
Ingres® 2006 Release 2

Database Administrator Guide

February 2007

This documentation and related computer software program (hereinafter referred to as the "Documentation") is for
the end user's informational purposes only and is subject to change or withdrawal by Ingres Corporation ("Ingres")
at any time.

This Documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of Ingres. This Documentation is proprietary information of Ingres and protected
by the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this Documentation for
their own internal use, provided that all Ingres copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. The user consents to Ingres obtaining injunctive relief precluding any unauthorized use of the
Documentation. Should the license terminate for any reason, it shall be the user's responsibility to return to Ingres
the reproduced copies or to certify to Ingres that same have been destroyed.

To the extent permitted by applicable law, INGRES PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IN NO EVENT WILL INGRES BE LIABLE TO THE
END USER OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USER OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF INGRES IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The use of any product referenced in this Documentation and this Documentation is governed by the end user's
applicable license agreement.

The manufacturer of this Documentation is Ingres Corporation.

For government users, the Documentation is delivered with "Restricted Rights" as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Copyright © 2007 Ingres Corporation. All Rights Reserved.

Ingres, OpenROAD, and EDBC are registered trademarks of Ingres Corporation. All other trademarks, trade names,
service marks, and logos referenced herein belong to their respective companies.

Contents

Chapter 1: Introducing Database Administration 17
Audience ... 17
What You Need to Know... 17
Database Administrators .. 18
Query Language Used in this Guide ... 18
System-specific Text in this Guide ... 19
Terminology Used in this Guide ... 19
Syntax Conventions Used in this Guide... 19

Chapter 2: Authorizing User Access 21
How You Establish User Access ... 21
Ingres User Types and the DBA... 22
Users and Profiles ... 22

Working with User Objects .. 23
Users and Permissions.. 23
Working with Profile Objects.. 24
Profiles and Users .. 24

Groups and Roles.. 26
Groups... 26
Roles ... 28

Chapter 3: Creating Databases and Using Alternate Locations 31
Types of Files in an Ingres Database .. 31
Working With Database Objects .. 32

Createdb Privilege ... 32
How a Database Is Created ... 33
Extend and Unextend a Database... 34
Relocate Database Files .. 34
How a Database Is Dropped .. 35

Locations and Areas .. 35
Default Locations... 35
Alternate Locations .. 37
Working with Locations... 43
Guidelines for Using Locations ... 44
Work Locations ... 45

Contents iii

Chapter 4: Managing Tables and Views 47
Table Management.. 47

Tools for Creating a Table ... 48
Data Type Conversion Functions for Default Values... 54
Constraints ... 56
Techniques for Changing Table Columns ... 65
Techniques for Moving a Table to a New Location ... 68
Assign an Expiration Date to a Table .. 69
Purge Expired Tables.. 69

Views .. 70
Views and Permissions ... 70
Working with View Objects.. 71
Updates on Views .. 71

Schemas.. 72
Tools for Managing Schemas ... 73

Synonyms, Temporary Tables, and Comments .. 73
Synonyms .. 73
Temporary Tables.. 74
Comments to Describe Tables and Views... 76

Chapter 5: Populating Tables 79
Methods of Populating Tables.. 79
Copy Statement Syntax ... 79

Copy Into (Unload Data) and Copy From (Reload Data)... 80
File Name Specification on the Copy Statement.. 81
With-Clause Options of the Copy Statement .. 81

Copy Statement Operation ... 82
Binary and Formatted Copying... 82
Bulk and Incremental Copy ... 83
Copy Permissions and Integrities ... 84
Locking During a Copy.. 84

Binary Copying ... 85
Copy Data into a Binary File .. 85
Reload a Table in Binary Format .. 86

Formatted Copying.. 86
Column Name and Format Specifications... 86
Copy Statement and Nulls... 92
Copy Data into a Formatted File... 93
Reload Formatted Data... 94

Bulk Copy .. 95
Bulk Copying Requirements... 95

iv Ingres 2006 R2 Database Administrator Guide

Transaction Logging During Bulk and Incremental Copy .. 96
Bulk and Incremental Copy Processing.. 96
Bulk Copy With-Clauses.. 97
Example: Perform a Bulk Copy to Create a Hash Table ...100
Example: Perform Bulk Copy and Create B-tree Table ..101
Example: Perform Bulk Copy into a Heap Table...101

Fastload Operation ...102
Requirements for Using Fastload...103
Perform a Fastload Operation ...104
Loading Data in a Multi-CPU Environment...104

Advanced Use of the Copy Statement..105
Populate Multiple Database Tables Using Multiple FIles...106
Load Fixed-Length and Binary Records...108
Considerations When Loading Large Objects ...109

Large Data Loads with the Set Nologging Statement ...111
Suspend Transaction Logging ...111
Affects of the Set Nologging Statement..111
Before Using the Set Nologging Statement ...112
Restore Transaction Logging ..112
Example: Use a Set Nologging Application to Load a New Database113
Example: Use a Set Nologging Application to Load an Existing Database...............................113

Successful Use of the Copy Statement ..114
How You Check for Integrity Errors ...114
Reloading Problems ..115
Error Handling with the Copy Statement ..117
Troubleshooting Tips for Data Loading ...119

Chapter 6: Loading and Unloading Databases 121
Unload and Copy Operations..122

Privilege Required for Unload Operation ...122
Privilege Required for Copy Operation..122

Unload Operation ...122
Objects That Are Unloaded...123
Ways to Perform the Unload Database Operation...123
Options on the Unload Database Operation...124
Files Created During the Unload Database Operation ...124
Unload in ASCII or Binary Format ...125
Floating Point Specification for Unload ...125
Unload to Another Instance..126
Locking While Unloading a Database..126

Copy Operation..127
Ways to Perform the Copy Database Operation ...127

Contents v

Options on the Copy Database Operation ...127
Objects that Are Copied...128
Scripts Produced by the Copy Database Operation...129
Copy in ASCII or Binary Format ..131
Floating Point Specification for Copy Database ..131
Copy a Database to Another Instance ..132
Locking While Copying a Database ..132

Copy Individual Database Objects ..133
Command Scripts ...133
Prepare to Copy a Database Object ...133
Copy a Database Object ..134
Copy Tables...134
Copy Forms ...135
Copy Applications ...136
Copy Reports ...137
Increase Object Limit on Commands ...138

Ways to Copy and Relocate a Database ...138
Example: Copy a Database to a New Database ...138
Example: Copy a Database to a New Database and Use New Locations.................................139
Example: Copy a Database to a New Database and Swap Contents of Locations139

Generate XML and Import XML Operations...140

Chapter 7: Changing Ownership of Databases and Database Objects 141
Database Ownership...141
How You Change Ownership of a Database Object ..142

Prepare to Change Ownership of a Database Object...142
Change Ownership of a Database Object..142
Change Ownership of Tables ..143
Change Ownership of Applications...144
Change Ownership of Forms...145
Change Ownership of Reports...146

How You Change Ownership of a Database ..147

Chapter 8: Maintaining Databases 151
Ways to View Database Objects ...151

View Database Objects that Belong to Another User ..151
Ways to Delete Database Objects ...152
Routine Database Maintenance Tips ..153
Operating System Maintenance Tips ...154
Verifying Databases..155
Databases Shared Among Multiple Users ...156

vi Ingres 2006 R2 Database Administrator Guide

How File Names Are Assigned for Tables..156
Select File Names Associated with Tables ...156

Retain Templates of Important Tables ...157

Chapter 9: Ensuring Access Security 159
Subject Privileges...160

Auditor Privilege ...161
Createdb Privilege ..161
Maintain_Audit Privilege ..162
Maintain_Locations Privilege...162
Maintain_Users Privilege ..162
Operator Privilege...163
Security Privilege..163
Trace Privilege ...164
Default Privilege ...164

Other User-Related Security Features ...165
User Expiration Dates..165
User Passwords ..166

Object Permissions...167
Ways to Work with Grants ...167
Database Grants...169
Table and View Grants...173
Procedure Grants..174
Database Event Grants..174
Role Grants ...174
Grants and Data Access Restriction ...175

Grant Overhead ...176
Multiple Permission Checks ..177
Authorization Hierarchy ...178
Database Privileges for a Session..180
Dbmsinfo—View Permissions for Current Session...181

Security Alarms ...183
Ways to Work with Security Alarm Objects ...184
Implement a Security Alarm...184

Security Auditing ...186
Security Audit Log Configuration ...186
Security Audit Statements ...187
Security Audit Levels for Users and Roles ...188
Security Changes Taking Effect...188
Access to the Security Audit Log ...188

Database Procedures ..190
Ways to Work with Procedure Objects..191

Contents vii

Implement a Database Procedure ...191
Database Procedures and Control Over Database Access ..192

Control Access to Data with Staid (UNIX)...193
Use Chmod to Set the Setuid Bit ...193
Example: Refer to Setuid in an Embedded SQL Application ...194

Chapter 10: Ensuring Data Integrity 197
Integrities...197

Constraints Compared with Integrities ...197
Ways to Work with Integrity Objects ...198
How Integrities Are Used ...199
Nulls and Integrities..199
The Copy Statement and Enforcing Integrities ..200

Rules ...200
Rules and Database Procedures ..200
Ways to Work with Rule Objects ...201
How Rules Are Used..201
Rules and Transactions..203
Enforcing Referential Integrity ..203
Enforcing General Integrities ..209
Enforcing General-Purpose Rules ..209
The Copy Statement and Enforcing Rules ...212
Disable Rules ...212

Database Events ..213
Ways to Work with Dbevent Objects..213
How Database Events Are Used ..214

Chapter 11: Choosing Storage Structures and Secondary Indexes 221
Storage Structure Terminology ..221
Storage Structure and Performance ..221
Types of Storage Structures ..222
Heap Storage Structure ..222

Structure of a Heap Table ..223
Heap as Default Structure for Loading Data ..225
When to Use Heap ..226
Heap Troubleshooting ...226

Hash Storage Structure...227
Structure of a Hash Table ..228
Retrievals Supported by Hash...231
When to Use Hash ..232
Hash Troubleshooting..232

viii Ingres 2006 R2 Database Administrator Guide

ISAM Storage Structure ..233
Structure of an ISAM Table ..234
Retrievals Supported by ISAM ..236
When to Use ISAM..237
ISAM Troubleshooting ...237

B-tree Storage Structure...238
Structure of a B-tree Table...239
Associated Data Pages in a B-tree Table...241
Index Growth in a B-tree Table...241
Locking and B-tree Tables..242
Sorted Order in a B-tree Table..242
Deleted Rows in a B-tree Table...243
When to Use B-tree ..243
B-tree Troubleshooting..244

ISAM or B-tree? ...244
When to Choose ISAM over B-tree ..245
When to Choose B-tree over ISAM ..245

Storage Structure Comparison Summary...246
Keys ..247

Key Columns..247
Secondary Keys..249

Secondary Indexes...250
Ways to Work with Indexes..251
Implementation and Overhead of Secondary Indexes...252
R-tree Secondary Index...254
Secondary Indexes and Performance ...256
Forced Use of Secondary Indexes..258
Two Secondary Indexes...258

Tids ...259

Chapter 12: Maintaining Storage Structures 261
Storage Structures and Performance...261

Display the Number of Pages in a Table ...262
Limitations of Heap Structure ...263

Modify Procedures..264
Key Columns and Performance ...264
Tools for Modifying Storage Structures...264
Cautions When Using the Modify Procedure ..265
Options to the Modify Procedure ...265
Shrinking a B-tree Index..279
Extending a Table or Index ..281
Modifying Secondary Indexes ...281

Contents ix

Remodifying B-tree Tables ...283
Common Errors During the Modify Procedure..285

Overflow Management ..285
Measure the Amount of Overflow ..286
Repetitive Key Overflow...287
Poorly Distributed Overflow..288
Overflow and ISAM and Hash Tables..288
B-tree Tables and Overflow ..290
Secondary Indexes and Overflow ..291

Chapter 13: Using the Query Optimizer 293
Overview of the Query Optimizer..293
Database Statistics...295

Generate Statistics ...295
Assumptions of the Query Optimizer..296
Resources Required During Optimization ..297
System Modification After Optimization ..297
Information Collected by the Optimizer ..298
Types of Statistics to Generate ...299
About Optimizing Columns ...303
Optimization Output..304
Histogram Cells ..308
Statistics and Global Temporary Tables..309
When to Rerun Optimization...311
Example: Before and After Optimization...312

Query Execution Plans ..313
Information on a QEP..314
View a QEP..315
Text-Only QEP..316
Graphical QEP ..317

Types of Nodes in a QEP ...318
Sort Nodes in a QEP..318
Non-Join Nodes in a QEP..319
Join Nodes in a QEP ..323
Multiple Query Execution Plans ...336
More Complex QEPs ..337
Parallel Query Execution ..338
Optimizer Timeout ..343
Greedy Optimization ...344
Summary for Evaluating QEPs ..345

Specialized Statistics Processing...345
Display Optimizer Statistics..346

x Ingres 2006 R2 Database Administrator Guide

Statistics in Text Files ...348
Sampled Optimizer Statistics..351

Composite Histograms ..353

Chapter 14: Understanding the Locking System 355
Concurrency and Consistency ..355
Locking System Configuration ..355
Lock Types..356
Lock Modes ...357
Lock Levels ...358
How the Locking System Works..359

Lock Requests..359
Available Locks in the System...360
Lock Grants ...360
Lock Mode Compatibility ..360
How the Default Lock Mode is Determined..361
How the Locking Level is Determined...362
Summary of Default Locks ...364
Releasing of Locks ..365

Example: Single User Locking ..366
Example: Multiple User Locking..367

Waiting for Locks..370
Ways to Avoid Lock Delays ..370
User-Controlled Locking ..371

Ways to Specify a Set Lockmode Statement ...372
Range of the Set Lockmode Statement ..373
When to Change the Locking Level ..373
The Maxlocks Value ..374
Timeout Value for a Lock Wait ..375
Readlock Option ...378
Isolation Levels ..382

Deadlock ..385
Deadlock Example ..386
Deadlock in Single Query Transactions...387
Deadlock in Applications ..391

Tools for Monitoring Locking ..392
Performance Monitor ...393
Set lock_trace Statement ..394
lock_trace Output ...395
lock_trace Example...397

Performance During Concurrency ...399
Approaches for Handling Heavy Concurrent Usage...399

Contents xi

The Never Escalate Approach ...400
The Table Lock Approach ...401

Chapter 15: Backing Up and Recovering Databases 403
Full or Partial Recovery ...403
Logging System...403

Logging Facility ..404
Log Space Reservation ..404
Recovery Process..405
Archiver Process...405

Data Verification Before Backup ...405
Methods of Verifying Data Accessibility ..406

Static or Dynamic Backup..406
Checkpoints ..407

Ways to Checkpoint a Database..407
Table-level Checkpoints ...407
Online and Offline Checkpoints ...409
Checkpoints and Locking ...410
Outdated Checkpoints ...410
Delete the Oldest Checkpoint ...412
Delete Invalid Checkpoints...412
Checkpoints and Destroyed Databases...412
Parallel Checkpointing in UNIX..412
Putting Checkpoints on Tape in Windows..414
Putting Checkpoints on Tape in UNIX...414
Putting Checkpoints on Tape in VMS..419

Journals..419
Checkpoints and Audits During Journaling ..420
Tools for Performing Journaling...420
Database or Table-level Journaling..420
Disable Journaling ..422
Stop Journaling on a Table...422
Methods for Stopping Journaling on All Tables...422
Database Characteristics ...424
Audit Trails ..427

Backup by Copying...431
Backup by Unloading ..431
Recovery ..432

Rollforward Operation ...432
Tools for Performing a Roll Forward Operation ..433
Recover a Journaled Database..433
Recover a Non-Journaled Database ...433

xii Ingres 2006 R2 Database Administrator Guide

Recover a Database from Tape Checkpoints..433
Parallel Roll Forward from Disk (UNIX)...434
Parallel Roll Forward from Tape (UNIX) ..434
Table Recovery Using Roll Forward..435
Retract Changes Using Roll Forward ..435
Recover a Subset of Data Using Roll Forward..436
Recover a Database from an Old Checkpoint...437
Recover from the Loss of the Transaction Log File ...438

Checkpoint Template File Description ..438
Checkpoint Template Codes ...439
Substitution Parameters ..440
Valid Code Combinations in the Checkpoint Template File ...441
Format of the Checkpoint Template File in Windows...443
Format of the Checkpoint Template File in UNIX..444
Format of the Checkpoint Template File in VMS...445
Alternate Checkpoint Template File in UNIX ..445

Backup and Recovery of the Master Database (iidbdb)...446
The iidbdb and Checkpointing...446

Set Log_Trace Statement ..447

Chapter 16: Calculating Disk Space 449
Space Requirements for Tables ..449

Calculate Space Requirements for Heap Tables ...449
Calculate Space Requirements for Hash Tables ...450
Calculate Space Requirements for ISAM Tables ...451
Calculate Space Requirements for B-tree Tables..452
Calculate Space Requirements When Rows Span Pages ..453
Space Requirements for Compressed Tables ...454
Tracking of Used and Free Pages...454
Calculation of Allocated Table Size ..455

Space Requirements for Journal Files ..455
Space Requirements for Modify Operations ..456

Factors Affecting Space Requirements for Modify Operations...457
Summary of Space Requirements for Modify Operations ...457

Space Requirements for Sorts..458
Insufficient Sort Space ..459
Orphaned Sort Files ..459
Factors Affecting Sort Performance..459

Chapter 17: Improving Database and Query Performance 461
Locking and Concurrency Issues...461

Contents xiii

Lock Waits and Performance ..462
Multi-query Transactions and Performance ...463
Overflow and Performance ...464
Set Statements and Locking Strategy ..465

Database Maintenance Issues ..466
Optimization and Performance..466
Table and Index Modification and Performance..467
System Modification and Performance..467
Verification and Performance..468

Design Issues and Performance..468
Hierarchy for Diagnosing Design-based Performance Problems ..469
Storage Structures and Index Design and Performance ..469
Key Design and Performance..469
Query Design and Performance...472

Information Needed By Customer Support ...472
Isolate and Analyze the Problem Query..473
Create a Test Case..474

Appendix A: System Catalogs 475
System Catalog Characteristics ..476
Standard Catalog Interface..476

Standard Catalogs for All Databases ..476
Standard Catalogs for iidbdb ..519

Mandatory and Ingres-Only Standard Catalogs ...531
Mandatory Catalogs With Entries Required ...532
Mandatory Catalogs Without Entries Required ...532
Ingres-Only Catalogs ..533

Extended System Catalogs ..533
Organization of Extended System Catalogs...534
Data Dictionary Catalogs ...536
Object IDs in Extended System Catalogs..537
Copying the Extended System Catalogs ...537
Catalogs Shared by All Ingres Tools...537

Sample Queries for the Extended System Catalogs for SQL ..542
Example: Find Information on Every Report in the Database ...542
Example: Find the Name and Tabbing Sequence Number of Fields on a Form543
Example: Find Information on Every ABF Application ...543
Example: Find Information on All Frames and Procedures in an Application544
Example: Select Object Information ..544

Forms System Catalogs ..545
ii_encoded_forms Catalog..545
ii_fields Catalog..546

xiv Ingres 2006 R2 Database Administrator Guide

ii_forms Catalog ...549
ii_trim Catalog ...551

ABF System Catalogs..552
ii_abfclasses Catalog...552
ii_abfdependencies Catalog ..553
ii_abfobjects Catalog...554
ii_sequence_values Catalog..557

QBF System Catalogs ...557
ii_joindefs Catalog ..557
ii_qbfnames Catalog ...560

Report-Writer System Catalogs ..560
ii_rcommands Catalog...561
ii_reports Catalog ...563

Vision System Catalogs...564
ii_framevars Catalog ...564
ii_menuargs Catalog ...564
ii_vqjoins Catalog ...565
ii_vqtabcols Catalog ..566
ii_vqtables Catalog ...567
Additional Vision Catalog Information ..570

DBMS System Catalogs...570
System Catalogs for All Databases ..570
System Catalogs for iidbdb ..572
Miscellaneous System Catalogs...573

Index 575

Contents xv

Chapter 1: Introducing Database
Administration

This guide provides Ingres® database administrators with information about
creating, maintaining, backing up, and recovering databases, as well as
instructions for defining various types of users, authorizing user access, and
working with different types of database objects.

Audience
This guide is primarily intended for database administrators. In some cases,
however, the responsibilities of the database administrator and the system
administrator overlap. Therefore, some of the tasks and responsibilities
described in this guide require permissions typically given to the system
administrator, but not necessarily given to database administrators. In these
cases, you must work with your system administrator to carry out these
responsibilities.

What You Need to Know
This guide assumes that you are familiar with the windowing system on the
target platform of the installation, including terminology, navigational
techniques, and working with standard items, such as menus and dialogs.

Introducing Database Administration 17

Database Administrators

Database Administrators
In Ingres, anyone who creates a database becomes the database
administrator (DBA) for that database. Furthermore, there is no limit on the
number of DBAs that can exist at a site.

Note: Before you can create a database, you must have the createdb
privilege.

The DBA has permission to do the following:

 Create and destroy databases

 Manage public database objects

 Manage user access to data through grants on tables, views, procedures,
and other objects

 Maintain database and query performance

 Monitor locking to maximize concurrency

 Back up and recover the database

 Authorize databases to use alternate locations

Query Language Used in this Guide
The industry standard query language, SQL, is used as the standard query
language throughout this guide. Ingres is compliant with ISO Entry SQL-92.
For details about the settings required to operate in compliance with ISO Entry
SQL-92, see the SQL Reference Guide.

18 Ingres 2006 R2 Database Administrator Guide

System-specific Text in this Guide

System-specific Text in this Guide
Generally, Ingres operates the same way on all systems. When necessary,
however, this guide provides information specific to your operating system.
For example:

UNIX: Information is specific to the UNIX environment.

VMS: Information is specific to the VMS environment.

Windows: Information is specific to the Windows environment.

When necessary for clarity, the symbol is used to indicate the end of
system-specific text.

For sections that pertain to one system only, the system is indicated in the
section title.

Terminology Used in this Guide
This guide uses the following terminology:

 A command is an operation that you execute at the operating system
level.

 A statement is an operation that you embed in a program or execute
interactively from a terminal monitor.

Note: A statement can be written in Ingres 4GL, a host programming
language (such as C), or a database query language (SQL or QUEL).

Syntax Conventions Used in this Guide
This guide uses the following conventions to describe command and statement
syntax:

Convention Usage

Monospace Indicates keywords, symbols, or punctuation that
you must enter as shown.

Italics Represent a variable name for which you must
supply a value.

[] (brackets) Indicate an optional item.

Introducing Database Administration 19

Syntax Conventions Used in this Guide

Convention Usage

{ } (braces) Indicate an optional item that you can repeat as
many times as appropriate.

| (vertical bar) Separates items in a list and indicates that you
must choose one item.

20 Ingres 2006 R2 Database Administrator Guide

Chapter 2: Authorizing User Access

This chapter describes how to authorize users to access Ingres. It focuses on
defining database objects, which is usually performed by a database
administrator, but can also be performed by the system administrator or a
separate security administrator, depending upon your organization.

Also discussed are groups and roles, which are mechanisms for categorizing
users who perform similar tasks.

How You Establish User Access
Two steps are required to establish access to Ingres:

1. The system administrator defines user accounts.

The system administrator sets up accounts for local users and for those
remote users who access the product through a local account. This step is
optional if an installation password is defined, in which case users access
Ingres directly, without having to go through a local account.

All accounts can be set up before or after Ingres is installed, except for the
installation owner account, which is set up during installation. This special
account belongs to the system administrator, and is assigned maximum
Ingres privileges to perform all operations.

2. The DBA defines user objects.

After the accounts are set up, a database administrator or system
administrator starts Ingres and uses Visual DBA (VDBA) to define user
objects. Part of the user object definition is a user ID, which corresponds
to the user ID used to log on to the operating system.

Authorizing User Access 21

Ingres User Types and the DBA

Ingres User Types and the DBA
Ingres is designed for a wide variety of users, from database management
experts who create and maintain databases, to end users who only examine or
update data. Moreover, users can have multiple roles. For example, a user can
be the database administrator of one Ingres database and the end user of
another.

One company, for example, can have a single database administrator who
controls all access to databases, whereas another company has a primary
database administrator at its corporate headquarters and a local database
administrator at each of its satellite sites. In the latter case, the primary
database administrator controls access to corporate databases, such as sales,
inventory, payroll, and human resources; and the local database
administrators are responsible for authorizing access to production or research
databases.

Regardless of the type of enterprise, if you are a database administrator who
has been granted the maintain_users privilege, you are able to add new users
to an Ingres database.

Users and Profiles
In VDBA, users are defined using user objects and, optionally, profile objects.

A user object specifies the user’s name, default group, default profile, subject
privileges, and several other attributes.

You can streamline the user authorization process using templates, or profiles.
A profile is a set of subject privileges and other attributes that can be applied
to one or more users.

22 Ingres 2006 R2 Database Administrator Guide

Users and Profiles

Working with User Objects

Typically, the system administrator sets up a user object for the database
administrator, who in turn sets up user objects for other users.

You can perform the following basic operations on user objects:

 Create and alter user objects

 View existing user objects, including the detailed properties of each
individual object

 Drop user objects

In VDBA, use the Users branch in the Database Object Manager window. For
the detailed steps for performing these procedures, see online help.

In SQL, you can accomplish these tasks with the create user, alter user, and
drop user statements. For more information, see the SQL Reference Guide.

Note: Many of the features associated with a user object, such as subject
privileges, password, expiration date, and security auditing, are security-
related features. For more information on security-related features, see the
chapter “Ensuring Access Security.”

Users and Permissions

After a user is created, associate object permissions with it, as described in
Object Permissions (see page 167). These permissions determine which
objects (databases, tables, procedures, roles, and so on) the user can access,
and what the user can do with the object (for example, update or only query a
table).

You can also associate a user with a group. Groups are described in Groups
and Roles (see page 26).

Authorizing User Access 23

Users and Profiles

Working with Profile Objects

You can perform the following basic operations on profile objects:

 Create and alter profile objects

 View existing profile objects, including the detailed properties of each
individual object

 Drop profile objects

In VDBA, use the Profiles branch in the Database Object Manager window. For
the detailed steps for performing these procedures, see online help.

In SQL, you can accomplish these tasks using the create profile, alter profile,
and drop profile statements. For more information, see the SQL Reference
Guide.

Profiles and Users

After a profile is created, you can associate it with a new or existing user
object as the default profile for that user. By doing so, the attributes defined in
the profile are associated with the user, and the user’s attributes are updated
whenever the profile is modified.

You can also set attributes directly at the user level to override settings at the
profile level.

24 Ingres 2006 R2 Database Administrator Guide

Users and Profiles

Example: Using a Profile

For example, a company conducts an analysis of the tasks and responsibilities
of its database operators at multiple sites. They find three tasks that are
common to this type of user: database and file location maintenance,
debugging, and database backups.

They create a profile called dbop with the appropriate subject privileges—
maintain_locations, trace, and operator—for maintaining databases. Whenever
the company hires a new database operator, the database administrator can
select the dbop profile from the Default Profile drop-down list when adding the
new user with the Create User dialog. The maintain_locations, trace, and
operator privileges (defined to the dbop profile) are automatically assigned to
the user.

If the company wants to amend the dbop profile object to include the
maintain_users privilege, the database administrator enables the Maintain
Users privilege in the Alter Profile dialog. After saving the changes to the
profile, the change automatically affects any user currently using the profile.

Because the dbop profile did not specify Query Text in the Security Audit
group box, users associated with this profile are not audited for query text. To
audit the query text for only one of the users associated with the dbop profile,
turn on this option at the user level by using the Alter User dialog. This
overrides the default for that particular user, without affecting any other users
of the dbop profile.

Default Profile

If a user is not explicitly assigned a profile, the Ingres default profile is used.
This initial default profile specifies the following:

 No default group

 No subject privileges or default privileges

 No expiration date

 No security audit options (that is, default events are audited)

You can alter the default profile but you cannot drop it.

In VDBA, in the Profiles branch in the Database Object Manager window, the
default profile is indicated as (default profile). For more information, see online
help topic Altering a Profile.

In SQL, you can change the default profile using the alter default profile
statement. For more information, see the SQL Reference Guide.

Authorizing User Access 25

Groups and Roles

Groups and Roles
Groups and roles can simplify control of database access. Groups are used to
apply permissions to a list of users, while roles are used to associate subject
privileges and permissions with an application.

Groups

A group allows multiple users to be referenced by a single name.

For example, a company has an accounting group to identify the accounting
department employees as a whole, and a payroll group to identify the payroll
department employees as a whole. To define these groups, the DBA creates
the groups and adds all the users in the associated departments to their
respective groups. The groups can be easily maintained by adding and
dropping users as they join or leave the departments.

Note: A user can be a member of more than one group.

Working with Group Objects

You can perform the following basic operations on group objects:

 Create and alter group objects

 View existing group objects, including the detailed properties of each
individual object

 Drop group objects

In VDBA, use the Groups branch in the Database Object Manager window.

In SQL, you can accomplish these tasks with the create group, alter group,
and drop group statements. For more information, see the SQL Reference
Guide.

26 Ingres 2006 R2 Database Administrator Guide

Groups and Roles

Groups and Permissions

Groups are a convenient way to give the same permissions to many users at
once.

After a group is created, associate permissions with it, as described in Object
Permissions in the chapter “Ensuring Access Security.” When you grant
permission to a group, you are, in effect, granting that same permission to
each user in the group.

Groups also make managing the permissions easy by allowing you to add
users to (and remove users from) the group. For example, grant the payroll
group insert, delete, and select permissions on the payroll tables, which gives
all the users in the group those permissions. If an employee leaves the payroll
department, or if a new employee joins, you simply have to drop or add a user
from the group, without modifying the permissions. Similarly, if you find that
the group needs fewer or more permissions, revoke or grant the permissions
once, for the entire group, rather than individually for each member of the
group.

Being a member of a group, however, does not automatically give a user the
permissions granted to the group. Users must specifically identify themselves
as part of a group to be allowed the associated permissions. A user can be
identified as part of a group in two ways:

 Specifying a group name at session startup

 Specifying a default group for the user

Group ID at Session Startup

When starting a session, specify a group identifier. For example, use the –G
flag to specify a group identifier for many system commands and with the
connect statement as part of an application. For more details, see the
Command Reference Guide.

Specify a group identifier as part of the connection profile for an OpenROAD
session. For more information, see online help for the Create Connection
Profile dialog in OpenROAD.

