
Ingres® 2006 Release 2 

Connectivity Guide

 

 

 

 

March 2007 

 



 

 

 

 

 

 

 

 

 

This documentation and related computer software program (hereinafter referred to as the "Documentation") is for 
the end user's informational purposes only and is subject to change or withdrawal by Ingres Corporation ("Ingres") 
at any time. 

This Documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part, 
without the prior written consent of Ingres. This Documentation is proprietary information of Ingres and protected 
by the copyright laws of the United States and international treaties.   

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this Documentation for 
their own internal use, provided that all Ingres copyright notices and legends are affixed to each reproduced copy. 
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of 
the license for the software are permitted to have access to such copies. 

This right to print copies is limited to the period during which the license for the product remains in full force and 
effect. The user consents to Ingres obtaining injunctive relief precluding any unauthorized use of the 
Documentation. Should the license terminate for any reason, it shall be the user's responsibility to return to Ingres 
the reproduced copies or to certify to Ingres that same have been destroyed. 

To the extent permitted by applicable law, INGRES PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT 
WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IN NO EVENT WILL INGRES BE LIABLE TO THE 
END USER OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USER OF THIS 
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR 
LOST DATA, EVEN IF INGRES IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.  

The use of any product referenced in this Documentation and this Documentation is governed by the end user's 
applicable license agreement. 

The manufacturer of this Documentation is Ingres Corporation. 

For government users, the Documentation is delivered with "Restricted Rights" as set forth in 48 C.F.R. Section 
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor 
provisions. 

Copyright © 2007 Ingres Corporation. All Rights Reserved.  

Ingres, OpenROAD, and EDBC are registered trademarks of Ingres Corporation. All other trademarks, trade names, 
service marks, and logos referenced herein belong to their respective companies. 

 
 



 

Contents 
 

Chapter 1: Introducing Ingres Connectivity 13 
Connectivity Solutions Not in This Guide................................................................................. 13 
Basic Networking Concepts................................................................................................... 14 
Ingres Components and Tools............................................................................................... 15 

Ingres Instance ............................................................................................................. 16 
System-specific Text in This Guide......................................................................................... 17 
Terminology Used in This Guide ............................................................................................ 18 
Syntax Conventions Used in This Guide .................................................................................. 18 

Chapter 2: Exploring Net 19 
Ingres Net ......................................................................................................................... 19 

General Communication Facility ....................................................................................... 20 
Net Security.................................................................................................................. 21 

Installation Configurations That Require Net............................................................................ 22 
Net and Other Ingres-related Products ................................................................................... 22 

Net and Enterprise Access and EDBC Products ................................................................... 23 
Net and Ingres Star ....................................................................................................... 23 
Net Product Integration Summary.................................................................................... 24 

Benefits of Net.................................................................................................................... 25 
Net Concepts...................................................................................................................... 26 

Virtual Nodes ................................................................................................................ 26 
Connection Data............................................................................................................ 27 
Remote User Authorizations ............................................................................................ 28 
Global and Private Definitions.......................................................................................... 29 

Net Management Tools ........................................................................................................ 30 
Net and Bridge Users........................................................................................................... 31 

System Administrator and Ingres Net ............................................................................... 32 
Database Administrator and Ingres Net............................................................................. 32 
End Users and Ingres Net ............................................................................................... 32 

Chapter 3: Installing and Configuring Net 33 
Installation Components ...................................................................................................... 33 
How You Prepare for Installation ........................................................................................... 33 

Network Installation and Testing...................................................................................... 33 
Setup Parameters for Net ............................................................................................... 37 

How Net Setup Works on an Existing Installation ..................................................................... 39 

Contents  iii 
 



 
 

How Communications Are Enabled......................................................................................... 39 
How You Install Net............................................................................................................. 40 

Create Password Validation Program (UNIX) ...................................................................... 41 
Net Configuration Parameters—Customize the Installation......................................................... 42 

Chapter 4: Establishing Communications 45 
How User Access Is Established............................................................................................. 45 

Requirements for Accessing Remote Instances................................................................... 46 
Requirements for Accessing Distributed Databases ............................................................. 47 

Access Tools for Defining Vnodes........................................................................................... 48 
Netutil (Net Management Utility) ........................................................................................... 49 

Netutil Startup Screen.................................................................................................... 49 
Virtual Node Name Table in Netutil ................................................................................... 50 
Login and Password Data Table in Netutil .......................................................................... 51 
Connection Data Table in Netutil ...................................................................................... 53 
Other Attribute Data Table in Netutil................................................................................. 55 
Netutil Operations.......................................................................................................... 56 
Prerequisites to Establish and Test a Remote Connection..................................................... 57 
Establish and Test a Remote Connection Using Netutil......................................................... 58 
Delete an Entry ............................................................................................................. 64 
Change an Entry............................................................................................................ 66 
Define an Installation Password for the Local Instance ........................................................ 70 

Netutil Non-Interactive Mode ................................................................................................ 71 
Command Line Flags in Netutil Non-interactive Mode .......................................................... 72 
Create Function—Create a Remote User Authorization......................................................... 74 
Destroy Function—Destroy a Remote User Authorization ..................................................... 76 
Show Function—Display Remote User Authorizations .......................................................... 77 
Create Function—Define an Installation Password for the Local Instance ................................ 78 
Create Function—Create a Connection Data Entry............................................................... 79 
Destroy Function—Destroy a Connection Data Entry ........................................................... 80 
Show Function—Display Connection Data Entries................................................................ 82 
Stop and Quiesce Commands—Stop or Quiesce One or More Communications Servers............. 84 

Network Utility and Visual DBA.............................................................................................. 85 
Virtual Nodes Toolbar ..................................................................................................... 85 
Types of Vnodes............................................................................................................ 86 
Advanced Vnode Parameters ........................................................................................... 86 
Installation Password Definitions for the Local Instance ....................................................... 89 
Changing Installation Passwords ...................................................................................... 89 
Additional Vnode-Related Tasks ....................................................................................... 89 
Server-related Tasks...................................................................................................... 91 

iv  Ingres 2006 R2 Connectivity Guide 
 



 
 

Chapter 5: Using Net 93 
Connecting to Remote Databases .......................................................................................... 93 

Database Access Syntax—Connect to Remote Database ...................................................... 94 
Using the SQL Connect Statement with Net ....................................................................... 97 

Commands and Net............................................................................................................. 98 
User Identity on Remote Instance ......................................................................................... 99 

-u Command Flag—Impersonate User............................................................................... 99 
Verify Your Identity.......................................................................................................100 

Chapter 6: Maintaining Connectivity 101 
Start Communications Server ..............................................................................................101 
Stop Communications Server ...............................................................................................102 
Network Server Control Screen in Netutil...............................................................................102 
Stop or Quiesce a Communications Server Using Netutil ..........................................................104 
Inbound and Outbound Session Limits...................................................................................106 

How You Set Inbound and Outbound Session Limits...........................................................106 
Logging Levels...................................................................................................................107 

How You Change the Logging Level .................................................................................107 
How You Direct Logging Output to a File................................................................................108 
Default Remote Nodes ........................................................................................................109 

How You Set Default Remote Nodes ................................................................................109 
Start DAS .........................................................................................................................110 
Stop DAS..........................................................................................................................110 

Chapter 7: Troubleshooting Connectivity 111 
How Connection Between the Application and DBMS Server Is Established..................................111 
Where Ingres Net Information Is Stored ................................................................................112 

config.dat—Store Net Configuration Values.......................................................................113 
Name Server Database—Store Remote Access Information.................................................114 

Causes of Connectivity Problems ..........................................................................................116 
How You Diagnose Connectivity Problems..............................................................................116 

General Net Installation Check........................................................................................117 
Connection Errors .........................................................................................................121 
How You Resolve Net Registration Problems .....................................................................124 
Security and Permission Errors .......................................................................................124 

Chapter 8: Exploring Bridge 127 
Ingres Bridge ....................................................................................................................127 

How the Bridge Server Works.........................................................................................127 
Tools for Configuring Bridge ...........................................................................................128 

Contents  v 
 



 
 

Installation Configurations That Require Bridge .................................................................128 
How Bridge Is Installed.......................................................................................................130 
How Bridge Is Started.........................................................................................................130 

config.dat File—Store Bridge Configuration .......................................................................131 
iigcb Command—Start the Bridge Server..........................................................................132 

How the Client Is Set Up .....................................................................................................132 
vnode Definition—Enable Client Access to Remote Servers Through Bridge............................133 

Bridge Server Monitoring.....................................................................................................133 
Stop the Bridge Server .......................................................................................................134 
How a Connection Is Established Through Bridge ....................................................................134 
Bridge Troubleshooting .......................................................................................................135 
Sample Bridge Server Configuration .....................................................................................136 

Chapter 9: Configuring the Data Access Server 139 
Data Access Server ............................................................................................................139 
How You Configure the DAS.................................................................................................139 

DAS Parameters—Configure DAS ....................................................................................140 
How You Enable DAS Tracing ...............................................................................................141 

Tracing Levels ..............................................................................................................142 

Chapter 10: Understanding ODBC Connectivity 143 
ODBC Driver .....................................................................................................................143 
ODBC Call-level Interface ....................................................................................................143 
Unsupported ODBC Features................................................................................................144 
Read-Only Driver Option .....................................................................................................144 
ODBC Driver Requirements..................................................................................................145 

ODBC Driver Manager Programs .....................................................................................145 
Protocols Supported by ODBC Driver ...............................................................................145 
Support for Previously Released ODBC Drivers ..................................................................146 
Backward Compatibility Issues for ODBC DSN Definitions ...................................................146 

Configure a Data Source (Windows)......................................................................................147 
Data Source Tab, Ingres ODBC Administrator (Windows)....................................................150 
Advanced Tab, Ingres ODBC Administrator (Windows) .......................................................152 

Configure a Data Source (UNIX and VMS)..............................................................................155 
Data Source Configuration Form (UNIX and VMS)..............................................................157 
Advanced Data Source Configuration Options (UNIX and VMS) ............................................158 
View Data Source Configuration Details ...........................................................................160 
Driver Configuration Options ..........................................................................................161 
Enable ODBC Tracing ....................................................................................................162 
Select a Driver Path ......................................................................................................162 
View Driver Configuration Details ....................................................................................164 

vi  Ingres 2006 R2 Connectivity Guide 
 



 
 

Select a Data Source Configuration File Path.....................................................................164 
Test a Data Source Connection .......................................................................................166 
Edit and Remove Data Sources .......................................................................................166 

Connection String Keywords ................................................................................................167 
ODBC CLI Implementation Considerations .............................................................................169 

Configuration on UNIX, Linux, and VMS ...........................................................................169 
Optional Data Source Definitions.....................................................................................170 

Chapter 11: Understanding JDBC Connectivity 171 
JDBC Components..............................................................................................................171 

JDBC Driver .................................................................................................................171 
JDBC Information Utility—Load the JDBC Driver ................................................................172 

Unsupported JDBC Features.................................................................................................173 
JDBC Driver Interface .........................................................................................................174 

JDBC Driver and Data Source Classes ..............................................................................174 
JDBC Implementation Considerations....................................................................................181 

JDBC User ID Options....................................................................................................182 
How Transactions Are Autocommitted..............................................................................183 
Cursors and Result Set Characteristics.............................................................................184 
Cursors and Select Loops...............................................................................................186 
Database Procedures.....................................................................................................187 
Named and Unnamed Parameters ...................................................................................187 
Additional Parameter Considerations................................................................................188 
Executing Procedures ....................................................................................................188 
BLOB Column Handling..................................................................................................189 
Date/Time Columns and Values ......................................................................................190 
National Character Set Columns......................................................................................191 

Data Type Compatibility ......................................................................................................192 
JDBC Tracing.....................................................................................................................194 

Tracing Levels ..............................................................................................................196 

Chapter 12: Understanding .NET Data Provider Connectivity 197 
.NET Data Provider.............................................................................................................197 
.NET Data Provider Architecture ...........................................................................................197 

Data Provider Data Flow ................................................................................................198 
Data Provider Assembly.................................................................................................198 
Data Provider Namespace ..............................................................................................199 
Data Retrieval Strategies ...............................................................................................199 
Connection Pooling .......................................................................................................200 

Code Access Security..........................................................................................................201 
.NET Data Provider Classes..................................................................................................201 

Contents  vii 
 



 
 

IngresCommand Class...................................................................................................202 
Sample Program Constructed with .NET Data Provider .......................................................205 
IngresCommandBuilder Class .........................................................................................207 
IngresConnection Class .................................................................................................210 
IngresConnectionStringBuilder Class ...............................................................................217 
IngresDataReader Class ................................................................................................220 
IngresDataAdapter Class ...............................................................................................227 
IngresError Class..........................................................................................................230 
IngresErrorCollection Class ............................................................................................232 
IngresException Class ...................................................................................................234 
IngresFactory Class ......................................................................................................236 
IngresInfoMessageEventArgs Class .................................................................................237 
IngresInfoMessageEventHandler Class .............................................................................238 
IngresMetaDataCollectionNames Class.............................................................................239 
IngresParameter Class ..................................................................................................240 
IngresParameterCollection Class .....................................................................................245 
IngresPermission Class..................................................................................................247 
IngresRowUpdatedEventArgs Class .................................................................................247 
IngresRowUpdatedEventHandler Class .............................................................................248 
IngresRowUpdatingEventArgs Class.................................................................................248 
IngresRowUpdatingEventHandler Class ............................................................................249 
IngresTransaction Class.................................................................................................250 

Data Types Mapping ...........................................................................................................252 
DbType Mapping...........................................................................................................253 
Coercion of Unicode Strings ...........................................................................................254 

IngresDataReader Object—Retrieve Data from the Database ....................................................254 
Build the IngresDataReader ...........................................................................................255 
IngresDataReader Methods ............................................................................................255 
Example: Using the IngresDataReader.............................................................................256 
ExecuteScalar Method—Obtain a Single Value from a Database ...........................................257 
GetBytes Method—Obtain BLOB Values from a Database ....................................................257 
GetSchemaTable Method—Obtain Schema Information from a Database...............................258 

ExecuteNonQuery Method—Modify and Update Database .........................................................258 
IngresDataAdapter Object—Manage Data.........................................................................259 

Integration with Visual Studio 2005 ......................................................................................260 
Install the Data Provider into the Toolbox.........................................................................261 
Start the Ingres Data Adapter Configuration Wizard...........................................................262 
Design a Query Using the Query Builder...........................................................................265 
Server Explorer Integration............................................................................................267 

Application Configuration File—Troubleshoot Applications.........................................................269 

viii  Ingres 2006 R2 Connectivity Guide 
 



 
 

Chapter 13: Configuring Ingres to Use Kerberos 271 
Kerberos...........................................................................................................................271 
Kerberos Configuration in the Enterprise................................................................................272 

Kerberos Configuration Files—Configure Kerberos for Ingres ...............................................274 
The Ingres Service Principal—Authorize Client Connections ......................................................275 
How You Configure Ingres to Use Kerberos ............................................................................276 
Ingres Configuration Options for Kerberos .............................................................................277 

iisukerberos Command—Prepare Ingres for Kerberos Configuration......................................277 
Base Configuration for Kerberos......................................................................................277 
remote_mechanism Parameter—Configure Client in a Homogeneous Kerberos Environment ....278 
vnode Connection Attributes—Configure Client in a Heterogeneous Kerberos Environment.......279 
Encryption Parameters—Enable Kerberos Encryption..........................................................280 
Use Kerberos for Local Authentication..............................................................................281 
How Name Server Delegation Works ...............................................................................281 

Appendix A: TCP/IP Protocol 283 
Listen Address Format ........................................................................................................283 
Network Address Format .....................................................................................................284 
Connection Data Entry Information.......................................................................................284 

Windows .....................................................................................................................284 
UNIX ..........................................................................................................................284 
VMS ...........................................................................................................................285 
MVS ...........................................................................................................................285 

Appendix B: SNA LU0 Protocol 287 
Listen Address Format ........................................................................................................287 

MVS ...........................................................................................................................287 

Appendix C: SNA LU62 Protocol 289 
Listen Address Format ........................................................................................................289 

MVS ...........................................................................................................................289 
Solaris ........................................................................................................................291 
HP-UX.........................................................................................................................292 
RS/6000......................................................................................................................294 

Appendix D: DECnet Protocol 295 
Listen Address Format ........................................................................................................295 

VMS ...........................................................................................................................295 

Contents  ix 
 



 
 

Appendix E: SPX/IPX Protocol 297 
Listen Address Format ........................................................................................................297 

Windows .....................................................................................................................297 
UNIX and VMS .............................................................................................................298 

Appendix F: LAN Manager Protocol 301 
LAN Manager Listen Address—Enable Communications ............................................................301 

Appendix G: SunLink Gateway Configuration Files 303 
SunLink Gateway Configuration File ......................................................................................303 
Solaris Independent LUs .....................................................................................................304 
Solaris Dependent LUs ........................................................................................................306 
SunOS (or Sun-4) Independent LUs......................................................................................308 
SunOS (or Sun-4) Dependent LUs ........................................................................................310 

Appendix H: AIX SNA Services/6000 Configuration Profiles 313 
Sample Configuration Profiles ..............................................................................................313 

CONNECTION Profile for Independent LUs ........................................................................313 
CONNECTION Profile for Dependent LUs...........................................................................314 
LOCALLU Profile for Independent LU ................................................................................314 
LOCALLU Profile for Dependent LU ..................................................................................315 
MODE Profile for Independent LUs...................................................................................316 
MODE Profile for Dependent LUs .....................................................................................316 

Appendix I: HP-UX SNAplus Configuration 317 
Sample Configuration File Excerpts .......................................................................................317 

Independent LUs ..........................................................................................................318 
Dependent LUs.............................................................................................................319 
Dynamically Loadable TP ...............................................................................................320 

Appendix J: Netu Procedures 321 
Start Netu.........................................................................................................................321 
Netu User Interface ............................................................................................................322 

Stop the Communications Server ....................................................................................322 
Modify Node Entry ........................................................................................................323 
Modify Remote Authorization Entry..................................................................................323 
Exit Netu.....................................................................................................................324 

Remote Node Definition Operations ......................................................................................324 

x  Ingres 2006 R2 Connectivity Guide 
 



 
 

Add or Merge Remote Node Definitions ............................................................................325 
Delete Remote Node Definitions......................................................................................327 
How You Change Remote Node Definitions .......................................................................328 
Retrieve Remote Node Definition Information ...................................................................330 

Remote User Authorization Operations ..................................................................................332 
Define Remote User Authorizations .................................................................................333 
Delete Remote User Authorizations .................................................................................334 
Change Remote User Authorizations................................................................................335 
Retrieve Remote User Authorizations...............................................................................338 

Netu Options for Stopping the Communications Server ............................................................339 
Obtain GCF Address ......................................................................................................340 
Stop Communications Server .........................................................................................341 

Index 343 
  

Contents  xi 
 





 

Chapter 1: Introducing Ingres 
Connectivity 
 

The Connectivity Guide describes how to establish and maintain 
communications between Ingres® installations. The connectivity information 
presented in this guide for accessing Ingres databases also applies to 
Enterprise Access and EDBC products and the databases they support. 

This guide includes the following information:  

 How to install, configure, use, and maintain Ingres® Net and Ingres® 
Protocol Bridge.  

 Using JDBC, ODBC, and .NET Data Provider connectivity components in the 
Ingres environment.  

 Configuration and troubleshooting tips for each of the network protocols 
supported by Ingres. 

This chapter briefly describes networking concepts, Ingres components and 
tools, and conventions used in this guide. 

 

Connectivity Solutions Not in This Guide 
Ingres provides a variety of connectivity drivers, data adapters, and dialects, 
including the following:  

 Ingres Python DBI Driver 

 Ingres PHP Driver 

 Ingres Perl DBI Extension 

 Ingres Torque Database Adapter 

 Ingres Hibernate Dialect 

For a list of latest solutions and details on each, see the downloads page of the 
Ingres web site.  

 

Introducing Ingres Connectivity  13  
 



Basic Networking Concepts 
 

Basic Networking Concepts 
To use this guide effectively, you should be familiar with the following basic 
networking terms and concepts.  

A network is a collection of connected computers, software, and 
communication links. 

A heterogeneous environment is a computing environment that includes a 
variety of machines, operating systems, software, and protocols. 

A homogeneous environment is a computing environment in which all 
machines are the same, and use the same operating system, software, and 
protocols. 

A protocol is a standard that defines a set of rules for the transference of data 
between computers. A protocol specifies how the data is represented, how the 
transfer occurs, and how errors are detected and transmissions are 
acknowledged. 

A node is a computer that is connected to a network. Each network node has a 
unique address within the network. 

The term local refers to the instance or node on which you are working.  

The term remote refers to all non-local instances or nodes on the network. For 
example, assume that your network has three instances, “napoleon,” 
“eugenie,” and “josephine,” and that you are working on “napoleon.” From 
your perspective, “napoleon” is the local instance and “eugenie” and 
“josephine” are the remote instances. If a co-worker is working on 
“josephine,” for that person, “josephine” is the local instance and “napoleon” 
and “eugenie” are remote instances. 

JDBC (Java Database Connectivity) is a standardized API (Application 
Programming Interface) that allows database connectivity. It defines a set of 
function calls, error codes and data types that can be used to develop 
database independent applications using Java.  

ODBC (Open Database Connectivity) is a standardized API (Application 
Programming Interface) that allows database connectivity. It defines a set of 
function calls, error codes and data types that can be used to develop 
database independent applications using Structured Query Language (SQL). 

ODBC permits maximum interoperability—a single application can access many 
different database management systems. This enables an ODBC developer to 
develop, compile, and deploy an application without targeting a specific type of 
data source. Users can add the database drivers that link the application to the 
database management systems of their choice. 

 

14  Ingres 2006 R2 Connectivity Guide 
 



Ingres Components and Tools 
 

Ingres Components and Tools 
To use this guide effectively, you should be familiar with the basic components 
of Ingres, client/server concepts, and the Ingres tools required to configure, 
maintain, and view data. 

The basic components of Ingres are as follows:  

 The Relational Database Management System (RDBMS)—The Relational 
Database Management System is a set of Ingres processes. This set 
includes the processes that make up the Ingres DBMS Server and those 
that make up the logging and locking system. All of these processes work 
together to process queries from users running applications or using 
Ingres tools.  

 The database—The database is the structure in which the RDBMS stores 
the data.  

The Ingres database management system is the server that process requests 
from clients. The Ingres tools and database applications are the clients. 

The following figure illustrates the relationships among Ingres components and 
tools: 

 

Introducing Ingres Connectivity  15  
 



Ingres Components and Tools 
 

The Ingres tools used to configure, maintain, and view data include the 
following (commands to invoke these tools are shown in parentheses): 

 Configuration Manager (vcbf) 

 Configuration-By-Forms (cbf) 

 Ingres Visual Manager (ivm) 

 Visual Performance Monitor (vdbamon) 

 Journal Analyzer (ija) 

 Import Assistant (iia) 

 Export Assistant (iea) 

 Visual Configuration Differences Analyzer (vcda) 

 Visual Database Objects Differences Analyzer (vdda) 

 Visual SQL (vdbasql) 

 Visual DBA (vdba) 

 Net Management Utility (netutil) 

 Network Utility (ingnet) 

 Terminal Monitor (isql)  

 Report-By-Forms (rbf) 

 Query-By-Forms (qbf) 

 Applications-By-Forms (abf) 

For a description of each tool, see the System Administrator Guide.

The application development tools used to write customized applications 
include: 

 Vision 

 Ingres 4GL 

For instructions on using these tools, see the Forms-based Application 
Development Tools User Guide. 

 

Ingres Instance 

An Ingres instance consists of a set of installed products that share a unique 
system-file location, ownership, and installation code, together with any data 
files created by these products. An instance is classified as either a server 
installation or a client installation. 

 

16  Ingres 2006 R2 Connectivity Guide 
 



System-specific Text in This Guide 
 

Server Installation 

An Ingres server installation consists of a DBMS server process (iidbms), a 
Name Server process (iigcn), a set of Ingres tools, and the files and logs 
necessary to run the DBMS Server. For a detailed description of DBMS servers, 
see the System Administrator Guide. 

If the server installation allows remote clients to access its DBMS servers, the 
server installation also includes the Ingres Net Communications Server process 
(iigcc). 

 

Client Installation 

An Ingres client installation contains a Name server process (iigcn), a 
Communications server process (iigcc), a DAS process (iigcd), the API 
components that support client applications (Ingres JDBC Driver, ODBC Driver 
and .NET Data Provider) and the Ingres tools. A client installation does not run 
a DBMS server or store any data. 

 

System-specific Text in This Guide 
This guide provides information that is specific to your operating system, as in 
these examples: 

Windows: This information is specific to the Windows operation system. 

UNIX: This information is specific to the UNIX operation system. 

VMS: This information is specific to VMS operating system. 

When necessary for clarity, the symbol  is used to indicate the end of the 
system-specific text.  

For sections that pertain to one system only, the system is indicated in the 
section title. 

 

Introducing Ingres Connectivity  17  
 



Terminology Used in This Guide 
 

Terminology Used in This Guide 
This guide uses the following terminology: 

 A command is an operation that you execute at the operating system 
level. An extended operation invoked by a command is often referred to as 
a utility. 

 A statement is an operation that you embed within a program or execute 
interactively from a terminal monitor. 

Note: A statement can be written in Ingres 4GL, a host programming 
language (such as C), or a database query language (SQL or QUEL). 

 

Syntax Conventions Used in This Guide 
This guide uses the following conventions to describe syntax: 

 

Convention  Usage 

Monospace Indicates key words, symbols, or punctuation 
that you must enter as shown 

Italics Represent a variable name for which you must 
supply an actual value 

[ ] (brackets) Indicate an optional item 

{ } (braces) Indicate an optional item that you can repeat as 
many times as appropriate 

| (vertical bar) Separates items in a list and indicates that you 
must choose one item 

 

18  Ingres 2006 R2 Connectivity Guide 
 



 

Chapter 2: Exploring Net 
 

This chapter describes Ingres Net and its many benefits in establishing and 
maintaining Ingres communications. It also explains the role that various 
connectivity components play in establishing communications with a remote 
DBMS server. This chapter also introduces Ingres connectivity concepts used 
in this guide. Lastly, it describes the types of Ingres users and the 
connectivity-related tasks that each performs. 

 

Ingres Net 
Ingres Net is a server process that allows you to work on one Ingres instance 
and access databases on another instance. Both instances can reside on the 
same machine or they can reside on different machines. For example, with 
Ingres Net on each instance in your network, you can access Ingres databases 
on remote nodes as well as on your own local node. Similarly, with Ingres Net 
in a cluster, you can access Ingres databases on any node in the cluster. 

Ingres Net connects multiple computer architectures, operating systems, and 
network protocols. This capability broadens the range and number of machines 
that can offer solutions to problems requiring Ingres-based distributed 
processing. Ingres Net automatically handles all low-level details of data 
format conversion required in such heterogeneous environments. 

Ingres Net is implemented on industry-standard networking protocols. It is 
designed to be independent of underlying communications hardware and 
networking software. Subject to the appropriate security checks, Ingres Net 
lets you treat any remote database as a local database. 

 

Exploring Net  19  
 



Ingres Net 
 

General Communication Facility 

Ingres Net works with the basic Ingres components to enable connectivity 
between client and server instances. It also uses the General Communication 
Facility to manage communication among various components of Ingres. 

The General Communication Facility (GCF) manages communication among all 
the components of Ingres. The GCF consists of five parts: 

 The General Communications Architecture (GCA), which provides 
communication connections between Ingres processes on the same 
instance. 

 The Name Server (iigcn) maintains a list of all registered, active servers. 
The Name Server provides information to user processes that enables a 
connection to a local DBMS Server. When a process wants to connect to a 
remote DBMS Server, the Name Server provides information that allows 
the process to first connect to a Communications Server. The 
Communications Server establishes communication with the remote DBMS 
Server. An instance has only one Name Server process. 

 The Communications Server (iigcc) is the main process component of 
Ingres Net. It monitors outgoing communication from local applications to 
remote DBMS servers and incoming communication from remote 
applications to local DBMS servers. An instance can have multiple 
Communications server processes. 

 The Data Access Server (iigcd) translates requests from the Ingres JDBC 
Driver and the .NET Data Provider into Ingres internal format and forwards 
the request to the appropriate DBMS Server. The Data Access Server 
(DAS) accesses DBMS servers on remote machines using Net. 

 The Protocol Bridge Server (iigcb) provides services for Ingres Bridge, a 
product that enables a client application running on one type of local area 
network to access a DBMS server running on a different type of network. 
Ingres Bridge “bridges” a client using one network protocol to a server 
using another. (This component is functional only if you are using Ingres 
Bridge.) 

 

20  Ingres 2006 R2 Connectivity Guide 
 



Ingres Net 
 

Communications Server 

As the main server process of Ingres Net, the Communications Server (iigcc), 
also referred to as the Net Server, provides access to standard network 
protocols. It is modeled on the top four layers of the network layering 
structure and communication protocols known as the Open Systems 
Interconnection (OSI) standards. These standards are specified by the 
International Standards Organization (ISO). The following figure displays these 
layers. 

 APPLICA  TION 

PRESENT A TION  

SESSION  

TRANSPOR  T 

NETWORK  

DA T A  LINK  

PHYSICAL  

Communications
Server 

 
 

Net Security 

Ingres Net supports the Ingres security system; users can access only the 
data for which they are authorized. For additional information on the security 
system, see the “Ensuring Access Security” chapter in the Database 
Administrator Guide. 

 

Exploring Net  21  
 



Installation Configurations That Require Net 
 

Installation Configurations That Require Net 
With one exception, any installation configuration in which the client and 
server processes do not reside on the same machine or in the same instance 
must use Ingres Net. 

The exception occurs when Ingres is configured in the cluster mode on nodes 
that are part of a cluster. In this case, the processes can reside on separate 
machines without using Net. If Ingres is configured in its normal (rather than 
cluster) mode on a node that is part of a cluster, Ingres Net is required to 
connect client and server processes on separate nodes.  

For example, an Ingres 4GL client application using Net accesses a remote 
DBMS server. In this configuration, the Java application does not use Ingres 
Net because the DAS is local to the DBMS Server. If the DAS is remote to the 
DBMS Server, Ingres Net is required to enable the client/server connection. 

 

Net and Other Ingres-related Products 
Ingres Net, along with any of the following products, can fit into a variety of 
installation configurations to provide enhanced access and communication 
capabilities in more complex installations. Using these products with the basic 
Ingres components provides simultaneous, distributed access to databases 
and applications in a heterogeneous environment. 

Ingres Bridge 

Enables client applications running on one type of network LAN to access 
an Ingres server running on a different type of network.  

Enterprise Access and EDBC products 

Provide access to non-Ingres databases.  

Ingres Star 

Allows access to multiple databases transparently and simultaneously.  
 

22  Ingres 2006 R2 Connectivity Guide 
 



Net and Other Ingres-related Products 
 

Net and Enterprise Access and EDBC Products 

Enterprise Access and EDBC products allow you to use Ingres tools, interfaces, 
and applications to access data stored in non-Ingres databases by translating 
queries into forms that are understood by the non-Ingres databases. 
Consequently, you can perform operations and queries on files stored in these 
non-Ingres databases as if they were Ingres tables. 

A sample installation configuration uses Ingres Net and EDBC to database 2 
(DB2). The installation is on node_a, a VMS implementation of the Ingres 
tools. 

An installation on node_b is EDBC to DB2 on an MVS environment. The two 
nodes communicate using the SNA LU0 protocol. Ingres Net is present on both 
nodes. Users on node_a can access DB2 data on node_b as if the DB2 tables 
were Ingres tables stored on node_a. 

Note: MVS refers to all IBM MVS-based operating systems, including OS/390 
and z/OS. 

For a detailed discussion of Enterprise Access or EDBC architecture, see the 
guides for your specific Enterprise Access or EDBC product. 

 

Net and Ingres Star 

In Ingres, one application can have multiple sessions, with each session 
accessing one database. However, in many applications, the ability to access 
multiple databases in a single session is also very useful. In Ingres, this 
expanded functionality is available by using Ingres Star. 

Ingres Star lets you create a distributed database. A distributed database is 
composed of some or all of the tables from a number of databases. When you 
access a distributed database, these tables appear to reside in a single 
database. The composition and operation of the distributed database is 
completely transparent to the user. 

Combining Ingres Net and Ingres Star gives you simultaneous access to any 
number of databases residing on separate instances. Ingres Net gives you the 
ability to query a database on a different instance, and Ingres Star allows you 
to simultaneously query more than one database. You need both Ingres Net 
and Ingres Star to simultaneously access more than one database if the 
databases are in separate instances.

For a full explanation of how to use Ingres Star, see the Ingres Star User 
Guide.

 

Exploring Net  23  
 



Net and Other Ingres-related Products 
 

Net Product Integration Summary 

By making an Enterprise Access or EDBC product part of an Ingres Star 
database, you can transparently and simultaneously access both Ingres and 
non-Ingres databases. 

The following figure illustrates a distributed database environment that 
contains an Enterprise Access or EDBC product. In this illustration, the local 
DBMS Server resides on the VMS operating system. The remote DBMS Server 
resides on UNIX. EDBC to DB2 resides on MVS. 

Ingres applications on VMS are linked by Ingres Net to the remote DBMS 
Server on UNIX with the TCP/IP network protocol. Ingres applications on VMS 
are linked by Ingres Net to the remote EDBC to DB2 on MVS with the SNA LU0 
network protocol. 

 
 

24  Ingres 2006 R2 Connectivity Guide 
 



Benefits of Net 
 

Benefits of Net 
Ingres Net provides many benefits in your computing environment. With 
Ingres Net, you can do the following: 

 Improve total system performance 

Ingres Net lets you dedicate each node in a network to specific 
applications, tools, or databases. By doing so, you can optimize each node 
for a primary function and avoid the problem of designing for conflicting 
requirements. 

 Build larger applications 

When you are working with Ingres installed on just one machine, the 
number of users and applications you can support is limited by the 
capacity of the machine. With Ingres Net you can connect multiple 
machines and instances in a network to support larger applications and to 
handle more users. 

 Simplify expansion 

With Ingres Net, the network serves as a vehicle for expanding the 
computer environment. When more computing power is needed, add 
smaller, less expensive machines instead of replacing existing computers 
with larger, more costly machines. This preserves the existing hardware 
investment and allows expansion without disrupting productivity. 

 Minimize data communication costs 

Ingres Net uses the network efficiently. Together, the following features 
minimize the number of messages and the amount of data sent, thus 
minimizing data communication costs. 

– The local Ingres program communicates with its remote data manager 
using the SQL language. Built on the relational model, SQL 
manipulates sets of records rather than a single record at a time. This 
allows the use of more compact commands and queries. 

– The remote data manager carries out database access functions 
entirely on the remote node. Only data requested by the user is 
transmitted over the network to the local application. For example, in 
update operations, users are not requesting to see any data; they 
simply want to change some existing data. The remote data manager, 
therefore, carries out all the work. 

 Improve resource sharing 

Consider a company headquarters that must support a number of sales 
offices across the country. Although each sales office needs only a small 
on-site computer to support its few users, it must have access to the data 
stored in the large corporate database. 

Exploring Net  25  
 



Net Concepts 
 

With Ingres Net, local data can remain on the local nodes, providing fast 
response to users in the local sales offices. These same users also have 
the advantage of sharing the large database maintained on the central 
computer at corporate headquarters when necessary without being 
required to house a copy of it on their local machine. 

By connecting databases and applications on different machines, you can 
balance computer resources, promote data sharing, and improve access to 
an organization’s information. 

 

Net Concepts 
Concepts related to Ingres Net include the following: 

 Virtual nodes 

 Connection data 

 Remote user authorizations 

 Global and private definitions 
 

Virtual Nodes 

A virtual node (vnode) is a name defined on the local instance to identify a 
particular remote instance. Assigning a vnode name is typically the first step in 
the process of establishing connection and authorization data for a remote 
instance.  

Whenever local users connect to a database on a remote instance or run an 
application that accesses a database on a remote instance, they must do one 
of the following: 

 Use the virtual node name assigned to that instance 

 Specify all of the required information in the connection string using the 
“dynamic vnode” format  

Using vnodes is generally simpler for users because they only have to enter a 
single, user-friendly vnode name when they run an application, rather than 
detailed network-specific connection information. Another advantage of vnodes 
is that network changes can be updated for a vnode without notifying the user 
or changing the application.  

 

26  Ingres 2006 R2 Connectivity Guide 
 



Net Concepts 
 

Connection Data 

Connection data refers to the information that the Communications Server in 
the local instance requires to locate and connect to the Communications 
Server on a remote instance. Connection data includes the following: 

 The network address or node name of the remote instance’s host machine 

 The listen address of the remote instance’s Communications Server 

 The network protocol by which the local and remote instances 
communicates 

Connection data is defined for each vnode, but can also be specified when 
using the dynamic vnode format.  

It is possible to have more than one connection data entry for the same 
vnode. For example, if the remote instance has more than one 
Communications Server or can be accessed through more than one network 
protocol, this information can be included in the vnode definition by adding 
extra connection data entries.  

 

Listen Address 

A listen address is a unique identifier used for interprocess communications. 
The format of a listen address is dependent on the network protocol and the 
hardware.  

For descriptions of listen address formats for the protocols supported by Ingres 
Net, see the appendixes in this guide. 

 

Exploring Net  27  
 



Net Concepts 
 

Remote User Authorizations 

Connection data alone is not sufficient to access a remote Ingres instance. You 
must authorize users to access the remote instance.  

A remote user authorization consists of either of the following: 

 An Installation Password 

An Installation Password enables the user to access the remote instance 
directly. Users retain their identity as defined on the local instance. 

If an Installation Password is defined, a login account is optional.  

 Login account and password 

A login account (set up by the system administrator) on the host machine 
of the remote instance.  Users take on the identity of the login account 
through which they access the remote instance. 

The main advantage of using an Installation Password is that users on the 
local node do not require a login account on the remote instance’s host 
machine. They can access the remote instance directly provided they are 
recognized as valid Ingres users on the remote instance.   

Note: Installation passwords must be used only when user privileges are the 
same on both local and remote machines. Using installation passwords 
between machines with different access privileges can lead to security access 
violations. For example, if a user is able to access the Ingres administrator 
account on a client machine but not on the server machine, use of installation 
passwords allows the user to bypass standard security and access the 
database as the Ingres administrator through Ingres Net. 

Ingres Net requires the following remote user authorization information: 

 Name of remote login account (if applicable) 

 Password (either a login account password or an Installation Password) 

For more information, see the chapter “Establishing Communications.” 
 

28  Ingres 2006 R2 Connectivity Guide 
 



Net Concepts 
 

Global and Private Definitions 

Both connection data entries and remote user authorization entries can be 
defined for vnodes as either global or private. A global entry is available to all 
users on the local instance. A private entry is available only to the user who 
creates it. 

Each user can create a private entry. Only a user with the GCA privilege 
NET_ADMIN (typically a system administrator) can create a global entry. 

If both a private and a global entry exist for a given vnode, the private entry 
takes precedence when the user who created the private entry invokes the 
vnode. 

The following figure shows how connections are made when both private and 
global entries are defined for a given vnode. 

System Administrator has set up the following for

Login
account
“Guest”

Login
account
“User B”

User A

No private
definitions

User B

Private
authorization to
login account
“User B”

User C

Private connection data
listing installation_b
node name, listen
address, and protocol

Private authorization
to login account
“User C”

vnode “Chicago”:
Global connection data entry specifying
installation_a

Global authorization to login account “Guest”

Installation_c

Login
account
“User C”

Installation_a Installation_b

 

Exploring Net  29  
 



Net Management Tools 
 

On installation_c, the system administrator has created a vnode (“Chicago”) 
with a global connection data entry specifying installation_a and a global 
remote user authorization specifying a login account (“Guest”) on that 
instance. User A has not defined any private definitions for vnode “Chicago” 
that takes precedence over the global definitions. 

When User A invokes vnode “Chicago,” a connection is made to installation_a 
through login account “Guest.” User B has added a private remote user 
authorization to vnode “Chicago,” specifying the login account “User B.” When 
User B invokes vnode “Chicago,” the private authorization takes precedence 
over the global authorization, and a connection is made to installation_a 
through the login account “User B.” 

User C has added a private connection data entry to vnode “Chicago.” The 
private connection data entry contains the listen address, node name, and 
network protocol of installation_b. 

User C has also added a private authorization to login account “User C” on 
installation_b. When User C invokes vnode “Chicago,” the private definitions 
take precedence over the global definitions, and a connection is made to 
installation_b through the login account “User C.”  

 

Net Management Tools 
The Net management tools include the following: 

 The forms-based Net Management Utility, netutil  

 The GUI-based Network Utility and Visual DBA 

These tools allow you to store and manage the vnode information (connection 
data and remote user authorizations) used by the Communications Server and 
the Bridge Server to connect to remote Ingres instances.  

For information on using these Ingres Net management tools, see the chapter 
“Establishing Communications.”  

 

30  Ingres 2006 R2 Connectivity Guide 
 



Net and Bridge Users 
 

Net and Bridge Users 
At a site, several levels of users are often defined by the tasks and 
responsibilities they have within the installation. For installations with Ingres 
Net and Ingres Bridge, these levels are: 

 Operating system administrator 

The operating system administrator sets up the operating system 
environment in which Ingres is installed. This person is the owner of the 
operating system account (for example, root in UNIX, system in VMS), 
which provides all permissions and privileges available from the operating 
system. 

 Network administrator 

The network administrator is responsible for the physical installation and 
maintenance of the network. These responsibilities include designing a 
network configuration that provides optimal user and database access, and 
installing and maintaining the necessary hardware and software. 

 System administrator 

The system administrator is the owner of the user account that provides 
permissions in the Ingres environment. Responsibilities include installing 
and maintaining Ingres and Ingres Net, authorizing user access, and 
maintaining and troubleshooting the installation. 

 Database administrator (DBA) 

Each database in an installation has a DBA who is responsible for 
maintaining and tuning the database, granting permission to access 
objects in the database (such as tables and views), and backup and 
recovery of the database. 

 End users 

An end user is anyone who uses the instance and is not an operating 
system administrator, system administrator, DBA, or user with special 
privileges. 

A person may have responsibilities at more than one level. For example, a 
user can be the database administrator of one database and simply an end 
user of another. 

Users at the system administrator, database administrator, and end user 
levels have specific Ingres Net responsibilities. 

 

Exploring Net  31  
 



Net and Bridge Users 
 

System Administrator and Ingres Net 

The system administrator often performs the following Ingres Net-specific 
tasks, however any user with the appropriate privileges can perform these 
tasks: 

 Defining global connection data entries and remote user authorizations. 
This task requires the GCA privilege NET_ADMIN. 

 Starting, stopping, configuring, and monitoring Ingres servers, including 
the Name, Communications, and Bridge servers. These tasks require the 
GCA privilege SERVER_CONTROL. 

The NET_ADMIN and SERVER_CONTROL privileges are assigned by default to 
the installation owner user ID, system (on VMS), and root (on UNIX). To 
assign these privileges to another user, the system administrator must 
manually add the following line to the config.dat file:  

ii.node_name.privileges.user.user:   SERVER_CONTROL,NET_ADMIN 

For example: 

ii.panther.privileges.user.joan:   SERVER_CONTROL,NET ADMIN 
 

Database Administrator and Ingres Net 

The DBA must ensure that users who remotely access an Ingres instance have 
a user profile that permits access. 

 

End Users and Ingres Net 

End users are responsible for the following Ingres Net and Ingres Bridge-
specific tasks: 

 Defining their private connection data entries, if any 

 Defining their private remote user authorizations, if any 
 

32  Ingres 2006 R2 Connectivity Guide 
 



 

Chapter 3: Installing and Configuring 
Net 
 

This chapter explains how to install and configure Ingres Net as part of a new 
or existing installation.  

 

Installation Components 
When you install Ingres Net, the following components are automatically 
installed with it: 

 DAS (provides network access to the DBMS Server for Ingres JDBC drivers 
and .NET Data Providers) 

 Ingres JDBC Driver 

 Ingres ODBC Driver 

 Ingres .NET Data Provider 

 Ingres Bridge 
 

How You Prepare for Installation 
Before you install Net, do the following:  

1. Make sure you have met the installation prerequisites for the network 
protocol you are using, and that the physical network is installed and 
working.  

2. Understand the configuration parameters you must supply values for 
during the setup phase of the installation process. 

 

Network Installation and Testing 

Before you install Ingres Net, the network administrator must make sure the 
network is properly installed and operating.  

 

Installing and Configuring Net  33  
 



How You Prepare for Installation 
 

TCP/IP Installation (Windows) 

To install Ingres Net for Windows with TCP/IP as its network protocol, you 
must first install the TCP/IP network software for Windows. From the Network 
applet in the Control Panel, choose Add Software. From the list of choices, 
choose TCP/IP Protocol and Related Components and follow the installation 
instructions. 

To use symbolic node names (host names) of a remote host instead of its 
numeric IP address, you must either configure a Domain Name Server in the 
DNS section of the TCP/IP configuration or add a list of IP addresses and 
corresponding symbolic names in a file called 
%windir%\system32\drivers\etc\hosts. For information on the format of this 
file, see Windows documentation. 

 

SPX/IPX Installation (Windows) 

To install Ingres Net for Windows with SPX/IPX as its network protocol, you 
must first install the SPX/IPX network software for Windows. 

From the Network applet in the Control Panel, choose Add Software. From the 
list of choices, choose NWLink IPX/SPX Compatible Transport and follow the 
installation instructions. 

For information on installing the SPX/IPX protocol, see Windows 
documentation. 

 

TCP/IP Installation (UNIX) 

To install Ingres Net for UNIX with TCP/IP as its network protocol, you must 
first configure TCP/IP for UNIX. 

To use symbolic node names (host names) of a remote host instead of its 
numeric IP address, you must either configure TCP/IP to use a Domain Name 
Server configuration or add a list of IP addresses and corresponding 
symbolic node names host names) of all remote hosts that are referred to by 
host name in a file called the /etc/hosts file (or other list of network host 
addresses). 

Establish aliases for node names in the /etc/hosts file. This is useful if the node 
name contains characters that are not accepted by Ingres Net. For information 
about how to establish aliases, see UNIX documentation for your machine. 

Fully test TCP/IP before installing Ingres Net. You must be able to connect to 
other nodes on the network using telnet and ftp commands. 

 

34  Ingres 2006 R2 Connectivity Guide 
 



How You Prepare for Installation 
 

TCP/IP Services Installation (VMS) 

To install Ingres Net for VMS with TCP/IP as its network protocol, you must 
first install TCP/IP Services on VMS. To use symbolic node names (host 
names) of a remote host instead of its numeric IP address, you must either 
configure TCP/IP to utilize a Domain Name Server configuration or add a list of 
IP addresses and corresponding symbolic node names host names) of all 
remote hosts that are referred to by host name in the TCP$HOST file. 

Establish aliases for node names in the TCP$HOST file. This is useful if the 
node name contains characters that are not accepted by Ingres Net. For 
information about how to establish aliases, see VMS documentation. 

Test TCP/IP fully before installing Ingres Net. You must be able to connect to 
other nodes on the network using telnet and ftp commands. The 
connection can be tested with a TCPIP PING command, or use the telnet utility 
to connect to the node. If the connection succeeds, you are ready to add the 
nodes to the Ingres installation using netutil. 

For more information, see the chapter Establishing Communications and the 
VMS documentation on TCP/IP services. 

Note: TCP/IP Services for OpenVMS, formerly UCX, is often still referred to as 
UCX. 

 

DECnet Installation (VMS) 

Installing Ingres Net using DECnet as a network protocol requires no additional 
procedures in the DECnet installation. Simply install DECnet and test it fully 
before installing Ingres Net. Be sure that all nodes that use Ingres Net are 
defined and accessible through DECnet. You must be able to use the set host 
command to connect to any node on the network that uses Ingres Net. For 
details, see DECnet-Plus for OpenVMS Installation and Basic Configuration or 
DECnet-Plus Introduction and User’s Guide. 

 

MultiNet TCP/IP Installation (VMS) 

When installing MultiNet TCP/IP on a network that uses Ingres Net, you must 
make it emulate either Wollongong TCP/IP or TCP/IP Services for OpenVMS. 
For details on enabling TCP/IP Services emulation (using the MultiNet SET 
LOAD-UC_DRIVER command) or WIN/TCP emulation (using the SET WINS-
COMPATIBILITY command), see the MultiNet for OpenVMS System 
Administrator’s Guide. 

Depending on the selected emulation mode, you must follow the guide’s 
instructions for Wollongong TCP/IP or TCP/IP Services for OpenVMS. 

 

Installing and Configuring Net  35  
 



How You Prepare for Installation 
 

SunLink SNA Peer-to-Peer Installation (Solaris and Sun-4) 

When using SunLink SNA Peer-to-Peer (LU 62) as the network protocol, you 
must set up the appc Gateway configuration files to define the SNA Logical 
Unit (LU) and Physical Unit (PU) resources associated with Ingres Net 
connections. For information on setting up this configuration file, see the 
SunLink SNA Peer-to-Peer Administrator’s Guide. 

The “SunLink Gateway Configuration Files” appendix contains sample excerpts 
from configuration files. An experienced SNA communications specialist must 
perform the configuration. 

If using independent LUs, make sure (in SunLink SNA Peer-to-Peer Release 
7.x) that you start the cnos_local and cnos_remote processes in addition to 
starting and configuring the appc Gateway process. 

Test SunLink SNA Peer-to-Peer fully before installing Ingres Net. Use the 
SunLink SNA test_p2p program to perform testing. 

Ingres Net does not currently support the Physical Unit Management Services 
(PUMS) that SunLink SNA provides. 

 

HP-UX SNAplus (HP-UX 9.0) 

When using HP-UX SNAplus (LU6.2) as the network protocol, you must 
configure the links, connections, Modes, Remote APPC LUs, Local APPC LUs, 
and Invocable TPs associated with Ingres Net connections. For information on 
the configuration procedure, see the HP SNA Products Remote System 
Configuration Guide, the HP-UX SNAplusLink Administrator’s Guide, and the 
HP-UX SNAplusAPI Administrator’s Guide. 

For more detailed information on configuration, see the appendix "Netu 
Procedures" in this guide. An experienced SNA communications specialist must 
perform the configuration. 

You must test HP-UX SNAplus fully before installing Ingres Net. For guidance, 
see the sample programs in /usr/lib/sna/samples. 

If the SNAplus control daemon is restarted, any Communications Servers that 
are using the protocol must also be restarted. 

 

36  Ingres 2006 R2 Connectivity Guide 
 



How You Prepare for Installation 
 

AIX SNA Services/6000 (IBM RS/6000) 

When using AIX SNA Services/6000 as the network protocol, you must create 
a set of configuration profiles that describe the hardware and software that are 
used for communications. For information on defining these profiles, see Using 
AIX SNA Services/6000 and AIX SNA Services/6000 Reference. An 
experienced SNA communications specialist must perform the configuration. 

Ensure that SNA Services/6000 is fully functional before installing Ingres Net. 
In particular, make sure that the SNA subsystem and the network attachment 
that is to be used can be started using the startsrc console command. Using 
AIX SNA Services/6000 contains details on the use of this command. 

The appendix “AIX SNA Services/6000 Configuration Profiles” contains sample 
excerpts from configuration profiles showing examples of those profiles that 
must be specifically tailored for Ingres Net. Once these profiles are defined 
and Ingres Net is installed on both the local and remote machines, use the 
startsrc command to start up the connection that you have configured. This is 
not necessary for Ingres Net operations, but it helps to verify that the 
configuration profiles are correct before attempting to actually run Ingres Net. 

 

Setup Parameters for Net 

The parameters that must be specified when installing and setting up Ingres 
Net depend on whether it is a server or client installation. They also depend on 
whether you choose to use an Installation Password to authorize access to a 
server installation from a remote client installation. 

 

Installation Password and Remote User Authorization 

Installation Passwords and their corresponding remote user authorizations can 
be wholly or partially set up during the Ingres Net installation procedure. 

You can set up Installation Passwords and remote user authorizations at any 
time after the installation procedure using Network Utility, Visual DBA, or 
netutil. For more information about these procedures, see the chapter 
"Establishing Communications." 

 

Installing and Configuring Net  37  
 



How You Prepare for Installation 
 

Setup Parameters for a Server Installation 

If Ingres Net is part of a server installation, you are asked to supply the 
following information: 

Installation Password 

Is an alphanumeric string that can be used to authorize remote users to 
access the DBMS Server on this installation. 

The first eight characters of the string must be unique on the installation. 

Default: None 

VMS: If you are installing Ingres Net on a VMS system, you are not 
prompted to define an Installation Password. To define one, use netutil 
after completing the installation procedure. 

 

Setup Parameters for a Client Installation 

If you are installing Ingres Net on a non-NFS client installation, you are asked 
for the following information. 

Installation Code 

An installer-defined, two-character code that identifies this installation.   

Default: II 

Windows and UNIX: The first character must be a letter; the second 
character can be a letter or numeral. If there is more than one installation 
on the same node, each installation must have a unique installation 
code.  

VMS: This parameter applies only to group-level installations. System 
level installations are assigned an internal code of “aa”. 

Make sure that the first letter of your group-level installation code is not 
“a” and not in use by another group-level installation in the node.  

Region and Time Zone 

The region of the world and the time zone in which this client installation is 
located. You must enter these values even if they are the same as for this 
client’s DBMS Server (host) node.  

Default on some systems: NA-PACIFIC. 

NFS clients are prompted only for the Installation Password. For detailed 
information on running Setup for NFS clients, see the Installation Guide. 

Note:  If you are setting up NFS clients from the server installation, you are 
not prompted to set up a remote user authorization entry. You must set up 
your remote user authorization entries using netutil after you have completed 
the installation procedure. For instructions on setting up a remote user 
authorization using netutil, see the chapter "Establishing Communications." 

 

38  Ingres 2006 R2 Connectivity Guide 
 



How Net Setup Works on an Existing Installation 
 

How Net Setup Works on an Existing Installation 
When Ingres Net is added to an existing installation, the procedures differ 
slightly but the fundamentals remain the same. You must rerun the Ingres 
Setup program to install and configure Ingres Net. The prompts that you must 
answer remain the same, regardless of whether Ingres Net is being installed 
as part of an initial installation or as an addition to an existing installation. 

 

How Communications Are Enabled 
A server and client are able to communicate through Ingres Net as soon as the 
installation procedure is complete if an Installation Password and 
corresponding remote user authorization entry are set up on that server and 
client, respectively. 

Otherwise, before Ingres Net can be used to connect installations, the 
necessary remote user authorizations, connection data, and Installation 
Passwords or Login Account Passwords must be defined.  

 

Installing and Configuring Net  39  
 



How You Install Net 
 

How You Install Net 
To install Ingres Net as part of a new or existing installation, follow this 
process: 

Note: On VMS, make sure any user account that is using Net has the NETMBX 
privilege. 

1. Make sure you have met the installation prerequisites for the network 
protocol you are using, and that the physical network is installed and 
working. For more information, see Network Installation and Testing (see 
page 33) and the appendix specific to your network protocol.  

2. Be ready with the necessary information to set up the Net installation 
parameters.  

Windows: 

For server installations:  

 Installation Password, if you are defining one at this time  

For client installations: 

 Installation Code  

 Region and Time Zone 

If access is authorized to a remote server using an Installation Password: 

 Installation Password defined on server installation 

 Name of the host machine on which the server installation resides 

 Server installation's listen address 

UNIX: 

 Host Name: The name of the host machine on which the remote 
installation resides 

 Listen Address: The listen address for the remote installation's 
Communications server. The default is the server installation code  

 Installation Password: The Installation Password defined on the remote 
installation 

VMS: 

 Installation Code 

 Time Zone 

3. Shut down your installation if you are adding Ingres Net to an existing 
installation.  

4. Perform the appropriate installation procedure documented in the 
Installation Guide.  

5. Start your installation. 

40  Ingres 2006 R2 Connectivity Guide 
 



How You Install Net 
 

6. Authorize users to use Ingres by using the create user statement (or 
Visual DBA if available). For details, see the Database Administrator Guide. 

7. Define connection data for the remote installations you plan to access. For 
detailed procedures, see the chapter "Establishing Communications." 

8. Define remote user authorizations for the remote installations you plan to 
access, if you did not do so during the installation procedure. For detailed 
procedures, see the chapter "Establishing Communications." 

9. Define an Installation Password for the local installation to enable remote 
users to access this installation  

Note: This step is not necessary if you defined a password during the 
installation procedure.  

For detailed procedures, see the chapter "Establishing Communications." 

10. UNIX: On UNIX systems, make sure the ingvalidpw program is installed. 
For details, see Create Password Validation Program (UNIX) (see page 41).  

Note:  If you are upgrading an existing Ingres Net installation, your existing 
netutil (or netu) definitions remain in effect. 

 

Create Password Validation Program (UNIX) 

On UNIX, the Ingres DBMS Server uses the ingvalidpw program to validate 
shadow passwords. This executable is created at installation time or loaded 
from the distribution media.  

The mkvalidpw script tries to recompile the ingvalidpw program if your 
machine has a C compiler available; otherwise it copies the supplied 
ingvalidpw program to the $II_SYSTEM/ingres/bin directory. The mkvalidpw 
script also sets the II_SHADOW_PWD variable in the Ingres symbol.tbl to 
enable shadow password validation. 

