the following command:
setenv II_XA_TRACE_FILE trace file
where trace_file specifies the name of the file to which Ingres DTP will

write trace information. For details about XA trace files, see How You
Obtain Trace and Error Information (see page 23).

Step 6: Run the Program

To start your application server

1. Register the application server with Encina for invocation using the
monadmin create server command.

2. Register the application server interfaces with Encina using the monadmin
create interface command.

3. Invoke an instance of the application server using the monadmin start
server command.

4. Verify that the application server has started using the monadmin query
server command.

Step 7: Verify the Results (Optional)

To verify that your application successfully connected to the Ingres databases,
examine the contents of the file that you specified as the XA trace file. For
details about error logging and tracing for Ingres applications, see How to
Obtain Trace and Error Information (see page 23) in the chapter
“Troubleshooting and Tuning.”

Building Encina Programs on UNIX 43

TRAN-C Considerations

TRAN-C Considerations

If you develop Encina applications using TRAN-C instead of the Encina Monitor
API, observe the following programming conventions:

m Set scheduling policy to “exclusive.” To do this, call the
“mon_SetSchedulingPolicy” routine with *“MON_EXCLUSIVE"” as the
argument.

® Do not change the setting for thread support. The default for thread
support is “TMXA_SERIALIZE_ALL_XA_OPERATIONS.”

®m Your application must call “tmxa_RegisterRMI” once (and only once) for
each RMI to be accessed by the application. These calls must be issued in
the same thread, and must be issued before calling “tmxa_Init.” Use the
following settings for “tmxa_RegisterRMI” parameters:

- openlnfo: valid open string (see Open String Argument - Binding to
Database Servers in the chapter “Programming Ingres DTP
Applications”)

- closelnfo: same as openlnfo

44 Distributed Transaction Processing User Guide

Appendix C: Building Tuxedo Programs on

UNIX

This section contains the following topics:

Process Architecture (see page 45)

Installation Requirements (see page 46)

How You Configure the Tuxedo System (see page 46)

How You Create a Tuxedo Application (see page 47)

How You Start and Shut Down Application Servers (see page 51)
Application Development Guidelines (see page 52)

This appendix explains how to configure Tuxedo with Ingres DTP, and how to
build Ingres DTP applications that interact with Tuxedo. Where necessary, you
are referred to related Tuxedo and Ingres documentation. This appendix
assumes you are familiar with the Ingres database and Tuxedo.

Process Architecture

The following diagram shows the process architecture of a typical Tuxedo
application:

Application Server
Group

h—-— AS1 | l
Bulletin Board | i f}ax'“:e
snagsr

[

= TMS

Application
Clientz (AC) =

i

Building Tuxedo Programs on UNIX 45

Installation Requirements

Multiple application client programs communicate with multiple application
servers that are combined into server groups. Messages are routed between
clients and servers through the Tuxedo bulletin board. Transaction manager
servers in each server group manage two phase commit protocol and recovery
of global transactions.

In this example, the application has been configured into several server
groups, and each server group is accessing a different resource manager.
Every server in a server group communicates with the resource manager
assigned to that group.

Installation Requirements

The following files and directories must be present in your Ingres installation.
These files and directories are created when you install Ingres and Ingres DTP.

File Name and Location Description
$1I_SYSTEM/ingres/utility/iimktms Ingres TMS build script
$II_SYSTEM/ingres/lib/libiitux.a Ingres DTP Tuxedo database client
libraries
$II_SYSTEM/ingres/files/iitxxa.h X/Open XA switch definition

Note: The first time Tuxedo is used with Ingres, a user table named tuxedo
will be created in the iidbdb database.

How You Configure the Tuxedo System

Note: You must have installed Tuxedo, the Ingres database, and the Ingres
DTP software prior to configuring the Tuxedo system with DTP.

The process for configuring the Tuxedo system with DTP is as follows:
1. Modify the Resource Manager Definition file

2. Create an Ingres TMS server executable

The following sections describe these steps in detail.

46 Distributed Transaction Processing User Guide

How You Create a Tuxedo Application

Step 1: Modify the Resource Manager Definition File

The resource manager definition file is called "RM” and is located in the
“udataobj” directory of your Tuxedo installation. Add the following two lines to
the file:

INGRES:iitux_switch:${II_SYSTEM}/ingres/lib/libiitux.a
${II_SYSTEM}/ingres/lib/libingres.a -1m

INGRES/TMS:qiitux_switch:${II_SYSTEM}/ingres/1lib/1libiitux.a
${II_SYSTEM}/ingres/lib/libingres.a -1m

The lines above are wrapped for editorial reasons. Your modifications must be
without breaks. Each line must start with the word INGRES. Each file name
must be separated from the next by a space. Failure to follow these
instructions will cause server builds to fail, or prevent servers from functioning
correctly.