Authorizing User Access 27

Groups and Roles

Default Group

A default group can be specified for a user when a user object is created or
modified. Users who have a default group defined are automatically associated
with that group whenever they start a session for which a group identifier is
not otherwise specified.

Group identifiers are not validated if you are the DBA of the specified database
or a user, such as the system administrator, who has the security privilege.
For any other user to specify a group or use it as a default, the user must be a
member of that group. If the user is not a member of that group, the
connection is refused.

Roles

A role is typically associated with one or more applications for the purpose of
granting permissions to those applications. For example, a company uses a
restricted application that performs some checks before updating the payroll
tables to ensure that these tables are updated correctly. The DBA defines a
role, for example update_payroll, and later assigns appropriate permissions for
the necessary tables. The application developer associates the role with the
application.

Note: When defining a role, the DBA normally works with the application
developer, so that they can agree on what role identifier and password to use
for specific applications.

Working with Role Objects

In VDBA, roles are implemented using role objects. Using the Roles branch in
the Database Object Manager window, you can:

 Create and alter role objects

Note: Passwords can be associated with role objects as well as with user
objects. The section User Passwords (see page 166) contains more
information on passwords.

 View existing role objects, including the detailed properties of each
individual object

 Drop role objects

In SQL, you can accomplish these tasks with the create role, alter role, and
drop role statements. For more information, see the SQL Reference Guide.

28 Ingres 2006 R2 Database Administrator Guide

Groups and Roles

Roles and Permissions

After a role is created, associate permissions with it and create grants to it for
individual users. For example, for the associated application to execute
properly, grant update permission to all payroll tables for the update_payroll
role. For details, see Object Permissions in the chapter “Ensuring Access
Security.”

When you grant a permission or a subject privilege to a role, you are, in effect,
granting that same permission or privilege to any session that is started using
that role.

Role ID at Session Startup

When starting a session, you must specify a role identifier, which puts into
effect the associated permissions and subject privileges.

For example, use the –R flag to specify a role identifier for many system
commands and with the connect statement as part of an application. For
details, see the Command Reference Guide.

Specify a role identifier for an application image as part of the connection
profile for an OpenROAD session. For more information, see online help for the
Create Connection Profile dialog in OpenROAD.

For the DBA or a user (such as the system administrator) who has the security
privilege, neither role identifier nor password is validated. For any other user,
the specified role must exist, the user must be granted permission to use the
role, and any required password must be specified correctly. Otherwise, the
connection is refused.

Authorizing User Access 29

Chapter 3: Creating Databases and
Using Alternate Locations

This chapter describes database files and the process of creating and dropping
databases. It also explains the default storage locations that are established
during installation for database files, and how to create and use alternate
locations.

Types of Files in an Ingres Database
An Ingres database consists of several types of files:

Data

Data files contain the following:

 User tables and indexes created by an authorized user. These are
referred to as user data files. For details, see the chapter “Managing
Tables and Views.”

 The system catalogs. These are dictionary tables that contain
information about the database, such as descriptions of its tables,
columns, and views. For a complete description of the system
catalogs, see the appendix “System Catalogs.”

Checkpoint

Checkpoint files contain a static copy of your entire database. A checkpoint
file is created each time you take a checkpoint of your database.

Journal

Journal files contain dynamic records of changes made to the journaled
tables in your database.

Dump

Dump files contain records of changes to the database that occurred
during the checkpoint process. These files are used to recover a database
that was checkpointed online.

For additional information about checkpoint, journal, and dump files, see
the chapter “Backing Up and Recovering Databases.”

Work

Work files are used for system work, such as sorting and creating
temporary tables.

Creating Databases and Using Alternate Locations 31

Working With Database Objects

Working With Database Objects
A database object specifies the database name, database type, file locations,
and other attributes. You can perform the following basic operations on
database objects:

 Create and alter database objects

Note: You can create as many databases as your operating system allows.

 View existing database objects, including the detailed properties of each
individual object

 Drop database objects

In VDBA, use the Databases branch in the Database Object Manager window.

You can also accomplish these tasks using the createdb, catalogdb, relocatedb,
infodb, and destroydb system commands. For more information, see the
Command Reference Guide.

Createdb Privilege

The createdb privilege is required to create a database. For example, this
privilege is required to use the createdb system command or to use the
equivalent operation in VDBA. This subject privilege is granted by default to
the system administrator, who in turn can grant it to other users, such as
database administrators.

32 Ingres 2006 R2 Database Administrator Guide

Working With Database Objects

How a Database Is Created

When you create a database the following occurs:

 The system catalogs in the master database (iidbdb) are updated.

 A new subdirectory is created, with the name of the database, under the
database location for the database. Later, similar subdirectories are
created under the work, journal, dump, and checkpoint locations for the
database, as needed.

 The configuration file (aaaaaaaa.cnf) and the core system catalogs
(aaaaaaax.t00, x=b through e) are copied to the new database directory.

 The DBMS system catalogs for the new database are created and modified.

 The standard catalog interface is created.

 The user interface system catalogs (restricted by any -f flag options) are
created.

 If creating a distributed database, Ingres Star system catalogs for the
database are initialized and modified.

 Select permission for the system catalogs is granted to public.

Creating Databases and Using Alternate Locations 33

Working With Database Objects

Extend and Unextend a Database

You can extend a database to use additional data and work locations.
Locations must exist prior to this operation and must be specified with a Usage
Type of database or work.

To extend a database, use either the Alter Database dialog in VDBA or the
extenddb command.

After extending to another data location, create new tables and indexes in the
extended location, and modify existing tables and indexes to use the extended
location. For details on creating and moving tables, see the chapter “Managing
Tables and Views.”

When you extend to a new work location, the system spreads the workload
between the initial location (specified at create time) and the extensions.

Unextending a database reverses the extend operation and deletes the entry
from the configuration files so the location can be used again.

Note: After unextending a database location, you should checkpoint the
database. Previous checkpoints cannot be used because they reference a
location that is no longer accessible to the database.

To unextend a database, use either the Alter Database dialog in VDBA or the
unextenddb command. For additional information, see the Command
Reference Guide and online help.

Relocate Database Files

You can relocate journal, checkpoint, and dump work files for an existing
database. Locations must exist prior to this operation and must be specified
with an appropriate Usage Type (that is, journal, checkpoint, or dump,
depending on the type of file you want to relocate). When you relocate
checkpoint, journal, or dump files, the existing files are moved to the new
location and any new files are created there.

To relocate database files, use the Alter Database dialog in VDBA. For more
information, see the online help topic Altering a Database.

You can also accomplish this task using the relocatedb system command. For
more information, see the Command Reference Guide.

34 Ingres 2006 R2 Database Administrator Guide

Locations and Areas

How a Database Is Dropped

When you drop a database, the following occurs:

 The database, checkpoint, journal, dump, and work directories for the
database are deleted.

 All traces of the database are removed from the master database (iidbdb).

 The Application-By-Forms object file directories for any applications
associated with the database (but not the source code directories) are
deleted.

Caution! Do not set ING_ABFDIR to be your default login directory or other
directory that contains your own files. Your files can be inadvertently
destroyed if a destroydb dbname command is issued and dbname is the same
name as the ING_ABFDIR directory.

Locations and Areas
Each database file type (data, checkpoint, journal, and so on) is associated
with a location, which maps to a specific disk volume or directory, called an
area.

Default Locations

During installation, default storage locations and underlying areas are
established for each type of database file.

When you create a database, the Ingres default locations are assumed unless
you specify alternate locations.

The following table shows the default locations and the Ingres environment
variables that identify the areas to which the locations are mapped:

File Type Location Name Area

Data ii_database II_DATABASE

Checkpoint ii_checkpoint II_CHECKPOINT

Journal ii_journal II_JOURNAL

Dump ii_dump II_DUMP

Work ii_work II_WORK

Creating Databases and Using Alternate Locations 35

Locations and Areas

In each case, the Ingres environment variable points to a specific disk volume
or directory that has a particular structure, which is shown in the following
tables.

Windows:

File Type Structure

Data ingres\data\default

Checkpoint ingres\ckp\default

Journal ingres\jnl\default

Dump ingres\dmp\default

Work ingres\work\default

For example, using the default location for data files causes them to be stored
in the ii_database\ingres\data\default directory, where ii_database is the value
displayed by the ingprenv command for the II_DATABASE environment
variable.

UNIX:

File Type Structure

Data ingres/data/default

Checkpoint ingres/ckp/default

Journal ingres/jnl/default

Dump ingres/dmp/default

Work ingres/work/default

For example, using the default location for dump files causes them to be
stored in the ii_dump/ingres/dmp/default directory, where ii_dump is the
value displayed by the ingprenv command for the II_DUMP environment
variable.

VMS:

File Type Structure

Data [INGRES.DATA]

Checkpoint [INGRES.CKP]

Journal [INGRES.JNL]

36 Ingres 2006 R2 Database Administrator Guide

Locations and Areas

File Type Structure

Dump [INGRES.DMP]

Work [INGRES.WORK]

For example, using the default location for work files causes them to be stored
in the ii_work:[INGRES.WORK] directory, where ii_work is the value displayed
by the show logical command for the II_WORK environment variable.

Alternate Locations

You can use alternate locations for a new database, but first you must create
the area (directory structure) where the files will be stored, and then define
their location.

You create a location's area using the facilities of the host operating system.

Each area must have a specific subdirectory structure, depending on the file
types with which it is associated. This structure parallels that of the
corresponding default location area, as summarized in Default Locations (see
page 35).

Creating Databases and Using Alternate Locations 37

Locations and Areas

Create an Area in Windows

An area must be created before you can define an alternate location for a new
database.

Note: If you use the extenddb command with the –aarea_dir flag, the area is
created for you. You do not have to create the directory path below the ingres
root directory.

To create an area in Windows, follow these steps:

1. Change location to the drive and directory where you create the new
directory structure. For example, to create the new directory structure on
the D: drive under the \otherplace directory, issue the following
commands at the command prompt:

D:
cd \otherplace

2. Create a new subdirectory. For example, to make a subdirectory named
new_area, issue the following command at the command prompt:

mkdir new_area

3. Create subdirectories for the types of database files that use the new area.
For example, to create a subdirectory for data files in new_area, issue
these commands at the command prompt:

mkdir new_area\ingres
mkdir new_area\ingres\data
mkdir new_area\ingres\data\default

To make subdirectories for checkpoint, journal, dump, or work files,
substitute ckp, jnl, dmp, or work for data when issuing these commands.

In these steps, you created the area D:\otherplace\new_area, which you can
now specify as the Area when defining a new location using the Create
Location dialog in VDBA. The subdirectories you created in Step 3 determine
which Usage Types you can select in this same dialog (and in the Alter
Location dialog). For example, creating ingres\data\default allows you to
enable Database as a Usage Type, and creating ingres\work\default allows you
to enable Work as a Usage Type.

38 Ingres 2006 R2 Database Administrator Guide

Locations and Areas

Create an Area in UNIX

An area must be created before you can define an alternate location for a new
database.

Note: If you use the extenddb command with the –aarea_dir flag, the area is
created for you. You do not have to create the directory path below the ingres
root directory.

To create an area in UNIX, follow these steps:

1. Log in as the installation owner.

By using this account, this user becomes the owner of the subdirectories
created in this procedure.

2. Change location to the directory where you create the new directory
structure. For example, to create the new directory structure in the
otherplace directory, issue the following command at the operating system
prompt:

cd /otherplace

The installation owner account must be able to create a directory below
this directory; this means permissions set to at least 755. If this number
needs to be changed, see your system administrator. Top-level directories
are usually managed by root.

3. Create a new subdirectory. For example, to make a subdirectory named
new_area, issue the following command at the operating system prompt:

mkdir new_area

4. Create subdirectories for the types of database files that use the new area.
For example, to create a subdirectory for data files in new_area, issue
these commands at the operating system prompt:

mkdir new_area/ingres
mkdir new_area/ingres/data
mkdir new_area/ingres/data/default

To make subdirectories for checkpoint, journal, dump, or work files,
substitute ckp, jnl, dmp, or work for data when issuing the above
commands.

5. Place the appropriate permissions on the new directories and
subdirectories, as shown in the following example. Limit access to the data
directory to the user account for the installation owner only:

chmod 755 new_area
chmod 755 new_area/ingres
chmod 700 new_area/ingres/data
chmod 777 new_area/ingres/data/default

Creating Databases and Using Alternate Locations 39

Locations and Areas

To place permissions on new directories for checkpoint, journal, dump, or
work files, substitute ckp, jnl, dmp, or work for data when issuing the
above commands.

In these steps, you created the area /otherplace/new_area, which you can
now specify as the Area when defining a new location using the Create
Location dialog in VDBA. The subdirectories you created in Step 4 determine
which Usage Types you can select in this same dialog (and in the Alter
Location dialog). For example, creating ingres/data/default allows you to
enable Database as a Usage Type, and creating ingres/work/default allows you
to enable Work as a Usage Type.

Raw Area in UNIX

A raw area contains data from a single database only.

A raw location can be assigned a usage of database only, cannot be used as
the root location of a database, and can contain data for one table only.

The maximum size of a table is bound by the smallest raw location to which it
is assigned.

A raw area can contain many locations; each location can contain the data for
one table. A raw location is the equivalent of a cooked database file, which
contains data of one table only.

To set up a raw area file, use the mkrawarea utility. For more information, see
the Command Reference Guide.

How You Change from Raw to Cooked (Non-raw) Transaction Log

If your installation uses a raw transaction log file and you want to change to a
cooked transaction log file, follow this process:

1. Destroy the existing transaction logs, including dual logs if present.

2. Define the locations to be used for the new transaction logs.

3. Create the new transaction logs.

4. Test the new transaction logs by restarting Ingres.

40 Ingres 2006 R2 Database Administrator Guide

Locations and Areas

Create an Area in VMS

An area must be created before you can define an alternate location for a new
database.

To create an area in VMS, follow these steps:

1. Log into the VMS system account.

2. Create the top level [INGRES] directory on the new device with the
protection mask set to equal (S:RWE,O:RWE,G,W:RE) and ownership set
to [INGRES] by executing the following command at the operating system
prompt:

CREATE/DIR device:[INGRES]/OWNER_UIC=[INGRES] –
/PROT=(S:RWE,O:RWE,G,W:RE)

Substitute the name of the new device for device in the command. Also,
do not set the protections any more restrictive than recommended here,
because doing so can result in errors later.

3. Make sure the master file directory [000000] on the new device has at
least W:E protection by executing the following command at the operating
system prompt:

DIR/PROT device:[0,0]000000.dir

If the protection is incorrect (for example, the WORLD has no access),
correct this with the following command:

SET FILE/PROT=(S:RWE, O:RWE, G, W:E) –
device:[0,0]000000.dir

4. Define a logical name for the new area at the system level:

DEFINE/SYSTEM/EXEC/TRANS=CONCEALED –
 logical_name device

Substitute the name of the new area for logical_name. This is useful if you
ever reconfigure your system or move data between systems, because it is
much easier to redefine one logical than to re-point all references to a
device.

For example, the following command defines a new altarea1 for device
DUA1 at the indicated subdirectory:

DEFINE/SYSTEM/EXEC/trans=concealed –
altarea1 dua1:[MYDIRECTORY.SUBDIRECTORY.]
@II_SYSTEM:[INGRES.UTILITY]INGDEFDEV.COM

5. The definition in Step 4 lasts until the next system boot. Add the same
DEFINE statement to SYS$MANAGER:SYSTARTUP_V5.COM or
II_SYSTEM:[INGRES]IISTARTUP1.COM so that it is executed on future
boots.

6. Exit the VMS system account.

Creating Databases and Using Alternate Locations 41

Locations and Areas

7. Log in to the system administrator’s account.

8. Create the subdirectories and set the appropriate protections on these
directories by executing the INGDEFDEV command procedure at the
operating system prompt:

9. When INGDEFDEV prompts you, provide the device name and the file type
(data, journal, checkpoint, dump, or work) that resides in this area.
Because you can specify only one file type each time you run INGDEFDEV,
you must run INGDEFDEV once for each file type and device name pairing.

Depending on the type of file that resides in this area, INGDEFDEV creates
one of the following directories, where device is the name of the new
device from Step 2:

-device:[INGRES.DATA] (for data files)
-device:[INGRES.CKP] (for checkpoint files)
-device:[INGRES.JNL] (for journal files)
-device:[INGRES.DMP] (for dump files)
-device:[INGRES.WORK] (for work files)

In these steps, you created an area corresponding to the logical_name
identified in Step 4, which you can now specify as the area name when
defining a new location using the create location statement. The directories
created by INGDEFDEV in Step 9 determine which usage types you can specify
for both the create location and alter location statements. For example,
creating [INGRES.DATA] allows you to specify usage = database, and creating
[INGRES.WORK] allows you to specify usage = work.

42 Ingres 2006 R2 Database Administrator Guide

Locations and Areas

Working with Locations

After you have created an area for a location, you must than create the
location.

A location object specifies the location name, associated area, and the types of
files that reside in the location.

You can perform the following basic operations on location objects:

 Create and alter location objects

 View existing location objects, including the detailed properties of each
individual object

 Drop location objects

In VDBA, use the Locations branch in the Database Object Manager window.
For detailed steps for these procedures, see online help for VDBA.

In SQL, you can manage locations using the create location, alter location, and
drop location. For more information, see the SQL Reference Guide.

To work with locations, you need the maintain_locations privilege. This subject
privilege is granted by default to the system administrator, who in turn can
grant it to other users, such as database administrators, who need to manage
locations. For more information on subject privileges, see the chapter
“Ensuring Access Security.”

Creating Databases and Using Alternate Locations 43

Locations and Areas

Guidelines for Using Locations

After you have set up the underlying area and mapped it to a location by
creating a location object, use the new location as summarized below:

 When you create a new database, specify the location for the database’s
data dump, checkpoint, journal, and work files.

 Extend a database to include the new location for its data and work files.

 After extending a database to use an alternate location designated for data
files, move existing user data files (that is, user tables and indexes, but
not the system catalogs) to it, and place new user data files in it. For more
information, see the chapter “Managing Tables and Views.”

 The following file types can use only a single location (that is, these file
types are not affected when you extend a database):

– Checkpoint files

– Journal files

– Dump files

 The initial location of the following file types is determined when you
create a database, but you can move each to a new location (see page 34)
if the need arises:

– Checkpoint files

– Journal files

– Dump files

 Store the data, checkpoint, journal, dump, and work files for a database in
the same locations or in different locations.

– If the default locations are used when you create the database, all
these files are stored in the same area.

– We strongly recommend that you store data files on a different disk
from those used to store checkpoints, journals, and dumps. Doing so
helps to protect your data in the event of disk failure and to maximize
disk drive performance.

The following table summarizes some of these guidelines:

File Type Extend to Use Multiple
Locations?

Change Locations?

Data Yes Yes (user tables and
indexes)
No (system catalogs)

Checkpoint No Yes

44 Ingres 2006 R2 Database Administrator Guide

Locations and Areas

File Type Extend to Use Multiple
Locations?

Change Locations?

Journal No Yes

Dump No Yes

Work Yes No

Work Locations

All databases use work files for sorting, which can occur when queries are
executed (select or fetch statements with order by clauses) or when tables are
restructured (for example, using the modify statement or equivalent operation
in VDBA). While small sorts are performed in memory, larger sorts use
temporary sort files. Depending on the size of the tables involved in the sort,
the temporary disk space requirements can be large (see page 458).

Initial and Extended Work Locations

You specify the initial, or primary, location (or use the default location) for
work files when you create a database. The area mapped to this location is
used for all work files.

To use additional locations, extend a database. When you extend a database
in this manner, sort space can be spread among multiple work locations.

Note: We recommend that you put work locations on scratch disks so that
sorting activity does not contend with other database I/O and data disks do
not become excessively fragmented.

Classification of Extended Work Locations

When extending a database to use additional work locations, classify them as
follows:

 Work (also known as defaultable) locations are used for all user sorts on a
database.

 Auxiliary locations are not used unless explicitly requested by a set work
locations statement.

After a database has been extended to use an additional work location, you
can subsequently modify the work area’s classification using the Alter
Database dialog in VDBA.

Creating Databases and Using Alternate Locations 45

Locations and Areas

Work Locations for a Session

A session automatically uses all defaultable work locations to which the
database has been extended (including the initial work location). In addition,
the session can issue set work locations statements to specify auxiliary work
locations to use. Using this statement, a session can dynamically add and drop
work locations and replace the set of locations currently in use. The set work
locations statements affect the current session only—their effects disappear
when the session ends.

For more information on using set work locations, see the entry for the set
statement in the SQL Reference Guide.

Note: To list the set of work locations used in a given session, you can use a
trace point, DM1440. For information on setting trace points, see the System
Administrator Guide.

46 Ingres 2006 R2 Database Administrator Guide

Chapter 4: Managing Tables and Views

This chapter discusses how to manage tables, views, and schemas. It includes
information on table limits, handling duplicate rows in tables, manipulating
columns, modifying tables in various ways, and rules for updating views. This
chapter also discusses synonyms, temporary tables, and comments, which are
features for manipulating table data and referencing tables.

Table Management
You can perform the following basic operations on tables:

 Create and alter table objects

 View existing table objects, including details such as the rows, columns,
statistics, and other properties

 Modify table objects to change file locations

 Drop table objects

In VDBA, you use the Tables branch for a particular database in the Database
Object Manager window.

In SQL, you can accomplish these tasks using the create table, alter table,
help table, modify table, and drop statements. For more information, see the
SQL Reference Guide.

Managing Tables and Views 47

Table Management

Tools for Creating a Table

You can create a table by issuing a create table statement from any of the
following tools:

 A terminal monitor

 Interactive SQL

 An embedded SQL program

 Application-By-Forms and Ingres 4GL

For details on the create table statement, see the SQL Reference Guide.

You can also use the Tables utility to create tables. This utility lets you build
and destroy tables, inspect their structure, and run queries and reports on
their data.

UNIX: For a discussion of the Tables utility, see the Character-based Querying
and Reporting Tools User Guide.

VMS: All users can create tables unless explicitly restricted from doing so
using a nocreate_table database grant.

Table Ownership

The new table is owned by the user who creates it. The owner of the table is
allowed to perform certain operations on the table that other users are not.
For example, only the owner (or a user with the security privilege
impersonating the owner) can alter or drop a table.

If other users need access to the table, the table owner can grant that
permission using table grants. Table grants (see page 173) are enabling
permissions—if no permission is granted, the default is to prohibit access.

Table Location

When you create a table, it is placed in the default location designated for the
database’s data files, unless you specify otherwise.

48 Ingres 2006 R2 Database Administrator Guide

Table Management

Requirements for Using an Alternate Location for a Table

Before using an alternate location for a table, the following requirements must
be met:

 The location must exist and must be designated to hold data files

 The area to which the location name points must exist with correct
permissions and ownership

 The directory indicated by the area must have the appropriate
subdirectory structure with correct permissions

 The database must be extended to the location

 You must be the table owner (or a user with the security privilege
impersonating the owner).

Alternate Location for a Table

To create a table in an alternate location, click Options in the Create Table
dialog in VDBA. This opens the Options dialog, where you choose one or more
alternate locations. For details, see online help.

If you specify only one location, the entire table is stored in that location. If
you choose more than one location, the table spans multiple locations. For
example, if you designate two locations, the table is extended over two
alternate locations. As rows are added to the table, they are added to each
area in alternate blocks.

The blocks are:

Windows: 16-page blocks (approximately 32 KB)

UNIX: 16-page blocks (approximately 32 KB)

VMS: 8 pages (32 disk blocks)

The table is considered out of space if the next receiving area in turn does not
have a sufficient block.

Note: After creating a table, you can change its location, as described in
Techniques for Moving a Table to a New Location (see page 68).

Managing Tables and Views 49

Table Management

Enable or Disable Journaling

When you create a table, journaling can be enabled by default, depending on
the setting of default_journaling in the Ingres DBMS Server class your session
is attached to.

In VDBA, you can verify whether journaling is enabled or disabled by clicking
Options in the Create Table dialog. This opens the Options dialog, which
contains a Journaling check box. If it is checked, journaling is on (enabled); if
is not checked, journaling is off (disabled).

By disabling the Journaling check box, you turn off journaling for an individual
table, but use caution. For additional information about journaling and the
ramifications of disabling journaling at the table level, see the chapter
“Backing Up and Recovering Databases.”

Duplicate Rows in Tables

A table contains duplicate rows when two or more rows are identical.

When you create a table, specify the handling of duplicate rows by clicking
Options in the Create Table dialog. This opens the Options dialog, which
contains a Duplicates check box. By default, duplicate rows are allowed in any
new table that you create, which is indicated by the fact that the Duplicates
check box is initially enabled. If you disable this check box, duplicate rows are
not allowed in the table. If a user attempts to insert a duplicate row into a
table where duplicate rows are not allowed, an error is generated.

Note: Duplicate rows are enforced only when the table has a keyed storage
structure. For a description of storage structures, see the chapter “Choosing
Storage Structures and Secondary Indexes.”

Depending on whether duplicates are allowed, the following tasks are
performed differently:

 Restructuring or relocating a table with the modify statement or the
equivalent operation in VDBA

 Adding new rows into a table with the insert statement

 Bulk loading a table with the copy statement

 Revising existing rows in a table with the update command

50 Ingres 2006 R2 Database Administrator Guide

Table Management

Duplicate Rows When Adding New Rows or Modifying a Table

If a table was originally created to allow duplicates, the duplicate rows are
preserved, even when the table is modified to another structure.

If a table allows duplicates, duplicate rows can always be inserted.

If a table does not allow duplicates:

 Duplicate rows can be added if the table uses a heap storage structure.

 Single row inserts (insert . . . values) are silently discarded if a duplicate
row occurs on a keyed structure.

 Multiple row inserts (insert . . . select) generate an error if a duplicate row
occurs on a keyed structure. The entire statement is rolled back.

 When a table is modified from a heap structure to a keyed structure,
duplicates are eliminated.

Duplicate Rows When Bulk Copying Rows in a Table

If a table allows duplicates, duplicate rows can always be loaded.

If a table does not allow duplicates, duplicate rows:

 Can be loaded if the table uses a heap storage structure

 Are silently removed if the table has a keyed structure

Managing Tables and Views 51

Table Management

Duplicate Rows in Updated Tables

If a table allows duplicates, rows can always be updated to duplicate other
rows.

If a table does not allow duplicates:

 Rows can be updated to duplicate other rows if the table uses a heap
storage structure.

 Rows cannot be updated to duplicate other rows if the table is a keyed
structure. The update is rejected and an error is generated.

If you use the following “bulk increment” update in which the info column has
values 1, 2, 3, and so on, every row in the table is updated:

update data set info = info+1;

If duplicates are not allowed, this update fails due to duplicate rows being
created.

The new values for the first row are prepared, changing the info column value
from 1 to 2. Before inserting the new values, a check is made to see if they
violate any constraints. Because the new value, 2, duplicates the value in an
existing row, thus violating the criterion stating that duplicates are not
allowed, an error is generated and the update is rolled back.

To solve this problem, use either of the following techniques:

 Allow duplicates when creating the table

 Modify the table to use a heap storage structure before performing the
update

52 Ingres 2006 R2 Database Administrator Guide

Table Management

Remove Duplicate Rows

In this example, assume the table from which you want to remove the
duplicates is named has_dups. This example creates one table based upon the
contents of another. For more information, see online help.

Follow these steps to remove duplicate rows:

1. Create a new table named temp.

2. Enable Create Table As Select in the Create Table dialog.

3. In the Select Statement edit control, enter:

select distinct * from has_dups

4. Drop the has_dups table.

5. Create a new table named has_dups, using the Options dialog to disable
the Duplicates check box.

6. Enable Create Table As Select in the Create Table dialog.

7. In the Select Statement edit control, enter:

select * from temp

8. Drop the temp table.

Note: If a table was originally created to allow duplicate rows, but you no
longer want the table to allow duplicate rows, you must perform Steps 1-8
above. However, because duplicate row checking is only performed for
tables having a keyed structure, you must also perform this additional
step:

9. Modify the table to a keyed structure (hash, ISAM, or B-tree).

Managing Tables and Views 53

Table Management

Page Size Specification

A page is a block of physical storage space.

When you create a table, specify its page size by clicking Options in the Create
Table dialog. This opens the Options dialog, which contains a Page Size drop-
down list box. If you need assistance, see online help for details.

The default page size is determined by the DBMS configuration parameter,
default_ page_size. The corresponding buffer cache for the installation must
also be configured with the page size you specify or you receive an error. For
more information, see the chapter “Configuring Ingres” in the System
Administrator Guide.

Note: After creating a table, if you later need to add or drop a column, the
page size of the table must be larger than 2 KB. If you anticipate that a
particular table needs to be altered in either of these ways, create the table
using a larger page size or modify its storage structure before attempting to
alter the table. For more information, see the chapter “Maintaining Storage
Structures.”

Data Type Conversion Functions for Default Values

When you create or alter a table, specify a default value for any column, which
is used when no value is specified for the column. Instead of specifying a
typical default value of zero or quoted spaces for a column, substitute a
particular value as the default value for the new column. To do this, use the
associated conversion function for the data type assigned to the new column.

The following table lists the data type and an example of its associated
conversion function for creating a column:

Data Type Conversion Function

char(1) char(' ')

c1 c(' ')

varchar(7) varchar(' ')

long varchar long_varchar(' ')

nchar nchar(' ')

nvarchar nvarchar (' ')

text(7) text(' ')

byte(binary) byte(0)

long byte (binary) long_byte(0)

54 Ingres 2006 R2 Database Administrator Guide

Table Management

Data Type Conversion Function

byte varying (binary) varbyte(0)

integer (integer4) int4(0)

smallint (integer2) int2(0)

integer1 int1(0)

float (float8) float8(0)

float4 float4(null)

decimal decimal(0)

ansidate ansidate('') or ansidate(null)

time with time zone time_with_tz(' ') or time_with_tz(null)

time without time zone time_wo_tz(' ') or time_wo_tz(null)

time with local time zone time_local(' ') or time_local(null)

timestamp with time zone timestamp_with_tz(' ') or
timestamp_with_tz(null)

timestamp without local time zone timestamp_wo_tz(' ') or
timestamp_wo_tz(null)

timestamp with local time zone timestamp_local(' ') or
timestamp_local(null)

interval day to second interval_dtos(' ') or interval_dtos(null)

interval year to month interval_ytom(' ') or interval_ytom(null)

ingresdate ingresdate(' ') or ingresdate(null)

money money(0)

object_key object_key('01')

table_key table_key('01')

Managing Tables and Views 55

Table Management

If the new column is created with no conversion function, the defaults are:

 varchar for character strings

 float (float8) for floating point numbers

 Either smallint (integer2) or integer (integer4) for integer numbers
(depending on the size of the number)

To initialize a column’s value to null, specify the default value of null in any of
the numeric conversion functions or the date function. Doing so makes the
column nullable.