To create the ingvalidpw program

1. Log in as root. 

2. Set the II_SYSTEM and PATH variables to the same values as those for the 
user account that owns the installation. 

3. Run the mkvalidpw script, located in the directory $II_SYSTEM/ingres/bin, 
as follows: 

mkvalidpw  

The ingvalidpw executable is created. 

4. Shut down and restart the Name Server. 

The ingvalidpw program is ready for operation.  
 

Installing and Configuring Net  41  
 



Net Configuration Parameters—Customize the Installation 
 

Net Configuration Parameters—Customize the Installation 
Your installation can be customized by changing the values of the Ingres Net 
configuration parameters. Default values are assigned during installation.  

You view or change the configuration parameters using the Configuration 
Manager (vcbf) or cbf utility.  

The Net configuration parameters are as follows: 

inbound_limit and outbound_limit 

Defines inbound and outbound session limits. 

Default: 64 inbound sessions and 64 outbound sessions 

log_level 

Defines the logging level. 

Default: 4 

Protocol 

Specifies the name of the network protocol. 

Default: Any protocol present at installation is indicated as active. 

Listen Address 

Specifies the GCC listen addresses for this installation. 

Default: A GCC listen address is assigned for any protocol present at 
installation. The format depends on the protocol. 

default_server_class 

Specifies the server class assumed as the default when a server class 
is specified. 

Default: INGRES 

remote_vnode 

(Optional) Specifies the vnode assumed as the default when a vnode is 
not specified. 

Default: None. 

local_vnode 

Specifies the vnode name configured for the local installation. 

Default: Name of host machine. 
 

42  Ingres 2006 R2 Connectivity Guide 
 



Net Configuration Parameters—Customize the Installation 
 

For more information, see the following chapters: 

 Using Net 

 Maintaining Connectivity 

 Troubleshooting Connectivity  
 

Installing and Configuring Net  43  
 





 

Chapter 4: Establishing Communications 
 

This chapter contains the following topics: 

 An overview of the process of creating connection data entries and 
authorizing user access to Ingres using virtual nodes (vnodes) 

 An overview of the tables and menu of the forms-based Net Management 
Utility (netutil) startup screen 

 Procedures for establishing and maintaining connections to remote Ingres 
instances using the following tools: 

– Netutil 

– The non-interactive mode of netutil 

– Network Utility and Visual DBA 
 

How User Access Is Established 
For users to be able to access Ingres, the following two steps are required: 

1. The system administrator sets up accounts for local users, and for those 
remote users who access the local instance through a local account. This 
step is optional if an Installation Password is defined, in which case users 
access Ingres directly, without going through a local account. The system 
administrator can do this either before or after the installation procedure. 

Note: During installation, the installation owner user ID is defined. This 
account belongs to the Ingres administrator and is automatically 
authorized with maximum Ingres privileges that allow this user to perform 
all operations. Other user accounts can be set up after Ingres is installed. 

2. After Ingres is running and the accounts are set up, the system 
administrator or database administrator uses Visual DBA or the create 
user statement to authorize the accounts that use this Ingres instance. 
For more information about this procedure, see the Database 
Administrator Guide. 

 

Establishing Communications  45  
 



How User Access Is Established 
 

Requirements for Accessing Remote Instances 

When the instance includes Ingres Net, users can connect to databases on 
remote instances as well as those on their local instance. To connect to remote 
instances, the following requirements must be met: 

 A virtual node (vnode) name must be defined for each remote instance 
that is accessed, unless you use the dynamic vnode format to connect. 

A virtual node (vnode) is a name defined on the local instance that points 
to the connection data and authorization data necessary to access a 
particular remote instance. When a user on the local node wants to access 
a database on a remote instance or run an application that accesses a 
database on a remote instance, the user must specify the vnode name for 
the instance in addition to the name of the database. 

The vnode name can be the same as the node’s real address or node 
name. However, because the real names or addresses are often difficult to 
remember, and because there can be more than one instance on the node, 
other names are typically chosen for vnode names. 

 A connection data entry must be defined for each remote instance that is 
accessed. 

A connection data entry contains the information necessary for Ingres Net 
to locate and connect to an instance on a remote node. A connection data 
entry is typically associated with a particular, locally defined vnode, but 
can also be specified dynamically with the dynamic vnode format. It 
includes the name or address of the node on which the remote instance 
resides, the listen address of the remote instance, and an Ingres keyword 
for the network protocol used between the local and remote nodes. 

 Remote user authorizations must be defined for each remote instance that 
is accessed. 

A remote user authorization contains the login and password information 
necessary to gain access to a remote instance. It is typically associated 
with a particular, locally defined vnode, but can also be specified 
dynamically with the dynamic vnode format.  

Note:  It is not necessary for a particular user ID to be defined as an 
operating system account on an instance’s host machine to be a valid 
Ingres user on that instance. An account on a remote node can be 
authorized in exactly the same way as an account on the local node. 
Provided an Installation Password has been defined locally, the remote 
account can then access the instance directly without having to go through 
a local account. 

Instructions for defining an Installation Password for the local instance are 
provided later in this chapter. For the differences between these two types 
of passwords, see Remote User Authorizations (see page 28). 

 

46  Ingres 2006 R2 Connectivity Guide 
 



How User Access Is Established 
 

Requirements for Accessing Distributed Databases 

Just as a local DBMS Server accesses a local database, a Star server (part of 
the Ingres Star product) accesses a distributed database. When one or more 
of the databases that make up the distributed database reside on separate 
instances, Ingres Star uses Ingres Net. To use Ingres Star across Ingres Net, 
vnodes (with their corresponding connection data entries and remote user 
authorizations) must be defined on the Star server instance for each of the 
remote instances containing the databases that make up the distributed 
database. 

If the connection data entries and the remote user authorizations are defined 
as private, connection data entries and remote user authorizations must also 
be defined for the installation owner (or the system administrator). These 
definitions are used if a distributed transaction fails. The Star Server attempts 
to recover the transaction as the owner of the Ingres Star instance. 

 

Establishing Communications  47  
 



Access Tools for Defining Vnodes 
 

Access Tools for Defining Vnodes 
You define vnode names and their corresponding connection data entries and 
remote user authorizations using one of these tools: 

 Net Management Utility (netutil) 

 Network Utility (ingnet) 

 Visual DBA.  

Not all tools are available on all platforms.  

Note: The Network Utility (if supported on your platform) is the preferred 
means of creating vnodes in Ingres. 

To access the Network Utility

Windows and UNIX Environments that Support Ingres Visual Tools: 

Use one of the following ways: 

 Choose Start, Programs, Ingres, Network Utility. 

 From Ingres Visual Manager, choose File, Run, Ingres Network Utility or 
select the Network Utility toolbar button. 

 Enter ingnet on the command line.  

To access Visual DBA 

Use one of the following ways: 

 Choose Start, Programs, Ingres, Visual DBA, or right-click the Ingres 
installation icon in the Windows status bar and choose Visual DBA. 

 From Ingres Visual Manager, choose File, Run, Ingres Visual DBA or select 
the Visual DBA toolbar button. 

 Enter vdba on the command line. For the required command syntax, see 
the Command Reference Guide.  

To access netutil

Enter netutil on the command line. For the required command syntax, see the 
Command Reference Guide.  

VMS and UNIX Environments that Do Not Support Ingres Visual Tools: 
Enter netutil on the command line. For the required command syntax, see the 
Command Reference Guide. 

48  Ingres 2006 R2 Connectivity Guide 
 



Netutil (Net Management Utility) 
 

When Ingres and Ingres tools are installed as a cluster installation, it is 
necessary to run netutil from only one node to set up connection data entries 
and remote user authorizations for all of the nodes in the cluster. 

 

Netutil (Net Management Utility) 
The forms-based Net Management Utility, netutil, is used to define the 
connection and authorization data used by the Communications Server to 
access remote instances. 

System administrators (or any user with the appropriate Ingres privileges) can 
use netutil to perform the following tasks: 

 Add, change, or delete global remote user authorizations or connection 
data entries. 

These tasks require the GCA privilege NET_ADMIN. 

 Add, change, or delete any user’s private remote user authorizations or 
connection data entries using the -u command flag. 

These tasks require the NET_ADMIN privilege. For more information about 
the -u flag, which allows a user to perform operations on behalf of other 
users, see Command Line Flags in Netutil Non-interactive Mode (see 
page 72). 

 Stop the Communications Server. 

This task requires the GCA privilege SERVER_CONTROL. For instructions 
on stopping the Communications Server using the forms-based netutil, see 
the chapter "Maintenance Procedures." 

End users can use netutil to: 

 Add, change, or delete their private connection data entries. 

 Add, change, or delete their private remote user authorizations. 
 

Netutil Startup Screen 

The netutil user interface consists of four tables and a menu of operations that 
can be performed on entries in these tables. 

The four tables on the netutil startup screen are: 

 Virtual Node Name (vnode) table 

 Login/password data table 

 Connection data table 

 Other attribute data table. On the Startup screen, choose Attributes. 
 

Establishing Communications  49  
 



Netutil (Net Management Utility) 
 

Virtual Node Name Table in Netutil 

The Virtual Node Name table on the netutil startup screen determines what 
information is displayed in the Connection data and Login/password tables. 
These tables display information about the vnode highlighted in the Virtual 
Node Name table. 

 

Naming Rules for Vnodes 

Valid vnode names cannot include: 

 Double colons (::) 

 Slashes (/) 

 Commas (,) 

Vnode names are not case-sensitive, except on Star Server installations. 
 

50  Ingres 2006 R2 Connectivity Guide 
 



Netutil (Net Management Utility) 
 

Login and Password Data Table in Netutil 

The Login and password data table on the netutil startup screen is used for the 
following tasks: 

 To record a remote user authorization using a login account and password 
on the remote instance’s host machine 

 To record a remote user authorization using the Installation Password 
defined on the remote instance 

 To define an Installation Password for the local instance 

The information you enter into the fields in the Login/password data table 
depends on which of the above tasks you are performing. For more 
information, see Task-Specific Values for the Login/Password Data Fields (see 
page 52). 

The Login/password data columns are as follows: 

Type 

Is the type of definition, either Global or Private. For details, see Global 
and Private Definitions (see page 29). 

Scope 

Is a read-only message, supplied automatically, that briefly describes the 
scope of the connection. The message depends on the value that you enter 
in the Type field.  

If you enter Private, netutil displays the following message: 

User user_id only 

If you enter Global, netutil displays the following message: 

Any user on node_name

Login 

Specifies the name of the account to be used on the remote instance’s 
host machine. 

Note: If you are authorizing access to a remote instance using an 
Installation Password or defining an Installation Password for the local 
instance, enter an asterisk (*) into this field. 

After you fill in this field, netutil prompts you for a password. 
 

Establishing Communications  51  
 



Netutil (Net Management Utility) 
 

Task-Specific Values for the Login/Password Data Fields 

The following table shows the required values for the Type, Login, and 
Password fields according to the kind of record you are entering: 

 

  
Type  Login Password 

Remote User 
Authorization 

Using login 
account 
password 

Global or 
Private 

Name of 
remote login 
account  

Password of 
remote login 
account 

 Using 
Installation 
Password 

Global or 
Private 

  *  
(asterisk) 

Installation 
Password of 
remote 
instance 

Local 
Installation 
Password 

 Global   *  
(asterisk)  

Local 
Installation 
Password 

Note: When creating a local installation password, the vnode name used 
must be identical to the name that has been configured as LOCAL_VNODE on 
the Configure Name Server screen of the Configuration-By-Forms (cbf) utility 
and is generally the same as the local machine name. 

 

52  Ingres 2006 R2 Connectivity Guide 
 



Netutil (Net Management Utility) 
 

Connection Data Table in Netutil 

The Connection data table on the netutil startup screen specifies the network 
address of the remote node, the listen address of the remote instance’s 
Communications Server, and the network protocol that is used to make the 
connection. 

The Connection data table has the following columns: 

Type 

Specifies type of connection, either global or private.  

Net Address 

Identifies the network address or name of the remote node. 

Your network administrator specifies this address or name when the 
network software is installed. Normally, the node name as defined at the 
remote node is sufficient for the node address. 

The format of the net address depends on the type of network software 
used by the node. For protocol-specific information, see the appendixes in 
this guide. 

Protocol 

Specifies the Ingres keyword for the protocol used by the local node to 
connect to the remote node.  

Protocol availability varies by platform. For a list of protocols and their 
associated Ingres keywords, see Network Protocol Keywords (see 
page 54). 

Listen Address 

Identifies the unique identifier used by the remote Communications Server 
for interprocess communication. 

Just as the vnode name identifies an instance on the network, the listen 
address identifies a process (the Communications Server) in the remote 
instance. 

The format of a remote node listen address depends on the type of 
network software that the node is using. For protocol-specific information, 
see the appendixes in this guide. 

 

Establishing Communications  53  
 



Netutil (Net Management Utility) 
 

Network Protocol Keywords 

When entering connection data for a remote instance, you are prompted for 
the name of the network protocol that is used to make the connection. You 
must respond with one of the following keywords: 

wintcp 

TCP/IP Internet protocol for Windows (using WinSock 1.1 API).  

Note: This keyword is obsolete. It is provided for backward compatibility 
and will be removed in the future. Use tcp_ip instead. 

lanman 

Microsoft NetBIOS protocol for Windows (using WinSock 1.1 API) 

nvlspx 

Novell Netware SPX/IPX protocol for Windows (using WinSock 1.1 API) 

decnet 

DECnet protocol for VMS 

tcp_ip 

TCP/IP Internet protocol for UNIX and Windows (using WinSock 2.2 API) 

sna_lu0 

SNA LU0 protocol for MVS and VMS 

sna_lu62 

SNA LU62 protocol for RS/6000, HP/UX, Solaris, and MVS 

tcp_dec 

TCP/IP Services for OpenVMS and Multinet TCP/IP when running in TCP/IP 
Services emulation 

tcp_ibm 

IBM TCP/IP for MVS 

tcp_knet 

KNET TCP/IP for MVS 

tcp_sns 

TCP/IP protocol for SNS TCP/IP 

tcp_wol 

Wollongong TCI/IP Internet protocol for VMS and Multinet TCP/IP when 
running in Wollongong emulation 

spx 

Novell Netware SPX/IPX for UNIX and VMS 

54  Ingres 2006 R2 Connectivity Guide 
 



Netutil (Net Management Utility) 
 

For additional information on the protocols supported for your environment, 
see the Ingres Readme file for your operating system. 

 

Other Attribute Data Table in Netutil 

The Other attribute data table in netutil specifies additional connection, 
encryption and authentication attributes for a vnode. For a description of each 
attribute and its associated values, see Configure Vnode Attributes (see 
page 60). 

The Other attribute data columns are as follows: 

Type 

Is the type of connection, either Global or Private. 

Attr_Name 

Is the name of the attribute. 

Attr_Value 

Is the value of the attribute. 
 

Establishing Communications  55  
 



Netutil (Net Management Utility) 
 

Netutil Operations 

The following operations are available from the netutil startup screen:  

Create 

Creates a new record in the highlighted table. 

In the vnode table, this operation allows you to create a new vnode name 
and define its user authorization and connection data. 

In the Connection data table or Login/password data table, this operation 
allows you to create an additional entry for an existing vnode. 

Destroy 

Deletes the highlighted record. 

Note: Deleting a record in the Virtual Node Name (vnode) table 
automatically deletes the Login/password and Connection data table 
records associated with that vnode. 

Attributes/Login 

Toggles the display to show attribute or login information for the 
highlighted node. The initial display shows login information, and the 
Attributes menu option appears on the menu. Choosing Attributes displays 
attribute information, and the Attributes menu option is replaced by the 
Login menu option. Choosing Login brings back the original display. 

Edit 

Modifies the highlighted record. 

Control 

Stops or quiesces the local Communications Server. This menu item takes 
you to the Network Server Control screen. 

Test 

Tests a vnode after all of the user authorization and connection data has 
been defined. 

Netutil tests to see if a connection can be made to the remote instance 
using any of the connection data entries and remote user authorizations 
defined for the vnode. Note that individual connection data entries and 
remote user authorizations cannot be tested. 

Help  

Displays help screens. 

End 

Exits netutil. 
 

56  Ingres 2006 R2 Connectivity Guide 
 



Netutil (Net Management Utility) 
 

Prerequisites to Establish and Test a Remote Connection 

To establish and test a remote connection, the following information is 
required: 

 The network address or name of the node on which the remote instance 
resides. 

 The listen address of the remote instance’s Communications Server. 

 The keyword for the network protocol that is used to make the connection. 
For more information, see Network Protocol Keywords (see page 54). 

 The name of the login account that is used to access the remote instance. 

(This information is not applicable when using an Installation Password to 
authorize access.) 

 The password of the remote login account or the remote instance’s 
Installation Password. 

 

Establishing Communications  57  
 



Netutil (Net Management Utility) 
 

Establish and Test a Remote Connection Using Netutil 

You use netutil to establish and maintain access to remote instances. Defining 
a virtual node name is the first step in the process of establishing a 
connection. 

To define a virtual node (vnode) and use it to test a connection to a 
remote instance

1. Enter the following command at the operating system prompt: 

netutil 

The netutil startup screen appears. 

2. Make sure that the cursor is in the Virtual Node Name table; then choose 
Create from the menu. 

A pop-up window appears, displaying the following prompt: 

Enter new virtual node name. 

3. Enter a virtual node name of your choosing and select OK from the menu. 

A pop-up window appears, displaying the following prompt: 

Choose type of login to be created 

Global—Any user on [local node] 

Private—User [user name] only 

4. Use the arrow keys to highlight Global or Private; then choose Select from 
the menu. 

The Enter new login/password pop-up window appears. It displays 
prompts for the login of the account that is used on the remote node, the 
password of that account, and verification of the password. 

 

58  Ingres 2006 R2 Connectivity Guide 
 



Netutil (Net Management Utility) 
 

5. Enter the login and the password, then re-enter the password as 
prompted. (Notice that for security purposes neither the password nor the 
verification appears on screen.) When you have entered the login and 
password information, choose Save from the menu. 

Note: If you are using an Installation Password to authorize access, enter 
an asterisk (*) in the Login field, and then enter the remote instance’s 
Installation Password in the Password field. 

The Enter new connection pop-up window appears. It displays prompts for 
the connection type (private or global), the network address, the network 
protocol to be used, and the Listen address of the remote instance. For 
your convenience, netutil supplies default values for the first three fields. 
To enter a new value, simply type over the default value. 

 

6. Enter the connection data, and then choose Save from the menu. 

Netutil returns to the startup screen. The data you entered in this and the 
previous steps is displayed in the Vnode, Login/password data, and 
Connection data tables. 

7. Choose Test from the menu. 

Netutil attempts to establish a connection to the remote instance using 
authorization and connection data you have entered.  

A message is displayed in a pop-up window indicating whether the test is 
successful.  

If the connection is not successful, the error message indicates the nature 
of the error or where to look for further information.  

8. Press Return. 

You are returned to the startup screen. 
 

Establishing Communications  59  
 



Netutil (Net Management Utility) 
 

Configure Vnode Attributes 

In addition to defining login and connection data, you can use netutil to 
configure vnode attributes. Attributes define additional connection, encryption, 
and authentication information for the vnode.  

To configure one or more attributes for a vnode

1. From the netutil startup screen, select the Attributes menu option.  

Attribute information for the first vnode in the Virtual Node Name table is 
displayed.  

2. Use the arrow keys to select the vnode for which you want to configure an 
attribute. Tab to the Other attribute data for vnode table and select the 
Create menu option. 

The Enter new attribute pop-up window appears. 

 

60  Ingres 2006 R2 Connectivity Guide 
 



Netutil (Net Management Utility) 
 

3. Enter an attribute name and value, as follows: 

connection_type 

Indicates the connection type. The only valid value is direct, which 
indicates that a direct connection with the remote instance must be 
established without using Net. This attribute improves performance 
because data goes directly from the application process on the client 
machine to the Ingres DBMS process on the server machine, thus 
bypassing Name Server processing.  

For direct access to occur, the following conditions must be met: 

 The client and server machines must be the same platform type 
(for example, both Windows, or both Solaris) and the environment 
variable II_CHARSET must be identical on both the client and 
server machines. 

 On Windows, the client and server machines must be logged into 
the same Windows network domain.  

 Ingres II 2.5 or higher must be installed on both the client and 
server machines. 

 On any platform which uses the IPC protocol for local and network 
connections, the environment variable, II_GC_REMOTE must be 
set (for the DBMS Server instance) to ON or ENABLE to allow 
direct connections. For important information on network security 
and II_GC_REMOTE, see the System Administrator Guide. 

encryption_mode 

Determines the encryption mode for the connection. If set, this value 
overrides the Communications Server’s ob_encrypt_mode parameter 
value configured using Configuration Manager or the Configuration-By-
Forms utility. The local and remote Communications Servers must be 
able to negotiate a common mechanism to perform the encryption. 
Valid values are: 

 off – No encryption. The connection fails if the remote 
Communications Server has an encryption mode of required. 

 optional – Encryption occurs if the remote Communications Server 
has an encryption mode of on or required. 

 on – Encryption occurs if the remote Communications Server has 
an encryption mode other than off. 

 required – Encryption occurs if the remote Communications Server 
has an encryption mode other than off. If off, the connection fails. 

 

Establishing Communications  61  
 



Netutil (Net Management Utility) 
 

encryption_mechanism 

Determines the mechanism to be used to encrypt the remote 
connection. If set, this value overrides the Communications Server’s 
ob_encrypt_mech parameter value configured using Configuration 
Manager or the Configuration-By-Forms utility. Valid values are: 

 none – Disables encryption 

 * – Allows all encryption mechanisms to be considered during 
Communications Server negotiations 

 mechanism_name – Indicates a specific mechanism to be 
considered during Communications Server negotiations 

authentication_mechanism 

Specifies the mechanism to be used for remote authentication in a 
distributed security environment. This setting replaces the need for a 
user ID and password. If set, this value overrides the Communications 
Server’s remote_mechanism parameter value configured using 
Configuration Manager or the Configuration-By-Forms utility. The only 
valid value is kerberos. 

4. Select the Save menu option. 

Netutil returns to the startup screen. The attribute you configured is now 
displayed in the Other attribute data for vnode table. 

 

62  Ingres 2006 R2 Connectivity Guide 
 



Netutil (Net Management Utility) 
 

Create an Additional Connection Data Entry 

If a remote instance has more than one Communications Server or can be 
accessed by more than one network protocol, include that information in your 
vnode definition by adding extra entries to the Connection Data table. This 
allows you to distribute the load of communications processing and increase 
fault tolerance. 

Note: When more than one Communications Server listen address is defined 
for a given vnode, Ingres Net automatically tries each server, in random order, 
until it finds one that is available. Similarly, when a connection fails over one 
network protocol, Ingres Net automatically attempts the connection over any 
other protocol that has been defined. 

End users can create private connection data for an existing vnode by adding 
an entry to the Connection data table. For the user who creates it, a private 
connection data entry overrides a global connection data entry defined to the 
same vnode. In other words, Ingres Net uses the private connection data 
entry whenever the user who created the entry uses the vnode. 

Know the following information before beginning this procedure: 

 The network address of the node on which the remote instance resides 

 The listen address of the remote instance’s Communications Server. (For 
the correct listen address format for your network protocol, see the 
appropriate appendix or check the Configure Net Server Protocols screen 
in the Configuration-By-Forms utility on the remote instance.) 

 The keyword for the network protocol that is used to make the connection. 
For more information, see Network Protocol Keywords (see page 54). 

To define an additional connection data entry

1. Select the desired vnode in the Virtual Node Name table. 

The connection data for the highlighted vnode appears in the Connection 
Data table. 

2. Move the cursor to the Connection Data table, and then choose Create 
from the menu. 

The Enter new connection pop-up window appears displaying prompts for 
the connection type (private or global), the network address, the network 
protocol to be used, and the Listen address of the remote instance. For 
your convenience, netutil supplies default values for the first three fields; 
to enter a new value, simply type over the default value. 

3. Enter the connection data; then choose Save from the menu. 

Netutil returns to the startup screen. The data you entered is now 
displayed in the Connection Data table. 

 

Establishing Communications  63  
 



Netutil (Net Management Utility) 
 

Create an Additional Remote User Authorization 

End users can create a private remote user authorization for an existing vnode 
by adding an entry to the Login/password data table. 

For the user who sets it up, a private authorization overrides a global 
authorization defined to the same vnode. In other words, Ingres Net uses the 
private authorization whenever the user who created it uses the vnode. 

Know the following information before beginning this procedure: 

 The name of the remote account that is used to access the remote 
instance 

(This information is not applicable when using an Installation Password to 
authorize access.) 

 The password of the remote login account or the remote instance’s 
Installation Password 

To define and test a new remote user authorization

1. Select the desired vnode in the Virtual Node Name table. 

The remote user authorization for the highlighted vnode appears in the 
“Login/password data” table. 

2. Move the cursor to the “Login/password data” table, and then choose 
Create from the menu. 

The Enter New Login/Password pop-up window appears. It displays 
prompts for the login of the account that is used on the remote node, the 
password of that account, and verification of the password. 

3. Enter the login and the password, and then re-enter the password as 
prompted. (Notice that for security purposes neither the password nor the 
verification appears on screen.)  

Note: If you are using an Installation Password to authorize access, enter 
an asterisk (*) in the Login field, and then enter the remote instance’s 
Installation Password in the Password field. 

Choose Save from the menu. 

Netutil returns to the startup screen. The data you entered is now 
displayed in the Login/password data table. 

 

Delete an Entry 

To delete a virtual node entry or one of its connection data entries, remote 
user authorizations or attributes, place the cursor on the desired record and 
choose Destroy from the menu. 

 

64  Ingres 2006 R2 Connectivity Guide 
 



Netutil (Net Management Utility) 
 

Delete All Vnode Information 

To delete all information for a specific vnode

1. Highlight the desired entry in the Virtual Node Name table and choose 
Destroy from the menu. 

A pop-up window appears with the following prompt: 

Really destroy all data for vnode [vnode name]? 
No—Do not destroy all data for vnode 
Yes—Destroy all data for vnode 

2. Use the arrow keys to highlight No or Yes (No is the default); then choose 
Select from the menu. 

Netutil removes the vnode from the Virtual Node Name table and all 
associated information from the Login/password data and Connection data 
tables. 

 

Delete a Connection Entry for a vnode 

To delete one of the connection data entries associated with a 
particular vnode

1. Highlight the desired entry in the Connection Data table and choose 
Destroy from the menu. 

A pop-up window appears with the following prompt: 

Really destroy connection entry? 
No—Do not destroy connection entry 
Yes—Destroy connection entry 

2. Use the arrow keys to highlight No or Yes (No is the default), and then 
choose Select from the menu. 

Netutil removes the entry from the Connection Data table. 
 

Delete a Remote User Authorization for a vnode 

To delete one of the remote user authorizations associated with a 
particular vnode

1. Highlight the desired entry in the Login/password data table and choose 
Destroy from the menu. 

A pop-up window appears with the following prompt: 

Really destroy [private/global] login/password entry ‘[Login name]’? 
No—Do not destroy [private/global] login/password entry 
Yes—Destroy [private/global] login/password entry 

2. Use the arrow keys to highlight No or Yes (No is the default); then choose 
Select from the menu. 

Netutil removes the entry from the Login/password data table. 
 

Establishing Communications  65  
 



Netutil (Net Management Utility) 
 

Delete an Attribute Associated with a vnode 

To delete an attribute associated with a particular vnode

1. From the netutil startup screen, select the Attributes menu option. 

The "Other attribute data" table is displayed. 

2. Select the desired vnode from the Virtual Node Name table. Tab to the 
Other attribute data for vnode table, highlight the attribute that you want 
to delete, and choose Destroy from the menu. 

A pop-up window appears with the following prompt: 

Really destroy attribute entry? 
No—Do not destroy attribute entry 
Yes—Destroy attribute entry 

3. Use the arrow keys to highlight No or Yes (No is the default); then choose 
Select from the menu. 

Netutil removes the attribute from the Other attribute data for vnode 
table. 

 

Change an Entry 

To modify a virtual node entry or one of its Connection data entries, remote 
user authorizations, or attributes, place the cursor on the desired record and 
select Edit from the menu. 

 

66  Ingres 2006 R2 Connectivity Guide 
 



Netutil (Net Management Utility) 
 

Modify a Vnode Name 

To modify a vnode name

1. Select the desired entry in the Virtual Node Name (vnode) table ,and then 
choose Edit from the menu. 

A pop-up window appears, displaying the following prompt: 

Enter the new name for [‘vnode name’] 
New name: 

2. Enter the new virtual node name and choose OK from the menu. 

The Enter Global/Private Password pop-up window appears and prompts 
you to re-enter the remote account password or Installation Password 
associated with this vnode. For security reasons, any time a vnode name is 
modified, you must re-enter the associated passwords. 

3. Enter the password, re-enter the password as prompted, and then choose 
Save from the menu. 

If there is a second remote user authorization associated with this vnode, 
a second pop-up window appears. Repeat this step with the password of 
the second authorization. 

After you have saved all password information, netutil returns to the 
startup screen. The edited vnode name is displayed in the Virtual Node 
Name (vnode) table. 

 

Edit a Remote User Authorization 

To edit a remote user authorization

1. Select the desired entry in the Login/password data table, and choose Edit 
from the menu.  

The Edit login and password pop-up window appears and prompts you to 
enter new login and password data. 

 

Establishing Communications  67  
 



Netutil (Net Management Utility) 
 

2. Enter the login and password for the remote account; then re-enter the 
password as prompted.  

Note: If you are using an Installation Password to authorize access, enter 
an asterisk (*) in the Login field, and then enter the remote instance’s 
Installation Password in the Password field. 

3. Choose Save from the menu. 

Netutil returns to the startup screen. The edited remote user authorization 
is displayed in the Login/password data table. 

 

Edit a Connection Data Entry 

To edit a connection data entry

1. Select the desired entry in the Connection Data table, and choose Edit 
from the menu.  

The Edit connection entry pop-up window appears, which displays the 
connection type, network address, protocol, and listen address for the 
selected entry. 

 

2. Tab to the fields to be changed and enter the new values. Choose Save 
from the menu. 

Netutil returns to the startup screen. The edited connection data entry is 
displayed in the Connection Data table. 

 

68  Ingres 2006 R2 Connectivity Guide 
 



Netutil (Net Management Utility) 
 

Edit Vnode Attribute 

To edit attribute data for a particular vnode

1. From the netutil startup screen, select the Attribute menu option from the 
netutil startup screen. 

The "Network connection and other attribute information screen" appears. 

2. Select the desired vnode from the vnode list. Tab to the Other attribute 
data for vnode table and select the attribute that you want to edit. Choose 
Edit from the menu.  

The Edit attribute entry pop-up window appears. 

 

3. Edit the attribute by typing over the displayed data with the desired 
changes. For a list of valid attribute names and values, see Configure 
Vnode Attributes (see page 60). Choose Save from the menu. 

Netutil returns to the startup screen. The attribute you edited is now 
displayed in the Other attribute data for vnode table. 

 

Establishing Communications  69  
 



Netutil (Net Management Utility) 
 

Define an Installation Password for the Local Instance 

To define an Installation Password for the local instance

1. Enter the following command at the operating system prompt: 
netutil 

The netutil startup screen appears. 

2. Make sure that the cursor is in the Virtual Node Name table, and then 
choose Create from the menu. 

A pop-up window appears, displaying the following prompt: 

Enter new virtual node name: 

3. Enter the virtual node name for the local instance and choose OK from the 
menu. 

Note: The virtual node name must be identical to the name that has been 
configured as LOCAL_VNODE on the Configure Name Server screen of the 
Configuration-By-Forms (cbf) utility and is typically the same as the local 
machine name. 

A pop-up window appears, displaying the following prompt: 

Choose type of login to be created 
Global—Any user on [local node] 
Private—User [user name] only 

4. Highlight Global by using the arrow keys, and then choose Select from the 
menu. 

The Enter new login/password pop-up window appears. It displays 
prompts for the global login, the password, and verification of the 
password. 

5. Enter an asterisk in the Global Login field, enter an Installation Password 
in the Password field, and finally re-enter the password as prompted. 
(Notice that for security purposes neither the password nor the verification 
appears on screen.) When you have entered this information, choose Save 
from the menu. 

The Enter new connection pop-up window appears. It displays prompts for 
the connection type (private or global), the network address, the network 
protocol to be used, and the Listen address of the instance. 

6. Choose Cancel from the menu. (It is not necessary to enter connection 
data for the local instance.) 

Netutil returns to the startup screen. The data you entered in the previous 
steps is displayed in the vnode and Login/password data tables. 

 

70  Ingres 2006 R2 Connectivity Guide 
 



Netutil Non-Interactive Mode 
 

Netutil Non-Interactive Mode 
Netutil supports a non-interactive mode of operation controlled by command 
line flags and an input control file. You can use this mode if you want to write 
your own system administration utility programs or authorize large numbers of 
users using a batch file.  

The following functions are available through this interface: 

Create 

Creates a new connection data entry or remote user authorization. 

Destroy 

Destroys a connection data entry or remote user authorization. 

Show 

Displays information to the terminal. This function does not correspond to 
a menu item in the forms-based interface. 

Stop 

Stops all Communications Servers. 

For example, this command stops a specific Communications Server: 

 stop 2937 

Quiesce 

Stops all Communications Servers after the sessions currently in progress 
on those servers have terminated. 

For example, this command quiesces a specific Communications Server: 

quiesce 2116 

Note: The Edit and Test functions found in the forms-based netutil interface 
are not supported in non-interactive mode. 

 

Establishing Communications  71  
 



Netutil Non-Interactive Mode 
 

Command Line Flags in Netutil Non-interactive Mode 

The following command line flags are supported in netutil’s non-interactive 
mode: 

-u user

Impersonate the specified user for the purpose of managing private 
authorization and connection entries. Only a user with the NET_ADMIN 
privilege (generally a system administrator) can impersonate another user. 

-file filename

When this flag is used, netutil processes commands specified in the 
indicated input control file. 

The format of the input control file is described in the following section. 

-file-

If the input file is specified as "-" (a single dash character), input is taken 
from the standard input channel. This allows the user to enter commands 
directly from the keyboard or to run netutil as part of a UNIX pipeline. To 
exit, press Ctrl+Z. 

-vnode vnode

Connect to the Name server on the remote instance specified by the vnode 
name.  

The vnode name must be defined on the local host's Name server; that is, 
connection and authorization information must exist locally for that vnode 
name. This information can be defined by invoking netutil on the local 
Name server. 

 

Input Control File 

The input control file is an ASCII file that stores instructions about operations 
to be performed on the Name Server database. Each line of the file represents 
either a create, destroy, or show operation. These lines are called “input lines” 
in the remainder of this section. 

The following conventions are observed: 

 Blank lines are ignored in the control file. 

 Case is insignificant except where significance is imposed by the usage of 
the data. For example, the login name on a UNIX system has significant 
case. 

 The character “#” indicates a comment; all text following a “#” character 
on any line is ignored. 

 Input lines are divided into fields, which are separated by a blank space. 
For example, the following input line contains four fields: 

show private login paulj 
 

72  Ingres 2006 R2 Connectivity Guide 
 



Netutil Non-Interactive Mode 
 

Invariant Fields 

The first four fields of an input line describe the action to be performed and 
the vnode with which the action is associated. These four fields appear in the 
order given below in every input line (except stop and quiesce server 
commands). 

The following table defines these fields and their potential values: 

 

Field Parameter Value  Description 

1 Function  Create, 
Destroy, or 
Show 

The task that is performed. 

2 Type  Global or 
Private 

The registration type of the object.  

A global object is available to all users on 
the local node. A private object is 
available to a single user. 

3  Object Login or 
Connection 

 

Attribute 

The object to be created, destroyed, or 
shown.  

“Connection” refers to a connection data 
entry. 

“Login” refers to a remote user 
authorization. 

“Attribute” refers to a vnode attribute 
entry. 

4 Virtual 
Node Name 

Vnode 
name 

The virtual node name.  

Each line in the input control file must 
contain a vnode identifier. 

Note: Values in any of the first three fields (Function, Type, and Object) can 
be abbreviated to a unique left substring. In practice, this means that a single-
letter abbreviation is sufficient for any of these fields.  

Values in the Virtual Node Name field cannot be abbreviated. 

In addition to the four fields discussed above, other fields are required 
depending on the task to be accomplished by the input line. For example, an 
input line creating a remote user authorization requires an additional two 
fields: a login field and a password field. An input line creating or destroying a 
connection data entry requires an additional three fields: a network address 
field, a protocol field, and a listen address field. 

For detailed information about additional fields, see the examples that follow. 
 

Establishing Communications  73  
 



Netutil Non-Interactive Mode 
 

Wildcards 

On input lines that specify either the Destroy or Show function, the asterisk 
character (*) can be entered as a wildcard in any field other than the Function, 
Type, and Object fields. 

The asterisk character (*) indicates that the field is not to be used in selecting 
the data records to which the function is applied. Therefore, it is possible to 
destroy or display a number of records with a single input line. 

Note: Wildcards cannot be used with the Create function. 
 

Create Function—Create a Remote User Authorization 

In netutil non-interactive mode, you can use the create function to create a 
remote user authorization.  

This function has the following format when used to create a remote user 
authorization: 

create type login vnode login password

type

Specifies the type of entry. Valid values are:  

global 

Indicates that the object is available to all users on the local node.  

private 

Indicates that the object is available to a single user. 

vnode

Identifies the virtual node name associated with this authorization. 

login

Identifies the name of the account to be used on the remote instance's 
host machine. 

If you are authorizing access to the remote instance using an Installation 
Password, an asterisk (*) must be entered into this field. 

password

Identifies the password of the remote account or the remote instance's 
Installation Password, depending on which method of authorization you 
are using.  

 

74  Ingres 2006 R2 Connectivity Guide 
 



Netutil Non-Interactive Mode 
 

Examples: Create a Remote User Authorization

This command creates a private authorization for vnode “payroll” for user 
Jane: 

C P L Payroll jane jpassword 

This command creates a global authorization for vnode “accounting” using an 
Installation Password: 

cr gl login accounting * acctpassword 

Note: Any previously existing authorization of the specified type is replaced by 
the execution of this line. 

Note: Private authorizations are created for the currently logged-in user or for 
the user identified by the -u flag. Only a user with the GCA privilege 
NET_ADMIN can create a global authorization. 

 

Establishing Communications  75  
 



Netutil Non-Interactive Mode 
 

Destroy Function—Destroy a Remote User Authorization 

In netutil non-interactive mode, you can use the destroy function to destroy a 
remote user authorization.  

This function has the following syntax when destroying a remote user 
authorization: 

destroy type login vnode

type

Specifies the type of entry. Valid values are:  

global 

Indicates that the object is available to all users on the local node.  

private 

Indicates that the object is available to a single user. 

vnode

Identifies the virtual node name associated with this authorization. 

Examples: Destroy a Remote User Authorization

This command destroys a private login on vnode “payroll.” The entry to be 
destroyed is uniquely identified by its type and the vnode name. No additional 
fields are necessary. 

DE PR L payroll # Current user now uses global login 

This command destroys a private login on all vnodes where it occurs. Using a 
wildcard in the vnode field lets you destroy all instances of a particular login 
with a single input line: 

DE PR L * 

Note: Private authorizations are destroyed for the currently logged-in user or 
for the user identified by the -u flag. Only a user with the GCA privilege 
NET_ADMIN can destroy a global authorization. 

 

76  Ingres 2006 R2 Connectivity Guide 
 



Netutil Non-Interactive Mode 
 

Show Function—Display Remote User Authorizations 

In netutil non-interactive mode, you can use the show function to display 
remote user authorizations. The login information for the specified vnodes is 
displayed on the terminal, or written to standard output (Windows and UNIX) 
or SYS$OUTPUT (VMS). The password is not displayed. 

The information is displayed in a format similar to that of control file input 
lines for ease of use in programs that edit and re-use the information. 

The show function has following format for displaying remote user 
authorizations: 

show type login vnode

type

Specifies the type of entry. Valid values are:  

global 

Indicates that the object is available to all users on the local node.  

private 

Indicates that the object is available to a single user. 

vnode

Identifies the virtual node name associated with this authorization. An 
asterisk (*) can be used as a wildcard in the vnode, field.  

 

Example: Display Remote User Authorizations

The following command displays the global login of vnode “accounting:” 

S GL login accounting 

The following line is displayed: 

global login accounting ingres 
 

Establishing Communications  77  
 



Netutil Non-Interactive Mode 
 

Create Function—Define an Installation Password for the Local Instance 

In netutil non-interactive mode, you can use the create function to create an 
Installation Password for the local instance.  

This function has the following format: 

create global login local_vnode * password

local_vnode

Identifies the name that has been configured as LOCAL_VNODE on this 
instance. This name can be found on the Configure Name Server screen of 
the CBF utility. 

password

Defines the Installation Password you have chosen for this instance. 

Example: Define an Installation Password

This command defines an Installation Password for the local instance, which 
has a local_vnode name of “payroll:” 

create gl login payroll * payroll_password 
 

78  Ingres 2006 R2 Connectivity Guide 
 



Netutil Non-Interactive Mode 
 

Create Function—Create a Connection Data Entry 

In netutil non-interactive mode, you can use the create function to create a 
connection data entry. 

This function has the following format: 

create type connection vnode network_address protocol listen_address

type

Specifies the type of entry. Valid values are:  

global 

Indicates that the object is available to all users on the local node.  

private 

Indicates that the object is available to a single user. 

vnode

Identifies the virtual node name associated with this connection entry.   

network_address

Identifies the address or name of the remote node. Your network 
administrator specifies this address or name when the network software is 
installed. Normally, the node name as defined at the remote node is 
sufficient for this field. 

The format of a net address depends on the type of network software that 
the node is using. 

protocol

Specifies the keyword for the protocol used to connect to the remote 
instance. For a list of protocols and their associated keywords, see 
Network Protocol Keywords (see page 54). 

listen_address

Is the unique identifier used by the remote Communications Server for 
interprocess communication. The format of a listen address depends on 
the network protocol. 

Example: Create a Connection Data Entry

The following command creates a global connection data entry on vnode 
“payroll,” where: 

Network address = payroll  

Protocol = TCP/IP 

Listen address = fe0 

C G C payroll payroll tcp_ip fe0 # payroll comsvr 1 

Establishing Communications  79  
 



Netutil Non-Interactive Mode 
 

Note: The virtual node name and the network address are different objects, 
although it is common for them to have the same value. 

If a connection entry already exists that matches the specified one in all 
respects, the operation has no effect and no error is reported. 

Note: Private connection data entries are created for the currently logged-in 
user or for the user identified by the -u flag. Only a user with the GCA 
privilege NET_ADMIN can create a global connection data entry. 

 

Destroy Function—Destroy a Connection Data Entry 

In netutil non-interactive mode, you can use the destroy function to destroy a 
connection data entry. To obtain the network address, protocol, and listen 
address of the connection data entry you want to destroy, use the show 
command. 

This function has the following format: 

destroy type connection vnode network_address protocol listen_address

type

Specifies the type of entry. Valid values are:  

global 

Indicates that the object is available to all users on the local node.  

private 

Indicates that the object is available to a single user. 

vnode

Identifies the virtual node name associated with this input line. An asterisk 
(*) can be used as a wildcard to select a range of records.  

network_address

Identifies the address or name of the remote node. An asterisk (*) can be 
used as a wildcard to select a range of records. 

protocol

Specifies the keyword for the protocol used to connect to the remote 
instance. For a list of protocols and their associated keywords, see 
Network Protocol Keywords (see page 54). An asterisk (*) can be used as 
a wildcard to select a range of records. 

listen_address

Is the unique identifier used by the remote Communications Server for 
interprocess communication. An asterisk (*) can be used as a wildcard to 
select a range of records.  

 

80  Ingres 2006 R2 Connectivity Guide 
 



Netutil Non-Interactive Mode 
 

Examples: Destroy a Connection Data Entry

The following command destroys a private connection data entry on vnode 
“payroll”, where: 

Network address = payroll  
Protocol = TCP/IP 
Listen address = fe2 

D p c payroll payroll tcp_ip fe2 # No comm server on fe2 

The following command destroys all global connection data entries for vnode 
“accounting” that include the TCP/IP protocol: 

d gl c accounting * tcp_ip * 

Note: Private connection data entries are destroyed for the currently logged-in 
user or for the user identified by the -u flag. Only a user with the GCA 
privilege NET_ADMIN can destroy a global connection data entry. 

 

Establishing Communications  81  
 



Netutil Non-Interactive Mode 
 

Show Function—Display Connection Data Entries 

In netutil non-interactive mode, you can use the show function to display 
connection data entries. The connection information for the specified vnode is 
displayed on the terminal, or written to standard output (Windows and UNIX) 
or SYS$OUTPUT (VMS). The information is displayed in a format similar to the 
format of control file input lines, for ease of use in programs that edit and re-
use the information. The password is not displayed. 

This function has the following format: 

show type connection vnode network_address protocol listen_address

type

Specifies the type of entry. Valid values are:  

global 

Indicates that the object is available to all users on the local node.  

private 

Indicates that the object is available to a single user. 

vnode

Identifies the virtual node name associated with this input line. An asterisk 
(*) can be used as a wildcard to select a range of records.  

network_address

Identifies the address or name of the remote node. An asterisk (*) can be 
used as a wildcard to select a range of records. 

protocol

Specifies the keyword for the protocol used to connect to the remote 
instance. For a list of protocols and their associated keywords, see 
Network Protocol Keywords (see page 54). An asterisk (*) can be used as 
a wildcard to select a range of records. 

listen_address

Is the unique identifier used by the remote Communications Server for 
interprocess communication. An asterisk (*) can be used as a wildcard to 
select a range of records.  

 

82  Ingres 2006 R2 Connectivity Guide 
 



Netutil Non-Interactive Mode 
 

Example: Display Connection Data Entries

The following displays global connection data entries on vnode “payroll,” 
where: 

Network address = payroll  

Protocol = * (This field is not to be used in selecting records.)  

Listen address = * (This field is not to be used in selecting records.) 

S GL conn payroll payroll * * 

The following line is displayed: 

global connection payroll payroll tcp_ip fe2 
 

Establishing Communications  83  
 



Netutil Non-Interactive Mode 
 

Stop and Quiesce Commands—Stop or Quiesce One or More Communications 
Servers 

In netutil non-interactive mode, to stop all Communications Servers on the 
instance, enter the following commands at the system prompt: 

netutil -file- 
stop 

To stop a single Communications Server, enter the following commands at the 
system prompt: 

netutil -file- 
stop server_id 

server_id

Is a unique string that identifies a particular Communications Server on 
the instance. To find the server_id, use the iinamu utility. 

Examples: Quiesce One or More Communications Servers

The following commands entered at the system prompt quiesce all 
Communications Servers on the instance (that is, stops the Communications 
Servers after all current sessions have terminated):  

netutil -file- 
quiesce 

The following commands entered at the system prompt quiesce 
Communications Server 2937 (that is, stop the server after all current sessions 
have terminated): 

netutil -file- 
quiesce 2937 

Note: Only a user with the GCA privilege SERVER_CONTROL can stop a 
Communications Server. 

 

84  Ingres 2006 R2 Connectivity Guide 
 



Network Utility and Visual DBA 
 

Network Utility and Visual DBA 
The GUI-based tools Network Utility (ingnet) and Visual DBA can both be used 
to define vnodes containing the connection and authorization data used by the 
Communications Server to access remote instances.  

Because Network Utility is a tool dedicated to defining and managing vnodes, 
it is preferred over netutil or Visual DBA for performing these tasks in Ingres. 

System administrators (or any user with the appropriate Ingres privileges) can 
use these visual tools to perform the following tasks: 

 Add, change, or delete global remote user authorizations or connection 
data entries. 

 Add, change, or delete any user’s private remote user authorizations or 
connection data entries. 

 Define an Installation Password for the local instance 

End users can use these visual tools to: 

 Add, change, or delete their private connection data entries. 

 Add, change, or delete their private remote user authorizations. 

In Network Utility and Visual DBA, vnodes are defined using vnode objects. A 
vnode object specifies a virtual node name, and login and connection 
information. 

Using the Nodes branch in the Virtual Nodes toolbar/window, you can create 
and alter vnodes, view vnode objects, and drop vnode objects. 

Detailed steps for performing these procedures can be found in the Procedures 
section of online help for Network Utility and Visual DBA.  

 

Virtual Nodes Toolbar 

The Virtual Nodes toolbar in both Network Utility and Visual DBA provides the 
same functionality. Use the toolbar to create, alter, drop, and disconnect 
vnodes. The toolbar also provides features that allow you to connect to 
database servers and open various types of database administration utility 
windows. 

For example, connect to the Database Object Manager and open a DOM 
Scratchpad. The toolbar also allows you to use an SQL Scratchpad, monitor 
your system performance, and display a list of Dbevents. 

 

Establishing Communications  85  
 



Network Utility and Visual DBA 
 

Types of Vnodes 

Virtual nodes are classified as simple or advanced. A simple vnode is one in 
which there is only one set of login and connection parameters associated with 
it. An advanced vnode is one in which there is more than one connection data 
definition and/or up to two login data definitions. For additional information, 
see Advanced Vnode Parameters (see page 86). 

 

Advanced Vnode Parameters 

Maintain up to two login data definitions for each vnode. If the first definition 
has been defined as private, the other login must be global (and vice versa). A 
global entry is available to all users on the local instance. A private entry is 
available only to the user who creates it.  

If one of the login data definitions is private and the other is global, the vnode 
is considered to be an advanced vnode. A vnode is also considered to be an 
advanced vnode if it has more than one connection data definition and/or has 
one or more vnode attribute definitions. 

Use the Advanced Node Parameters branch in Network Utility and Visual DBA 
to: 

 Add, alter or drop connection data 

 Add private and global logins 

 Add, alter or drop vnode attributes 

For additional information on performing these tasks, see the following 
sections. 

 

86  Ingres 2006 R2 Connectivity Guide 
 



Network Utility and Visual DBA 
 

Additional Connection Data Entry Creation 

If a remote instance has more than one Communications Server or can be 
accessed by more than one network protocol, its information can be added in 
the vnode definition. This allows you to distribute the load of communications 
processing and increase fault tolerance. 

Note: When more than one Communications Server listen address is defined 
for a given vnode, each server is tried in random order until an available one is 
found. Similarly, when a connection fails over one network protocol, an 
attempt to make a connection with any other protocol that has been defined is 
tried automatically. 

End users can create private connection data for an existing vnode by adding 
an entry to the Connection data table. For the user who creates it, a private 
connection data entry overrides a global connection data entry defined for the 
same vnode. In other words, Ingres Net uses the private connection data 
entry whenever the user who created the entry uses the vnode. 

Note: Have the following information on hand before beginning the procedures 
mentioned below: the network address of the node on which the remote 
instance resides, the listen address of the remote instance’s Communications 
Server, and the keyword for the network protocol that is used to make the 
connection. 

The detailed steps for performing these procedures can be found in the 
Procedures section of online help for Network Utility and Visual DBA. See the 
following topics: 

 Maintaining Vnode Connection Information 

 Adding a Connection Data Definition 

 Altering a Connection Data Definition 

 Dropping a Connection Data Definition 
 

Establishing Communications  87  
 



Network Utility and Visual DBA 
 

Additional Remote User Authorization Creation 

End users can create (as well as alter and drop) a private remote user 
authorization for an existing vnode. For the user who sets it up, a private 
authorization overrides a global authorization defined to the same vnode. In 
other words, Ingres Net uses the private authorization whenever the user who 
created it uses the vnode. 

Know the following information before beginning these procedures: 

 The name of the remote account that is used to access the remote 
instance. (This information is not applicable when using an Installation 
Password to authorize access.) 

 The password of the remote login account or the remote instance’s 
Installation Password. 

Detailed steps for performing these procedures can be found in the Procedures 
section of online help for Network Utility and Visual DBA. See the following 
topics: 

 Adding a Login Database Definition 

 Altering a Login Database Definition 

 Dropping a Login Database Definition 
 

Vnode Attributes Configuration 

In addition to login and connection data, you can use Network Utility or Visual 
DBA to configure the following vnode attributes: 

 connection_type 

 encryption_mode 

 encryption_mechanism 

 authentication_mechanism 

For a description of each attribute and its associated values, and for detailed 
steps for adding, altering and dropping these attributes, see the following 
topics in the Procedures section of online help for Network Utility and Visual 
DBA: 

 Adding a Vnode Attribute 

 Altering a Vnode Attribute 

 Dropping a Vnode Attribute 
 

88  Ingres 2006 R2 Connectivity Guide 
 



Network Utility and Visual DBA 
 

Installation Password Definitions for the Local Instance 

As previously explained, users can access a remote Ingres instance using a 
login account set up on the remote instance’s host machine, or through an 
Installation Password, which allows users direct access to the instance. The 
Installation Password is configured for the local instance containing the 
databases that remote users want to access. 

Detailed steps for performing this procedure can be found in the Procedures 
section of online help for Network Utility and Visual DBA. See the following 
online topic: 

 Adding an Installation Password 
 

Changing Installation Passwords 

Changing installation passwords requires special care. Because of caching of 
information on the client and server, installation passwords must be changed 
at least 30 minutes after the last use of Ingres Net. Failure to do this can 
cause connections to fail with “E_GC0141_GCN_INPW_INVALID.” 

 

Additional Vnode-Related Tasks 

In addition to connection data entries and user authorization tasks, you can 
use Network Utility and Visual DBA to perform the following vnode-related 
tasks. 

 

Refreshing Vnodes 

Refreshing is used to update loaded vnode data. You can selectively choose to 
refresh particular vnodes by either selecting the Force Refresh button on the 
toolbar or choosing Node, Force Refresh. You can configure your background 
refresh settings by choosing File, Preferences. 

 

Testing Vnodes 

Network Utility and Visual DBA provide a way to test if a connection to a 
specific node can be established. From the Virtual Nodes toolbar, choose Node, 
Test Node to initiate a connection test. If the connection fails, an error 
message is returned.  

 

Establishing Communications  89  
 



Network Utility and Visual DBA 
 

Disconnecting from a Vnode 

Closing a window does not end communications with the servers on that 
window. Network Utility and Visual DBA continue to request data refreshes 
from the vnode until you disconnect from it.  

Detailed steps for performing this procedure can be found in the Procedures 
section of online help for Network Utility and Visual DBA. See the following 
topic: 

 Disconnecting From a Vnode 
 

Opening Utility Windows 

By choosing a virtual node, you can both establish a physical connection 
between the database server and your client workstation, and also open one of 
the four types of Visual DBA database administration windows. 

The detailed steps for performing these procedures can be found in the 
Procedures section of online help for Network Utility and Visual DBA. See the 
following topics:  

 Opening a Utility Window 

 Close Window 

 Activate Window 
 

90  Ingres 2006 R2 Connectivity Guide 
 



Network Utility and Visual DBA 
 

Server-related Tasks 

Servers represent server classes associated with a particular vnode. In 
Network Utility and Visual DBA, you can view a list of the servers that exist for 
a given vnode using the Servers branch in the Virtual Nodes toolbar/window. 

From this branch, you can: 

 Access a list of users on a particular server 

 Connect to a local server 

 Establish a connection at the user level (under a different user name) 

 Disconnect at the vnode level 

 Disconnect at the user level 

The detailed steps for performing these procedures can be found in the 
Procedures section of online help for Network Utility and Visual DBA. See the 
following topics: 

 Connecting to a Server 

 Impersonating Another User 

 Disconnecting from a Server 

 Disconnecting a User from a Server 
 

Establishing Communications  91  
 





 

Chapter 5: Using Net 
 

This chapter contains general information for working in the Ingres Net 
environment. It explains how to connect to remote databases and which SQL 
commands are valid with Ingres Net. This chapter also includes a general 
discussion of how the system perceives you, the user, when you are working 
in a remote database. 

 

Connecting to Remote Databases 
In general, Ingres Net provides users with transparent access to remote 
databases. It is only when the connection is first established that you must 
specify the node on which the database resides and, in some circumstances, 
the type of server. After you are connected, you can work in the database as if 
it were local; no further reference to its location is necessary. 

Note: If a default remote node is defined on the local instance, you do not 
have to specify a vnode name when you make a connection to that node. For 
information about using this feature, see Default Remote Nodes (see 
page 109). 

 

Using Net  93  
 



Connecting to Remote Databases 
 

Database Access Syntax—Connect to Remote Database 

The syntax for accessing a remote database through an operating system-level 
command is: 

command vnode::dbname[/server_class] 

where: 

command

Is any command used to invoke an Ingres tool, such as cbf, vcbf, sql, qbf 
or rbf. 

vnode::

Is the remote node on which the database is located. The two colons are 
required.  

The remote node can be specified as either of the following:  

vnode_name

Is the virtual node name that points to the connection data and 
authorization data necessary to access a particular remote instance.  

@host+ 

Is a “dynamic vnode” connection string that includes the connection 
data, user authorization, and attributes that are associated with a 
remote node. For the format of @host+, see Dynamic Vnode 
Specification (see page 95).  

dbname

 Is the name of the database. 

server_class

Is the type of server being accessed at the remote site. For a list of server 
classes, see Server Classes (see page 96). 