For more details about the resource manager definition file, refer to the
Tuxedo documentation.

Step 2: Build the TMS Server

To build a TMS executable for use with an Ingres database, use the build script
supplied by Ingres. (After you upgrade Ingres DTP and Tuxedo, you need to
rebuild your executables.) The script must be executed from the Tuxedo
administrator's account. To execute the build script, issue the following
command:

$II_SYSTEM/ingres/utility/iimktms

The script builds a Tuxedo TMS executable that accesses the Ingres DTP client
libraries required to interact with an Ingres database. The executable image is
called "TMS_INGRES,"” and is located in the “bin” directory of your Tuxedo
installation ($ROOTDIR/bin).

How You Create a Tuxedo Application

The process for creating a Tuxedo application that uses an Ingres resource
manager is as follows:

1. Build application server executables.
2. Edit the application configuration (“ubbconfig”) file.
3. Edit the application ENVFILE.

The following sections describe these steps in detail.

Building Tuxedo Programs on UNIX 47

How You Create a Tuxedo Application

Step 1: Build Application Servers

For an application server (AS) to work correctly in conjunction with an Ingres
database, the AS must be built with the Ingres DTP client libraries. The
following diagram shows the steps involved in building an application server.

T Ty
EsaucC ESN
sounce +| precompiler
code
(.=c file) Ingres

db client lit

C =ourcs]
code . Baildserver
[filg) scapl . Ingres
OTP lik
I
R
¥ Tuxedo
OTP lik

To create an application server
1. Precompile the embedded SQL source code.

Invoke the Ingres ESQL precompiler. The precompiler processes your
embedded SQL source code and creates a 3GL source code file. For details
about precompiling embedded SQL programs, see the Embedded SQL
Companion Guide.

2. Build the application server.

Issue the Tuxedo buildserver command. You must use the -r flag to specify
Ingres as the resource manager. For example:

buildserver -r INGRES -f server.c -o server -b shm -s SERVICE

The example shown compiles the C language source file “server.c”, which
contains a service named SERVICE, and builds an application server
executable named server. For details about the buildserver command,
refer to the Tuxedo Transaction Monitor Reference Manual.

48 Distributed Transaction Processing User Guide

How You Create a Tuxedo Application

Step 2: Edit the Application Configuration File

The following section describes entries in the Tuxedo configuration file
(“ubbconfig”) that are relevant to the Ingres DTP for Tuxedo product. Refer to
the Tuxedo Transaction Monitor Administrator's Guide for more information.

The *MACHINES Section

The ENVFILE entry in the Tuxedo configuration file enables you to specify a
file of environment variables to be set in the application server's process
space. In this file you can specify settings for any of the Ingres
environment variables. For a full listing of Ingres environment variables,
see the System Administrator Guide.

To direct Tuxedo to perform transaction management on behalf of your
application by using the XA interface, your application must specify a
TLOGDEVICE (a logging file used by Tuxedo for transaction management).
For instructions on specifying a TLOGDEVICE, refer to the Tuxedo
Transaction Monitor Administrator's Guide.

The *GROUPS Section

The TMS_NAME parameter must be set to the name of the Ingres TMS
executable “TMS_INGRES”.

The OPENINFO parameter must be specified as follows:

INGRES: [vnodename: : 1 databasename [as connection_name] with tmgroup groupname
[options = flag {, flag}]

In the example above, groupname is an alphanumeric string of up to 24
characters in length. Within a particular application, the first four
characters of the TMGROUP parameter must be unique. For example:

*GROUPS

DEFAULT: TMSNAME=TMS_INGRES TMSCOUNT=3 LMID=SITE1l
BANKB1 GRPNO=1 OPENINFO="INGRES:bankdll WITH TMGROUP dllbank"
BANKB2 GRPNO=2 OPENINFO="INGRES:bankd12 WITH TMGROUP dl12bank"
BANKB3 GRPNO=3 OPENINFO="INGRES:bankd13 WITH TMGROUP d13bank"

Building Tuxedo Programs on UNIX 49

How You Create a Tuxedo Application

Step 3: Edit the ENVFILE

The ENVFILE, specified in the Tuxedo configuration file, contains definitions of
Ingres environment variables. Environment variables relevant to Ingres DTP
for Tuxedo are as follows:

II_TUXEDO_LOC

Specifies the directory where the shared memory file is to be created. It
must be the same for all servers in a group. If II_TUXEDO_LOC is not set,
II_ TEMPORARY will be used.

II_TUX_SHARED

Specifies the name of the shared memory segment used by Ingres. If set
to USER, the name will be t<username>.tux; otherwise the name will be
tl.tux.