Important! Do not use null as a default value for character fields—this causes
an attempt to create a character field of null length, which cannot be done,
and returns an error.

Constraints

When you create or alter a table, define constraints for the table. Constraints
are used to check for appropriate data values whenever data is entered or
updated in the table.

Constraints are checked at the end of every statement that modifies the table.
If the constraint is violated, the DBMS returns an error and aborts the
statement. If the statement is in a multi-statement transaction, the
transaction is not aborted.

Note: For other mechanisms used to ensure the integrity of data in a table,
including integrities and rules, see the chapter “Ensuring Access Security,”
which also discusses the differences between constraints and integrities.

In VDBA, define constraints using the Create Table or Alter Table dialog.

Constraint Types

There are several types of constraints:

 Unique

 Check

 Referential

56 Ingres 2006 R2 Database Administrator Guide

Table Management

Unique Constraints

You can define unique constraints at both the column and the table level.
Columns that you specify as unique or that you use as part of a table-level
unique constraint cannot be nullable. Column-level unique constraints ensure
that no two rows in the table can have the same value for that column. At the
table level, you can specify several columns, all of which are taken together to
determine uniqueness.

For example, if you specify the department number and location columns to be
unique at the table level, no two departments in the same location can have
the same name. On the other hand, specifying the department name and
location columns to be unique at the column level is more restrictive—in this
case, no two departments can have the same name, regardless of the location,
and no two locations can have the same name either.

There is a maximum of 32 columns that you can specify in a table-level unique
constraint; however, a table can have any number of unique constraints.

In VDBA, define column-level unique constraints by enabling the Unique check
box for the column in either the Create Table or the Alter Table dialog. You
define table-level unique constraints using the Table Level Unique Constraint
dialog.

Check Constraints

Check constraints ensure that the contents of a column fulfills user-specified
criteria.

Specify check constraints by entering a Boolean expression involving one or
more columns using the Table Level Check Constraint dialog in VDBA.

For example, enter the following expression to ensure that only positive values
are accepted in the salary column:

salary > 0

The next example ensures that only positive values are accepted in the budget
column and that expenses do not exceed the budget:

budget > 0 and expenses <= budget

Managing Tables and Views 57

Table Management

Referential Constraints

Referential constraints are used to validate an entry against the contents of a
column in another table (or another column in the same table), allowing you to
maintain the referential integrity of your tables. You specify referential
constraints by making selections in the Table References dialog in VDBA. For
information on referential action options, see the SQL Reference Guide.

When defining a referential constraint, you must consider the following points:

 The table that you intend to reference must exist, with the appropriate
primary key or unique constraint defined.

 Referencing columns from the table in which the constraints are being
defined are compared to columns that make up the primary key or a table-
level unique constraint in the referenced, or parent, table. The data types
of the columns must, therefore, be comparable, and the referencing
columns must correspond in number and position to those in the
referenced table.

 You must have references permission for the referenced columns.

58 Ingres 2006 R2 Database Administrator Guide

Table Management

Example: Define a Referential Constraint

The following example of a referential constraint assumes that the employee
table exists with a primary key constraint defined involving a name and an
employee number column.

This example verifies the contents of the name and empno columns in the
manager table against the primary key columns in the employee table, to
ensure that anyone entered into the table of managers is on file as an
employee.

To accomplish this, follow these steps:

1. Open the Table References dialog in VDBA.

2. Click New to create a new referential constraint, and optionally enter a
new name for the constraint in the Constraint Name edit control.

3. Select the name column in the Table Columns list box, and click the
double-right arrow (>>) to add the column to the Referencing Columns list
box.

4. Select the empno column in the Table Columns list box, and click the
double-right arrow (>>) to add the column to the Referencing Columns list
box.

5. Select the employee table from the Reference to Parent Table drop-down
list box.

By default, the Primary Key option is selected and the primary key, which
includes comparable name and employee number columns, appears in the
edit control at the bottom of the box.

6. Click OK to add this referential constraint to the table definition.

Managing Tables and Views 59

Table Management

Primary Key Constraint

An example of a referential constraint is a Primary key constraint.

Primary key constraints can be used to denote one or more columns, which
other tables reference in referential constraints.

Note: Primary key constraints can be used as an alternative and slightly more
restrictive form of unique constraint, but need not be used at all.

To define a primary key, you choose which columns are to be part of the key
and assign to each a particular position in the key. Columns that are part of
the primary key cannot be nullable, and the primary key is implicitly unique. A
table can have only one primary key, which can consist of many columns.

In VDBA, you define primary key constraints using the Primary Key button in
the Create Table or Alter Table dialog. Clicking this button opens the Primary
Key dialog, where you can control which columns are part of the primary key,
as well as the order of the columns in the primary key. For details, see online
help.

Example: Define a Primary Key Constraint

For example, in the partnumbers table, define the partno column as the
primary key. Assuming the inventory table had a comparable column named
ipartno, define a referential constraint on the inventory table based on the
partnumbers table.

To accomplish this, follow these steps:

1. Open the Table References dialog in VDBA.

2. Click New to create a new referential constraint, and optionally enter a
new name for the constraint in the Constraint Name edit control.

3. Select the ipartno column in the Table Columns list box, and click the
double-right arrow (>>) to add the column to the Referencing Columns list
box.

4. Select the partnumbers table from the Reference to Parent Table drop-
down list box.

By default, the Primary Key option is selected and the partno column,
which was previously defined as the primary key for the partnumbers
table, appears in the edit control at the bottom of the box.

5. Click OK to add this referential constraint to the table definition.

In this case, the part numbers in the inventory table are checked against those
in the partnumbers table. When defining this referential constraint, you did not
have to specify the column to be referenced in the partnumbers table because
it was defined as the primary key.

60 Ingres 2006 R2 Database Administrator Guide

Table Management

Indexes for Constraints

Special indexes are created whenever you specify a unique, primary key, or
referential constraint for a table. No user—including the table owner—can
explicitly drop these system-generated constraint indexes, because they are
used internally to enforce the constraints.

For primary key and unique constraints, the index is built on the constrained
columns as a mechanism to detect duplicates as rows are added to or updated
in the table.

For referential constraints, the index is built on the referencing columns of the
constraint. This index ensures that the internal procedures that enforce the
constraint when a referenced row is deleted or referenced columns are
updated can be executed efficiently. When a referencing row is inserted or
referencing columns are updated, the unique constraint index built on the
referenced columns is used to ensure the efficiency of enforcing the constraint.

Note: If you create an index, and then create a constraint that uses the index,
the index cannot be dropped (but the constraint can be dropped). If you
create a constraint using the “with index=name” clause but do not create the
index (which causes the system to generate the named index), and you drop
the constraint, the index is also dropped, because the index is a system index
and not a user index.

Managing Tables and Views 61

Table Management

Options for Constraint Indexes

During table creation, specify options in VDBA for the constraint indexes, with
similar options available when you alter a table. For example, the Table Level
Unique Constraint dialog (accessible from both the Create Table and the Alter
Table dialogs) has an Index button that allows you to fine tune the index used
to enforce unique constraints. For additional information about the various
dialog options, see online help.

These options give you more control over the index that is created, including
the ability to specify:

 The location of the index

Constraint indexes are, by default, stored in the default location for data
files. Because of storage space or concurrency considerations, they can be
stored in an alternate location.

 The storage structure type and other structure-specific characteristics

By default, a B-tree storage structure is used for constraint indexes, but in
some cases, a different structure can be more efficient. For more
information on storage structures, see the chapter “Choosing Storage
Structures and Secondary Indexes.”

 That an existing secondary index be used instead of generating a new
index

You can save the overhead of generating an unnecessary index if you have
an appropriate secondary index available. Simply indicate the name of the
secondary index, and it is used to enforce the constraint instead of
generating a new one.

To use an existing secondary index for referential constraints, the
referencing columns must match the first n columns of the index (although
not necessarily in order).

To use an existing secondary index for unique or primary key constraints,
the index must be defined on exactly the same columns as the constraint,
it must be a unique index, and it must specify that uniqueness is checked
only after the update statement is completed.

Note: Indexes enforcing uniqueness constraints in the ANSI/ISO style, as
required by referenced columns of a referential constraint, must specify
the "unique_scope = statement" option in the corresponding "create
index" statement.

For more information on creating a secondary index and specifying the
scope for uniqueness checking, see the chapter “Choosing Storage
Structures and Secondary Indexes” and online help.

62 Ingres 2006 R2 Database Administrator Guide

Table Management

 In the case of referential constraints, that no index be generated

The index built for referential constraints is used only to improve the
efficiency of the internal procedures that enforce the constraint when a
referenced row is deleted or referenced columns are updated. Because the
procedures can execute in its absence, the index is optional.

In the absence of a referential constraint index, the internal procedures
use a secondary index, if one is available that is defined on the referencing
columns, and so the efficiency of the procedures can not be compromised.
However, if no such secondary index exists, a full-table scan of the
referencing table is necessary. Thus, choosing not to generate a referential
constraint must be reserved for special circumstances, such as when:

– An appropriate secondary index is available

– Very few rows are in the referencing table (as in a prototype
application)

– Deletes and updates are rarely (if ever) performed on the referenced
table

 That the base table structure be used for constraint enforcement

This option requires a table that uses a keyed storage structure. Because
heap, which is a non-keyed structure, is the default when you create a
table, this option cannot be specified for constraints added at that time.
The ability to use the base table structure for constraint enforcement is
available only for constraints that are added when altering an existing
table.

Before you can specify the base table structure in lieu of a constraint
index, you need to modify the table to change its storage structure type
and to specify key columns to match the constraint columns it is used to
enforce. If the base table structure is being used to enforce a primary key
or unique constraint, you must also specify that uniqueness is checked
only after the update statement is completed.

Note: Indexes enforcing uniqueness constraints in the ANSI/ISO style, as
required by referenced columns of a referential constraint, must specify
the "unique_scope = statement" option in the corresponding "create
index" statement.

For more information on modifying a table’s storage structure, specifying
key values, and specifying the scope for uniqueness checking, see the
chapter “Maintaining Storage Structures.”

Managing Tables and Views 63

Table Management

Delete Constraints

In VDBA, the Create Table dialog allows you to delete any constraint as you
are designing your table, without restrictions. After you have saved the table,
remove constraints using the Alter Table dialog; however, removing
constraints is more complicated when altering a table, because of the
possibility of dependent constraints.

For this reason, each dialog in VDBA that allows you to work with constraints
gives you two delete options when altering a table. These same dialogs give
you only one delete option when creating a table:

 Delete performs a restrictive delete, assuming that there are no dependent
constraints. If you delete a constraint using this button, the constraint is
dropped only if there are no dependent constraints; otherwise, if there are
dependent constraints, the delete operation results in an error.

 Del Cascade performs a cascading delete by also dropping all dependent
constraints. This is not available—and not needed—when creating a table.

For example, a unique constraint in one table can have a dependent referential
constraint in another table. In this case, if you altered the table in which the
unique constraint was defined and attempted to perform a Delete operation in
the Table Level Unique Constraint dialog, it results in an error due to the
existence of the dependent referential constraint. To delete the unique
constraint successfully, use Del Cascade, which also deletes the referential
constraint in the other table.

Note: In VDBA, column-level unique constraints are defined directly in the
Create Table or Alter Table dialog. You cannot, however, remove a column-
level unique constraint simply by disabling its Unique check box in the Alter
Table dialog. To remove a column-level unique constraint, you must use the
Table Level Unique Constraint dialog.

64 Ingres 2006 R2 Database Administrator Guide

Table Management

Techniques for Changing Table Columns

The examples here describe how to change table columns, including:

 Renaming a column

 Inserting a column

 Changing the data type of a column

There are no direct equivalents for changing columns in VDBA or in a single
SQL statement.

Note: Renaming a column in a table or changing its data type does not
change anything else that is dependent on the column. You need to update
any objects, such as reports, forms, and programs, which are dependent on
the old column name or data type. In addition, all of the procedures shown
here require that you drop the original table, at which point certain other
dependent objects, such as integrities, views, indexes, and grants, are also
dropped. You must recreate these objects.

Important! We recommend that you back up your tables before changing
them. If a problem occurs, you can then restore the original table and repeat
the procedure. For additional information, see the chapter “Backing Up and
Recovering Databases.”

Managing Tables and Views 65

Table Management

Example: Rename a Column

The following example renames two columns, name and addr, to employee
and address. The salary column is not renamed. For assistance with any of
these steps, see online help.

1. Assuming the table test already exists with columns name, addr, and
salary, create a temporary table named temp.

2. Enable Create Table As Select in the Create Table dialog.

3. In the Select Statement edit control, enter the following select statement
to rename the desired columns:

select name as employee, addr as address, salary
 from test

4. Drop the original table, test.

5. Create a new table named test.

6. Enable Create Table As Select in the Create Table dialog.

7. In the Select Statement edit control, enter:

select * from temp

8. Drop the temporary table, temp.

Be sure to update any objects, such as reports, forms, and programs that are
dependent on the old column name, and recreate integrities, views, indexes,
grants, and other dependent objects that were destroyed when the original
table was dropped in Step 4.

66 Ingres 2006 R2 Database Administrator Guide

Table Management

Example: Insert a Column

When you add a column to an existing table using the Alter Table dialog, the
column is placed after the last previously existing column in the table. To
insert a new column between existing columns, you must follow a procedure
similar to that outlined for renaming a column.

The following example illustrates inserting a new column, newcol, in the
middle of an existing table with previously defined columns. If you need
assistance with any of these steps, see online help.

1. Create a temporary table named temp.

2. Enable Create Table As Select in the Create Table dialog.

3. In the Select Statement edit control, enter the following select statement,
inserting the new column:

select col1, col2, varchar(' ') as newcol,
 col3, col4 from test

4. Drop the original table, test.

5. Create a new table named test.

6. Enable Create Table As Select in the Create Table dialog.

7. In the Select Statement edit control, enter:

select * from temp

8. Drop the temporary table, temp.

Be sure to recreate integrities, views, indexes, grants, and other dependent
objects that were destroyed when the original table was dropped in Step 4.

Note: To rearrange the current column order of a table without adding new
columns, use this same procedure, selecting the columns in the desired order
in Step 3.

Managing Tables and Views 67

Table Management

Techniques for Moving a Table to a New Location

As a database grows, it can become necessary to move some of its tables to
an alternate location. If a table has grown so large that you can no longer
work with it at the current location, or the table needs to be distributed across
multiple disks to improve performance, modify the table to use an alternate
location.

Note: Before modifying the table, make sure you have met the requirements,
as described in Requirements for Using an Alternate Location for a Table (see
page 49).

You can modify a table's location using one of the following techniques:

 Relocate a table

 Reorganize a table

In VBDA, use the Modify Table Structure dialog. For a detailed procedure, see
online help. For other uses of this dialog, see the chapter “Maintaining Storage
Structures.”

Relocate a Table

Using the Modify Table Structure dialog in VDBA, you can move the data files
for a table from one location to another. This is accomplished using the
Locations button available when the Relocate radio button is enabled, which
opens the Relocate Table dialog. For information on using this dialog, see
online help.

Using this operation, it is possible to change one or more of the locations
currently used by the table, without changing the number of locations used.
For example:

 If a table is currently using a single location, choose a new location and
the data files for the table are moved to the new location.

 If a table is currently using multiple locations, selectively specify which
ones you want to change.

68 Ingres 2006 R2 Database Administrator Guide

Table Management

Reorganize a Table

You can increase or decrease the number of locations currently used by a table
for its data files.

To do this, use the modify to reorganize SQL statement. In VDBA, use the
Modify Table Structure dialog. Use the Locations button, which is available
when the Change Locations radio button is enabled, which opens the Change
Locations dialog. For specific information on using this dialog, see online help.

This operation requires more overhead than simply relocating a table because
it performs a table reorganization in addition to moving files. Using this
operation, you can:

 Expand a table that is currently using a single location to use multiple
locations, including the option of no longer using the original location.

 Shrink a table that is currently using multiple locations to use a single
location, including the option of no longer using any of its original
locations.

 Reorganize a table that is currently using multiple locations to extend over
a different number of locations, including the option of no longer using one
or more of the original locations.

Afterwards, the table is reorganized to spread equally, in sized blocks, over
the specified locations.

Assign an Expiration Date to a Table

By default, when you create a table, it has no expiration date. To give a table
an expiration date, use the save statement as described in the SQL Reference
Guide.

A table is not automatically destroyed on its expiration date.

Purge Expired Tables

To purge expired tables, select Expired_Purge as the Operation in the Verify
Database dialog in VDBA. For details on using this dialog, see online help.

Note: The Verify Database dialog has many other uses. For specific
information on using this dialog, see online help.

Managing Tables and Views 69

Views

Views
A view can be thought of as a virtual table. Only the definition for the view is
stored, not the data. A table on which a view operates is called a base table.

A view definition can encompass 1 to 31 base tables. It can involve multiple
tables joined together by their common columns using a where qualification.

A view can be created on other views or on physical database tables, including
secondary indexes.

Primary uses for views include:

 Providing security by limiting access to specific columns in selected tables,
without compromising database design

 Simplifying a commonly used query

 Defining reports

Because a view is a device designed primarily for selecting data, all selects on
views are fully supported. Simply use a view name in place of a table name in
the select statement. Updating views is also supported (see Updates on
Views), but updating a database by means of a view is not recommended.

Views and Permissions

Any user can create a view on any other user’s tables or views, provided they
have the permissions required to execute the select statements that define the
view. Any user can grant permissions on their views to any other user,
provided they either own the base tables in the view or have the with grant
option on the permissions they are granting. The granting of permissions is
described in Object Permissions (see page 167).

70 Ingres 2006 R2 Database Administrator Guide

Views

Working with View Objects

You can perform the following basic operations on views:

 Create view objects

 View existing view objects, including details such as the view definition,
grantees, and rows

 Drop view objects

In VDBA, use the Views branch for a particular database in the Database
Object Manager window.

You can also accomplish these tasks using the SQL statements create view,
help view, and drop view. For more information, see the SQL Reference Guide.

Note: To drop a view the cache size that was needed to create the view must
be enabled.

Updates on Views

Only a limited set of updates on views is supported because of problems that
can occur. Updates are not supported on views that have more than one base
table, or on any column whose source is not a simple column name (for
example, set functions or computations). If the view was created using the
With Check Option enabled in the Create View dialog, no updates or inserts are
allowed on columns that are in the qualification of the view definition. For
more information on the With Check Option control, see online help for the
Create View dialog.

Updating is supported only if it can be guaranteed (without looking at the
actual data) that the result of updating the view is identical to that of updating
the corresponding base table.

Note: Updating, deleting, or inserting data in a table using views is not
recommended. You cannot update or insert into a view with Query-By-Forms.
You can update, delete, or insert with SQL statements, but you must abide by
the following rules, keeping in mind that an error occurs if you attempt an
operation that is not permitted.

Managing Tables and Views 71

Schemas

Types of Updates Not Permitted on Views

You cannot perform the following types of updates on a view:

 One that involves a column that is a set function (aggregate) or derived
from a computational expression

In the following example of a select statement used to define a view, you
cannot update the tsal column because it is a set function:

select dept, sum(sal) as tsal
 from deptinf group by dept

 One that causes more than one table to be updated

Consider the following example of a select statement used to define a
view:

select e.name, e.dept, e.div, d.bldg
 from emp e, deptinf d
 where e.dept = d.dname and e.div = d.div

Updates to this data must be done through the underlying base tables, not
this view.

 You can update a column that appears in the qualification of a view
definition, as long as the update does not cause the row to disappear from
the view. For example, if the where clause is as follows, update the deptno
from 5 to 8, but not from 5 to 20:

where deptno < 10

Schemas
A schema is a collection of any of the following database objects:

 Tables

 Views

 Grants

Each user can have only one schema consisting of definitions of the above
types of database objects that the user owns. The database objects belong to
the specific schema.

By default, the current user’s schema is always assumed.

72 Ingres 2006 R2 Database Administrator Guide

Synonyms, Temporary Tables, and Comments

Tools for Managing Schemas

In VDBA, a schema is created for you automatically, and objects that you
create are added to your schema. View the contents of your schema using the
Schemas branch for a particular database in the Database Object Manager
window.

If you are not using VDBA, manage schemas directly using the SQL statement,
create schema. This statement allows you to create a schema, create the
tables and views in that schema, and grant appropriate permissions as a unit.
For more information on using this statement, see the SQL Reference Guide.

Various SQL statements allow you to specify a schema name to indicate a
table or view belonging to a schema other than the one associated with the
current user, as described in the SQL Reference Guide.

Synonyms, Temporary Tables, and Comments
The following features are available to the DBA and other users to assist in
manipulating table data and referencing tables:

 Synonyms for table names

 Temporary tables local to an individual session

 Comments for documenting and describing tables

Synonyms

The DBA or any user is allowed to create synonyms for tables, views, and
indexes. These alternate names, or aliases, can be used to define shorthand
names in place of long, fully qualified names.

After a synonym is created, it can be referenced the same way as the object
for which it was created. For example, if you create a synonym for a table or
view, issue select statements using the synonym name, just as you use the
table or view name.

Managing Tables and Views 73

Synonyms, Temporary Tables, and Comments

Working with Synonym Objects

You can perform the following basic operations on synonyms:

 Create synonym objects

 View existing synonym objects, including the detailed properties of each
individual object

 Drop synonym objects

In VDBA, use the Synonyms branch for a particular database in the Database
Object Manager window.

You can also accomplish these tasks using the SQL statements create
synonym and drop synonym. For more information, see the SQL Reference
Guide.

Temporary Tables

Temporary tables are useful in applications that need to manipulate
intermediate results and minimize the processing overhead associated with
creating tables.

Temporary tables reduce overhead in the following ways:

 No logging or locking is performed on temporary tables.

 No page locking is performed on temporary tables.

 Disk space requirements are minimized. If possible, the temporary table is
created in memory and never written to disk.

 No system catalog entries are made for temporary tables.

Because no logging is performed, temporary tables can be created, deleted,
and modified during an online checkpoint.

Temporary tables are:

 Visible only to the session that creates them

 Deleted automatically when the session ends

 Declarable by any user, whether or not the user has the create_table
permission

The declare global temporary table statement is used to create temporary
(session-scope) tables. In VDBA, use the Create Table dialog.

All temporary tables are automatically deleted at the end of the session. To
delete a temporary table before the session ends, issue a drop table
statement.

74 Ingres 2006 R2 Database Administrator Guide

Synonyms, Temporary Tables, and Comments

Temporary Table Declaration and the Optional SESSION Schema Qualifier

The DBMS Server supports two syntaxes for declaring and referencing global
temporary tables:

With the SESSION Schema Qualifier

If the DECLARE GLOBAL TEMPORARY TABLE statement defines the table
with the SESSION schema qualifier, then subsequent SQL statements that
reference the table must use the SESSION qualifier.

When using this syntax, the creation of permanent and temporary tables
with the same name is allowed.

Without the SESSION Schema Qualifier

If the DECLARE GLOBAL TEMPORARY TABLE statement defines the table
without the SESSION schema qualifier, then subsequent SQL statements
that reference the table can optionally omit the SESSION qualifier. This
feature is useful when writing portable SQL.

When using this syntax, the creation of permanent and temporary tables
with the same name is not allowed.

Note: In both modes, a session table is local to the session, which means that
two sessions can declare a global temporary table of the same name and they
do not conflict with each other.

Note: Syntaxes cannot be mixed in a single session. For example, if the table
is declared with SESSION the first time, all declarations must use SESSION.

Examples of Working with Temporary Tables

To create two temporary tables, names and employees, for the current
session, issue the following statements:

declare global temporary table session.names
 (name varchar(20), empno varchar(5))
 on commit preserve rows
 with norecovery
declare global temporary table session.employees as
 select name, empno from employees
 on commit preserve rows
 with norecovery

Note: The “session.” qualifier in the example is optional. If omitted, the name
of the temporary table cannot be the same as any permanent table names.

The names of temporary tables must be unique only in a session.

For more information on working with temporary tables, see the descriptions
for declare global temporary table and drop statements in the SQL Reference
Guide.

Managing Tables and Views 75

Synonyms, Temporary Tables, and Comments

Comments to Describe Tables and Views

When using VDBA, tables and views are self-documenting. For example, you
can see the definition of a view at a glance, as well as its rows and the grants
that have been defined. For a table, you can view its rows and columns, as
well as properties, statistics, and other pertinent information.

When working with tables and views in applications, however, it is helpful to
include commentary about the structure and uses of tables and views.

Tables and views can be commented with:

 Comment lines in SQL or a host language, for example, “/*comment*/” or
“--comment”

 Comments specified with the comment on statement

 Comments in embedded SQL (ESQL) programs specified with the declare
table statement

The Comment On Statement

The comment on statement allows you to add commentary to SQL programs.
Using this statement, you can create a comment for the table as a whole and
for individual columns in the table.

For example, to add a remark on the name column and on the status column
of the employee table:

comment on column employee.name is
 'name in the format: lastname, firstname';

comment on column employee.status is
 'valid codes are:
 01, exempt; 02, non-exempt; 03, temp';

To delete a comment, specify an empty string. For example, the comment on
the status column can be deleted by the statement:

comment on column employee.status is '';

For complete details, see the comment on statement in the SQL Reference
Guide.

76 Ingres 2006 R2 Database Administrator Guide

Synonyms, Temporary Tables, and Comments

The Declare Table Statement

The declare table statement can be used to describe the structure of a table in
ESQL programs. With this statement, you can document the columns and data
types associated with a table.

For example, the employee table can be described with a declare table
statement as follows:

exec sql declare userjoe.employee table
 (
 emp_number integer2 not null not default,
 last_name varchar(20) not null,
 first_name varchar(20),
 birth_date date not null not default
);

For complete details, see the entry for the declare table statement in the SQL
Reference Guide. For information on ESQL programs, see the chapter
“Embedded SQL” in the SQL Reference Guide.

Managing Tables and Views 77

Chapter 5: Populating Tables

This chapter describes how to use the copy statement, which is the fastest and
most flexible method of loading data into tables. It also discusses the fastload
operation and the set nologging statement as other methods of loading data.

Methods of Populating Tables
You can load data into tables using the following methods:

 Copy statement

The copy statement is a good method to use for loading large quantities of
data quickly from files, and is flexible in dealing with record formats.

 The SQL insert statement

Use the insert statement to enter a small amount of data.

 The append mode of Query-By-Forms (QBF)

Use QBF for interactive data entry.

The insert statement and the QBF append mode, as alternatives to the copy
statement, provide the most potential for customized validity checking and
appending to more than one table at a time. For more information on these
alternatives, see the SQL Reference Guide and the Character-based Querying
and Reporting Tools User Guide, respectively.

Copy Statement Syntax
To load data from a table into a file or from a file into a table, use the copy
statement.

Each copy statement must specify only one table name. An optional schema
name can be specified. The table keyword is optional and can be included for
readability.

The table name is followed by a list in parentheses containing none, one, or
more column format specifications, up to the total number of columns in the
table. The column specifications depend on the type of copy being performed.

For additional information on the copy statement, see the SQL Reference
Guide.

Populating Tables 79

Copy Statement Syntax

Copy Into (Unload Data) and Copy From (Reload Data)

The copy statement is bidirectional; it unloads data from a table and loads
data into a table.

The into and from keywords specify the direction of data movement:

 The copy into statement performs the unload operation, copying the data
into a file from the database. For example, to copy the horx table into the
pers.data file, use the following statement:

copy table horx (name=char(20), code=integer)
 into 'pers.data';

 The copy from statement performs the reload operation, copying the data
from a file into the database. For example, to copy the agent table from
the myfile.in file into the database, use the following statement:

copy table agent (ano=integer, code=integer2)
 from 'myfile.in';

A common use of copy is to unload a table for backup to tape or for transfer to
another database. In either case, there is the possibility of reloading the data
into a database later.

80 Ingres 2006 R2 Database Administrator Guide

Copy Statement Syntax

File Name Specification on the Copy Statement

Only one file can be specified in the copy operation. If the file does not exist
when copying to a file, it is created.

Windows: If the file exists, copy overwrites it. When specifying a file name,
always enclose it in single quotation marks. Omit the drive and directory
portion of the file name if the file is in the current directory. Otherwise,
provide a full path name with drive and directory. The following example
shows a full path name; this is an example of Binary Copying (see page 85):

copy emp() from 'D:\users\fred\emp.lis’;

UNIX: If the file exists, copy overwrites it. When specifying a file name,
always enclose it in single quotation marks. Omit the full path name if the file
is in the current directory. Otherwise, provide a full path name. The following
example shows a full path name; this is an example of Binary Copying (see
page 85):

copy emp() from '/usr/fred/emp.lis';

Important! The copy statement is not able to expand $HOME or recognize the
UNIX variables set in your environment. Do not use these variables to specify
a path name for the copy statement. For example, the following copy
statements do not work:

copy emp () from '~fred/emp.lis'; /* invalid */
copy emp () from '$HOME/emp.lis'; /* invalid */

VMS: If the file exists, copy creates another version of the file. When
specifying a file name, you can optionally give a VMS file type:

into | from 'filename[, type]'

where type is text, binary, or variable.

With-Clause Options of the Copy Statement

A with-clause can be used to further describe and control the copy being
performed. For a description of the syntax for the with-clause, see the SQL
Reference Guide. For valid with-clause options, see the Command Reference
Guide.

Populating Tables 81

Copy Statement Operation

Copy Statement Operation
The copy statement allows you to do the following:

 Copy all of a table or selected columns

 Rearrange columns

 Manipulate data formats of the column data

Binary and Formatted Copying

A special form of the copy statement is used to perform a fast copy of an
entire table with no format changes.

 A binary copy is a fast method of copying an entire table.

No column names are specified in a binary copy. For example:

table emp ()

The entire table is moved, byte for byte, with no record delimiters or data
type conversions.

 A formatted copy is performed on selected columns of data (which can
include all columns), with type conversions being performed as necessary
during the copy.

One or more column names are specified in a formatted copy. For
example:

table emp (eno=integer, ename=char(10))

Although this type of copy is not as fast as a binary copy, it allows you to
fully control the columns copied, the column order, and the data type
conversions to be performed.