Example: 

This command runs the terminal monitor (sql) and connects using vnode 
"production" to the customerdb database:  

sql production::customerdb 
 

94  Ingres 2006 R2 Connectivity Guide 
 



Connecting to Remote Databases 
 

Dynamic Vnode Specification—Connect to Remote Node 

When connecting to a remote node, you can specify a dynamic vnode instead 
of a vnode name. The dynamic vnode specification includes the connection 
data, user authorization, and attributes that are associated with a remote 
node.  

Note: A dynamic vnode can be used wherever a vnode is allowed, unless 
otherwise stated. 

A dynamic vnode specification has the following format: 

@host,protocol,port[;attribute=value{;attribute=value}][[user,password]] 

@host

Identifies the network name or address of the node on which the remote 
database is located. The @ character is required because it identifies this 
specification as a dynamic vnode rather than a vnode name. 

protocol

Identifies the network protocol to be used by the local node to connect to 
the remote node. For a list of protocols and their associated keywords, see 
Network Protocol Keywords (see page 54). 

port

Identifies the listen address of the Ingres instance on the remote node.  

attribute=value

(Optional) Is one or more additional connection, encryption, and 
authentication attributes for the connection. Vnode attributes are 
described in Configure Vnode Attributes (see page 60). 

user

Identifies the user (login) name on the remote system.  

password

Is the password for the user on the remote system.  

Note: The user and password are optional for a dynamic vnode, but must 
be enclosed in brackets if used. 

Examples of dynamic vnode specification:

This command runs the terminal monitor (sql) and connects to node hosta 
using protocol tcp_ip to remote Ingres symbolic port II. The login and 
password are Johnny and secretpwd. The remote database name is 
customerdb:  

sql @hosta,tcp_ip,II[Johnny,secretpwd]::customerdb 

Using Net  95  
 



Connecting to Remote Databases 
 

This command does the same as the previous example and uses an attribute 
to set up a direct connection:  

sql @hosta,tcp_ip,II;connection_type=direct[Johnny,secretpwd]::customerdb 
 

Server Classes 

If you do not specify a server class when connecting to a database, Ingres 
assumes a default. The default is the value in default_server_class on the 
remote instance (ingres, unless defined otherwise).  

Valid Ingres server classes are as follows: 

ingres 

Indicates DBMS Server 

star 

Indicates Star Server (Ingres Ingres Star) 

db2 

Indicates EDBC for DB2 

db2udb 

Indicates Enterprise Access for DB2 UDB 

rdb 

Indicates Enterprise Access for Rdb 

ims 

Indicates EDBC for IMS 

rms 

Indicates Ingres RMS Access 

vsam 

Indicates EDBC for VSAM 

mssql 

Indicates Enterprise Access for MS SQL 

oracle 

Indicates Enterprise Access for Oracle 

informix 

Indicates Enterprise Access for Informix 

sybase 

Indicates Enterprise Access for Sybase 
 

96  Ingres 2006 R2 Connectivity Guide 
 



Connecting to Remote Databases 
 

To view or change the default server class value, use the Configure Name 
Server screen of the Configuration-By-Forms (cbf) utility, or the Parameters 
Page, Name Server Component in Configuration Manager (vcbf).  

The server class for the DBMS Server (default is ingres) and Star Server 
(default is star) can also be changed. This is typically done to distinguish 
between multiple DBMS or Star servers that have different sets of parameters, 
so that users can connect to a specific server using an assigned server class 
name. 

Additional server types are added to this list as additional Enterprise Access or 
EDBC products are developed. Check the Readme file for the most up-to-date 
set of products.  

 

Using the SQL Connect Statement with Net 

If you are using the connect statement in an application, connect to a 
database on a remote instance using the following syntax: 

exec sql connect 'vnode::dbname[/server_class]' 

Note: The vnode can be either a vnode name or a dynamic vnode specification 
(@host+).  

You must use the single quotes around the designation of the vnode and 
database names (and server class, if applicable). For example, assume that 
you have an application residing on “napoleon” that wants to open a session 
with the database “advertisers” on “eugenie.” The following statement 
performs this task (assuming also that “lady” is a valid vnode name for 
“eugenie”): 

exec sql connect 'lady::advertisers'; 

Note that a server class is not specified in this statement; therefore the default 
server class defined on “eugenie” is used. 

If the target database is accessed through an Enterprise Access or EDBC 
products, be sure to include the appropriate keyword for the server class. For 
example: 

exec sql connect 'lady::advertisers/db2'; 

If the target database is accessed through Ingres Star, be sure to include the 
appropriate keyword for the server class. For example: 

exec sql connect 'lady::advertisers/star'; 
 

Using Net  97  
 



Commands and Net 
 

When you are working over Ingres Net, you can use the -u flag with a 
command to imitate another user provided the User ID that you are working 
under on the remote node has the SECURITY privilege. 

 

Commands and Net 
You can run any of the following Ingres commands against a remote database: 

 

abf imageapp report 

accessdb ingmenu sql 

compform isql sreport 

copyapp netutil unloaddb 

copydb printform upgradedb 

copyform qfb upgradefe 

copyrep query vifred 

dclgen rbf vision 

Note: The optimizedb command works across Ingres Net only if the client and 
server machines have identical architectures. Do not use this command across 
Ingres Net if the client and server have different architectures. 

You cannot run the following Ingres commands against a remote database: 

 

createdb destroydb iimonitor 

iinamu lockstat logstat 

statdump sysmod usermod 

verifydb   

For additional information on commands, see the Command Reference Guide. 
 

98  Ingres 2006 R2 Connectivity Guide 
 



User Identity on Remote Instance 
 

User Identity on Remote Instance 
A user’s identity when working on a remote instance depends upon the type of 
access authorized. 

 When access to a remote instance is authorized using an Installation 
Password, users retain their local identities (User IDs) when working on 
the remote instance. 

 When access is authorized through a login account on the remote 
instance’s host machine, users take on the identity (User ID) of this 
account when working on the remote instance. 

In either case, the user’s privileges and permissions on the remote instance 
can differ from those on the local instance. For example, a user can have 
system administrator privileges on the local instance but only very general, 
low-level privileges and permissions on the remote instance. It is important to 
make sure that the privileges and permissions assigned to you on the remote 
instance are adequate for the work that you intend to perform. 

User privileges and permissions are set up individually for each instance using 
Visual DBA or create user statement. They apply only to the instance on 
which they are set up. For more information about this procedure, see the 
“Authorizing User Access” chapter in the Database Administrator Guide. 

Note:  Using Network Utility or Visual DBA, you can access a list of users on 
Ingres server nodes and establish a connection at the user level under a 
different user name. For more information, see Impersonating Another User in 
online help for either of these visual tools. 

 

-u Command Flag—Impersonate User 

You can use the -u command flag on a remote instance to impersonate 
another user provided your user ID on the remote instance has the SECURITY 
permission. (Typically, a system administrator has this privilege.)   

This command flag has the following format: 

-u user_ID

Is the user ID of the user you are impersonating. 
 

Using Net  99  
 



User Identity on Remote Instance 
 

Verify Your Identity 

When impersonating a user using the -u command flag, you may need to 
verify your identity.  

To verify your identity

Use the following command: 

dbmsinfo (‘username’) 

The user ID that you are working under is displayed. 
 

100  Ingres 2006 R2 Connectivity Guide 
 



 

Chapter 6: Maintaining Connectivity 
 

This chapter contains connectivity maintenance procedures, including: 

 Starting and stopping a Communications Server 

 Changing the Communications Server’s connected session limits 

 Changing the level of informational and error logging 

 Directing logging information to an additional file 

 Establishing default remote nodes 

 Starting and stopping a DAS 
 

Start Communications Server 
The Communications Server starts up automatically when you start up your 
Ingres instance. Sometimes, however, it is necessary to stop the 
Communications Server. 

You can start the local instance’s Communications Server using Ingres Visual 
Manager (IVM). For specific instructions, see IVM online help. 

You can also start the Communications Server using the command line 
utilities.  

To start the Communications Server at the command line

1. Log in as the installation owner. 

2. Enter the following command at the operating system prompt: 

ingstart -iigcc 

The configured number of Communications Servers (set during 
installation) is started.  

 

Maintaining Connectivity  101  
 



Stop Communications Server 
 

Stop Communications Server 
You can stop the local instance’s Communications Server using Ingres Visual 
Manager (IVM). For specific instructions, see IVM online help. 

You can also stop the Communications Server using the command line utilities.  

You can stop the local instance’s Communications Servers using Visual 
Performance Monitor. This “soft” shutdown operation waits for all sessions to 
end before stopping the server. Close the sessions (or ask users of those 
sessions to close them) before shutting down a server. For specific 
instructions, see Visual Performance Monitor online help. 

To stop the communications server at the command line

1. Log in as the installation owner. 

2. Enter the following command at the operating system prompt: 

ingstop -iigcc 

The configured number of Communications Servers is stopped.  

Note: To increase the configured number of servers, you must reconfigure 
Ingres Net using Configuration Manager (vcbf) or the Configuration-By-Forms 
(cbf) utility. 

 

Network Server Control Screen in Netutil 
You can stop or quiesce the local instance’s Communications Server using the 
Network Server Control screen in netutil.  

 

102  Ingres 2006 R2 Connectivity Guide 
 



Network Server Control Screen in Netutil 
 

The Network Server Control screen contains the following tables:  

Network Server ID table 

Lists the server IDs of the Communications Servers and the Bridge Servers 
on the local instance.   

Network server TYPE table  

Lists server TYPEs (COMSVR, BRIDGE).  

Note: You cannot obtain information about remote Communications Servers 
from this screen. 

If the local instance has only one Communications Server, the Network Server 
Control screen menu selections are: 

Quiesce 

Stops the highlighted Communications Server after all sessions currently in 
progress terminate 

Stop 

Stops the highlighted Communications Server immediately, disconnecting 
any open sessions 

Help 

Displays help screens 

End 

Returns you to the netutil startup screen 

If the local instance has more than one Communications Server, the menu 
contains two additional selections: 

Quiesce All 

Stops all Communications Servers after the sessions currently in progress 
terminate 

Stop All 

Stops all Communications Servers immediately, disconnecting any open 
sessions 

 

Maintaining Connectivity  103  
 



Stop or Quiesce a Communications Server Using Netutil 
 

Stop or Quiesce a Communications Server Using Netutil 
You can stop or quiesce a Communications Server using the Network Server 
Control screen in netutil.  

To stop a single Communications Server

1. Tab to the Login/password table on the netutil startup screen, and select 
Control from the function menu. 

The Network Server Control screen appears. 

2. Highlight the desired entry in the Network Server ID table, and select Stop 
from the menu. 

A pop-up screen appears with the following prompt: 

Really stop network server [server ID]? 
Yes — Stop 
No  — Don’t Stop 

3. Use your arrow keys to highlight No or Yes (Yes is the default), and then 
choose Select from the menu. 

Netutil stops the Communications Server and returns to the Network 
Server Control screen. 

4. Select End. 

You are returned to the netutil startup screen. 

To stop multiple Communications Servers

1. Select Stop All from the Network Server Control screen menu in netutil. 

A pop-up screen appears with the following prompt: 

Really stop all network servers? 
Yes — Stop 
No  — Don’t Stop 

2. Use your arrow keys to highlight No or Yes (Yes is the default), and choose 
Select from the menu. 

Netutil stops all local Communications Servers and returns to the Network 
Server Control screen. 

3. Select End. 

You are returned to the netutil startup screen. 
 

104  Ingres 2006 R2 Connectivity Guide 
 



Stop or Quiesce a Communications Server Using Netutil 
 

To quiesce a single Communications Server

1. Highlight the desired entry in the Network Server ID table in the Network 
Server Control screen in netutil, and select Quiesce from the function 
menu. 

A pop-up screen appears with the following prompt: 

Really quiesce network server [server ID]? 
Yes — Quiesce 
No  — Don’t quiesce 

2. Use your arrow keys to highlight No or Yes (Yes is the default), and choose 
Select from the menu. 

Netutil quiesces the Communications Server and returns to the Network 
Server Control screen. 

3. Select End. 

You are returned to the netutil startup screen. 

To quiesce multiple Communications Servers

1. Select Quiesce All from the Network Server Control screen menu. 

A pop-up screen appears with the following prompt: 

Really quiesce all network servers? 
Yes — Quiesce 
No  — Don’t quiesce 

2. Use your arrow keys to highlight No or Yes (Yes is the default), and choose 
Select from the menu. 

Netutil quiesces all local Communications Servers and returns to the 
Network Server Control screen. 

3. Select End 

You are returned to the netutil startup screen. 

Note: For instructions on stopping or quiescing Communications Servers using 
netutil non-interactive mode, see the chapter "Establishing Communications." 

 

Maintaining Connectivity  105  
 



Inbound and Outbound Session Limits 
 

Inbound and Outbound Session Limits 
A default number of 64 inbound and 64 outbound sessions are configured 
during the installation process. After the Communications Server has been 
running, you can change these default limits.  

Resetting the maximum number of inbound and outbound sessions does not 
affect a currently running Communications Server. If you alter these figures 
after you start a Communications Server, you must stop and restart the server 
for the new limits to take effect. 

The Ingres Net configuration parameters that determine the maximum number 
of allowed inbound and outbound sessions for a Communications Server are 
inbound_limit and outbound_limit.  

The maximum values that you can assign to inbound_limit and outbound_limit 
are operating system dependent. 

UNIX: Bear in mind when setting inbound and outbound session limits that 
the maximum number of sessions that can be concurrently supported cannot 
exceed 14 less than the number of file descriptors allocated to each process. 
The following formula expresses the maximum number of connections that can 
be supported at any given time: 

inbound_limit + outbound_limit <= (per_process_open_file_limit14)/2 

The number of file descriptors allocated to a process is a UNIX kernel 
parameter (NOFILES on most platforms).  

Windows and VMS: Ingres uses the inbound_limit and outbound_limit values 
when it allocates resources. Consequently, if the sum of the new values is 
greater than the sum of the current values, you must shut down the instance 
(instead of only the Communications Server) and restart it so that the system 
can allocate the appropriate level of resources. If the sum of the new values is 
equal to or less than the sum of the current values, you can simply stop the 
Communications Server and restart it after you have reset the values.  

 

How You Set Inbound and Outbound Session Limits 

The inbound_limit and outbound_limit parameters determine the maximum 
number of allowed inbound and outbound sessions for a Communications 
Server.  

You can view or change the values for these parameters using the Parameters 
page for the selected Net Server in Configuration Manager (vcbf) or the 
Configure Net Server Definition screen in the Configuration-By-Forms (cbf) 
utility. 

 

106  Ingres 2006 R2 Connectivity Guide 
 



Logging Levels 
 

Logging Levels 
By default, Ingres logs DBMS error messages, Ingres Net error messages, and 
Communications Server startup and shutdown messages to the errlog.log file.  

The following logging level values are available: 

0 

Logs no error messages (silent) 

1  

Logs startup messages only 

4 

(Default) Logs GCC START/STOP status messages, fatal GCC errors that 
cause the GCC process to stop, connection-specific errors that cause a 
specific connection to be broken, as well as logging level 1 messages 

6 

Logs connection setup and termination messages for all connections, as 
well as logging levels 4 and 1 messages. 

 

How You Change the Logging Level 

Logging level is defined by the Ingres Net configuration parameter log_level.  

To change the value of the log_level parameter, use the Parameters Page for 
the selected Net Server in Configuration Manager (vcbf) or the Configure Net 
Server Definition screen in the Configuration-By-Forms (cbf) utility. 

 

Maintaining Connectivity  107  
 



How You Direct Logging Output to a File 
 

How You Direct Logging Output to a File 
During an Ingres session, each process or program queries the value of 
II_GCA_LOG when it starts up. If this environment variable/logical is set to a 
file name, the program sends its trace output to the specified file in addition to 
sending the output to the errlog.log. If you want to see the GCC trace output 
for a Communications Server, set II_GCA_LOG and stop and restart the 
Communications Server. 

After you restart the Communications Server, unset II_GCA_LOG. You can 
leave II_GCA_LOG set, but you receive trace output for any Ingres process 
that starts after it was set. 

An alternate method for sending trace output for a Communications Server to 
another file is to set II_GCC_LOG. Setting this environment variable is 
preferable to using II_GCA_LOG because it is dedicated to the 
Communications Server (GCC) process. For additional information on 
II_GCC_LOG, see the appendix “Environment Variables and Logicals” in the 
System Administrator Guide. 

To send the GCC information that Ingres logs in errlog.log to another file in 
addition to the log file, follow this process: 

Windows and UNIX:

1. Log in as the installation owner. 

2. Set the Ingres environment variable II_GCC_LOG (preferred method) or 
II_GCA_LOG to a file name. 

3. Stop and restart the Communications Server.  

VMS:

1. Log in as the installation owner. 

2. Define the logical II_GCC_LOG (preferred method) or II_GCA_LOG to a file 
name. If this is a production instance, define the logical at the system 
level. If this is a test instance, define the logical at the group level. 

3. Stop and restart the Communications Server.  
 

108  Ingres 2006 R2 Connectivity Guide 
 



Default Remote Nodes 
 

Default Remote Nodes 
A system administrator can define a default remote node for the local node. 
When this parameter is set, users are automatically connected to the default 
node whenever they request a connection without specifying a vnode name. If 
users want to access a database on their local node, they must specify the 
name configured as local_vnode on the Parameters Page, Name Server 
Component in Configuration Manager (vcbf) or the Configure Name Server 
screen in the Configuration-By-Forms (cbf) utility. 

To illustrate, assume that the system administrator has set up the node 
“eugenie” as the default remote node for users at the node “josephine.” The 
node “eugenie” has the database “advertisers” and “josephine” has the 
database “employees.” Whenever users on “josephine” issue database 
connection requests that do not specify a vnode name, they are automatically 
connected to “eugenie” because “eugenie” is the default remote node for 
“josephine.” For example, look at the following statement: 

isql advertisers 

If users on “josephine” issue this statement, Ingres Net automatically connects 
them to the “advertisers” database on “eugenie.” If the users on “josephine” 
want to query a local database, they must specify josephine’s local_vnode 
name. For example, if the local_vnode name for “josephine” is “royal,” users 
on “josephine” issue the following statement to query the local database 
“employees”: 

isql royal::employees 

Note:  Do not set the default remote node name to point to a vnode that is in 
fact a loopback to the local instance. If you do so, your local connections loop 
through Ingres Net until all resources are exhausted and the connection fails. 

 

How You Set Default Remote Nodes 

To define a default remote node for the local node, set the configuration 
parameter remote_vnode on the Parameters Page, Name Server Component in 
Configuration Manager (vcbf) or the Configure Name Server screen in the 
Configuration-By-Forms (cbf) utility.  

 

Maintaining Connectivity  109  
 



Start DAS 
 

Start DAS 
The DAS (iigcd) starts up automatically when you start up your Ingres 
instance. Sometimes, however, it is necessary to stop the DAS. In such 
instances, you can use the following procedures to restart the server. 

You can start the DAS using one of these methods: 

 Using Ingres Visual Manager (IVM) to start the local instance's DAS. For 
specific instructions, see IVM online help. 

 Using a command line utility. This procedure uses the configuration values 
set during installation to start the DAS. 

To start the DAS using the command line utility  

1. Log in as the installation owner. 

2. Enter the following command at the operating system prompt:  

ingstart -iigcd 

The DAS is started using the configuration values set during installation. 
 

Stop DAS 
You can stop the DAS using one of these methods: 

 Using Ingres Visual Manager (IVM) to stop the local instance's DAS. For 
specific instructions, see IVM online help. 

 Using a command line utility. 

To stop the DAS at the command line with ingstop

1. Log in as the installation owner. 

2. Enter the following command at the operating system prompt: 

ingstop -iigcd 

To stop the DAS at the command line with iigcdstop

1. Log in as the installation owner. 

2. Enter the following command at the operating system prompt:  

iigcdstop addr

where addr is the server address, which can be obtained using the iinamu 
utility and issuing the request show dasvr. 

 

110  Ingres 2006 R2 Connectivity Guide 
 



 

Chapter 7: Troubleshooting Connectivity 
 

This chapter provides information and procedures for diagnosing and solving 
network connectivity problems. It begins with some useful background 
information: 

 A description of the internal steps necessary to complete a connection 
between a client and a server Using Net 

 A description of Ingres Net configuration parameters and files 

It then discusses common network connectivity problems and describes a 
procedure for diagnosing them. It concludes with several procedures that 
check for and resolve more specific problems. 

 

How Connection Between the Application and DBMS Server 
Is Established 

For queries to be processed, applications must establish a connection to the 
DBMS Server through Ingres Net. When an application issues a query, the 
query is sent to the DBMS Server for execution. The server executes the query 
and returns data to the application. 

For a client to connect to a server through Ingres Net, many internal 
connections must be made.  

When the application, the DBMS Server, and the database reside on the same 
instance, establishing a connection is a short process:  

1. The application program connects to the local Name Server (iigcn) and 
requests the listen address of the local DBMS Server process.  

2. The Name Server returns this information to the application, which 
thereafter communicates directly with the DBMS Server through that 
address.  

 

Troubleshooting Connectivity  111  
 



Where Ingres Net Information Is Stored 
 

When the application and DBMS Server are on separate instances, the process 
has more steps: 

1. The application finds the local Name Server (iigcn) listen address and talks 
to the local Name Server to request remote access. 

2. The local Name Server passes the listen address of the local 
Communications Server (iigcc) and the listen address of the remote 
Communications Server (iigcc) back to the application. (The local Name 
Server (iigcn) stored the remote Communications server’s listen address 
when you ran netutil on the local instance.) 

3. The application connects to the local Communications Server, passing it 
the remote Communications Server’s listen address as part of the remote 
access request. 

4. The local Communications Server connects to the remote Communications 
Server and requests a connection to a DBMS Server on that remote 
instance. 

5. The Communications Server on the remote instance finds the listen 
address of the Name Server on the remote instance. The Communications 
Server requests connection information from the Name Server, passing the 
name of the database for which a connection is requested. 

6. The remote Name Server returns the listen address of a DBMS Server that 
is capable of servicing a request for connection to the target database. 

7. The remote Communications Server connects to the DBMS Server on the 
remote instance. 

When these steps are completed, a “virtual connection” has been established 
between the application and the DBMS Server. 

 

Where Ingres Net Information Is Stored 
Ingres Net configuration values are stored in either of the following: 

config.dat file 

Stores Ingres Net configuration parameters, which can be changed using 
Configuration-By-Forms or Configuration Manager. 

Name Server database 

Stores remote access information, which can be entered using the netutil 
utility. 

 

112  Ingres 2006 R2 Connectivity Guide 
 



Where Ingres Net Information Is Stored 
 

config.dat—Store Net Configuration Values 

The following Ingres Net configuration parameters, stored in config.dat, can be 
viewed and changed using the Configuration Manager (vcbf) or Configuration-
By-Forms (cbf) utility. The default values are assigned during installation. 

Note: The Net Server is the Communications Server. 

 

Parameter Default vcbf page cbf screen 

inbound_limit 

outbound_limit 

64 inbound sessions 

64 outbound sessions 

Parameters 
Page, Net 
Server 
Component 

Configure Net 
Server Definition 
screen 

log_level  Level 4 Parameters 
Page, Net 
Server 
Component 

Configure Net 
Server Definition 
screen 

Protocol  Any protocol present 
at installation is 
indicated as active 

Protocols Page, 
Net Server 
Component 

Configure Net 
Server Protocols 
screen 

Listen Address  A GCC listen address 
is assigned for any 
protocol present at 
installation. (The 
format depends on 
the protocol.) 

Protocols Page, 
Net Server 
Component 

Configure Net 
Server Protocols 
screen 

default_server_ 
class  

INGRES Parameters 
Page, Name 
Server 
Component 

Configure Name 
Server screen 

remote_vnode  No default value Parameters 
Page, Name 
Server 
Component 

Configure Name 
Server screen 

local_vnode Name of host 
machine  

Parameters 
Page, Name 
Server 
Component 

Configure Name 
Server screen 

 

Troubleshooting Connectivity  113  
 



Where Ingres Net Information Is Stored 
 

Name Server Database—Store Remote Access Information 

Ingres maintains an internal database called the Name Server database, which 
is used by the Name Server (iigcn). The Name Server database contains the 
information required for remote access, such as remote node names, listen 
addresses, login accounts and passwords, virtual node names, and local and 
remote Installation Passwords. This information can be entered in the Name 
Server database using the netutil utility. 

In a client/server configuration, this database contains one file called 
iiname.all and one or more "nodename" files for each client node and for the 
local node. For example: 

iiname.all 
IIINGRES_nodename1
IICOMSVR_nodename1
IISTAR_nodename1
IINODE_nodename1
IILOGIN_nodename1
IIIUSVR_nodename1
IIDB2UDB_nodename1
IIORACLE_nodename1
IIRDB_nodename1 
IIRMS_nodename1 
IILTICKET_nodename1 
IIRTICKET_nodename1
IIINGRES_nodename2
IICOMSVR_nodename2
IISTAR_nodename2
IINODE_nodename2
IILOGIN_nodename2
IIIUSVR_nodename2
IIDB2UDB_nodename2
IIORACLE_nodename2
IIRDB_nodename2 
IIRMS_nodename2
IILTICKET_nodename2
IIRTICKET_nodename2

A unique set of files is created for each node registered as an Ingres Net 
client.  

In the cluster environment, the Name Server database has only one file of 
each type. For example: 

iiname.all 
INGRES 
COMSVR 
STAR  
NODE 

114  Ingres 2006 R2 Connectivity Guide 
 



Where Ingres Net Information Is Stored 
 

LOGIN 
IUSVR 
DB2 UDB 
ORACLE 
RDB 
RMS 
LTICKET 
RTICKET 

All the nodes in an Ingres Cluster Solution instance share the same files. 

The files in the Name Server Database are as follows:  

iiname.all 

Contains a list of all of the types of servers that the instance is expected to 
manage. The possibilities are DBMS servers, Communications servers, and 
Star servers. 

IIINGRES_nodename 

Contains the GCA listen addresses of all the DBMS servers registered with 
the Name Server (iigcn) on the specified node. 

The file is written when the DBMS Server starts and is cached when the 
node's (identified by nodename) Name Server starts. 

IICOMSVR_nodename  

Contains the GCA listen address of the Communications Server (iigcc) on 
the specified node (identified by nodename). The file is written when the 
local Communications Server starts and is cached when the local Name 
Server starts. 

IISTAR_nodename  

Contains the GCA listen address of the Star Server on the specified node 
(identified by nodename). The file is written when the Star Server starts 
and is cached when the nodename’s Name Server starts. 

IINODE_nodename  

Contains the connection data entries established for the specified node 
(identified by nodename) by running netutil, Network Utility (ingnet) or 
Visual DBA from that node. The file is written whenever you select the 
“create” option to add a connection data entry for an existing vnode. The 
file is cached when the nodename’s Name Server starts. 

IILOGIN_nodename  

Contains the remote user authorizations set up at the specified node 
(identified by nodename) by running netutil, Network Utility (ingnet) or 
Visual DBA from that node. The file is written whenever you add a remote 
user authorization. It is cached when the nodename’s Name Server starts. 

 

Troubleshooting Connectivity  115  
 



Causes of Connectivity Problems 
 

Causes of Connectivity Problems 
You can trace most network connectivity problems to one of the following 
causes: 

 The network or the network protocol is not properly installed 

 The Name Server (iigcn) or Communications Server (iigcc) process is not 
running 

 Vnode entries are incorrect 

 There are port connection problems 

 There are problems with the Ingres Net files 
 

How You Diagnose Connectivity Problems 
Often, the most difficult task in problem solving is determining the origin of 
the problem. Sometimes the circumstances of the problem point to a particular 
cause. For example, if only one user on a node is experiencing an Ingres Net 
connection problem, that user’s vnode entries are probably incorrect. Some 
problems, however, leave more ambiguous clues.  

To determine the origin of a problem, follow these steps: 

1. Examine the Ingres error file, errlog.log. Ingres logs DBMS error 
messages, Ingres Net error messages, and Communications Server 
startup and shutdown messages to this log. 

The default location for the errlog.log file is: 

Windows: %II_SYSTEM%\ingres\files\errlog.log 

UNIX: $II_SYSTEM/ingres/files/errlog.log  

VMS: II_SYSTEM:[INGRES.FILES]ERRLOG.LOG 

Often the error message provides sufficient information to determine the 
origin of the problem.  

2. Examine any of the optional logs or tracing facilities, if set up in your 
installation.  

3. Perform the General Ingres Net Installation Check described next if 
examining the error messages does not pinpoint the origin of the problem.  

If you are having password or other security or permission problems with 
Ingres Net, use the procedure in Security and Permission Errors (UNIX) to 
resolve them. 

 

116  Ingres 2006 R2 Connectivity Guide 
 



How You Diagnose Connectivity Problems 
 

General Net Installation Check 

The Ingres Net installation check is a diagnostic procedure that checks your 
installation to determine the following:  

 Whether the problem is Ingres Net-related 

 Whether the iigcn and iigcc processes are running 

 Whether the network protocol software is working 
 

How You Check Net Installation on Windows 

If you are experiencing a problem and cannot determine its source, use this 
diagnostic procedure as a starting point: 

1. Verify that your network protocol is functioning. 

a. Use the ping command to connect between machines to verify that 
basic TCP/IP networking is working. 

b. On both the client and the server, verify that TCP/IP is properly 
installed and configured. Do this by attempting to connect to the 
default localhost (or loopback) listen address from each machine. Type 
one of the following commands to loop back to your own machine 
using the network: 

 ping localhost 

 ping 127.0.0.1 

 ping ::1  (if TCP/IP version 6 enabled) 

If either “a” or “b” fails, the problem is with the underlying network. 
Contact your network administrator. 

2. If the remote node is a UNIX machine, verify that you can connect to the 
target database on the remote node when you are logged in directly to the 
remote node. 

a. Use telnet to log in to the remote node from your local node. 

b. Enter a command that connects you to the database. For example: 

 sql database_name

If you cannot connect to the database even when logged in directly to the 
remote node, the problem is something other than Ingres Net. 

If you can connect this way, but cannot connect when you are Using Net to 
log into the remote node and connect (through the syntax sql 
vnode_name::database_name), it is an Ingres Net problem. Proceed with 
Step 3.  

 

Troubleshooting Connectivity  117  
 



How You Diagnose Connectivity Problems 
 

3. Check that the iigcc process is registered with the Name Server: 

a. Enter iinamu at the operating system prompt. 

b. Type show comsvr. 

If you receive no output from the show comsvr command, this means that 
no Communications Server is registered with the Name Server. 

4. Check that configuration parameters such as local_vnode and the 
Communications Server listen address are correctly set. These parameters 
can be viewed and, if necessary, changed using the Configuration Manager 
(vcbf) or Configuration-By-Forms (cbf) utility. 

5. Check the II_GCNxx_PORT environment variable where xx is the 
installation ID. It must be visible only when using the ingprenv utility. It 
must never be visible when using the UNIX commands env or printenv. 
II_GCNxx_PORT must not be part of your local operating system 
environment. If it is set in the local environment, it overrides their proper 
settings in the Ingres symbol table. 

You must be the installation owner (who by default has Ingres user privileges) 
to take corrective action. 

 

How You Check Net Installation on Linux and UNIX 

If you are experiencing a problem and cannot determine its source, use this 
diagnostic procedure as a starting point: 

1. Verify that your network protocol is functioning. 

a. Use the rlogin and/or telnet commands to connect between machines 
to verify that basic TCP/IP networking is working. 

b. On both the client and the server, verify that TCP/IP is properly 
installed and configured. Do this by attempting to connect to the 
default localhost (or loopback) listen address from each machine. Type 
one of the following commands to loop back to your own machine 
using the network: 

 telnet localhost 

 telnet 127.0.0.1 

 ping ::1  (if TCP/IP version 6 enabled) 

The login messages that follow the command reveal whether you are 
connected to your own machine (the name of the machine can be 
embedded in the messages). If they do not, you can log in and issue the 
hostname command to display the name of the machine to which you are 
connected. 

If either “a” or “b” fails, the problem is with the underlying network. 
Contact your network administrator.  

 

118  Ingres 2006 R2 Connectivity Guide 
 



How You Diagnose Connectivity Problems 
 

2. Verify that you can connect to the target database on the remote node 
when you are logged in directly to the remote node. 

a. Use telnet, rlogin, or your site’s network server bridge software to log 
in to the remote node from your local node. 

b. Enter a command that connects you to the database. For example: 

 $ sql database_name

If you cannot connect to the database even when logged in directly to the 
remote node, the problem is something other than Ingres Net. 

If you can connect this way, but cannot connect when you are Using Net to 
log into the remote node and connect (through the syntax sql 
vnode_name::database_name), it is an Ingres Net problem. Proceed with 
Step 3. 

3. To verify that the Communications Server (iigcc) and Name Server (iigcn) 
processes are running on your local node, use the ps command. This 
command shows the status of all currently running processes. Also check 
the processes on the remote node. 

4. Check that the iigcc process is registered with the Name Server: 

a. Enter iinamu at the operating system prompt. 

b. Type show comsvr. 

If you receive no output from the show comsvr command, this means that 
no Communications Server is registered with the Name Server. 

5. Check that configuration parameters such as local_vnode and the 
Communications Server listen address are correctly set. These parameters 
can be viewed and, if necessary, changed using the Configuration Manager 
(vcbf) or Configuration-By-Forms (cbf) utility. 

6. Check the II_GCNxx_PORT environment variable where xx is the 
installation ID. It must only be visible using the ingprenv utility. It must 
never be visible using the UNIX commands env or printenv. 
II_GCNxx_PORT must not be part of your local UNIX shell environment. If 
it is set in the local environment, it overrides their proper settings in the 
Ingres symbol table. 

You must be the installation owner (who by default has Ingres user 
privileges) to take corrective action. 

 

Troubleshooting Connectivity  119  
 



How You Diagnose Connectivity Problems 
 

How You Check Installation on VMS 

If you are experiencing a problem and cannot determine its source, use this 
diagnostic procedure as a starting point: 

1. Verify that your network protocol is functioning. 

You must be able to connect to another node on the network. If you 
cannot, your network software is not working. Contact your network 
administrator to correct the networking problem. 

2. Verify that you can connect to the database on the remote node when you 
are logged in directly to the remote node. 

a. Log directly into the remote node. 

b. Enter a command that connects you to the database. For example: 

 $ sql database_name

If you cannot connect when logged in directly to the remote node, the 
problem is something other than Ingres Net. 

If you can connect this way, but cannot connect when you are Using Net to 
log into the remote node and make the connection (through the syntax sql 
vnode_name::database_name for example), it is an Ingres Net problem. 
Proceed with Step 3. 

3. To verify that the iigcc and iigcn processes are running properly on your 
local node: 

Check the error log (errlog.log) for any error messages indicating a startup 
failure on the part of either iigcc or iigcn. Check the iigcc process on the 
remote node also. 

Alternatively, at the operating system prompt, type show system. 

This command displays a list of the processes currently active. Check for 
the following processes: 

II_GCC 
II_GCN 
II_DBMS 
II_IUSV (dmfrcp) 
DMFACP 

4. Check that the iigcc process is registered with the Name Server: 

a. Enter iinamu at the operating system prompt. 

b. Type show comsvr. 

If you receive no output from the show comsvr command, this means that 
there is no Communications Server registered with the Name Server. 

120  Ingres 2006 R2 Connectivity Guide 
 



How You Diagnose Connectivity Problems 
 

5. Check that configuration parameters such as local_vnode and the 
Communications Server listen address are correctly set. These parameters 
can be viewed and, if necessary, changed using the Configuration Manager 
(vcbf) or Configuration-By-Forms (cbf) utility. 

 

Connection Errors 

Connection errors can occur for a variety of reasons. For example, a failure in 
any of the internal connections described in How Connection Between the 
Application and DBMS Server Is Established (see page 111) results in a 
connection error.  

How connection errors are reported depends on where the failure occurs. If 
failure occurs: 

 At the local instance, errors are reported directly to the user interface 
program or the application. 

 Between the local and remote instances, for example, when attempting to 
connect from the local Communications Server to the remote 
Communications Server, errors go to the local errlog.log file as well as to 
the application. 

 At the server installation, errors are reported to both the local and remote 
errlog.log file and to the application. 

 

Troubleshooting Connectivity  121  
 



How You Diagnose Connectivity Problems 
 

Local Connection Errors 

Each Communications Server has a GCA and GCC listen address. The GCA 
listen address is the server’s connection to local processes and is known only 
to the local Name Server (iigcn). The GCC listen address is the server’s 
connection to the network and is known to all nodes in the network. These 
listen addresses are stored separately. 

The GCA address is stored at runtime in an IICOMSVR file in the Name Server 
database. You can obtain this address using the iinamu utility. Do not attempt 
to view these files directly. For more information about iinamu, see the 
Command Reference Guide. 

The GCC address is stored in the config.dat file when the installation is 
configured. To view or change the GCC address, use the Net Server Protocol 
Configuration screen in the Configuration-By-Forms (cbf) utility, or the Net 
Server Protocols page in Configuration Manager (vcbf). 

When the Communications Server starts up, it must be able to obtain the use 
of the network (GCC) listen address. If the Communications Server cannot use 
this listen address because the operating system has allocated the address to 
another process, the Communications Server cannot listen on that protocol. 
This problem can occasionally arise if the installation is not started from the 
machine boot file. 

 

122  Ingres 2006 R2 Connectivity Guide 
 



How You Diagnose Connectivity Problems 
 

How You Resolve Remote Connection Errors 

When you cannot establish a remote connection, use this procedure to 
diagnose the problem: 

1. Check the errlog.log for error messages.  

2. If that does not identify the problem, follow the procedure for your 
protocol in the General Net Installation Check section of this chapter. This 
procedure tells you if your network and protocol are working properly and 
if the Name Server (iigcn) and Communications Server (iigcc) processes 
are working properly. 

3. If the problem remains unidentified after you have looked at the error 
messages and performed the installation check, use the following 
procedure to verify that your netutil connection data entry contains the 
correct listen address. 

a. From the local instance, check the connection data for the remote 
instance. Note the listen address specified in the netutil Connection 
Data table. 

b. From the remote instance, check to see which GCC listen address the 
remote instance’s Communications Server is using. You can find this 
information in the Net Server Protocol Configuration screen in the 
Configuration-By-Forms (cbf) utility, or the Net Server Protocols page 
in Configuration Manager (vcbf). 

c. If the listen address found Step a does not match the listen address 
found in Step b, correct the problem by re-registering the remote 
instance’s GCC listen address. Do this from the local instance, using 
netutil to edit the incorrect entry. For procedures for adding, deleting, 
and changing a vnode definition, see the chapter "Establishing 
Communications." 

 

Troubleshooting Connectivity  123  
 



How You Diagnose Connectivity Problems 
 

How You Resolve Net Registration Problems 

To resolve net registration problems, use this procedure:  

1. Use the General Net Installation Check to verify that your installation is 
properly installed and working.  

2. Check that your connection data entries and remote user authorizations 
are correct. 

The utilities used to set up connection data and remote user authorizations 
(Network Utility, Visual DBA, or netutil) can test a connection, but  you 
must explicitly choose the Test operation from a menu. If you did not test 
the connection after entering, adding, or editing connection data or remote 
user authorizations, the information can be incorrect. 

3. Check that the required connection data and remote user authorizations 
for the target installation exist. If they are present, check the following: 

 That all vnode names and user (account) names are spelled correctly 

 That the proper network protocol has been specified 

 That listen addresses and network addresses are correct 

Note: End users check their private entries. A user with the SECURITY 
privilege (typically a system administrator) checks another user’s private 
entries by using the -u command flag in netutil to impersonate that user. 
Users can also perform this task using Network Utility and Visual DBA.  

Any user can check global entries, however if corrections are required, 
they must be made by a user with the GCA privilege NET_ADMIN (typically 
the system administrator). 

4. If you are experiencing problems connecting to a distributed database, 
make sure that the connection data and remote user authorizations 
required by Ingres Star have been entered on the Star Server installation. 
For more information, see the Ingres Star User Guide. 

 

Security and Permission Errors 

Ingres Net encrypts the password entered in netutil and compares it with the 
encrypted password in “/etc/passwd” (or your machine’s similar password 
file). If the two do not match, an error is returned.  

 

124  Ingres 2006 R2 Connectivity Guide 
 



How You Diagnose Connectivity Problems 
 

How You Resolve Ingres Security Problems (UNIX) 

If you are having password or other security/permission problems in Ingres 
Net, use the following procedure: 

1. Verify that you can log in to the remote machine directly. If you cannot, 
you do not have the right password. 

2. Using netutil, re-enter the remote user authorization. 

3. If you are running NIS (“yellow pages”), the account’s correct password 
will be in the yellow pages password file (/etc/yppasswd) rather than in 
/etc/passwd. Add the following string to the end of /etc/passwd file to tell 
Ingres Net to look in /etc/yppaswd for the encrypted password: 

+::0:0::: 

4. If you have additional security such as C2 security enabled on the target 
machine, you must verify that the ingvalidpw executable exists in 
$II_SYSTEM/ingres/bin by typing: 

$ ls -l $II_SYSTEM/ingres/bin/ingvalidpw 

This executable is required to make the password in the secure area 
readable by Ingres. 

Note: Not all Ingres UNIX releases use ingvalidpw to enforce C2 security. 
If the ingvalidpw executable is required for your release, it will be 
documented in the Readme file for your platform. 

5. If the ingvalidpw executable exists: 

a. Verify that it is owned by root. If not, log in as root and issue the 
command: 

 $ chown root ingvalidpw 

b. Verify that it has the “set uid” bit set. If not, issue the command: 

 $ chmod 4711 ingvalidpw 

c. Verify that the Ingres variable II_SHADOW_PWD is set to the full path 
to the ingvalidpw executable. Type: 

 $ ingprenv | grep II_SHADOW_PWD 

The ingprenv utility displays the II_SHADOW_PWD variable. 

6. If the ingvalidpw executable is not installed, create it using the mkvalidpw 
script. For details, see Create Password Validation Program (UNIX) (see 
page 41). 

 

Troubleshooting Connectivity  125  
 





 

Chapter 8: Exploring Bridge 
 

This chapter introduces the Ingres Bridge component and describes how it 
interacts with Ingres. It also describes how Ingres Bridge can be used in an 
Ingres Net and Ingres Enterprise Access configuration. This chapter concludes 
with information about configuring and using Ingres Bridge. 

 

Ingres Bridge 
Ingres Bridge is a component of Ingres that enables a client application 
running on one type of local area network to access an Ingres server running 
on a different type of network. The client and server do not have to 
communicate over the same network protocol (such as TCP/IP, SNA LU62); 
Ingres Bridge “bridges” a client using one network protocol to a server using 
another. 

For example, a PC on a TCP/IP network communicates through Ingres Bridge 
to an EDBC server (such as DB2, IMS, or Datacom/DB) on an SNA network. 

Ingres Bridge does not provide any security checking but simply passes the 
messages through. Security is handled on the server in the usual way. 

 

How the Bridge Server Works 

Ingres Bridge consists of the Bridge Server.  

The Bridge Server (iigcb) process connects a client application on one type of 
network to a server on a different type of network. Modeled on the transport 
layer of the Ingres Net architecture, the Bridge Server does the following: 

 Listens for and accepts incoming connection requests and establishes 
corresponding connections to a local or remote Communications Server 

 Allows bi-directional data transfer over the established connections 

 Terminates the connections in an orderly way 
 

Exploring Bridge  127  
 



Ingres Bridge 
 

Tools for Configuring Bridge 

You configure the Bridge Server using one of these utilities (based on your 
environment): 

 Netutil 

 Visual DBA 

 Ingres Visual Manager 
 

Installation Configurations That Require Bridge 

Ingres Bridge is required in any installation configuration where the client and 
server processes do not reside on the same machine and the client machine is 
on one type of local area network and the server machine is on another type 
of network. 

Ingres Bridge runs on an intermediate platform between the client and the 
server; the intermediate platform must support both the client and the server 
network protocols. Ingres Bridge runs as a stand-alone installation or as a part 
of an Ingres client or server installation. 

Ingres Star provides a similar network bridging capability. Ingres Star is 
required when the user views different physical databases as a single logical 
database. Ingres Bridge must be used when this is not the case, and the user 
wants to connect a client and server that run on different network protocols. 
Ingres Bridge has a fairly small “footprint” and has little impact on response 
time. 

 

128  Ingres 2006 R2 Connectivity Guide 
 



Ingres Bridge 
 

Sample Installation Configuration Using Bridge 

The following figure shows a sample installation configuration that uses Ingres 
Net, Ingres Bridge, and EDBC to DB2. Ingres Bridge runs on a separate 
installation on an intermediate platform. 

 

Exploring Bridge  129  
 



How Bridge Is Installed 
 

Node A is an Ingres for VMS installation. Node B is an Ingres Bridge 
installation in a UNIX environment using TCP/IP. Node C is an EDBC to DB2 
installation in a z/OS environment using SNA_LU62. Node A and Node C are 
not directly connected to each other. 

Ingres Net is present on Node A and Node C. Users on Node A can access DB2 
data on Node C as if the DB2 tables were Ingres tables stored on Node A. 

 

How Bridge Is Installed 
Ingres Bridge is installed as a component of Ingres. It uses the same 
installation procedure as Ingres and Ingres tools.  

The component appears in the install utility as Ingres Protocol Bridge.   

Note: Ingres Bridge is installed as the only component in an installation or 
with other components such as Ingres Net. 

 

How Bridge Is Started 
Ingres Bridge is started by reading configuration parameter values from one of 
the following: 

 The config.dat file 

This method gives you have the flexibility of routing the client connections 
dynamically, and allows multiple routes.  

To use values from config.dat, you can start Ingres Bridge using the 
ingstart command or Visual Manager (if available in your environment). 

 The iigcb command line options 

This method requires you to stop and start Ingres Bridge if you want to 
route the client connections to a different installation, and allows only a 
single “from-to” route. 

 

130  Ingres 2006 R2 Connectivity Guide 
 



How Bridge Is Started 
 

config.dat File—Store Bridge Configuration 

After the installation and setup phases of Ingres Bridge, default configuration 
entries are defined in the config.dat file in the Ingres Bridge installation. You 
can change some of the configuration parameters values by using 
Configuration-By-Forms (cbf) or Configuration Manager (vcbf). These values 
are then stored in the config.dat file.   

Here is an example configuration entry in config.dat:  

ii.<hostname>.gcb.*.tcp_ip.port.<vnode>:<listen address> 

This entry means that Ingres Bridge accepts the incoming client connections 
from TCP/IP on the port specified by the listen address and route them to the 
DBMS Server installation defined by the vnode. The vnode name matches a 
vnode name defined for the DBMS Server installation. 

The vnode name must be set in config.dat before starting the server. Only the 
connection information can be changed for the vnode name, which enables 
you to change the routing information without stopping and starting Ingres 
Bridge. 

Login/password (remote authorization) data for the vnode is not required 
because the login data is obtained from the connecting client; only the 
connection data for the server is required.  

 

ingstart Command—Start the Bridge Server 

The ingstart command starts the Bridge Server using the values in config.dat.  

If Ingres Bridge is installed with other components such as Ingres Net, or has 
been configured using the Configuration-By-Forms utility, use the following 
ingstart command to start the Bridge Server: 

ingstart -iigcb 

Or start the Name Server first and the Bridge Server next, using the following 
: 

ingstart –iigcn 

ingstart -iigcb 
 

Exploring Bridge  131  
 



How the Client Is Set Up 
 

iigcb Command—Start the Bridge Server 

The Bridge Server process (iigcb) can be executed from the system prompt. 

This command has the following format: 

iigcb -from prot -to dest_prot hostname listen_addr

prot

Is the local protocol (for example, tcp_ip). 

dest_prot

Is the destination protocol (for example, SNA LU62). 

hostname

Is the network name or address where the target DBMS Server and 
Communications Server are located (format dependent on protocol). 

listen_addr

Is the unique identifier for the Communications Server that is used for 
Ingres Net connections with the destination protocol. 

For example, the following command starts the Bridge Server process:  

iigcb -from tcp_ip -to sna_lu62 hostname listen_addr

The following lines are displayed in the errlog.log file: 

Network open complete for protocol TCP_IP, port <xx>  
Network open complete for protocol SNA_LU62, port <xx> 
Protocol Bridge normal startup: rev. level 1.1/02 

Ingres Bridge is now ready for clients to make connections to it on the TCP/IP 
port specified by the listen address in the following line in the config.dat file in 
the Ingres Bridge installation: 

ii.hostname.gcb.*.tcp_ip.port:   listen address
 

How the Client Is Set Up 
To enable the client machine to access remote servers through Ingres Bridge, 
you must first create a vnode entry for the host machine on which Ingres 
Bridge is running.  

 

132  Ingres 2006 R2 Connectivity Guide 
 



Bridge Server Monitoring 
 

vnode Definition—Enable Client Access to Remote Servers Through Bridge 

The following information defines a vnode. You enter this information using 
any of the Net Management tools.  

Note: The Network Utility (if supported on your platform) is the preferred 
means of creating vnodes in Ingres. 

Virtual Node 

Defines the Ingres Bridge node.  

Remote Node 

Identifies the network name or address of the machine on which the 
Bridge Server is running. 

Protocol 

Specifies the Ingres keyword for the protocol used by the local client node 
to connect to the remote node. For details, see Network Protocol Keywords 
(see page 54). 

Listen Address 

Is the listen address of the Bridge Server. This address varies by protocol. 
For more information, see the appropriate appendix in this guide. 

Username 

Is the login ID for the host machine on which the target DBMS Server is 
running.  

Password 

Is the password associated with the login ID for the host machine on which 
the target DBMS Server is running. 

 

Bridge Server Monitoring 
To determine if the Bridge Server is running, use either of the following:  

 Ingres Visual Manager 

 The iinamu utility's show bridge command 
 

Exploring Bridge  133  
 



Stop the Bridge Server 
 

Stop the Bridge Server 
You can use either the ingstop command or Ingres Visual Manager to stop the 
Bridge Server.  

To stop the Bridge Server using ingstop

Issue the following command at the operating system prompt: 

ingstop –iigcb 
 

How a Connection Is Established Through Bridge 
When an application on one type of local area network attempts to establish a 
connection to a server on a different type of network, the following sequence 
of events establishes the connection: 

 The application gets the local Name Server (iigcn) listen address and 
connects to the local Name Server to request remote access. 

 The local Name Server passes the listen address of the local 
Communications Server (iigcc) and the listen address of the remote Bridge 
Server (iigcb) back to the application. (The local Name Server (iigcn) 
stored the remote Bridge Server’s listen address when you defined a 
vnode for the remote node on which the Bridge Server is running.) 

 The application connects to the local Communication Server, passing it the 
remote Bridge Server’s listen address as part of the remote access 
request. 

 The local Communications Server connects to the remote Bridge Server. 
The remote Bridge Server gets the connection data entries from the Name 
Server on that instance and re-directs the connection to the 
Communications Server (iigcc) on the target database’s network using the 
connection data that it received from the Name Server. 

 The Communications Server on the target database’s network (a different 
network than that of the requesting application) finds the listen address of 
the Name Server on that network’s installation. The Communications 
Server requests connection information from the Name Server by passing 
the name of the database for which the connection is requested. 

 The Name Server returns the listen address of a DBMS Server on that 
instance that is capable of servicing a request for connection to the target 
database. 

 The Communications Server (iigcc) connects to the DBMS Server on the 
remote instance. 

When these steps are completed, a virtual connection has been established 
between the application and the DBMS Server through the Bridge Server. 

 

134  Ingres 2006 R2 Connectivity Guide 
 



Bridge Troubleshooting 
 

Bridge Troubleshooting 
Most problems with Ingres Bridge are related to one of the following 
situations: 

 Network or protocol not properly installed 

 The Name Server (iigcn), Communications Server (iigcc), or Bridge Server 
(iigcb) process not running 

 Incorrect netutil entries 

 Port connection problems 

To determine the origin of a problem, begin by examining the Ingres error file, 
errlog.log. The Bridge Server’s startup and shutdown messages and Ingres 
Bridge error messages are logged to this file. The error log is maintained in the 
following file: 

Windows:

%II_SYSTEM%\INGRES\FILES\ERRLOG.LOG 

UNIX:

$II_SYSTEM/ingres/files/errlog.log 

VMS:

II_SYSTEM:[INGRES.FILES]ERRLOG.LOG 

For additional information on problems related to the Bridge Server process, 
see the chapter “Troubleshooting Connectivity." 

 

Exploring Bridge  135  
 



Sample Bridge Server Configuration 
 

Sample Bridge Server Configuration 
The following is a sample Bridge Server setup for a client on Windows to an 
EDBC for DB2 server on z/OS by means of Ingres Bridge on Solaris. The client 
supports TCP/IP and the DB2 server supports SNA LU62. Ingres Bridge 
supports both network protocols. 

The following examples show pertinent excerpts from the files. 

Client on Windows—This connection between the client and Ingres Bridge is 
supported by TCP/IP. The following excerpt is for the client: 

VNODE Definition: 
  Virtual Node       = db2gw 
  Remote Node        = abc 
  Protocol           = wintcp 
  Listen Address     = CC7 (matches Bridge listen address below) 
  Username           = johnm (userid in DB2 Gateway) 
  Password           = xxxxxx 
 
User invokes terminal monitor: 
   SQL db2gw::db23/db2 

Bridge on Solaris—This connection between Ingres Bridge and the EDBC for 
DB2 server is supported by SNA LU62. The following excerpt is for Ingres 
Bridge: 

hostname = abc  
Ingres Variables:  
  II_INSTALLATION  = CC  
config.dat file:  
  ii.abc.gcb.*.inbound_limit:      50(max concurrent sessions) 
  ii.abc.gcb.*.tcp_ip.port:        CC  
  ii.abc.gcb.*.tcp_ip.port.bvdb2gw CC7 (Bridge listen address) 
      ("bvdb2gw" is vnode for DB2 Gateway in netutil below) 
  ii.abc.gcb.*.tcp_ip.status:      ON  
  ii.abc.gcb.*.sna_lu62.poll:      4000 
  ii.abc.gcb.*.sna_lu62.port:      abcgw0.sunlu62 
     ("abcgw0" is gateway name in /etc/appcs below, 
      "sunlu62" can be anything in this case)  
  ii.abc.gcb.*.sna_lu62.status:    ON  
netutil entry:  
  Virtual Node      = bvdb2gw         
  Net Address       = s2 (matches unique_session_name below)  
  Protocol          = sna_lu62 
  Listen Address    = sunlu62 (anything OK here) 
 
/etc/appcs file:  (Sun SNA server config file) 
  abcgw0 abc:abcgw0  
Sun SNA network config file:  
  :DEFINE_PARTNER_LU 
  fql_plu_name   = A04IS2G2 (VTAM applid for DB2 Gateway) 
  u_plu_name     = A04IS2G2 (VTAM applid for DB2 Gateway)  
  DEFINE MODE 
  mode_name     = INGLU62  
  unique_session_name = s2  
System Administrator starts the Name Server and Bridge Server 
  ingstart -iigcn  
  ingstart -iigcb 

136  Ingres 2006 R2 Connectivity Guide 
 



Sample Bridge Server Configuration 
 

Server on z/OS—The following excerpt is for the server: 

VTAM Config:  
  Applid for DB2 Gateway   = A04IS2G2 
  Acbname for DB2 Gateway  = IIS2GWS2  
 
DB2 Gateway IIPSERV file:  
  IIPSERV TYPE=SNA_LU62,  
       INSTALL=S2,  
       ACB=IIS2GWS2,  
       LOGMODE=INGLU62, 
 
DB2 Gateway IIPARM file:  
  II_PROTOCOL_SNA_LU62      = YES  
 

Exploring Bridge  137  
 





 

Chapter 9: Configuring the Data Access 
Server 
 

This chapter introduces the Data Access Server and explains how it can be 
configured and traced. 

 

Data Access Server 
The Data Access Server (DAS) process (iigcd) is a component of the General 
Communications Architecture (GCA) and runs as part of a standard Ingres 
instance. 

The server translates JDBC or .NET Data Provider requests from the Ingres 
JDBC Driver or the .NET Data Provider into Ingres internal format and forwards 
the request to the appropriate DBMS server. The DAS supports the same 
network protocols and port designations as the Communications Server. 

Through the DAS, a JDBC or .NET Data Provider client has full access to 
Ingres, Enterprise Access, and EDBC databases. Using Net, the DAS can also 
provide JDBC or .NET Data Provider clients with access to these databases on 
remote machines. 

 

How You Configure the DAS 
To configure the DAS, use the DAS Parameters page in Configuration Manager 
(vcbf) or the Configuration-By-Forms (cbf) utility.  

 

Configuring the Data Access Server  139  
 



How You Configure the DAS 
 

DAS Parameters—Configure DAS 

The DAS has the following configurable parameters: 

client_max 

Defines the maximum number of concurrent client connections permitted. 
Set to –1 for no limit. 

client_timeout 

Defines the time, in minutes, to wait for client requests. If the time expires 
with no request from the client, the client and DBMS Server connections 
are aborted.  
Set to 0 for no timeout. 

connect_pool_expire 

Defines the time, in minutes, for which a DBMS Server connection remains 
in the connection pool. The connection is aborted if a pooled connection is 
not used in this amount of time.  
Set to 0 for no expiration. 

connect_pool_size 

Defines the maximum number of DBMS Server connections held in the 
connection pool.  
Set to –1 for no limit. 

connect_pool_status 

Specifies the operational mode of the connection pool. Modes are: 

on 

Enables pooling unless explicitly disabled by the client. The DAS saves 
and reuses DBMS Server connections when connection pooling is 
enabled. 

off 

Disables pooling. 

optional 

Enables pooling but only when requested by the client. 