II_TUX_AS_MAX

Specifies the maximum number of application and TMS servers that will be
started. The default value is 32. A maximum of II_ TUX_AS_MAX servers
will be permitted to attach to the Ingres shared memory segment.

II_TUX_XN_MAX

Specifies the total number of transaction entries allocated in the shared
memory segment. Each server that attaches the shared memory segment
will reserve II_XA SESSION_CACHE_LIMIT transaction entries for its own
use. The default value is 1024.

II_XA_TRACE_FILE

Specifies a file in which Ingres DTP logs the events occurring through the
TMXA interface, as well as any SQL performed against the Ingres DBMS.
For more information, see How You Obtain Trace and Error Information
(see page 23). The user who starts the application servers must have write
access to the file.

All other supported Ingres environment variables (including ING_SET,
ING_SYSTEM_SET, and ING_SET_DBNAME) can be set in the ENVFILE.

50 Distributed Transaction Processing User Guide

How You Start and Shut Down Application Servers

How You Start and Shut Down Application Servers

Before starting application servers, you must have performed the following
tasks:

m Edited the “ubbconfig” file to define parameters required for a Tuxedo
application (such as UID, GID, IPCKEY, maxgtt, cmtret, and others as
required)

m Compiled the “ubbconfig” file using the tmloadcf command
®m Created TLOG devices (using the tpadmin crdl command)

To start your application servers, use the tmboot command. For details about
the preceding requirements, refer to your Tuxedo documentation.

How You Verify Server Startup

After a server group has started up, you can use the tmadmin printserver
command to verify that all servers in a group have started successfully. For
each server group accessing an Ingres database, printserver will show:

® Two or more TMSs with executables named “TMS_INGRES”

m All the application servers that were configured into the server group

Here is a sample of the printserver output:

a.out Name Queue Name Grp Name ID RgDone Load Done Current Service
BBL 9099 SIT 1 0 150 (IDLE)
TLR 00001.00001 BANKB1 1 0 0 (IDLE)
XFER 00001.00004 BANKB1 4 0 0 (IDLE)
ACCT 00001.00007 BANKB1 7 0 0 (IDLE)
BAL 00001.00010 BANKB1 10 0 0 (IDLE)
BTADD 00001.00013 BANKB1 1 0 0 (IDLE)
AUDITC 00001.00016 BANKB1 16 0 0 (IDLE)
BALC 00001.00027 BANKB1 27 0 0 (IDLE)
TMS_INGRES BANKB1_TMS BANKB1 30001 0 0 (IDLE)
TMS_INGRES BANKB1_TMS BANKB1 30002 0 0 (IDLE)

Building Tuxedo Programs on UNIX 51

Application Development Guidelines

Application Development Guidelines

The following guidelines will assist you in designing and coding application
servers using Ingres DTP for Tuxedo.

Placement of Transaction Demarcation Calls

In coding application servers using Ingres, be aware of the following
restrictions:

Error Handling

If you choose to demarcate transactions in the application server, your
transaction must not span multiple server groups. Transactions that span
multiple server groups must be demarcated in the application client. (You
can place transaction demarcation calls (tpbegin, tpcommit, tpabort) in
application clients and application servers.)

You may define and call AUTOTRAN services in your application, but those
services may not make service calls to services in other server groups.
That is, your transaction must not span multiple server groups.

Your application must check for errors after every SQL statement and Tuxedo
ATMI call. If your application detects an error, it must abort the current global
transaction.

Deadlock Handling

To minimize deadlock between application servers, design your application
with the following points in mind:

Application servers accessing Ingres databases do not share transaction
context. Two servers (possibly in the same global transaction) modifying
the same page in a table will compete for locks.

The resource manager (Ingres DBMS) may abort your transaction if it
encounters a locking contention problem (for example, deadlock or lock-
wait timeout).

The following strategies can help minimize locking problems:

Place services that access the same table into the same application server
process.

Set the read locking off where appropriate by including the following line in
your ENVFILE:

ING_SET=SET LOCKMODE SESSION WHERE READLOCK = NOLOCK

52 Distributed Transaction Processing User Guide

Application Development Guidelines

® Set a loc- wait timeout value in the resource manager to avoid waiting
indefinitely for a page or table lock to be freed. Add the following to your
ENVFILE:

ING_SET=SET LOCKMODE SESSION WHERE TIMEOUT=value
where value is TPBLOCKTIME * SCANUNIT * 0.5 or less

®m Use a hash structure on your table to avoid locking contention on inserts
using a sequential key.

m Clients (or services who explicitly initiate transactions) must test the tpcall
return status for deadlock or time-out. If either problem is detected, the
client should abort the transaction.

For more information on locking strategies, see the Database Administrator
Guide.

TP_COMMIT_CONTROL

Use of this Tuxedo feature with Ingres DTP is not recommended.