82 Ingres 2006 R2 Database Administrator Guide

Copy Statement Operation

Bulk and Incremental Copy

When copying data to a table, the copy from statement can run in either of the
following modes:

 Bulk copy

A bulk copy is a copy operation optimized for speed that allows the DBMS
Server to exploit group writes and minimal transaction logging. Bulk
copying is done whenever the characteristics of the target table allows.
The bulk copy can be performed from any source file, either binary or
formatted.

Doing a bulk copy from a binary file is the fastest method to copy large
amounts of data.

 Incremental copy

In incremental mode, data is added to the table using inserts, causing
single-page writes and full transaction logging. Incremental mode is used
for the copy whenever the characteristics of the target table do not allow a
bulk copy to be performed.

Populating Tables 83

Copy Statement Operation

Copy Permissions and Integrities

The copy statement itself does not require permissions to run. However, you
must have permission to access the table being copied. At least one of the
following must apply:

 You own the table.

 You have been granted select (for copy into) or insert (for copy from)
privilege on the table.

 The table has select (for copy into) or insert (for copy from) permission
granted to public.

To copy data in and out of the database as quickly as possible, the copy
statement does not check for:

 Permissions other than select/insert as described above

 Integrities

When copying data into a table, copy ignores any integrity constraints
(defined with the create integrity statement) against the table.

 Constraints

When copying data into a table, copy ignores ISO Entry SQL92 check and
referential constraints (defined using the create table and alter table
statements), but does not ignore unique and primary key constraints.

 Rules

The copy statement does not fire any rules defined against the table.

For information on integrities, constraints, and rules, see the chapter
“Ensuring Data Integrity.”

Locking During a Copy

When you use the copy statement, the locking system takes one of the
following actions:

 A shared lock on the table while data is being copied into a file

 An exclusive lock on the table during bulk copies to the table, for
maximum speed

 An Intended Exclusive lock on the table during an incremental copy to the
table. Because inserts are used to update the table, the copy can
encounter lock contention.

For a complete explanation of locking, see the chapter “Understanding the
Locking System.”

84 Ingres 2006 R2 Database Administrator Guide

Binary Copying

Binary Copying
The binary copy is designed for reloading data into tables that have exactly
the same record layout as those from which the data was unloaded. Those
tables must be on a machine with the same architecture as that from which
they were unloaded.

The utilities designed for quick unloading and reloading of tables or
databases—copydb and unloaddb (and their VDBA equivalent features)—both
use the binary form of copy by default. They automate the process so you can
easily recreate and reload tables of identical layout. For information on copydb
and unloaddb, see the Command Reference Guide.

Copy Data into a Binary File

The quickest form of the copy statement to code and execute for unloading
data into a file is a binary copy. A binary copy always creates a file of type
binary. This statement has the following format:

copy [table] [schema.]tablename () into 'output_filename'
 [standard-with-clauses]

You omit the column list from the copy statement. For example, the following
statement copies the entire dept table into the dept_file file in binary format:

copy dept () into 'dept_file';

The binary copy into statement copies all rows of a table to the output file in a
proprietary binary format, using the order and format of the columns in the
table. It places no delimiters between fields or between records. It performs
no type conversions; all data items retain the type they had in the table.

Unloading data in binary format for backup can be inconvenient if you need to
inspect the file data later.

Note: If any columns have a type other than character, they are not readable
as characters in the output file.

If you unload a table in binary format, the data must subsequently be reloaded
in binary format. You cannot use unloaded binary data to later load tables that
have a different column order, number of columns, data types, or table
structure. To perform these functions, use formatted copy statements.

Populating Tables 85

Formatted Copying

Reload a Table in Binary Format

Use the following form of the copy statement to reload a table from a file
containing data in binary format:

copy [table] [schema.]tablename () from 'output_filename'
 [standard-with-clauses]
 [bulk-copy-with-clauses]

This form of the copy from statement must be used to reload from a binary file
(that is, one created with an empty column list in the copy into statement).

For example, the following statement copies the binary data from the dept_file
file into the new_dept_table table:

copy new_dept_table () from 'dept_file'

The table is recreated with the same column and data type format
specifications as in the original table. If the table characteristics allow, include
bulk copy (see page 95) with clauses.

Formatted Copying
Formatted copying provides a flexible means of copying tables.

Column Name and Format Specifications

When using the copy statement to do formatted copying, specify the column
name and the format in which that column’s data is to be copied, as follows:

column_name = format [null-clause]

The column_name specifies the column from which data is read or to which
data is written. The name in the copy target must be the same as in the copy
source; you cannot change column names in the copy statement.

The format specifies the storage format in which the column values are stored
and delimited. The storage format is based on the data type. The copy
statement can copy all data types except logical keys.

The column names and their formats must be separated by commas, and the
list must be in parentheses.

86 Ingres 2006 R2 Database Administrator Guide

Formatted Copying

Summary of Data Types and Storage Formats

A summary of data types and their storage format characteristics is given in
the table below. For detailed information on storage formats and data
conversions of the various data types, see the SQL Reference Guide.

Class Data Types Description and Copy Notes

Character data char Fixed-length strings with blank padding
at the end.

� char(0)[delim] copies the string
without requiring a specified length,
with a default or specified delimiter
as an end of record.

� char(n) copies n = 1 to x characters.
“x” represents the lesser of the
maximum configured row size and
32,000.

Character data varchar Variable-length strings preceded by a
length.

� varchar(0) copies the string and its
stored length.

� varchar(n) copies n = 1 to x
characters and its stored length,
with null padding at the end. “x”
represents the lesser of the
maximum configured row size and
32,000.

Character data long varchar Stored in segments, and terminated by
a zero length segment. Each segment is
composed of an integer specifying the
length of the segment, followed by a
space and the specified number of
characters. The end of the column data
is specified through a termination, zero
length segment (that is, an integer 0
followed by a space).

Populating Tables 87

Formatted Copying

Class Data Types Description and Copy Notes

 The following example shows two data
segments, followed by the termination
zero length segment. The first segment
is 5 characters long, the second
segment is 10 characters long, and the
termination segment is 0 character long.
The maximum length of each segment is
32737.

5 abcde10 abcdefghij 0 (with a space
after the terminating 0 character)

(In this example, the effective data that
was in the column is abcdeabcdefghij)

If the long varchar column is nullable,
specify the with null clause. An empty
column is stored as an integer 0,
followed by a space.

Unicode data nchar Fixed-length Unicode strings in UTF-8
format (padded with blanks if
necessary).

Unicode data nvarchar Variable-length Unicode string in UTF-8
format preceded by a 5-character, right-
justified length specifier.

88 Ingres 2006 R2 Database Administrator Guide

Formatted Copying

Class Data Types Description and Copy Notes

Unicode data long
nvarchar

Stored in segments, and terminated by
a zero length segment. Each segment is
composed of an integer specifying the
length of the segment, followed by a
space and the specified number of
Unicode characters in UTF-8 format. The
end of the column data is specified
through a termination, zero length
segment (that is, an integer 0 followed
by a space). The maximum length of
each segment is 32727 bytes.

Note: The "number" of Unicode
characters in a segment will be less than
32767. For example, each UTF-16
character in Basic multilingual plane can
occupy 1 to 3 bytes in UTF-8 format.

If the long nvarchar column is nullable,
specify the with null clause. An empty
column is stored as an integer 0,
followed by a space.

The UTF-8 encoded long nvarchar data
segments are similar to long varchar
data segments. For an example of the
encoded data segment, see the
description for long varchar.

Binary data byte Fixed-length binary data with padding of
zeroes at the end.

� byte(0)[delim] copies the data
without requiring a specified length,
with a default or specified delimiter
as an end of record.

� byte(n) copies n= 1 to x bytes. “x”
represents the lesser of the
maximum configured row size and
32,000.

Populating Tables 89

Formatted Copying

Class Data Types Description and Copy Notes

Binary data byte varying Variable-length binary data preceded by
a length.

� byte varying(0) copies the data and
its stored length.

� byte(n) copies n= 1 to x bytes and
its stored length, with zero padding.
“x” represents the lesser of the
maximum configured row size and
32,000.

Binary data long byte Binary data stored in segments, and
terminated by a zero length segment.
Each segment is composed of an integer
specifying the length of the segment,
followed by a space and the specified
number of characters. The end of the
column data is specified through a
termination, zero length segment (that
is, an integer 0 followed by a space).

The following example shows two data
segments, followed by the termination
zero length segment. The first segment
is 5 characters long, the second
segment is 10 characters long, and the
termination segment is 0 character long.
The maximum length of each segment is
32737.

5 abcde10 abcdefghij 0 (with a space
after the terminating 0 character)

(In this example, the effective data that
was in the column is abcdeabcdefghij)

If the long byte column is nullable,
specify the with null clause. An empty
column is stored as an integer 0
followed, by a space.

Numeric data integer1 Integer of 1-byte length (-128 to +127).

Numeric data smallint Integer of 2-byte length
(-32,768 to +32,767).

Numeric data integer Integer of 4-byte length
(-2,147,483,648 to +2,147,483,647).

90 Ingres 2006 R2 Database Administrator Guide

Formatted Copying

Class Data Types Description and Copy Notes

Numeric data decimal Fixed-point exact numeric data, up to 31
digits. Range depends on precision and
scale. Default is (5,0): -99999 to
+99999.

Numeric data float4 Single precision floating point number of
4-byte length (7 digit precision),
-1.0e+38 to +1.0e+38.

Numeric data float Double precision floating point number
of 8-byte length (16 digit precision),
-1.0e+38 to +1.0e+38).

Date/time data ansidate 4-byte binary

Date/time data time 8- or 10-byte binary

Date/time data timestamp 12- or 14-byte binary

Date/time data interval year
to month

3-byte binary

Date/time data interval day
to second

12-byte binary

Abstract data types ingresdate Date of 12-byte length, 1-jan-1582 to
31-dec-2382 (for absolute dates) and -
800 years to 800 years (for time
intervals).

Abstract data types money Exact monetary data of 8-byte length,
$-999,999,999,999.99 to
$999,999,999,999.99

Copy statement only d Dummy field.

� d0delim on copy into, copies the
delimiter into the (empty) field.

� d0[delim] on copy from, skips the
data in the field, up to the default or
specified delimiter.

� dn on copy into, copies the name of
the column n times. On copy from,
skips the field of n characters.

User-defined data
types (UDTs)

 Use char or varchar.

Populating Tables 91

Formatted Copying

Copy Statement and Nulls

When you copy data from a table to a file or vice versa, the with null clause of
the copy statement allows you to substitute a value for nulls.

When you use variable length data formats when copying, you must replace
the null values with some string that represents nulls; for example:

copy table personnel (name=char(20),
 salary=char(0) with null ('N/A'),
 dummy=d0nl)
 into 'pers.data';

After executing this statement, the pers.data file contains “N/A” for each null
salary.

With other data formats, you are not required to substitute a value for nulls.
However, if you do not, your file contains unprintable characters.

When substituting a value for nulls, the value:

 Must not be one that occurs in your data

 Must be compatible with the format of the field in the file:

– Character formats require quoted values

– Numeric formats require unquoted numeric values

Do not use the word null if you are copying to a numeric format. The file does
not accept an actual null character or the word “null” for numeric format.

92 Ingres 2006 R2 Database Administrator Guide

Formatted Copying

Copy Data into a Formatted File

Use the following copy statement to copy table data into a formatted file:

copy [table] [schema.]tablename
 ([column_name = format [with null [(value)]]
 {, column_name = format [with null[(value)]]}])
 into 'output_filename' [standard-with-clauses]

One or more column names appear, with format specifications. The column
names must be the same as those in the table. However, the order of the
columns can be different from the order in which they are currently stored in
the table (except as noted below). Also, the format does not have to be the
same data type or length as their corresponding entries in the table. The data
is copied with any column reorganization or format conversions being made as
necessary.

Note: When copying from a table that includes long varchar or long byte
columns, you must specify the columns in the order they appear in the table.

Two major categories of data that can be unloaded into files are fixed-length
fields and variable-length fields.

Data with Fixed-Length Fields

Fixed-length fields can use implicit or explicit specification of the field length.

 If you use the (0) notation for fixed-length character or byte data, the
length is implicitly specified. For example, if you use char(0), character
columns are copied into the file using the full length of the column.

 Columns containing numeric data (such as integer or float data types) can
be explicitly formatted using the -i or -f SQL option flags. For details on
these flags, see the sql command description in the Command Reference
Guide.

 If you use a length specifier, the field length is explicit. For example, for
char(n), the copy into statement stores exactly n characters. Excess
characters are discarded and shorter columns are padded with blanks.

 The varchar(n) format stores exactly n characters with a leading length
indicator in ASCII format, discarding any excess characters. Shorter
columns are padded with null bytes.

Populating Tables 93

Formatted Copying

Data with Variable-Length Fields

Variable-length data items are written to a file by the copy statement with the
formats:

varchar(0)
long varchar(0)
byte varying(0)
long byte(0)
nvarchar(0)
long nvarchar(0)

An ASCII length is written preceding the data. The length of the data copied
corresponds to the number of characters or bytes in the column, not the width
of the column specified in the create statement. Varchar(0) compresses the
data, whereas char(0) does not.

Reload Formatted Data

Use the following form of the copy statement to reload a table from a file
containing formatted data:

copy [table] [schema.]tablename
 ([column_name = format [with null [(value)]]
 {, column_name = format [with null[(value)]]}])
 from 'input_filename' [standard-with-clauses]
 [bulk-copy-with-clauses]

The input file name can contain user-created data for reading in new data to a
table, or a formatted file created by a copy into statement. You must specify
the column names in sequence according to the order of the fields in the
formatted file (that is, the same order in which they appeared in a copy into
statement). The format does not have to be the same data type or length as
their corresponding entries in the file. The target table can be empty or
populated; in the latter case, the copy from operation merges the new data
from the file with the existing table data. If the table characteristics allow,
include bulk copy (see page 95) with clauses.

94 Ingres 2006 R2 Database Administrator Guide

Bulk Copy

Bulk Copy
The copy statement to reload a table whose characteristics allow a bulk copy
to be performed has the following format:

copy [table] [schema.]tablename
 ([column_name = format [with null [(value)]]
 {, column_name = format [with null[(value)]]}])
 from 'input_filename'
 [with [standard-with-clauses]
 [, allocation = n] [, extend = n] [, row_estimate = n]
 [, fillfactor=n] [, minpages=n] [, maxpages=n]
 [, leaffill=n] [, nonleaffill=n]]

If the file is formatted, you must specify columns in the column list as
described for reloading formatted data. If the file is binary, use an empty
column list.

Bulk Copying Requirements

To perform a bulk copy when loading data from a file into a table, the table
must have the following characteristics:

 The table has no secondary indexes.

 The table is not journaled.

 The table is not partitioned.

 The table is either a heap table (the data from the file is appended to the
end of the heap table) or empty and less than 18 pages in size if the table
is hash, B-tree, or ISAM (the table is rebuilt with the new data from the
file).

If these requirements are not met, the copy is performed in incremental mode.

Populating Tables 95

Bulk Copy

Transaction Logging During Bulk and Incremental Copy

The bulk copy requires only minimal transaction logging.

Note: A transaction is still entered into the log file and normal logging occurs
for the associated system catalogs.

In contrast, an incremental copy can generate a large amount of transaction
log records. The incremental copy requires logging for every record transfer
and every structural change to the table.

An alternative method to reducing logging is described in Large Data Loads
with the Set Nologging Statement (see page 111).

Bulk and Incremental Copy Processing

The processing for a bulk copy is similar to a modify statement, except that
the data comes from an external source rather than an existing table. For a
bulk copy, the copy statement:

1. Reads all data from the source.

2. Deposits the data in the Data Manipulation Facility (DMF) sorter.

3. The sorter sorts all data into the required order.

Note: For a heap table, no sorting is done.

4. The copy extracts the data from the sorter, builds the table, and populates
the table.

In contrast, for an incremental copy, the sequence is to:

1. Read one record from the external file.

2. Add to the table as an insert.

3. Repeat these steps until the data has been copied.

96 Ingres 2006 R2 Database Administrator Guide

Bulk Copy

Bulk Copy With-Clauses

The with clause options on the copy statement for bulk copy operate like the
corresponding clauses in the modify statement.

If these clauses are omitted, the table default values in the system catalogs
are used. If any of these clauses are specified, the values become the new
defaults for the table in the system catalogs.

The following clauses can be used only with a bulk copy:

Note: If these clauses are used with a copy statement with columns specified,
an error message is returned and the copy is not performed.

 with allocation

A bulk copy from can preallocate table space with the allocation clause.
This clause specifies how many pages are preallocated to the table. This
clause can be used only on tables with B-tree, hash, or ISAM storage
structures.For example, preallocate 1000 pages for bulk copying from the
emp.data file into the emp table:

copy emp() from 'emp.data' with allocation = 1000;

VMS: Preallocating space with the allocation clause is important
particularly in VMS installations to increase loading efficiency.

 with extend

A bulk copy from can extend table space with the extend clause. This
clause specifies how many pages the table is extended. This clause can be
used only on tables with B-tree, hash, or ISAM storage structures.

For example, extend table emp by 100 pages for bulk copying from the
emp.data file:

copy emp() from 'emp.data' with extend = 100;

 with row_estimate

A bulk copy can specify an estimated number of rows to be copied during
the bulk copy. It can be a value from 0 to 2,147,483,647 ((231-1). This
clause can be used only on tables with B-tree, hash, or ISAM storage
structures.

For example, set the row estimate on the emp table to one million for bulk
copy from the emp.data file:

copy emp() from 'emp.data' with row_estimate = 1000000;

Populating Tables 97

Bulk Copy

Providing a row estimate can enhance the performance of the bulk copy by
allowing the sorter to allocate a realistic amount of resources (such as in-
memory buffers), disk block size, and whether to use multiple locations for
the sort. In addition, it is used for loading hash tables in determining the
number of hash buckets. If you omit this parameter, the default value is 0,
in which case the sorter makes its own estimates for disk and memory
requirements.

To obtain a reasonable row estimate value, use known data volumes, the
help table statement, and information from the system catalogs. For more
information, see the chapter “Maintaining Storage Structures.” An over-
estimate causes excess resources of memory and disk space to be
reserved for the copy. An under-estimate (the more typical case,
particularly for the default value of 0 rows) causes more sort I/O to be
required.

 with fillfactor

A bulk copy from can specify an alternate fillfactor. This clause specifies
the percentage (from 1 to 100) of each primary data page that must be
filled with rows during the copy. This clause can be used only on tables
with B-tree, hash, or ISAM storage structures.

For example, set the fillfactor on the emp table to 10% for bulk copy from
the emp.data file:

copy emp() from 'emp.data' with fillfactor = 10;

 with leaffill

A bulk copy from can specify a leaffill value. This clause specifies the
percentage (from 1 to 100) of each B-tree leaf page that must be filled
with rows during the copy. This clause can be used only on tables with a
B-tree storage structure.

For example, set the leaffill percentage on the emp table to 10% for bulk
copy from the emp.data file:

copy emp() from 'emp.data' with leaffill = 10;

 with nonleaffill

A bulk copy from can specify a nonleaffill value. This clause specifies the
percentage (from 1 to 100) of each B-tree non-leaf index page that must
be filled with rows during the copy. This clause can be used only on tables
with a B-tree storage structure.

For example, set the nonleaffill percentage on the emp table to 10% for
bulk copy from the emp.data file:

copy emp() from 'emp.data' with nonleaffill = 10;

98 Ingres 2006 R2 Database Administrator Guide

Bulk Copy

 with minpages, maxpages

A bulk copy from can specify minpages and maxpages values. The
minpages clause specifies the minimum number of primary pages that a
hash table must have. The maxpages clause specifies the maximum
number of primary pages that a hash table must have. This clause can be
used only on tables with a hash storage structure.

If these clauses are not specified, the primary page count for the bulk copy
is determined as follows:

– If the copy statement has a row_estimate clause, that size, along with
the row width and fill factor, is used to generate the number of
primary pages.

– Otherwise, the table’s default in the system catalogs is used.

The following example sets the number of primary data pages (hash
buckets) for bulk copying from the emp.data file into the emp table:

copy emp() from 'emp.data' with minpages = 16384, maxpages = 16384

For further details on these with clause options, see the chapter “Maintaining
Storage Structures.”

Populating Tables 99

Bulk Copy

Example: Perform a Bulk Copy to Create a Hash Table

The following sequence of statements allows a bulk copy to be performed. This
example creates a hash table:

create table tmp1
 (col1 integer not null,
 col2 char(25))
 with nojournaling;
 modify tmp1 to hash;
 copy tmp1() from 'tmp1.saved'
 with row_estimate = 10000,
 maxpages = 1000,
 allocation = 1000;

Bulk copy is chosen for the copy because the table is not journaled (it is
created with nojournaling), it has no indexes (none have yet been created),
and the table has under 18 pages (it is a newly created table that has not yet
been populated with data).

The modify to hash operation is quick because the table is empty at this point.
The row_estimate parameter allows a more efficient sort than if the default
estimate (of 0 rows) is used. Additionally, for the hash table, row_estimate
enables the number of hash buckets to be calculated efficiently. This
calculation uses the row width (set by the create table statement),
row_estimate, max_pages, and the (default) fillfactor. The copy statement
includes an allocation clause to preallocate disk space for the table to grow,
increasing efficiency of later row additions.

100 Ingres 2006 R2 Database Administrator Guide

Bulk Copy

Example: Perform Bulk Copy and Create B-tree Table

The following example of a bulk copy uses a B-tree table:

create table tmp2
 (col1 integer not null,
 col2 char(25));. . .
 Populate table. . .
 Save any data needed in table
 modify tmp2 to truncated;
 modify tmp2 to btree;
 set nojournaling on tmp2;
 copy tmp2() from 'tmp2.saved'
 with row_estimate = 10000,
 leaffill = 70,
 fillfactor = 95,
 allocation = 1000;

The existing table tmp2 is truncated to assure it has fewer than 18 pages. This
also removes any indexes. Journaling is disabled for the table with the set
nojournaling statement. The table meets the bulk copy requirements and a
bulk copy is performed.

The copy statement includes a row estimate for efficient sorting during the
copy. The leaffill and fillfactor clauses allow the B-tree table to be set up as
specified during the copy operation. The allocation clause provides for efficient
future table growth.

Example: Perform Bulk Copy into a Heap Table

When a heap table is unjournaled and has no indexes, all copies are performed
using bulk copy, regardless of the size of the table. Bulk copying into a non-
empty heap table is allowed by logging the last valid page before starting the
copy. If an error or rollback occurs, all new pages are marked as free.

Note: The table is not returned to its original size.

For example, in the following sequence of statements, all of the copy
operations into the heap table are done as bulk copies:

 Create a heap table

 Copy to the heap table (table is empty)

 Copy to the heap table (append to the table)

 Perform inserts, updates, and deletes

 Copy to the heap table (append to the table)

Populating Tables 101

Fastload Operation

Fastload Operation
The fastload operation loads data from a binary format file into a single table
in a single database. It loads each contiguous n bytes of data into a new row
in the target table.

The fastload operation can be performed using the fastload command (see the
Command Reference Guide) or in VDBA using the Fastload Table dialog. In
VDBA, you select the desired table from a database and choose a file from
which you want to load the data in the Fastload Table dialog.

102 Ingres 2006 R2 Database Administrator Guide

Fastload Operation

Requirements for Using Fastload

The following requirements must be met to perform a fastload:

 Since the fastload command creates its own server, if simultaneous access
to the database is required for additional sessions, the following DBMS
parameter changes are required for any DBMS that has access to the same
database:

– cache_sharing ON

– fast_commit OFF

– sole_server OFF

 The fastload operation must be able to obtain an exclusive lock on the
table or fastload exits.

 The file’s data format must match the table’s data format.

If the formats do not match, incorrect data are loaded into the table. For
example, if each record in a file contains a 5-byte char and a 4-byte
integer—and this file is loaded into a table that has a 4-byte char field
followed by a 4-byte integer field—fastload reads 8-bytes of the file and
load it as a row into the table. This means that the integer field does not
contain the actual integer in the original file because the last byte of the 5-
byte char field plus 3-bytes of the integer field are interpreted as a 4-byte
integer. The problem grows as more data is read because the data are off
by one more byte for each row.

Check that the record length in the file matches the record length
expected by the table. For tables that do not include large object columns
(such as long varchar and long byte), the record length should match the
row width, as given by the SQL help table statement.

In many cases, fastload is unable to determine the record size of a binary
file (this is the case on all UNIX platforms); in these cases, fastload
generates a message warning that no format checking can be performed.
The warning also contains the expected size of records in the binary file.

 Be aware of the extra data added by the Ingres varchar data type and all
nullable fields. Fastload expects to read a 2-byte integer at the beginning
of a varchar field that contains the length of the varchar data. All nullable
fields must be terminated with a single byte null indicator that determines
whether the field is null.

 Fastload supports all standard table structures when loading into empty
tables. It can also load data into heap tables that already contain rows.

All other table types that contain data require a data sort that merges the
loaded data with the existing data. Fastload does not perform this
function. The data always loads fastest into a heap table with no
secondary indexes.

 Fastload does not support complex data types such as intlist, ord_pair, or
udts.

Populating Tables 103

Fastload Operation

 Binary format files cannot be transported between byte-swap and non-
byte swap machines. The data can be generated programmatically, but
you should be careful to generate the correct record format, taking into
account additional bytes needed for some field types.

Perform a Fastload Operation

To perform a fastload operation (load binary format files into a table), perform
the following steps:

1. Make a backup of the table’s content.

You need a backup because it can be difficult to fix or eradicate loaded
data that is incorrect.

Always check manually that the data has been loaded correctly.

2. Generate a copy of the file you want to fastload by copying it from an
Ingres table that has the same format as the target table, or by creating it
programmatically.

Do the copy in binary format, for example:

copy test() into 'test.out'

3. Enter the fastload command, for example:

fastload fload -file=test.out -table=test

The table “test” in the database “fload” is loaded from the file “test.out”.

4. Observe that a summary of the load displays the row size, number of rows
loaded, and the number of bytes read.

5. Verify manually that the data has been loaded correctly.

Loading Data in a Multi-CPU Environment

It can be faster to use copy instead of fastload if the load is being done in a
multi-CPU environment. Copy is faster because it uses two processes and can
use two CPUs, whereas fastload uses only one CPU. Use copy if a large amount
of sorting is required to load the data. If there is more than one CPU available
on the system, fastload can become CPU—bound on a single CPU.

104 Ingres 2006 R2 Database Administrator Guide

Advanced Use of the Copy Statement

Advanced Use of the Copy Statement
You can perform advanced functions with the copy statement using variations
of the copy command.

Examples in this section use a database that looks like the following:

Table Name Column Name Data Type

Header Orderno
Date
Suppno
Status

integer2
date
integer2
char(1)

Suppinfo Suppno
Suppinfo

integer2
char(35)

Detail Orderno
Invno
Quan

integer2
integer2
integer2

Iteminfo Invno
Descript

integer2
char(20)

Priceinfo Invno
Suppno
Catno
Price

integer2
integer2
integer2
money

Populating Tables 105

Advanced Use of the Copy Statement

Populate Multiple Database Tables Using Multiple FIles

Suppose that the information for the database previously described was stored
in data files outside Ingres, and that those files, “file1” and “file2,” have the
record formats shown below:

orderno,date,suppno,suppinfo,status

orderno,invno,catno,descript,price,quan

The copy statement can be used to load the data from these files into a five-
table database. Assume that the files are entirely in ASCII character format,
with fields of varying length terminated by commas, except for the last field,
which is terminated by a newline.

The following copy statement loads the header table from the first file:

copy table header
 (orderno = char(0)comma,
 date = char(0)comma,
 suppno = char(0)comma,
 dummy = d0comma,
 status = char(0)nl)
 from 'file1';

Each column of the header table is copied from a variable-length character
field in the file. All columns except the last are delimited by a comma; the last
column is delimited by a newline.

Specification of the delimiter, although included in the statement, is not
needed because the copy statement looks for the first comma, tab, or newline
as the field delimiter by default.

The notation d0 used in place of char(0) tells the copy statement to ignore the
variable-length field in that position in the file, rather than copying it. Copy
ignores the column name (in this case dummy) associated with the field
described as d format.

106 Ingres 2006 R2 Database Administrator Guide

Advanced Use of the Copy Statement

Load a Table from Multiple Files

Loading the priceinfo table presents special difficulties. The copy statement
can read only one file at a time, but the data needed to load the table resides
in two files.

The solution to this kind of problem varies with the file and table designs in
any particular situation. In general, a good solution is to copy from the file
containing most of the data into a temporary table containing as many
columns of information as needed to complete the rows of the final table.

To load data from the files into the priceinfo table, do the following:

1. Create a temporary table named pricetemp that contains the orderno
column, in addition to all the columns of the priceinfo table:

create table pricetemp (orderno integer2,
 invno integer2,
 suppno integer2,
 catno integer2,
 price money);

Adding the orderno column to the temporary table is that it enables you to
join the temporary table to the header table to get the supplier number for
each row.

2. Copy the data from file2 into the pricetemp table:

copy table pricetemp (orderno = char(0), invno =
 char(0), catno = char(0), dummy = d0, price =
 char(0), dummy = d0) from 'file2';

3. Insert into the priceinfo table all rows that result from joining the
pricetemp table to the header table. (In VDBA, use an SQL Scratchpad
window to execute the statement.)

insert into priceinfo (invno, suppno, catno,price)
 select p.invno, h.suppno, p.catno,
 p.price from header h, pricetemp p
 where p.orderno = h.orderno;

4. Destroy the temporary table pricetemp:

drop pricetemp;

Populating Tables 107

Advanced Use of the Copy Statement

Multi-line File Records

Another feature of the copy statement is that it can read multiline records
from a file into a single row in a table. For instance, suppose that for viewing
convenience, the detail file is formatted so that each record requires three
lines. That file looks like this:

1, 5173
10179A, No.2 Rainbow Pencils
0.29
1, 5175
73122Z, 1998 Rainbow Calendars
4.90

Load these values into the pricetemp table with the following copy statement:

copy table pricetemp (orderno = char(0)comma, invno = char(0)
 nl, catno = char(0)comma, descript = d0nl, price =
 char(0)nl) from 'file2';

It does not matter that newlines have been substituted for commas as
delimiters within each record. The only requirement is that the data fields be
uniform in number and order, the same as for single-line records.