<protocol>.port 

Identifies the listen address for the network protocol port. This can be a 
numeric port identifier or an Ingres symbol port identifier such as II7. This 
port must not be used by any other network server on the platform. 

 

140  Ingres 2006 R2 Connectivity Guide 
 



How You Enable DAS Tracing 
 

<protocol>.status 

Specifies the status of the network protocol. Options are: 

on 

Indicates that the DAS must listen/accept connection requests on the 
protocol. 

off 

Disables the protocol. 
 

How You Enable DAS Tracing 
Because the DAS (iigcd) is a GCA-based server, it is a companion to the Ingres 
Name Server (iigcn) and the Communications Server (iigcc), and supports GCA 
tracing and other similar module tracing. 

To enable DAS tracing, use either of these methods: 

 Add entries to the Ingres configuration file (config.dat) in the gcd section. 
This method is preferred because it allows trace output from multiple 
servers to be logged in the same file.  

 Set the environment variables prior to starting the server.  

As a general rule, use the config.dat file for server tracing and the 
environment variables for client tracing.   

The entries or values you must supply are as follows: 

 

Configuration
File Entry 

Environment 
Variable 

Value Description 

gcd_trace_log II_GCD_LOG log Path and file name of the trace 
log 

gcd_trace_leve
l 

II_GCD_TRACE 0 – 5 Tracing level for the DAS 

 

Configuring the Data Access Server  141  
 



How You Enable DAS Tracing 
 

Tracing Levels 

The tracing level determines the type of information that is logged. The 
following levels are currently defined: 

1 – Errors and exceptions 

2 – High level method invocation 

3 – High level method details 

4 – Low level method invocation 

5 – Low level method details 
 

142  Ingres 2006 R2 Connectivity Guide 
 



 

Chapter 10: Understanding ODBC 
Connectivity 
 

This chapter introduces the Ingres ODBC components that enable ODBC 
connectivity to Ingres data sources. It provides a description of each 
component, a list of supported API features, data source configuration 
instructions, connection string keyword definitions, and guidelines for 
implementing ODBC-enabled applications in the Ingres environment. 

 

ODBC Driver 
The Ingres ODBC driver (subsequently referred to as the ODBC driver) enables 
ODBC-enabled applications to access Ingres, Enterprise Access, and EDBC 
databases. The driver is installed as part of a standard Ingres client installation 
or as a stand-alone product.  

 

ODBC Call-level Interface 
The Ingres ODBC Call-level Interface (ODBC CLI) provides access to the ODBC 
application environment without the need to use third-party software. It is 
installed when you install the Ingres ODBC Driver and is supported on all 
platforms on which Ingres runs. 

The Ingres ODBC CLI performs the following functions: 

 Optionally determines driver characteristics from ODBC configuration files 

 Loads and unloads the ODBC driver into and from application memory 

 Maps the driver manager API to the driver API  

 Performs basic error checking 

 Provides thread safety 

 Provides ODBC tracing 

 Provides function templates, type definitions, and constant definitions for 
ODBC applications 

Note: The ODBC CLI is not a generic ODBC driver manager. While it does 
provide functions similar to other ODBC driver managers, it is designed 
specifically to support ODBC-based application access to the Ingres 3.5 ODBC 
driver. It does not support Ingres ODBC drivers provided by third-party 
vendors. 

 

Understanding ODBC Connectivity  143  
 



Unsupported ODBC Features 
 

The ODBC CLI can use ODBC data sources configured with the Microsoft ODBC 
Administrator on Windows or the iiodbcadmn utility on non-Windows 
platforms. For more information, see Configure a Data Source (Windows) (see 
page 147) and Configure a Data Source (UNIX and VMS) (see page 155). 

 

Unsupported ODBC Features 
The ODBC driver does not currently support the following features: 

 Executing functions asynchronously 

 Translation DLL (Ingres handles this requirement through the 
II_CHARSETxx environment variable.) 

 The GUID (Globally Unique Identifier) data type, which is specific to 
Microsoft Access databases. 

 Installer DLL 

On Windows, the Microsoft installer DLL can be used to install the Ingres 
ODBC driver, if required. The Ingres ODBC driver can be installed from the 
Ingres installer software or the Ingres ODBC Standalone Patch Installer.  

On non-Windows platforms, the odbcinst and iisuodbc utilities use the 
Ingres ODBC Configuration API to configure driver information. 

 SQLBulkOperations() 

 SQLSetPos() 
 

Read-Only Driver Option 
To support the release of a non-configurable read-only driver into production 
environments, the ODBC driver can optionally be installed as a read-only 
driver. This driver allows SET statements such as SELECT, EXECUTE 
PROCEDURE, and ODBC CALL, but does not allow update statements (for 
example, INSERT, DELETE, UPDATE, CREATE, and so on). 

Both ODBC drivers (read-only and read/update) are installed during the 
standard Ingres installation. Selection of the driver type is performed during 
configuration of an ODBC data source. For more information, see Configure a 
Data Source (Windows) (see page 147) and Configure a Data Source (UNIX 
and VMS) (see page 155). 

 

144  Ingres 2006 R2 Connectivity Guide 
 



ODBC Driver Requirements 
 

ODBC Driver Requirements 
The following sections list the ODBC driver software, platform, and protocol 
requirements. For additional information relating to the ODBC driver, see the 
Ingres Corporation web site. The latest release of the ODBC Driver is also 
available for free download on the Ingres Corporation web site. 

 

ODBC Driver Manager Programs 

The following are the installation requirements for the ODBC driver. 

Windows: Microsoft's ODBC Driver Manager must be installed to use the 
ODBC driver (release 2.5 or above of the ODBC Driver Manager is acceptable). 
The ODBC 3.0 SDK can be downloaded from the Microsoft Universal Data 
Access web site at http://www.microsoft.com/data.  

UNIX and VMS: The Ingres ODBC CLI is the preferred ODBC driver manager 
if no other ODBC drivers are required.  No additional download is required. The 
only requirement for installation is to execute the utility iisuodbc. The iisuodbc 
utility provides configuration information to Ingres and creates an ODBC 
configuration file. 

If the ODBC application requires non-Ingres ODBC drivers, unixODBC Driver 
Manager can be installed to use the Ingres ODBC driver. The unixODBC Driver 
Manager is available as freeware and can be downloaded from 
http://unixODBC.org. The download includes a Readme file with instructions 
for UNIX, Linux and VMS. On Unix and Linux, the Ingres ODBC driver can also 
be used with the CAI/PT Driver Manager, which is available from Computer 
Associates.  

Note: The Ingres ODBC driver does not support the Merant ODBC Driver 
Manager. 

 

Protocols Supported by ODBC Driver 

The Ingres ODBC driver supports the following protocols: 

 TCP/IP 

 NetBIOS 

 DECNet on VMS 
 

Understanding ODBC Connectivity  145  
 



ODBC Driver Requirements 
 

Support for Previously Released ODBC Drivers 

Each release of Ingres requires a compatible ODBC driver. On Windows, if your 
machine contains an Ingres 2.8 driver, the driver was registered with a driver 
name of "Ingres" and possibly "Ingres 2.8" if ODBC patches were installed. 
The Ingres installer registers the Ingres 2006 ODBC driver as "Ingres 3.0." 
Previous installations of Ingres r3, which were also registered as "Ingres 3.0," 
are overwritten by the Ingres installer. 

The ODBC 2.8 driver is ODBC 2.0 API compliant, while the ODBC 3.5 driver is 
ODBC 3.0 API compliant. 

UNIX, Linux, and VMS use an odbcinst.ini configuration file instead of a 
registry. A succession of ODBC driver names are maintained that correspond 
to the Ingres release. No ODBC 2.8 drivers are supported on UNIX, Linux, or 
VMS.  

 

Backward Compatibility Issues for ODBC DSN Definitions 

On Linux, if you want to run the Ingres 2006 Release 2 ODBC driver with 
earlier versions of Ingres on the same machine, existing DSN definitions that 
point at “Ingres” will now reference the Ingres 2006 Release 2 version of the 
Ingres ODBC.  

On Windows, existing DSN definitions will still point at the prior driver settings 
because the driver path is hard-coded in the registry and takes precedence 
over the driver name. We recommend that you delete your existing ODBC DSN 
definitions and create new ones after installing the Ingres ODBC driver. 

 

146  Ingres 2006 R2 Connectivity Guide 
 



Configure a Data Source (Windows) 
 

Configure a Data Source (Windows) 
A data source configuration is a collection of information that identifies the 
database you want to access using the ODBC driver. You can configure as 
many data sources as you require. Once defined, a data source is available for 
use by any application that uses ODBC.  

ODBC data sources are a convenient way of connecting to a database. You 
can, however, connect to a database without them by using only a connection 
string. For details, see Connection String Keywords (see page 167). 

To configure a new data source on Windows 

1. Run the ODBC Data Source Administrator provided on Windows.  

 

You can define one or more data sources for each installed driver. The 
data source name must provide a unique description of the data; for 
example, Payroll or Accounts Payable. 

A data source can be defined as system or user, depending on whether it 
must be visible to all users (and services) or only the current user. 

Understanding ODBC Connectivity  147  
 



Configure a Data Source (Windows) 
 

2. Select the User DSN or the System DSN tab, depending on your 
requirements, and click Add. 

Note: A system DSN pointing to a public server definition is required for 
Microsoft Internet Information Server (IIS) and Microsoft Transaction 
Server (MTS). 

The Create New Data Source dialog opens, which lists all the ODBC drivers 
installed on your system. 

 

Note: To switch ODBC DSNs defined previously for the ODBC 2.8 driver to 
the new ODBC 3.5 driver, remove the DSN by selecting it in the ODBC 
Data Source Administrator Data Sources list, and clicking Remove. Add the 
DSN again using the new ODBC driver. 

148  Ingres 2006 R2 Connectivity Guide 
 



Configure a Data Source (Windows) 
 

3. Select the Ingres driver and click Finish. 

The Ingres ODBC Administrator dialog opens. 

 

4. Fill in the necessary information on the Data Source tab and the Advanced 
tab, and then click Apply. For details on the options, see Data Source Tab 
(see page 150) and Advanced Tab (see page 152). The Advanced tab is for 
setting custom configuration options, which are typically used in special 
cases and not required for general use. 

The Test button is activated.  

5. Click the Test button to verify that all parameters are correct and to verify 
the cache information about the specific connection. This improves 
connection response times when the connection is used by ODBC 
applications. 

You should receive a Successful Connection message. 

6. Click OK. 

The data source is created. You are returned to the ODBC Data Source 
Administrator, where your newly defined data source appears in the Data 
Sources list. 

 

Understanding ODBC Connectivity  149  
 



Configure a Data Source (Windows) 
 

Data Source Tab, Ingres ODBC Administrator (Windows) 

The Data Source tab of the Ingres ODBC Administrator has the following 
options: 

Data Source 

Defines the data source name (DSN) by which an ODBC application 
connects to a database server.  

Limits: A character string of up to 32 characters, which can included any 
combination of letters, numbers, spaces, or special characters.  

Examples: Accounting or INGRES-Serv1 

Description 

Is an optional long description for a data source name.  

Examples: My Accounting Database or INGRES on Server number 1 

Vnode 

Specifies the name of the virtual node that has been defined for the local 
instance to identify a particular remote database server instance. Choose 
LOCAL if the database resides on the local node. 

Type 

Specifies the class of database server being accessed. The default is 
INGRES, which indicates an Ingres DBMS Server. If the database server 
installation is being accessed through an Enterprise Access server, specify 
the gateway server class (for example, IDMS). 

Database 

Identifies the name of the database that the application accesses by 
default. 

Prompt User ID and Password to Override VNODE Login 

Prompts for the UID and PWD information when the connection is being 
established, if these arguments are not passed in the function call.  

An ODBC application connects to a data source using the Open method, 
SQLConnect, or SQLDriverConnect function call. Optional parameters are 
user ID (UID) and password (PWD) arguments. In ADO, they are specified 
as part of the connection string.  

The application must be sensitive to Windows for the prompt to appear. If 
this option is not checked, the user is not prompted (unless the data 
source name (DSN) is also needed) and only the login information in the 
VNODE definition is used. 

 

150  Ingres 2006 R2 Connectivity Guide 
 



Configure a Data Source (Windows) 
 

Enterprise Access (gateway) and EDBC WITH Options 

Allows the passing of  Enterprise Access specific parameters to certain 
subsequent statements in a given connection. When specifying options, do 
not include the “WITH” keyword, and separate multiple options with a 
comma, (that is, keyword=value,keyword=value). 

Example: 

dcom_ct_option = `in area CASQLDEFAULT` 

Role Name and Role Password 

Identifies a role ID and its associated password if a role identifier has been 
defined that associates privileges with the role. 

Group 

Identifies a group identifier for the session. This identifier is equivalent to 
the -G flag of the Ingres command-line flags. 

Read Only 

Tells the Ingres ODBC driver to reject all attempts to perform database 
updates for the target database. 

Test: (32-bit driver only) 

Tests the current settings for the data source name to insure that a proper 
connection can be made through the ODBC. The Test button also refreshes 
(or creates if it does not exist already) a cache kept in the DSN definition 
for improved performance by the ODBC driver when accessing EDBC or 
Enterprise Access gateways. The cache contains the capabilities of the 
server for identifier name case, name lengths, DBMS release, and so on. 

The cache is populated during creation or modification of the DSN 
definition during the database dropdown and changes applied. The driver 
at application runtime uses the cache from the DSN if the servername and 
servertype in the DSN is not overridden by the servername and servertype 
in the application’s connection string (if present). 

Using the DSN cache improves connection performance to DB2, VSAM, 
IMS, IDMS, DCOM (and so on) by eliminating the round-trips to the server 
caused by the capabilities queries during the ODBC connection process. 

 

Understanding ODBC Connectivity  151  
 



Configure a Data Source (Windows) 
 

Advanced Tab, Ingres ODBC Administrator (Windows) 

The Advanced tab of the Ingres ODBC Administrator has the following options: 

Select Loops 

Causes select loops rather than cursors to be used. A SELECT query 
generated through SQLExec, ExecDirect, or the Execute method creates 
result sets. If multiple rows are to be fetched, the result set is traversed 
using a select loop or cursor loop. 

Select loops generally have the best performance, especially for fetching a 
large number of rows. However, only one select loop can be active at a 
time. Select loops are not nested. 

For example, in ADO, multiple record set objects cannot be retrieved 
within [Connection].BeginTrans and [Connection].CommitTrans methods. 
In direct ODBC code, SQLFreeStmt must be called before executing 
another select loop. 

Cursors 

Causes cursors rather than select loops to be used. Cursors can be slower 
than select loops, but cursors place no limits on the number of active 
result sets. Cursor loops can be nested. 

Cursor loops offer better performance for MS Access, ADO, and OLE DB 
applications because fewer ODBC connections are created. This is because 
the ODBC driver returns information that it supports unlimited active 
statements when the “cursor loop” option is selected. ADO and OLE DB 
respond to this information by reusing existing connections for internal 
cursor engine and meta data functions instead of creating new 
connections. 

If the ODBC application is written directly (without using a higher-level 
interface such as ADO), and a statement handle has set an explicit cursor 
name using SQLSetCursorName(hstmt), a cursor loop is always used for 
that particular result set associated with the statement handle, regardless 
of the setting in the configuration dialog. 

Convert three-part ownername.tablename.columnname 

Causes the ODBC driver to convert the 
ownername.tablename.columnname references to tablename.columnname 
references. Some applications, such as Microsoft Visual Interdev fully 
qualify their column-name references as 
ownername.tablename.columnname references. Older Ingres 6.4 based 
servers and gateways cannot handle this form of the SQL syntax.  

Include SYS* and sys* tables in SQL Tables result set 

Includes “SYS*” tables in the result set. By default, the ODBC driver filters 
out tables beginning with “SYS*” when the SQLTables() query is executed, 
as these are usually system (internal) tables.  

 

152  Ingres 2006 R2 Connectivity Guide 
 



Configure a Data Source (Windows) 
 

Return empty string DATE values as NULL 

Causes applications to receive a more meaningful NULL value when 
displaying an empty string date, which is preferred by some applications, 
such as MS Access and MS Excel. By default, the ODBC driver returns the 
date value of 9999-12-31 23:59:59 for empty date values.  

Return DATE value ‘1582-01-01 as NULL 

Causes applications to receive a NULL value when fetching the "magic" 
date of 1582-01-01. Some MK (Manufacturing Knowledge) applications 
load their database with this date to indicate a default beginning date. This 
is meaningless, however, to other applications that use the same date.  

Force separate database session for ODBC catalog functions 

Causes the ODBC driver to use two sessions with a separate session for 
ODBC catalog functions (SQLTables, SQLColumns, SQLPrimaryKeys, and 
so on). This behavior is used by older releases of the ODBC driver. By 
default, the ODBC driver uses just one database session for all ODBC 
functions. This option is only needed for compatibility issues where Select 
Loops were used and the application was relying on the separation of 
interleaved main and catalog function result sets. Before using this option, 
first try selecting the Cursor Loops option to solve any compatibility issues. 

Ignore arithmetic errors of numeric overflow, underflow, divide by 
zero 

Causes the ODBC driver to ignore a numeric overflow, underflow (and so 
on) condition. By default, this condition is an error. This option is 
equivalent to the –numeric_overflow=ignore command line flag. 

Support II_DECIMAL 

Causes ODBC applications to evaluate the II_DECIMAL variable and use a 
comma if so specified. If this box is not checked, or II_DECIMAL is not 
defined as a comma character (“,”), the ODBC defaults to a period 
character (“.”). 

Allow update in database procedure (Read Only Driver only) 

Tells the ODBC driver to allow applications to execute database procedures 
that perform updates. If the box is not checked, the default behavior is to 
reject execution of updating database procedures. This applies only to 
Ingres II databases and all later releases. 

 

Understanding ODBC Connectivity  153  
 



Configure a Data Source (Windows) 
 

Return NULL for SCHEMA columns in ODBC catalog function result sets 

Causes the driver to return NULL for schema (owner) names for the ODBC 
catalog functions. The option is not safe if a user has table t1 and the DBA 
also has a table t1 in the database. There is no problem if user1 has a 
table t1 and user2 also has a table t1. Table names returned are limited to 
those owned by the current user or DBA. This avoids problems between 
user1 and user2, but not with the DBA. Although SQLTables work, 
ambiguities between user and DBA duplicate table names cause failures on 
calls to SQLColumns, SQLPrimaryKeys, SQLSpecialColumns, etc. when this 
option is selected  This option must be used with caution. 

Disable underscore character wildcard search in catalog functions 

Tells ODBC catalog functions to not treat underscore characters as 
wildcards. 

Fill Character for failed Unicode/multibyte conversions 

Displays the specified character for each character that fails to convert 
from Unicode. For instance, if the character X is specified, the string 
“mulitbXXX” means that the string had three Unicode characters that could 
not be displayed in the current codepage. 

This field is for applications that display Unicode data as multi-byte.  
 

154  Ingres 2006 R2 Connectivity Guide 
 



Configure a Data Source (UNIX and VMS) 
 

Configure a Data Source (UNIX and VMS) 
A data source configuration is a collection of information that identifies the 
database you want to access using the ODBC driver. You must configure a 
data source before connecting to a database through ODBC. 

To configure a new data source on UNIX and VMS

1. Run the Ingres ODBC Data Source Administrator utility, iiodbcadmin. 

The ODBC Administrator Main Menu form is displayed. This form lists all 
currently configured data sources. 

 

2. Select the Create menu option. 

The following form is displayed: 

 

Understanding ODBC Connectivity  155  
 



Configure a Data Source (UNIX and VMS) 
 

3. Supply a name, and then select Save. 

A pop-up menu is displayed with a list of available installed drivers:  

 

4. Select a driver and data source name. 

The Data Source Configuration Page is displayed: 

 

5. Fill in the necessary information as required. For more information, see 
Data Source Configuration Form (see page 157).  

6. Select the Advanced menu option. 

The Advanced Configuration Options form is displayed: 

 

156  Ingres 2006 R2 Connectivity Guide 
 



Configure a Data Source (UNIX and VMS) 
 

For information on this form, see Advanced Data Source Configuration 
Options (see page 158). 

7. Review the displayed information. To change an advanced option value, 
place the cursor on the desired option and select Edit. This action toggles 
the current value to the alternate value (only two values exist for each 
option). Select End when finished. 

The Data Source Configuration form is displayed.  

8. Select Save. 

The new configuration is saved, and is included in the list of data sources 
on the Ingres ODBC Administrator Main Menu form. 

 

Data Source Configuration Form (UNIX and VMS) 

The Data Source Configuration form of the Ingres ODBC Administrator has the 
following options: 

Data Source 

Defines the data source name (DSN) by which an ODBC application 
connects to a database server. Examples include “Accounting” or “INGRES-
Serv1.” 

Description 

Is an optional long description for a data source name. For example, “My 
Accounting Database” or “INGRES on Server number 1.” 

Driver Name 

Specifies the predefined name of the installed driver. 

Role Name and Role Password 

 Identifies a role ID and associated password that can be entered if a role 
identifier has been defined that associates privileges with the role. 

WITH Options 

Allows the passing of Enterprise Access or EDBC specific parameters to 
certain subsequent statements in a given connection. When specifying 
options, do not include the “WITH” keyword, and separate multiple options 
with a comma, (that is, keyword=value,keyword=value). 

Example: 

dcom_ct_option = `in area CASQLDEFAULT` 

Understanding ODBC Connectivity  157  
 



Configure a Data Source (UNIX and VMS) 
 

Vnode 

Identifies the name of the virtual node that has been defined for the local 
instance to identify a particular remote database server instance. Choose 
‘local’ if the database resides on the local node. 

Server Type 

Specifies the class of database server being accessed. The default is 
INGRES, which indicates a native Ingres DBMS Server. If you are 
accessing the database server instance through an Enterprise Access or 
EDBC server, specify the gateway server. If you place the cursor in this 
field and select List Choices, you can make a selection from a scrollable list 
of currently supported server types. 

Database 

Identifies the name of the database that the application accesses by 
default. If you place the cursor in this field and select List Choices, you can 
make a selection from a scrollable list of available databases. 

 

Read Only 

 Enter “Y” if you want the Ingres ODBC driver to reject all attempts to 
perform database updates for the target database. 

 

Advanced Data Source Configuration Options (UNIX and VMS) 

The Advanced Data Source Configuration Options form of the Ingres ODBC 
Administrator has the following options: 

Cursor or Select Loops 

Causes either cursors or select loops to be used.  

A SELECT query generated through SQLExec, ExecDirect, or the Execute 
method creates result sets. If multiple rows are to be fetched, the result 
set is traversed using a select loop or cursor loop. 

Select loops generally have the best performance, especially for fetching a 
large number of rows. However, only one select loop can be active at a 
time. Select loops cannot be nested. 

Cursors can be slower than select loops, but cursors place no limits on the 
number of active result sets. Cursor loops can be nested. 

Convert three-part schema to 2-part schema 

Causes the ODBC driver to convert the 
ownername.tablename.columnname references to tablename.columnname 
references. Some applications fully qualify their column-name references 
as ownername.tablename.columnname references. Ingres 6.4 based 
servers and gateways cannot handle this form of the SQL syntax.  

158  Ingres 2006 R2 Connectivity Guide 
 



Configure a Data Source (UNIX and VMS) 
 

Include “SYS” or “sys” SQLTables in result set 

Includes “SYS*”tables in the result set. By default, the ODBC driver filters 
out tables beginning with “SYS*” when the SQLTables() query is executed, 
as these are usually system (internal) tables.  

Return empty string DATE values as NULL 

Causes applications to receive a NULL value for empty date values. By 
default, the ODBC driver returns the date value of 9999-12-31 23:59:59 
for empty date values. 

Return DATE values ‘1582-01-01 as NULL 

Causes applications to receive a NULL value when fetching the "magic" 
date of 1582-01-01. Some MK (Manufacturing Knowledge) applications 
load their database with this date to indicate a default beginning date. This 
is meaningless, however, to other applications that use the same date.  

Force separate catalog session for ODBC catalog functions 

Causes the ODBC driver to use two sessions with a separate session for 
ODBC catalog functions (SQLTables, SQLColumns, SQLPrimaryKeys, and 
so on). This behavior is used by older releases of the ODBC driver. By 
default, the ODBC driver uses just one database session for all ODBC 
functions. This option is only needed for compatibility issues where Select 
Loops were used and the application was relying on the separation of 
interleaved main and catalog function result sets. Before using this option, 
first try selecting the Cursor Loops option to solve any compatibility issues. 

Ignore arithmetic errors overflow, underflow, divide by zero 

Causes the ODBC driver to ignore a numeric overflow, underflow (and so 
on) condition. By default, this condition is an error. This option is 
equivalent to the –numeric_overflow=ignore command line flag. 

Support II_DECIMAL 

Causes ODBC applications to evaluate the II_DECIMAL variable and use a 
comma if so specified. If this box is not checked, or II_DECIMAL is not 
defined as a comma character (“,”), the ODBC defaults to a period 
character (“.”). 

Return NULL for SCHEMA columns in result sets 

Causes the driver to return NULL for schema (owner) names for the ODBC 
catalog functions. The option is not safe if a user has table t1 and the DBA 
also has a table t1 in the database. 

There is no problem if user1 has a table t1 and user2 also has a table t1. 
Table names returned are limited to those owned by the current user or 
DBA. This avoids problems between user1 and user2, but not with the 
DBA. 

Understanding ODBC Connectivity  159  
 



Configure a Data Source (UNIX and VMS) 
 

Although SQLTables work, ambiguities between user and DBA duplicate 
table names cause failures on calls to SQLColumns, SQLPrimaryKeys, 
SQLSpecialColumns, etc. when Yes is selected for this option. This option 
must be used with caution. 

Disable underscore wild-card pattern in search patterns 

Causes ODBC catalog functions to not treat underscore characters as a 
wildcard 

Allow update in database procedures (Applies to read-only option) 

Allows applications to execute database procedures that perform updates. 
If No is selected, the default behavior is to reject execution of updating 
database procedures. This applies only to Ingres II databases and all later 
releases. 

 

View Data Source Configuration Details 

You can view detailed data source configuration information for debugging and 
support purposes.  

To see detailed information on a data source 

Select the Details menu option from the Data Source Configuration form.  

The Data Source Configuration Details form, which is read-only, is displayed.  

 

 
 

160  Ingres 2006 R2 Connectivity Guide 
 



Configure a Data Source (UNIX and VMS) 
 

Driver Configuration Options 

The Ingres ODBC Administrator does not allow the installation or modification 
of driver information, except for tracing in an ODBC environment. The driver is 
typically installed when Ingres is installed, or can be set up after installation by 
using the iisuodbc or iiodbcinst utilities.  

To see information about the installed drivers 

Select the Drivers menu option from the Main Menu form.  

The Installed Drivers Form is displayed: 

 

This form allows you to perform the following configuration tasks for each 
installed driver: 

 Turn on ODBC tracing 

 Define the path of the driver configuration 

 View details about the configuration 
 

Understanding ODBC Connectivity  161  
 



Configure a Data Source (UNIX and VMS) 
 

Enable ODBC Tracing 

The default mode for tracing is OFF. 

To enable ODBC tracing  

1. Select Tracing on the Installed Drivers form.  

The Select ODBC Tracing form is displayed:  

 

2. Select Edit to toggle the mode to ON.   

3. Specify the path and file name of the tracing log file in the Trace Path 
field. You must specify a tracing log file. If no path is provided, the log is 
written to the directory in which the ODBC application executes. 

The Driver Manager field displays the type of driver manager that was 
specified when the iiodbcinst or iisuodbc utility was executed. 

 

Select a Driver Path 

You can use the default path configured for ODBC drivers, or set an alternate 
path.  

To select a path for the driver definitions and system-level data source 
definitions 

1. Select Files on the Installed Drivers form.  

The Select Driver Files form is displayed:  

 

162  Ingres 2006 R2 Connectivity Guide 
 



Configure a Data Source (UNIX and VMS) 
 

2. Select either the default path or an alternate path.  

To select the default path, place the cursor on SYSTEM and choose Select. 

To select an alternate path, place the cursor on the ALTERNATE option and 
choose Select. 

The Define Alternate Driver Path form is displayed: 

 

3. Enter in the Path field the path you want to use for the driver and select 
Save. 

The driver path is set.  

Important! This alternate path remains in effect only for the duration of 
the current ODBC Administrator session, or until another path and file 
name is defined for the data sources. You can change the default path with 
the iisuodbc or iiodbcinst utilities.

 

Understanding ODBC Connectivity  163  
 



Configure a Data Source (UNIX and VMS) 
 

View Driver Configuration Details 

You can use the read-only form, Driver Configuration Details, to help in 
debugging and support-related tasks. 

To view configuration details for a particular driver 

Select the driver on the Installed Drivers form and select Details. 

The Driver Configuration Details form is displayed: 

 
 

Select a Data Source Configuration File Path 

You can select the default path configured for the user-level data source 
definitions, or specify an alternate path.   

To select a data source configuration file path  

1. Select the Files menu option from the Main Menu form.  

The Data Source Files form is displayed: 

 

164  Ingres 2006 R2 Connectivity Guide 
 



Configure a Data Source (UNIX and VMS) 
 

2. To select the default path, place the cursor on the USER or SYSTEM option 
and choose Select. 

The default path configured for the user-level data source definitions is 
selected. 

Note: Non-Windows environments can use any valid path for the driver 
configuration file, odbcinst.ini. The ODBC environment variable 
ODBCSYSINI defines the configuration file path. When running ODBC 
applications, we recommend that you define ODBCSYSINI, especially if the 
driver manager is CAI/PT or the Ingres ODBC CLI. Without this definition, 
unixODBC environments assume the driver configuration path is 
/usr/local/etc (SYS$SHARE on VMS). Use of the ALTERNATE path without 
defining ODBCSYSINI works only if the driver manager automatically uses 
this path. 

The USER represents a private definition for the individual, logged-in user, 
while SYSTEM represents a global definition applicable to all users on the 
platform. 

3. To specify an alternate path, place the cursor on the ALTERNATE option 
and choose Select. 

The Alternate Data Source Path form is displayed: 

 

4. Type over the path in the Path field with the alternate path and filename 
you want to use to access user-level data source definitions, and select 
Save. 

The alternate path is defined. 

Important! This alternate path remains in effect only for the duration of 
the current ODBC Administrator session, or until another path and file 
name is defined for the data sources. 

 

Understanding ODBC Connectivity  165  
 



Configure a Data Source (UNIX and VMS) 
 

Test a Data Source Connection 

After a data source has been defined and any changes have been applied, you 
should test the current settings for the data source to insure that a proper 
connection can be made through ODBC.  

To test the connection for a particular data source 

Select the data source name on the Main Menu form and select Test.  

The ODBC Administrator attempts a connection to the configured vnode for 
that data source and returns a message indicating whether the connection was 
successful. 

 

Edit and Remove Data Sources 

You can configure as many data sources as you require. Once defined, a data 
source is available for use by any application that uses ODBC.  

To modify an existing data source configuration  

1. Select the data source in the ODBC Data Source Administrator Main Menu 
form and select Edit.  

The Data Source Configuration form is displayed. 

2. Edit the data source configuration by following the instructions described 
in the Configure a Data Source sections. 

To remove an existing data source configuration  

1. Select the data source on the Main Menu form and select Destroy.  

A prompt asks you to verify the removal of the data source configuration. 

2. Reply in the affirmative. 

The data source definition is removed.  
 

166  Ingres 2006 R2 Connectivity Guide 
 



Connection String Keywords 
 

Connection String Keywords 
If your application requires a connection string to connect to a data source, 
you must specify the data source name. Optionally, you can specify 
attribute=value pairs to override certain data source and vnode definitions. 
The ODBC function SQLDriverConnect() or SQLDriverConnectW() is required 
for connection strings. 

The connection string has the form: 

DSN=data_source_name[;attribute=value[;attribute=value]...] 

Alternatively, you can bypass data source definitions entirely if you include 
sufficient information in the connection string. The minimum attributes in this 
case are the SERVER, SERVERTYPE, and DATABASE attribute/value pairs. 

DSN-less connection strings have the form: 

CONNECTSTR=SERVER=server_name; SERVERTYPE=server_type; 
DATABASE=database;[attribute=value]…] 

The following table provides the keyword for each connection string attribute. 

 

Keyword Attribute Value Description 

DSN Data source name. 

DRIVER Driver description as returned by SQLDrivers(). 

UID User ID to override vnode definition. If specified, 
PWD must also be specified. 

PWD Password to override vnode definition. If specified, 
UID must also be specified. 

SERVER Vnode name. 

SERVERTYPE Server type (for example, INGRES, IDMS, or DB2). 

DATABASE Database name as defined on the server. 

DB A synonym for DATABASE. 

ROLENAME Role name to override vnode definition. 

ROLEPWD Role password to override vnode definition. 

GROUP Group identifier for the session. Equivalent to the -G 
flag of the Ingres command-line flags. 

BLANKDATE =NULL  
Indicates that the driver must return empty string 
DATE values as NULL. 

Understanding ODBC Connectivity  167  
 



Connection String Keywords 
 

Keyword Attribute Value Description 

DATE1582 =NULL 
Indicates that the driver must return values of ‘1582-
01-01’ as NULL. 

DATE Same as DATE1582 keyword. 

SELECTLOOPS =N 
Indicates that Cursor Loops must be used. 

CATCONNECT =Y 
Indicates that a second separate Ingres session must 
be used for catalog functions (SQLTables, etc.). 

NUMERIC_ 
OVERFLOW 

=IGNORE 
Indicates that no error is issued if an arithmetic error 
of numeric overflow, underflow, or divide by zero 
occur.  
Equivalent to “-numeric_overflow=ignore” command 
line flag. 

CATSCHEMANULL =Y 
Returns NULL for schema names form ODBC catalog 
functions. 

 

168  Ingres 2006 R2 Connectivity Guide 
 



ODBC CLI Implementation Considerations 
 

ODBC CLI Implementation Considerations 
The ODBC CLI includes two include files for compiling applications: 

 sql.h 

 sqlext.h 

These files can be found at $II_SYSTEM/ingres/files. 

Other standard ODBC includes libraries, such as sqlucode.h or sqltypes.h, are 
already included within the ODBC CLI version of sql.h and sqlext.h.  

Windows: On Windows, the library is named INGODBC.DLL and resides in 
%II_SYSTEM%\ingres\lib.  

UNIX: On UNIX and Linux, the ODBC CLI is installed as the shared library 
libiiodbc.[ext]. Depending on the UNIX or Linux implementation, the library 
extension ([ext]) varies. The library resides in $II_SYSTEM/ingres/lib.  

VMS: On VMS, the library is named IIODBC.EXE and resides in 
I_SYSTEM:[INGRES.LIBRARY].  

ODBC CLI applications link against the appropriate shared library. 

ODBC applications can be coded using the ODBC Command Line Interface 
exactly as if coded with the Microsoft ODBC Driver Manager library or 
unixODBC Driver Manager library. 

Here is an example for building an ODBC CLI application on Linux: 

cc -c myOdbcApp.c /I$II_SYSTEM/ingres/files 

ld -o myOdbcApp  myOdbcApp.o -L$II_SYSTEM/ingres/lib -liiodbc.1 
 

Configuration on UNIX, Linux, and VMS 

Before using the ODBC CLI, the utility iisuodbc must be executed. Iisuodbc 
configures Ingres with the appropriate name of the ODBC driver library and 
creates the ODBC configuration file, odbcinst.ini. For more information, see 
Configure a Data Source (Windows) (see page 147) and Configure a Data 
Source (UNIX and VMS) (see page 155). 

 

Understanding ODBC Connectivity  169  
 



ODBC CLI Implementation Considerations 
 

Optional Data Source Definitions 

The use of odbcinst.ini, odbc.ini or the ODBC configuration registry is optional 
for the ODBC CLI. An application can use invoke SQLConnect() by using a 
connection string that omits an ODBC Data Source (DSN) specification. 

If the connection string has sufficient information to connect to the database, 
the location and name of the ODBC driver library are automatically 
determined. The use of the iiodbcadmn utility (UNIX, Linux, and VMS) or 
Microsoft ODBC Administrator (Windows) is optional. 
 

170  Ingres 2006 R2 Connectivity Guide 
 



 

Chapter 11: Understanding JDBC 
Connectivity 
 

This chapter explains the JDBC components that enable JDBC connectivity to 
Ingres data sources. It provides a description of each component, a list of 
supported API features, driver and server configuration information, and 
guidelines for implementing Java applications in the Ingres environment. 

 

JDBC Components 
Ingres JDBC consists of the following components:  

 The JDBC driver 

 The JDBC information utility 
 

JDBC Driver 

The Ingres JDBC Driver is a pure Java implementation of the JDBC 3.0 API 
released with the Sun Java 2 SDK, version 5.0. The driver supports 
application, applet, and servlet access to Ingres data sources through the 
DAS.  

Note: The JDBC driver provided in the Ingres 2.6 release continues to be 
supported in this current release. For migration instructions related to the 
JDBC driver, see the Migration Guide. 

The Ingres JDBC Driver supports the following JDBC 3.0 features: 

 Updateable ResultSets 

 Transaction savepoints 

 Named procedure parameters 

 Auto-generated keys 

 Parameter metadata 

The Ingres JDBC Driver is delivered as a single Java archive file, named 
iijdbc.jar, located in the library directory (lib) of the Ingres instance. 
Depending on the Java environment used, access to the driver requires adding 
the Java archive to the CLASSPATH environment setting or as a resource in 
the appropriate utility. For browser/applet access, the Java archive must be 
copied to the Web Server directories. 

 

Understanding JDBC Connectivity  171  
 



JDBC Components 
 

JDBC Information Utility—Load the JDBC Driver 

The JDBC information utility, JdbcInfo, loads the Ingres JDBC driver and 
displays its internal release information. The class files for the JdbcInfo utility 
are located in the library directory (lib) of the Ingres instance.  

You can invoke the JdbcInfo utility from the command line with the following 
parameters: 

java JdbcInfo 

Displays the internal driver release of the Ingres JDBC Driver. 

java JdbcInfo url

Attempts to establish a JDBC connection to the target database using the 
specified URL. If successful, it displays the Ingres JDBC Driver name and 
release that serviced the URL connection. 

java JdbcInfo host port

Attempts to establish a low-level connection to the DAS associated with 
host port. If successful, it displays the internal driver release of the Ingres 
JDBC Driver. 

 

172  Ingres 2006 R2 Connectivity Guide 
 



Unsupported JDBC Features 
 

Unsupported JDBC Features 
The Ingres JDBC Driver is compliant with the JDBC 3.0 API specification. JDBC 
3.0 API interfaces are fully supported with the following exceptions: 

Parameter Metadata 

Ingres and Open SQL do not support the description of dynamic 
parameters. The method 'getParameterMetaData()' throws an exception 
when called. 

Auto-generated Keys 

The Ingres DBMS returns only a single table key or a single object key per  
insert statement. Ingres does not return table and object keys for INSERT 
AS SELECT statements. Depending on the keys that are produced by the 
statement executed, auto-generated key parameters in execute(), 
executeUpdate(), and prepareStatement() methods are ignored and 
getGeneratedKeys() returns a result-set containing no rows, a single row 
with one column, or a single row with two columns. The Ingres JDBC 
Driver returns table and object keys as BINARY values. 

Result sets 

Result sets generated by executeQuery() requests are always 
TYPE_FORWARD_ONLY (non-scrollable) and 
CLOSE_CURSORS_AT_COMMIT (non-holdable). Methods associated with 
scrolling throw SQLExceptions. The isLast() method cannot always detect 
when the ResultSet is positioned on the last row and may return false 
instead of returning true. 

Data types 

The JDBC data types DATALINK, BLOB, CLOB, ARRAY, REF, DISTINCT, 
STRUCT, and JAVA_OBJECT are not supported. The storage or mapping, of 
Java objects (SQLInput, SQLOutput, and SQLData) is also not supported. 
Methods associated with these data types throw exceptions when called. 

Calendars 

Ingres stores date/time values in GMT (same as Java). With an Ingres 
DBMS, the Ingres JDBC Driver handles all date/time values in GMT and 
calendars provided in setXXX() and getXXX() methods are ignored. EDBC 
servers and Enterprise Access gateways do not reference date/time values 
to a particular time zone. The Ingres JDBC Driver uses the local time zone 
when accessing a non-Ingres DBMS Server, and utilizes calendars if 
provided. Calendars are also used for TIME WITHOUT TIME ZONE and 
TIMESTAMP WITHOUT TIME ZONE values. 

Batch updates 

Batched execution for Statements, PreparedStatements, and 
CallableStatements is supported by individual execution of each batched 
request. The driver implementation for batch updates is only as efficient as 
an application making individual update requests. 

 

Understanding JDBC Connectivity  173  
 



JDBC Driver Interface 
 

JDBC Driver Interface 
This section details the Ingres JDBC Driver interface class files and their 
associated properties. It also includes instructions for loading and accessing 
the driver. 

 

JDBC Driver and Data Source Classes 

The Ingres JDBC driver and data source classes are located in the Java 
package, com.ingres.jdbc.  

These packages are contained in the Java archive iijdbc.jar, which includes the 
following class files: 

 

Class Implemented JDBC Interface 

com.ingres.jdbc.IngresDriver The Ingres implementation of the 
JDBC Driver interface 
(java.sql.Driver). 

com.ingres.jdbc.IngresDataSource The Ingres implementation of the 
JDBC DataSource interface 
(javax.sql.DataSource). 

com.ingres.jdbc.IngresCPDataSource The Ingres implementation of the 
JDBC ConnectionPoolDataSource 
interface 
(javax.sql.ConnectionPoolDataSource
). 

com.ingres.jdbc.IngresXADataSource The Ingres implementation of the 
JDBC XADataSource interface 
(javax.sql.XADataSource). 

Note: The original Ingres JDBC Driver and DataSources classes contained in 
the Java archive iijdbc.jar under the Java package path of "ca.ingres.jdbc" are 
moved to the package path of "com.ingres.jdbc". The iijdbc.jar archive 
included with Ingres 2006 also contains the original classes for backward 
compatibility. The original "ca.ingres.jdbc" package path and classes will be 
removed from iijdbc.jar in the next major release. Existing references to 
"ca.ingres.jdbc" classes will continue to work, but should be changed when 
convenient. New references should use the package path of "com.ingres.jdbc".  

 

174  Ingres 2006 R2 Connectivity Guide 
 



JDBC Driver Interface 
 

JDBC Driver Properties 

Driver properties allow applications to establish connection parameters that 
are driver-dependent. Ingres JDBC Driver properties can be specified as 
connection URL attributes as a Java Properties parameter to a 
DriverManager.getConnection() method, as Java system properties, or in a 
properties file. Attribute and property names are given below. 

When specified as system properties or in a property file, the property key 
must be of the form ingres.jdbc.property.<property name>. A default 
properties file is loaded automatically by the Ingres JDBC Driver when the 
driver class is loaded. The default properties file is named iijdbc.properties and 
must reside in a location accessible by the class loader used to load the driver. 
In general, this requires the properties file directory to be included in the Java 
environment variable CLASSPATH. 

An alternate properties file can also be specified using the system property 
ingres.jdbc.property_file. The directory path of the property file can be 
specified or the property file can be placed in a directory accessible as 
described above for the default properties file. Properties are searched in the 
following order: URL attributes, getConnection() property set, system 
properties, alternate properties file, and default properties file. 

The Ingres JDBC Driver supports the following properties: 

 

Property Attribute Description 

user UID The user ID on the target DBMS Server 
machine. See the description of the 
vnode_usage property in this table. 

password PWD The user's operating system password. 

role ROLE The desired role identifier. If a role 
password is required, include it with the 
role name as follows: name/password. 

group GRP The user's group identifier. 

dbms_user DBUSR The user name to be associated with the 
DBMS session (Ingres -u flag, can require 
admin privileges). 

dbms_password DBPWD The user's DBMS password (Ingres -P 
flag). 

Understanding JDBC Connectivity  175  
 



JDBC Driver Interface 
 

Property Attribute Description 

connect_pool POOL Server connection pool control. Available 
options are: 

off–requests a non-pooled connection 
when server pooling is enabled 

on–-requests a pooled connection when 
server pooling is optional. 

The default is to allow the DAS 
configuration to determine pooling. 

select_loop LOOP Select loop vs. cursor queries. Available 
options are: 

on–uses select loops to retrieve query 
results 

off–uses cursors (default). 

For further details, see Cursors and Select 
Loops (see page 186). 

autocommit_mode AUTO Autocommit cursor handling mode. 
Available options are: 

dbms–autocommit processing is done by 
the DBMS Server (default) 

single–DAS DAS enforces single cursor 
operation during autocommit 

multi–DAS DAS simulates autocommit 
operations when more than one cursor is 
open. 

For further details, see How  Transactions 
Are Autocommitted (see page 183). 

cursor_mode CURSOR Default cursor concurrency mode, which 
determines the concurrency of cursors that 
have no concurrency explicitly assigned. 
Available options are: 

dbms–-concurrency is determined by the 
DBMS Server  

update–provides updateable cursors 

readonly–provides non-updateable cursors 
(default) 

Further details are provided in Cursors and 
Result Set Characteristics (see page 184). 

176  Ingres 2006 R2 Connectivity Guide 
 



JDBC Driver Interface 
 

Property Attribute Description 

vnode_usage VNODE Allows the JDBC application to control the 
portions of the vnode information that are 
used to establish the connection to the 
remote DBMS server. Available options 
are: 

connect–Only the vnode connection 
information is used to establish the 
connection. (default) 

login–Both the vnode connection and login 
information are used to establish the 
connection. 

For further details, see JDBC User ID 
Options (see page 182). 

char_encode ENCODE Specifies the Java character encoding used 
for conversions between Unicode and 
character data types. Generally, the 
character encoding is determined 
automatically by the driver from the DAS 
DAS installation character set. This 
property allows an alternate character 
encoding to be specified (if desired) or a 
valid character encoding to be used when 
the driver is unable to map the server's 
character set. 

timezone TZ Specifies the Ingres timezone associated 
with the client's location. Corresponds to 
the Ingres environment variable 
II_TIMEZONE_NAME and is assigned the 
same values. This property is not used 
directly by the driver but is sent to the 
DBMS and affects the processing of dates. 

decimal_char DECIMAL Specifies the character to be used as the 
decimal point in numeric literals. 
Corresponds to the Ingres environment 
variable II_DECIMAL and is assigned the 
same values. This property is not used 
directly by the driver but is sent to the 
DBMS and affects the processing of query 
text. 

Understanding JDBC Connectivity  177  
 



JDBC Driver Interface 
 

Property Attribute Description 

date_format DATE_FMT Specifies the Ingres format for date 
literals. Corresponds to the Ingres 
environment variable  II_DATE_FORMAT 
and is assigned the same values. This 
property is not used directly by the driver, 
but is sent to the DBMS and affects the 
processing of query text. 

money_format MNY_FMT Specifies the Ingres format for money 
literals. Corresponds to the Ingres 
environment variable II_MONEY_FORMAT 
and is assigned the same values. This 
property is not used directly by the driver 
but is sent to the DBMS and affects the 
processing of query text. 

money_precision MNY_PREC Specifies the precision of money data 
values. Corresponds to the Ingres 
environment variable  II_MONEY_PREC 
and is assigned the same values. This 
property is not used directly by the driver 
but is sent to the DBMS and affects the 
processing of money values. 

Attributes can also be specified using the property name as the attribute 
name. Thus "UID=user1" and "user=user1" are semantically the same. 

 

Data Source Properties 

A data source configuration is a collection of information that identifies the 
target database to which the driver connects. The Data Source classes support 
the following data source properties and associated getter/setter methods. 

 

DS Property Description 

description Description of the data source. 

serverName Server host name or network address (required). 

portName Symbolic port ID (required). A port ID must be 
provided either numerically or symbolically. 

portNumber Numeric port ID (required). A port ID must be provided 
either numerically or symbolically. 

databaseName Database name (required). 

178  Ingres 2006 R2 Connectivity Guide 
 



JDBC Driver Interface 
 

DS Property Description 

user User's ID. (A user ID is required when the DAS is not 
on the same machine as the JDBC client; otherwise this 
property is optional.) 

password User's password. (A password is required when the 
DAS is not on the same machine as the JDBC client; 
otherwise this property is optional.) 

roleName DBMS role identifier. 

groupName DBMS group identifier. 

dbmsUser User ID for the DBMS session (-u flag). 

dbmsPassword User's DBMS password. 

connectionPool Use pooled connection: 'off' or 'on'. 

autocommitMode Autocommit cursor handling: 'dbms', 'single', 'multi'. 

selectLoop Select loop processing: 'off', or 'on'. 

cursorMode Default cursor concurrency: 'dbms', 'update', 
'readonly'. 

vnodeUsage Vnode usage for DBMS Server access: 'login', 'connect'.

charEncode Java character encoding. 

timeZone Ingres timezone 

decimalChar Ingres decimal character 

dateFormat Ingres date format 

moneyFormat Ingres money format 

moneyPrecision Ingres money precision 

Note that the data source properties marked as “required” correspond to 
parameters contained in a connection URL. For a description of these 
parameters, see Establish JDBC Driver Connection (see page 181). The 
remaining Data Source properties correspond to the driver properties defined 
in JDBC Driver Properties (see page 175). 

 

Understanding JDBC Connectivity  179  
 



JDBC Driver Interface 
 

Additional Data Source Properties 

In addition to the DataSource class properties, the ConnectionPoolDataSource 
and XADataSource classes support the following properties and associated 
getter/setter methods: 

 

DS Property Description 

initialPoolSize Initial connection pool size 

minPoolSize Minimum connection pool size 

maxPoolSize Maximum connection pool size 

maxIdleTime Maximum time in connection pool 

propertyCycle Wait time for checking the connection pool 
 

How the Driver Is Loaded 

The Ingres JDBC Driver can be loaded by an application or applet by using one 
of these methods: 

 Adding the driver class, com.ingres.jdbc.IngresDriver, to the JDBC 
DriverManager system property "jdbc.drivers"   

 Adding the following Java statement to the application/applet prior to 
attempting to establish a connection using the Ingres JDBC Driver: 

Class.forName( "com.ingres.jdbc.IngresDriver" ).newInstance(); 

Depending on the Java environment, calling the forName() method can be 
sufficient to load and initialize the Ingres JDBC Driver classes. Some 
environments, most notably older releases of Microsoft Internet Explorer, 
require the instantiation of an Ingres JDBC Driver object to fully initialize the 
driver. 

 

180  Ingres 2006 R2 Connectivity Guide 
 



JDBC Implementation Considerations 
 

DriverManager.getConnection() Method—Establish JDBC Driver Connection 

An Ingres JDBC Driver connection can be established using a 
DriverManager.getConnection() method with a URL in the following format: 

jdbc:ingres://host:port/db;attr=value 

where: 

host

Is the network name or address of the host on which the target DAS is 
running. TCP/IPv6 addresses (colon-hexadecimal format) must be 
enclosed in square brackets, for example: [::1]. 

port

Is the network port used by the DAS. This can be a numeric port number 
or an Ingres symbolic port address such as II7. 

db

Is the target database specification. Any valid Ingres database designation 
can be used including vnode and server class (that is, 
vnode::dbname/server_class). 

attr=value

(Optional) Is the attribute name and value pair. Multiple attribute pairs are 
separated by a semi-colon.  

Attributes represent driver properties that are implementation-specific and 
can be used to configure the new connection. For details, see JDBC Driver 
Properties (see page 175). 

Note: A user ID and password are required when making remote connections 
and can be included as parameters to the getConnection() method as driver 
properties or as URL attributes. 

 

JDBC Implementation Considerations 
This section presents several programming considerations and guidelines 
related to implementing Java applications in the Ingres environment.  

 

Understanding JDBC Connectivity  181  
 



JDBC Implementation Considerations 
 

JDBC User ID Options 

The Ingres JDBC Driver does not require a user ID and password to establish a 
connection when the Ingres DAS is running on the same machine as the Java 
client. When a userID/password is not provided, the Java client process user 
ID is used to establish the DBMS connection. If the target database 
specification includes a VNODE, the VNODE login information is used to access 
the DBMS machine. Optionally, a userID/password can be provided and is 
handled as described below. 

When the Java client and DAS are on different machines, a user ID and 
password are required to establish a connection to the DBMS. If the DAS and 
DBMS server are running in the same Ingres instance (no VNODE in target 
database specification), the userID/password is used to validate access to the 
DAS/DBMS machine. 

When the DAS and DBMS servers are on different machines, a VNODE is 
required in the target database specification. The VNODE provides the 
connection and (optionally) login information needed to establish the DBMS 
connection. 

The driver property vnode_usage determines how the VNODE is used to access 
the DBMS. The vnode_usage property also determines the context (DAS or 
DBMS) in which the application userID/password is used. VNODE usage 
without a userID/password is described above. If the target database 
specification does not contain a VNODE, the vnode_usage property is ignored. 

When vnode_usage is set to 'connect', only global VNODE connection 
information is used to establish the DBMS connection. The application-
provided user ID and password are used in the DBMS context to access the 
DBMS machine. 

When vnode_usage is set to 'login', both connection and login VNODE 
information is used to access the DBMS machine. The application-provided 
user ID and password are used in the DAS context, allowing access to private 
and global VNODEs. 

 

182  Ingres 2006 R2 Connectivity Guide 
 



JDBC Implementation Considerations 
 

How Transactions Are Autocommitted 

Application developers must be aware that the DBMS Server imposes severe 
limits on the operations that can be performed when autocommit is enabled 
(the JDBC default transaction mode) and a cursor is opened. In general, only 
one cursor at a time can be open during autocommit, and only cursor-related 
operations (cursor delete, cursor update) can be performed. Violating this 
restriction results in an exception being thrown with the message text: 

No MST is currently in progress, cannot declare another cursor 

Cursors are opened by the Statement and PreparedStatement executeQuery() 
methods and remain open until the associated ResultSet is closed. The driver 
closes a cursor automatically when the end of the result set is reached, but 
applications must not rely on this behavior. JDBC applications can avoid many 
problems by calling the close() method of each JDBC object when the object is 
no longer needed. 

 

autocommit_mode Connection Property—Set Autocommit Processing Mode 

The Ingres JDBC Driver provides alternative autocommit processing modes 
that help overcome the restriction of autocommitting transactions or handle 
problems that applications have with closing result sets.  

The autocommit processing modes can be selected by setting the connection 
property"'autocommit_mode" to one of the following values. For additional 
information, see JDBC Driver Properties (see page 175). 

 

Value Mode Description 

dbms DBMS (default) Autocommit processing is done by the DBMS 
Server and is subject to the restrictions 
mentioned above. 

single Single-cursor The DAS allows only a single cursor to be open 
during autocommit. If a query or non-cursor 
operation is requested while a cursor is open, 
the server closes the open cursor. Any future 
attempts to access the cursor fails with an 
unknown cursor exception. This mode is useful 
for applications that fail to close result sets, but 
does not perform other queries or non-cursor 
related operations while the result set is being 
used. 

Understanding JDBC Connectivity  183  
 



JDBC Implementation Considerations 
 

Value Mode Description 

multi Multi-cursor Autocommit processing is done by the DBMS 
Server when no cursors are open. The DAS 
disables autocommit and begins a standard 
transaction when a cursor is opened. Because 
autocommit processing is disabled, multiple 
cursors can be open at the same time and non-
cursor operations are permitted.  

When a cursor is closed, and no other cursor is 
open, the DAS commits the standard 
transaction and re-enables autocommit in the 
DBMS. This mode overcomes the restrictions 
imposed by the DBMS during autocommit, but 
requires the application to be very careful in 
closing result sets. Because the DAS does not 
commit the transaction until all cursors are 
closed, a cursor left open inadvertently 
eventually runs into log-file full problems and 
transaction aborts. 

 

Cursors and Result Set Characteristics 

Ingres cursors and JDBC result sets both have an associated concurrency 
characteristic specifying that the object is readonly or updateable. The Ingres 
JDBC Driver automatically provides an updateable ResultSet when the 
associated cursor is updateable. The JDBC readonly/update mode 
characteristics are used by the Ingres Driver to control the mode of the 
resulting cursor. 

For an updateable cursor, row updates and deletes can be performed using the 
updateable ResultSet interface or by using a separate JDBC Statement to issue 
positioned update and delete statements on the cursor. The cursor name 
needed to issue a positioned update or delete statement can be assigned using 
the Statement method setCursorName() or obtained by using the ResultSet 
method getCursorName(). 

Cursor concurrency can be specified using the 'FOR READONLY' or 'FOR 
UPDATE' clause in the SELECT statement. The Ingres JDBC Driver supports the 
JDBC syntax 'SELECT FOR UPDATE' (and also 'SELECT FOR READONLY') and 
translates this to the correct Ingres syntax.  