Building Tuxedo Programs on UNIX 53

Index

A

application client, described o 11
application program, described e 9

application server
CICS/6000 « 36
described o 11
Encina ¢ 41
registering databases ¢ 15
Tuxedo » 48

bold typeface e 8
braces « 8
brackets [] « 8

C

CICS/6000 applications e 29

COBOL, CICS/6000 support » 34

connection names ¢ 38, 41
conventions
syntax ¢ 8

D

database procedures
error handling « 18

DCE, configuring with Encina e 40

DTP « 18
building applications ¢ 16
described « 9

E

Encina applications ¢ 39
error listing files o 23

G

global transactions
aborting « 26
errors ¢ 18
two phase commit o 21
X/Open DTP standard e 9

I

installation requirements ¢ 13
italics » 8

L

lartool utility e 26
log file e 23
logging, Encina e 43
logstat utility e 23

M

makefile
CICS/6000 C applications « 37
CICS/6000 COBOL applications 37

(o)

open string ¢ 15

R

resource manager definition file e 47
resource manager instances
CICS/6000 RMI configurartion e 38
Encina ¢ 40
resource manager, described ¢ 9
restrictions
multiple sessions e 20
SQL statements in 18
Tuxedo application servers ¢ 52
two phase commit ¢ 21
rollback, transaction ¢ 18

S

set connection statement ¢ 38, 41
statement syntax ¢ 8
syntax
conventions e 8
syntax descriptions ¢ 8

-

TMS Server o 47

Index 55

trace file e 23, 43
TRAN-C ¢ 44
transaction manager, described ¢ 9
Tuxedo
applications e 45
configuration file ¢ 49

\'/

vertical bar | « 8

X

X/Open DTP standard
diagram of logical components ¢ 11

56 Distributed Transaction Processing User Guide

	Bookshelf
	Ingres Distributed Transaction Processing User Guide
	Contents
	1: Introduction
	In This Guide
	Audience
	Special Considerations
	General Restrictions
	Syntax Conventions Used in This Guide

	2: Introducing Ingres DTP
	What Is Ingres DTP?
	The X/Open DTP Standard
	Transaction Processing Products
	The X/Open DTP Model
	XA Application Model
	Ingres Star
	Installation Requirements

	3: Programming Ingres DTP Applications
	Application Server Registration Routine
	Open String Argument - Binding to Database Servers

	How You Create an Ingres DTP Application
	The Include Files
	The xa_switch_t Structure
	SQL Statement Restrictions
	Transaction Context Restrictions
	Environment Variables

	Multiple Resource Manager Instances
	Two Phase Commit
	How Ingres DTP Applications Handle Errors
	Error Messages
	Database Access in Error Handlers
	Error Codes

	How to Design Your Application Server

	4: Troubleshooting and Tuning Ingres DTP Applications
	How You Obtain Trace and Error Information
	Transaction Aborts
	Performance Tuning
	Session Cache Limit
	Performance-Related Settings

	A: Building CICS/6000 Programs on UNIX
	How Ingres DTP Works with CICS/6000
	How You Configure CICS/6000 with Ingres DTP
	Step 1: Update the CICS/6000 Region Environment File
	Step 2: Add the Ingres CICS User
	Step 3: Register Databases with a CICS/6000 Region
	Step 4: Build the Switch Load File
	Step 5: Compile and Link the Switch Load File

	How You Add COBOL Support
	Step 1: Create an Exports List for the Ingres Library
	Step 2: Modify the Link Script
	Step 3: Rebuild the CICS/6000 COBOL Run Time System

	How You Build CICS/6000 Applications
	C Applications
	COBOL Applications

	How You Configure Multiple Resource Manager Instances

	B: Building Encina Programs on UNIX
	How You Build Programs for Encina
	Step 1: Prepare the DCE Environment
	Step 2: Register the Resource Manager Instances
	Step 3: Create the Encina Code
	Step 4: Compile and Link the Program
	Step 5: Enable Tracing (Optional)
	Step 6: Run the Program
	Step 7: Verify the Results (Optional)

	TRAN-C Considerations

	C: Building Tuxedo Programs on UNIX
	Process Architecture
	Installation Requirements
	How You Configure the Tuxedo System
	Step 1: Modify the Resource Manager Definition File
	Step 2: Build the TMS Server

	How You Create a Tuxedo Application
	Step 1: Build Application Servers
	Step 2: Edit the Application Configuration File
	Step 3: Edit the ENVFILE

	How You Start and Shut Down Application Servers
	How You Verify Server Startup

	Application Development Guidelines
	Placement of Transaction Demarcation Calls
	Error Handling
	Deadlock Handling
	TP_COMMIT_CONTROL

	Index