Load Fixed-Length and Binary Records

The copy statement can also load data from fixed-length records without any
delimiters in or between the data. In addition, numeric items in the file can be
stored in true binary format. For example, the value 256 can be stored in a 2-
byte integer instead of 3 characters. The order header file has the following
record layout:

orderno date suppno suppinfo status

The data type formats for each of the fields is as follows:

(2-byte int) (8 chars) (2-byte int)
(35 chars) (1 char)

In this case, you code the copy statement to load the header table as follows:

copy table header (orderno = integer2,
 date = char(8),
 suppno = integer2,
 dummy = char(35),
 status = char(1))
 from 'file1';

It is also possible to copy data from files that contain both fixed and variable-
length fields.

108 Ingres 2006 R2 Database Administrator Guide

Advanced Use of the Copy Statement

Considerations When Loading Large Objects

Large objects are long varchar and long byte data types. Long varchar is a
character data type, and long byte is a binary data type with a maximum
length of 2 GB.

There are considerations when copying large objects into a table.

Considerations for Copying Formatted Large Objects

A column with large objects is specified for copying with the formats:

long varchar(0)
long byte(0)
long nvarchar(0)

Note: You cannot use a length specifier or a delimiter.

To handle the large size, copy deals with these data types in a similar manner
as the data handlers: the data is broken up into segments for copying to a
data file.

Each segment consists of the length, followed by a space delimiter, followed
by the data. There is no space following a data segment (because copy knows
how many bytes of data to read).

The basic structure of a formatted segment is:

integer = length of segment
space = delimiter
char|byte(len) = data

The last segment, or an empty object, is denoted by a zero length, followed by
its space delimiter:

0 = length of segment
space = delimiter

Thus, the data is segmented as:

length1 segment1 segment1length2 segment2...lengthn segmentn0
 ^ ^ ^ ^ ^ ^
 space space space space space space

The segments of the long nvarchar are UTF-8 transformation of Unicode
values.

For formatted copies on large object data that contain nulls, the with null
clause must be specified with a value.

Populating Tables 109

Advanced Use of the Copy Statement

Example: Copying Formatted Large Objects

Consider the sample table, big_table, that was created with the following
create table statement:

create table big_table
 object_id integer,
 big_col long varchar);

This table can be copied to the big_file file with the following copy statement:

copy table big_table (object_id integer, big_col long varchar) into 'big_file';

Considerations for Binary Copying a Large Object

The data file format is slightly different when you copy a large object in a
binary copy (that is, without column specifications).

The binary file has an extra character after the end of the last segment of a
nullable column. (A nullable column is one that was created with null). The
length is not followed by a space character. The basic structure of a binary
segment is:

integer2 = length of segment
char|byte(len) = data

The last segment, or an empty object, is denoted by a zero length, followed (if
the column is nullable) by a character indicating whether the column is null
(=0) or not null (=1):

0 = length of segment
[char(1) = 0 column is not null
 1 column is null]

Thus, a non-nullable column is segmented as:

length1 segment1 segment1 length2 segment2...lengthn segmentn0

A nullable column is segmented as:

length1 segment1 segment1 length2 segment2...lengthn segmentn0 0
 ^
 1 character

Empty and null strings appear as follows:

 A non-nullable empty string consists solely of the zero integer length.

 A nullable empty string consists solely of the end zeros: the zero integer
length and the zero “not null” character indicator.

 A null indicator consists of “01”: an end zero integer length and the null
character indicator of “1.”

110 Ingres 2006 R2 Database Administrator Guide

Large Data Loads with the Set Nologging Statement

Large Data Loads with the Set Nologging Statement
The set nologging statement allows you to bypass the logging and recovery
system. This can be time-efficient for certain types of batch update operations
but must always be used with extreme care.

The set nologging statement is intended to be used solely for large database
load operations for which the reduction of logging overhead and logfile space
usage outweigh the benefits of having the system recover automatically from
update errors.

Suspend Transaction Logging

To suspend transaction logging for the current session, issue the following
statement:

set nologging

This statement can be issued only by the DBA of the database on which the
session is operating and cannot be issued while currently executing a multi-
statement transaction.

Affects of the Set Nologging Statement

After the set nologging statement is issued, updates performed by the current
session are not recorded in the log file or journal files. Updates are not
reapplied if the database is rolled forward from a checkpoint, and updates do
not appear in an audit trail. When transaction logging is suspended:

 Any error (including interrupts, deadlock, lock timeout, and force-abort, as
well as any attempt to roll back a transaction) results in an inconsistent
database.

 The rollforwarddb operation from journals is disabled until the next
checkpoint.

Populating Tables 111

Large Data Loads with the Set Nologging Statement

Before Using the Set Nologging Statement

To use the set nologging option, you as the DBA must:

 Obtain exclusive access on the database to ensure that no updates (other
than those performed by the batch update operation) can occur during the
operation.

 Prepare to recover the database before suspending logging. There are two
cases:

– For existing databases, checkpoint the database prior to executing the
operations that use the set nologging statement. If an error halts
processing, the database can be restored from the checkpoint and the
process restarted.

– If loading a new database, no checkpoint is required. You can handle
consistency errors by destroying the inconsistent database, creating a
new database, and restarting the load operation.

Important! Do not use the set nologging statement in an attempt to improve
performance during everyday use of a production database. Because the
recovery procedures for failed nologging transactions are non-automated and
require full database restoration, you must consider other methods if database
load performance needs improving. For assistance, see the chapter “Improving
Database and Query Performance.”

Restore Transaction Logging

To resume logging, issue the following statement:

set logging

The set logging statement re-enables logging for a session for which the set
nologging statement was issued.

After set logging is executed, automatic database recovery is again
guaranteed.

If you use set nologging on a journaled database, take a new checkpoint
immediately after completion of the set nologging operations to establish a
new base from which to journal updates.

When a session operation in set nologging mode disconnects from a database,
a set logging operation is implicitly executed to bring the database to a
guaranteed consistent state before completing the disconnect.

112 Ingres 2006 R2 Database Administrator Guide

Large Data Loads with the Set Nologging Statement

Example: Use a Set Nologging Application to Load a New Database

Here is an example sequence of using a set nologging application to load a
new database:

1. Create the database.

2. Start the program to load the new database with data. The program
includes a set nologging statement to bypass transaction logging during
the data load.

3. If any errors are encountered, destroy the database and repeat Steps 1
and 2.

4. Issue a set logging statement to resume normal operations.

5. Checkpoint the database and enable journaling to enable rollforward
recovery on this database.

Example: Use a Set Nologging Application to Load an Existing Database

The following sequence uses a set nologging application to load data to an
existing database:

1. Checkpoint the database and disable journaling by entering the following
command at the operating system prompt:

ckpdb -j dbname

(In VDBA, use the Checkpoint dialog.)

2. Start the program to load the database with the new data. The program
does the following:

 Locks the database exclusively to prevent other applications from
using the database until the load is complete.

 Includes a set nologging statement to bypass transaction logging
during the data load.

3. If any errors are encountered, restore the database from the checkpoint
(you can use the Database Rollforward DB menu in VDBA) and repeat Step
2.

4. Issue a set logging statement to resume normal logging operations.

5. Turn journaling back on for the database by checkpointing the database:

ckpdb +j dbname

This establishes a new point from which rollforwarddb processing can be
done.

The load is complete. The database can be made accessible to other
applications.

Populating Tables 113

Successful Use of the Copy Statement

Successful Use of the Copy Statement
When using the copy statement, you should avoid common problems and learn
to use the statement correctly. Specifically, you should understand how to do
the following:

 Check integrity errors

 Avoid reloading problems

 Control error handling

 Troubleshoot data loading

How You Check for Integrity Errors

When you use the copy statement, the data being copied is not checked for
integrity errors.

To check the integrity of your data before using the copy statement, follow
these steps:

1. Use the create integrity statement (or the equivalent feature in VDBA) to
impose the integrity constraint. For example:

create integrity on personnel
 is name like '\[A-Z\]%' escape '\';

If the search condition is not true for every row in the table, an error
message is returned and the integrity constraint is rejected.

2. If the integrity constraint is rejected, find the incorrect rows; for example:

select name from personnel
 where name not like '\[A-Z\]%' escape '\';

3. Use Query-By-Forms to quickly scan the table and correct the errors.

4. After ensuring that the data is correct, use the copy statement to load or
unload your table.

As an additional check that the information was copied correctly, apply the
integrity constraint after copying the table.

For more information on integrity checking and integrity constraints, see the
chapter “Ensuring Data Integrity.”

114 Ingres 2006 R2 Database Administrator Guide

Successful Use of the Copy Statement

Reloading Problems

When using the copy from statement, the following problems in the copy file
are the most frequent causes for error messages:

 Invalid data

 Miscounting fixed-length field widths

 Neglecting the nl delimiter in the copy statement

 Omitting delimiters between fields

 Including too many delimiters

Invalid Data in the Copy File

If you try to load invalid data into a field, the row is rejected.

For example, the following record is rejected because February has only
twenty-eight or twenty-nine days:

559-58-2543,31-feb-1998,Weir,100000.00,Executive

Miscounted Fixed-Length Field Widths in the Copy File

If the widths of fixed-length fields are not correct, the copy statement can try
to include data in a field that it cannot convert to the appropriate format.

For example, you receive an error message if you try to copy this row:

554-39-2699 01-oct-1998 Quinn 28000.00 Assistant

with the following copy statement:

copy table personnel (ssno = char(20),
 birthdate = char(11),
 name = char(11),
 salary = char(9),
 title = char(0)nl)
 from 'pers.data';

Because you specified char(20), or 20-character positions, for the ssno field,
the copy statement includes part of the birth date in the value for the ssno
field. When the copy statement tries to read the birth date, it reads
“998 Quinn 2” which is not a valid date if birth date is defined as a date field;
if defined as a char field, you get an “unexpected EOF” error.

Populating Tables 115

Successful Use of the Copy Statement

No nl Delimiter in the Copy File

When using fixed-length specifications in the copy statement, you must
account for the “nl” (newline) character at the end of the record.

For example, you receive an error message if you try to copy these records:

554-39-2699 01-oct-1998 Quinn 28000.00 Programmer
335-12-1452 23-jun-1998 Smith 79000.00 Sr Analyst

with the following copy statement:

copy table personnel (ssno = char(12),
 birthdate = char(12),
 name = char(6),
 salary = char(9),
 title = char(10))
 from 'pers.data';

The format specified for the title field is char(10), which does not account for
the newline character. The newline characters are converted to blanks, and
the extra characters force the copy statement to begin reading a third record
that ends abnormally with an unexpected end of file. Use char(10)nl to avoid
this problem.

Omitted Delimiters Between Fields in the Copy File

If you omit delimiters between fields in the data file, the record is rejected.

For example, the first record below has no delimiter between the employee’s
name and her salary:

123-45-6789,01-jan-1998,Garcia33000.00,Programmer246-80-1357,02-jan-
1998,Smith,43000.00,Coder

If you try to copy these records with the following copy statement, you receive
an error message because the copy statement attempts to read “Programmer”
into the “salary” field:

copy table personnel
 (ssno = char(0),
 birthdate = char(0),
 name = char(0),
 salary = char(0),
 title = char(0)nl)
 from 'pers.data';

116 Ingres 2006 R2 Database Administrator Guide

Successful Use of the Copy Statement

Too Many Delimiters in the Copy File

Be careful not to include too many delimiters in the data file. This mistake
frequently occurs when you use the comma as a delimiter and it also appears
in the data.

For example, in the first row, the salary value contains a comma:

123-45-6789,01-jan-1998,Garcia,33,000.00,Programmer

246-80-1357,02-jan-1998,Smith,43000.00,Coder

If you try to copy these records with the following copy statement, you receive
an error message:

copy table personnel
 (ssno = char(0),
 birthdate = char(0),
 name = char(0),
 salary = char(0),
 title = char(0))
 from 'pers.data';

You receive an error because the copy statement reads:

 “33” as the “salary”

 “000.00” as the “title”

 “Programmer” as the next “ssno”

It attempts to read “246-80-1357” as the birthdate, which produces the error.

If you specified “title = char(0)nl”, the copy statement still reads “33” as the
salary, but it reads “000.00,Programmer” as the title. This is because it looks
for a newline rather than a delimiter at the end of the title. It reads the next
row correctly. Although an error message is not generated, the title field for
one row is incorrect.

Error Handling with the Copy Statement

When using the copy statement, use the various options on the with clause to
control how invalid data is handled.

Populating Tables 117

Successful Use of the Copy Statement

Stop or Continue the Copy

Use the with on_error clause to stop or continue copying the data when an
error occurs. In the following example, the copy continues after finding an
error:

copy table personnel
 (name= char(0),
 dept = char(0)nl)
 from 'pers.data'
 with on_error = continue;

The default is to terminate at the first error.

Stop the Copy After a Specified Number of Errors

To stop the copy after a certain number of errors, specify an error count with
the error_count=n clause. For example:

copy table personnel
 (name = char(0),
 dept = char(0)nl)
 from 'pers.data'
 with error_count = 10;

The default error_count is 1.

This clause is not meaningful when used with the on_error=continue clause.
See the Error_ Count Option for the copy statement in the SQL Reference
Guide.

Roll Back Rows

By default, copying data stops after finding an error. If you do not want to
back out the rows already copied, specify with rollback = disabled. For
example:

copy table personnel
 (name = char(0),
 dept = char(0)nl)
 from 'pers.data'
 with rollback = disabled;

Use the with rollback clause with the copy from statement only. Rows are
never backed out of the copy file if copy into is terminated. For additional
information, see the SQL Reference Guide.

118 Ingres 2006 R2 Database Administrator Guide

Successful Use of the Copy Statement

Log Errors During Copy

Use the with log clause to put invalid rows into a log file for future analysis.
The following query is terminated after ten errors, and these errors are placed
in a log file named badrows.data:

copy table personnel
 (name = char(0),
 dept = char(0)nl)
 from 'pers.data'
 with error_count = 10,
 log = 'badrows.data';

Continue the Copy and Log Errors

By using both log and on_error = continue in the clause, put invalid rows in a
log file and continue to process valid ones. Correct the rows in the log file and
load them into the database. For example:

copy table personnel
 (name = char(0),
 salary = char(0)nl)
 from 'pers.data'
 with on_error = continue,
 log = 'badrows.data';

Troubleshooting Tips for Data Loading

Follow these tips if you have trouble loading your data into the designated
tables:

 Try loading two rows from the data file to the table until you succeed.
Check the database table to be sure the results are accurate and copy the
entire file.

 Use the copy statement options to continue on error and log records that
fail; examine the records later. Details are described in Control Error
Handling with the Copy Statement (see page 117).

If you are not able to load data from binary files:

 Make sure that the data comes from exactly the same machine
architecture. Integer and floating point formats can differ between
machines.

 Pick apart your data column by column, using dummy delimiters for the
rest of the row until the copy statement succeeds.

 If all else fails, get an ASCII copy of the data so you can correct errors.

Populating Tables 119

Chapter 6: Loading and Unloading
Databases

This chapter provides information on how to unload and reload a database or
selected tables using the unload database and copy database operations of
Ingres.

The unload database and copy database operations are most often used to
copy or move a database or selected tables from one instance to another.
They allow you to copy or move data from one instance to another instance
with the same or different hardware or operating system.

You can also use these commands to:

 Copy a database or tables from one database to another on the same
instance

 Document your database or specific tables using the “create” scripts
produced by these operations

 Make static copies of your database or selected tables for the purpose of
recovery

 Archive data that you want to purge from the database or reload later

This chapter also briefly describes the genxml and xmlimport utilities, which
can be used to convert Ingres data into XML. XML is a cross-platform, software
and hardware independent format for transmitting information across the
Internet. The XML data files produced can also be processed by other XML-
enabled databases and applications.

Loading and Unloading Databases 121

Unload and Copy Operations

Unload and Copy Operations
The unload database and copy database operations generate scripts that
enable you to:

 Unload an entire database to external binary or ASCII files

 Copy selected tables, or all the tables, views, and procedures that you own
to external binary or ASCII files

 Reload the database or objects from these files

 Export table data into XML format using the genxml utility

 Import XML data files into Ingres, using the xmlimport utility

Both the unload database and copy database operations are two-phase
operations, as follows:

1. Create a script to unload or copy the table or database.

2. Execute the script to copy data out of a database and into another
database.

Privilege Required for Unload Operation

To unload a database, you must be the DBA for the database or a privileged
user impersonating the DBA.

Privilege Required for Copy Operation

To copy a database, you can be any user to copy selected tables or all the
tables, views, and procedures that you own in the database.

Unload Operation
The unload database operation allows you to completely unload a database
and reload it. You can unload an entire database or merely the objects owned
by a particular user.

The unload database operation destroys the extended system catalogs and
recreates them before loading the data. This is done to guarantee that the
data is loaded into system catalogs identical to the ones from which they were
unloaded.

122 Ingres 2006 R2 Database Administrator Guide

Unload Operation

Objects That Are Unloaded

The unload database operation unloads all of the objects and system catalogs
in your database, including:

 Tables

 Views

 Database procedures

 Forms

 Reports

 Graphs

 Application-By-Forms definitions

 JoinDefs

 QBFNames

 Associated permissions, integrities, and indexes

 Rules

 Dbevents

 Comments

 Synonyms

When iidbdb (the Ingres master database) is the database being unloaded, the
following objects are also included:

 Groups

 Roles

 Database-level privileges

Ways to Perform the Unload Database Operation

You can unload and reload a database using VDBA or system commands.

In VDBA, start by using the Generate unload.ing and reload.ing dialog. This
dialog is invoked by selecting a database and choosing the Database menu,
Generate Scripts, and Unloaddb. For the detailed steps for performing unload
and reload in VDBA, see online help.

At the command line, you can accomplish these tasks using the unloaddb and
sql commands. For more information, see the Command Reference Guide.

Loading and Unloading Databases 123

Unload Operation

Options on the Unload Database Operation

Some of the options that are available for unloading and reloading are:

 Create printable data files

 Directory name

 Source directory

 Destination directory

Files Created During the Unload Database Operation

When you unload a database, several files are created. To ensure compatibility
across all systems, the names of the generated files are truncated to twelve
characters.

The generated files are as follows:

unload

Contains operating system commands to invoke a terminal monitor and
execute the copy.out script

copy.out

Contains copy statements to copy out system catalogs and all user objects

reload

Contains operating system commands to invoke a terminal monitor and
execute the copy.in script

copy.in

Contains statements to destroy, create and copy in system catalogs and all
user objects

The unload and reload command files have the .bat extension on Windows
systems and the .ing extension on UNIX and VMS systems.

124 Ingres 2006 R2 Database Administrator Guide

Unload Operation

Unload in ASCII or Binary Format

When unloading a database, you should unload the files in ASCII format unless
you are copying the database to another instance on the same machine or to a
binary-compatible machine. In these cases, use binary format.

If you are not sure, use ASCII format.

Unloading in ASCII format allows you to:

 Move databases to an instance with a different machine architecture

 Edit the data files before reloading them into a database

To unload the database files in ASCII format, specify the -c option (create
printable data files) on the copydb command. (In VDBA, use the Create
Printable Data Files option in the Generate copy.in and copy.out dialog.)

To unload the database files in binary format, do not specify the -c option.

Note: The -c option can affect the value of floating point numbers. More
information can be found in Floating Point Specification for Unload (see
page 125).

Note: Copying between releases of Ingres with different major release
identifiers can cause problems if new columns were added to a later release to
support new features. If you have made use of these new features in the later
release and attempt to unload and reload into an earlier release that did not
support the new feature, the reload produces an error. A simple editing of the
reload scripts to avoid loading the non-existent columns avoids this problem.

Caution! If you unload the files in binary format, do not edit them. Editing
prevents you from reloading them.

Floating Point Specification for Unload

In the unload and reload command files, the floating point specification
defaults to maximum precision and length (-f8F79.38).

To reduce precision or length, edit the floating point specification in these files.
If you do not, zeros with no significance can consume disk space in the
external data files. If overflow occurs, you can specify another flag for the
output format, for example, N instead of F in the floating point specification.

Precision of formatted character output of floating point numbers is also
controlled with the -f flag of the sql command. For details, see the Command
Reference Guide.

Loading and Unloading Databases 125

Unload Operation

Unload to Another Instance

When you unload a database with the Destination Directory and/or Source
Directory options specified in the Generate unload.ing and reload.ing dialog,
direct where the data is copied to and from. This can be on the same machine
or a different machine.

When you run the unload command file, the copy.out script is executed. The
copy.out script generates the data files in the destination directory. If you
have specified a source directory, you must move the copy.in script and the
data files to this directory. When you run the copy.in script, the user objects
are created and the tables are populated with the data from the source
directory.

Locking While Unloading a Database

When you perform the unload database operation or execute the unload
command file, the locking system takes shared locks on the system catalogs
and tables being unloaded.

When you execute the reload command file, the locking system takes
exclusive locks on the system catalogs and user tables being reloaded.

Inconsistent Database During an Unload

There are two major ways that a database can become inconsistent during the
unloading of a database:

 By default the database is not exclusively locked while the unload
database scripts are being created or the unload command file is running.
Because of this default, a user can alter tables that are not locked during
this time.

 A user can alter the database after you have created the unload database
scripts but before you have executed the unload command file.

If a user drops a table in this interval, it generates an error message.
However, if a user makes either of the following changes during this time,
no error message is generated, and you do not know about the change:

– Adds or deletes rows from a table

– Adds a table

To ensure the consistency of the database while it is being unloaded, lock it
exclusively.

126 Ingres 2006 R2 Database Administrator Guide

Copy Operation

Lock Database Exclusively During Unload

To lock the database exclusively during an unload operation, edit the unload
script and add the sql command -l flag to the script, before running the unload
command file.

Doing this ensures the consistency of the database.

Copy Operation
The copy database operation enables a DBA or non-DBA to copy the following:

 Selected tables and views in a database

 All of the user objects, including tables, views, and procedures, that you
own in a database

Ways to Perform the Copy Database Operation

To perform the copy database operation in VDBA, you use the Generate
copy.in and copy.out dialog. This is invoked by selecting a database and
choosing the Database menu, Generate Scripts, and Copydb.For the detailed
steps for performing this procedure, see online help.

You can accomplish this task at the command line using the copydb command.
For more information, see the Command Reference Guide.

Options on the Copy Database Operation

Some of the options that are available for copying a database are:

 Specify tables

 Create printable data files

 Directory name

 Source directory

 Destination directory

Loading and Unloading Databases 127

Copy Operation

Objects that Are Copied

The database objects copied in the copy database operation depend on
whether tables are specified for the operation.

The following table shows what is copied in each situation:

Options Specified What Is Copied

No options specified. All tables, views, and procedures (owned by the
user who performed the copy database operation)
and associated indexes, integrities, events,
permissions, and rules.

Table/views specified. Specified tables or views (owned by the user who
performed the copy database operation) and
associated indexes, integrities, events,
permissions, and rules.

For further flexibility in the statements written to the copy.in script, you can
use additional flags so that the generated scripts contain statements to
manipulate only certain database objects. The flags can be used with the
specified tables or views to print statements for any particular table or view.

For example, use the –with_index flag to print statements only related to
index.

For more information on these flags, see the copydb command description in
the Command Reference Guide.

128 Ingres 2006 R2 Database Administrator Guide

Copy Operation

Scripts Produced by the Copy Database Operation

When you perform the copy database operation, the following two scripts are
produced:

copy.out

The copy.out script contains query language statements to copy your
tables to operating system files. The script contains a copy statement for
each table being copied

copy.in

The copy.in script contains query language statements to recreate your
tables, views, procedures, and associated indexes, permissions, and
integrities, and copy the table’s data from the operating system files into a
database.

To copy the tables out of the database, you run the copy.out script. To copy
them into the same or another database, you run the copy.in script.

If you specify a particular table or view, the copy.in script contains statements
to recreate the specified table or view only (along with applicable permissions
and so on). The script does not contain statements to create all tables, views,
and procedures.

Ingres tables can also be copied into XML format, as described in Generate
and Import XML Operations (see page 140).

Loading and Unloading Databases 129

Copy Operation

Reloading Order

When using the copy.in script, database objects are reloaded in the following
order:

 Users, groups, and roles (only when recreating the iidbdb)Tables

Alter table statements are used as needed for deferred creation of
referential integrities.Data

The unload database operation (using the unloaddb command) handles all
data types, including decimal data, large objects, and User Data Types
(UDTs). More information can be found in Considerations When Loading
Large Objects (see page 109) and Column Name and Format Specifications
(see page 86).

 Table permissions

Permissions are recreated to the original time stamp order, and can or
cannot be those of the table owner (depending on the grant options for the
table).

 Indexes, index modifications, and integrities

 Views and related permissions

Like tables, these are recreated to the original time stamp order.

 Synonyms

 Database procedures and related permissions

Procedures depend on tables, views, events, and synonyms. Procedures
can also see other procedures. To handle reloading of procedures, two
passes are made during the unload database process through the
iiprocedures catalog (see page 503).

 Comments

130 Ingres 2006 R2 Database Administrator Guide

Copy Operation

Copy in ASCII or Binary Format

When copying a database, you should copy the files in ASCII format unless
you are copying the database to another instance on the same machine or to a
binary-compatible machine. In these cases, use binary format.

If you are not sure, use ASCII format.

Copying the files in ASCII format allows you to:

 Move the tables you own to an instance with a different machine
architecture

 Edit the data files before copying them into a database

To copy the database files in ASCII format, specify the -c option (create
printable data files) on the copydb command. (In VDBA, use the Create
Printable Data Files option in the Generate copy.in and copy.out dialog.)

To copy the database files in binary format, do not specify the -c option.

Note: The -c option can affect the value of floating point numbers, as
described in Floating Point Specification for Copy Database (see page 131).

Note: Copying between releases of Ingres with different major release
identifiers can cause problems if new columns were added to a later release to
support new features. If you have made use of these new features in the later
release and attempt to copy out and copy in to an earlier release that did not
support the new feature, the copy in operation produces an error. Additionally,
new reserved words can have been added and can require renaming tables
and/or columns. To avoid this problem, simply edit the copy.in script to avoid
loading the non-existent columns, or renamed tables or columns.

Caution! If you copy the files in binary format, do not edit them; doing so
causes problems.

Floating Point Specification for Copy Database

When you execute the sql command to run the copy.out and copy.in scripts,
the floating point specification defaults to 10 positions with 3 to the right of
the decimal. If your data requires more precision, change the precision mask
by using the -f flag with the sql command when you run the copy.out and
copy.in scripts.

For a description of the floating point (-f) flag parameters that is used with the
sql command, see the Command Reference Guide.

Loading and Unloading Databases 131

Copy Operation

Copy a Database to Another Instance

When copying a database, you can direct where the data is copied to and from
by specifying a destination directory and a source directory. The directories
can be on the same machine or different machines.

When you run the copy.out script, the data files are generated in the
destination directory. If you have specified a source directory, you must move
the copy.in script and the data files to this directory. When you run the copy.in
script, the user objects are created and the tables are populated with the data
from the source directory.

In VDBA, use the Destination Directory and/or Source Directory options
specified in the Generate copy.in and copy.out dialog.

Locking While Copying a Database

When you create the copy database scripts or execute the copy.out script, the
locking system takes shared locks on the tables being copied.

When you execute the copy.in script, the locking system takes exclusive locks
on the tables being copied in.

Inconsistent Database During Copy Operation

There are two major ways that the database can become inconsistent during
the creation of copy database scripts or the execution of the scripts:

 Because shared locks are taken on the tables being copied while the copy
scripts are being created or copy.out is being executed, a user can alter
the tables that are not locked during this time.

 A user can alter the tables being copied after you run the copy.out script,
but before you have run the copy.in script.

If a user drops a table in this interval, it generates an error message.
However, if a user makes either of the following changes during this time,
no error message is generated, and you do not know about the change:

– Adds or deletes rows from a table

– Adds a table

To ensure the consistency of the tables being copied, lock them exclusively
while they are being copied.

132 Ingres 2006 R2 Database Administrator Guide

Copy Individual Database Objects

Lock Database Exclusively When Copying

Locking ensures the consistency of the tables being copied.

To lock tables exclusively when copying them, use the sql command with -l
flag when you run the copy.out script, as follows:

sql -l dbname <copy.out

Copy Individual Database Objects
Tables, forms, and other user objects can be moved or copied from one
database to another by using various copying techniques.

Note: Make sure that there is a current backup of the database before
performing any of the procedures. If there is a problem in moving the object,
restore the original. For details, see the chapter “Backing Up and Recovering
Databases.”

To transfer a database object from one database to another, use the
appropriate copy method, as described.

Command Scripts

The copy command creates scripts that do the following:

 Copy out the object from the current database

 Recreate the object and copy back the saved data into the new database

Prepare to Copy a Database Object

Before you copy a database object, check whether the user already owns an
object by the same name in the new database.

In the case of a table, it must be destroyed before proceeding.

Caution! If you fail to do this, the new table cannot be successfully created,
and you can potentially populate the existing table with unwanted data.

For other user objects (forms, reports, and applications) be aware that the
object being moved can replace an object with the same name in the new
database.

Loading and Unloading Databases 133

Copy Individual Database Objects

Copy a Database Object

Follow these basic steps to copy a database object:

1. Check for duplicate objects, as described in Prepare to Copy a Database
Object (see page 133).

2. Log in as the DBA of the old database or as a privileged user who can
impersonate the DBA (by using the -u flag for commands or by using the
Users branch in the Virtual Nodes window in VDBA).

3. Use the relevant copy method to copy the object out of the database into
an intermediate file.

4. Set the protections on the file copy.in or intermediate file and the data
files so that you can access them after you log in as the DBA of the new
database.

5. Log in as the DBA of the new database.

6. Using the relevant copy method in input mode, copy the intermediate file
into the new database.

There are now two copies of the object, one in each database.

7. To remove the original object, the DBA or privileged user must use the
applicable Ingres tool as the original owner (by using the -u flag for
commands or by using the Users branch in the Virtual Nodes window in
VDBA) and delete the copy of the object.

Copy Tables

To copy or move data between databases, copy the relevant tables from the
current database into another database.

In VDBA, use the Generate copy.in and copy.out dialog, invoked from the
Copydb command from the Database Generate Scripts submenu. The detailed
steps for performing these procedures can be found in online help.

To accomplish these tasks using system commands, use the copydb and sql
commands.

134 Ingres 2006 R2 Database Administrator Guide

Copy Individual Database Objects

Example: Move a Table to Another Database

In this example, the DBA moves the customers table, owned by John, from the
accounts database to the orders database:

1. Enter the following command at the operating system prompt:

copydb -ujohn accounts customers

The copy.in and copy.out scripts are generated.