 

184  Ingres 2006 R2 Connectivity Guide 
 



JDBC Implementation Considerations 
 

A cursor is opened as readonly if one of the following is true (listed in 
descending precedence): 

 The SELECT statement contains the 'FOR READONLY' clause. 

 The associated statement was created using a Connection method that 
specified the concurrency as ResultSet.CONCUR_READ_ONLY. 

 The connection is readonly (Connection.setReadOnly( true )). 

 The connection property cursor_mode is set to 'readonly' (the default 
setting). 

 The connection property cursor_mode is set to 'dbms' and the DBMS 
Server determines that the cursor cannot be updated. 

A cursor is opened as updateable if one of the following is true (listed in 
descending precedence): 

 The SELECT statement contains the 'FOR UPDATE' clause. 

 The associated statement was created using a Connection method that 
specified the concurrency as ResultSet.CONCUR_UPDATABLE and the 
DBMS Server determines that the cursor can be updated. 

 No other readonly condition is true and the DBMS Server determines that 
the cursor can be updated. 

Note: The Ingres JDBC Driver does not attempt to force the cursor to be 
updateable even when the application requests a concurrency of 
ResultSet.CONCUR_UPDATABLE when creating the associated statement or the 
connection property cursor_mode is set to ‘update’. In these cases, the cursor 
will be updateable if the DBMS Server determines that an updateable cursor is 
possible, otherwise the cursor will be readonly. The JDBC specification requires 
"graceful degradation" with a warning rather than throwing an exception when 
a requested concurrency cannot be provided.  

 

Understanding JDBC Connectivity  185  
 



JDBC Implementation Considerations 
 

Cursors and Select Loops 

By default, the Ingres JDBC Driver uses a cursor to issue SQL select queries. 
Cursors permit other SQL operations, such as deletes or updates, to be 
performed while the cursor is open. (Operations can be restricted during 
autocommit. For more information, see How Transactions Are Autocommitted 
(see page 183). 

Cursors also permit multiple queries to be active at the same time. These 
capabilities are possible because only a limited number of result rows 
(frequently only a single row) are returned by the DBMS Server for each 
cursor fetch request. The low ratio of driver requests to returned rows results 
in lower performance compared to other access methods. 

The Ingres JDBC Driver uses cursor pre-fetch capabilities whenever possible. 
Updateable cursors only return a single row for each fetch request. READONLY 
cursors return a fixed number of rows on each fetch request. For details, see 
Cursors and Result Set Characteristics (see page 184). By default, the Ingres 
JDBC Driver obtains as many rows as fit in one communications block on each 
fetch request. 

Depending on row size, this can greatly increase data access efficiency. The 
application can also specify the number of rows to be retrieved for READONLY 
cursors by using the setFetchSize() method. 

The Ingres JDBC Driver also permits the JDBC application to use a data access 
method called a select loop. In a select loop request, the DBMS Server returns 
all the result rows in a single data stream to the driver. Because select loops 
use the connection while the result set is open, no other operation or query 
can be performed until the result set is closed. 

The statement cancel() method can be used to interrupt a select loop data 
stream when a result set needs to be closed before the last row is processed. 
Because the DBMS Server does not wait for fetch requests from the driver, 
this access method is the most efficient available. 

Select loops are enabled in the Ingres JDBC Driver by setting the driver 
connection property select_loop to a value of 'on.' For more information, see 
JDBC Driver Properties (see page 175). 

With select loops enabled, the driver avoids using cursors for SELECT queries 
unless explicitly indicated by the application. An application can request a 
cursor be used for a query by assigning a cursor name to the statement 
(setCursorName() method) or by using the JDBC syntax 'SELECT FOR UPDATE 
...' to request an updateable cursor. 

 

186  Ingres 2006 R2 Connectivity Guide 
 



JDBC Implementation Considerations 
 

Database Procedures 

Database procedures are supported through the JDBC CallableStatement 
interface. The Ingres JDBC Driver supports the following database procedure 
syntax.  

Note: Items enclosed in brackets are optional. 

 

Database Procedure Syntax 

JDBC/ODBC CALL escape {[? =] CALL [schema.]name[( parameters )]} 

Ingres EXECUTE 
PROCEDURE 

EXECUTE PROCEDURE [schema.]name[( parameters )] 
[INTO ?] 

Ingres CALLPROC CALLPROC [schema.]name[( parameters )] [INTO ?]

For all of these statements, the Ingres JDBC Driver supports a combined 
parameter syntax supporting features of the ODBC positional parameter 
syntax and the Ingres named parameter syntax: 

parameters := param | param, parameters 

param := [name =] [value] 

value := ? | literal | SESSION.table_name 

literal := numeric_literal | string_literal | hex_string 
 

Named and Unnamed Parameters 

Parameters can be named or unnamed, but mixing of named and unnamed 
parameters is not allowed. Dynamic parameters can also be named using 
CallableStatement methods introduced with JDBC 3.0. Literals can only be 
named using the syntax provided above. All Ingres database procedure 
parameters are named. 

If parameter names are not provided to the Ingres JDBC Driver, the driver 
must query the database and assign names to the parameters based on the 
declared order of the procedure parameters. Because querying the database 
reduces the performance of database procedure execution, using named 
parameters in your applications is strongly encouraged. 

The Ingres JDBC Driver provides support for parameter default values by 
allowing parameter values to be omitted. This support is intended primarily for 
ODBC positional parameters. For Ingres named parameters, default values can 
be used simply by omitting the parameter entirely. 

 

Understanding JDBC Connectivity  187  
 



JDBC Implementation Considerations 
 

Additional Parameter Considerations 

Ingres supports the parameter attributes IN, OUT, and INOUT when creating 
database procedures.  When invoking a database procedure, the Ingres JDBC 
Driver marks a parameter as IN when an input value is set using a 
CallableStatement.setXXX() method. Registering a parameter for output using 
a CallableStatement registerOutParameter() method will mark the parameter 
as OUT. Setting a value and registering for output will mark a parameter as 
INOUT. All dynamic parameters must have an input value assigned and/or be 
registered for output prior to executing the procedure. 

Ingres database procedure parameters can also be passed by value or 
reference when not explicitly marked with IN, OUT, or INOUT attributes. The 
Ingres JDBC Driver treats parameters passed by value as IN parameters, and 
parameters passed by reference (BYREF) as INOUT parameters. If an input 
value is not provided for a parameter registered for output, the driver sends a 
NULL value of the output type registered for that parameter.  

Ingres Global Temporary Table procedure parameters are specified by 
providing a parameter value in the form session.table_name. In this 
parameter, table_name is the name of the Global Temporary Table, and 
'session.' identifies the parameter as a Global Temporary Table parameter. 

 

Executing Procedures 

The CallableStatement methods executeQuery() and execute() can be used to 
execute a row-producing procedure. The methods executeUpdate() and 
execute() can be used for non-row-producing procedures.  Ingres does not 
permit output parameters with procedures that return rows. 

Procedure return values, output parameter values and rows returned by row-
producing procedures are accessed by standard JDBC methods and interfaces. 
The CallableStatement getXXX() methods are used to retrieve procedure 
return and output parameter values. Rows returned by a procedure are 
accessed using the ResultSet returned by the CallableStatement 
getResultSet() method. 

Ingres database procedures permit the use of the transaction statements 
COMMIT and ROLLBACK, however, the use of these statements is highly 
discouraged! 

Using these statements in a procedure executed by the Ingres JDBC Driver can 
result in the unintentional commitment or rollback of work done prior to 
procedure execution. It is also possible that a change in transaction state 
during procedure execution can be interpreted as a transaction abort. For 
these reasons, applications must make sure that no transaction is active prior  
to executing a database procedure that contains COMMIT or ROLLBACK 
statements. 

 

188  Ingres 2006 R2 Connectivity Guide 
 



JDBC Implementation Considerations 
 

BLOB Column Handling 

The presence of a BLOB column in a result set places limitations on the Ingres 
JDBC Driver and JDBC application. BLOB data is serialized with the rest of the 
result set when returned by the DBMS Server. The length of a BLOB is not 
known beforehand, and the Ingres JDBC Driver does not attempt to buffer 
BLOB data. As a result, a BLOB column must be accessed and processed prior 
to accessing any data that follow the BLOB. 

A result set containing a BLOB column does not permit READONLY cursor pre-
fetch. Only one row of a BLOB result set is retrieved with each DBMS Server 
access. While this does not directly affect the JDBC application, performance is 
reduced when a result set contains a BLOB column. 

A BLOB column can be accessed only once. Because BLOB data is not buffered, 
only one call (to getString(), getCharacterStream(), etc.) can be made for 
each BLOB column in each row of the result set. A request to access a BLOB 
column after it has already been accessed generates an SQLException 
indicating that the BLOB data is no longer available. 

A BLOB column must be accessed and read completely prior to accessing any 
column that follows the BLOB in the result set. When a column is accessed 
which follows an unaccessed BLOB, the BLOB data must be read and discarded 
so that the data for the requested column can be returned. If an attempt is 
made to access the BLOB column, an SQLException is generated indicating 
that the BLOB data is no longer available. 

BLOB data must be read fully before making any further request on the 
connection. Because data from the DBMS Server is serialized on the 
connection, the results from additional requests on the connection are queued 
behind any unread BLOB data. The Ingres JDBC Driver avoids conflicts 
resulting from multiple simultaneous requests on a connection by locking the 
connection for the duration of each request. 

When a BLOB column is present in a result set, the connection is not unlocked 
until all the data in a row, including the BLOB data, has been read. An attempt 
to make an additional request on a connection when a BLOB column has not 
been read completely generates an SQLException indicating that a request was 
made before the prior request had completed. 

In general, the following recommendation from the Sun JDBC documentation 
must be followed: “For maximum portability, columns within a row must be 
read in left-to-right order, and each column must only be read once. This 
reflects implementation limitations in some underlying database protocols.” 

 

Understanding JDBC Connectivity  189  
 



JDBC Implementation Considerations 
 

Date/Time Columns and Values 

The Ingres DBMS uses the timezone and date format of the client to perform 
various types of processing of data values. By default, the Ingres JDBC Driver 
uses the Java/JDBC conventions for dates by setting the client timezone to 
GMT and the date format to match that specified by JDBC. When using these 
settings, the Ingres JDBC Driver manipulates date/time values to match the 
requirements of both the DBMS and JDBC. 

Because the DBMS does not have the actual client timezone, the following 
restrictions exist: 

 Ingres date literal formats are not supported. JDBC specifies the format for 
date, time, and timestamp literals using the following escape clause 
syntax: 

 Literal  Syntax

 date  {d 'yyyy-mm-dd'} 

 time  {t 'hh:mm:ss'} 

 timestamp {ts 'yyyy-mm-dd hh:mm:ss.f...'} 

 These escape clauses must be used to include date, time, and timestamp 
literals in SQL text. Applications can use other date/time formats by using 
the classes java.sql.Date, java.sql.Time, java.sql.Timestamp, and 
java.util.date with an appropriately configured date formatter 
(java.text.DateFormat). 

 Ingres specific date processing, such as intervals and date functions, 
causes problems associated with the difference between GMT and the 
actual client timezone and must be avoided. 

The Ingres JDBC Driver allows the Ingres timezone and date format to be 
passed to the DBMS. For more information, see JDBC Driver Properties (see 
page 175). When these property values are provided, all Ingres date 
processing is supported in addition to the JDBC functionality listed above. Note 
that the Ingres timezone provided must correspond to the Java client default 
timezone. Using an arbitrary timezone results in time values that differ by the 
relative timezone offsets. 

The Ingres JDBC Driver supports Ingres empty dates ('') by returning the JDBC 
date/time epoch values ('1970-01-01','00:00:00') for methods getDate(), 
getTime() and getTimestamp() and a zero-length string for getString(). In 
addition, a DataTruncation warning is created by the driver when an empty 
date is returned by any of these methods. An application checks for the 
warning by calling the getWarnings() method after calling one of the 
previously mentioned methods. An Ingres empty date is different than a NULL 
value, and cannot be detected using the wasNull() method. 

190  Ingres 2006 R2 Connectivity Guide 
 



JDBC Implementation Considerations 
 

A DataTruncation warning is also created for Ingres date-only values (no time 
component) for the same conditions described for empty dates. While an 
Ingres date-only value is comparable to a JDBC DATE value, Ingres date 
columns are described as being JDBC TIMESTAMP types and date-only values 
are technically a truncation of that type. 

Ingres interval values are not supported by the methods getDate(), getTime(), 
and getTimestamp(). An exception is thrown if an Ingres date column 
containing an interval value is accessed using these methods. Ingres interval 
values can be retrieved using the getString() method. Because the output of 
getString() for an interval value is not in a standard JDBC date/time format, 
the Ingres JDBC Driver creates a warning that can be checked by calling the 
getWarnings() method following the call to getString(). 

 

National Character Set Columns 
The Ingres JDBC Driver supports the Ingres data types of nchar, nvarchar, and 
long nvarchar. Retrieval of National Character Set values is done transparently 
through the existing getXXX() ResultSet methods. 

When using character parameters for a PreparedStatement, the data type sent 
by the driver is determined by the JDBC methods used to assign the 
parameter value, and the data types supported by the target database. 

The JDBC parameter methods and resulting Ingres parameter data type for 
both standard and National Character Set databases are as follows: 

 

Method Standard Data 
Type 

NCS Database Data 
Type 

setString() varchar nvarchar 

setAsciiStream() long varchar long nvarchar 

setUnicodeStream() long varchar long nvarchar 

setCharacterStream() long varchar long nvarchar 

setObject( char[] ) char nchar 

setObject(String) varchar nvarchar 

setObject(Reader) long varchar long nvarchar 

setObject(obj,CHAR) char nchar 

setObject(obj,VARCHAR) varchar nvarchar 

setObject(obj,LONGVARCHAR) long varchar long nvarchar 

setObject(char[],OTHER) char char 

Understanding JDBC Connectivity  191  
 



Data Type Compatibility 
 

Method Standard Data 
Type 

NCS Database Data 
Type 

setObject(String,OTHER) varchar varchar 

setObject(Reader,OTHER) long varchar long varchar 

Note: The driver's use of National Character Set parameters can be 
overridden using the JDBC SQL type of OTHER in the setObject() method. 

 

Data Type Compatibility 
With the exception of the data types listed in Unsupported JDBC Features (see 
page 173), the Ingres JDBC Driver supports conversion of Ingres data values 
into Java/JDBC values as required by the JDBC specification. 

Because Ingres does not support all the JDBC data types, the following 
conventions are used when sending Java/JDBC parameters to the DBMS: 

NULL 

Generally, NULL values sent to the DBMS are associated with the data type 
provided in the setNULL() or setObject() method call or the data type 
implied by the setXXX() method call. A generic or typeless NULL value can 
be sent to the DBMS using one of the following method calls: 

setNull( idx, Types.NULL )   
setObject( idx, null )  
setObject( idx, null, Types.NULL ) 

BOOLEAN 

Boolean values are sent to the DBMS as single byte integers with the value 
0 or 1. 

BIGINT 

Long values are sent to the DBMS as DECIMAL (if supported by the DBMS) 
or DOUBLE values when BIGINT is not supported by the DBMS. 

DECIMAL 

BigDecimal values are sent as DOUBLE values when DECIMAL is not 
supported by the DBMS. Avoid using the BigDecimal constructor that takes 
a parameter of type double. This constructor can produce decimal values 
that exceed the scale/precision supported by Ingres. 

 

192  Ingres 2006 R2 Connectivity Guide 
 



Data Type Compatibility 
 

DATE 

When ANSI date/time data types are not supported, Ingres supports a 
single date data type, which is used for  DATE, TIME, and TIMESTAMP 
values. Ingres dates do support date without time values and this form is 
used for JDBC DATE values. 

TIME 

When ANSI date/time data types are not supported, Ingres supports a 
single date data type that is used for DATE, TIME, and TIMESTAMP values. 
Ingres dates do not support date without time values. The Ingres JDBC 
Driver adds the JDBC date epoch 1970-01-01 to JDBC TIME values. The 
Ingres DBMS adds the current date to time-only values. 

CHAR 

Zero length CHAR values are sent as VARCHAR values. For conventions 
associated with NCS enabled databases, see National Character Set 
Columns (see page 191). For information on automatic conversion to 
LONGVARCHAR, see the end of this section. 

VARCHAR 

For conventions associated with NCS enabled databases, see National 
Character Set Columns (see page 191). For information on automatic 
conversion to LONGVARCHAR, see the end of this section. 

LONGVARCHAR 

For conventions associated with NCS enabled databases, see National 
Character Set Columns (see page 191). 

BINARY 

Zero length BINARY values are sent as VARBINARY values. 

In addition to the JDBC types listed above, the following conventions are used 
when certain Java data values are provided to the setObject() method: 

byte[] 

Byte arrays are sent by default as VARBINARY values. 

char[] 

While not required by JDBC, character arrays are supported by the Ingres 
JDBC Driver and are sent by default as CHAR values. For conventions 
associated with NCS enabled databases, see National Character Set 
Columns (see page 191). For information on automatic conversion 
to LONGVARCHAR, see the end of this section. 

String 

Strings are sent by default as VARCHAR values. For conventions associated 
with NCS enabled databases, see National Character Set Columns (see 
page 191). For information on automatic conversion to LONGVARCHAR, 
see the end of this section. 

 

Understanding JDBC Connectivity  193  
 



JDBC Tracing 
 

InputStream 

While not required by JDBC, InputStream objects are supported by the 
Ingres JDBC Driver and are sent by default as LONGVARBINARY values. 

Reader 

While not required by JDBC, Reader objects are supported by the Ingres 
JDBC Driver and are sent by default as LONGVARCHAR values. 
For conventions associated with NCS enabled databases, see National 
Character Set Columns (see page 191). 

JDBC requires BINARY, VARBINARY, CHAR, and VARCHAR parameter 
values to be converted to LONGVARBINARY/LONGVARCHAR when their 
length exceeds some DBMS dependent maximum. 

The default maximum used by the Ingres JDBC driver is 2000 bytes. This 
default maximum value can be incorrect for an Ingres database that has 
been configured with non-default page sizes and for EDBC or Enterprise 
Access gateways. 

The Ingres driver uses the following entries in the iidbcapabilities system 
catalog to determine at runtime the appropriate size limits: 

SQL_MAX_BYTE_COLUMN_LEN 
SQL_MAX_VBYT_COLUMN_LEN 
SQL_MAX_CHAR_COLUMN_LEN 
SQL_MAX_VCHR_COLUMN_LEN 

Not all releases of the Ingres DBMS, EDBC, and Enterprise Access gateways 
have these entries in their iidbcapabilities system catalogs. These entries can 
be entered manually to provide accurate size information for the Ingres driver. 
Depending on the DBMS involved, special permissions are required to update 
the system catalog. 

 

JDBC Tracing 
The Ingres JDBC Driver supports both DriverManager and DataSource tracing 
as documented in the JDBC 3.0 API specification. Trace information consists of 
JDBC API method entry and exit points with corresponding parameter and 
return values. Enable internal Ingres JDBC Driver tracing by defining system 
properties on the java command line (-D flag) or by including the properties in 
the driver properties file. 

DBMS trace messages are written to the internal trace log and can be directed 
to a separate trace log specified by a driver property.  

 

194  Ingres 2006 R2 Connectivity Guide 
 



JDBC Tracing 
 

The following properties are supported: 

 

Property Value Description 

ingres.jdbc.trace.log log Path and file name of the Ingres 
JDBC Driver trace log 

ingres.jdbc.trace.drv 0 - 5 Tracing level for the Ingres JDBC 
Driver 

ingres.jdbc.trace.ds 0 - 5 Tracing level for the Ingres JDBC 
DataSources 

ingres.jdbc.trace.msg 0 - 5 Tracing level for Messaging I/O 

ingres.jdbc.trace.msg.tl 0 - 5 Tracing level for Transport Layer I/O 

ingres.jdbc.trace.msg.nl 0 - 5 Tracing level for Network Layer I/O 

ingres.jdbc.trace.timestamp true Include timestamp in trace log 

ingres.jdbc.dbms.trace.log log Path and file name of the DBMS trace 
log 

Internal tracing is also enabled by the application using the following Ingres 
JDBC Driver methods: 

 

Method Parameters Description 

setTraceLog(String) log Log file path and name 

setTraceLevel(int) level Tracing level for ID 'drv' 

setTraceLevel(String,int) id, level Trace ID and numeric tracing 
level 

Internal driver tracing permits separate tracing level settings for the following 
trace IDs (id): 

 

Trace ID Description 

drv General driver tracing 

ds Data source tracing 

msg General messaging IO tracing 

msg.tl IO tracing: transport layer 

msg.nl IO tracing: network layer 
 

Understanding JDBC Connectivity  195  
 



JDBC Tracing 
 

Tracing Levels 

The tracing level determines the type of information that is logged. The 
following levels are currently defined: 

1 – Errors and exceptions 

2 – High level method invocation 

3 – High level method details 

4 – Low level method invocation 

5 – Low level method details 
 

196  Ingres 2006 R2 Connectivity Guide 
 



 

Chapter 12: Understanding .NET Data 
Provider Connectivity 
 

This chapter describes the Ingres .NET Data Provider. This chapter also 
explains how components and wizards in the provider objects help integrate 
the Ingres .NET Data Provider with MS Visual Studio 2005 to aid in the 
development of .NET applications that access Ingres data. 

.NET Data Provider 
The Ingres .NET Data Provider is a Microsoft .NET component that provides 
native .NET connectivity to Ingres databases to deliver Ingres data to the 
Microsoft .NET Framework. It uses the Data Access Server to access Ingres 
data sources.  

Note: The Ingres .NET Data Provider also supports .NET access to Enterprise 
Access data sources. 

 
 

.NET Data Provider Architecture 
The Ingres .NET Data Provider offers a series of .NET types to describe the 
user's data, .NET provider classes to manipulate the data, and connection 
pooling to efficiently manage data connections. 

The design and naming conventions of the Ingres .NET Data Provider's data 
types, classes, properties, and methods follow the same pattern as the 
Microsoft .NET Data Providers. Consequently, developers who are familiar with 
the Microsoft providers can easily develop or convert existing code from 
Microsoft databases to Ingres databases. 

All Ingres .NET Data Provider modules are written in C#, a managed .NET 
language with full access to every .NET Framework capability. Even though the 
data provider is written in C#, any managed language such as VB.NET or J# 
can use the data provider because of .NET's language interoperability feature. 

 

Understanding .NET Data Provider Connectivity  197  
 



.NET Data Provider Architecture 
 

Data Provider Data Flow 

A data provider in the Microsoft .NET Framework enables a connection to a 
data source to retrieve and modify data from that data source. Data coming 
out of a .NET data provider can be used directly by an application or it can be 
redirected into an ADO.NET DataSet where it can be processed by other 
application methods such as XML processing. The following figure shows the 
flow of data in and out of the data provider. 

 

As shown in this figure, the Ingres .NET Data Provider uses an intermediate 
server called the Data Access Server to access Ingres databases. 

For additional information on this server, see the chapter "Configuring the 
Data Access Server."  

Note: The Ingres .NET Data Provider does not require Ingres Net for database 
connectivity. For best performance, the data provider directly communicates 
with the wire. 

 

Data Provider Assembly 

The Ingres .NET Data Provider includes the Ingres.Client.dll, which contains 
the Ingres.Client assembly. The Ingres.Client assembly contains the base 
runtime support. 

This assembly is installed as part of a standard Ingres client installation, which 
automatically registers it in the Global Assembly Cache (GAC). The 
Ingres.Client.dll that contains the Ingres.Client assembly is also installed, by 
default, into the directory C:\Program Files\Ingres\dotnet\assembly\v2.0. 

 

198  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Architecture 
 

Data Provider Namespace 

When developing .NET applications, programmers use the data types, 
components, and other classes in the data provider by referencing each name 
as defined in the namespace for the classes. The namespace for the Ingres 
.NET Data Provider is: 

Ingres.Client 
 

Data Retrieval Strategies 

The Ingres .NET Data Provider provides ADO.NET programmers with two 
access strategies for retrieving data: 

 DataReader—This program retrieves the data for read-only, forward-only 
access. The program opens the connection, executes the command, 
processes the rows in from the reader, closes the reader, and closes the 
connection. Resources on the database server are held until the 
connection is closed. For additional information, see IngresDataReader 
Class (see page 220). 

 DataAdapter—This program opens the connection, fills a DataSet, closes 
the connection, processes the DataSet, opens the connection, updates the 
database, and closes the connection. Resources on the database server 
are not held during the processing of the DataSet. Using connection 
pooling, usually only one physical connection is used. For additional 
information, see IngresDataAdapter Class (see page 227).  

In addition to the low-level DataReader and DataAdapter access strategies, the 
data provider works with Visual Studio to support TableAdapter, 
DataConnection, and DataSource components. The data provider uses 
standard base classes, interfaces, and metadata methods to support higher 
level data-bound .NET Framework controls. .NET Framework and Visual Studio 
work with the Ingres .NET Data Provider to offer more rapid application 
development and high quality code. 

 

Understanding .NET Data Provider Connectivity  199  
 



.NET Data Provider Architecture 
 

Connection Pooling 

Connection pooling significantly enhances the performance and scalability of 
some applications. Physical connections are kept in a pool after they are no 
longer needed by one application and are dispensed later to the same or 
another application (as needed) to avoid the cost of connections. All 
connections in a pool have identical connection strings. A new pool is created 
for each connection that has a different connection string from all other pools.  

When an application attempts to connect to a database, the Open method of 
the IngresConnection object uses the connection pool to search for a physical 
connection that specifies the same ConnectionString parameters. If no match 
is found, a new physical connection is made to the database. If a match is 
found, a connection is returned to the application from the pool. 

After the application has completed its work, committed its changes, freed its 
database locks and resources, and closed the connection, the physical 
connection is retained by the .NET data provider and placed back in the 
connection pool instead of being physically disconnected. 

This connection is available to the same application later in the application's 
life span or to other applications in the same process with the same connection 
parameters. This avoids the overhead and delay of opening a new physical 
connection. An application can choose to disable connection pooling by 
specifying “Pooling=no” in its connection string. 

The application is unaware of the connection reuse. If the connection is not 
reused within three minutes, the connection is physically closed to release 
system resources. 

However, if the number of connections in the pool falls below the minimum 
number of connections specified by the application in the “Min Pool Size=n” 
value in the connection string, the connection is not physically closed and is 
retained in the pool for later use. For additional information on connection 
pooling, see IngresConnection Class (see page 210). 

 

200  Ingres 2006 R2 Connectivity Guide 
 



Code Access Security 
 

Code Access Security 
The Ingres .NET Data Provider assembly requires the FullTrust permission to 
load, access the network, read and write certain files, and use other system 
resources. 

The Ingres .NET Data Provider is a strongly named assembly, making it 
eligible for installation into the Global Assembly Cache and resistant to code 
tampering. 

The Ingres.Client assembly contains the attribute 
AllowPartiallyTrustedCallersAttribute (APTCA) to allow the Ingres .NET Data 
Provider to be called by a partially trusted assembly. APTCA has no effect on 
Ingres database security. Ingres database security checks are performed as 
usual. 

 

.NET Data Provider Classes 
The Ingres .NET Data Provider is the runtime component that provides the 
interface between the .NET application and Ingres. 

The Ingres .NET Data Provider namespace (Ingres.Client) and its contents 
follow the same pattern as the Microsoft data providers. 

All public static members are safe for multithreaded operations. To reduce 
unnecessary overhead, instance members are not guaranteed to be thread-
safe. If a thread-safe operation on the instance is needed, wrap the operation 
in one of .NET's System.Threading synchronization methods to protect the 
state of the critical section of code. 

The base class and interface definition for each class is provided in C# and 
VB.NET syntax as shown below. However, .NET's language interoperability 
feature allows any managed language to use the Ingres .NET Data Provider. 

C#: Public sealed class IngresParameter : 
System.Data.Common.DbParameter, IDataParameter, IDbDataParameter, 
ICloneable 

VB.NET: NotInheritable public class IngresParameter  

 Inherits System.Data.Common.DbParameter  
 Implements IDataParameter, IDbDataParameter, ICloneable 

For more information on data provider classes, including information on other 
.NET language syntax and inherited methods and properties, see the Microsoft 
.NET Framework Developer's Guide and Microsoft .NET Framework Class 
Library documentation. 

 

Understanding .NET Data Provider Connectivity  201  
 



.NET Data Provider Classes 
 

IngresCommand Class 

The IngresCommand class represents an SQL command or a database 
procedure that executes against an Ingres or Enterprise Access database. 

Parameter placeholders in the SQL command text are represented by a 
question mark (?). 

Database procedures can be invoked by either setting 
CommandText=”myproc” and 
CommandType=CommandType.StoredProcedure, or by using the escape 
sequence format and setting CommandText=”{ call myproc }” and 
CommandType=CommandType.Text. 

Ingres .NET Data Provider does not currently support the following features: 

 Multiple active results-sets 

 Batched commands consisting of multiple Ingres SQL commands in one 
IngresCommand object 

 Cursor direction other than forward 

 Support for Ingres SQL command COPY TABLE 

 Support for Ingres SQL command SAVEPOINT 

 IngresCommand.ExecuteReader(CommandBehavior.SchemaOnly) is 
supported for SELECT commands only 

 

IngresCommand Class Declaration 

The IngresCommand class declarations are: 

C#:  public sealed class IngresCommand : 
System.Data.Common.DbCommand, IDbCommand, IDisposable, ICloneable 

VB.NET:  NotInheritable Public Class IngresCommand  
  Inherits System.Data.Common.DbCommand  
  Implements IDbCommand, IDisposable, ICloneable 

 

IngresCommand Class Example 

IngresCommand cmd = new IngresCommand( 
“SELECT id, name FROM employee WHERE id = ?”); 

 

202  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

IngresCommand Class Properties 

The IngresCommand class properties are: 

 

Property Accessor Description 

CommandText get  set SQL statement string to execute or 
procedure name to call. 

CommandTimeOut get  set The time, in seconds, for an attempted 
query to time-out if the query has not yet 
completed. Default is 30 seconds. 

CommandType get  set An enumeration describing how to interpret 
the CommandText property. Valid values are 
Text, TableDirect, or StoredProcedure. 

Connection get  set The IngresConnection object that is used to 
identify the connection to execute a 
command. For more information, see 
IngresConnection Class (see page 210). 

Parameters get The IngresParameterCollection for the 
parameters associated with the SQL query 
or database procedure. For more 
information, see IngresParameterCollection 
Class (see page 245). 

Transaction get  set The IngresTransaction object in which the 
IngresCommand executes. This transaction 
object must be compatible with the 
transaction object that is associated with the 
Connection, (that is, the IngresTransaction 
must be the object (or a copy) returned by 
IngresConnection.BeginTransaction). 

UpdateRowSource get  set Defines how results are applied to a rowset 
by the DbDataAdapter.Update method. 
(Inherited from DbDataAdapter.) 

 

IngresCommand Class Public Methods 

The public methods for the IngresCommand class are: 

 

Method Description 

Cancel Cancels the execution of the SQL command or 
database procedure. 

Understanding .NET Data Provider Connectivity  203  
 



.NET Data Provider Classes 
 

Method Description 

CreateParameter Creates a new instance of IngresParameter. For 
more information, see IngresParameter Class (see 
page 240). 

Dispose Releases allocated resources of the 
IngresCommand and base Component. 

ExecuteNonQuery Executes a command that does not return results. 
Returns the number of rows affected by the 
update, delete, or insert SQL command. 

ExecuteReader Executes a command and builds an 
IngresDataReader. For more information, see 
IngresDataReader Class (see page 220). 

ExecuteScalar Executes a command and returns the first column 
of the first row of the result set. 

Prepare Prepares the SQL statement to be executed later. 

ResetCommandTimeout Resets the CommandTimeout property to its 
default value of 30 seconds. 

 

IngresCommand Class Constructors 

The constructors for the IngresCommand class are: 

 

Constructor 
Overloads 

Description 

IngresCommand() Instantiates a new instance of the IngresCommand 
class using default property values 

IngresCommand(string) Instantiates a new instance of the IngresCommand 
class using the defined SQL command or database 
procedure 

IngresCommand(string, 
IngresConnection) 

Instantiates a new instance of the IngresCommand 
class using the defined SQL command or database 
procedure and the connection to the Ingres or 
Enterprise Access database 

IngresCommand(string, 
IngresConnection, 
IngresTransaction) 

Instantiates a new instance of the IngresCommand 
class using the defined SQL command or database 
procedure, the connection to the Ingres or 
Enterprise Access database, and the 
IngresTransaction object 

 

204  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

Sample Program Constructed with .NET Data Provider 

To construct an application using the Ingres .NET Data Provider, the developer 
creates a series of objects from the data provider's classes. The following is a 
simple C# program employing four data provider classes. 

.NET 2.0 Programming Model 

using System; 
using System.Configuration; 
using System.Data; 
using System.IO; 
using Ingres.Client; 
 
class App 
{ 
static public void Main() 
{ 
ConnectionStringSettingsCollection connectionSettings = 
        ConfigurationManager.ConnectionStrings; 
if (connectionSettings.Count == 0) 
        throw new InvalidOperationException( 
                "No connection information specified in application configuration 
file."); 
ConnectionStringSettings connectionSetting = connectionSettings[0]; 
 
string invariantName      = connectionSetting.ProviderName; 
string myConnectionString = connectionSetting.ConnectionString; 
 
DbProviderFactory factory = GetFactory(invariantName); 
 
DbConnection conn = 
        factory.CreateConnection(); 
conn.ConnectionString = myConnectionString; 
 
conn.Open();   // open the Ingres connection 
 
string cmdtext = 
        "select table_owner, table_name, " + 
        " create_date from iitables " + 
        " where table_type in ('T','V') and " + 
        " table_name not like 'ii%' and" + 
        " table_name not like 'II%'"; 
DbCommand cmd = conn.CreateCommand(); 
cmd.CommandText = cmdtext; 
 
//          read the data using the DataReader method 
DbDataReader   datareader = cmd.ExecuteReader(); 
 

Understanding .NET Data Provider Connectivity  205  
 



.NET Data Provider Classes 
 

//          write header labels 
Console.WriteLine(datareader.GetName(0).PadRight(18) + 
datareader.GetName(1).PadRight(34) + 
datareader.GetName(2).PadRight(34)); 
int i = 0; 
while (i++ < 10  &&  datareader.Read()) 
// read and write out a few data rows 
{     // write out the three columns to the console 
        Console.WriteLine( 
        datareader.GetString(0).Substring(0,16).PadRight(18) + 
        datareader.GetString(1).PadRight(34) + 
                datareader.GetString(2)); 
} 
datareader.Close(); 
 
DataSet  ds  = new DataSet("my_list_of_tables"); 
//          read the data using the DataAdapter method 
DbDataAdapter adapter = factory.CreateDataAdapter(); 
DbCommand adapterCmd = conn.CreateCommand(); 
adapterCmd.CommandText = cmdtext; 
adapter.SelectCommand = adapterCmd; 
adapter.Fill(ds);  // fill the dataset 
 
//          write the dataset to an XML file 
ds.WriteXml("c:/temp/temp.xml"); 
 
conn.Close();   // close the connection 
}  // end Main() 
}  // end class App 

.NET 1.1 Programming Model 

using System; 
using System.IO; 
using System.Data; 
using Ingres.Client; 
 
class App 
{ 
static public void Main() 
{ 
string myConnectionString = 
"Host=myserver.mycompany.com;" + 
"User Id=myname;PWD=mypass;" + 
"Database=mydatabase"; 
IngresConnection conn = new IngresConnection( 
myConnectionString ); 
conn.Open();   // open the Ingres connection 
 
string cmdtext = "select table_owner, table_name, " + 

206  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

"create_date from iitables " + 
" where table_type in ('T','V') and " + 
" table_name not like 'ii%' and" + 
" table_name not like 'II%'"; 
IngresCommand cmd = new IngresCommand(cmdtext, conn); 
 
//          read the data using the DataReader method 
IngresDataReader   datareader = cmd.ExecuteReader(); 
 
//          write header labels 
Console.WriteLine(datareader.GetName(0).PadRight(18) + 
datareader.GetName(1).PadRight(34) + 
datareader.GetName(2).PadRight(34)); 
int i = 0; 
while (i++ < 10  &&  datareader.Read()) 
// read and write out a few data rows 
{     // write out the three columns to the console 
        Console.WriteLine( 
        datareader.GetString(0).Substring(0,16).PadRight(18) + 
        datareader.GetString(1).PadRight(34) + 
                datareader.GetString(2)); 
} 
datareader.Close(); 
DataSet  ds  = new DataSet("my_list_of_tables"); 
//          read the data using the DataAdapter method 
IngresDataAdapter adapter = new IngresDataAdapter(); 
adapter.SelectCommand = new IngresCommand(cmdtext, conn); 
adapter.Fill(ds);  // fill the dataset 
 
//          write the dataset to an XML file 
ds.WriteXml("c:/temp/temp.xml"); 
 
conn.Close();   // close the connection 
}  // end Main() 
}  // end class App 

 

IngresCommandBuilder Class 

The IngresCommandBuilder class automatically generates INSERT, DELETE, 
and UPDATE commands into an IngresDataAdapter object for a simple single-
table SELECT query. These commands can be used to reconcile DataSet 
changes through the IngresDataAdapter associated with the Ingres database. 

 

Understanding .NET Data Provider Connectivity  207  
 



.NET Data Provider Classes 
 

IngresCommandBuilder Class Declaration 

The IngresCommandBuilder class can be declared as follows: 

C##: public sealed class IngresCommandBuilder : DbCommandBuilder 

VB.NET: NotInheritable Public Class IngresCommandBuilder 
  Inherits DbCommandBuilder 

 

IngresCommandBuilder Class Properties 

The IngresCommandBuilder class properties are:  

 

Property Accessor Description 

CatalogLocation get set Position of the catalog name in a 
qualified table name. 

CatalogSeparator get set The string of characters that defines 
the separation between a catalog 
name and the table name. 

ConflictOption get set Controls how to compare for update 
conflicts. 

DataAdapter get set The IngresDataAdapter object that is 
associated with the 
CommandBuilder. The 
IngresDataAdapter contains the 
InsertCommand, DeleteCommand, 
and UpdateCommand objects that 
are automatically derived from the 
SelectCommand. 

QuotePrefix get set The string of characters that are 
used as the starting delimiter of a 
quoted table or column name in an 
SQL statement. 

QuoteSuffix get set The string of characters that are 
used as the ending delimiter of a 
quoted  table or column name in an 
SQL statement. 

SchemaSeparator get set The string of characters that defines 
the separation between a table name 
and column name. Always a period 
(.) 

 

208  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

IngresCommandBuilder Class Methods 

The public methods available to the IngresCommandBuilder class are: 

 

Method Description 

Derive Parameters Retrieves the parameter metadata of the 
database procedure specified in the 
IngresCommand object and populates the 
IngresCommand.Parameters collection.  

GetDeleteCommand Gets the generated IngresCommand to perform 
DELETE operations on the table. 

GetInsertCommand Gets the generated IngresCommand to perform 
INSERT operations on the table. 

GetUpdateCommand Gets the generated IngresCommand to perform 
UPDATE operations on the table. 

QuoteIdentifier Wrap quotes around an identifier. 

RefreshSchema Refreshes the IngresCommandBuilder's copy of 
the metadata of a possibly changed SELECT 
statement in the 
IngresDataAdapter.SelectCommand object. 

UnquoteIdentifier Removes quotes from an identifier. 
 

IngresCommandBuilder Class Constructors 

The IngresCommandBuilder class has the following constructors: 

 

Constructor Overloads Description 

IngresCommandBuilder () Instantiates a new instance of 
the IngresCommandBuilder 
class using default property 
values 

IngresCommandBuilder 
(IngresDataAdapter) 

Instantiates a new instance of 
the IngresCommandBuilder 
class using the specified 
IngresDataAdapter 

 

Understanding .NET Data Provider Connectivity  209  
 



.NET Data Provider Classes 
 

IngresConnection Class 

The IngresConnection class represents an open connection to an Ingres 
database. This class requires a connection string to connect to a target server 
and database. 

Important! An application must Close( ) or Dispose( ) on the Connection 
object to return it to the connection pool for reuse by other applications.

 

IngresConnection Class Declaration 

The IngresConnection class declaration method signature is: 

C#:  public sealed class IngresConnection : 
System.Data.Common.DbConnection, IDbConnection, IDisposable 

VB.NET:  NotInheritable Public Class IngresConnection  
  Inherits System.Data.Common.DbConnection 
  Implements IDbConnection, IDisposable 

 

IngresConnection Class Example 

IngresConnection conn = new IngresConnection( 

“Host=myserver.mycompany.com;Database=mydatabase;” + 
“User ID=myuid;Password=mypassword;”); 

conn.Open( ); 
 

210  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

IngresConnection Class Properties 

The IngresConnection class has the following properties: 

 

Property Accessor Description 

ConnectionString get  set String that specifies the target server 
machine and database to connect to, 
the credentials of the user who is 
connecting, and the parameters that 
define connection pooling and 
security. 

Default is "". 

Consists of keyword=value pairs, 
separated by semicolons. Leading and 
trailing blanks around the keyword or 
value are ignored. Case and 
embedded blanks in the keyword are 
ignored. Case and embedded blanks in 
the value are retained. Can only be 
set if connection is closed. Resetting 
the connection string resets the 
ConnectionTimeOut and Database 
properties. 

For a list of valid keywords and their 
descriptions, see Connection String 
Keywords (see page 213). 

ConnectionTimeOut get The time, in seconds, for an 
attempted connection to abort if the 
connection cannot be established. 

Default is 15 seconds. 

Database get The database name specified in the 
ConnectionString's Database value. 

Default is "". 

DataSource get The name of the target server. 

ServerVersion get The server version number. May 
include additional descriptive 
information about the server. This 
property uses an IngresDataReader. 
For this reason, no other 
IngresDataReader can be active at the 
time that this property is first invoked.

Understanding .NET Data Provider Connectivity  211  
 



.NET Data Provider Classes 
 

Property Accessor Description 

State get The current state of the connection:  
ConnectionState.Closed or 
ConnectionState.Open. 

 

IngresConnection Class Public Methods 

The public methods for the IngresConnection class are: 

 

Method Description 

BeginTransaction Begins a local transaction. The connection 
must be open before this method can be 
called. Nested or parallel transactions are not 
supported. Mutually exclusive with the 
EnlistDistributedTransaction method. 

ChangeDatabase Changes the database to be used for the 
connection. The connection must be closed 
before this method can be called. 

Close Closes the connection (rollback pending 
transaction) and returns the connection to 
the connection pool. 

CreateCommand Creates an IngresCommand object. 

Dispose Closes the connection and releases allocated 
resources. 

EnlistDistributedTransaction Enlist in an existing distributed transaction 
(ITransaction). Mutually exclusive with the 
BeginTransaction method. 

Open Opens a database connection or uses one 
from the connection pool. 

 

IngresConnection Class Events 

The events generated by the IngresConnection are: 

 

Event Description 

InfoMessage Generated when the database returns a warning or 
informational message. 

StateChange Generated when the State property changes from Closed to 
Open or from Open to Close. For a definition of State, see 
IngresConnection Class Properties (see page 211). 

 

212  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

IngresConnection Class Constructors 

The constructors for the IngresConnection class are: 

 

Constructor Overloads Description 

IngresConnection() Instantiates a new instance of the 
IngresConnection class using default property 
values 

IngresConnection(string) Instantiates a new instance of the 
IngresConnection class using the defined 
connection string 

 

Connection String Keywords 

Connection string keywords are case-insensitive. Certain keywords are 
accepted as synonyms of each other. For example, keywords “Server” and 
“Address” are synonyms of “Host.” Spaces in values are retained. Values may 
be delimited by double-quotes. 

The connection string keywords for the IngresConnection class are: 

 

Keyword Description 

BlankDate BlankDate=null specifies that an Ingres blank (empty) 
date result value is to be returned to the application as a 
null value. The default is to return an Ingres blank date 
as a DateTime value of “9999-12-31 23:59:59”. 

Connect Timeout 
Connection 
Timeout 

The time, in seconds, to wait for an attempted 
connection to time out if the connection has not 
completed. Default is 15 seconds. 

Cursor_Mode Default cursor concurrency mode, which determines the 
concurrency of cursors that are not explicitly assigned in 
the command text, for example, “FOR UPDATE” or “FOR 
READONLY.”  Available options are: 

� readonly – Provides non-updateable cursors for best 
performance (default) 

� update – Provides updateable cursors 

� dbms – Concurrency is assigned by the DBMS Server 

Database 
DB 

Name of the database being connected to. If a server is 
required, use the syntax dbname/server_class. 

Understanding .NET Data Provider Connectivity  213  
 



.NET Data Provider Classes 
 

Keyword Description 

Date_format 
Date_fmt 

Specifies the Ingres format for date literals. It 
corresponds to the Ingres environment variable 
II_DATE_FORMAT and is assigned the same values.  This 
option is not used directly by the data provider, but is 
sent to the DBMS and affects the parsing of date literals 
in query text. 

Decimal_char Decimal_char=',' specifies that the DBMS Server is to 
use the comma (,) character to separate fractional and 
non-fractional parts of a number.  It corresponds to the 
Ingres environment variable II_DECIMAL and is assigned 
the same values. This option is not used directly by the 
data provider, but is sent to the DBMS and affects the 
parsing and construction of numeric literals. The default 
value is the period (.) as in 12.34. 

Enlist If set to true and if the creation thread is within a 
transaction context as established by 
System.EnterpriseServices.ServicedComponent, the 
IngresConnection in the transaction context is 
automatically enlisted. Default is true. 

Group ID Group identifier that has permissions for a group of 
users. 

Host 
Server 
Address 

Name of the target host server machine with the Data 
Access Server. 

Max Pool Size Maximum number of connections that can be in the pool. 
Default is 100. 

Min Pool Size Minimum number of connections that can be in the pool. 
Default is 0. 

Money_format 
Money_fmt 

Specifies the Ingres format for money literals. It 
corresponds to the Ingres environment variable 
II_MONEY_FORMAT and is assigned the same values. 
This option is not used directly by the data provider, but 
is sent to the DBMS and affects the processing of query 
text.  

Money_precision 
Money_prec 

Specifies the precision of money data values. It 
corresponds to the Ingres environment variable 
II_MONEY_PREC and is assigned the same values.  This 
option is not used directly by the data provider, but is 
sent to the DBMS and affects the processing of money 
values. 

Password 
PWD 

The password to the database. This value may be case-
sensitive depending on the target server. 

214  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

Keyword Description 

Persist Security 
Info 

If set to 'false,' password information from the 
connection string is not returned in a get of the 
ConnectionString property. Default is 'false.' If 'true,' 
then password information from the connection string is 
returned in a get of the ConnectionString property. 

Pooling Enables or disables connection pooling. By default, 
connection pooling is enabled (true). If set to 'false,' 
connection pooling is disabled. 

Port Port number on the target host server machine that the 
Data Access Server is listening to. Default is II7. 

Role ID Role identifier that has associated privileges for the role. 

Role Password 
Role PWD 

Role password associated with the Role ID. 

Timezone 

TZ 

Specifies the Ingres time zone associated with the 
client's location. Corresponds to the Ingres environment 
variable II_TIMEZONE_NAME and is assigned the same 
values. This information is not used directly by the data 
provider, but is sent to the DBMS and affects the 
processing of dates. 

User ID 
UID 

The name of the authorized user connecting to the DBMS 
Server. This value may be case-sensitive depending on 
the target server. 

Vnode_usage Allows the .NET application to control the portions of the 
vnode information that are used to establish the 
connection to the remote DBMS server through the DAS 
server. Available options are: 

� connect – Only the vnode connection information is 
used to establish the connection. This is the default. 

� login – Both the vnode connection and login 
information are used to establish the connection. 

For further details, see Data Provider User ID Options 
(see page 216). 

 

Understanding .NET Data Provider Connectivity  215  
 



.NET Data Provider Classes 
 

Data Provider User ID Options 

The Ingres .NET Data provider does not require a user ID and password to 
establish a connection when the Ingres DAS is running on the same machine 
as the .NET client application. When a user ID and password is not provided, 
the .NET client process user ID is used to establish the DBMS connection. 

If the target database name specification includes a VNODE name 
specification, the VNODE login information is used to access the DBMS 
machine. Optionally, a user ID and password can be provided and is handled 
as described below. 

When the DAS and DBMS servers are on different machines, a VNODE name is 
required in the target database specification of the form vnodename::dbname. 
The VNODE provides the connection and (optionally) login information needed 
to establish the DBMS connection. 

The connection string keyword Vnode_usage determines how the VNODE is 
used to access the DBMS. Vnode_usage also determines the context (DAS or 
DBMS) in which the application user ID/password is used. If the target 
database specification does not contain a VNODE name, the Vnode_usage 
specification is ignored. 

When Vnode_usage is set to connect, only global VNODE connection 
information is used to establish the DBMS connection. The application-
provided user ID and password are used in the DBMS context to access the 
DBMS machine. 

When Vnode_usage is set to login, both connection and login VNODE 
information is used to access the DBMS machine. The application-provided 
User ID and Password are used in the DAS context, allowing access to private 
and global VNODEs on the DAS server.  

The Ingres .NET Data Provider supports IPv6 addressing. IPv6 addresses 
should be enclosed in brackets [ ] because of the different address format—for 
example: [fe80::127:dff:fe7c:fecc]. 

If a hostname is associated with multiple IP addresses, the data provider 
sequentially tries to connect to each IP address in the AddressList returned by 
System.Net.Dns.GetHostEntry until it achieves a successful socket connection 
or until it reaches the end of the list. If the connection to the first address is 
down, the driver attempts a connection to the next entry in the AddressList. 
Although performance will suffer as each Exception from a failed connection is 
caught, this re-attempt allows a secondary IP (backup) for a connection to a 
server. 

 

216  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

Enlistment in Distributed Transactions 

The Ingres .NET Data Provider supports enlistment in distributed transactions 
through the MS Distributed Transaction Coordinator (MSDTC) and the XA two-
phase commit protocol.  

Developers should be aware of MSDTC performance with distributed 
transactions and the lag time in communicating with all voters of the two-
phase commit protocol. For performance reasons, distributed transactions 
should be used carefully. While the enlistment in a distributed transaction is 
not slow, it is not as fast as an enlistment in a local transaction. 

To use the distributed transaction support in the data provider, the 
administrator of the Windows machine must enable XA transactions through 
Component Services. 

 
 

IngresConnectionStringBuilder Class 

The IngresConnectionStringBuilder class represents provides a series of 
properties and methods to create syntactically correct connection string and to 
parse and rebuild existing connection strings.  

 

Understanding .NET Data Provider Connectivity  217  
 



.NET Data Provider Classes 
 

IngresConnectionStringBuilder Class Declaration 

The IngresConnectionStringBuilder class can be declared as follows: 

C##: public sealed class IngresConnectionStringBuilder : 
DbConnectionStringBuilder 

VB.NET: NotInheritable Public Class IngresConnectionStringBuilder 
  Inherits DbConnectionStringBuilder 

 

IngresConnectionStringBuilder Class Properties 

The IngresConnectionStringBuilder class has the following properties: 

 

Property Accessor Description 

BrowsableConnectionString get set Indicates whether the 
ConnectionString Property is 
visible in Visual Studio designers. 

ConnectionString get set The connection string associated 
with the 
IngresConnectionStringBuilder. 

Count get The number of keys contained 
within the ConnectionString 
property. 

DataSource get set The name of the target server. 

Item get set The value associated with the key. 
This property is the C# indexer 
for the 
IngresConnectionStringBuilder 
class. 

Keys get An ICollection of keys of type 
String in the 
IngresConnectionStringBuilder. 

Values get An ICollection of values of type 
Object in the 
IngresConnectionStringBuilder. 

 

218  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

IngresConnectionStringBuilder Class Methods 

The public methods available to the IngresConnectionStringBuilder class are: 

 

Method Description 

Add Adds a key and value to the collection within 
IngresConnectionStringBuilder.  

Clear Clears all keys and values from 
IngresConnectionStringBuilder. Sets ConnectionString 
propery to “”. 

ContainsKey Returns true if IngresConnectionStringBuilder contains 
the specified key. 

EquivalentTo Returns true if keys and values are comparable to the 
specified IngresConnectionStringBuilder object. 

Remove Removes the entry with the specified key from 
IngresConnectionStringBuilder. 

ToString Returns the ConnectionString associated in the 
IngresConnectionStringBuilder. 

TryGetValue Returns a value corresponding to the specified key from 
the IngresConnectionStringBuilder. Returns false if the 
key was not found. 

 

IngresConnectionStringBuilder Class Constructors 

The IngresConnectionStringBuilder class has the following constructors: 

 

Constructor Overloads Description 

IngresConnectionStringBuilder () Instantiates a new instance of the 
IngresConnectionStringBuilder class 
using default property values 

IngresConnectionStringBuilder (string) Instantiates a new instance of the 
IngresConnectionStringBuilder class 
using the specified connection 
string. 

 

Understanding .NET Data Provider Connectivity  219  
 



.NET Data Provider Classes 
 

IngresDataReader Class 

IngresDataReader provides a means of reading a forward-only stream of rows 
from a result-set created by a SELECT query or a row-producing database 
procedure. 

When an IngresDataReader is open, the IngresConnection is busy and no 
other operations are allowed on the IngresConnection (other than 
IngresConnection.Close) until IngresDataReader.Close is issued. Created by 
the IngresCommand.ExecuteReader methods. 

 

IngresDataReader Class Declaration 

The IngresDataReader can be declared as follows: 

C#:  public sealed class IngresDataReader : 
System.Data.Common.DbDataReader 

VB.NET:  NotInheritable Public Class IngresDataReader  
  Inherits System.Data.Common.DbDataReader  

 

220  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

IngresDataReader Class Example 

The following is an example implementation of the IngresDataReader class: 

static void ReaderDemo(string connstring) 
{ 
    IngresConnection conn = new IngresConnection(connstring); 
 
    string strNumber; 
    string strName; 
    string strSSN; 
 
    conn.Open(); 
 
    IngresCommand cmd = new IngresCommand( 
        "select number, name, ssn  from personnel", conn); 
 
    IngresDataReader reader = cmd.ExecuteReader(); 
 
    Console.Write(reader.GetName(0) + "\t"); 
    Console.Write(reader.GetName(1) + "\t"); 
    Console.Write(reader.GetName(2)); 
    Console.WriteLine(); 
 
    while (reader.Read()) 
    { 
        strNumber= reader.IsDBNull(0)? 
            "<none>":reader.GetInt32(0).ToString(); 
        strName  = reader.IsDBNull(1)? 
            "<none>":reader.GetString(1); 
        strSSN   = reader.IsDBNull(2)? 
            "<none>":reader.GetString(2); 
 
        Console.WriteLine( 
        strNumber + "\t" + strName + "\t" + strSSN); 
    } 
 
    reader.Close(); 
    conn.Close(); 
} 

 

Understanding .NET Data Provider Connectivity  221  
 



.NET Data Provider Classes 
 

IngresDataReader Class Properties 

The IngresDataReader class contains the following properties: 

 

Property Accessor Description 

Depth get The depth of nesting for the current row. This 
data provider always returns a depth of zero 
to indicate no nesting of tables. 

FieldCount get The number of columns in the current row. 

HasRows get Returns true if the data reader contains one 
or more rows. Returns false if the data reader 
contains zero rows. 

IsClosed get A true/false indicator as to whether the data 
reader is closed. 

Item get Gets the column value in its native format for 
a given column name or column ordinal. This 
property is the C# indexer for the 
IngresDataReader class. 

RecordsAffected get The number of rows updated, inserted, or 
deleted by execution of the SQL statement. -
1 is returned for SELECT statements. 

 

IngresDataReader Class Public Methods 

The public methods available to the IngresDataReader class are: 

 

Method Description 

Close Closes the IngresDataReader. 

GetBoolean Gets the column value as a Boolean. 

GetByte Gets the column value as an unsigned 8-bit Byte. 

GetBytes Gets the column value as a byte stream into a Byte 
array. 

GetChar Gets the column value as a Char. 

GetChars Gets the column value as a character stream into a 
Char array. 

GetDataTypeName Gets the column's data type name as known in 
Ingres. 

GetDateTime Gets the column value as a DateTime. 

222  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

Method Description 

GetDecimal Gets the column value as a Decimal. 

GetDouble Gets the column value as a double. 

GetFieldType Gets the column's .NET Type. 

GetFloat Gets the column value as a Float. 

GetGuid Gets the column value as a Guid. 

GetInt16 Gets the column value as a signed 16-bit integer. 

GetInt32 Gets the column value as a signed 32-bit integer. 

GetInt64 Gets the column value as a signed 64-bit integer. 

GetName Gets the column's name using a specified ordinal. 

GetOrdinal Gets the column's ordinal using a specified name. 

GetSchemaTable Returns a DataTable that describes the resultset 
column metadata. If ExecuteReader( 
CommandBehavior.KeyInfo ) was called, additional 
information about primary key columns, unique 
columns, and base names is retrieved from the 
database catalog and included in the returned 
DataTable. For column information returned, see 
GetSchemaTable Columns Returned (see page 224). 

GetString Gets the column value as a string. 

GetTimeSpan Gets the column value as a TimeSpan. 

GetValue Gets the column value in its native format. 

GetValues Gets all of the column values into an Object array. 

IsDBNull Returns true/false indicating whether the column 
value is null. 

NextResult Advances the data reader to the next result set if 
present. 

Read Advances the data reader to the next row in the 
result set. 

Important! There are no conversions performed by the GetXXX methods. If 
the data is not of the correct type, an InvalidCastException is thrown.

Always call IsDBNull on a column if there is any chance of it being null before 
attempting to call one of the GetXXX accessor to retrieve the data. 

 

Understanding .NET Data Provider Connectivity  223  
 



.NET Data Provider Classes 
 

GetSchemaTable Columns Returned 

The GetSchemaTable describes the column metadata of the IngresDataReader.  

Note: The column information is not necessarily returned in the order shown. 

 

Column 
Information 

Data Type Description 

ColumnName String The name of the column, which reflects 
the renaming of the column in the 
command text (that is, the alias). 

ColumnOrdinal Int32 The number of the column, beginning 
with 1. 

ColumnSize Int32 Maximum possible length of a value in 
the column. 

NumericPrecision Int16 This is the maximum precision of the 
column if the column is a numeric data 
type; otherwise the value is null. 

NumericScale Int16 This is the number of decimal places in 
the column if the column is a numeric 
data type; otherwise the value is null. 

DataType Type The .NET Framework data type of the 
column. 

ProviderType IngresType The indicator of the column's data type 

IsLong Boolean Set to true if the column contains a 
long varchar, long varbinary, or long 
nvarchar object; otherwise false. 

AllowDBNull Boolean Set to true if the application can set the 
column to a null value or if the data 
provider cannot determine if the 
application can set the column to a null 
value. Set to false if it is known that the 
application is not permitted to set the 
column to a null. Note that a column 
value may be null even if the 
application is not permitted to set the 
null value. 

IsReadOnly Boolean Set to true if it is known that the 
column cannot be modified; otherwise 
false. 

224  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

Column 
Information 

Data Type Description 

IsRowVersion Boolean Set to true if column has a persistent 
row identifier that cannot be written to 
and serves only to identify the row. The 
Ingres .NET Data Provider always 
returns false. 

IsUnique Boolean Set to true if no two rows in the table 
can have the same value in this 
column. Set to false if not unique or if 
uniqueness cannot be determined. Only 
set if 
ExecuteReader(CommandBehavior.KeyI
nfo) was called. 

IsKeyColumn Boolean Set to true if this column is in the set of 
columns that, taken together, uniquely 
identify the row. Only set if 
ExecuteReader( 
CommandBehavior.KeyInfo ) was 
called. 

IsAutoIncrement Boolean Set to true if the column assigns values 
to new rows in fixed increments. The 
Ingres .NET Data Provider always 
returns false. 

BaseCatalogName String The name of the database catalog that 
contains the column. This value is null if 
the catalog name cannot be 
determined. The Ingres .NET Data 
Provider always returns a null value. 

BaseSchemaName String The name of the database schema that 
contains the column. This value is null if 
the schema name cannot be 
determined. Only set if 
ExecuteReader(CommandBehavior.KeyI
nfo) was called. 

BaseTableName String The name of the database table or view 
that contains the column. This value is 
null if the table name cannot be 
determined. Only set if 
ExecuteReader(CommandBehavior.KeyI
nfo) was called. 

Understanding .NET Data Provider Connectivity  225  
 



.NET Data Provider Classes 
 

Column 
Information 

Data Type Description 

BaseColumnName String The name of the column in the 
database. This value is null if the 
column name cannot be determined. 
Only set if  
ExecuteReader( 
CommandBehavior.KeyInfo ) was 
called. 

 

Mapping of Ingres Native Types to .NET Types 

The following table maps the native Ingres database types supported by the 
Ingres .NET Data Provider to their corresponding .NET type. It also maps the 
typed accessor that a .NET application uses for an Ingres native database type 
to be obtained as a .NET type. 

 

IngresType Ingres Data Type .NET Data 
Type 

Accessor 

Binary byte Byte[] GetBytes() 

Char char String GetString() 

DateTime date DateTime GetDateTime() 

Decimal decimal Decimal GetDecimal() 

Double double precision 
(float8) 

Double GetDouble() 

SmallInt smallint Int16 GetInt16() 

TinyInt integer1 Byte GetByte() 

Int integer Int32 GetInt32() 

BigInt bigint Int64 GetInt64() 

LongVarBinary long byte Byte[] GetBytes() 

LongVarChar long varchar String GetString() 

LongNVarChar long nvarchar String GetString() 

Nchar nchar String GetString() 

NvarChar nvarchar String GetString() 

Real real (float4) Single GetString() 

VarBinary byte varying Byte[] GetBytes() 

VarChar varchar String GetString() 
 

226  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

IngresDataAdapter Class 

The IngresDataAdapter class represents a set of SQL statements and a 
database connection that are used to fill a DataSet and, optionally, update the 
Ingres database. The IngresDataAdapter object acts as a bridge between a 
.NET DataSet and the Ingres database for retrieving and updating data. 

 

IngresDataAdapter Class Declaration 

The declarations for the IngresDataAdapter class are: 

C#:  public sealed class IngresDataAdapter : DbDataAdapter, IDbDataAdapter, 
ICloneable 

VB.NET:  NotInheritable Public Class DataAdapter 
  Inherits DbDataAdapter  
  Implements IDbDataAdapter, ICloneable 

 

IngresDataAdapter Class Example 

public DataSet CreateDataSet( 
    string dsName, string connectionString, string commandText) 
{ 
    IngresConnection connection =  
        new IngresConnection(connectionString); 
    IngresCommand command = 
        new IngresCommand(commandText, connection); 
    IngresDataAdapter adapter = new IngresDataAdapter(command); 
    DataSet ds = new DataSet(); 
    adapter.Fill(ds, dsName); 
    return ds; 
} 

 

IngresDataAdapter Class Properties 

The IngresDataAdapter class has the following properties: 

 

Property Accessor Description 

AcceptChangesDuringFill get  set A true/false value indicating whether 
the DataRow.AcceptChanges method is 
called after the DataRow is added to 
the DataTable. Inherited from 
DataAdapter. 

Default is true. 

Understanding .NET Data Provider Connectivity  227  
 



.NET Data Provider Classes 
 

Property Accessor Description 

AcceptChangesDuringFill get  set A true/false value indicating whether 
the DataRow.AcceptChanges method is 
called after the DataRow is added to 
the DataTable. Inherited from 
DataAdapter. 

Default is true. 

ContinueUpdateOnError get  set A true/false value indicating whether 
to generate an exception or to update 
the RowError property when an error 
occurs during an update to the row. 
Inherited from DataAdapter. 

Default is false. 

DeleteCommand get  set Command to be used (SQL statement 
or database procedure) to DELETE 
records from the database. 

InsertCommand get  set Command to be used (SQL statement 
or database procedure) to INSERT 
records into the database. 

MissingMappingAction get  set Action to be taken if incoming data 
does not have a matching table or 
column. Default is Passthrough. 
Inherited from DataAdapter. 

MissingSchemaAction get  set Action to be taken if an existing 
DataSet schema does not match 
incoming data. Default is Add. 
Inherited from DataAdapter. 

SelectCommand get  set Command to be used (SQL statement 
or database procedure) to SELECT 
records from the database. 

TableMappings get The collection that provides the 
mapping between the returned records 
and the DataSet. Default is an empty 
collection. Inherited from DataAdapter.

UpdateCommand get  set Command to be used (SQL statement 
or database procedure) to UPDATE 
records in the database. 

 

228  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

IngresDataAdapter Class Public Methods 

The public methods available to the IngresDataAdapter Class are: 

 

Method Description 

Dispose Releases allocated resources. 

Fill Adds or refreshes rows in the DataSet to match the 
values in the database. Inherited from DBDataAdapter. 

FillSchema Adds a DataTable to a DataSet and configures the schema 
to match that in the database. FillSchema does not add 
rows to a DataTable. Inherited from DBDataAdapter. 

GetFillParameters Gets an array of IDataParameter objects that contain the 
parameters set by the user when executing a SELECT 
statement. Inherited from DBDataAdapter. 

Update Calls the respective INSERT, UPDATE, or DELETE 
statements for each inserted, updated, or deleted row in 
the DataSet. Inherited from DBDataAdapter. 

 

IngresDataAdapter Class Events 

The events generated by the IngresDataAdapter class are: 

 

Event Description 

FillError Raised when an error occurs during a Fill operation. 
Inherited from DBDataAdapter. 

RowUpdating Raised as an UPDATE, INSERT, or DELETE operation 
on a row (by a call to one of the Update methods) is 
about to start. 

RowUpdated Raised after an UPDATE, INSERT, or DELETE operation 
on a row (by a call to one of the Update methods) is 
complete. 

 

IngresDataAdapter Class Constructors 

The IngresDataAdapter class contains the following constructors: 

 

Constructor Overloads Description 

IngresDataAdapter() Instantiates a new instance of the 
IngresDataAdapter class using default property 
values 

Understanding .NET Data Provider Connectivity  229  
 



.NET Data Provider Classes 
 

Constructor Overloads Description 

IngresDataAdapter 
(IngresCommand) 

Instantiates a new instance of the 
IngresDataAdapter class using the defined 
IngresCommand as the SelectCommand. 

IngresDataAdapter 
(string, IngresConnection) 

Instantiates a new instance of the 
IngresDataAdapter class using the defined 
command text for a new instance of 
IngresCommand for the SelectCommand, and 
the IngresConnection object 

IngresDataAdapter 
(string, string) 

Instantiates a new instance of the 
IngresDataAdapter class using the defined 
command text for the SelectCommand and a 
connection string 

 

IngresError Class 

The IngresError class represents error or warning information returned by the 
Ingres database. 

 

IngresError Class Declaration 

The IngresError class can be declared as follows: 

C#: [Serializable] public sealed class IngresError 

VB.NET:  NotInheritable Public Class IngresError 
 

230  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

IngresError Class Example 

The following is an implementation of the IngresError class: 

static void PrintErrorCollection(IngresErrorCollection errcol) 
{ 
    foreach(IngresError err in errcol) 
    { 
        PrintError(err); 
    } 
    Console.WriteLine(""); 
} 
 
static void PrintError(IngresError err) 
{ 
    Console.Write(err.GetType().ToString() + ":\n"); 
    Console.Write("\t" + "Message         = " + 
        (err.Message    !=null? 
            err.Message.ToString()    :"<null>") + "\n"); 
    Console.Write("\t" + "Source = " + 
        (err.Source!=null?err.Source.ToString():"<null>") + "\n"); 
    Console.Write("\t" + "ToString: " + err.ToString() + "\n"); 
    Console.Write("\t" + "Number       = " + 
        (err.Number.ToString()) + "\n"); 
    Console.Write("\t" + "SQLState       = " + 
        (err.SQLState  !=null? 
            err.SQLState.ToString()  :"<null>") + "\n"); 
    Console.WriteLine(""); 
} 

 

IngresError Class Properties 

The IngresError class has the following properties: 

 

Property Accessor Description 

Message get A description of the error. 

Number get The database-specific error integer information 
returned by the Ingres database. 

Source get Name of the data provider that generated the 
error. Always “Ingres.” 

SQLState get The standard five-character SQLSTATE code. 
 

Understanding .NET Data Provider Connectivity  231  
 



.NET Data Provider Classes 
 

IngresError Class Public Methods 

The public methods available to the IngresError class are: 

 

Method Description 

ToString A description of the error in the form of 
“IngresError: error-message-text”. 

 

IngresErrorCollection Class 

The IngresErrorCollection class represents a collection of the IngresError 
objects returned by the Ingres database. Created by IngresException, an 
IngresErrorCollection collection always contains at least one instance of 
IngresError. 

 

IngresErrorCollection Class Declaration 

The declarations for the IngresErrorCollection class are: 

C#:  [Serializable]  
         public sealed class IngresErrorCollection : ICollection, IEnumerable 

VB.NET:  <Serializable]>  
    NotInheritable Public Class IngresError  
  Inherits ICollection Implements IEnumerable 

 

232  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

IngresErrorCollection Class Example 

The following is an example implementation of the IngresErrorCollection class: 

static void PrintErrorCollection(IngresErrorCollection errcol) 
{ 
    foreach(IngresError err in errcol) 
    { 
        PrintError(err); 
    } 
    Console.WriteLine(""); 
} 
 
static void PrintError(IngresError err) 
{ 
    Console.Write(err.GetType().ToString() + ":\n"); 
 
    Console.Write("\t" + "Message         = " + 
        (err.Message    !=null? 
            err.Message.ToString()    :"<null>") + "\n"); 
    Console.Write("\t" + "Source = " + 
        (err.Source!=null?err.Source.ToString():"<null>") + "\n"); 
    Console.Write("\t" + "ToString: " + err.ToString() + "\n"); 
    Console.Write("\t" + "Number       = " + 
        (err.Number.ToString()) + "\n"); 
    Console.Write("\t" + "SQLState       = " + 
        (err.SQLState  !=null? 
            err.SQLState.ToString()  :"<null>") + "\n"); 
    Console.WriteLine(""); 
} 

 

IngresErrorCollection Class Properties 

The IngresErrorCollection class has the following properties: 

 

Property Accessor Description 

Count get The number of errors in the collection. 

Item get Gets the IngresError for a given ordinal. 
This property is the C# indexer for 
IngresErrorCollection class. 

 

Understanding .NET Data Provider Connectivity  233  
 



.NET Data Provider Classes 
 

IngresErrorCollection Class Public Methods 

The public methods available to the IngresErrorCollection class are: 

 

Method Description 

CopyTo Copies the elements of IngresErrorCollection to an 
Array. 

 

IngresException Class 

The IngresException class represents the exception that is thrown when error 
information is returned by the Ingres database. 

 

IngresException Class Declaration 

The IngresException is declared as follows: 

C#:  [Serializable]  
        public sealed class IngresException :  SystemException 

VB.NET:  <Serializable>  
    NotInheritable Public Class IngresException  
  Inherits SystemException 

 

234  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

IngresException Class Example 

The following is an example implementation of the IngresException class: 

static void PrintException(IngresException ex) 
{ 
    Console.Write(ex.GetType().ToString() + ":\n"); 
    Console.Write("\t" + "Errors         = " + 
        (ex.Errors    !=null?ex.Errors.ToString()    : 
            "<null>") + "\n"); 
    Console.Write("\t" + "HelpLink       = " + 
        (ex.HelpLink  !=null?ex.HelpLink.ToString()  : 
            "<null>") + "\n"); 
    Console.Write("\t" + "InnerException = " + 
                (ex.InnerException!=null?ex.InnerException.ToString(): 
            "<null>") + "\n"); 
    Console.Write("\t" + "Source = " + 
        (ex.Source    !=null?ex.Source.ToString()    : 
            "<null>") + "\n"); 
    Console.Write("\t" + "TargetSite = " + 
                (ex.TargetSite!=null?ex.TargetSite.ToString():"<null>") + "\n"); 
    Console.WriteLine(""); 
} 

 

IngresException Class Properties 

The IngresException class contains the following properties: 

 

Property Accessor Description 

Errors get An ErrorCollection of one or more Error 
objects that give more detailed information 
on the exception generated by the 
provider. 

InnerException get The nested Exception instance that caused 
the current exception. Inherited from 
Exception. 

Message get A concatenation of all the messages in the 
Errors collection. 

Source get Name of the data provider that generated 
the error. Always “Ingres.” 

StackTrace get A string representation of the frames on 
the call stack at the time the current 
exception was thrown. 

TargetSite get The method that threw the current 
exception. Inherited from Exception. 

 

Understanding .NET Data Provider Connectivity  235  
 



.NET Data Provider Classes 
 

IngresException Class Public Methods 

The public methods available to the IngresException class are: 

 

Method Description 

ToString The description of the exception as a string. 
 

IngresFactory Class 

The IngresFactory class helps generates many of the other Ingres classes in 
an interoperable data provider model. For each Ingres class that the factory 
wants to construct, simply call the Ingres constructor for that class and return 
the object instance. 

 

IngresFactory Class Declaration 

The IngresFactory class can be declared as follows: 

C#: public sealed class IngresFactory :  DbProviderFactory 

VB.NET: NotInheritable Public Class IngresFactory 
  Inherits DbProviderFactory 

 

IngresFactory Class Public Fields 

The IngresFactory class has the following public fields: 

 

Field Description 

Instance The static field containing the single instance of 
IngresFactory. 

 

IngresFactory Class Public Methods 

The public methods available to the IngresFactory class are: 

 

Method Description 

CreateCommand Creates an instance of IngresCommand 
using the factory. 

CreateCommandBuilder Creates an instance of 
IngresCommandBuilder using the factory. 

236  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

Method Description 

CreateConnection Creates an instance of IngresConnection 
using the factory. 

CreateConnectionStringBuilder Creates an instance of 
IngresConnectionStringBuilder using the 
factory. 

CreateDataAdapter Creates an instance of IngresDataAdapter 
using the factory. 

CreateDataSourceEnumerator Always returns null. 

CreateParameter Creates an instance of IngresParameter 
using the factory. 

CreatePermission Creates an instance of IngresPermission 
using the factory. 

 

IngresInfoMessageEventArgs Class 

The IngresInfoMessageEventArgs class provides the information on warnings 
from the database to the delegate method that handles the InfoMessage 
event. 

 

IngresInfoMessageEventArgs Class Declaration 

The IngresInfoMessageEventArgs class is declared as follows: 

C#:  public sealed class IngresInfoMessageEventArgs : EventArgs 

VB.NET:  NotInheritable Public Class IngresInfoMessageEventArgs 
     Inherits EventArgs 

 

IngresInfoMessageEventArgs Class Example 

The following is an implementation of the IngresInfoMessageEventArgs class: 

static void OnInfoMessage( 
    Object sender, IngresInfoMessageEventArgs e) 
{ 
    Console.WriteLine("OnInfoMessage event args: ("+ 
        "ErrorCode=" + e.Number + 
 
        ", Errors=" + e.Errors + 
        ", Message=\"" + e.Message + "\"" + 
        ", Source=" + e.Source +")"); 
} 

 

Understanding .NET Data Provider Connectivity  237  
 



.NET Data Provider Classes 
 

IngresInfoMessageEventArgs Class Properties 

The following are the properties of the IngresInfoMessageEventArgs class: 

 

Property Accessor Description 

Errors get An ErrorCollection of one or more Error objects that 
give more detailed information on the warnings 
generated by the provider. 

Message get A concatenation of all the messages in the Errors 
collection. 

Number get The database-specific warning integer information 
returned by the Ingres database. 

Source get Name of the data provider that generated the error. 
Always “Ingres.” 

 

IngresInfoMessageEventHandler Class 

The IngresInfoMessageEventHandler delegate represents the delegate method 
that handles the InfoMessage event. 

 

IngresInfoMessageEventHandler Class Declaration 

The IngresInfoMessageEventHandler class has the following message 
declaration: 

C#:  [Serializable]  
         public delegate void IngresInfoMessageEventHandler  
         (object sender, IngresInfoMessageEventArgs e) 

VB.NET:  <Serializable>  
     Public Delegate Sub IngresInfoMessageEventHandler _  
     (ByVal sender As Object, ByVal e As 
     IngresInfoMessageEventArgs) 

 

238  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

IngresInfoMessageEventHandler Class Example 

The following is an implementation of the IngresInfoMessageEventHandler 
class: 

static void DoWork(string connstring) 
{ 
    IngresConnection conn = new IngresConnection(connstring); 
    conn.InfoMessage += new 
    IngresInfoMessageEventHandler(OnInfoMessage); 
<do additional work> 
 } 
 
static void OnInfoMessage( 
    Object sender, IngresInfoMessageEventArgs e) 
{ 
    Console.WriteLine("OnInfoMessage event args: ("+ 
        "ErrorCode=" + e.Number + 
 
        ", Errors=" + e.Errors + 
        ", Message=\"" + e.Message + "\"" + 
        ", Source=" + e.Source +")"); 
} 

 

IngresMetaDataCollectionNames Class 

The IngresMetaDataCollectionNames class presents information on metadata, 
such as tables, views, and columns. Each member of the class is a constant 
string suitable for use as collectionName argument for the 
IngresConnection.GetSchema method.  

The collectionNames supported are: 

 Columns 

 ForeignKeys 

 Indexes 

 ProcedureParameters 

 Procedures 

 Tables 

 Views 
 

Understanding .NET Data Provider Connectivity  239  
 



.NET Data Provider Classes 
 

IngresMetaDataCollectionNames Class Declaration 

The IngresMetaDataCollectionNames Class can be declared as follows: 

C#: public static class IngresMetaDataCollectionNames 

VB.NET: Public Shared Class IngresMetaDataCollectionNames 
 

IngresParameter Class 

The IngresParameter class represents a parameter for an IngresCommand for 
each question mark (?) placeholder in the command and, optionally, its 
mapping to a DataSet column. 

The IngresParameter constructor determines the data type of the parameter in 
the following ways: 

 The constructor specifies an IngresType enumeration 

 The constructor specifies a System.DbType enumeration 

 Through the .NET Framework System.Type of the Value object if no 
specific data type is in the constructor 

 

240  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

IngresParameter Class Example 

The following is an implementation of the IngresParameter class: 

static string DemoParameterSSN( 
    string connstring, int intNumber, string strSSN) 
{ 
    IngresConnection conn = new IngresConnection(connstring); 
 
 
    string strName = null; 
 
    conn.Open(); 
 
    IngresCommand cmd = new IngresCommand( 
        "select name from demo_personnel where number = ? and ssn = ?", 
        conn); 
 
    // add two parameters to the command's IngresParameterCollection 
    cmd.Parameters.Add(new IngresParameter("Number", intNumber)); 
    IngresParameter parm = 
        new IngresParameter("SSN", IngresType.VarChar); 
    parm.Value = strSSN; 
    cmd.Parameters.Add(parm); 
 
    IngresDataReader reader = cmd.ExecuteReader(); 
 
    while (reader.Read()) 
    { 
        if (reader.IsDBNull(0)) 
            break; 
        strName  = reader.GetString(0); 
    } 
 
    reader.Close(); 
    conn.Close(); 
 
    return strName; 
} 

 

Understanding .NET Data Provider Connectivity  241  
 



.NET Data Provider Classes 
 

IngresParameter Class Declaration 

The class declaration for IngresParameter class is: 

C#:  public sealed class IngresParameter : 
System.Data.Common.DbParameter, IDataParameter, IDbDataParameter, 
ICloneable 

VB.NET:  NotInheritable Public Class IngresParameter  
  Inherits System.Data.Common.DbParameter  
  Implements IDataParameter, IDbDataParameter, ICloneable 

 

IngresParameter Class Properties 

The properties for the IngresParameter are: 

 

Property Accessor Description 

DbType get  set The type that the parameter must be 
converted to before being passed to the 
database server. Setting this parameter 
induces a setting of IngresType property. 

Default is DbType.String. 

Direction get  set Indicators whether the parameter has an 
input, input/output, output, or procedure 
return value. 

IngresType get  set The type that the parameter must be 
converted to before being passed to the 
database server. Setting this parameter 
induces a setting of DbType property. 

Default is IngresType.NvarChar if the 
database supports Unicode UTF-16; 
otherwise the default is 
IngresType.VarChar. 

IsNullable get  set Indicates whether the parameter accepts 
null values.  
True = accepts null values. False = does 
not accept null values. 

ParameterName get  set The name of the parameter. 

Default is “”. 

Precision get  set Maximum number of digits for decimal 
parameters. 

Default is 0. 

242  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

Property Accessor Description 

Scale get  set Number of decimal places for decimal 
parameters. 

Default is 0. 

Size get  set Maximum size of binary and string data to 
be sent to the server. 

Default is inferred from the parameter 
value. 

SourceColumn get  set The name of the source column mapped 
to a DataSet. 

Default is “”. 

SourceVersion get  set The DataRowVersion used by an 
UpdateCommand during an Update 
operation for setting the parameter. 

Default is DataRowVersion.Current. 

Value get  set The value of the parameter. 

Default is null. 

Important! .NET strings are Unicode based. If the application is sending a 
Unicode string as a  parameter to a database field that is ASCII char or 
varchar, the application can direct the data provider to coerce the Unicode 
string to an ASCII string on the client side by setting the parameter DbType 
property to DbType.AnsiString, or the IngresType property to 
IngresType.VarChar. 

 

IngresParameter Class Public Methods 

The public methods available for the IngresParameter class are: 

 

Method Description 

ToString The name of the parameter. 
 

Understanding .NET Data Provider Connectivity  243  
 



.NET Data Provider Classes 
 

IngresParameter Class Constructors 

The constructors available to the IngresParameter class are: 

 

Constructor 
Overloads 

Description 

IngresParameter() Instantiates a new instance of the IngresParameter 
class using default property values 

IngresParameter 
(string, DbType) 

Instantiates a new instance of the IngresParameter 
class using the defined parameter name and 
DbType. 

IngresParameter 
(string, IngresType) 

Instantiates a new instance of the IngresParameter 
class using the defined parameter name and 
IngresType. 

IngresParameter 
(string, object) 

Instantiates a new instance of the IngresParameter 
class using the defined parameter name and 
System.Object. The DbType and IngresType are 
inferred from the .NET Type of the object. 

IngresParameter 
(string, DbType, 
string) 

Instantiates a new instance of the IngresParameter 
class using the defined parameter name, DbType, 
and source column name. 

IngresParameter 
(string, IngresType, 
string) 

Instantiates a new instance of the IngresParameter 
class using the defined parameter name, 
IngresType, and source column name. 

IngresParameter 
(string, DbType, int) 

Instantiates a new instance of the IngresParameter 
class using the defined parameter name, DbType, 
and column size. 

IngresParameter 
(string, IngresType, 
int) 

Instantiates a new instance of the IngresParameter 
class using the defined parameter name, 
IngresType, and column size. 

IngresParameter 
(string, DbType, int, 
string) 

Instantiates a new instance of the IngresParameter 
class using the defined parameter name, DbType, 
column size, and source column name. 

IngresParameter 
(string, IngresType, 
int, string) 

Instantiates a new instance of the IngresParameter 
class using the defined parameter name, 
IngresType, column size, and source column name. 

244  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

Constructor 
Overloads 

Description 

IngresParameter 
(string, DbType, int, 
ParameterDirection, 
bool, byte, byte, 
string, 
DataRowVersion, 
object) 

Instantiates a new instance of the IngresParameter 
class using the defined parameter name, DbType, 
column size, parameter direction, boolean indication 
of whether or not the field can be null, precision, 
scale, source column name, DataRowVersion 
describing the version of a System.Data.DataRow, 
and the value of the object. 

IngresParameter 
(string, IngresType, 
int, 
ParameterDirection, 
bool, byte, byte, 
string, 
DataRowVersion, 
object) 

Instantiates a new instance of the IngresParameter 
class using the defined parameter name, 
IngresType, column size, parameter direction, 
boolean indication of whether or not the field can be 
null, precision, scale, source column name, 
DataRowVersion describing the version of a 
System.Data.DataRow, and the value of the object. 

 

IngresParameterCollection Class 

The IngresParameterCollection class represents a collection of all parameters 
for an IngresCommand object and their mapping to a DataSet object. 

 

IngresParameterCollection Class Declaration 

The class declaration for IngresParameterCollection class is as follows: 

C#:  public sealed class IngresParameterCollection : 
System.Data.Common.DbParameterCollection, IDataParameterCollection, 
IList, ICollection, IEnumerable 

VB.NET:  NotInheritable Public Class IngresParameterCollection  
  Inherits System.Data.Common.DbParameterCollection  
  Implements IDataParameterCollection, IList, ICollection, 
IEnumerable 

 

IngresParameterCollection Class Example 

For an example of adding parameters to an IngresParameterCollection, see 
IngresParameter Class Example (see page 241). 

 

Understanding .NET Data Provider Connectivity  245  
 



.NET Data Provider Classes 
 

IngresParameterCollection Class Properties 

The IngresParameterCollection has the following properties: 

 

Property Accessor Description 

Count get The number of parameters in the 
collection. 

Item get  set The IngresParameter object for a given 
ordinal or parameter name. This property 
is the C# indexer for 
IngresParameterCollection class. 

 

IngresParameterCollection Class Public Methods 

The public methods available to the IngresParameterCollection class are: 

 

Method Description 

Add Adds an IngresParameter to the parameter collection. 

Clear Removes all items from the collection. 

Contains Indicates whether IngresParameter exists in the collection. 
True = does exist; False = does not exist. 

CopyTo Copies the elements of IngresParameterCollection to an 
Array. 

IndexOf Returns the index of the IngresParameter in the collection. 

Insert Inserts the IngresParameter into the collection. 

Remove Removes the IngresParameter from the collection. 

RemoveAt Removes an IngresParameter with a specified index or 
name from the collection. 

 

246  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

IngresPermission Class 

The IngresPermission class provides additional information that a user has a 
security level sufficient to access the Ingres database.  At present, the class is 
not used by the Ingres .NET Data Provider. The class is included in the Ingres 
data provider to provide completeness for the Factory interoperability model. 
Instead, standard Ingres security and access control is used.  

The IngresPermission class can be declared as follows: 

C#: public sealed class IngresPermission : DBPermission 

VB.NET: NotInheritable Public Class IngresPermission 
  Inherits DBPermission 

 

IngresRowUpdatedEventArgs Class 

The IngresRowUpdatedEventArgs class provides the information for the 
RowUpdated event of an IngresDataAdapter. 

 

IngresRowUpdatedEventArgs Class Declaration 

The class declaration for IngresRowUpdateEventArgs is as follows: 

C#:  public sealed class IngresRowUpdatedEventArgs : RowUpdatedEventArgs 

VB.NET:  NotInheritable Public Class IngresRowUpdatedEventArgs  
  Inherits RowUpdatedEventArgs 

 

IngresRowUpdatedEventArgs Class Properties 

The IngresRowUpdatedEventArgs has the following properties: 

 

Property Accessor Description 

Command get The IngresCommand executed when 
DbDataAdapter.Update method is called. 

Errors get The Exception containing any errors 
generated by the Ingres .NET Data Provider 
during the execution of the IngresCommand. 
Inherited from RowUpdatedEventArgs. 

RecordsAffected get The number of rows updated, inserted, or 
deleted during the execution of the UPDATE, 
INSERT, or DELETE SQL statement. Inherited 
from RowUpdatedEventArgs. 

Understanding .NET Data Provider Connectivity  247  
 



.NET Data Provider Classes 
 

Property Accessor Description 

Row get The System.Data.DataRow sent through the 
DbDataAdapter.Update. Inherited from 
RowUpdatedEventArgs. 

StatementType get The type of SQL statement executed. 
Inherited from RowUpdatedEventArgs. 

Status get The System.Data.UpdateStatus of the 
IngresCommand. Inherited from 
RowUpdatedEventArgs. 

TableMapping get The DataTableMapping sent through a 
DbDataAdapter.Update. Inherited from 
RowUpdatedEventArgs. 

 

IngresRowUpdatedEventHandler Class 

The IngresRowUpdatedEventHandler delegate represents a delegate method 
that handles the RowUpdated event of an IngresDataAdapter. 

 

IngresRowUpdatedEventHandler Class Declaration 

The IngresRowUpdateEventHandler class has the following declaration: 

C#:  [Serializable]  
         public delegate void Ingres RowUpdated EventHandler  
         ( object sender, IngresRowUpdated EventArgs e) 

VB.NET:  <Serializable>  
    Public Delegate Sub Ingres RowUpdatedEventHandler _  
  (ByVal sender As Object, ByVal e As 
   IngresRowUpdatedEventArgs) 

 

IngresRowUpdatingEventArgs Class 

The IngresRowUpdatingEventArgs class provides the information for the 
RowUpdating event of an IngresDataAdapter. 

 

248  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

IngresRowUpdatingEventArgs Class Declaration 

The IngresRowUpdatingEventArgs class has the following declaration: 

C#:  public sealed class IngresRowUpdatingEventArgs : 
RowUpdatingEventArgs 

VB.NET:  NotInheritable Public Class Ingres RowUpdatingEventArgs 
  Inherits RowUpdatingEventArgs  

 

IngresRowUpdatingEventArgs Class Properties 

The IngresRowUpdatingEventArgs class has the following properties: 

 

Property Accessor Description 

Command get set The IngresCommand executed when 
DbDataAdapter.Update method is called. 

Errors get The Exception containing any errors generated 
by the Ingres .NET Data Provider during the 
execution of the IngresCommand. Inherited 
from RowUpdatedEventArgs. 

RecordsAffecte
d 

get The number of rows updated, inserted, or 
deleted during the execution of the UPDATE, 
INSERT, or DELETE SQL statement. Inherited 
from RowUpdatedEventArgs. 

Row get The System.Data.DataRow sent through the 
DbDataAdapter.Update. Inherited from 
RowUpdatedEventArgs. 

StatementType get The type of SQL statement executed. 
Inherited from RowUpdatedEventArgs. 

Status get The System.Data.UpdateStatus of the 
IngresCommand. Inherited from 
RowUpdatedEventArgs. 

TableMapping get The DataTableMapping sent through a 
DbDataAdapter.Update. Inherited from 
RowUpdatedEventArgs. 

 

IngresRowUpdatingEventHandler Class 

The IngresRowUpdatingEventHandler delegate represents a delegate method 
that handles the RowUpdating event of an IngresDataAdapter. 

 

Understanding .NET Data Provider Connectivity  249  
 



.NET Data Provider Classes 
 

IngresRowUpdatingEventHandler Class Declaration 

The IngresRowUpdatingEventHandler class declaration is as follows: 

C#:  [Serializable]  
         public delegate void IngresRowUpdatingEventHandler   
         ( object sender, IngresRowUpdatingEventArgs e) 

VB.NET:  <Serializable>  
    Public Delegate Sub Ingres RowUpdatingEventHandler _  
  (ByVal sender As Object, ByVal e As 
IngresRowUpdatingEventArgs) 

 

IngresTransaction Class 

The IngresTransaction class represents a local, non-distributed database 
transaction. Each connection is associated with a transaction. This object 
allows manual commit or rollback control over the pending local transaction. 

Created by the BeginTransaction method in the IngresConnection object. After 
Commit() or Rollback has been issued against the transaction, the 
IngresTransaction object can not be reused and a new IngresTransaction 
object must be obtained from the IngresConnection.BeginTransaction method 
if another transaction is desired. 

 

IngresTransaction Class Declaration 

The IngresTransaction class declaration is as follows: 

C#:  public sealed class IngresTransaction : 
System.Data.Common.DbTransaction 

VB.NET:  NotInheritable Public Class IngresTransaction  
  Inherits System.Data.Common.DbTransaction 

 

250  Ingres 2006 R2 Connectivity Guide 
 



.NET Data Provider Classes 
 

IngresTransaction Class Example 

The following is an implementation of the IngresTransaction class: 

static void DemoTxn(string connstring) 

{ 
    IngresConnection conn = new IngresConnection(connstring); 
    ProviderTransaction txn; 
 
    conn.Open(); 
    txn = conn.BeginTransaction(); 
 
    IngresCommand cmd = new IngresCommand( 
        "update demo_personnel set name = 'Howard Lane' "+ 
        "  where number = 200", conn, txn); 
 
    int numberOfRecordsAffected = cmd.ExecuteNonQuery(); 
 
    Console.WriteLine(numberOfRecordsAffected.ToString() + 
        " records updated."); 
 
    txn.Commit(); 
 
    conn.Close(); 
} 

 

IngresTransaction Class Properties 

The IngresTransaction class has the following properties: 

 

Property Accessor Description 

Connection get The IngresConnection object that is associated 
with the transaction. Null if the transaction or 
connection is no longer valid. 

IsolationLevel get The IsolationLevel for this transaction as set in 
the IngresConnection.BeginTransaction 
method. 

 

IngresTransaction Class Methods 

The IngresTransaction class contains the following methods: 

 

Method Description 

Commit Commit the database changes. 

Dispose Release allocated resources. 

Rollback Rollback the database changes. 
 

Understanding .NET Data Provider Connectivity  251  
 



Data Types Mapping 
 

Data Types Mapping 
The Ingres .NET Data Provider defines its own enumeration of supported data 
types in addition to the standard System.Data.DbType enumeration. 

The following table shows the mapping of the Ingres .NET Data Provider's data 
types to its .NET data type counterparts. For information on the typed 
accessors that a .NET application uses for an Ingres native database type to be 
obtained as a .NET type, see IngresDataReader Class (see page 220). 

 

IngresType Ingres 
Data Type 

Description .NET Data 
Type 

Binary byte Fixed length stream of 
binary data 

Byte[ ] 

Char char Fixed length stream of 
character data 

String 

DateTime date Date data DateTime 

Decimal decimal Exact numeric data Decimal 

Double double 
precision 
(float8) 

Approximate numeric data Double 

SmallInt smallint Signed 16-bit integer data Int16 

TinyInt integer1 Signed 8-bit integer data SByte 

Int integer Signed 32-bit integer data Int32 

BigInt bigint Signed 64-bit integer data Int64 

LongVarBinary long byte Binary large object Byte[ ] 

LongVarChar long varchar Character large object String 

LongNVarChar long 
nvarchar 

Unicode large object String 

NChar nchar Fixed length stream of 
Unicode data 

String 

NVarChar nvarchar Variable length stream of 
Unicode data 

String 

Real real (float4) Approximate numeric data Single 

VarBinary byte varying Variable length stream of 
binary data 

Byte[ ] 

VarChar varchar Variable length stream of 
character data 

String 

252  Ingres 2006 R2 Connectivity Guide 
 



Data Types Mapping 
 

Notes:

 DateTime literals within SQL CommandText must be specified in the form 
of {d 'yyyy-mm-dd'} for dates and {ts 'yyyy-mm-dd hh-mm-ss'} for 
timestamps. However, it is preferable to pass .NET DateTime parameters 
rather than literals for these values. 

 For Ingres servers, DateTime parameters are converted to UTC values 
before being sent to the Ingres servers. DateTime values retrieved from 
Ingres servers are converted from UTC values to Local values. For non-
Ingres servers, DateTime values are passed between the data provider 
and servers unchanged. 

 

DbType Mapping 

.NET's System.Data.DbType for a parameter is mapped to the IngresType data 
type as follows: 

 

DbType IngresType 

AnsiString VarChar 

AnsiStringFixedLength Char 

Binary VarBinary 

Boolean TinyInt, if supported by the database; otherwise, 
SmallInt 

Byte Binary, if supported by the database; otherwise, 
Char 

Currency Decimal 

Date DateTime 

DateTime DateTime 

Decimal Decimal 

Double Double 

Guid Not supported 

Int16 SmallInt 

Int32 Int 

Int64 Decimal 

Object Not supported 

SByte TinyInt, if supported by the database; otherwise, 
SmallInt 

Understanding .NET Data Provider Connectivity  253  
 



IngresDataReader Object—Retrieve Data from the Database 
 

DbType IngresType 

Single Real 

String NVarChar , if supported by the database; otherwise, 
VarChar 

StringFixedLength NChar, if supported by the database; otherwise, 
Char 

Time DateTime 

UInt16 Int 

UInt32 Decimal 

UInt64 Decimal 

VarNumeric Decimal 
 

Coercion of Unicode Strings 

.NET strings are Unicode based. If the application is sending a Unicode string 
as a parameter to a database field that is ASCII char or varchar, the 
application can direct the data provider to coerce the Unicode string to an 
ASCII string on the client side by setting the IngresParameter's DbType 
property to DbType.AnsiString or the IngresType property to 
IngresType.VarChar. 

The following is an example of coercing a Unicode string: 

IngresCommand cmd = new IngresCommand( 
    "select name from personnel where ssn = ?", 
    conn); 
 
IngresParameter parm = 
    new IngresParameter("SSN", IngresType.VarChar); 
parm.Value = strSSN; 
cmd.Parameters.Add(parm); 

 

IngresDataReader Object—Retrieve Data from the Database 
Ingres .NET Data Provider provides the IngresDataReader object to retrieve a 
read-only, forward-only stream of data from an Ingres result-set created by a 
SELECT query or row-producing database procedure. Using the 
IngresDataReader increases application performance and reduces system 
overhead because only one row of data at a time is in memory.  

 

254  Ingres 2006 R2 Connectivity Guide 
 



IngresDataReader Object—Retrieve Data from the Database 
 

Build the IngresDataReader 

After creating an instance of the IngresCommand object, call 
Command.ExecuteReader to build the IngresDataReader to retrieve rows from 
a data source, as shown in the following example: 

Visual Basic:

Dim rdr As IngresDataReader = cmd.ExecuteReader()  

C#:

IngresDataReader rdr = cmd.ExecuteReader(); 
 

IngresDataReader Methods 

Use the Read method of the IngresDataReader object to obtain a row from the 
results of the query. To access each column of the returned row, pass the 
name or ordinal reference of the column to the IngresDataReader. 

For best performance, the IngresDataReader provides a series of methods that 
allow you to access column values in their native data types (GetDateTime, 
GetDouble, GetGuid, GetInt32, and so on). For a list of typed accessor 
methods, see the IngresDataReader Class (see page 220). Use the typed 
accessor when you know the underlying data type. When using a type 
accessor, use the correct accessor to avoid an InvalidCastException being 
thrown when no type conversions are performed. 

 

Understanding .NET Data Provider Connectivity  255  
 



IngresDataReader Object—Retrieve Data from the Database 
 

Example: Using the IngresDataReader 

The following is an implementation of IngresDataReader. 

static void DataReaderDemo(string connstring) 
{ 
    IngresConnection conn = new IngresConnection(connstring); 
 
    string strNumber; 
    string strName; 
    string strSSN; 
 
    conn.Open(); 
 
    IngresCommand cmd = new IngresCommand( 
        "select number, name, ssn  from personnel", conn); 
 
    IngresDataReader reader = cmd.ExecuteReader(); 
 
    Console.Write(reader.GetName(0) + "\t"); 
    Console.Write(reader.GetName(1) + "\t"); 
    Console.Write(reader.GetName(2)); 
    Console.WriteLine(); 
 
    while (reader.Read()) 
    { 
        strNumber= reader.IsDBNull(0)? 
            "<none>":reader.GetInt32(0).ToString(); 
        strName  = reader.IsDBNull(1)? 
            "<none>":reader.GetString(1); 
        strSSN   = reader.IsDBNull(2)? 
            "<none>":reader.GetString(2); 
 
        Console.WriteLine( 
        strNumber + "\t" + strName + "\t" + strSSN); 
    } 
 
    reader.Close(); 
    conn.Close(); 
} 

 

256  Ingres 2006 R2 Connectivity Guide 
 



IngresDataReader Object—Retrieve Data from the Database 
 

ExecuteScalar Method—Obtain a Single Value from a Database 

To return database information that is a single value rather than in the form of 
a table or data stream—for example, to return the result of an aggregate 
function such as Count(*), Sum(Price), or Avg(Quantity)—use the 
IngresCommand object's ExecuteScalar method. The ExecuteScalar method 
returns as a scalar value the value of the first column of the first row of the 
result set. 

The following code example uses the Count aggregate function to return the 
number of records in a table: 

Visual Basic:

Dim cmd As IngresCommand = New IngresCommand("SELECT Count(*) FROM Personnel", 
conn) 
Dim count As Int32 = CInt(cmd.ExecuteScalar()) 

C#:

IngresCommand cmd = new IngresCommand("SELECT Count(*) FROM Personnel", conn); 
Int32 count = (Int32)cmd.ExecuteScalar(); 

 

GetBytes Method—Obtain BLOB Values from a Database 

When you access the data in the BLOB field, use the GetBytes typed accessor 
of the DataReader, which fills a byte array with the binary data. Specify a 
buffer size of data to be returned and a starting location for the first byte read 
from the returned data. GetBytes will return a long value that represents the 
number of bytes returned. If you pass a null byte array to GetBytes, the long 
value returned is the total number of bytes in the BLOB. Optionally, specify an 
index in the byte array as a start position for the data being read. 

 

Understanding .NET Data Provider Connectivity  257  
 



ExecuteNonQuery Method—Modify and Update Database 
 

GetSchemaTable Method—Obtain Schema Information from a Database 

The Ingres .NET Data Provider enables you to obtain schema information from 
Ingres data sources. Such schema information includes database schemas or 
catalogs available from the data source, database tables and views, and 
constraints that exist for database tables. 

The Ingres .NET Data Provider exposes schema information using the 
GetSchemaTable method of the IngresDataReader object. This method returns 
a DataTable that describes the resultset column metadata. For more 
information on this metadata, see GetSchemaTable Columns Returned (see 
page 224). 

If the ExecuteReader(CommandBehavior.KeyInfo) method was called in the 
IngresCommand object when building the IngresDataReader, additional 
information about primary key columns, unique columns, and base names are 
retrieved from the database catalog and included in the returned DataTable. 

 

ExecuteNonQuery Method—Modify and Update Database 
Using the Ingres .NET Data Provider, you can use the IngresCommand's 
ExecuteNonQuery method to process SQL statements that modify data but do 
not return rows, such as INSERT, UPDATE, DELETE, and other non-resultset 
commands such as CREATE TABLE. 

Although rows are not returned by the ExecuteNonQuery method, input and 
output parameters and return values can be passed and returned using the 
Parameters property of the IngresCommand object.  

The following code example executes an UPDATE statement to update a record 
in a database using ExecuteNonQuery: 

static void DemoUpdate(string connstring) 
{ 
    IngresConnection conn = new IngresConnection(connstring); 
 
    conn.Open(); 
    IngresCommand cmd = new IngresCommand( 
        "update demo_personnel set name = 'Howard Lane' "+ 
        "  where number = 200", conn); 
 
    int numberOfRecordsAffected = cmd.ExecuteNonQuery(); 
 
    Console.WriteLine(numberOfRecordsAffected.ToString() + 
        " records updated."); 
 
    conn.Close(); 
} 

 

258  Ingres 2006 R2 Connectivity Guide 
 



ExecuteNonQuery Method—Modify and Update Database 
 

IngresDataAdapter Object—Manage Data 

An IngresDataAdapter object has four properties for retrieving and updating 
data source records: 

 SelectCommand returns selected data from the data source. 

The SelectCommand property must be set before calling the Fill method of 
the IngresDataAdapter. 

 InsertCommand inserts data into the data source. 

 UpdateCommand updates data in the data source. 

 DeleteCommand deletes data from the data source. 

The InsertCommand, UpdateCommand, and DeleteCommand properties 
must be set before the Update method of the IngresDataAdapter is called, 
depending on what changes were made to the data in the DataSet. For 
example, if rows have been added, the InsertCommand must be set before 
calling Update. 

When Update is processing an inserted, updated, or deleted row, the 
IngresDataAdapter uses the respective Command property to process the 
action. Current information about the modified row is passed to the 
Command object through the Parameters collection. 

For example, when updating a row, the UPDATE statement uses a unique 
identifier to identify the row in the table being updated. The unique 
identifier is commonly the value of a primary key field, or unique non-null 
index. The UPDATE statement uses parameters that contain the unique 
identifier, the columns, and the values to be updated, as shown in the 
following SQL statement: 

static void DemoAdapter(string connstring) 
{ 
    IngresConnection  conn = new IngresConnection (connstring); 
    IngresDataAdapter  adapter = new IngresDataAdapter (); 
 
    adapter.SelectCommand = new IngresCommand ( 
        "select * from personnel", conn); 
 
    adapter.UpdateCommand = new IngresCommand ( 
        "update personnel  set name = ?, number = ? where ssn = ?", 
        conn); 
    adapter.UpdateCommand.Parameters.Add( 
        "@name", IngresType.Char,"name"); 
    adapter.UpdateCommand.Parameters.Add( 
        "@number", IngresType.Int, "number"); 
    adapter.UpdateCommand.Parameters.Add( 
        "@oldssn", IngresType.Char, "ssn").SourceVersion =  
        DataRowVersion.Original; 
 
    DataSet ds = new DataSet(); 

Understanding .NET Data Provider Connectivity  259  
 



Integration with Visual Studio 2005 
 

    adapter.Fill(ds, "Personnel"); 
 
    ds.Tables["Personnel"].Rows[195]["number"] = 4199; 
    adapter.Update(ds, "Personnel"); 
} 

 

IngresDataAdapter Events 

The IngresDataAdapter exposes the following events, which you can use to 
respond to changes made to data source data:  

RowUpdating 

An UPDATE, INSERT, or DELETE operation on a row (by a call to one of the 
Update methods) is about to start. 

RowUpdated 

An UPDATE, INSERT, or DELETE operation on a row (by a call to one of the 
Update methods) is complete. 

FillError 

An error has occurred during a Fill operation. Inherited from 
DBDataAdapter. 

 

Integration with Visual Studio 2005 
The Ingres .NET Data Provider is integrated with Visual Studio 2005. 

The .NET Framework has design-time support. .NET objects, derived from 
certain component objects, can exist within an application runtime 
environment and in a designer environment such as Microsoft's Visual Studio 
2005. 

Integration with Visual Studio 2005 visual tools allows a programmer to drag-
and-drop the data provider design component onto a control. Integration also 
allows the programmer to use wizards and editors to aid application 
development. 

The Visual Studio 2005 Toolbox contains a series of tabs (for example, Data, 
Components, and Window Forms) that list objects for the Visual Studio 2005 
design environment. These objects can be dragged-and-dropped onto design 
surfaces such as the Windows Form control (WinForm). This operation can 
trigger wizards, designers, or simply a paint of a control on the design surface. 

 

260  Ingres 2006 R2 Connectivity Guide 
 



Integration with Visual Studio 2005 
 

Install the Data Provider into the Toolbox 

The Ingres .NET Data Provider must be installed into the Visual Studio 2005 
Toolbox before using it for the first time.  

To install the data provider components into the Toolbox

1. Create an empty Winform application. 

2. Right-click the Data tab of the toolbox, and select Customize Toolbox. 

The Customize Toolbox dialog is displayed. 

3. Select the IngresCommand, IngresConnection, and IngresDataAdapter 
components on the .NET Framework Components tab, and then click OK. 

The Ingres .NET Data Provider components are installed in the Toolbox, as 
shown in this example: 

 

If the IngresCommand, IngresConnection, and IngresDataAdaper components 
do not appear in the Customize Toolbox dialog, you can add them. 

To add the Ingres .NET Data Provider components to the Customize 
Toolbox dialog

1. Click Browse on the Customize Toolbox dialog and browse to the directory 
C:\Program Files\Ingres\dotnet\assembly\v2.0. 

2. Open the Ingres.Client dll.  

The components are added. 
 

Understanding .NET Data Provider Connectivity  261  
 



Integration with Visual Studio 2005 
 

Start the Ingres Data Adapter Configuration Wizard 

The Toolbox's Data tab lists the .NET data provider components that are 
available during the application's design.  

To start the Ingres Data Adapter Configuration Wizard 

1. Drag the IngresDataAdapter component from the list on the Toolbox's 
Data tab onto the Windows Form design surface (“Form1”). 

The welcome page of the Data Adapter Configuration Wizard is displayed.  

 

An “ingresDataAdapter1” component and its icon are added to the Visual 
Studio 2005 designer component tray.  

2. Click Cancel on the welcome page. 

Only the IngresDataAdapter component is created.  
 

262  Ingres 2006 R2 Connectivity Guide 
 



Integration with Visual Studio 2005 
 

Configure a Connection 

Ingres Data Adapter Configuration Wizard assists you in specifying the design 
properties of the ingresDataAdapter1 component, including its connection 
string definition.  

A connection string is a collection of information that identifies the target 
server machine and database to connect to, the permissions of the user who is 
connecting, and the parameters that define connection pooling and security. 
You must configure a connection string before connecting to a database using 
a .NET application. 

To configure a connection string

1. Click Next in the Data Adapter Configuration Wizard welcome screen. 

The Connection String Editor dialog is displayed. 

 

2. Enter the required information. For details, see Connection String Editor 
(see page 264).  

Click OK.  

The Connection string is created. 
 

Understanding .NET Data Provider Connectivity  263  
 



Integration with Visual Studio 2005 
 

Connection String Editor (Data Adapter Configuration Wizard) 

The Connection String Editor of the Ingres Data Adapter Configuration Wizard 
has the following tabs:  

Connection Tab

Data Access Server 

Identifies the name of the Data Access Server that services .NET 
application requests for the target DBMS Server. 

Port 

Identifies the port number on the host server machine that the Data 
Access Server is listening to.  

Default: II7 

Database 

Is the name of the target database that the application will connect to 
by default. 

User ID 

Is the name of the authorized user that is connecting to the DBMS 
Server. 

Password 

Is the password associated with the specified User ID for connecting to 
the DBMS Server. 

Advanced Tab

Timeout 

Defines the number of seconds after which an attempted connection 
will abort if it cannot be established.  

Default: 15 

Enable Connection Pooling 

Enables or disables connection pooling.  

Default: Connection pooling is enabled 

Return password text in Connection.ConnectionString property 

Determines whether password information from the connection string 
is returned in a get of the ConnectionString property.  

Default: Password information is not returned 

Role ID 

Is the role identifier that has associated privileges for the role. 
 

264  Ingres 2006 R2 Connectivity Guide 
 



Integration with Visual Studio 2005 
 

Role Password 

Is the password associated with the specified Role ID. 

Group ID 

Is the group identifier that has associated privileges for a group of use. 
 

Design a Query Using the Query Builder 

The Ingres .NET Data Provider uses SQL statements to retrieve and update 
data in Ingres databases. In the Data Adapter Configuration Wizard, you can 
enter your SQL command or use the Query Builder tool to generate the 
SELECT statement. 

To design a query using the Query Builder

1. Click Query Builder to develop your SELECT statement. 

The Add Table dialog opens.  

2. Click User Tables or All Tables. 

A list of available tables is displayed. 

3. Choose your table from the list, and then click Add, Close. 

Ingres Query Designer opens. 

 

Understanding .NET Data Provider Connectivity  265  
 



Integration with Visual Studio 2005 
 

The Ingres Query Designer has three horizontal panels:  

The top panel  

Consists of tab pages, one for each table reference in the FROM clause 
of the query. Each tab page contains a list of check boxes for each 
column defined in the table. The columns are listed as they are written 
in the table's catalog definition.  

Check or uncheck each column to add or remove the column reference 
from the SELECT statement. 

The middle panel  

Is a grid that lists the column names and or expressions in the SELECT 
statement's column reference list. It provides a convenient tabular 
format for entering the column references. 

The bottom panel  

Displays the query text as it is being built. The query text can be 
directly edited and is automatically formatted for readability. 

4. Enter column references you want to add to your query into any one of the 
three panels.   

The other two panels are automatically updated. 

5. Click OK.  

The query builder returns to the Ingres Data Adapter Wizard and displays 
the generated SELECT statement. 

6. Click Finish.  

The Ingres Data Adapter Wizard is closed. 
 

266  Ingres 2006 R2 Connectivity Guide 
 



Integration with Visual Studio 2005 
 

Server Explorer Integration 

The Ingres .NET Data Provider is integrated with the Visual Studio Server 
Explorer and Data Sources tabs.   

A Data Connection definition for Ingres can be defined in the Server Explorer. 
This Data Connection definition can subsequently be used by other wizards 
and designers in Visual Studio. 

 

Understanding .NET Data Provider Connectivity  267  
 



Integration with Visual Studio 2005 
 

The Data Connection definition can also be used to examine the metadata 
information of tables and views in the Ingres connection.   

 

Note: The Visual Studio integration does not currently support database 
procedures. 

 

268  Ingres 2006 R2 Connectivity Guide 
 



Application Configuration File—Troubleshoot Applications 
 

Application Configuration File—Troubleshoot Applications 
The Ingres .NET Data Provider offers a basic trace facility to assist the 
application developer in identifying a sequence of data provider method calls 
that may be called incorrectly by an application program. The developer can 
create a .NET application configuration file that contains keys for Ingres.trace. 

For example, you can create a file called myApplication.exe.config in the same 
directory as the myApplication.exe executable. The myApplication.exe.config 
text file contains the following: 

<?xml version="1.0" encoding = "utf-8" ?> 
<configuration> 
    <appSettings> 
        <add key="Ingres.trace.log" value="C:\temp\Ingres.trace.log" /> 
        <add key="Ingres.trace.timestamp" value="true" /> 
        <add key="Ingres.trace.drv" value="2" /> 
    </appSettings> 
</configuration> 

The value= key controls the level of tracing that is produced. Possible key 
values are as follows: 

0 - no tracing (default) 

1 - Basic function name detail 

2 - Internal connection and messaging detail 

3 - Internal state detail 

4 - Internal status, length, and count detail 
 

Understanding .NET Data Provider Connectivity  269  
 





 

Chapter 13: Configuring Ingres to Use 
Kerberos 
 

This chapter describes how to configure Ingres to use Kerberos network 
authentication and encryption protocol. 

 

Kerberos 
The Kerberos authentication mechanism can be used as an alternative to the 
Ingres or System security mechanisms. Kerberos provides a highly secure 
alternative to operating system-level password authentication, and optionally 
allows encryption of the entire data stream exchanged between the DBMS 
server and client.   

The Ingres and System security mechanisms are called “static” mechanisms, 
because they are embedded in Ingres. The Kerberos security mechanism is 
called a “dynamic” mechanism, because it depends on third-party software 
that is dynamically loaded into Ingres executable images at runtime. 

Kerberos is available as freeware from the Massachusetts Institute of 
Technology at http://web.mit.edu/kerberos/. Kerberos is also available 
commercially or may be available natively on certain operating systems, such 
as Linux, Windows Server 2000, and Windows Server 2003. The MIT site 
contains extensive documentation on Kerberos installation and configuration.  