2. Enter the following commands in sequence:

sql –ujohn accounts <copy.out
sql –ujohn orders <copy.in

There are now two copies of the customers table: one in the accounts
database and one in the orders database.

3. The DBA removes the old table by logging into the Terminal Monitor (sql)
as -ujohn and issues the following statement:

DROP TABLE customers

Copy Forms

Copy or move one or more forms from one database to another using the
copyform command.

There are two forms of syntax, one without the –i flag, which copies the forms
from a database to a file. The next form, using the –i flag, copies the forms
from the text file into a database.

If you are copying a form that already exists in the new database and you do
not use the -r flag, you are prompted as to whether you want to overwrite the
existing form. To do so, you select Yes. If the -r flag is specified with
copyform, the form is automatically overwritten.

The copyform command can also be used with -q and -j flags, for copying
QBFNames and JoinDefs. For a complete description of the flags and
parameters for this command, see the Command Reference Guide.

Loading and Unloading Databases 135

Copy Individual Database Objects

Example: Move Forms to Another Database

Assume the DBA wants to move two forms owned by the DBA, customers and
parts, from the accounts database to the orders database. The name forms.txt
is selected as the intermediate file name. The following commands perform the
move:

copyform accounts forms.txt customers parts
copyform -i orders forms.txt

At this point, there are two copies of the forms, one in accounts and one in
orders. To remove the old forms, enter the Visual Forms Editor and delete
them.

Copy Applications

Copying or moving an application from one database to another can be done
using the copyapp command.

The copyapp command syntax has two forms: copyapp out and copyapp in.

The copyapp out command copies database objects associated with a specific
application from the database to a text file. These objects are entities such as
forms, reports, and join definitions.

The copyapp in command copies these database objects into the desired
database.

Copyapp does copy all of the following:

 Forms referenced in 4GL, Query-By-Forms, and report frames

 Reports referenced in report frames

 JoinDefs referenced in Query-By-Forms frames

Copyapp does not copy any of the following:

 Forms (compiled or non-compiled) referenced by the 4GL-call qbf
command or used in embedded query language procedures

 Reports referenced by the call report, call sreport, or call rbf 4GL
command

 Graphs referenced by the call graph 4GL command

For a complete description of the flags and parameters for this command, see
the Command Reference Guide.

136 Ingres 2006 R2 Database Administrator Guide

Copy Individual Database Objects

Copy Reports

Move single or multiple reports from one database to another by using the
copyrep command to copy the reports out and the sreport command to copy
them into the second database.

The sreport command overwrites existing reports with the same names as
those copied. You must check whether you have any reports with the same
names as the ones being copied. If you do not want to overwrite them, edit
filename.rw and change the report names.

For a complete description of the flags and parameters for copyrep and
sreport, see the Forms-based Application Development Tools User Guide. Also,
see the copyapp command in the Command Reference Guide.

Example: Copy Reports to Another Database

Assume the DBA wants to copy two reports she owns, parts_restock and
parts_on_order, from the inventory database to the orders database. The file
name textfile.rw is selected as the temporary file name. The following
command at the operating system prompt copies the reports out to a file:

copyrep inventory textfile.rw parts_restock parts_on_order

The following command at the operating system prompt copies the reports
into the orders database:

sreport orders textfile.rw

Loading and Unloading Databases 137

Ways to Copy and Relocate a Database

Increase Object Limit on Commands

Certain utilities like copydb, copyform, repcfg, genxml and convtouni limit to
100 the number of tables or views that can be specified on the command line.
If this limit is insufficient for your application, the utexe.def file found in
$II_SYSTEM/ingres/files can be modified.

To increase the 100 object limit in utexe.def file

1. Back up the utexe.def file in case you want to revert to the original file.

2. Open $II_SYSTEM/ingres/files/utexe.def for editing.

3. Search for the string %100S in the parameter description list directly
under the command you want to modify.

4. Change the string to %nS where n is an integer defining the new limit.

5. Save the file and test.

Ways to Copy and Relocate a Database
Database locations can be moved, for example when a disk fills or is swapped
out. You can also copy an entire database. Any location in the original
database can be moved to a new location in the new database.

To do this in VDBA, use the Duplicate Db menu. For the detailed steps for
performing this procedure, see the online help.

You can also accomplish this task using the relocatedb command. For more
information see the Command Reference Guide.

Example: Copy a Database to a New Database

The following series of operations copies the empdata database to a new
database, empdev:

1. In a Database Object Manager window in VDBA, select a database
(empdata).

2. Choose Database, Duplicate Db.

The Duplicate Database dialog appears.

3. In the New Database edit control, enter the name of the new database
(empdev).

4. Click OK.

138 Ingres 2006 R2 Database Administrator Guide

Ways to Copy and Relocate a Database

Example: Copy a Database to a New Database and Use New Locations

The following example copies the empdata database to a new database,
empdev, and specifies the new locations—empdat1 and empdat2—for the
existing ii_database and edata locations:

1. Follow Steps 1–3 in the Example: Copy a Database to a New Database
(see page 138).

2. Enable the Reassign Location check box.

The locations that are currently being used by the empdata database
(ii_database and edata) are displayed in the Initial Location column.

3. In the New Location column, double-click on the location to be changed
and select the new location from the drop-down list box that appears.

For example, double-click on the ii_database location in the New Location
column and select empdat1. Change the edata location to empdat2.

4. Click OK.

Example: Copy a Database to a New Database and Swap Contents of Locations

The following example copies the empdata database to a new database,
empdev, and swaps the contents of the locations ii_database and loc1 in the
new database:

1. Follow Steps 1–3 in Example: Copy a Database to a New Database (see
page 138).

2. Enable the Reassign Location check box.

The locations that are currently being used by the empdata database
(ii_database and loc1) are displayed in the Initial Location column.

3. In the New Location column, double-click on the location to be changed
and select the new location from the drop-down list box that appears.

For example, double-click on the ii_database location in the New Location
column and select loc1. Change the loc1 location to ii_database.

4. Click OK.

Loading and Unloading Databases 139

Generate XML and Import XML Operations

Generate XML and Import XML Operations
The genxml and xmlimport utilities let you transfer data in XML format.

The genxml utility converts the table data, including metadata information,
into XML and places it in an XML file. You can export the whole database or
specific tables into XML files. The generated XML file conforms to the generic
Ingres DTD.

The xmlimport utility imports the data from an XML file into an existing Ingres
database. This utility parses an XML document and prints the data and scripts
into files. The script can be run to upload and store the data from the XML file
into the Ingres table. The XML file for upload is validated against the Ingres
DTD. Only XML files that conform to the Ingres DTD can be imported into an
Ingres database.

The genxml and xmlimport database operations are run as system commands.
For more information, see the Command Reference Guide.

Related visual tools are the Import Assistant and Export Assistant, which are
used for importing and exporting data in various formats, including XML.

140 Ingres 2006 R2 Database Administrator Guide

Chapter 7: Changing Ownership of
Databases and Database Objects

At times it may be necessary to change the ownership of a database or
database object, for example, when staff changes occur in your organization.

This chapter includes instructions for changing the owner of a database or
database object if change at the schema level is necessary.

Changing the ownership of the following database objects is discussed:

 Tables

 Applications

 Forms

 Reports

 Databases

Database Ownership
Ingres supports an ownership scheme for databases, the tables that make up
the database, and related database objects, including forms and reports.

The hierarchy of ownership involves the following user classes:

 The primary system administrator

 The DBA

 The end user

Each class has a different set of ownership privileges. For details, see the
chapters “Authorizing User Access” and “Ensuring Access Security.”

Two important rules of database ownership are:

 Objects cannot be shared among users, unless they have been granted
access to the objects.

 Objects cannot be shared between databases.

Changing Ownership of Databases and Database Objects 141

How You Change Ownership of a Database Object

How You Change Ownership of a Database Object
When changing ownership of an object, use the appropriate copy method to:

1. Copy out the object from the database into an intermediate file

2. Copy in the object under new ownership

Prepare to Change Ownership of a Database Object

Before changing ownership of a database object, take the following
preparatory steps:

1. Make sure you have a current backup of the database.

2. Check whether the user already owns an object with the same name as
the object whose ownership you are changing.

If this is the case, the existing duplicate object must be destroyed before
proceeding.

Important! If you fail to do this, the new object, owned by the new user,
cannot be successfully created, and you can potentially corrupt the
existing object with unwanted data.

Change Ownership of a Database Object

Follow these basic steps to change ownership of a database object:

1. Take preparatory steps, as described in Prepare to Change Ownership of a
Database Object (see page 142).

2. Log in as the DBA of the database.

3. Use the relevant copy method to copy the object out of the database into
an intermediate file.

4. Using the relevant copy method in input mode, copy the intermediate file
into the new database as the new owner (by using the Users branch in the
Virtual Nodes toolbar in VDBA, or by using the -u flag for commands).

There are now two copies of the object in the database, one owned by the
original owner and one owned by the new owner.

5. To remove the original object, the DBA or privileged user uses the
applicable Ingres tool as the original owner (by using the Users branch in
the Virtual Nodes toolbar in VDBA, or by using the -u flag for commands)
and deletes the original object.

142 Ingres 2006 R2 Database Administrator Guide

How You Change Ownership of a Database Object

Change Ownership of Tables

Follow these steps to change the ownership of a table:

1. Generate the executable scripts. In VDBA, use the Generate copy.in and
copy.out dialog box, invoked from the Copydb command from the
Database Generate Scripts submenu.

2. Execute the copy.out script, copying the table as the current owner.

3. Execute the copy.in script, copying the table back in as the new owner.

For detailed steps for performing these procedures in VDBA, see online help.

These tasks can also be accomplished using the copydb and sql commands.
For more information, see the Command Reference Guide.

For more information on copying tables and other database objects, see the
chapter “Loading and Unloading Databases.”

Changing Ownership of Databases and Database Objects 143

How You Change Ownership of a Database Object

Example: Change Ownership of Table

The following example changes the ownership of any table from the currently
selected user, John, to the user named dba.

1. In VDBA, open the Generate copy.in and copy.out dialog box for the
database in which the table is located. For more information, see online
help.

2. Click Tables to invoke the Specify Tables dialog box. Enable the check box
for the table whose ownership you want to change and click OK.

3. Click OK to create the copy scripts.

4. At the operating system prompt, enter the following command to copy the
table from the database mydb into an intermediate binary file in the
current directory:

sql -ujohn mydb <copy.out

5. Edit the copy.in file to change the table reference in the grant statement
from john.<table> to <dbaname>.<table>. If you do not do this, the
grant statements refer to John's table.

Note: The grant statements are present only if grants are defined for the
table being copied.

There are now two copies of the table, one owned by the user john and
the other owned by the user dba. In the usual case, John’s version is no
longer needed and can be removed. For example, the user john (or
another user impersonating john) can easily drop the table in VDBA. For
more information, see online help.

6. At the operating system prompt, enter the following command to copy the
table from the intermediate binary file in the database as user dba:

sql -udba mydb <copy.in

You also need to grant access permissions to the new table owned by user
dba. For more information, see the chapter “Ensuring Access Security.”

Change Ownership of Applications

To change the ownership of an application (created with Applications-By-
Forms or Vision) from any current owner to any new owner, use the copyapp
command.

The command syntax has two forms: copyapp out and copyapp in. To change
the ownership, you issue the first form of the command under the current
ownership, and the second form under the new ownership.

144 Ingres 2006 R2 Database Administrator Guide

How You Change Ownership of a Database Object

Example: Transfer Ownership of an Application to Another User

Assume the user john wants to transfer ownership of the application named
app1 in the database mydb to the user dba. The following commands, entered
at the operating system prompt, accomplish this, using the default
intermediate text file and the current working directory:

copyapp out mydb app1 –ujohn
copyapp in mydb iicopyapp.tmp –a –udba

At this point, there are two copies of the application, one owned by the user
john and the other owned by the user dba. In the usual case, John’s
application is no longer needed and can be removed using Vision or
Application-By-Forms.

For a complete description of the flags and parameters for this command, see
the copyapp entry in the Command Reference Guide.

Change Ownership of Forms

Change the ownership of a form from any current owner to any new owner
using the copyform command. There are two forms of syntax, one without the
–i flag, which copies the forms from a database to a file. The next form, using
the –i flag, copies the forms from the text file into a database. To change the
ownership, issue the first form of the command under the current ownership,
and the second form under the new ownership, as shown in the example that
follows.

Example: Transfer Ownership of Forms to Another User

Assume the user john wants to transfer ownership of the forms named
customers and parts in the database mydb to the user dba. The following
commands, entered at the operating system prompt, accomplish this:

copyform –ujohn mydb forms.txt customers parts
copyform -i –udba mydb forms.txt

For a complete description of the flags and parameters for this command, see
the copyform entry in the Command Reference Guide.

At this point, there are two copies of each form, one owned by the user john
and the other owned by the user dba. In the usual case, John’s forms are no
longer needed and can be removed in Visual Forms Editor.

Changing Ownership of Databases and Database Objects 145

How You Change Ownership of a Database Object

Change Ownership of Reports

Change the ownership of a report from any current owner to any new owner
using the copyrep and sreport commands. The copyrep command copies the
reports out under the current ownership, and sreport copies them back in
under the new ownership, as shown in the example that follows.

Example: Transfer Ownership of Reports to Another User

Assume the user john wants to transfer ownership of the reports named
parts_restock and parts_on_order in the database mydb to the user dba. The
following commands, entered at the operating system prompt, accomplish
this:

copyrep –ujohn -f mydb text.rw parts_restock parts_on_order
sreport –udba mydb text.rw

For a complete description of the flags and parameters for copyrep and
sreport, see the Forms-based Application Development Tools User Guide.
These commands are also described in the Command Reference Guide.

At this point, there are two copies of each report, one owned by the user john
and the other owned by the user dba. In the usual case, John’s reports are no
longer needed and can be removed in Report-By-Forms.

146 Ingres 2006 R2 Database Administrator Guide

How You Change Ownership of a Database

How You Change Ownership of a Database
At times, you may need to change the ownership of an entire database, for
example, when a database moves from development to production or when
the current DBA moves to a different project.

To change the ownership of a database, you must have permission to
impersonate another user and to update system catalogs.

To change the ownership of a database, follow this process:

Note: In this process, the user name of the current owner is user_old and
user name of the new owner is user_new.

1. Be sure that there is a current backup of the database, preferably a
checkpoint. For more information, see the chapter “Backing Up and
Recovering Databases.” If there is a problem in changing ownership,
restore the original database.

2. Log in as the current DBA of the database.

3. Create a temporary working directory to hold the files that can be created.
Move to that directory. Be certain that the temporary directory is not in
the path pointed to by ING_ABFDIR or you will lose your unloaded files
during destroydb.

4. Create the unload and reload scripts using VDBA.

Note: If you are also moving the database to a machine with a different
processor you must unload the database with the Create Printable Data
Files option enabled. Doing so produces data files in a portable, ASCII
format.

5. Unload the database by executing the unload script at the operating
system prompt. The name of this file is described in Files Created During
the Unload Database Operation (see page 124).

6. On UNIX, change permissions, as follows, so the new database owner can
work with these files:

chmod 744 *

7. Destroy the original database by dropping it from within VDBA. For more
information, see online help.

8. Log in as the new database owner or impersonate the new owner by
selecting the appropriate user name from the Users branch in the Virtual
Nodes toolbar in VDBA.

9. Create a fresh database in VDBA, which can be owned by the user chosen
is Step 8. For details, see online help.

Changing Ownership of Databases and Database Objects 147

How You Change Ownership of a Database

10. Log in as the installation owner and go to the directory containing the
reload script created in Step 4. The name of this file is described in Files
Created During the Unload Database Operation (see page 124).

The reload script contains a line for each user who owns objects (tables,
indexes, or views).

11. Edit the reload script:

a. Change those lines that reload objects with the user flag of the old
owner, so that they can load with the user flag of the new owner.

b. Take ownership of the database objects of any or all users by changing
each user line so that it loads with the new user flag.

Caution! The user flag for user $ingres must never be changed. $ingres is
a special user ID that is used internally for the system catalogs.

12. Reload the database by executing the reload script. For more information,
see online help.

13. Run system modification to update the query optimizer information. For
more information, see the chapter “Using the Query Optimizer.”

At this point all objects (including tables, indexes, and views) are owned
by the new DBA; however, database objects (forms, reports, applications,
and so on) need special attention to make them accessible to everyone,
because they are still owned by their old owners.

14. Update the ii_objects catalog to change ownership of these objects to the
new DBA:

a. Make sure that the new DBA does not already own any objects (forms,
reports, and so on) with names identical to those you are about to
reassign. If there are two identically named objects for the same
owner, the original is overwritten and destroyed.

Run the following query to select the database objects for the old
owner, user_old:

 select object_id, object_owner
 from ii_objects
 where object_owner = 'user_old';

Run the following query to select the database objects for the new
owner, user_new:

 select object_id, object_owner
 from ii_objects
 where object_owner = 'user_new';

b. Compare the object list for the new owner with the list for the new
owner. If duplicates are found, eliminate them by deleting or copying
and renaming the objects.

c. After you have copied and renamed or destroyed any duplicates, rerun
the queries to ensure that there are no longer any duplicate objects.

148 Ingres 2006 R2 Database Administrator Guide

How You Change Ownership of a Database

15. Execute the following query to transfer ownership of existing database
objects, for example from the VDBA SQL Scratchpad window:

update ii_objects set object_owner = 'user_new'
 where object_owner = 'user_old';

Note: You can execute this query from a terminal monitor only if you
invoke it using the +U flag, which allows you to update the system
catalogs and secondary indexes.

16. Test the database and remove the temporary working directory and the
associated work files.

Changing Ownership of Databases and Database Objects 149

Chapter 8: Maintaining Databases

This chapter discusses various database maintenance tools and techniques.
Maintaining your databases keeps them in good condition and helps you to
more quickly identify any problems.

Ways to View Database Objects
The DBA must make sure important database objects, such as tables and
views, are available, devise a way to separate temporary objects from
important objects, and keep private objects to a minimum.

In VDBA, you can view a list of database objects in the Database Object
Manager window. You can view details for any object in the tree by selecting it
and using the panes to the right of the tree structure. For more information,
see online help.

By default, when you open a Database Object Manager window, only the
objects belonging to you are visible, not the objects belonging to other users.

You can also view database objects using the help statement. This statement
has various options, such as index, table, and view, to obtain information on
various types of database objects. For more information, see the SQL
Reference Guide.

View Database Objects that Belong to Another User

To view and work with database objects belonging to another user, you must
impersonate that user (which requires the security privilege).

To impersonate another user, select that user from the Users branch in the
Virtual Nodes window in VDBA and open a Database Object Manager window.
The objects belonging to that user and those belonging to the DBA appear in
the window, where you can view and manage them.

Maintaining Databases 151

Ways to Delete Database Objects

List All Tables and Their Owners

The iifile_info view (see page 156) permits you to select all tables and their
owners.

For example, the following query lists all user tables not owned by the DBA:

select tablename, table_owner, table_type
 from iitables
 where table_owner != '$INGRES' and
 table_owner != 'DBA';

Ways to Delete Database Objects
Database objects, such as tables, views, secondary indexes, and synonyms,
can be deleted (dropped). When you drop a table, objects that are directly
dependent on that table, such as indexes and views, are automatically
dropped.

In VDBA, you can perform these tasks in the Database Object Manager
window. The online help topic Dropping Objects gives a generic description for
dropping any type of database object. Each type of object has its own help
topic, such as Dropping a Table or Dropping a View.

You can also accomplish this task using the drop statement. For more
information, see the SQL Reference Guide.

If for some reason you cannot drop tables in VDBA, you can use another
method. More information can be found in Verifying Databases (see
page 155).

152 Ingres 2006 R2 Database Administrator Guide

Routine Database Maintenance Tips

Routine Database Maintenance Tips
To keep your tables in good condition, we recommend that you run the
following maintenance tools periodically:

 Modify database tables periodically if they are subject to frequent updates
or inserts. Frequent updates and inserts to all table structures except B-
tree cause overflow data pages to be created, which are inefficiently
searched.

If you do not have enough disk space to modify a large B-tree table,
modify the table to shrink the B-tree index. This improves the structure of
the B-tree index pages, but does not require the amount of free disk space
required by other modify options.

For details on how to modify tables, see the chapter “Maintaining Storage
Structures.”

Note: Choosing the correct storage structure for your needs makes
maintaining the database easier. For a discussion of the four main storage
structures, see the chapter “Choosing Storage Structures and Secondary
Indexes.” If the storage structure you are using is not the best one,
modify it using the information in the chapter “Maintaining Storage
Structures.”

 Run system modification on the database if the database is active (that is,
users frequently create or modify tables, views, or other database
objects). Both system catalog data page overflow and locking contention is
reduced by regular use of system modification. For details, see Example:
Before and After Optimization in the chapter “Using the Query Optimizer.”

 Use optimization to help maintain databases. When you optimize a
database, data distribution statistics are collected that help queries run
more quickly and use fewer system resources. We recommend that you
optimize your database when its data distribution patterns change.

Optimization cannot be run on all columns of all tables in your database.
Instead, run it only on those columns that are commonly referenced in the
where clauses of queries. Collecting more statistics than you need
consumes extra disk space and requires the query optimizer to consume
more system resources to arrive at an appropriate query execution plan.

For details on optimization, see Database Statistics in the chapter “Using
the Query Optimizer.”

Note: You can set up these routine maintenance tasks to be done inside
maintenance batch jobs to avoid the need to run them interactively.

Maintaining Databases 153

Operating System Maintenance Tips

Operating System Maintenance Tips
It is important for you, as the DBA, to monitor the operating system. If you
are not also the system administrator, you must work closely with your system
administrator so that you are aware of any operating system problems.

Ingres relies on the operating system to access data in tables. If the operating
system develops problems, such as system resource shortages, lack of free
disk space, or hardware errors, this can affect the responsiveness of the
Ingres system and its ability to process requests on behalf of its clients.

Disk errors, memory errors, or operating system resource shortages are the
problems most likely to affect the quality of operation. Most hardware errors
are dependably logged by the operating system. Make sure that the system
administrator is aware of your concern about the efficiency of the operating
system.

The operating system offers tools to check and verify the health of the
hardware. These include disk drive verification programs and diagnostic
programs for memory boards.

Windows: Windows lets the system administrator check for and optionally fix
problems in a file system. Free disk space and system configuration can be
monitored with the Windows Diagnostics. System-wide performance data,
such as CPU usage, can be monitored using the Performance Monitor. Certain
system-wide errors and events are monitored in the Event Log, which can be
viewed with the Event Viewer. For information on these and other
administrative tools, see the Windows documentation.

UNIX: Most UNIX vendors have a fsck program to check for unreferenced disk
blocks, unreferenced inodes, and inconsistencies in operating system tables.
Free disk space in your file systems is easily monitored with operating system
tools such as df and du. The pstat (BSD) or sar (System V) UNIX commands
have options to show the use and distribution of various operating system
resources. Every vendor also provides a variety of system maintenance
utilities that are menu-driven and easy to use, but which are generally specific
to a particular operating system vendor. Make full use of any operating system
tools such as these.

VMS: VMS offers the analyze command which, among other operations,
analyzes readability and validity of files and disk volumes. The show device
command shows the amount of free disk space. The VMS Monitor Utility
(MONITOR) monitors classes of system-wide performance data, such as CPU
usage, at a specified interval. These are only a few of the system maintenance
utilities that VMS provides. Consult the VMS Help facility and your VMS System
Manager for more information on these and other useful operating system
tools.

154 Ingres 2006 R2 Database Administrator Guide

Verifying Databases

Verifying Databases
The Verify Database operation lets you verify the integrity of a database and
repair certain table-related problems.

You can verify one or more databases by specifying an operation, and then
choosing an appropriate scope and mode for that operation. Operations
include:

 Checking specified tables for inconsistencies and recommending ways to
repair them

 Checking database system catalogs for inconsistencies and recommending
ways to repair them

 Purging temporary tables, which can be left on the disk inadvertently when
the system does not have time to shut down in an orderly fashion (for
example, if the machine is rebooted or stops due to power loss)

 Purging expired tables

 Dropping tables that cannot be dropped in the normal manner (for
example, if the underlying disk file for the table was deleted at the
operating system level) by removing all references to them from the
database system catalogs

 Checking the specified databases to determine if they can be and indicates
whether the user can connect to the database accessed

In VDBA, use the Verify Database dialog. For details on how to specify an
operation using the Verify Database dialog, see online help.

You can also accomplish these tasks using the verifydb system command. For
more information, see the Command Reference Guide.

To use the verify database operation, you must be the DBA for all the
databases you want to verify, or a user with the security or the operator
privilege.

Maintaining Databases 155

Databases Shared Among Multiple Users

Databases Shared Among Multiple Users
Follow these rules for databases that are shared among multiple users:

 Have users use only application programs to access data in the database.
Discourage users from using Ingres tools, such as a terminal monitor or
VDBA, to access data. Permitting users to access data only by means of an
application program guarantees that the executing queries were written by
an application programmer and are not ad hoc queries that can damage or
delete data, or cause lock contention delays.

 Ensure that reports are run with readlock=nolock (see page 379). You can
do this by including all reporting tools in application programs and setting
readlock there, or by running all reports from operating system scripts,
which set lockmode before the report runs. Doing this avoids locking
contention problems that can lead to severe concurrent performance
problems in the database.

How File Names Are Assigned for Tables
A naming algorithm is used to assign underlying file names for tables. There
are two columns in the iirelation table used to produce names:

 reltid, a unique table identifier assigned in sequential order

 reltidx, a unique index identifier associated with each base table

The algorithm for creating the name is as follows:

1. Convert reltid (for base tables) or reltidx (for secondary indexes) to an 8-
digit hexadecimal number.

2. Assign letters to each of the resulting hexadecimal digits:

0,1, 2, ..., F is assigned to a, b, c, ..., p

For example, a reltid of 129 converted to an 8-digit hex number is
“00000081”. Substituting letters gives a file name of aaaaaaib.tnn, where
nn=00, 01, ..., for first (or only) location, second location, and so on.

Select File Names Associated with Tables

As the DBA, you can select the names of the disk files associated with tables
by using the iifile_info view, as shown in this example:

select table_name, owner_name, file_name, file_ext
 from iifile_info;

156 Ingres 2006 R2 Database Administrator Guide

Retain Templates of Important Tables

Retain Templates of Important Tables
A good practice is to periodically generate copy scripts for important tables
and views. The copy.in scripts are useful if you need to recreate new, empty
tables, or the entire database.

To generate copy scripts, use the Generate copy.in and copy.out dialog in
VDBA, or use the unloaddb or copydb commands.

Maintaining Databases 157

Chapter 9: Ensuring Access Security

In every database, it is important to maintain security and access control.
Ingres has a built-in hierarchical security system that any privileged user
(such as the system administrator, database administrator, or security
administrator) can use to fully control access to the database. A privileged
user is any user with the necessary privileges to perform security-related
operations.

This chapter discusses the following security features available in Ingres:

 Subject privileges

 Object permissions

 Security alarms

 Security auditing

 Database procedures

Note: Databases are protected from user access by the permissions on the
directories containing the database files and the permissions on the database
files themselves. Users cannot look at the files in a database except through
Ingres. Even in Ingres, files are protected from access except from the
privileged accounts (the installation owner account and the system
administrator account). The binary files are in a special format, making
decoding of any information difficult.

Ensuring Access Security 159

Subject Privileges

Subject Privileges
Subject privileges define the general capabilities of a user session, and are
assigned when a user object is created for an individual user login or when an
existing user object is modified.

For information on the procedures for creating and modifying users (and
profiles on which user definitions can be based), see the chapter “Authorizing
User Access.”

The subject privileges are as follows:

 Auditor

Enables the user to query the security audit log.

 Create Database (also called createdb)

Enables the user to create and destroy databases.

 Maintain Audit (also called maintain_audit)

Enables the user to control what information is written to the security
audit log.

 Maintain Locations (also called maintain_locations)

Enables the user to manage database and file locations.

 Maintain Users (also called maintain_users)

Enables the user to perform various user-related functions, such as
creating users and roles.

 Operator

Enables the user to perform database backups and other maintenance
operations.

 Security

Enables the user to perform security-related operations, including
impersonating other users, and to avoid certain security checks, such as
database privilege checks.

 Trace

Enables the user access to tracing and debugging features.

Important! Subject privileges allow many trusted operations to be performed.
Therefore, assign privileges with care, especially the security privilege.

To set or change subject privileges for a user, you must have the
maintain_users privilege.

Subject privileges can also be assigned to roles, as discussed in Groups and
Roles (see page 26).

160 Ingres 2006 R2 Database Administrator Guide

Subject Privileges

Note: Object permissions define capabilities related to a specific object, such
as a database or a table, and are assigned to selected groups, roles, or users,
as discussed in Object Permissions (see page 167).

Auditor Privilege

The auditor privilege allows a user to obtain information from the audit log. A
user with this privilege can:

 Register the audit log file to a virtual table using the register table
statement, or perform the equivalent operation in VDBA.

 Remove the registration for an audit log file using the remove table
statement, or perform the equivalent operation in VDBA.

 Query the audit log once it has been registered as a virtual table.

 Obtain the audit log file name by calling dbmsinfo(‘security_audit_log’).

The privilege required to control what information is written to the audit log is
described in Maintain_Audit Privilege (see page 162). Working with audit logs
is described in Security Auditing (see page 186).

Createdb Privilege

The createdb privilege is required to create a database. For example, this
privilege is required to use the createdb system command or to use the
equivalent operation in VDBA. This subject privilege is granted by default to
the system administrator, who in turn can grant it to other users, such as
database administrators.

Ensuring Access Security 161

Subject Privileges

Maintain_Audit Privilege

The maintain_audit privilege allows a user to manage auditing features,
including determining the security audit activity level for profiles, users, and
roles, and the ability to turn security auditing on and off. A user with this
privilege can:

 Issue the enable and disable security_audit statements, or perform the
equivalent operations in VDBA.

 Change the current audit state using the alter security_audit statement, or
perform the equivalent operation in VDBA.

 Specify the security_audit clause for alter/create profile, alter/create user,
and alter/create role statements, or similarly determine the security audit
activity level when working with profile, user, and role objects in VDBA.

The privilege required to obtain information from the audit log is described in
Auditor Privilege (see page 161). Working with audit logs is described in
Security Auditing (see page 186).