The Ingres Kerberos driver references authentication and encryption routines 
in the Kerberos environment, most notably, the shared library or DLL 
containing GSS API authentication routines. 

 

Configuring Ingres to Use Kerberos  271  
 



Kerberos Configuration in the Enterprise 
 

Kerberos Configuration in the Enterprise 
Before using Kerberos with Ingres, Kerberos should be appropriately 
configured in your enterprise.  

A primary component of Kerberos is the Key Distribution Center (KDC). The 
KDC is a server process that performs the core authentication. The 
authentication protocol is a set of encrypted tickets that are passed from the 
KDC to client processes or intermediate agents known as “service principals.” 
For the sake of simplicity, let us assume that a single KDC will perform the 
Kerberos authentication. 

If the enterprise contains only one Ingres DBMS Server, a possible option is to 
execute the KDC on the same machine as the DBMS Server: 

 

272  Ingres 2006 R2 Connectivity Guide 
 



Kerberos Configuration in the Enterprise 
 

If enough resources are available, it is desirable to install the KDC on a 
network node separate from the Ingres installation. In this way, security 
restrictions can be imposed on the Kerberos node that may not be possible if 
Kerberos resided on the same machine as an Ingres DBMS: 

 

The example above demonstrates why Kerberos is sometimes referred to as 
“distributed authentication.” The KDC performs authentication for all Ingres 
nodes in the enterprise, even though the KDC itself resides on a separate 
network node. 

Note: The above example assumes all the Ingres nodes will use Kerberos for 
authentication, but this is not a requirement; some nodes may continue to use 
Ingres or System authentication. 

 

Configuring Ingres to Use Kerberos  273  
 



Kerberos Configuration in the Enterprise 
 

Kerberos Configuration Files—Configure Kerberos for Ingres 

Here are examples of Kerberos configuration files. These examples assume 
that the KDC resides on the node foo.xyz.com and the Kerberos domain is 
named MYDOMAIN.XYZ.COM,  

The krb5.conf file may look like this: 

[libdefaults] 
    default_realm = MYDOMAIN.XYZ.COM 
 
[realms] 
    SSF.XYZ.COM = { 
        kdc = foo.xyz.com 
        admin_server = foo.xyz.com 
    } 
 
[domain_realm] 
        .xyz.com = MYDOMAIN.XYZ.COM 
        xyz.com = MYDOMAIN.XYZ.COM 
 
[logging] 
    kdc = FILE:/var/log/krb5kdc.log 
    admin_server = FILE:/var/log/kadmin.log 
    default = FILE:/var/log/krb5lib.log 

The kdc.conf file may look like this: 

[kdcdefaults] 
    kdc_ports = 88 
 
[realms] 
    MYDOMAIN.XYZ.COM = { 
        kadmind_port = 749 
        max_life = 12h 0m 0s 
        max_renewable_life = 7d 0h 0m 0s 
        master_key_type = des3-hmac-sha1 
        supported_enctypes = des3-hmac-sha1:normal des-cbc-crc:normal des-cbc-
crc:v4 
    } 

 

274  Ingres 2006 R2 Connectivity Guide 
 



The Ingres Service Principal—Authorize Client Connections 
 

The Ingres Service Principal—Authorize Client Connections 
A Kerberos principal is an entity to which credentials (validated tickets) may 
be assigned. Most principals of concern to Ingres are simply those that 
correspond to the login names of the Ingres users. For instance, for the 
domain MYDOMAIN.XYZ.COM, a principal representing the “ingres” user is 
“ingres@MYDOMAIN.XYZ.COM”.  

Note: The credentials associated with the “ingres” user are valid for all 
“ingres” logins in the Kerberos domain, regardless of the system passwords 
associated with the “ingres” login name on each machine. 

A KDC must define user principals for each Ingres user that exists in the 
enterprise, and for each Ingres service principal. An Ingres service principal 
does not correspond to a login user name. Instead, the Ingres service principal 
represents an Ingres process that performs authentication on behalf of the 
user. 

User principals get tickets directly through the kinit or Leash Ticket Manager 
programs, but an Ingres service principal requires no such initialization. 
Instead, the Ingres service principal relies on the Kerberos keytab file to 
establish its credentials. 

An Ingres service principal definition is required for each node on the Kerberos 
domain that has an Ingres installation. The KDC installation must define a 
keytab file for all Ingres service principals in order to decrypt tickets received 
from the KDC. A copy of the keytab file must be installed on each Ingres node 
in the Kerberos domain. 

Windows installations using the Leash Kerberos Ticket Manager (client-only 
Kerberos) do not reference the keytab file by default. Instead, the Windows 
credential cache is referenced. For Windows installations, the environment 
variable KRB5_KTNAME must be defined as the full path and file name of the 
keytab file on the local Windows installation. Windows or other installations 
that execute a KDC must still download the keytab file of the KDC if the local 
KDC is not used for authentication. 

The Ingres service principal uses the standard Kerberos 
“primary/instance@realm” format, as follows: 

$ingres/hostname@realm

hostname

Is the fully qualified domain name of the host on which the Ingres 
installation is running. 

realm

Is the Kerberos administrative domain name. 

Configuring Ingres to Use Kerberos  275  
 



How You Configure Ingres to Use Kerberos 
 

In the example host name foo.xyz.com, the Ingres service principal would be 
named “$ingres/foo.xyz.com@MYDOMAIN.COM”.  

Note: The fully-qualified host name is required when defining the Ingres 
service principal. Thus, the name “$ingres.foo@MYDOMAIN.COM” is not a valid 
Ingres service principal name. 

 

How You Configure Ingres to Use Kerberos 
The process for configuring Ingres to use Kerberos is as follows:  

1. Run the iisukerberos utility in Ingres. This script adds Kerberos to the list 
of Ingres-supported security mechanisms, so that you can configure 
Ingres to use Kerberos.  

Note: It is not necessary to run the iisukerberos utility on Windows. 

2. Set the base configuration for using Kerberos in Configuration-By-Forms 
(mechanisms parameter and domain parameter). 

3. Set other parameters in Configuration-By-Forms, as needed, according to 
your environment.  

4. Stop and restart Ingres.  

Startup will be successful if the Kerberos GSS API library exists in your 
LD_LIBRARY_PATH definition. 

5. Test your server using a loopback test.  

6. Test your connection using the Terminal Monitor, as follows: 

sql iidbdb 

7. Set up your clients. Your netutil definitions are almost the same as when 
using os-level authentication, but you should leave the login/password 
data blank.  

 

276  Ingres 2006 R2 Connectivity Guide 
 



Ingres Configuration Options for Kerberos 
 

Ingres Configuration Options for Kerberos 
To configure Ingres to use Kerberos, you must set certain parameters in 
Configuration-By-Forms. In addition, connection attributes may be required 
depending on the requirements of the enterprise. 

Note: Before configuring parameters, you must run the iisukerberos utility 
(except on Windows). 

The following system components in Configuration-By-Forms are relevant: 

 Name Server 

 Net Server 

 Security, Configure, System 

 Security, Configure, System, Mechanisms 
 

iisukerberos Command—Prepare Ingres for Kerberos Configuration 

The iisukerberos utility adds Kerberos to the list of Ingres-supported security 
mechanisms, so that you can configure Ingres to use Kerberos.  

Note: It is not necessary to run the iisukerberos utility on Windows. 

This command has the following format:  

iisukerberos 
 

Base Configuration for Kerberos 

When you configure Ingres to use Kerberos, you should first check the base 
configuration. The base configuration consists of the mechanisms parameter 
and the domain parameter in the Security component.  

 

mechanisms Parameter—Specify Dynamic Mechanism 

For Ingres to use Kerberos as a dynamic mechanism, the mechanism 
parameter must be set to kerberos. In Configuration-By-Forms, the 
mechanisms parameter is located in Security, Configure, System.  

The setting should look similar to this:  

 

Name Value Units 

mechanisms kerberos mechanism list 

Configuring Ingres to Use Kerberos  277  
 



Ingres Configuration Options for Kerberos 
 

Note: The ingres, system, or null mechanisms are invalid entries to this list, 
since its purpose is to specify the dynamic authentication mechanisms.  

 

domain Parameter—Specify Domain Name 

In addition to the mechanism parameter, the domain parameter is must be set 
to configure Ingres to use Kerberos.  

In Configuration-By-Forms, the domain parameter is located in Security, 
Configure, System, Mechanisms, Kerberos.  

The domain parameter must contain the fully qualified host name of the local 
installation. This name will correspond to the Ingres service principal name. 
For example, for machine foo.xyz.com, the value for the domain parameter 
should be “foo.xyz.com.” If the entry reads simply “foo,” edit and correct the 
entry.  

The setting should look similar to this: 

 

Name Value Units 

domain foo.xyz.com hostname 
 

remote_mechanism Parameter—Configure Client in a Homogeneous Kerberos 
Environment 

The Name Server can be configured to use Kerberos for authentication for all 
remote targets. If so configured, connection attempts on non-Kerberos targets 
will fail. Use the remote_mechanism parameter for this purpose.  

In Configuration-By-Forms, the remote_mechanism parameter is located in 
the Name Server component. Add kerberos to the mechanism list (if not 
already added in the Security configuration), and specify kerberos as the value 
on the remote_mechanism parameter.  

The setting should look similar to this: 

 

Name Value Units 

remote_mechanism kerberos none, default, mechansim name 

In a homogeneous Kerberos environment, it is not necessary to add 
login/password information for the vnode definitions in netutil. They are 
ignored at connect time. 

 

278  Ingres 2006 R2 Connectivity Guide 
 



Ingres Configuration Options for Kerberos 
 

vnode Connection Attributes—Configure Client in a Heterogeneous Kerberos 
Environment 

Heterogeneous Kerberos environments are those in which both Kerberos and 
non-Kerberos connection targets exist in the enterprise. In such an 
environment, the Name Server settings must be left at their default values in 
Configuration-By-Forms: the local client behavior must change, depending on 
the connection target.  

To configure the client in a heterogeneous Kerberos environment, specify 
connection attributes for a vnode using the netutil utility.  

Here is a sample vnode configuration in netutil:  

 

Connection data for vnode 'newyork' 

Type Net Address Protocol Listen Address

Global newyork-xp1. wintcp TS 

Other attribute data for vnode 'newyork' 

Type Attr_Name Attr_Value

Private authentication_mechanism kerberos 

Note: The login/password entry for a Kerberos target should remain blank. A 
login/password entry is not required because the local Kerberos user principal 
is used for authentication, and the KDC authenticates using the ticket cache of 
the local user, rather than the system password on the remote connection 
target. 

 

Configuring Ingres to Use Kerberos  279  
 



Ingres Configuration Options for Kerberos 
 

Encryption Parameters—Enable Kerberos Encryption 

To specify encryption, the following options are available in Configuration-By-
Forms under the Net Server (also known as Communications Server) 
component: 

ib_encrypt_mech 

Determine the encryption mechanism for inbound connections. Valid 
values are  

kerberos 

Specifies that Kerberos be used. 

* 

Specifies that Kerberos will be used if included as an item on the 
mechanism list. 

ob_encrypt_mech 

Determine the encryption mechanism for outbound connections. Valid 
values are the same as for ib_encrypt_mech.  

ib_encrypt_mode 

Determines the encryption mode for the inbound data stream. Valid values 
are as follows: 

Off 

Specifies that encryption be neither requested nor allowed.  

Optional 

Specifies that encryption may occur but is not requested.  

On 

Specifies that encryption is requested, if possible (if both ends support 
it). 

Required 

Specifies that encryption must always occur.  

ob_encrypt_mode  

Determines the encryption mode for the outbound data stream. Valid 
values are the same as for ib_encrypt_mode. 

Outbound connection items may be configured as connection attributes in 
netutil.  

 

280  Ingres 2006 R2 Connectivity Guide 
 



Ingres Configuration Options for Kerberos 
 

The following example specifies Kerberos encryption for all inbound 
connections: 

 

Name Value Units 

ib_incrypt_mech kerberos *, mechanism name 

ib_incrypt_mode required off, optional, on, required 
 

Use Kerberos for Local Authentication 

Kerberos authentication can be extended to local connections.  

To use Kerberos for local authentication  

1. Start Configuration-By-Forms and select the Security parameters. 

2. Set the user_mechanism to kerberos, as shown here: 

 

Name Value Units 

user_mechanism kerberos none, default, mechanism name 

Note: The security_mechanism or server_mechanism parameters are not valid 
for Kerberos. Attempts to set these to kerberos will return errors. 

 

How Name Server Delegation Works 

Delegation provides an alternate method of acquiring and forwarding 
authentication. When delegation is configured, the Name Server generates 
authentication certificates as if it were the client.  

This method requires Kerberos to be configured as both the local and remote 
authentication mechanism. The client process generates an authentication 
certificate for the local Name Server. The local Name Server, in turn, uses its 
delegation capabilities to generate an authentication certificate, and forwards 
the certificate on behalf of the client to the remote Name Server. 

If delegation is not enabled, or Kerberos is not configured as the local 
authentication mechanism, then the Name Server cannot generate the remote 
authentication certificate. Instead, the client acquires the authentication 
certificate prior to making the remote connection. The client then forwards the 
credentials directly to the remote Name Server. Either method is valid for 
making secure connections through Kerberos. 

 

Configuring Ingres to Use Kerberos  281  
 



Ingres Configuration Options for Kerberos 
 

Set Delegation 

The process of acquiring and forwarding authentication can be delegated to 
the Name Server.  

To set delegation

1. Start Configuration-By-Forms and select Security, Configure, Mechanisms, 
Kerberos.  

2. Set the delegation parameter to on. 
 

282  Ingres 2006 R2 Connectivity Guide 
 



 

Appendix A: TCP/IP Protocol 
 

This appendix describes the format of a listen address when the protocol 
between two machines is TCP/IP. It also gives you the protocol- and platform-
specific information to set up connection data entries. 

 

Listen Address Format 
A listen address is a unique identifier used for interprocess communications. A 
Communications Server has two kinds of listen addresses. It uses one to 
receive messages from local processes and the other to receive messages 
from remote Communications Servers.  

This section describes the format of the listen address used to receive 
messages from remote processes when the network protocol is TCP/IP.  

Note: To view or change your instance’s listen addresses, use the 
Configuration-By-Forms (cbf) utility or Configuration Manager (vcbf).  

When you install Ingres Net on a machine that is using the TCP/IP protocol, 
the listen address has two possible formats, as follows:  

ax[n]  

or  

ppppp

where: 

a

Is an alphabetic character (case is not significant) 

x

Is an alphabetic character or a decimal digit (0-9) 

n

Is a numeric digit from 0 - 7, inclusive 

p

Is a numeric digit. The range depends on your operating system. For 
specific details, see your operating system documentation. 

 

TCP/IP Protocol  283  
 



Network Address Format 
 

The format ax[n] is the default format, where ax is the installation ID (found 
in II_INSTALLATION) and n = 0. The digit n is incremented by 1 for each 
successive Communications Server started in an installation. For example, if 
the installation has three Communications Servers using the default format for 
their listen addresses, the addresses are ax0, ax1, and ax2. 

 

Network Address Format 
The network address in a TCP/IP environment has the following format: 

host_name | ip_address

where: 

host_name

Is the name of the remote node in character form 

ip_address

Is the internet address of the remote node in the following format: 

For IPv4: d.d.d.d (For example: 123.45.67.89) dotted decimal 

For IPv6: x:x:x:x:x:x:x:x (For example: fe80::208:dff:fe7c:fecd%3) 
colon-hexadecimal 

 

Connection Data Entry Information 

Windows  

Protocol: wintcp or tcp_ip 

Network Address: See Network Address Format (see page 284). 

Listen Address: See Listen Address Format (see page 283).  
 

UNIX  

Protocol: tcp_ip 

Network Address: See Network Address Format (see page 284). 

Listen Address: See Listen Address Format (see page 283).  
 

284  Ingres 2006 R2 Connectivity Guide 
 



Connection Data Entry Information 
 

VMS  

Protocol: tcp_wol | tcp_dec 

 Use tcp_wol if the protocol between the two machines is Wollongong 
TCP/IP or Multinet TCP/IP when running in Wollongong emulation. 

 Use tcp_dec if the protocol between the two machines is TCP/IP Services 
for OpenVMS or Multinet TCP/IP when running in TCP/IP Services 
emulation. 

Network Address: See Network Address Format (see page 284). 

Listen Address: See Listen Address Format (see page 283).  
 

MVS  

When you install Ingres Net on an MVS machine using the TCP/IP protocol, the 
listen address is stored in the IGWFPSVR macro: 

INSTALL = xx 
 TYPE = tcp_ibm | tcp_knet | tcp_sns 
 PORT = ax[n] | ppppp

where: 

xx

Is the installation ID 

tcp_ibm 

Is the Ingres keyword indicating the IBM TCP/IP protocol 

tcp_knet 

Is the Ingres keyword indicating the KNET TCP/IP protocol 

tcp_sns 

Is the TCP/IP protocol for SNS TCP/IP 

ax[n] ppppp

Is the listen address  
 

Connection Data Entry Information:

Protocol: tcp_ibm | tcp_knet  

Network Address: See Network Address Format (see page 284). 

Listen Address: See Listen Address Format (see page 283). 
 

TCP/IP Protocol  285  
 





 

Appendix B: SNA LU0 Protocol 
 

This appendix describes the format of a listen address when the protocol 
between two machines is SNA LU0. It also gives you the protocol- and 
platform-specific information to set up connection data entries. 

 

Listen Address Format 
A listen address is a unique identifier used for interprocess communications. A 
Communications Server has two kinds of listen addresses. It uses one to 
receive messages from local processes and the other to receive messages 
from remote Communications Servers.  

This section describes the format of the listen address used to receive 
messages from remote processes when the network protocol is SNA LU0. 

Note: To view or change your instance’s listen addresses, use the 
Configuration-By-Forms (cbf) utility or Configuration Manager (vcbf).  

MVS 

When you install Ingres Net on an MVS machine, the listen address is 
determined by the IGWFPSVR macro: 

INSTALL = xx 
 TYPE=sna_lu0 
 ACB=acb_name

where: 

xx

Is the installation ID, found in II_INSTALLATION 

acb_name

Is the ACB name defined for the Ingres Net application using the VTAM 
APPL statement 

In the APPL statement, you can specify the ACB name explicitly using the 
ACBNAME parameter, or implicitly by omitting ACBNAME. If you omit 
ACBNAME, the label on the APPL statement is used as the ACB name.  

 

SNA LU0 Protocol  287  
 



Listen Address Format 
 

Connection Data Entry Information:

Protocol: sna_lu0 

Network address: This parameter is ignored by MVS. Enter x. 

Listen Address: lu_name

where: 

lu_name  

Is the name of the LU that corresponds to the listen address specified on 
the server node. This name does not necessarily have to match the name 
specified as the configured listen address on the server instance.  

If the server instance is on an MVS system, the lu_name is the application 
minor node name for the target Ingres Net installation. The application 
minor node name is usually, but not always, the ACB name. 

 

288  Ingres 2006 R2 Connectivity Guide 
 



 

Appendix C: SNA LU62 Protocol 
 

This appendix describes the format of a listen address when the protocol 
between two machines is SNA LU62. It also gives you the protocol- and 
platform-specific information to set up connection data entries. 

 

Listen Address Format 
A listen address is a unique identifier used for interprocess communications. A 
Communications Server has two kinds of listen addresses. It uses one to 
receive messages from local processes and the other to receive messages 
from remote Communications Servers.  

This section describes the format of the listen address used to receive 
messages from remote processes when the network protocol is SNA LU62. 

For the SNA LU62 protocol, the format of the listen address is platform 
specific. 

Note: To view or change your instance’s listen addresses, use the 
Configuration-By-Forms (cbf) utility or Configuration Manager (vcbf).  

MVS 

When you install Ingres Net on an MVS system, the listen address is 
determined by the IGWFPSVR macro: 

INSTALL=xx 
 TYPE=sna_lu62 
 ACB=acb_name

where: 

xx

Is the installation ID, found in II_INSTALLATION 

acb_name

Is the ACB name defined for the Net LU6.2 application in the VTAM APPL 
statement 

In the APPL statement, you can specify the ACB name by using the 
ACBNAME parameter or by omitting ACBNAME. If you omit ACBNAME, the 
label on the APPL statement is used as the ACB name.  

 

SNA LU62 Protocol  289  
 



Listen Address Format 
 

Connection Data Entry Information:

Protocol: sna_lu62 

Network address: lu_name[.mode_name] 

where: 

lu_name

Is the name of the LU on the remote instance that supports the Net 
SNA_LU62 protocol driver. 

If the remote instance is on an MVS system, the lu_name is the minor 
node name for the target Net LU6.2 application. This is usually, but not 
always, the ACB name. 

If the remote instance is on a Sun-4 system, the lu_name is any LU 
defined for the SunLink SNA Peer-to-Peer Gateway. 

Default: None. 

mode_name

Is the SNA logon mode name to be used for sessions with the remote 
instance.  

Default: The mode name specified in the LOGMODE parameter of the 
IGWFPSVR macro. 

Listen Address: tp_name

where: 

tp_name  

Is the transaction program name that is used by the Net SNA_LU62 
protocol driver on the server node. If the remote instance is on an MVS 
system, there is no transaction program name. Enter “x”. For all other 
systems, the tp_name must be the transaction program name specified in 
the remote instance. This is generally found in the remote instance’s listen 
address.  

 

290  Ingres 2006 R2 Connectivity Guide 
 



Listen Address Format 
 

Solaris 

When you install Ingres Net on a Solaris system that is using the SNA LU62 
protocol, the listen address has the format: 

gateway_name.tp_name

where: 

gateway_name

Is the name of the SunLink SNA Peer-to-Peer Gateway 

This name must match a gateway_name contained in the /etc/appcs file or 
NIS database, as described in the SunLink SNA Peer-to-Peer 
Administrator's Guide. 

tp_name

Is the transaction program name used by the listening process. The name 
is an arbitrary string of up to 16 characters. 

The rate at which Ingres Net polls for incoming connection requests can be 
controlled through the Ingres configuration variable (in config.dat file) 
ii.<host>.gcc.*.sna_lu62.poll (xx is the installation ID.) This specifies the 
polling rate in milliseconds. The polling rate defaults to 4000 (4 seconds); 
values smaller than this are not recommended. If there are no incoming 
connection requests, you can inhibit polling by setting the environment 
variable to the special value of -1.  

 

SNA LU62 Protocol  291  
 



Listen Address Format 
 

Connection Data Entry Information:

Protocol: sna_lu62 

Network address: session_name

where: 

session_name  

Is the unique session name defined to the SunLink SNA Peer-to-Peer 
Gateway for sessions between the Sun-4 client and the remote server 
instance. Default: None 

Listen Address: tp_name

where: 

tp_name  

Is the transaction program name that is used by the Net SNA_LU62 
protocol driver on the server node. If the remote instance is on an MVS 
system, there is no transaction program name. Enter x. For all other 
systems, the tp_name must match the transaction program name 
specified in the remote server instance. This is generally found in the 
remote server instance’s listen address for SNA_LU62.  

 

HP-UX 

When you install Ingres Net on an HP-UX system using the HP-UX SNAplus 
product, the listen address has the format: 

tp_name

where: 

tp_name

Is the transaction program name used by the listening process. 

Unless you inhibit polling for incoming connections, the name must be 
configured as an Invocable TP name in the SNAplusAPI configuration file. 
For more information, see the appendix Netu Procedures. 

The rate at which Ingres Net polls for incoming connection requests can be 
controlled through the configuration variable (in config.dat file) 
ii.<host>.gcc.*.sna_lu62.poll (xx is the installation ID.) This specifies the 
polling rate in milliseconds. The polling rate defaults to 4000 (4 seconds); 
values smaller than this are not recommended. If there are no incoming 
connection requests, you can inhibit polling by setting the environment 
variable to the special value of -1.  

 

292  Ingres 2006 R2 Connectivity Guide 
 



Listen Address Format 
 

Connection Data Entry Information:

Protocol: sna_lu62 

Network address: [lu_alias].plu_alias[.mode_name]

where: 

lu_alias

Is the alias for the Local LU to be used by the connection. 

The alias must match the name of a Local LU alias established during 
configuration. If an LU from the pool of default Local LUs is to be used, the 
alias is omitted. 

plu_alias

Is the alias by which the Partner LU for the remote instance is known. 

The alias must match the name of a Remote LU alias established during 
configuration. Additionally, the alias must have been configured as a 
Partner LU for the specified local LU. 

mode_name

Is the name of a set of networking characteristics defined during 
configuration. 

The name must match the name of a mode assigned during configuration 
with the pair of the specified Local LU and Partner LU. If a blank mode 
name has been configured, the name (and the preceding ".") is omitted. 

Listen Address: tp_name

where: 

tp_name  

Is the transaction program name that is used by the Net SNA_LU62 
protocol driver on the server node. If the remote instance is on an MVS 
system, there is no transaction program name. Enter x. For all other 
systems, the tp_name must be the transaction program name specified in 
the remote instance. This is generally found in the remote instance’s listen 
address.  

 

SNA LU62 Protocol  293  
 



Listen Address Format 
 

RS/6000 

When you install Ingres Net on a RS/6000 that is using the SNA LU62 protocol, 
the listen address has the format: 

[/pathname/] connection_profile.tp_profile.tp_name

where: 

pathname

Is the name of the SNA device driver. 

Default: dev/sna  

connection_profile tp_profile

Refers to the names of configuration profiles that must be defined before 
running Ingres Net. 

For information on how to define these profiles, see Using AIX SNA 
Services/6000 and AIX SNA Services/6000 Reference. 

The AIX SNA Services/6000 Configuration Profiles appendix contains 
samples of connection and tp profiles suitable for Ingres Net. 

tp_name 

Is the transaction program name used by the listening process 
 

Connection Data Entry Information:

Protocol: sna_lu62 

Network address: connection_profile

The connection_profile is a profile defined by AIX SNA Services/6000 
configuration utilities for sessions between the AIX client and the remote 
instance. There is no default for the connection_profile. 

Listen Address: tp_name

where: 

tp_name  

Is the transaction program name that is used by the Net SNA_LU62 
protocol driver on the server node. If the remote instance is on an MVS 
system, there is no transaction program name. Enter x. For all other 
systems, the tp_name must be the transaction program name specified in 
the remote instance. This is generally found in the remote instance’s listen 
address. 

 

294  Ingres 2006 R2 Connectivity Guide 
 



 

Appendix D: DECnet Protocol 
 

This appendix describes the format of a listen address when the protocol 
between two machines is DECnet. It also gives you the protocol- and platform-
specific information to set up connection data entries. 

 

Listen Address Format 
A listen address is a unique identifier used for interprocess communications. A 
Communications Server has two kinds of listen addresses. It uses one to 
receive messages from local processes and the other to receive messages 
from remote Communications Servers.  

This section describes the format of the listen address used to receive 
messages from remote processes when the network protocol is DECnet. 

Note: To view or change your instance’s listen addresses, use the 
Configuration-By-Forms (cbf) utility or Configuration Manager (vcbf).  

VMS 

A DECnet listen address is a DECnet object and has the format: 

II_GCC[xx]_nnnnn

where : 

xx

The installation ID, found in II_INSTALLATION. 

The installation ID is only present for group level installations. 

nnnnn

A five-digit number that you specify when you install Net. The default for 
this number is 0. 

The default listen address is II_GCC[xx]_0. 

In netutil, the network address prompt is in DECnet node name in character 
form. You can specify the node address and name in the format  
area-number.node_number (for example: 1.234) instead of the DECnet node 
name. If you are running DECnet-Plus, you can specify the format 
namespace:.directory_path.node_object (for example, local:.mynode). 
DECnet-Plus users can specify node names larger than six characters. 

 

DECnet Protocol  295  
 



Listen Address Format 
 

Connection Data Entry Information:

Protocol: decnet 

Network address: node_name

The node_name is the DECnet node name in character form. 

Listen address: II_GCC[xx]_nnnnn
 

296  Ingres 2006 R2 Connectivity Guide 
 



 

Appendix E: SPX/IPX Protocol 
 

This appendix describes the format of a listen address when the protocol 
between two machines is Novell Netware SPX/IPX. It also gives you the 
protocol- and platform-specific information to set up connection data entries. 

 

Listen Address Format 
A listen address is a unique identifier used for interprocess communications. A 
Communications Server has two kinds of listen addresses. It uses one to 
receive messages from local processes and the other to receive messages 
from remote Communications Servers.  

This section describes the format of the listen address used to receive 
messages from remote processes when the network protocol is SPX/IPX. 

Note: To view or change your instance’s listen addresses, use the 
Configuration-By-Forms (cbf) utility or Configuration Manager (vcbf).  

Windows 

An SPX/IPX listen address has the following format: 

xxxxxxxx

where: 

xxxxxxxx

Is a hexadecimal number from 00000000 to ffffffff 

The listen address is the SPX/IPX "net number," an 8-digit hexadecimal 
number. Both the net address and the 12-digit node number for a server 
are repeated in the errlog.log file when the Communications Server starts. 

Connection Data Entry Information:

Protocol: nvlspx 

Network address: node

where:  

node

Is a 12-digit hexadecimal SPX node number 
 

SPX/IPX Protocol  297  
 



Listen Address Format 
 

UNIX and VMS 

SPX treats listen addresses as a 16-bit quantity, normally represented in 
hexadecimal as 0000 - FFFF. As a convenience, the Ingres SPX/IPX protocol 
driver recognizes an installation ID (followed by an optional digit) as a listen 
address and translates that into a 16-bit value in the range 4000 - 4FFF, which 
Novell has reserved for dynamically allocated listen addresses. 

An SPX/IPX listen address has two possible formats: 

ab[n] or xxxx

where: 

a

An alphabetic character (case is not significant) 

b

An alphabetic character or a decimal digit (0-9) 

n

The 0 or 1 digit 

xxxx

A hexadecimal number from 0000 to ffff 

The format ab[n] is the default format, where ab is the installation ID (found 
in II_INSTALLATION) and n = 0. The digit n is incremented by 1 for each 
successive Communications server started in an installation. For example, if 
the installation has two Communications Servers using the default format for 
their listen addresses, the addresses are ab0 and ab1. Only two 
Communications Servers using the default listen addresses for SPX/IPX can be 
started in a single Ingres instance. 

To accept a connection from Ingres running on a PC, the listen address must 
be set to 6582. The PC currently does not support selecting alternate listen 
addresses. 

 

298  Ingres 2006 R2 Connectivity Guide 
 



Listen Address Format 
 

Connection Data Entry Information:

Protocol: spx 

Network address: network.node

where: 

network

Is a hexadecimal SPX network number 

node

Is a hexadecimal SPX node number 

The Novell utility getlan reports the local network and node numbers for the 
internal network and all external network connections. Because most hosts 
have only a single external network connection, getlan normally reports two 
networks. The internal network is always the first in the list (Lan number 0), 
and it is the address Ingres Net requires. 

For example, if getlan reports: 

 

LAN Network Node Mux ID State Stream 

  0 119D9D21 000000000001 00000000 UNBOUND OK 

  1 00000900 080020101FC7 00000059 IDLE OK 

The network address is: 

119D9D21.1 

Leading zeroes are not important. 

Listen Address: ab[n] | xxxx
 

SPX/IPX Protocol  299  
 





 

Appendix F: LAN Manager Protocol 
 

This appendix describes the format of a listen address when the protocol 
between two machines is Microsoft LAN Manager. It also gives you the 
protocol- and platform-specific information to set up connection data entries. 

 

LAN Manager Listen Address—Enable Communications 
A listen address is a unique identifier used for interprocess communications. A 
Communications Server has two kinds of listen addresses. It uses one to 
receive messages from local processes and the other to receive messages 
from remote Communications Servers.  

This section describes the format of the listen address used to receive 
messages from remote processes when the network protocol is LAN Manager. 

A LAN Manager listen address is the installation ID (found in 
II_INSTALLATION). 

Note: To view or change your instance’s listen addresses, use the 
Configuration-By-Forms (cbf) utility or Configuration Manager (vcbf).  

Connection Data Entry Information:

Protocol: lanman 

Network address: computername

where: 

computername 

Is the Computer Name assigned during installation of Windows or through 
the Network applet in the Control Panel. The current Computer Name can 
be viewed along with the name of the current logged-in user at the top of 
the Program Manager window. It can also be viewed in the operating 
system environment variable COMPUTERNAME by typing echo 
%COMPUTERNAME%. 

Listen address: installation ID
 

LAN Manager Protocol  301  
 





 

Appendix G: SunLink Gateway 
Configuration Files 
 

Ingres Net supports communications over both dependent and independent 
Logical Units (LUs). This appendix contains sample configuration file excerpts 
that show how to configure both types of LUs. For information about setting up 
the configuration files, see the SunLink SNA Peer-to-Peer System 
Administrator’s Guide. 

 

SunLink Gateway Configuration File 
The gateway configuration file is named /etc/appcs and must be present on 
the SunLink Gateway machine as well as on each Sun Solaris or Sun-4 
machine running Net providing SNA LU62 support. It is not necessary to have 
Net installed on the same machine as the SunLink Gateway, but it must be 
connected and accessible through TCP/IP. 

The following entry defines the SunLink Gateway to other Sun machines that 
require access to it: 

ws406sgw0 ws406s:ws406sgw0 

where: 

ws406sgw0 

Is the SunLink Gateway name.  

ws406s 

Is the machine name on which the SunLink Gateway is running. 
 

SunLink Gateway Configuration Files  303  
 



Solaris Independent LUs 
 

Solaris Independent LUs 
The following example is for Solaris independent LUs. This file is usually in the 
/opt/SUNWconn/snap2p/p2p_etc/config directory. 

:DEFINE_PU: 
pu_name               = S1MVS, network_name = RTIBM 
contents_id           = 01234567 
 
:DEFINE_NODE: 
pu_name               = S1MVS, node_id = NODE0 
 
:DEFINE_LOCAL_LU:  
fql_lu_name           = S1115001   # An LU name in VTAM/NCP gen 
 
lu_local_address      = 1 
lu_name               = S1115001   # An LU name in VTAM/NCP gen 
 
lu_session_limit      = 16  
 
:DEFINE_PARTNER_LU: 
fql plu name          = A04IS1G2   # VTAM Applid for Ingres 
u plu name            = A04IS1G2   # Enterprise Access to DB2 
parallel_session      = yes        # Must set to this value 
lu_is_dependent       = no         # Must set to this value 
initiate_type         = INITIATE_ONLY 
security_acceptance   = NONE 
             
:DEFINE_MODE: 
mode_name             = INGLU62 
unique_session_name   = s1         # This is the name specified 
                                   # as the Node Address 
                                   # in NETU entries 
snd_pac_window        = 0          # Recommended 
rcv_pac_window        = 0          # Recommended 
snd_max_ru_size       = 4096       # Recommended 
rcv_max_ru_size       = 4096       # Recommended 
sync_level            = none 
sess_reinit           = INIT_OPERATOR 
auto_activate_limit   = 0 
session_limit         = 64         # Allows for 64 parallel sessions 
min_conwinner_limit   = 32 
min_conloser_limit    = 32            

 

304  Ingres 2006 R2 Connectivity Guide 
 



Solaris Independent LUs 
 

The following example is for a Synchronous Data Link Control (SDLC) 
connection through the serial port: 

:DEFINE_DLC: 
dlc_name              = XLINK000 
dlc_driver_name       = /dev/sdlc 
port_driver_name      = zsh0 
dlc_type              = sdlc 
npr_timeout           = 240 
pause_timeout         = 2  
 
idle_timeout          = 1400       #  for maxdata = 1033 
                                   #  & line speed = 9600 
maxdata               = 1033       # [frm_size - 8] 
retries               = 32 
window_size           = 7 
sdlc_addr             = 0x1 
full_duplex           = yes 
nrzi                  = no 
multipoint            = yes 
switched_line         = no 
 
block_number          = 056        # MUST be first of 
                                   # xid parameters 
id_number             = E2E43          
role                  = secondary     
tx_rx_capability      = simultaneous 
max_rcv_iframe_size   = 7              
include_control_point = yes        # xid control vector 
include_link_station_name  = yes   # xid control vector 
 
:DEFINE_ALS: 
dlc_name              = XLINK000 
pu_name               = S1MVS  
als_name              = XXALS000 

 

SunLink Gateway Configuration Files  305  
 



Solaris Dependent LUs 
 

Solaris Dependent LUs 
The following example is for Solaris dependent LUs. This file is usually in the 
opt/SUNWconn/snap2p/p2_etc/config directory. 

:DEFINE_PU: 
pu_name              = S1MVS, network_name = RTIBM 
contents_id          = 01234567 
 
:DEFINE_NODE: 
pu_name              = S1MVS, node_id = NODE0 
 
:DEFINE_LOCAL_LU: 
fql_lu_name          = RTIBM.S1115001 # An LU name in VTAM/NCP gen 
lu_local_address     = 1  
lu_name              = S1115001       # An LU name in VTAM/NCP gen 
lu_session_limit     = 1  
 
:DEFINE_PARTNER_LU: 
fql_plu_name         = RTIBM.A04IS1G2 # VTAM Applid for  
                                      # Ingres 
                                      # Enterprise Access 
                                      # to DB2 
parallel_session     = no             # Must set to this value 
lu_is_dependent      = yes            # Must set to this value 
initiate_type        = INITIATE_ONLY 
security_acceptance  = NONE 
 
:DEFINE_MODE: 
mode_name            = INGLU62  
unique_session_name  = s1             # This is the name specified 
                                      # as the Node Address in  
                                      # NETU entries 
snd_pac_window       = 0              # Recommended 
rcv_pac_window       = 0              # Recommended 
snd_max_ru_size      = 4096           # Recommended 
rcv_max_ru_size      = 4096           # Recommended 
sync_level           = none 
sess_reinit          = INIT_PLU_OR_SLU 
auto_activate_limit  = 0 
session_limit        = 1              # Must set to this value  
min_conwinner_limit  = 1 
min_conloser_limit   = 0 

 

306  Ingres 2006 R2 Connectivity Guide 
 



Solaris Dependent LUs 
 

The following example is for an SDLC connection through the serial port: 

:DEFINE_DLC: 
dlc_name              = XLINK000  
device_driver_name    = /dev/sdlc 
port_driver_name      = zsh0  
dlc_type              = sdlc 
npr_timeout           = 240  
pause_timeout         = 2  
idle_timeout          = 1400        # for maxdata = 1033  
                                    # & line speed = 9600 
maxdata               = 1033        # [frm_size - 8] 
retries               = 32  
window_size           = 7 
sdlc_addr             = 0x1 
full_duplex           = yes 
nrzi                  = no  
multipoint            = yes 
switched_line         = no 
block_number          = 056         # MUST be first of xid  
                                    # parameters 
id_number             = E2E43    
role                  = secondary 
tx_rx_capability      = simultaneous 
max_rcv_iframe_size   = 7  
include_control_point = yes         # xid control vector 
include_link_station_name  = yes    # xid control vector 
 
:DEFINE_ALS: 
dlc_name              = XLINK000 
pu_name               = S1MVS 
als_name              = XXALS000 

 

SunLink Gateway Configuration Files  307  
 



SunOS (or Sun-4) Independent LUs 
 

SunOS (or Sun-4) Independent LUs 
The following example is for SunOS (or Sun-4) independent LUs. This file is 
usually in the opt/SUNWconn/snap2p/p2p_etc/config directory. 

:DEFINE_PU: 
pu_name               = S1MVS, network_name = RTIBM 
contents_id           = 01234567 
 
:DEFINE_NODE: 
pu_name               = S1MVS, node_id = NODE0 
 
:DEFINE_LOCAL_LU: 
fql_lu_name           = S1115001       # An LU name in VTAM/NCP gen 
 
lu_local_address      = 1               
lu_name               = S1115001       # An LU name in VTAM/NCP gen 
lu_session_limit      = 16 
 
:DEFINE_PARTNER_LU: 
fql_plu_name          = A04IS1G2       # VTAM Applid for  
                                       # Ingres 
u_plu_name            = A04IS1G2       # Enterprise Access to DB2 
parallel_session      = 1              # Must set to this value 
cnos_supported        = 1              # Must set to this value 
remote_is_sscp        = 0              # Must set to this value 
initiate_type         = INITIATE_ONLY 
security_acceptance   = NONE 
 
:DEFINE_MODE: 
mode_name             = INGLU62  
unique_session_name   = s1             # This is the name specified 
                                       # as the Node Address in  
                                       # NETU entries 
snd_pac_window        = 0              # Recommended 
rcv_pac_window        = 0              # Recommended 
snd_max_ru_size       = 4096           # Recommended 
rcv_max_ru_size       = 4096           # Recommended 
sync_level            = 0 
sess_reinit           = INIT_OPERATOR 
auto_activate_limit   = 0 
session_limit         = 64             # Allows for 64  
                                       # parallel sessions  
min_conwinner_limit   = 32     
min_conloser_limit    = 32 

 

308  Ingres 2006 R2 Connectivity Guide 
 



SunOS (or Sun-4) Independent LUs 
 

The following example is for an SDLC connection through the serial port: 

:DEFINE_DLC: 
dlc_name              = XLINK000  
device_driver_name    = /dev/ifd0 
dlc_type              = 0 
npr_timeout           = 240  
pause_timeout         = 2  
idle_timeout          = 400           # for maxdata = 1033  
                                      #  & line speed = 9600 
frm_size              = 1033          #  [frm_size - 8] 
retries               = 32  
window_size           = 7 
rxaddr                = 0x1 
txaddr                = 0x1 
full_duplex           = yes 
nrzi                  = no  
multipoint            = yes 
addr.search           = no 
switched_line         = no 
send_reject           = no 
rcv_reject            = no 
block_number          = 056           # MUST be first of xid  
                                      # parameters 
id_number             = E2E43    
abm_support           = no 
max_btu_rev           = 265 
sim_rlm               = no 
role                  = secondary 
tx_rx_capability      = simultaneous 
max_btu_rcv           = 265 
max_rcv_iframe_siz    = 7  
include_control_point      = yes      # xid control vector 
include_link_station_name  = yes      # xid control vector 
product_set_id = 161101130011f9f4f0f4c3f1f0f1f0f0f0f2f4f1f6f4 
 
:DEFINE_ALS: 
dlc_name               = XLINK000 
pu_name                = S1MVS 
als_name               = XXALS000 
remote_addr            = 0x10 

 

SunLink Gateway Configuration Files  309  
 



SunOS (or Sun-4) Dependent LUs 
 

SunOS (or Sun-4) Dependent LUs 
The following example is for SunOS (or Sun-4) dependent LUs. This file is 
usually in the opt/SUNWconn/snap2p/p2_etc/config directory. 

:DEFINE_PU: 
pu_name               = S1MVS, network_name = RTIBM 
contents_id           = 01234567 
 
:DEFINE_NODE: 
pu_name               = S1MVS, node_id = NODE0 
 
:DEFINE_LOCAL_LU: 
fql_lu_name           = RTIBM.S1115001 # An LU name in VTAM/NCP gen 
lu_local_address      = 1               
lu_name               = S1115001       # An LU name in VTAM/NCP gen 
lu_session_limit      = 1 
 
:DEFINE_PARTNER_LU: 
fql_plu_name          = RTIBM.A04IS1G2 # VTAM Applid for  
                                       # Ingres 
                                       # Enterprise Access to DB2 
parallel_session      = 0              # Must set to this value 
cnos_supported        = 0              # Must set to this value 
remote_is_sscp        = 1              # Must set to this value 
initiate_type         = INITIATE_ONLY 
security_acceptance   = NONE 
 
:DEFINE_MODE: 
mode_name             = INGLU62  
unique_session_name   = s1             # This is the name 
                                       # specified 
                                       # as the Node Address in 
                                       # NETU entries 
snd_pac_window        = 0              # Recommended 
rcv_pac_window        = 0              # Recommended 
snd_max_ru_size       = 4096           # Recommended 
rcv_max_ru_size       = 4096           # Recommended 
sync_level            = 0 
sess_reinit           = INIT_PLU_OR_SLU 
auto_activate_limit   = 0 
session_limit         = 1              # Must set to this value 
min_conwinner_limit   = 1 
min_conloser_limit    = 0 

 

310  Ingres 2006 R2 Connectivity Guide 
 



SunOS (or Sun-4) Dependent LUs 
 

The following example is for an SDLC connection through the serial port: 

:DEFINE_DLC: 
dlc_name               = XLINK000  
device_driver_name     = /dev/ifd0 
dlc_type               = 0 
npr_timeout            = 240  
pause_timeout          = 2 

idle_timeout           = 400           # for maxdata = 1033 & line  
                                       # speed = 9600 
frm_size               = 1033          #  [frm_size - 8] 
retries                = 32  
window_size            = 7 
rxaddr                 = 0x1 
txaddr                 = 0x1 
full_duplex            = yes 
nrzi                   = no  
multipoint             = yes 
addr.search            = no 
switched_line          = no 
send_reject            = no 
rcv_reject             = no 
block_number           = 056           # MUST be first of xid  
                                       # parameters 
id_number              = E2E43    
abm_support            = no 
max_btu_rcv            = 265 
sim_rlm                = no 
role                   = secondary 
tx_rx_capability       = simultaneous 
max_btu_rcv            = 265 
max_rcv_iframe_size    = 7  
include_control_point     = yes        # xid control vector 
include_link_station_name = yes        # xid control vector 
product_set_id = 161101130011f9f4f0f4c3f1f0f1f0f0f0f2f4f1f6f4 

:DEFINE_ALS: 
dlc_name               = XLINK000 
pu_name                = S1MVS 
als_name               = XXALS000 
remote_addr            = 0x10 
 
 

SunLink Gateway Configuration Files  311  
 





 

Appendix H: AIX SNA Services/6000 
Configuration Profiles 
 

AIX SNA Services/6000 configuration is done by defining a series of profiles. 
For detailed information about this process, see the guides Using AIX SNA 
Services/6000 and AIX SNA Services/6000 Reference. This appendix includes 
information about only those aspects of configuration particular to netutil. 

 

Sample Configuration Profiles 
The following excerpts provide examples of profiles suitable for running netutil. 
The format shown here is roughly the same as the output from the AIX SNA 
Services/6000 exportsna command. Comments (denoted by the symbol #) are 
included only for the purpose of explanation; these do not appear in the actual 
configuration files. 

The configuration below reflects an environment using both dependent and 
independent LUs. Note that independent and dependent LUs can share the 
same ATTACHMENT, TPN, and REMOTETPN profiles. However, separate 
CONNECTION, LOCALLU, and MODE profiles must be provided for dependent 
and independent LUs respectively. 

The following samples include profiles for independent and dependent 
CONNECTION, LOCALLU, and MODE LUs. 

 

CONNECTION Profile for Independent LUs 

indconn_CONNECTION: 
 type = CONNECTION 
 profile_name = indconn                 #this is the name specified 
                                           # as the Network Address 
                                           # in netutil entries 
 attachment_profile_name = rs6_attach 
 local_lu_profile_name = indlu 
 network_name = RTIBM                      #actual SNA network name 
 remote_lu_name = GCVDEV1                  #actual target LU name 
 stop_connection_on_inactivity = no        #must set to this value 
 lu_type = lu6.2                           #must set to this value 
 interface_type = extended                 #must set to this value 
 remote_tpn_list_name = INET 
 mode_list_name = INDMODE 
 node_verification = no 
 inactivity_timeout_value = 0 
 notify = no 
 parallel_sessions = parallel              #independent LUs only 
 negotiate_session_limits = yes            #independent LUs only 
 security_accepted = none 
 conversation_security_access_list_name = 

 

AIX SNA Services/6000 Configuration Profiles  313  
 



Sample Configuration Profiles 
 

CONNECTION Profile for Dependent LUs 

depconn_CONNECTION: 
 type = CONNECTION 
 profile_name = depconn                 #this is the name specified 
                                           # as the Network Address 
                                           # in netutil entries 
 attachment_profile_name = rs6_attach 
 local_lu_profile_name = deplu 
 network_name = RTIBM                      #actual SNA network name 
 remote_lu_name = GCVDEV1                  #actual target LU name 
 stop_connection_on_inactivity = no        #must set to this value 
 lu_type = lu6.2                           #must set to this value 
 interface_type = extended                 #must set to this value 
 remote_tpn_list_name = INET 
 mode_list_name = DEPMODE 
 node_verification = no 
 inactivity_timeout_value = 0 
 notify = no 
 parallel_sessions = single                #dependent LUs only 
 negotiate_session_limits = no             #dependent LUs only 
 security_accepted = none 
 conversation_security_access_list_name = 

 

LOCALLU Profile for Independent LU 

indlu_LOCALLU: 
 type = LOCALLU 
 profile_name = indlu 
 local_lu_name = S1114000               #actual local LU name 
 network_name = RTIBM                   #actual SNA network name 
 lu_type = lu6.2                        #must set to this value 
 independent_lu = yes                   #indicates independent LU 
 tpn_list_name = IIGCC 
 local_lu_address = 99                  #ignored for independent LUs 
 sscp_id =                              #ignored for independent LUs 
 number_of_rows = 24 
 number_of_columns = 80 

 

314  Ingres 2006 R2 Connectivity Guide 
 



Sample Configuration Profiles 
 

LOCALLU Profile for Dependent LU 

deplu_LOCALLU: 
 type = LOCALLU 
 profile_name = deplu 
 local_lu_name = S111400G                #actual local LU name 
 network_name = RTIBM                    #actual SNA network name 
 lu_type = lu6.2                         #must set to this value 
 independent_lu = no                     #indicates dependent LU 
 tpn_list_name = IIGCC 
 local_lu_address = 1                    #actual local LU address 
 sscp_id = 050000000001                  #actual SSCP id 
 number_of_rows = 24 
 number_of_columns = 80 
 
inet_REMOTETPN: 
 type = REMOTETPN 
 profile_name = inet 
 tpn_name = x                         #this is the name specified 
                                         # as Listen Address 
                                         # in netutil entries 
 tpn_name_hex = A7 
 pip_data = no                           #must set to this value 
 conversation_type = mapped              #must set to this value 
 recovery_level = no_reconnect           #must set to this value 
 sync_level = none                       #must set to this value 
 tpn_name_in_hex = no 
 
INET_REMOTETPNLIST: 
 type = REMOTETPNLIST 
 Listname = INET 
 list_members = inet 
 
iigcc_TPN: 
 type = TPN 
 profile_name = iigcc 
 tpn_name = iigcc 
 tpn_name_hex = 8989878383 
 conversation_type = mapped              #must set to this value 
 pip_data = no                           #must set to this value 
 sync_level = none                       #must set to this value 
 recovery_level = no_reconnect           #must set to this value 
 full_path_to_tpn_executable = /x        #ignored for Net 
 multiple_instances = yes 
 user_id = 777 
 server_synonym_name =  
 restart_action = once 
 communication_type = signals 
 stdin = /dev/null 
 stdout = /tmp/tpn_output 
 stderr = /tmp/tpn_error 
 subfields = 0 
 communication_ipc_queue_key = 0 
 tpn_name_in_hex = no 
 security_required = none 
 resource_security_access_list_name = 
 
IIGCC_TPNLIST: 
 type = TPNLIST 
 Listname = IIGCC 
 list_members = iigcc 

 

AIX SNA Services/6000 Configuration Profiles  315  
 



Sample Configuration Profiles 
 

MODE Profile for Independent LUs 

indmode_MODE: 
 type = MODE 
 profile_name = indmode 
 mode_name = INGLU62                    #actual mode name 
 maximum_number_of_sessions = 200 
 minimum_contention_winners = 50 
 minimum_contention_losers = 5 
 receive_pacing = 3                     #default 
 send_pacing = 3                        #default 
 maximum_ru_size = 2816                 #default 
 recovery_level = no_reconnect          #must set to this value 
 
INDMODE_MODELIST: 
 type = MODELIST 
 Listname = INDMODE 
 list_members = indmode 

 

MODE Profile for Dependent LUs 
depmode_MODE: 
 type = MODE 
 profile_name = depmode 
 mode_name = INGSLU62                 #actual mode name 
 maximum_number_of_sessions = 200 
 minimum_contention_winners = 50 
 minimum_contention_losers = 5 
 receive_pacing = 3                   #default 
 send_pacing = 3                      #default 
 maximum_ru_size = 2816               #default 
 recovery_level = no_reconnect        #must set to this value 
 
DEPMODE_MODELIST: 
 type = MODELIST 
 Listname = DEPMODE 
 list_members = depmode 
 

316  Ingres 2006 R2 Connectivity Guide 
 



 

Appendix I: HP-UX SNAplus 
Configuration 
 

Connectivity supports communications over both dependent and independent 
Logical Units (LUs). This appendix contains sample configuration file excerpts 
(as produced by the HP-UX SNAplus configuration file print utility, 
snapshowcfg) that show how to configure both types of LUs. Additionally, an 
excerpt is included that illustrates the required configuration for a dynamically 
loadable TP, which is required if connections incoming to HP-UX are to be 
supported. 

 

Sample Configuration File Excerpts 
The following samples include excerpts for independent and dependent LUs 
and for a dynamically loadable TP. 

 

HP-UX SNAplus Configuration  317  
 



Sample Configuration File Excerpts 
 

Independent LUs 

The following are sample excerpts for independent LUs: 

***************************************************************** 
                     * APPC Local LU Record * 
***************************************************************** 
Local LU name ..................S1110000 
Description ....................[LU for MVS DB2 access] 
Owning local node name .........NODE 
Network ID .....................[RTIBM] 
Network name ...................S1110000 
 
Session limit ..................64 
Default LU? ....................No 
Locally usable? ................No  
LU number ......................0 
Conversation-level security? ...No  
Prevalidation ability? .........No  
Number of remote LUs .......... 3 
Remote LU #1: 
 Remote LU name ............... GCVDEV1 
 Number of modes .............. 1 
 List of mode IDs ............. 000 
****************************************************************** 
                     * APPC Mode Data Record * 
***************************************************************** 
Mode name ................  INGLU62 
Description ..............  [INGLU62 mode for MVS] 
Owning connection name ...  [CONN1] 
Mode ID ..................  000 
 
High priority mode? ......  Yes 
Session limit ............  64 
Auto activation limit ....  16 
Min contention losers ....  32 
Min contention winners ...  32 
Send pacing count ........  0 
Receive pacing count .....  0 
Send RU size .............  256 (min) to 4096 (max) 
Receive RU size ..........  256 (min) to 4096 (max) 
***************************************************************** 
                     * APPC Remote LU Record * 
***************************************************************** 
LU alias .......................GCVDEV1 
Description ....................[Remote LU for DB2 Gateway] 
Network ID .....................RTIBM 
Remote LU name .................C5X6ICS5 
 
Prevalidation ability? .........No  
Parallel sessions? .............Yes 
Conversation-level security? ...No  
Uninterpreted LU name ..........C5X6ICS5 
 

 

318  Ingres 2006 R2 Connectivity Guide 
 



Sample Configuration File Excerpts 
 

Dependent LUs 

The following are sample excerpts for dependent LUs: 

***************************************************************** 
                     * APPC Local LU Record * 
***************************************************************** 
Local LU name ..................S1110008 
Description ....................[LU for MVS DB2 access] 
Owning local node name .........NODE 
Network ID .....................[RTIBM] 
Network name ...................S1110008 
 
Session limit ..................1 
Default LU? ....................No  
Locally usable? ................No  
LU number ......................1 
Conversation-level security? ...No  
Prevalidation ability? .........No  
Number of remote LUs ...........1 
Remote LU #1: 
 Remote LU name ................GCVSDEV1 
 Number of modes ...............1 
 List of mode IDs ..............003 
 
***************************************************************** 
                     * APPC Mode Data Record * 
***************************************************************** 
Mode name ......................INGSLU62 
Description ....................[INGLU62 mode for MVS] 
Owning connection name .........[CONN1] 
Mode ID ........................003 
 
High priority mode? .......Yes 
Session limit .............1 
Auto activation limit .....0 
Min contention losers .....0 
Min contention winners ....1 
Send pacing count .........0 
Receive pacing count ......0 
Send RU size ..............256 (min) to 4096 (max) 
Receive RU size ...........256 (min) to 4096 (max) 
 
****************************************************************** 
                     * APPC Remote LU Record * 
****************************************************************** 
LU alias .....................   GCVSDEV1 
Description ..................   [Remote LU for DB2 Gateway] 
Network ID ...................   RTIBM 
Remote LU name ...............   C5X6ICS5 
 
Prevalidation ability? .......   No  
Parallel sessions? ...........   No  
Conversation-level security? .   No  
Uninterpreted LU name ........   C5X6ICS5 

 

HP-UX SNAplus Configuration  319  
 



Sample Configuration File Excerpts 
 

Dynamically Loadable TP 

The following is a sample excerpt for a dynamically loadable TP to support 
Connectivity connections incoming to HP-UX. Note that the executable file 
specified is not used by “Queued - operator started” TPs, and that the “Receive 
allocate timeout” must be set to 0 seconds to avoid the Communications 
server blocking for incoming connections. 

***************************************************************** 
                    * Dynamically Loadable TP Record * 
***************************************************************** 
Local TP name .................    TEST 
Description ...................    [test invocable TP] 
TP type .......................    APPC 
Queueing scheme ...............    Queued - operator started 
Conversation security? ........    No  
Accept already-verified? ......    No  
Full TP name ..................    test 
Executable file ...............    [junk] 
 
Parameters ....................    [] 
Environment string ............    [] 
Target machine name ...........    [] 
Attach timeout .................    3600 sec 
Receive allocate timeout .......    0 sec 
 
 
 

320  Ingres 2006 R2 Connectivity Guide 
 



 

Appendix J: Netu Procedures 
 

This appendix contains procedures for establishing and maintaining remote 
connections using the Net Management Utility (netu) provided in Ingres 6.4 
and previous releases. The netu utility is replaced by the forms-based netutil 
utility; however it is still possible to establish remote connections using netu.  

 

Start Netu 
Netu is delivered in the [Ingres.SIG] directory.  

To access netu, follow the instructions below for your operating system: 

Windows: Run netu from the command prompt.  

UNIX: Verify that the environment variable II_SYSTEM is set to the location of 
your current Ingres instance and that $II_SYSTEM/ingres/sig is in the search 
path of the user who owns the installation. If not, do this now. 

C shell: 

set path=($path $II_SYSTEM/ingres/sig) 

Bourne shell: 

PATH=$PATH:$II_SYSTEM/ingres/sig  

VMS: Run INGSYSDEF.COM or enter the following at your operating system 
prompt: 

netu:== $ii_system:[ingres.sig]netu.exe  
 

Netu Procedures  321  
 



Netu User Interface 
 

Netu User Interface 
The netu user interface’s primary component is a menu that appears when you 
start netu. The menu looks like this: 

Select one of the following: 
Q <Comm_Server_Id> - Quiesce Ingres/Net 
S <Comm_Server_Id> - Stop Ingres/Net 
N - Modify Node Entry 
A - Modify Remote Authorization Entry 
E - Exit 

Remember these tips when using netu: 

 The netu user interface is not case sensitive. When you make a selection 
from the main menu, use either an upper- or lowercase entry for the 
selection. 

 Press Enter after every response you make or every menu item that you 
select. 

 The netu utility does not check for valid entries in response to prompts. 
Make sure your entries are accurate. 

 Abort an operation by pressing Esc and Enter. 
 

Stop the Communications Server 

Choosing Q or S stops the Communications Server. The Q selection stops the 
server after all sessions currently in progress terminate. The S selection stops 
it immediately, disconnecting any sessions that are open. For more 
information about these procedures, see the chapter "Maintaining 
Connectivity." 

 

322  Ingres 2006 R2 Connectivity Guide 
 



Netu User Interface 
 

Modify Node Entry 

Choosing N allows you to: 

 Add remote node definitions 

 Merge remote node definitions (add a remote node definition whose vnode 
name matches that of an existing node definition) 

 Delete remote node definitions 

 Retrieve remote node definitions for viewing 

It is also possible to change an existing remote node definition, using the Add 
option or a combination of Add and Delete. See How You Change Remote Node 
Definitions (see page 328). 

If you are a system administrator with Ingres privileges, define global or 
private node definitions. If you are not a system administrator with Ingres 
privileges, define only private remote node definitions. For a discussion of the 
differences between private and global definitions, see the background 
information in  Remote Node Definition Operations (see page 324). 

 

Modify Remote Authorization Entry 

Choosing A lets you: 

 Add remote user authorizations 

 Delete remote user authorizations 

 Retrieve remote user authorizations for viewing 

It is also possible to change an existing remote user authorization using the 
Add option or a combination of the Add and Delete options. See Change 
Remote User Authorizations (see page 335). 

If you are an Ingres administrator, establish global or private remote node 
authorizations. If you are not a system administrator with Ingres privileges, 
set up only private remote node authorizations. 

 

Netu Procedures  323  
 



Remote Node Definition Operations 
 

Exit Netu 

Choosing E exits the utility. 

You exit the netu utility from its main menu. You can reach this menu from 
any netu operation by choosing exit at that operation’s command line prompt. 

If you are in the middle of an operation and want to quit without completing 
the operation, press Esc and Enter to open the netu menu. From there, exit 
netu or choose another operation. 

Note:  If your keyboard lacks an Escape key, use Control + [ to quit without 
completing the operation. 

 

Remote Node Definition Operations 
There are four operations associated with remote node definitions: 

 Adding new definitions 

 Merging new definitions 

 Deleting existing definitions 

 Viewing existing definitions 

To perform each of these operations, netu asks for the following information: 

 The vnode name of the remote node 

 The network protocol used by the remote node 

 The remote node address 

 The listen address of the Communications server at the remote node 
 

324  Ingres 2006 R2 Connectivity Guide 
 



Remote Node Definition Operations 
 

Add or Merge Remote Node Definitions 

A remote node definition identifies a particular node and a listen address for 
that node’s Communications server and associates that node and address 
combination with a vnode name. 

When a user uses a vnode name to connect to a database on a remote 
instance, the local instance must have a remote node definition that defines 
that vnode name for the remote instance to complete the connection. The netu 
utility offers two options for adding remote node definitions: add and merge. 

Add and merge differ in how they handle the addition of a node definition 
whose vnode name matches the vnode name of an existing node definition. If 
you are using the add option, netu overwrites any existing node definitions 
that have the matching vnode name. If you are using the merge option, netu 
does not overwrite the existing definitions, but simply establishes another 
definition. The merge option is very useful if you want to run more than one 
Communications Server at a server node. 

For example, assume that you want to run three Communications Servers at 
the node “eugenie.” Each server has its own unique listen address for 
interprocess communications. If you use the add option to establish the 
remote node definitions for “eugenie” from “napoleon,” you must provide a 
unique vnode name for each listen address. For example, you have the 
following vnode name and listen address combinations: 

From napoleon: 

 Royal addr1 
 Lady addr2 
 Second addr3

If you use the merge option, you need only one vnode name. Using merge, set 
up the three node definitions at “napoleon” using the same vnode name for 
each and simply changing the listen address. 

For example: 

From napoleon: 

 Royal addr1 
 Royal addr2 
 Royal addr3

Netu Procedures  325  
 



Remote Node Definition Operations 
 

When users connect using the vnode name “Royal” Ingres Net connects them 
to one of the three Communications Servers. Ingres Net automatically tries 
each server, in random order, until it finds one of the three that is available. 
Users do not need to remember three vnode names or make three connection 
attempts. Using merge allows you to keep it simple for  users, regardless of 
how many Communications Servers are running on an installation. 

Note: Ingres Net does not allow two definitions that are exactly the same at 
the same node. 

To add or merge a remote node definition

1. Start netu by entering netu at the operating system prompt. 

The netu menu appears. 

2. Select N (Modify Node Entry) from the menu. 

The following prompt appears: 

Enter command (add, merge, del, show, exit): 

3. Select add or merge. (Type a or m instead of the full word.) 

The add and merge options behave differently if the definition you are 
adding matches an existing vnode name. Be sure to read the paragraphs 
preceding this procedure before making a choice. 

4. Define the account as a private or global account. The default is private. 

 To accept the default, press Enter. 

 To define a global node entry, enter G. You must be a user with Ingres 
privileges to define a global node entry. 

5. Enter a remote vnode name. 

6. Enter the network software type. 

This is the name of the protocol that the remote node is using. For a list of 
valid entries see Network Protocol Keywords (see page 54). 

7. Enter the remote node address. 

8. Enter the listen address of the remote node’s Communications Server. 

Netu adds one remote node definition for your local node and displays this 
prompt: 

Enter operation (add, merge, del, show, exit): 

9. Select another operation or select exit to Enter to the netu menu. 
 

326  Ingres 2006 R2 Connectivity Guide 
 



Remote Node Definition Operations 
 

Delete Remote Node Definitions 

To remove a remote node definition from a local node, the netu utility allows 
you to remove one or several definitions at a time. When you select the 
operation that deletes node definitions, netu responds with a series of 
prompts. When you have answered all the prompts, netu deletes all node 
definitions that match the answers you supplied. 

To remove several definitions at once, use the asterisk (*) in response to the 
appropriate prompt. This is a wild card character that matches any entry. For 
example, if you want to remove all private node definitions for the vnode 
name “general,” complete the deletion procedure, responding to the prompts 
in the following manner: 

Enter Private or Global (P): <Enter> 
Enter the vnode name of the remote node: general 
Enter the node address of the remote node: * 
Enter the network software type: 
Enter the remote node address: * 
Enter the remote Ingres/Net server listen address: 
appropriate address 

You cannot answer with an asterisk in response to the Global or Private 
prompt. 

To remove node definitions from the local Communications Server

1. Start netu by entering netu at the operating system prompt. 

The netu menu appears. 

2. Select N (Modify Node Entry) from the menu. 

The following prompt appears: 

Enter command (add, merge, del, show, exit): 

3. Enter del. (Type d in place of del.) 

4. When netu asks you to specify if the definition is a private or global 
definition, do one of the following steps: 

 If the node definition is private, press Enter. 

 If the node definition is global, enter G. You must be a user with 
Ingres privileges to select G. 

5. Enter the vnode name of the remote node. Enter the network software 
type. 

This is the name of the protocol that the remote node is using. Valid 
entries are described in Network Protocol Keywords (see page 54). 

6. Enter the node address of the remote node. 
 

Netu Procedures  327  
 



Remote Node Definition Operations 
 

7. Enter the listen address of the remote node’s Communications Server. 

Netu removes the node definition(s) from the local Communications Server 
and displays the following prompt: 

Enter command (add, merge, del, show, exit): 

8. Select another operation, or Enter to the netu menu by entering exit. 
 

How You Change Remote Node Definitions 

The procedure you use for changing an existing remote node definition 
depends on whether the vnode name for the definition is unique among the 
node definitions for the installation. 

If the vnode name is unique (that is, associated with only one node definition), 
overwrite the existing definition. For instructions, see Overwrite an Existing 
Definition (see page 328). 

If the vnode name is not unique (that is, associated with more than one node 
definition), you must delete the incorrect definition and set up the new 
definition. For instructions, see Delete Old and Add New Definition (see 
page 329). 

 

Overwrite an Existing Definition 

Use this procedure to change a node definition only if the vnode name 
associated with that definition is not associated with any other node definitions 
within the local set of remote node definitions. 

To overwrite an existing definition

1. Start netu by entering netu at the operating system prompt. 

The main menu appears. 

2. Select N (Modify Node Entry) from the menu. 

The following prompt appears: 

Enter the operation (add, merge, del, show, exit): 

3. Enter add. (Type a instead of add.) 

Prompts appear. 

4. Answer the prompts using the values of the new, correct node definition. 

The utility overwrites the existing node definition with the values that you 
have just supplied and displays the following prompt: 

Enter operation (add, merge, del, show, exit): 

5. Continue with other node definition tasks or Enter to the netu menu by 
choosing exit. 

 

328  Ingres 2006 R2 Connectivity Guide 
 



Remote Node Definition Operations 
 

Delete Old and Add New Definition 

Use this procedure when there are two or more remote node definitions (at the 
same node) that are associated with the vnode name belonging to the 
definition that you want to change. 

When the merge option has been used to set up several node definitions that 
use the same vnode name, you must be very careful when changing one of 
these definitions. You cannot overwrite the incorrect definition using the add 
option as in Overwrite an Existing Definition (see page 328). If you try to do 
this, netu overwrites all of the definitions that have the specified vnode name, 
effectively deleting them all and leaving you with only the definition you have 
just added. 

To safely change a node definition that has a vnode name in common with 
other node definitions, you must delete the old definition and use merge to 
add the new definition. 

To delete an old definition and add a new one

1. Start netu by entering netu at the operating system prompt. 

The main menu appears. 

2. Select N (Modify Node Entry) from the menu. 

The following prompt appears: 

Enter operation (add, merge, del, show, exit): 

3. Enter del. (Enter d instead of del.) 

4. Answer the prompts that appear with the values from the definition you 
want to change. 

When all the prompts are answered, netu deletes the node definition that 
has the values that you have just supplied and Enters you to the prompt: 

Enter operation (add, merge, del, show, exit): 

5. Enter merge. (Enter m instead of merge.) 

6. Answer the prompts that appear with the values for the correct definition. 

The utility adds a node definition with the values that you have just 
supplied and displays the following prompt: 

Enter operation (add, merge, del, show, exit): 

7. Continue with node definition tasks or Enter to the main netu menu by 
choosing exit. 

 

Netu Procedures  329  
 



Remote Node Definition Operations 
 

Retrieve Remote Node Definition Information 

To see the remote node definitions associated with a particular local node, the 
following procedure asks for information about the definitions and displays all 
the definitions that match the information you provide. 

Use an asterisk in response to any prompt other than the one asking if the 
definition is private or global. An asterisk is the wild card character that 
matches any value. 

To retrieve remote node definition information

1. Start netu by entering netu at the operating system prompt. 

The netu menu appears. 

2. Select N (Modify Node Entry) from the menu. 

This prompt appears: 

Enter operation (add, merge, del, show, exit): 

3. Enter show. (Type s instead of show.) 

4. When netu asks if the entry you want to see is a private or global entry, 
do one of the following: 

 If the entry is private, press Enter. 

 If the entry is global, enter G. 

5. Enter the vnode name of the remote node definition. 

6. Enter the network software type. 

7. Enter the remote node’s address. 

8. Enter the listen address of the remote node’s Communications Server. 

The utility displays all of the definitions that match the information that 
you gave. If you used an asterisk as a wild card for any of the prompts, 
you receive more than one definition. The definitions appear in table 
format. You cannot change any node name definition while it is displayed 
in this format. 

After the definition or list of definitions is displayed, the utility displays the 
following prompt: 

Enter operation (add, merge, del, show, exit): 

9. Continue with node definition tasks or choose exit to Enter to the netu 
menu. 

 

330  Ingres 2006 R2 Connectivity Guide 
 



Remote Node Definition Operations 
 

Displayed Node Definition Examples 

Here are some examples of the format and type of information that you 
receive when you retrieve node definition information for viewing. 

Windows: The following table shows Windows Displayed Node Definition 
examples: 

 

Global: V_Node Net 
Software 

Node 
Address 

Listen Address 

 london wintcp uk1 II0 

 rome wintcp italy2 II0 

 n_york wintcp usa1 II0  

 chicago lanman usa2 USA2_II  

UNIX: The following table shows UNIX Displayed Node Definition examples: 

 

Global: V_Node Net 
Software 

Node 
Address 

Listen Address 

 london tcp_ip uk1 II0 

 rome tcp_ip italy2 II0 

 n_york tcp_ip usa1 II0  

VMS: The following table shows VMS Displayed Node Definition examples: 

 

Global: V_Node Net 
Software 

Node 
Address 

Listen Address 

 n_york sna_lu0  GW1 NYMVSPLU 

 chicago sna_lu0 GW2 CHMVSPLU 

 london  decnet uk1  II_GCC_0 

 rome  decnet  rome  II_GCC_0 

 s_fran decnet s_fran II_GCC_0 

 n_york  tcp_wol  usa1 II 

 chicago  tcp_wol   usa2 KK 
 

Netu Procedures  331  
 



Remote User Authorization Operations 
 

Remote User Authorization Operations 
Remote user authorizations, along with node definitions, make it possible to 
use Ingres Net to access databases on remote nodes. A remote user 
authorization associates a specified vnode name with a specified account on 
the remote node. When the user requests a connection using that vnode 
name, Ingres Net makes the connection to the DBMS Server on the remote 
node through that account. 

Three operations concern remote user authorizations: 

 Adding new remote user authorizations 

 Deleting existing authorizations 

 Viewing existing authorizations 

In addition, change an existing authorization by overwriting the authorization 
or by deleting it and adding a new authorization. 

To perform any of these operations, you must have the following information 
about the authorization: 

 The type of the authorization, private or global 

 The vnode name of the remote node 

 The name of the account on the remote node 

 The password for the account on the remote node 
 

332  Ingres 2006 R2 Connectivity Guide 
 



Remote User Authorization Operations 
 

Define Remote User Authorizations 

A remote user authorization associates a specified vnode name with a 
specified account on the node represented by that vnode name. 

To define a remote user authorization

Note: You can exit this procedure at any time without making an entry by 
pressing Esc and Enter. 

1. Start netu by entering netu at the operating system prompt. 

The netu menu appears. 

2. Select A (Modify Remote User Authorization Entry). 

The following prompt appears: 

Enter operation (add, del, show, exit): 

3. Enter add. (Type a instead of add.) 

Netu asks if you want a private or global authorization.  

4. Do one of the following: 

 To accept the default (private), press Enter. 

 To select global, enter G. 

5. Enter the vnode name of the remote node. 

6. Enter the name of the account at the remote node. 

7. Enter the password for the remote account. 

The default is an asterisk (*). Use this only if the remote account has no 
password. 

8. Enter the password for the remote account again. 

The utility finishes defining a remote user authorization and displays the 
following prompt: 

Enter operation (add, del, show, exit): 

9. Continue with remote user authorization tasks or choose exit to Enter to 
the netu menu. 

 

Netu Procedures  333  
 



Remote User Authorization Operations 
 

Delete Remote User Authorizations 

The netu utility lets you delete one or several authorizations at a time. When 
you select the delete operation, netu asks for the values that comprise the 
authorization and deletes any and all authorizations that match those values. 
To delete a single authorization, all the values must match. If the match is not 
exact, the authorization is not deleted. To delete multiple authorizations, use 
the wild card character (*), which matches any value. 

If you are unsure of the values for the authorization that you want to delete, 
use the “show” operation to check the values before you delete them. For 
instructions on using the show operation, see Retrieve Remote User 
Authorizations (see page 338). 

To delete more than one authorization in one operation, use an asterisk in 
response to the prompts asking for the remote user name. The asterisk is a 
wild card character that matches any value. For example, assume that you 
want to delete all of your private user authorizations from “napoleon” that are 
associated with the account having the userid “tommy” on “josephine.” To do 
this, run netu from “napoleon,” selecting A and the del operation. Respond to 
the prompts in this manner: 

Enter Private or Global (P): <Enter> 
Enter the remote vnode name: * 
Enter the remote user name: tommy 

When you have completed the procedure, you deleted all of the private user 
authorizations for the account “tommy.” If you have defined other remote user 
authorizations to “josephine” through a different account, these remain 
undeleted. 

Only a user with Ingres privileges can delete global authorizations. 

To delete remote user authorizations  

Note: You can exit the procedure at any point by pressing Esc and Enter. 

1. Start netu by entering netu at the operating system prompt. 

The netu menu appears. 

2. Select A (Modify Remote User Authorization Entry) from the menu. 

The following prompt appears: 

Enter operation (add, del, show, exit): 

3. Enter del. (Enter d instead of del.) 

Netu asks if the authorization is a private or global authorization.  
 

334  Ingres 2006 R2 Connectivity Guide 
 



Remote User Authorization Operations 
 

4. Do one of the following: 

 If the authorization is private, press Enter. 

 If the authorization is global, enter G. 

5. Enter the remote vnode name. 

6. Enter the remote user name. 

The utility displays the number of authorizations that it deleted and the 
following prompt: 

Enter operation (add, del, show, exit): 

7. Select del again to delete another authorization, or choose a different 
operation.  

 

Change Remote User Authorizations 

If necessary, change an existing remote user authorization entry by using one 
of two methods: 

 Overwrite the existing, incorrect entry. 

Use this method if the vnode names for both the old incorrect entry and 
the new correct entry are the same. For instructions on performing this 
method, see Overwrite an Incorrect Entry (see page 336). 

 Delete the existing, incorrect entry and add the new, correct entry. 

Use this method if you must correct a vnode name. For instructions on 
performing this method, see Delete Old and Add New Definition (see 
page 329). 

 

Netu Procedures  335  
 



Remote User Authorization Operations 
 

Overwrite an Incorrect Entry 

Use this procedure to modify a remote user authorization when some part of 
the authorization information, other than the vnode name, has changed. For 
example, perhaps the passwords to accounts are changed on a regular basis. 
When this happens, the remote user authorizations must be modified to allow 
users continued access to remote accounts. 

When you use this procedure, netu overwrites the existing authorization whose 
vnode name matches the vnode name that you specify. Use the values of the 
new, correct authorization to respond to the prompts. 

To modify a remote user authorization

1. Start netu by entering netu at the operating system prompt. 

The netu menu appears. 

2. Select A (Modify Remote User Authorization Entry). 

The following prompt appears: 

Enter command (add, del, show, exit): 

3. Enter add. (Type a instead of add.) 

Netu asks if the authorization is private or global.  

4. Do one of the following: 

 If the authorization is private, press Enter. 

 If the authorization is global, enter G. 

5. Enter the remote vnode name. 

6. Enter the remote user name. 

7. Enter the password. 

8. Enter the password a second time. 

Netu replaces the existing authorization with the new one and displays the 
following prompt: 

Enter operation (add, del, show, exit): 

9. Continue with other user authorization operations or Enter to the netu 
menu by selecting exit. 

 

336  Ingres 2006 R2 Connectivity Guide 
 



Remote User Authorization Operations 
 

Delete and Add an Entry 

To change the vnode name associated with a remote user 
authorization

1. Start netu by entering netu at the operating system prompt. 

The netu menu appears. 

2. Select A (Modify Remote User Authorization Entry). 

The following prompt appears: 

Enter command (add, del, show, exit): 

3. Enter del. (Enter d instead of del.) 

4. Answer the prompts that appear using the values of the incorrect 
authorization. 

When you have answered all the prompts, netu deletes the incorrect 
authorization and displays the following prompt: 

Enter command (add, del, show, exit): 

5. Enter add. (Enter a instead of add.) 

6. Answer the prompts that appear using the values of the new, correct 
authorization. 

The utility adds the new authorization and displays the following prompt: 

Enter command (add, del, show, exit): 

7. Choose another operation or Enter to the netu menu by choosing exit. 
 

Netu Procedures  337  
 



Remote User Authorization Operations 
 

Retrieve Remote User Authorizations 

When you want to see a list of authorizations for a single node or several 
nodes, use the procedure in this section. It produces a read-only display of 
authorization information. For example, use this procedure to produce a list of 
all your private authorizations to a single node or to all nodes. You can also 
use this procedure to find out if there are any global authorizations to a 
particular node. 

For example, to see any global authorizations, you run the procedure and 
make the following responses to the following prompts: 

Enter Private or Global (P): Global 
Enter the remote vnode name: * 
Enter the remote user name: * 

The utility displays all of the global authorizations that have been defined from 
the node on which you are working. The display is in a table format.  For 
display examples, see Displayed Remote User Authorization Examples (see 
page 339). 

If you select Private, the utility displays the appropriate private authorizations 
that belong to you. 

To display remote user authorizations

Note: You can exit the procedure at any point by pressing Esc and Enter. 

1. Enter netu at the operating system prompt. 

The main menu appears. 

2. Select A. 

The following prompt appears: 

Enter operation (add, del, show, exit): 

3. Enter show. (Enter s instead of show.) 

4. The utility asks if you want a list of private or global authorizations.  

You must choose one or the other. You cannot enter the wildcard character 
for this prompt. 

 If you want a list of private authorizations, press Enter. 

 If you want a list of global authorizations, enter G. 

5. Enter the remote vnode name. 
 

338  Ingres 2006 R2 Connectivity Guide 
 



Netu Options for Stopping the Communications Server 
 

6. Enter the remote user name. 

The netu utility shows you the authorizations that match the responses 
you provided. The display appears in table format. You cannot change any 
of the information while it is in this format. 

After the authorizations are displayed, netu Enters you automatically to 
the prompt: 

Enter command (add, del, show, exit): 

7. Choose another authorization operation or Enter to the netu menu by 
choosing exit. 

 

Displayed Remote User Authorization Examples 

Here is an example of the information that you receive when you view remote 
user authorizations: 

 

Private: V_Node User Name 

^ london janetd 

^ rome janetd 

^ n_york janetd 

^ s_fran janetd 
 

Netu Options for Stopping the Communications Server 
Netu provides two options for stopping the Communications Server: 

quiesce 

Stops the server after any open sessions with the server have terminated. 
Use the quiesce option to stop the server gracefully, waiting until open 
sessions terminate. 

stop  

Stops the server immediately, regardless of whether there are any open 
sessions using the server.  

Both options require you to know the GCF (General Communication Facility) 
address of the Communications Server. 

 

Netu Procedures  339  
 



Netu Options for Stopping the Communications Server 
 

Obtain GCF Address 

The GCF address is the Ingres-specific symbolic address that the 
Communications Server uses to communicate with local Ingres processes. This 
address is also called the GCA address. 

You must know the Communications Server’s GCF address before you can stop 
the server. Use the iinamu utility to obtain this address. 

To obtain the GCF address

1. Enter the following command at the operating system prompt: 

iinamu 

The iinamu menu appears. 

2. Enter this command:  

show comsvr 

The utility displays a list of Communications Servers running in the 
installation, in the format: 

COMSVR * GCF_ADDRESS

The GCF address is the value in the third column. 

3. Note the GCF address shown in the display, and then enter quit. 

You exit the utility. 
 

340  Ingres 2006 R2 Connectivity Guide 
 



Netu Options for Stopping the Communications Server 
 

Stop Communications Server 

Before you begin this procedure, you must have the GCF address of the 
Communications Server. To obtain this address, see Obtain GCF Address (see 
page 340). 

To stop the Communications Server using netu

1. Enter this command at the operating system prompt: 

netu 

The netu menu appears. 

2. Enter one of the following: 

 Q Comm_server_id 

where Comm_server_id is the GCF address of the Communications 
Server.  

The server stops after all open sessions are closed. In most cases, use 
this option. 

 S Comm_server_id 

where Comm_server_id is the GCF address of the Communications 
Server.  

The Communications Server is stopped immediately, terminating any 
open sessions. 

The netu menu automatically reappears. 

3. To exit netu, select E. 

Note: If you enter the Comm_server_id on the command line when you start 
netu (for example, $ netu Comm_server_id), you do not have to enter the 
Comm_server_id when you select Q or S. By default, netu stops the 
Communications Server associated with the ID that you specified on the 
command line. 
 

Netu Procedures  341  
 





 

Index 
 

. C 

.NET data provider cbf (utility) 
classes • 201 configuration parameters • 42, 113 
data types • 251 classes 
integration with Visual Studio .NET • 259 IngresCommand • 202 
sample program • 205 IngresConnection • 210 
troubleshooting applications • 268 IngresDataAdapter • 227 

.NET System.Data.DbType IngresDataReader • 220 
data types • 251 IngresError • 230 
mapping to EdbcType • 252 IngresErrorCollection • 232 
mapping to IngresType • 252 IngresException • 234 

IngresInfoMessageEventArgs • 237 A IngresInfoMessageEventHandler • 238 
IngresParameter • 239 accessing remote installations • 46 
IngresParameterCollection • 244 AIX SNA Services/6000 
IngresRowUpdatedEventArgs • 246 installation requirements • 37 
IngresRowUpdatedEventHandler • 247 sample configuration file • 311 
IngresRowUpdatingEventArgs • 247 architecture 
IngresRowUpdatingEventHandler • 248 .Net Data Provider • 197 
IngresTransaction • 249 Ingres Net • 26 

client installation attributes, configuring vnode • 60, 88 
NFS • 38 authentication_mechanism (vnode attribute) • 

60, 88 setup parameters • 38 
cluster authorization 

and Ingres Net • 19, 22 distributed databases • 47 
Name Server files • 114 of users • 45 
running netutil • 48 remote user • 28, 46 

commands autocommit 
used with Ingres Net • 98 alternative processing modes • 183 

Communications Server transactions • 183 
described • 20, 21 

B inbound/outbound session limits • 106 
listen address • 122 

BLOB columns • 189 
starting • 101 

Bridge Server • 127 
stopping • 102, 320, 337, 339 

described • 20 
Configuration Manager • 42 

monitoring • 133 
configuration parameters • 42 

starting options • 131 
DAS • 139 

starting using command line • 132 
default values • 113 

stopping with ingstop • 134 
default_server_class • 96 

stopping with IVM • 134 
described • 42 

Bridge, starting • 130 
inbound_limit • 106 

BYREF parameters • 188 
named and unnamed • 187 
outbound_limit • 106 
remote_vnode • 109 

Index  343 
 



 
 

access syntax • 94 configuring a data source 
procedures • 187 UNIX • 155 

DataSource tracing • 194 Windows • 147, 155 
DataTable connect statement • 97 

GetSchemaTable • 224, 257 connecting to a data source • 167 
date/time columns • 190 connection data • 53, 55 
DECnet described • 27 

installation requirements, VMS • 35 global and private • 29 
listen address • 293 listen address • 27 

default_server_class (configuration parameter) 
• 96, 113 

table • 53, 55 
connection data entries 

defined • 14 creating • 63, 87 
direct connect feature • 60, 88 deleting • 65, 66 
Driver Manager • 145, 194 editing • 68, 69 

valid protocol keywords • 54 E connection errors 
local • 122 encryption • 60, 88, 278 
remote • 123 encryption_mechanism (vnode attribute) • 60, 

88 connection pooling • 200 
connection string keywords • 167, 213 encryption_mode (vnode attribute) • 60, 88 
connection_type (vnode attribute) • 60, 88 Enterprise Access products 
connectivity problems • 116 with Ingres Net • 23 
constructors with Ingres Star • 24 

EdbcConnection class • 204, 213, 229, 243 errlog.log • 107, 116 
IngresConnection class • 204, 213, 229, 

243 
errors 

connection • 121 
conventions diagnose • 107, 116 

syntax • 18 local connection • 122 
create user statement • 45, 99 Net registration • 124 
cursors and select loops • 186 remote connection • 123 

security and permission • 124 D 
events 

EdbcConnection class • 212 DAS (Data Access Server) 
EdbcDataAdapter class • 229 configuring • 139 
IngresConnection class • 212 described • 20 
IngresDataAdapter class • 229 parameters • 140 

starting • 110 G stopping • 110 
tracing support • 141 GCF (General Communication Facility) 

data provider namespaces • 199 Bridge Server • 20 
data provider user ID options • 216 Communications Server • 20 
data retrieval Data Access Server • 20 

strategies • 199 described • 20 
using DataAdapter • 199 General Communications Area (GCA) • 20 
using DataReader • 199 Name Server • 20 

data types GetSchemaTable 
.NET data provider • 251 DataTable • 224, 257 
.NET System.Data.DbType • 251 global registration types • 29 

database 

344  Ingres 2006 R2 Connectivity Guide 
 



 
 

vs. Ingres Star • 128 Global Temporary Table parameters (JDBC) • 
188 Ingres Net 

accessing remote databases • 93 H architecture • 26, 32 
benefits • 25 HP-UX SNAplus 
commands available • 98 installation requirements • 36 
configuration parameters • 42 sample configuration file • 315 
described • 19 

I diagnosing problems • 116 
Enterprise Access products • 23 II_GCA_LOG • 108 
establishing connections • 111 iigcb 
Ingres Star and • 23 described • 20 
NET_ADMIN privilege • 32 starting • 131 
permission errors • 125 iigcc 
resolving connection errors • 121 described • 20, 21 
sample configuration • 22 inbound/outbound session limits • 106 
security • 21 listen address • 122 
security errors • 125 starting • 101 
SERVER_CONTROL privilege • 32 stopping • 102, 320 
setup parameters • 37 iigcd 
user roles • 31 described • 20 
using the connect statement • 97 starting • 110 

Ingres Star stopping • 110 
with Ingres Enterprise Access products • 24 iigcn 
with Ingres Net • 23 database files • 114 

IngresCommand class • 202 described • 20 
IngresConnection class • 210 Name Server database • 114 
IngresDataAdapter class • 227 starting • 131 
IngresDataReader class • 220 iinamu (utility) • 122 
IngresError class • 230 inbound/outbound sessions 
IngresErrorCollection class • 232 changing limits • 106 
IngresException class • 234 inbound_limit (configuration parameter) • 106, 

113 IngresInfoMessageEventArgs class • 237 
IngresInfoMessageEventHandler class • 238 Ingres 
ingstart -iigcb • 132 basic components • 15 
ingstart -iigcc • 101 installation, described • 16 
ingstart -iigcd • 110 server classes • 96 
ingstart -iigcn • 131 tools • 15 
ingstop -iigcc • 102, 320 Ingres Bridge 
ingstop -iigcd • 110 Bridge Server component • 127 
ingvalidpw (executable) • 41, 125 diagnosing problems • 135 
installation installation configurations • 128 

client • 16 installing • 130 
server • 16 overview • 127 
types of • 23 sample configuration • 129 

installation code sample configuration setup files • 136 
format • 38 security • 127 

Installation Password setting up client • 132 
defining • 89 tracing a connection • 135 

Index  345 
 



 
 

local_vnode (configuration parameter) • 113 defining during installation • 37 
log_level (configuration parameter) • 113 defining on local installation • 70, 78 
logging in constrast to login account password • 28 

directing to a file • 108 installing Ingres Bridge • 130 
levels • 107 installing Ingres Net 

Login/password data table for existing installations • 39 
described • 51 installation components • 33 
Installation Password • 52 setup parameters • 37 
login account password • 52 IPv6 • 282 

ISO • 21 M 
J 

mapping 
.NET System.Data.DbType to EdbcType • 

252 
JDBC 

connectivity components • 171 
.NET System.Data.DbType to IngresType • 

252 
DAS • 139 
implementation considerations • 181 

methods JDBC Information Utility • 172 
EdbcCommand class • 203 tracing • 194 
EdbcConnection class • 212 unsupported features • 173 
EdbcDataAdapter class • 229 JDBC Driver 
EdbcDataReader class • 222 accessing • 181 
EdbcError class • 232 and cursor pre-fetch capabilities • 186 
EdbcErrorCollection class • 234 and updateable cursors • 184 
EdbcException class • 235 BLOB columns • 189 
EdbcParameter class • 242 class files • 174 
EdbcParameterCollection class • 245 cursors and select loops • 186 
EdbcTransaction class • 250 data source properties • 178 
IngresCommand class • 203 database procedures • 187 
IngresConnection class • 212 date/time columns • 190 
IngresDataAdapter class • 229 driver properties and attributes • 175 
IngresDataReader class • 222 National Character Set values • 191 
IngresError class • 232 support for parameter default values • 187 
IngresErrorCollection class • 234 supported features • 171 
IngresException class • 235 K IngresParameter class • 242 
IngresParameterCollection class • 245 Kerberos • 269 
IngresTransaction class • 250 

L mkvalidpw • 41, 125 
MultiNet TCP/IP LAN Manager 

installation requirements, VMS • 35 listen address • 299 

N listen address 
configuration parameter • 113 

Name Server DECnet • 293 
database files • 114 defined • 27 
described • 20 LAN Manager • 299 
IICOMSVR_nodename • 114 SNA LU0 • 285 
IIINGRES_nodename • 114 SNA LU62 • 287 
IILOGIN_nodename • 114 SPX/IPX • 295 
iiname.all • 114 TCP/IP • 281 

346  Ingres 2006 R2 Connectivity Guide 
 



 
 

defining remote user authorizations • 49 IINODE_nodename • 114 
deleting entries • 64 IISTAR_nodename • 114 
editing entries • 66 namespace 
establishing and testing a connection • 58 data provider • 199 
global and private registration types • 29 National Character Set values • 191 
list of user tasks • 56 NET_ADMIN (privilege) • 32 
Login/password data table • 51 netu (utility) 
non-interactive mode • 71 aborting • 322 
startup screen • 49 adding remote node definitions • 323 
stopping the Communications Server • 104 adding vs. merging remote node definitions 

• 323 tables • 49 
virtual node name (vnode) table • 50 changing remote node definitions • 326 

network changing remote user authorizations • 333 
installing and testing • 33 defining remote user authorizations • 331 
protocol types • 54 deleting remote node definitions • 325 
terms and concepts • 14 deleting remote user authorizations • 332 

network address • 53, 55 described • 49 
network protocol • 54 displayed remote node definitions • 329 
Network Utility displayed remote user authorizations • 337 

accessing • 48 merging remote node definitions • 323 
adding vnode attributes • 88 retrieving remote node definitions • 328 
altering vnodes • 85 retrieving remote user authorizations • 336 
creating a private remote user authorization 

• 88 
stopping Communications Server (iigcc) • 

337 
creating additional connection data entries • 

87 
user interface • 320 

netutil (non-interactive mode) 
creating vnodes • 85 command line flags • 72 
deleting vnodes • 85 creating a connection data entry • 79 
list of user tasks • 85 creating a remote user authorization • 74 

defining local Installation Password • 78 O deleting a connection data entry • 80 
deleting a remote user authorization • 76 ODBC Data Source Administrator • 147 
displaying connection data entries • 82 ODBC driver 
displaying remote user authorizations • 77 configuring a data source (UNIX) • 155 
functions available • 71 configuring a data source (Windows) • 147, 

155 input control file • 72 
invariant fields • 73 described • 143 
quiescing the Communications Server • 84 read-only option • 144 
stopping the Communications Server • 84 requirements • 145 
wildcards • 74 ODBC Driver Manager • 145 

netutil (utility) ODBC implementation considerations • 169 
accessing • 48 Open Systems Interconnect • 21 
adding vnode attributes • 60 OSI • 26, 32 
clusters and • 48 outbound_limit (configuration parameter) • 

106, 113 Connection data table • 53, 55 
creating a connection data entry • 63, 132 

P creating a remote user authorization • 64 
defining a local Installation Password • 70 parameters 
defining connection data entries • 49 BYREF • 188 

Index  347 
 



 
 

defining during installation • 37 Global Temporary Table (JDBC) • 188 
deleting • 65 passwords 
described • 28 defining a local Installation Password • 70, 

78 editing • 67 
global and private • 29 private registration types • 29 
IILOGIN_nodename • 114 privileges, user • 99 
Installation Password and login account 

password • 28 
procedures, executing • 188 
properties 

storage of • 114 EdbcCommand class • 203 
remote_vnode (configuration parameter) • 

109, 113 
EdbcConnection class • 211 
EdbcDataAdapter class • 227 
EdbcDataReader class • 222 S EdbcError class • 231 
EdbcErrorCollection class • 233 security 
EdbcException class • 235, 237 .NET Data Provider • 201 
EdbcParameter class • 241 Ingres Net • 21 
EdbcParameterCollection class • 245, 246, 

248 
resolving problems • 125 

select loops and cursors • 186 
EdbcTransaction class • 250 server class keywords • 96 
IngresCommand class • 203 server classes • 91 
IngresConnection class • 211 default • 96 
IngresDataAdapter class • 227 server connections, establishing • 111 
IngresDataReader class • 222 server installation 
IngresError class • 231 setup parameters for a • 38 
IngresErrorCollection class • 233 SERVER_CONTROL (privilege) • 32 
IngresException class • 235, 237 servers 
IngresParameter class • 241 Bridge • 127 
IngresParameterCollection class • 245, 246, 

248 
Communications • 101 
Data Access • 139 

IngresTransaction class • 250 DBMS • 15 
protocol Name • 20 

configuration parameter • 113 tasks related to • 91 
keywords • 54 set host command • 35 

SNA LU0 Q 
listen address • 285 

SNA LU62 query builder • 264 
listen address • 287 R SunLink Gateway configuration files • 301 

SPX/IPX RDBMS (Relational Database Management 
System) • 15 installation requirements • 34 

listen address • 295 read-only ODBC driver • 144 
SQL statement region and time zone, defined • 38 

connect • 97 remote databases 
Star Server command syntax for accessing • 94 

IISTAR_nodename • 114 remote installation 
SunLink Gateway access, requirements • 46, 47 

sample configuration file • 301 remote user authorization 
SunLink SNA Peer-to-Peer creating • 64 

creating private • 88 

348  Ingres 2006 R2 Connectivity Guide 
 



 
 

installation requirements, Solaris and Sun-4 
• 36 

T 
TCP/IP 

installation requirements, Windows • 34 
listen address • 281 

time zone and region, defined • 38 
toolbar, virtual nodes • 85 
tools 

for managing Net • 30 
Ingres • 15 

tracing 
DAS • 141 
Driver Manager • 194 
enabling using Ingres JDBC Driver methods 

• 194 
Ingres Bridge connection • 135 
JDBC DataSource • 194 
levels • 142 
trace IDs • 194 

transaction mode 
autocommit • 183 

troubleshooting 
connectivity problems • 116 
remote connection failure • 121 
security and permission errors • 124 
UNIX installation checklist • 118 
VMS installation checklist • 120 
Windows installation checklist • 117 

U 
-u command flag • 99 
unixODBC Driver Manager • 145 

V 
vcbf (utility) 

configuration parameters • 42 
virtual node name (vnode) 

described • 26 
table • 50 

virtual nodes toolbar 
in Network Utility and VDBA • 85 

Visual DBA 
accessing • 48 
adding vnode attributes • 88 
altering vnodes • 85 
creating a private remote user authorization 

• 88 

creating additional connection data entries • 
87 

creating vnodes • 85 
deleting vnodes • 85 
list of user tasks • 85 

vnodes 
adding attributes for • 60, 88 
advanced, defined • 86 
altering using Network Utility • 85 
altering using VDBA • 85 
creating using netutil • 58 
creating using Network Utility • 85 
creating using VDBA • 85 
deleting using netutil • 65 
deleting using Network Utility • 85 
deleting using VDBA • 85 
disconnecting from • 90 
editing using netutil • 67 
naming rules • 50 
opening a utility window • 90 
private vs. global • 86 
refreshing • 89 
setting a default • 109 
simple, defined • 86 
testing a connection • 89 
tools for defining • 48 

 

Index  349 
 


	Bookshelf
	Ingres Connectivity Guide
	Contents
	1: Introducing Ingres Connectivity
	Connectivity Solutions Not in This Guide
	Basic Networking Concepts
	Ingres Components and Tools
	Ingres Instance
	Server Installation
	Client Installation


	System-specific Text in This Guide
	Terminology Used in This Guide
	Syntax Conventions Used in This Guide

	2: Exploring Net
	Ingres Net
	General Communication Facility
	Communications Server

	Net Security

	Installation Configurations That Require Net
	Net and Other Ingres-related Products
	Net and Enterprise Access and EDBC Products
	Net and Ingres Star
	Net Product Integration Summary

	Benefits of Net
	Net Concepts
	Virtual Nodes
	Connection Data
	Listen Address

	Remote User Authorizations
	Global and Private Definitions

	Net Management Tools
	Net and Bridge Users
	System Administrator and Ingres Net
	Database Administrator and Ingres Net
	End Users and Ingres Net


	3: Installing and Configuring Net
	Installation Components
	How You Prepare for Installation
	Network Installation and Testing
	TCP/IP Installation (Windows)
	SPX/IPX Installation (Windows)
	TCP/IP Installation (UNIX)
	TCP/IP Services Installation (VMS)
	DECnet Installation (VMS)
	MultiNet TCP/IP Installation (VMS)
	SunLink SNA Peer-to-Peer Installation (Solaris and Sun-4)
	HP-UX SNAplus (HP-UX 9.0)
	AIX SNA Services/6000 (IBM RS/6000)

	Setup Parameters for Net
	Installation Password and Remote User Authorization
	Setup Parameters for a Server Installation
	Setup Parameters for a Client Installation


	How Net Setup Works on an Existing Installation
	How Communications Are Enabled
	How You Install Net
	Create Password Validation Program (UNIX)

	Net Configuration Parameters--Customize the Installation

	4: Establishing Communications
	How User Access Is Established
	Requirements for Accessing Remote Instances
	Requirements for Accessing Distributed Databases

	Access Tools for Defining Vnodes
	Netutil (Net Management Utility)
	Netutil Startup Screen
	Virtual Node Name Table in Netutil
	Naming Rules for Vnodes

	Login and Password Data Table in Netutil
	Task-Specific Values for the Login/Password Data Fields

	Connection Data Table in Netutil
	Network Protocol Keywords

	Other Attribute Data Table in Netutil
	Netutil Operations
	Prerequisites to Establish and Test a Remote Connection
	Establish and Test a Remote Connection Using Netutil
	Configure Vnode Attributes
	Create an Additional Connection Data Entry
	Create an Additional Remote User Authorization


	Delete an Entry
	Delete All Vnode Information
	Delete a Connection Entry for a vnode
	Delete a Remote User Authorization for a vnode
	Delete an Attribute Associated with a vnode


	Change an Entry
	Modify a Vnode Name
	Edit a Remote User Authorization
	Edit a Connection Data Entry
	Edit Vnode Attribute


	Define an Installation Password for the Local Instance

	Netutil Non-Interactive Mode
	Command Line Flags in Netutil Non-interactive Mode
	Input Control File
	Invariant Fields
	Wildcards

	Create Function--Create a Remote User Authorization
	Destroy Function--Destroy a Remote User Authorization
	Show Function--Display Remote User Authorizations
	Create Function--Define an Installation Password for the Local Instance
	Create Function--Create a Connection Data Entry
	Destroy Function--Destroy a Connection Data Entry
	Show Function--Display Connection Data Entries
	Stop and Quiesce Commands--Stop or Quiesce One or More Communications Servers

	Network Utility and Visual DBA
	Virtual Nodes Toolbar
	Types of Vnodes
	Advanced Vnode Parameters
	Additional Connection Data Entry Creation
	Additional Remote User Authorization Creation
	Vnode Attributes Configuration

	Installation Password Definitions for the Local Instance
	Changing Installation Passwords
	Additional Vnode-Related Tasks
	Refreshing Vnodes
	Testing Vnodes
	Disconnecting from a Vnode

	Opening Utility Windows

	Server-related Tasks


	5: Using Net
	Connecting to Remote Databases
	Database Access Syntax--Connect to Remote Database
	Dynamic Vnode Specification--Connect to Remote Node
	Server Classes

	Using the SQL Connect Statement with Net

	Commands and Net
	User Identity on Remote Instance
	-u Command Flag--Impersonate User
	Verify Your Identity


	6: Maintaining Connectivity
	Start Communications Server
	Stop Communications Server
	Network Server Control Screen in Netutil
	Stop or Quiesce a Communications Server Using Netutil
	Inbound and Outbound Session Limits
	How You Set Inbound and Outbound Session Limits

	Logging Levels
	How You Change the Logging Level

	How You Direct Logging Output to a File
	Default Remote Nodes
	How You Set Default Remote Nodes

	Start DAS
	Stop DAS

	7: Troubleshooting Connectivity
	How Connection Between the Application and DBMS Server Is Established
	Where Ingres Net Information Is Stored
	config.dat--Store Net Configuration Values
	Name Server Database--Store Remote Access Information

	Causes of Connectivity Problems
	How You Diagnose Connectivity Problems
	General Net Installation Check
	How You Check Net Installation on Windows
	How You Check Net Installation on Linux and UNIX
	How You Check Installation on VMS

	Connection Errors
	Local Connection Errors
	How You Resolve Remote Connection Errors

	How You Resolve Net Registration Problems
	Security and Permission Errors
	How You Resolve Ingres Security Problems (UNIX)



	8: Exploring Bridge
	Ingres Bridge
	How the Bridge Server Works
	Tools for Configuring Bridge
	Installation Configurations That Require Bridge
	Sample Installation Configuration Using Bridge


	How Bridge Is Installed
	How Bridge Is Started
	config.dat File--Store Bridge Configuration
	ingstart Command--Start the Bridge Server

	iigcb Command--Start the Bridge Server

	How the Client Is Set Up
	vnode Definition--Enable Client Access to Remote Servers Through Bridge

	Bridge Server Monitoring
	Stop the Bridge Server
	How a Connection Is Established Through Bridge
	Bridge Troubleshooting
	Sample Bridge Server Configuration

	9: Configuring the Data Access Server
	Data Access Server
	How You Configure the DAS
	DAS Parameters--Configure DAS

	How You Enable DAS Tracing
	Tracing Levels


	10: Understanding ODBC Connectivity
	ODBC Driver
	ODBC Call-level Interface
	Unsupported ODBC Features
	Read-Only Driver Option
	ODBC Driver Requirements
	ODBC Driver Manager Programs
	Protocols Supported by ODBC Driver
	Support for Previously Released ODBC Drivers
	Backward Compatibility Issues for ODBC DSN Definitions

	Configure a Data Source (Windows)
	Data Source Tab, Ingres ODBC Administrator (Windows)
	Advanced Tab, Ingres ODBC Administrator (Windows)

	Configure a Data Source (UNIX and VMS)
	Data Source Configuration Form (UNIX and VMS)
	Advanced Data Source Configuration Options (UNIX and VMS)
	View Data Source Configuration Details
	Driver Configuration Options
	Enable ODBC Tracing
	Select a Driver Path
	View Driver Configuration Details
	Select a Data Source Configuration File Path
	Test a Data Source Connection
	Edit and Remove Data Sources

	Connection String Keywords
	ODBC CLI Implementation Considerations
	Configuration on UNIX, Linux, and VMS
	Optional Data Source Definitions


	11: Understanding JDBC Connectivity
	JDBC Components
	JDBC Driver
	JDBC Information Utility--Load the JDBC Driver

	Unsupported JDBC Features
	JDBC Driver Interface
	JDBC Driver and Data Source Classes
	JDBC Driver Properties
	Data Source Properties
	Additional Data Source Properties
	How the Driver Is Loaded
	DriverManager.getConnection() Method--Establish JDBC Driver Connection


	JDBC Implementation Considerations
	JDBC User ID Options
	How Transactions Are Autocommitted
	autocommit_mode Connection Property--Set Autocommit Processing Mode

	Cursors and Result Set Characteristics
	Cursors and Select Loops
	Database Procedures
	Named and Unnamed Parameters
	Additional Parameter Considerations
	Executing Procedures
	BLOB Column Handling
	Date/Time Columns and Values
	National Character Set Columns

	Data Type Compatibility
	JDBC Tracing
	Tracing Levels


	12: Understanding .NET Data Provider Connectivity
	.NET Data Provider
	.NET Data Provider Architecture
	Data Provider Data Flow
	Data Provider Assembly
	Data Provider Namespace
	Data Retrieval Strategies
	Connection Pooling

	Code Access Security
	.NET Data Provider Classes
	IngresCommand Class
	IngresCommand Class Declaration
	IngresCommand Class Example
	IngresCommand Class Properties
	IngresCommand Class Public Methods
	IngresCommand Class Constructors

	Sample Program Constructed with .NET Data Provider
	.NET 2.0 Programming Model
	.NET 1.1 Programming Model

	IngresCommandBuilder Class
	IngresCommandBuilder Class Declaration
	IngresCommandBuilder Class Properties
	IngresCommandBuilder Class Methods
	IngresCommandBuilder Class Constructors

	IngresConnection Class
	IngresConnection Class Declaration
	IngresConnection Class Example
	IngresConnection Class Properties
	IngresConnection Class Public Methods
	IngresConnection Class Events
	IngresConnection Class Constructors
	Connection String Keywords
	Data Provider User ID Options
	Enlistment in Distributed Transactions

	IngresConnectionStringBuilder Class
	IngresConnectionStringBuilder Class Declaration
	IngresConnectionStringBuilder Class Properties
	IngresConnectionStringBuilder Class Methods
	IngresConnectionStringBuilder Class Constructors

	IngresDataReader Class
	IngresDataReader Class Declaration
	IngresDataReader Class Example
	IngresDataReader Class Properties
	IngresDataReader Class Public Methods
	GetSchemaTable Columns Returned
	Mapping of Ingres Native Types to .NET Types

	IngresDataAdapter Class
	IngresDataAdapter Class Declaration
	IngresDataAdapter Class Example
	IngresDataAdapter Class Properties
	IngresDataAdapter Class Public Methods
	IngresDataAdapter Class Events
	IngresDataAdapter Class Constructors

	IngresError Class
	IngresError Class Declaration
	IngresError Class Example
	IngresError Class Properties
	IngresError Class Public Methods

	IngresErrorCollection Class
	IngresErrorCollection Class Declaration
	IngresErrorCollection Class Example
	IngresErrorCollection Class Properties
	IngresErrorCollection Class Public Methods

	IngresException Class
	IngresException Class Declaration
	IngresException Class Example
	IngresException Class Properties
	IngresException Class Public Methods

	IngresFactory Class
	IngresFactory Class Declaration
	IngresFactory Class Public Fields
	IngresFactory Class Public Methods

	IngresInfoMessageEventArgs Class
	IngresInfoMessageEventArgs Class Declaration
	IngresInfoMessageEventArgs Class Example
	IngresInfoMessageEventArgs Class Properties

	IngresInfoMessageEventHandler Class
	IngresInfoMessageEventHandler Class Declaration
	IngresInfoMessageEventHandler Class Example

	IngresMetaDataCollectionNames Class
	IngresMetaDataCollectionNames Class Declaration

	IngresParameter Class
	IngresParameter Class Example
	IngresParameter Class Declaration
	IngresParameter Class Properties
	IngresParameter Class Public Methods
	IngresParameter Class Constructors

	IngresParameterCollection Class
	IngresParameterCollection Class Declaration
	IngresParameterCollection Class Example
	IngresParameterCollection Class Properties
	IngresParameterCollection Class Public Methods

	IngresPermission Class
	IngresRowUpdatedEventArgs Class
	IngresRowUpdatedEventArgs Class Declaration
	IngresRowUpdatedEventArgs Class Properties

	IngresRowUpdatedEventHandler Class
	IngresRowUpdatedEventHandler Class Declaration

	IngresRowUpdatingEventArgs Class
	IngresRowUpdatingEventArgs Class Declaration
	IngresRowUpdatingEventArgs Class Properties

	IngresRowUpdatingEventHandler Class
	IngresRowUpdatingEventHandler Class Declaration

	IngresTransaction Class
	IngresTransaction Class Declaration
	IngresTransaction Class Example
	IngresTransaction Class Properties
	IngresTransaction Class Methods


	Data Types Mapping
	DbType Mapping
	Coercion of Unicode Strings

	IngresDataReader Object--Retrieve Data from the Database
	Build the IngresDataReader
	IngresDataReader Methods
	Example: Using the IngresDataReader
	ExecuteScalar Method--Obtain a Single Value from a Database
	GetBytes Method--Obtain BLOB Values from a Database
	GetSchemaTable Method--Obtain Schema Information from a Database

	ExecuteNonQuery Method--Modify and Update Database
	IngresDataAdapter Object--Manage Data
	IngresDataAdapter Events


	Integration with Visual Studio 2005
	Install the Data Provider into the Toolbox
	Start the Ingres Data Adapter Configuration Wizard
	Configure a Connection
	Connection String Editor (Data Adapter Configuration Wizard)


	Design a Query Using the Query Builder
	Server Explorer Integration

	Application Configuration File--Troubleshoot Applications

	13: Configuring Ingres to Use Kerberos
	Kerberos
	Kerberos Configuration in the Enterprise
	Kerberos Configuration Files--Configure Kerberos for Ingres

	The Ingres Service Principal--Authorize Client Connections
	How You Configure Ingres to Use Kerberos
	Ingres Configuration Options for Kerberos
	iisukerberos Command--Prepare Ingres for Kerberos Configuration
	Base Configuration for Kerberos
	mechanisms Parameter--Specify Dynamic Mechanism
	domain Parameter--Specify Domain Name

	remote_mechanism Parameter--Configure Client in a Homogeneous Kerberos Environment
	vnode Connection Attributes--Configure Client in a Heterogeneous Kerberos Environment
	Encryption Parameters--Enable Kerberos Encryption
	Use Kerberos for Local Authentication
	How Name Server Delegation Works
	Set Delegation



	A: TCP/IP Protocol
	Listen Address Format
	Network Address Format
	Connection Data Entry Information
	Windows 
	UNIX 
	VMS 
	MVS 


	B: SNA LU0 Protocol
	Listen Address Format
	MVS


	C: SNA LU62 Protocol
	Listen Address Format
	MVS
	Solaris
	HP-UX
	RS/6000


	D: DECnet Protocol
	Listen Address Format
	VMS


	E: SPX/IPX Protocol
	Listen Address Format
	Windows
	UNIX and VMS


	F: LAN Manager Protocol
	LAN Manager Listen Address--Enable Communications

	G: SunLink Gateway Configuration Files
	SunLink Gateway Configuration File
	Solaris Independent LUs
	Solaris Dependent LUs
	SunOS (or Sun-4) Independent LUs
	SunOS (or Sun-4) Dependent LUs

	H: AIX SNA Services/6000 Configuration Profiles
	Sample Configuration Profiles
	CONNECTION Profile for Independent LUs
	CONNECTION Profile for Dependent LUs
	LOCALLU Profile for Independent LU
	LOCALLU Profile for Dependent LU
	MODE Profile for Independent LUs
	MODE Profile for Dependent LUs


	I: HP-UX SNAplus Configuration
	Sample Configuration File Excerpts
	Independent LUs
	Dependent LUs
	Dynamically Loadable TP


	J: Netu Procedures
	Start Netu
	Netu User Interface
	Stop the Communications Server
	Modify Node Entry
	Modify Remote Authorization Entry
	Exit Netu

	Remote Node Definition Operations
	Add or Merge Remote Node Definitions
	Delete Remote Node Definitions
	How You Change Remote Node Definitions
	Overwrite an Existing Definition
	Delete Old and Add New Definition

	Retrieve Remote Node Definition Information
	Displayed Node Definition Examples


	Remote User Authorization Operations
	Define Remote User Authorizations
	Delete Remote User Authorizations
	Change Remote User Authorizations
	Overwrite an Incorrect Entry
	Delete and Add an Entry

	Retrieve Remote User Authorizations
	Displayed Remote User Authorization Examples


	Netu Options for Stopping the Communications Server
	Obtain GCF Address
	Stop Communications Server


	Index