Maintain_Locations Privilege

The maintain_locations privilege allows a user to control the allocation of disk
space, create new locations or allow new locations to be created, and allow
existing locations to be modified or removed. This privilege is needed to issue
the create, alter, and drop location statements, or to perform the equivalent
operations on location objects in VDBA.

Maintain_Users Privilege

The maintain_users privilege allows a user to perform various user-related
functions. A user with this privilege can:

 Issue create/alter/drop profile statements to maintain profiles, or perform
the equivalent operations on profile objects in VDBA.

 Issue create/alter/drop user statements to maintain users, or perform the
equivalent operations on user objects in VDBA.

 Issue create/alter/drop group statements to maintain groups, or perform
the equivalent operations on group objects in VDBA.

 Issue create/alter/drop role statements to maintain roles, or perform the
equivalent operations on role objects in VDBA.

Note: To assign and change security audit attributes for a profile, user, or
role, the user must have the maintain_audit privilege.

162 Ingres 2006 R2 Database Administrator Guide

Subject Privileges

Operator Privilege

A user who is responsible for running Ingres requires the operator privilege.
Users with this privilege can run the following system commands:

 ckpdb

 rollforwarddb

 auditdb

 sysmod

 verifydb

 relocatedb

 fastload

 alterdb

 infodb

These commands can alternatively be run through the Remote Command
(rmcmd) Server, by a (client) user who has the rmcmd privileges rather than
the Operator privilege (assuming that the user who launched rmcmd on the
server side has the Operator privileges). The sysmod command, however,
requires the client user to have the security privilege or be the user who
launched rmcmd on the server side. For details, see Grant Access to Remote
Users and How Remote Commands Are Executed in the System Administration
Guide.

Security Privilege

The security privilege allows a user to monitor the security of the system and
the activities of its users. A user with this privilege can:

 Use the -u flag on commands to impersonate other users, or perform the
equivalent using the Users branch of the Virtual Nodes toolbar in VDBA.

 Connect to any database with unlimited database privileges (in effect,
database privileges are not enforced for users with the security privilege).

 Issue create/drop security_alarm statements to configure database and
installation security alarms, or perform the equivalent operations in VDBA.

Important! Remember that the security privilege is very powerful because it
allows the holder to impersonate any other user. At least one security holder is
required (this and all other privileges are automatically bestowed on the
installation owner), but the privilege can be restricted as tightly as possible so
that your system security is not compromised.

Ensuring Access Security 163

Subject Privileges

Trace Privilege

The trace privilege allows a user to perform tracing, troubleshooting, and
debugging operations. This privilege enables the user to set the debugging
trace flags using the following statements:

 set [no]printqry

 set [no]rules

 set [no]printrules

 set [no]io_trace

 set [no]lock_trace

 set [no]log_trace

 set trace point

For details on tracing, see the chapter “Using Monitoring and Tracing Tools” in
the System Administrator Guide.

Default Privilege

In addition to defining the subject privileges that a user is allowed to have,
Ingres provides the ability to define a default set of subject privileges available
at session startup. In addition, any privilege that the user has been allowed
can be added or dropped during the life of the session, which enables the
effective application of the principle of least privilege. This principle asserts
that a subject must have the minimum privileges required to perform an
operation, and that these privileges must be active for the minimum amount
of time necessary to perform that operation.

Thus, a session has three sets of privileges associated with it:

 The default privilege set contains those privileges that become active when
an Ingres connection is initiated.

 The working privilege set contains those privileges that are active at any
particular time (at session startup, the working privilege set is equivalent
to the default privilege set).

 The maximum privilege set contains all privileges that a particular user is
allowed to have.

164 Ingres 2006 R2 Database Administrator Guide

Other User-Related Security Features

Using VDBA, the maximum privilege set consists of all the privileges enabled in
the Users column of the Create User or Alter User dialog. The default privilege
set, which is a subset of the maximum privilege set, consists of all the
privileges enabled in the Default column of the Create User or Alter User
dialog.

The working privilege set is determined during the life of the session, when
privileges can be made active as necessary to allow a privileged operation to
be performed and made inactive on completion of the task. This is
accomplished using the set session statement, as described in the entry for
the set statement in the SQL Reference Guide. Using set session, you can:

 Add allowed privileges to the working privilege set

 Drop privileges from the working privilege set

 Replace the working privilege set with specified allowed privileges

 Set the working privilege set to all allowed privileges

 Reset the working privilege set to the default privilege set

 Remove all privileges from the working privilege set

Other User-Related Security Features
Besides subject privileges, user objects can be assigned an expiration date and
a password.

User Expiration Dates

An expiration date for a user can be specified as any valid Ingres date or as a
date or time interval. For example, you might specify an interval of ‘1 month’
or ‘1 year,’ or an absolute date, such as ‘5-jan-2004.’

The user’s expiration date is checked each time the user connects to the
Ingres DBMS Server. If the expiration date has passed, then access is denied.
To enable an expired user to connect, the associated user (or profile) object
must be modified to reset the expiration date.

Ensuring Access Security 165

Other User-Related Security Features

User Passwords

A password can be specified for a user as part of their associated user object.
The password can be assigned when the user object is created or by modifying
an existing user object, as discussed in the chapter “Authorizing User Access.”

Note: This password is in addition to the login password or installation
password that the user must specify as part of the vnode definition if the
Ingres DBMS Server is located on a remote node. For more information on
managing remote nodes, see the System Administrator Guide.

When a session requires a password and one has not been specified, a prompt
requesting a password is issued anytime Ingres makes a connection between
an Ingres tool and the DBMS. For security reasons, a password prompt is
issued if either a required password is missing or the user name is unknown or
illegal. This behavior is consistent with that of operating systems during logon.

No prompt is issued if the connection specifies a password directly, as is the
case with an application. This must be done if the application cannot prompt
for a password. If the application can prompt for a password, it does. Then it
passes the value entered using the dbms_password clause of the connect
statement.

User passwords are validated directly by the Ingres DBMS Server or by an
external authentication mechanism, depending on how the user object is
configured.

Note: If a user with the security privilege starts a session using the –u flag to
impersonate another user, the real user’s password—not the impersonater’s—
is required.

Any user is permitted to change their own password, although they must
supply their old password in order to do so. Any user with the maintain_users
privilege can change the password of another user, in addition to changing the
method of password validation or removing the password altogether.

Note: Passwords also apply to roles, which are discussed in Groups and Roles
in the chapter “Authorizing User Access.”

166 Ingres 2006 R2 Database Administrator Guide

Object Permissions

Object Permissions
The granting of permissions—also called grants, permits, or object privileges—
is usually a DBA responsibility. The permissions system allows for data access
to be restricted in several ways. Grants on objects can range from general to
specific.

Permissions are classified according to the type of objects they affect, as
follows:

 Database

 Table

 View

 Procedure

 Database event

 Role

 Current installation

Ways to Work with Grants

In VDBA, you can access grants in a number of ways using the Database
Object Manager. For example, if you expand the branch for a group, role, or
user object, there is a Grants sub-branch where you can access all permissions
that have been granted to that particular group, role, or user. You can also
expand the branch for other object types, such as a database or a table, and
use the associated Grantees… sub-branch to access all groups, roles, and
users that have been granted each permission allowed for that type of object.

In the Database Object Manager window, you can:

 Grant any permission allowed for a particular object type to any group,
role, or user (including public, which encompasses all current and future
users)

 View all types of object permissions granted to a particular group, role, or
user, or view the permissions granted for a particular object type

 Revoke a previously granted permission

For the detailed steps for performing these procedures, see online help.

Ensuring Access Security 167

Object Permissions

Object Ownership and Granting Object Permissions

When you create an object, you become the owner of that object. As the
owner of an object, you are automatically entitled to grant and revoke
permissions for it (with views, you must also own the base tables). When you
grant permissions for an object (other than a database) to another user, you
can also grant permission for that user to grant permissions for the object to
other users, and you can likewise revoke that permission if necessary. For
more information, see online help.

You can also accomplish these tasks using the grant and revoke SQL
statements. For more information, see the SQL Reference Guide.

168 Ingres 2006 R2 Database Administrator Guide

Object Permissions

Database Grants

Database permissions are defined on the database as a whole. They set a
number of limits that affect the authorization identifiers (that is, groups, roles,
users, or public) specified when the grant is defined.

The valid database permissions are summarized below:

 Access

Enables grantees to connect to the database. By default, all authorization
identifiers can connect to all public databases. Private databases, on the
other hand, can only be accessed by users who are explicitly granted
permission to access them. Access permission to a private database can
be granted in any of the following ways:

– Using a database grant.

– Enabling the database under Access to Non-Granted Databases in the
appropriate dialog (for example, the Create User dialog).

 Connect Time Limit (also called connect_time_limit)

Specifies the maximum time (in seconds) that a session can consume. By
default, there is no connect time limit.

 Create Procedure (also called create_procedure)

Enables grantees to create database procedures in the database. By
default, all authorization identifiers can create database procedures.

 Create Table (also called create_table)

Enables grantees to create tables in the database. By default, all
authorization identifiers can create tables.

 Database Admin (also called db_admin)

Gives grantees unlimited database privileges for the database and the
ability to impersonate another user (using the -u flag). By default, this
permission is granted to the DBA (owner) of the database and to any user
with the security privilege, such as the system administrator. For all other
users, the default is not to allow unlimited database privileges.

 Idle Time Limit (also called idle_time_limit)

Specifies the maximum time that a session can take between issuing
statements. By default, there is no idle time limit.

 Lockmode

Enables grantees to issue the set lockmode statement. By default, all
authorization identifiers can issue the set lockmode statement.

Ensuring Access Security 169

Object Permissions

 Query Cost Limit (also called query_cost_limit)

Specifies the maximum cost per query on the database, in terms of disk
I/O and CPU usage. By default, authorization identifiers are allowed an
unlimited cost per query.

 Query CPU Limit (also called query_cpu_limit)

Specifies the maximum CPU usage per query on the database. By default,
authorization identifiers are allowed unlimited CPU usage per query.

 Query IO Limit (also called query_io_limit)

Specifies the maximum number of I/O requests per query on the
database. By default, authorization identifiers are allowed an unlimited
number of I/O requests.

 Query Page Limit (also called query_page_limit)

Specifies the maximum number pages per query on the database. By
default, authorization identifiers are allowed an unlimited number of pages
per query.

 Query Row Limit (also called query_row_limit)

Specifies the maximum number of rows returned per query on the
database. By default, authorization identifiers are allowed an unlimited
number of rows per query.

 Select Syscat (also called select_syscat)

Allows a session to query system catalogs to determine schema
information. By default, sessions are allowed to query the system catalogs.

 Session Priority (also called session_priority)

Determines whether a session is allowed to change its priority, and if so
what its initial and highest priority can be. By default, a session cannot
change its priority.

 Table Statistics (also called table_statistics)

Allows grantees to view and create database table statistics. By default,
authorization identifiers can view and create table statistics.

 Update Syscat (also called update_syscat)

Allows grantees to update system catalogs. By default, authorization
identifiers are not allowed to update system catalogs.

Note: Each permission has a corresponding preventing permission to
specifically disallow the permission. For example, to prevent access to the
database, specify the No Access (also called noaccess) permission.

Most of the database permissions are prohibiting permissions—if not specified,
the default is no restrictions. Prohibiting permissions, even if defined, are not
enforced for the DBA of the database or any user with the security privilege,
such as the system administrator.

170 Ingres 2006 R2 Database Administrator Guide

Object Permissions

Note: To override the default for database permission, create a grant for the
permission that specifies the grantee as public.

The database privileges query_io_limit and query_row_limit are enforced
based on estimates from the Ingres query optimizer. If the optimizer predicts
that a query can require more I/O operations or return more rows than are
allowed for the session, the query is aborted prior to execution. This prevents
resource consumption by queries that are not likely to succeed.

A session’s database permissions are calculated when the session connects to
the database and remain in effect for the duration of the session. If, after a
session connects to a database, the database permissions for one of that
session’s authorization identifiers are changed, the active session is not
affected. Any new sessions that are established with the same authorization
identifiers can be subject to the revised database permissions.

Example: Grant to Prohibit a Group From Creating Tables

This example of a database grant prohibits a particular group from being able
to create tables and database procedures in a particular database.

1. In VDBA, select the appropriate database, and then select the Grantees on
Database branch.

2. Open the Grant Database dialog. For details, see online help.

3. Enable Groups in the Grantees group box. Then, in the box below, identify
the group to which you want to grant the permissions.

4. Ensure that the appropriate database is enabled under Databases. (By
default, the database whose Grantees on Database branch was selected
when you opened the dialog is enabled.)

5. Enable No Create Procedure and No Create Table in the Privileges group
box and click OK.

Two grants are created for the specified group. You can see the grants by
expanding the Grantees for No Create Proc and Grantees for No Create
Table sub-branches.

Ensuring Access Security 171

Object Permissions

Example: Grant to Set Query_row-limit Privilege for a User

This example sets the query_row_limit privilege for a particular user to 1000,

1. In VDBA, open the Grant Database dialog. For details, see online help.

2. Enable Users in the Grantees group box. Then, in the box below, identify
the user to which you want to grant the permission.

3. Under Databases, ensure that the appropriate database is enabled. (By
default, the database whose Grantees on Database branch was selected
when you opened the dialog is enabled.)

4. Enable Query Row Limit in the Privileges group box, type 1000 in the
corresponding edit control, and click OK.

A grant is created for the specified user. You can see it by expanding the
Grantees for Query Row Limit sub-branch.

You can supersede an existing grant by creating another grant for the same
authorization identifier and specifying a different value for the privilege. For
example, assume that you want to change the query row limit privilege set in
the previous example to 250. Follow the procedure enumerated in the previous
example and type 250 in Step 3. The new grant replaces the old 1000-row
grant.

Similarly, you can revoke a privilege that was previously granted by creating a
grant and selecting the corresponding prevented privilege. For example, to
return the user’s query row limit to an undefined value, follow the procedure
enumerated in the previous example and enable No Query Row Limit in Step
3.

The user’s query row limit privilege for the database becomes undefined as a
result of creating this new grant (the old limit of 1000 is not re-established). If
no value for query_row_limit has been defined for any of the other
authorization identifiers associated with this user’s session, then the number
of rows that the session’s queries can return is unrestricted.

Note: This method of revoking a privilege is given to illustrate a point, but it is
not recommended because it has a negative impact on performance. To
revoke the grant in the most efficient way, use one of the standard techniques
described in online help.

172 Ingres 2006 R2 Database Administrator Guide

Object Permissions

Table and View Grants

Ingres allows data sharing and updating if users have been issued grant
permissions on the tables or views mentioned in the query.

The following query permissions can be granted on both tables and views:

 Select

Enables grantees to select rows from the table or view, for example using
a select statement or a where clause.

 Insert

Enables grantees to add rows to the table or view, for example using an
insert statement.

 Delete

Enables grantees to delete rows from the table or view, for example using
a delete statement.

 Update

Enables grantees to change existing rows in the table or view, for example
using an update statement. An update grant can apply to all columns in
the table or view, or only to specific columns.

The following query permissions can be granted on tables only—they are not
applicable to views:

 Copy Into (also called copy_into)

Enables grantees to copy the contents of the table to a data file, for
example using the into clause of the copy statement.

 Copy From (also called copy_from)

Enables grantees to copy the contents of a file to the table, for example
using the from clause of the copy statement.

 References

Enables grantees to create tables that reference the table. A references
grant can apply to all columns in the table, or only to specific columns.

If a user is not the owner and does not have the references permission on
a table, that user cannot create a referential constraint that references the
table. For more information on referential constraints, see the chapter
“Managing Tables and Views.”

Table and view permissions are enabling permissions—if no permission is
granted, the default is to prohibit access. Table and view permissions are not
enforced for the owner of the table or view.

Ensuring Access Security 173

Object Permissions

Procedure Grants

For database procedures, the only valid permission is the execute permission,
which allows the grantees to execute the procedure. Granting permission to
execute a procedure makes database queries contained in the procedure code
available to grantees. Granting execute permission to a database procedure
also allows grantees to create rules that trigger the procedure. For more
information on rules, see the chapter “Ensuring Data Integrity.”

The execute permission is an enabling permission—if it is not specifically
granted, the default is to prohibit execution. This permission is not enforced
for the owner of the procedure.

Permission to create procedures in the database is described in Database
Grants (see page 169).

Database Event Grants

Database events are discussed in detail in the chapter “Ensuring Data
Integrity.” The valid database event permissions are summarized below:

 Raise

Allows grantees to raise the database event (using the raise dbevent
statement).

 Register

Allows grantees to register to receive the database event (using the
register dbevent statement).

These are enabling permissions—if not specifically granted, the default is to
prohibit execution. Database event permissions are not enforced for the owner
of the event.

Role Grants

When a role is created, an implicit grant is issued on the role to the user
creating the role. Role access must be granted to other users (or public)
before they can use the role. Role access is an enabling permission—if it is not
specifically granted, the default is to prohibit access to the role.

174 Ingres 2006 R2 Database Administrator Guide

Object Permissions

Grants and Data Access Restriction

Grants allow for data access to be restricted in the following ways:

 Operational restrictions (for example, select, insert, update and delete
permissions applied to some or all of the columns of a table)

 Data value restrictions (data restrictions), which are implemented through
views.

 Resource restrictions, which are permissions defined for the database as a
whole, rather than individual tables or columns.

In a session where permissions are in effect, when you issue a query (for
example, from the SQL Scratchpad window in VDBA or from an application)
the query is passed to the Ingres DBMS Server. Ingres then evaluates the
grants on the tables involved in the query. If an operation does not pass an
operational restriction, an error message is returned.

If an operation does not pass a data restriction, it means that views are being
used and grants have been placed on the views, but the user authorization
does not pass the grants on the data. In this case no error is returned, but the
number of rows returned is affected. For example, if Mary is accessing a view
that returns rows only from the Shoe department, then if she asks for
information from the Toy department, no rows are returned.

Ensuring Access Security 175

Grant Overhead

Grant Overhead
Grants can affect query processing time. There is overhead on queries for a
table or view if:

 Permissions have been granted on the table or view

 Column-specific permissions are granted

 Many permissions are granted in general in the database

For the following, however, there is no overhead:

 For the table owner

 On certain public grants:

– In select operations

– Any operation for which all allowed permissions are specified for public

 If no permissions qualify (the query is simply aborted)

There is additional overhead during session initialization to evaluate database
privileges for the authorization identifiers associated with the session. Because
session initialization must read the catalogs in which groups, roles, and
database privileges are stored, certain operations issued by the DBA or system
administrator that write to these catalogs can be committed or rolled back as
soon as possible. These operations include:

 Granting or revoking database privileges (either in VDBA or using the
grant/revoke on database statements)

 Creating, altering, or dropping a group (either in VDBA or using the
create/alter/drop group statements)

 Creating, altering, or dropping a role (either in VDBA or using the
create/alter/drop role statements)

176 Ingres 2006 R2 Database Administrator Guide

Grant Overhead

Multiple Permission Checks

Multiple permissions can apply to the same query, because the system catalog
is scanned for all possible permissions that apply. Generally, this means the
broadest grant applies. The hierarchy of evaluation is described in more detail
below, but the hierarchy is generally not something the DBA needs to formally
consider.

For example, assume that grants have been created to allow all permissions
on the employee table to public, and that a grant has been created to allow a
particular user, Susan, the select privilege on the employee table. Susan, as
part of the public, can perform all operations on the employee table, even
though her individual grant was only for select permission.

Note: If you want more restrictive grants to apply, the solution is to drop the
inclusive grants to public, and define specific grants for specified groups or
users.

Ensuring Access Security 177

Grant Overhead

Authorization Hierarchy

In any session, the privileges in effect for that session are derived from the
privileges granted to the authorization identifiers (role, user, group, and
public) associated with the session and any applicable defaults. If a particular
privilege is defined for more than one authorization identifier associated with a
session, then a hierarchy is used to determine which defined privilege is
enforced for that session.

The authorization hierarchy, in order of highest to lowest precedence, is:

1. role

2. user

3. group

4. public

For each accessed object in a session, there is a search for a defined privilege
that specifies that object and the desired access characteristics (for example,
select, insert, execute, and so on).

If the specified object is a table, view, or database procedure, then one of the
authorization identifiers in effect for the session must have the required
privilege for that object in order for the session to access that object. In the
case of these granted privileges that are otherwise restricted, the
authorization identifiers are searched for any one that gives the required
authorization.

For example, to insert into a specified table, one of the authorization
identifiers associated with the session must have the insert permission defined
for the specified table. If none of the authorization identifiers associated with
the session has this permission and the user does not own the table, then the
internal default is used. In this case, because the internal default for the insert
permission is not to allow inserts, inserts are not allowed into the specified
table.

The authorization hierarchy is also important when the specified object is the
database, because the privileges defined on the database can be defined with
different values for different authorization identifiers. When a database
privilege is defined at differing levels, the hierarchy is used to determine which
privilege to enforce.

178 Ingres 2006 R2 Database Administrator Guide

Grant Overhead

For example, assume that query row limits have been defined differently for
each authorization level as follows:

Authorization Identifier Query Row Limit

The role identifier 1700

The user 1500

The group identifier 2000

The public 1000

If a user starts a session and specifies both group and role identifiers, the limit
defined for the role is enforced because it has the highest order of precedence
in the hierarchy, giving the session a query row limit of 1700. Several other
possible scenarios are described below:

 If no query row limit was defined for role, then the query row limit defined
for that user is enforced, which is 1500 rows. This is also the case if the
user had not specified a role identifier.

 If no query row limit was defined for that user, then the query row limit
defined for the group (2000 rows) is enforced.

 If no query row limit was defined for group, or if the user had not specified
a group identifier, then the query row limit defined for public (1000 rows)
is enforced.

 If none of the identifiers had a query row limit defined, the internal default
is enforced, which in this case is an unlimited numbers of rows.

Note: In cases where multiple authorizations apply, the resource limit
associated with the highest order of precedence applies, not necessarily the
one that grants the most resource.

Ensuring Access Security 179

Grant Overhead

Database Privileges for a Session

When a user begins a session:

 The privileges in effect for that session are derived from the privileges
defined for the user identifier and for public. For example, while you might
have the privilege to select all the tables in the database, you might only
have the update permission on a limited number of those tablesIf the user
includes the -G or -R flag, or both, on the command line when beginning
the session, then the privileges for the specified group or role identifier are
also in effect for the session.

 If the user has a default group identifier defined for the user ID, when the
user begins a session without specifying a group identifier, the default
group identifier is automatically applied to the session. A default group
identifier can be specified for a user when a user object is created or
modified.

For more information on the command line flags, -G and -R, see the
Command Reference Guide.

The authorization hierarchy (see page 178) is used to determine the session’s
database privileges. The hierarchy includes the privileges granted to the
authorization identifiers in effect for the session and the internal defaults.

180 Ingres 2006 R2 Database Administrator Guide

Grant Overhead

Dbmsinfo—View Permissions for Current Session

In addition to the various ways in which you can view permissions using VDBA,
you can use the dbmsinfo function to obtain the current value of any database
privilege in effect for the current session.

To issue a dbmsinfo request, use the following syntax:

select dbmsinfo('request_name');

The request_name can be any of the following parameters:

connect_time_limt

The session’s value for the connect time limit, or -1 if none

create_procedure

"Y" is the session has create procedure privileges or "N" if not

create_table

"Y" is the session has create table privileges or "N" if not

db_admin

"Y" is the session has the db_admin privilege or "N" if not

idle_time_limit

The session's value for the idle time limit or -1 if none

lockmode

"Y" is the session can issue the set lockmode statement or "N" if not

query_cost_limit

The session's value for the query cost limit or -1 if none

query_cpu_limit

The session's value for the CPU limit or -1 if none

query_io_limit

The session's value for the query I/O limit or -1 if none

query_page_limit

The session's value for the query page limit or -1 if none

query_row_limit

The session's value for the query row limit or -1 if none

session_priority

The session's current priority or -1 if none

select_syscat

"Y" is the session has the select_syscat privilege or "N" if not

Ensuring Access Security 181

Grant Overhead

table_statistics

"Y" is the session has the table_statistics privilege or "N" if not

update_syscat

"Y" is the session has the update_syscat privilege or "N" if not

Example: Return the Value of Query Row Limit for Current Session

Assuming the query_row_limit permission for the current session is 50, the
following query returns the value “50” in x:

select x = dbmsinfo('query_row_limit') as x;

Note: The dbmsinfo function allows other request_name values relating to
other aspects of the current session. For details, see the chapter “Transactions
and Error Handling” in the SQL Reference Guide.

182 Ingres 2006 R2 Database Administrator Guide

Security Alarms

Security Alarms
Security alarms allow you to specify the events to be recorded in the security
audit log for individual tables and databases. Using them, you can place
triggers on important databases and tables to detect when users attempt to
perform access operations that are not normally expected.

For tables, you can monitor the success or failure of any of the following
events:

 select

 delete

 insert

 update

For databases, you can monitor the success or failure of these events:

 connect

 disconnect

Security alarm events are considered successful if the user succeeds in
performing the specified type of access. If a particular query triggers a
security alarm event, however, it does not necessarily mean that the query
completed successfully. It simply means that the security access tests for the
specified types of events (for example, select, delete, insert, and update) were
passed.

Failure of a security alarm event means that the user attempted to perform
the associated operation and failed for some security-related reason. For
example, a user can fail to gain access to a table or a database because he or
she lacks the required permissions. A query or database operation might fail
for other reasons, unrelated to security, but these failures do not trigger the
associated security alarm event.

Security alarms can be assigned to specific authorization identifiers (individual
users or the public, and groups and roles) so that you can limit monitoring to
certain users. You can also specify a database event to be raised when a
security alarm is triggered. Database Event Grants (see page 174) describes
the database event permissions that you need to raise an event.

Ensuring Access Security 183

Security Alarms

Ways to Work with Security Alarm Objects

In VDBA, security alarms are implemented using security alarm objects. Using
the Security Alarm branch in the Database Object Manager window, you can:

 Create security alarm objects of various types for specific tables and
databases

 View existing security alarm objects, including the detailed properties of
each individual object

 Drop security alarm objects

For the detailed steps for performing these procedures, see the Procedures
section of online help.

You can also accomplish these tasks using the create security_alarm, help
security_alarm, and drop security_alarm SQL statements. For more
information, see the SQL Reference Guide.

Implement a Security Alarm

To implement a security alarm, you need to follow these basic steps:

1. Create the security alarm using the appropriate Security Alarm branch in
the Database Object Manager window of VDBA. For complete details, see
online help.

2. Have an authorized user (such as the system administrator, DBA, or
security administrator) issue the enable security_audit alarm statement to
enable auditing of security alarms. You can also use enable security_audit
(see page 186) to specify other types of auditing.

Then, whenever access to the specified database or table triggers the alarm, a
record is written into the audit log and the associated database event, if any is
defined, is raised.

184 Ingres 2006 R2 Database Administrator Guide

Security Alarms

Example: Define Security Alarm for a Table for Delete, Insert, and Update

To define a security alarm for the addresses table for all delete, insert, and
update attempts, follow these basic steps.

1. In VDBA, open the Create Security Alarm dialog for the addresses table.
For details, see the online help.

2. In the If group box, enable Success and Failure.

3. In the When group box, enable Delete, Insert, and Update.

4. Under On Table, ensure that the appropriate table is enabled. (The
addresses table is enabled if its Security Alarms branch was selected when
you opened the dialog.)

5. In the By group box, enable Public.

6. Click OK.

Example: Define Security Alarm for a Table No Longer in Use

This example shows how to create a security alarm for the all_summary table,
which is no longer being used. In this case, all successful accesses to the table
are to be audited, to allow a decision as to its possible archiving and deletion.

1. In VDBA, open the Create Security Alarm dialog for the all_summary table.
For details, see the online help.

2. In the If group box, enable Success.

3. In the When group box, enable Select, Delete, Insert, and Update.

4. Under On Table, ensure that the appropriate table is enabled. (The
all_summary table is enabled if its Security Alarms branch was selected
when you opened the dialog.)

5. In the By group box, enable Public.

6. Click OK.

In each case, the appropriate security alarm objects are created and can be
displayed by expanding the various Security Alarms sub-branches.

Ensuring Access Security 185

Security Auditing

Security Auditing
Security auditing allows a user with the maintain_audit privilege (for example,
the system administrator, the DBA, or a separate security administrator) to
control the recording of all or specified classes of security events for the entire
Ingres installation. Selected classes of events, such as use of database
procedures or access to tables, can be recorded in the security audit log file for
later analysis. Criteria can be selected that apply across an entire class of
installation objects or targeted at a single object.

You obtain the maximum benefits of security auditing by focusing the amount
of audit information produced by the system. This both reduces the impact of
security auditing in terms of resource consumption, and makes it easier to
look through the resulting information for possible security infringements. The
coarse and fine selection criteria can be used together to create a suitable
security-auditing environment that meets the needs of any security
administrator.

Security Audit Log Configuration

A security audit log is created by the system administrator as part of the
installation configuration. For details, see the chapter “Configuring Ingres” in
the System Administrator Guide.

For information about the following parameters, see the Auditing Page,
Security Component (Configuration Manager window) in online help:

 audit_mechanism

 log_page_size

 max_log_size

 on_error

 on_switch_log

 security_auditing

At this stage, although the security-auditing facility is ready to produce
auditing information, the default installation auditing state produces no output
to the security auditing log file. Auditing is enabled through the security audit
statements, described next.

186 Ingres 2006 R2 Database Administrator Guide

Security Auditing

Security Audit Statements

Security audit levels are enabled and disabled with the enable security_audit
and disable security_audit statements. To use these statements, you must
have the maintain_audit privilege and be working in a session connected to
the iidbdb database.

These statements allow you to specify the types of security events you want to
audit using keywords, such as

 database—to control logging of database access

 procedure—to control logging of procedure access

 all—to control logging of all possible security events

The enable security_audit statement enables logging the specified event types,
and the disable security_audit statement disables logging the specified event
types. The events specified using these statements are known as the default
events, which is a term that comes up when specifying auditing levels for
users, profiles, and roles, as described in the next section.

For complete syntax for these statements and a complete list of keywords, see
the SQL Reference Guide.

Ensuring Access Security 187

Security Auditing

Security Audit Levels for Users and Roles

Security audit levels can also be specified for individual users (directly or
through a profile), as well as for roles (once again, you must have the
maintain_audit privilege to do this). You can specify the security audit level
whenever you create or modify the user, profile, or role. For more information
on working with users, profiles, and roles, see the chapter “Authorizing User
Access.”

By default, users are audited for default events (as specified by the security
audit statements). However, you can specify that a user be audited for all
events and even that the query text associated with the user’s queries be
audited.

Important! Because query text auditing is quite detailed and takes up a lot of
space in the security log file, it must be explicitly enabled at the user level and
using enable security_audit query_text. Otherwise, no query text auditing can
take place.

By default, roles are audited according to the settings for the individuals using
the role. However, because a role can give a user privileges the user does not
otherwise have, you can specify that anyone who uses a role be audited for all
events while using the role, regardless of that user’s audit state.

Note: Default auditing levels (as well as other default user and role attributes)
are determined by the default profile. If the default profile is modified, the
defaults stated in this section do not apply.

Security Changes Taking Effect

The security status for a user session is determined at the time of initial
connection. Thereafter, during the session:

 If the auditing level of a user, profile, or role is changed from default
auditing to auditing all events, or vice versa, the change in status can
apply only to new sessions connecting after the change has been made.

 All other security-auditing related changes take effect immediately.

Access to the Security Audit Log

Access to the security audit log is established through registering the security
audit log file as a virtual table. After it has been successfully registered, the
security audit log file can be queried as any other table.

188 Ingres 2006 R2 Database Administrator Guide

Security Auditing

Register the Security Audit Log File

To access the security audit log file contents with SQL query statements, you
must first register the audit log file as a virtual table using the register table
statement with the dbms=sxa clause. The register table statement, when used
to register the security audit log file, requires the auditor privilege.

For example, the following statements make a subset of the security audit log
file sal1.log available through the table sal1:

register table sal1(
 database char(24) not null,
 audittime date not null,
 user_name char(24) not null,
 auditstatus char(1) not null,
 auditevent char(24) not null,
 objecttype char(24) not null,
 objectname char(24) not null,
 description char(80) not null
)
 as import from 'sal1.log'
 with dbms = sxa;

After the security audit log is registered, any user with the auditor privilege
can perform queries on the registered virtual table to view its contents. For
example, to obtain all events by the user spy against the database securedb,
query the table created in the previous example as follows:

select audittime, auditstatus, auditevent,
 objecttype, objectname, description
 from sal1
 where database = 'securedb' and user_name = 'spy'
 order by audittime;

The result of the query might be similar to the following:

audittime auditstatus auditevent objecttype objectname descrpt 01-Jan-2004

01:00 N SELECT TABLE salaries Attempt to
 access a
 TABLE 01-Jan-2004

Afterwards, when the table is no longer needed, a user with the auditor
privilege can use the remove table statement, specifying the name of the
virtual table created using register table.

For the complete syntax and details (including specifications for the security
log audit file format) for the register table and remove table statements, see
the SQL Reference Guide. To display information on registered objects, see the
help register statement.

Ensuring Access Security 189

Database Procedures

Obtain the Current Audit File Name

To obtain the name of the current security audit log fileuse the dbmsinfo
function, as follows:

dbmsinfo('security_audit_log')

The function returns only the file name itself, not the full file specification.

You must have the auditor privilege to use this call.

Alternatively, you can access the current file through the iiaudit system
catalog, held in the iidbdb system database.

Database Procedures
A database procedure is a set of SQL statements and control statements in a
begin/end block that are stored as a unit in the database. It usually contains
at least one query into the database, which is stored in compiled form with a
Query Execution Plan. In addition to the advantage of rapid execution, a
database procedure can have the execute permission granted on it.

Database procedures provide the following benefits to the user:

 They enhance performance by reducing the amount of communication
needed between the application and the DBMS.

 They provide the DBA with an extra level of control over data access and
modification.

 One procedure can be used in many applications in a database, which
reduces coding time.

 You can use database procedures in conjunction with rules to enforce
referential and general integrity constraints. For more information on
rules, see the chapter “Ensuring Data Integrity.”

 You can use database procedures in conjunction with security alarms to
enhance the built-in security-auditing features.

190 Ingres 2006 R2 Database Administrator Guide

Database Procedures

Ways to Work with Procedure Objects

In VDBA, database procedures are implemented using procedure objects.
Using the Procedures branch for a particular database in the Database Object
Manager window, you can:

 Create database procedures

Note: By default, any user can create a database procedure, but this
ability can be restricted using database permissions.

 View existing database procedures, including the detailed properties of
each individual object

 Drop database procedures

For the detailed steps for performing these procedures, see the Procedures
section of online help.

You can also accomplish these tasks using the create procedure, help
procedure, and drop procedure SQL statements. For more information, see the
SQL Reference Guide.

Implement a Database Procedure

To implement a database procedure, follow these basic steps:

1. Create the procedure using the appropriate Procedures branch in the
Database Object Manager window of VDBA. For details, see online help.

2. Grant execute permission on the database procedure to specified users,
groups, or roles, as described in Object Permissions (see page 167).

3. Invoke the database procedure by issuing the execute procedure
statement, firing a rule, or triggering a security alarm (users must have
the execute permission to perform this step).

Ensuring Access Security 191

Database Procedures

Example: Database Procedure

For example, the following database procedure accepts as input an employee
ID number. The employee matching that ID is moved from the employee table
and added to the emptrans table. The code for the procedure, which has a
procedure name of move_emp, is shown as it is entered in the VDBA Create
Procedure dialog:

Parameters:

id integer not null

Statements:

insert into emptrans
 select * from employee where id = :id;
 delete from employee where id = :id;

Database Procedures and Control Over Database Access

Database procedures provide the DBA with greater control over database
access.

The DBA can grant permission to execute a database procedure even if the
user has no direct access to the underlying tables referenced in the procedure.
With execute permissions, the DBA can give users limited, specific access to
tables without needing to give the users full query grants (such as select) on
the tables. In this way, the DBA controls exactly what operations a user can
perform on a database.

For example, both tables used in the previous example can be inaccessible to
users except through the procedure. The DBA grants execute permission, for
example, to allow users in the acctg group to access the tables for this
procedure only.

When the procedure is invoked, the executing application passes a single
integer parameter.

For example, the following statement calls the move_emp procedure for the
employee ID “56742”:

exec sql execute procedure move_emp (id = 56742);

192 Ingres 2006 R2 Database Administrator Guide

Control Access to Data with Staid (UNIX)

Control Access to Data with Staid (UNIX)
The UNIX Setuid bit can be used to control access to data, without needing to
issue grants to specific users or the public. This technique allows a user to
operate on the data, but only when the user has accessed it through a specific
application program. The data is otherwise inaccessible to the user. After the
user has exited the program, the user cannot access this same data using any
Ingres utility.

Use Chmod to Set the Setuid Bit

After an embedded SQL application program has been created, the
permissions of the program file can be set so that it can run with the effective
user ID set to that of the owner of the file. If, for example, the owner of the
file is the DBA, any user executing the program is recognized as the DBA—and
has the same access to objects and data as the DBA—for the life of the
program.

The UNIX chmod command issued at the operating system prompt is used to
change the mode of a file. The following format of this command changes the
mode of the specified file name to give “set user id on execution” and
“execute” permission to everyone. The 4 sets the Setuid bit:

chmod 4711 filename

For example, if the following command is executed:

chmod 4711 app1prog

The resulting file permissions looks like this:

-rws--x--x 1 dba 7584 Mar 30 app1prog

Using this technique, the DBA (or other user, such as an application
developer) can allow any user to temporarily become the effective user id for
controlled access to specific application programs. The effective user ID is
recognized when a connection is made to the Ingres DBMS Server.

Note: Only the application owner or the root user can run the chmod
operating system command.

Ensuring Access Security 193

Control Access to Data with Staid (UNIX)

Example: Refer to Setuid in an Embedded SQL Application

An example is shown here that can be used in embedded SQL application
programs that are made accessible by the Setuid bit. It checks that the
connections are in place before allowing the program to be run.

The program requires that the login of the program owner be known (in this
case, fred, defined in line 2. It uses the UNIX getpwnam function to fetch the
effective user ID from the passwd structure. For details, see the UNIX
documentation.

The program checks to see if the caller can access the database, printing an
error message if not. This can occur, for example, if a chmod command has
not been issued on the application program, as described in the previous
section.

The application code appears between the connect and disconnect statements.
In the sample code that follows, the action of the program is to print the
effective user ID:

#include <pwd.h>
#define DBA "fred"
/* Example to demonstrate how to run an embedded SQL program
** in such a way that there is no requirement for the users to have
** privileges on the tables accessed by the program.
**
** This example assumes the program will access tables owned by the
** DBA, but this scheme could be used for any user. Additionally, assume
** the DBA has granted no privileges.
**
** This program checks that it is running setuid to the DBA.
** If it is, it does a database connect.
** If it is not running setuid to the DBA,
** it gives an error message to the user and exits.
** This check is done simply as a convenience to the user.
** If this check isn’t done and the user is a valid INGRES user,
** he or she can still connect to the database,
** but will not be able to access any of the data.
** This would be frustrating to the user,
** so the program stops them before they get connected.
**
** For this scheme to work, the executable MUST be setuid to the DBA.
*/

main()
{
 EXEC SQL begin declare section;
 char username[32];
 char dbname[32];
 EXEC SQL end declare section;

194 Ingres 2006 R2 Database Administrator Guide

Control Access to Data with Staid (UNIX)

 int user;
 int ret_val = 0;

 struct passwd *getpwnam();
 struct passwd *password_entry;

 password_entry = getpwnam(DBA);

 /* Check to see if the user interface is running setuid
 ** to the dba (fred).
 ** If not, give the user a message and abort.
 ** If so, connect to the database.
 */
 if ((user = geteuid()) != (password_entry->pw_uid))
 {
 printf("Error starting application. Contact the DBA.\n");
 ret_val = 1;
 exit(ret_val);
 }

 EXEC SQL connect dbname;

 /* The following query will demonstrate that the dbms connection
 ** was done by user fred, not the actual user.
 */

EXEC SQL select username() into :username;
 printf("User is %s\n", username);

 EXEC SQL disconnect;

}

Ensuring Access Security 195

Chapter 10: Ensuring Data Integrity

This chapter explores the following mechanisms in Ingres for enforcing data
integrity:

 Integrities

 Rules

 Database events

You can use these mechanisms to enforce a variety of relationships—such as
referential integrity and general integrity constraints—or for more general
purposes, such as tracking all changes to particular tables or extending the
Ingres permission system.

Data integrity in the form of constraints was introduced in the chapter
“Managing Tables and Views.”

Integrities
The integrity mechanism is similar to the referential, unique, check, and
primary key constraints for ensuring data integrity when you create or alter a
table.

Constraints Compared with Integrities

Constraints check for appropriate data values whenever data is entered in the
table. For more information, see the chapter “Managing Tables and Views.”

Integrity refers to integrity objects defined after the table is created to check
on update requests before they are allowed to affect the database.

Both mechanisms can be used to ensure data integrity.

Note: Constraints are the ISO Entry SQL92-compliant methods for
maintaining database integrity and are, therefore, recommended over
integrities. We recommend that you not define both constraints and integrities
in the same table.

Ensuring Data Integrity 197

Integrities

Differences in Error Handling Between Integrities and Constraints

Constraints and integrities differ in their error-handling characteristics:

 If a constraint is defined for a table, an attempt to update the table with a
row containing a value that violates the constraint causes the DBMS to
abort the entire statement and issue an error.

 If an integrity is defined for a table, an attempt to update the table with a
row containing a value that violates the constraint causes the invalid row
to be rejected, but no error is issued.

Important! If you mix constraints and integrities in the same table, the
integrities are checked first. If a row violates both an integrity and a
constraint, the row is filtered out by the integrity before the constraint is
checked, and thus does not generate an error message.

Differences in Null Handling Between Integrities and Constraints

Constraints and integrities handle nulls differently. Check constraints allow
nulls by default, whereas integrities do not allow nulls by default. Instructions
on how to allow nulls are described in Nulls and Integrities (see page 199).

Ways to Work with Integrity Objects

You can create and work with integrities using either VDBA or SQL statements.

In VDBA, integrities are implemented using integrity objects. An integrity
object defines an automatic check that allows you to closely monitor any
update requests before they are allowed to affect the database. Using the
Integrities branch for a particular table in the Database Object Manager
window, you can:

 Create integrity objects

 View existing integrity objects, including the detailed properties of each
individual object

 Drop integrity objects

For detailed steps for performing these procedures, see online help.

Using SQL, you can accomplish these tasks with the create integrity, drop
integrity, and help integrity statements. For more information, see the SQL
Reference Guide.

198 Ingres 2006 R2 Database Administrator Guide

Integrities

How Integrities Are Used

Immediately after you define an integrity object, the table is checked to make
sure that the condition is true for all existing rows. If not, an error is returned,
and the integrity object is rejected. If your table is very big, it takes some
time to scan each row to determine whether the integrity can be applied.

After successfully creating an integrity object, all subsequent operations on the
table must satisfy the specified condition. Changes to the database (that is,
updates, inserts, and deletes) that are not applied because of an integrity
violation are not specifically flagged or reported as errors—they are simply not
performed:

 If a change applies to a set of rows, this means that only some of the rows
were actually updated.

 If the change is for a single row, a returned row count of zero is a clue
that the update did not take place.

Nulls and Integrities

If you create an integrity involving a column that is nullable (has been created
using the “with nulls” clause so the user can insert a NULL), the condition must
take into consideration the possibility of encountering a null value. For more
information on nullable columns, see the chapter “Managing Tables and
Views.” For example, suppose the number column in a particular table is
nullable, and you define an integrity with the following condition that restricts
number values to 50 or less:

number <= 50

Null is not in itself a value, so the comparison evaluates to false for any row in
which the number column already has a null entry. You must create this
integrity on a nullable column before the column contains any nulls.
Otherwise, the integrity is rejected. Furthermore, with this integrity defined,
the number column, even though it is defined as nullable, does not allow nulls.

To to allow nulls in the column, you need to define the integrity with a null
clause to ensure proper handling of nulls with the integrity constraints:

number <= 50 or number is null

Ensuring Data Integrity 199

Rules

The Copy Statement and Enforcing Integrities

If you use the copy statement where integrities are involved, after the copy
operation you must check for and replace or delete rows with values violating
the integrities. Alternatively, you can copy to a temporary table and create an
insert statement that uses a subselect statement on the temporary table.

Note: Constraints defined when you create or alter a table are also ignored in
this situation and must be dealt with in a similar manner.

Rules
A rule is a user-defined mechanism that invokes a database procedure
whenever the database changes in a specified way, for example by insert,
update, or delete.

A rule is a general-purpose mechanism that can be implemented for many
purposes. For example, integrities can be implemented by rules. With
integrities, violations are not specifically flagged or reported as errors. With
rules, however, you can control exactly what happens when a violation occurs
by defining in the database procedure the actions to take.

Rules and Database Procedures

A rule is always associated with a database procedure that is executed when
the rule is fired. Before creating a rule, you must create its corresponding
database procedure, and you must have execute privileges for the database
procedure invoked by the rule. For details, see the chapter “Ensuring Access
Security.”

200 Ingres 2006 R2 Database Administrator Guide

Rules

Ways to Work with Rule Objects

You can create and work with rules using either VDBA or SQL statements.

In VDBA, rules are implemented using rule objects. Using the Rules branch for
a particular table in the Database Object Manager window, you can:

 Create rule objects

 View existing rule objects, including the detailed properties of each
individual object

 Drop rule objects

For the detailed steps for performing these procedures, see the Procedures
section of online help.

In SQL, you can accomplish these tasks using the create rule statement, drop
rule statement, and the rules and norules options of the set statement. For
more information, see the SQL Reference Guide.

How Rules Are Used

After a rule object is created, the rule is stored with the table in the database
and is applied continuously. Whenever the execution of a statement satisfies
an existing rule condition, that rule is fired, meaning that the database
procedure associated with the rule is executed. There is no need for
application code to explicitly enforce the rule.

It is also possible for a statement in a rule-invoked database procedure to fire
another rule. Rules can be nested in this manner up to a maximum level
specified by the DBMS configuration parameter, rule_depth.

Any user who has the privilege to access the table through the operation
specified by the rule has implicit permission to fire the rule and execute its
associated database procedure. For information on privileges and how they are
defined, see the chapter “Ensuring Access Security.”

Before and After Rules

Rules can be defined to execute before or after the effect of the triggering
statement is applied. AFTER rules are more common and are used to perform
auditing operations, integrity checks, and other operations on the updated
rows. BEFORE rules can be used to validate and replace values in an inserted
or updated row before the row is stored in the database. Both types of rows
can be used to inhibit the execution of the triggering statement if an error
condition is encountered, although before rules can typically do so more
efficiently.

Ensuring Data Integrity 201

Rules

Row and Statement Level Rules

Rules can be defined to execute the corresponding database procedure once
for each row affected by the triggering statement or to execute the procedure
once for the entire execution of the triggering statement. BEFORE rules must
be defined as "for each row," but AFTER rules can optionally be defined as "for
each statement." Statement level rules accumulate the procedure parameters
for each triggering row as rows in a temporary table that is passed as the only
parameter to the procedure. The procedure can then retrieve the parameter
"rows" by selecting from the temporary table parameter. This approach can
significantly reduce the overhead of rule execution.

Example: Use a Rule to Implement the Equivalent of an Integrity

For example, if you wanted to implement a rule equivalent to an integrity in
which the condition was salary <= 50000, create the rule by filling in the
VDBA Create Rule dialog as follows:

1. For Rule Name, enter check_salary.

2. For After, enable Insert and Update. This way, the rule is fired when new
rows are added and when existing rows are updated.

3. For Specify Columns for Update, enable salary, because that is the only
column you need to check after an update.For Where, enter
new.salary > 50000.

Here, “new” is a correlation name, and “new.salary” is a correlation
reference. With any column name, you can specify whether you want to
use its value before or after the update using the correlation name “old” or
“new,” respectively.

Note: Unlike an integrity check, which specifies a condition that cannot be
violated, a rule specifies a where condition that must be met. Thus, the
integrity condition (salary <= 50000), and the rule where condition
(shown in the step above), are opposites.

4. For Procedure Name, enter the name of the database procedure to execute
when this rule is fired (for example, salary_too_big). This procedure
must exist when the rule is created.

5. For Parameters, enter any parameters required by the salary_too_big
procedure.

The specified database procedure is executed and sent any specified
parameters when the salary column has a value that is too big (that is, greater
than $50,000). The procedure can be written to reject the operation, causing it
to be rolled back; log the error, but allow the operation; or modify the value
so that it is less than or equal to $50,000, and log that action.

202 Ingres 2006 R2 Database Administrator Guide

Rules

Rules and Transactions

The statement that fires a rule and the database procedure invoked by the
rule are considered part of the same single query transaction. Consequently,
the database procedure invoked by the rule is executed before the statement
that fired the rule completes. Because of this, you cannot issue a commit or
rollback statement in a database procedure invoked by a rule.

If the database procedure does not exist when the rule is invoked, or if an
error occurs in the execution of a rule, the response is as if the statement
firing the rule has experienced a fatal error. Any changes made to the
database by the statement and any made by the fired rule are rolled back.

Enforcing Referential Integrity

A referential integrity asserts a relationship between two tables such that the
values in a column of one table must match the values in a column of the
second table. Traditionally, the two tables have a parent-child relationship:

 The parent table has a column, called the primary key, containing values
against which other values are compared. The primary key is normally
unique.

 The child table has a column, called the foreign key, whose values must
match those of the primary key in the parent table.

A primary key does not have to be referenced by a foreign key (that is, there
can be a parent without a child). However, every foreign key must match a
primary key. There cannot be a child without a parent (that is, an orphan)—
this constitutes a referential integrity violation.

For example, for the parent table, create a rule to fire on an update or delete
of the primary key (an insert simply creates a parent without a child, which is
not an integrity violation). The database procedure can check for foreign keys
that reference the primary key and enforce the referential integrity.

For example, for the child table, create a rule to fire on an update or insert of
the foreign key. The database procedure checks to make sure there is a
parent.

The advantage of using a rule (as opposed to a constraint) to enforce
referential integrity is that the actions performed by a rule can be more
complex than merely checking for the existence of a primary key in a parent
table. For example, a rule can fire a procedure to create an appropriate parent
record if one does not already exist.

There are a number of ways that a referential integrity violation can be
handled. Three common techniques are to reject, nullify, or cascade the firing
statement.

Ensuring Data Integrity 203

Rules

Reject Technique for Enforcing Referential Integrity

Rejecting a value that violates an integrity constraint rolls back the statement
that fired the rule. The raise error statement performs this function, informing
the application that the results from the statement firing the rule violated
some specified condition or constraint. The response to a raise error statement
is the same as if the statement that fired the rule experienced a fatal error—
the firing statement is aborted and any changes to the database resulting from
the statement and subsequent rule firing are rolled back.

204 Ingres 2006 R2 Database Administrator Guide

Rules

Example: Enforce Referential Integrity Between an Employee and Manager

For example, the following database procedure can be invoked by a rule to
enforce referential integrity between an employee and the employee’s
manager and department. The code for the procedure, which has a procedure
name of valid_mgr_dept, is shown as it is entered in the VDBA Create
Procedure dialog:

Parameters

ename varchar(30),

mname varchar(30),

dname varchar(10)

Declare Section

msg varchar(80) not null;

check_val integer;

mgr_dept varchar(10);

Statements

/* Check to see if there is a matching manager */

select count(*) into :check_val from manager

 where name = :mname and dept = :dname;
if check_val = 0 then
 msg = 'Error 1: Manager "' +
 :mname + '" not found in that dept.';
 raise error 1 :msg;
 return;
endif;

/* Check to be sure there is a matching dept */
select count(*) into :check_val
 from dept where name = :dname;
if check_val = 0 then
 msg = 'Error 2: Department "' +
 :dname + '" not found.';
 raise error 2 :msg;
 return;
endif;
msg = 'Employee "' + ename + '" updated ' +
 '(mgr = "' + mname + '", dept = "' + dname + '")';
message :msg;
insert into emplog values (:msg);

Ensuring Data Integrity 205

Rules

This procedure checks the manager table to make sure that the employee’s
manager manages the department to which the employee is assigned. It
checks the department table to see that the department is valid. If any of
these checks fail, an error is issued and the new employee is not inserted into
the employee table. If the constraint is met, a message is displayed and a log
record is inserted into a journal table.

After defining this database procedure, create a rule to invoke it after updates
and inserts, and enter the following for the procedure parameters:

ename = new.name, mname = new.mgr, dname = new.dept

Note: Any value referring to a column name in a parameter list must be
preceded by a correlation name. Using the correlation name “old” or “new,”
specify whether you want to use the column value before or after the
operation, respectively.

206 Ingres 2006 R2 Database Administrator Guide

Rules

Nullify Technique for Enforcing Referential Integrity

Nullifying is a second course of action in response to a violation of a referential
integrity constraint if a foreign key does not have a matching primary key.
(Nullifying means that the columns in the records in violation of the constraint
are made null, as opposed to deleting the records or returning an error that
the constraint was violated.)

You are not restricted to nullifying the foreign key. You can modify the value to
another defined value. Because null is not a value, it traditionally does not
participate in the referential integrity relationship. Thus, a child row with a null
foreign key value is not generally considered an orphan. However, rules
provide you with the facilities to do such things as simulate matches on nulls.

For example, the following database procedure, nullify_children, can be
invoked by a rule, when a parent row is deleted, to nullify all child entries
belonging to that parent:

Parameters

me varchar(10)

Declare Section

msg varchar(80) not null;

Statements

msg = 'Nullifying child(ren) of "' + :me + '"';

message :msg;

update person set parent = NULL where parent = :me;

if iirowcount > 0 then
 msg = 'Nullified ' + varchar(:iirowcount) +
 ' child(ren) from "' + :me + '"';
else
 msg = 'No children nullified from "' + :me + '"';
endif;
message :msg;

After defining this database procedure, create a rule to invoke it after deletes,
and enter the following for the procedure parameters:

me = old.name

Ensuring Data Integrity 207

Rules

Cascade Technique for Enforcing Referential Integrity

Cascading is the third available option in response to a violation of a
referential integrity constraint. (Cascading means that the original update
applies to other records that violate the constraint.) If the statement that
violates the constraint is:

 An insert or update, cascading consists of inserting the offending foreign
key into the primary key column.

 A delete, cascading means not only deleting the primary key, but also
deleting all foreign keys that match that primary key.

The database procedure shown in this example, delete_children, can be used
to implement a cascading delete rule. The procedure can be invoked by a rule,
when a parent row is deleted, to delete all child entries belonging to that
parent:

Parameters

me varchar(10)

Declare Section

msg varchar(80) not null;

Statements

msg = 'Deleting child(ren) from "' + :me + '"';

message :msg;

delete from person where parent = :me;

if iirowcount > 0 then
 msg = 'Deleted ' + varchar(:iirowcount) +
 ' child(ren) from "' + :me + '"';
else
 msg = 'No children deleted from "' + :me + '"';
endif;
message :msg;

After defining this database procedure, create a rule to invoke it after deletes,
and enter the following for the procedure parameters:

me = old.name

When the rule is fired after the initial delete statement, it executes the
delete_children database procedure, which deletes all children whose parent is
the current person. Each delete statement in the delete_children procedure, in
turn, also fires the delete rule, until a particular person has no descendants.
The message statements that are executed before and after a row is deleted
demonstrate the order in which the tree is traversed.

208 Ingres 2006 R2 Database Administrator Guide

Rules

Note: In this example, the person table is self-referencing, and functions like
a self-join. Referential integrity does not require two separate tables. Here the
primary key is name and the foreign key is parent, both of which are in the
person table.

Enforcing General Integrities

To set up tables that maintain data calculated from other tables, use views on
normalized tables. For functional, performance, or data distribution reasons,
the derived data must be maintained in another table or even in a specific
column of the same table.

A general integrity is any integrity check that is not a referential integrity.
General integrities can be used, for instance, to describe the relationship
between the original data and the derived data, and a rule can be used to
enforce the described relationship.

For example, consider two tables, employee and department. The employee
table contains employee information, including the name of the department in
which each employee works. The department table includes the number of
employees in each department. Given these tables, a useful general constraint
is that the number of employees listed for a row in the department table must
match the number of employees in the employee table who work in that
department.

This constraint can be enforced using rules to correctly update a row in the
department table whenever an employee is hired, leaves, or changes
departments. For example, if you create a database procedure that updates
the department table whenever a new employee is hired, define a rule to
invoke it after an insert, passing the department number as a parameter.

Enforcing General-Purpose Rules

General-purpose rules are those rules that do not fall in the category of either
referential or general integrity constraints.

Ensuring Data Integrity 209

Rules

Using a Rule to Apply External Resource Controls

You can use general purpose rules to apply external resource controls.

For example, if you have a table of items in stock, define a rule that fires after
an update to the in_stock column. The following where clause causes the rule
to fire if the number of items in stock is reduced to less than a minimum value
of 100:

items.in_stock < 100

The rule executes a database procedure that reorders the item responsible for
firing the rule, passing as parameters an item identifier and the number of
items in stock. For example:

id = items.id, items_left = items.in_stock

Using a Rule to Extend the Permission System

A rule can be created to extend the permission system by ensuring that
unauthorized users cannot modify certain classified rows in the opcodes table.
The rule, which must be fired after inserts and deletes, is defined with the
following where clause:

opcodes.scope = 'share' and user != 'system'

The database procedure invoked by this rule can issue an error (using the
raise error statement, which rejects the statement that fired the rule) and log
the operation with the user name into a local log table for later review (the
next example demonstrates logging).

210 Ingres 2006 R2 Database Administrator Guide

Rules

Example: Use a General Purpose Rule to Track Changes to Personnel Numbers

This example tracks changes to personnel numbers. When an employee is
removed, an entry is made into the manager table, which in turn causes an
entry to be made into the director table. Even if an entry is made directly into
the manager table, the director table is notified.

To implement this, two database procedures need to be defined. The first,
manager_emp_track, updates the manager table by reducing the number of
employees for a manager, and inserts an entry into a separate table, mgrlog,
to log which employee was deleted for the manager:

Parameters

ename varchar(30),

mname varchar(30)

Statements

update manager set employees = employees – 1

 where name = :mname;

insert into mgrlog values ('Manager: ' +
 :mname + ', Deleted employee: ' + :ename);

The second, director_emp_track, updates the director table by reducing the
number of employees for a director:

Parameters

dname varchar(30)

Statements

update director set employees = employees - 1

 where name = :dname;

Two rules also need to be defined. The first one, defined for the employee
table, executes manager_emp_track after a delete operation, passing the
following parameters:

ename = old.name, mname = old.manager

The second rule, defined for the manager table, executes director_emp_track
after an update operation on the employees’ column that reduces the number
of employees by one. To implement the rule, the following where clause must
be defined:

old.employees - 1 = new.employees

Ensuring Data Integrity 211

Rules

Director_emp_track must be defined as the database procedure with the
following parameters:

dname = old.director

This rule is fired by the manager_emp_track procedure, because it reduces the
number of employees by one, but it is also fired if the manager table is
updated directly.

The Copy Statement and Enforcing Rules

If you use the copy statement on a table with rules defined, the table’s rules
are completely ignored. Table integrities are ignored in this same manner.
How to effectively apply rules in this situation is described in The Copy
Statement and Enforcing Integrities (see page 200).

Disable Rules

By default, rules are enabled. The set norules statement enables you to turn
off rules when necessary (for example, when using a utility that loads or
unloads a database in which tables can be modified from scripts and files prior
to their processing by applications).

To issue this statement, you must be the DBA of the database to which the
session is connected.

The set norules statement disables any rules that apply to statements
executed during the session or to the tables affected by the statements.
Existing rules as well as rules created during the session are disabled.

To re-enable rules, issue the set rules statement.

Warning! After you issue the set norules statement, the DBMS does not
enforce check and referential constraints on tables, nor does it enforce the
check option for views.

For more information on using set [no] rules, see the entry for the set
statement in the SQL Reference Guide.

212 Ingres 2006 R2 Database Administrator Guide

Database Events

Database Events
A database event enables an application or the DBMS to notify other
applications that a specific event has occurred. An event can be any type of
program-detectable occurrence. Using database events, you can define an
action that can be tied to a programmed response for the purpose of
sequencing multiple actions or responding quickly to a specific database
condition.

Ways to Work with Dbevent Objects

You can create and work with database events using either VDBA or SQL
statements.

In VDBA, database events are implemented using dbevent objects. Using the
Dbevents branch for a particular database in the Database Object Manager
window, you can:

 Create dbevent objects

 View existing dbevent objects, including the detailed properties of each
individual object

 Drop dbevent objects

For the detailed steps for performing these procedures, see the Procedures
section of online help.

Using SQL, you can also accomplish these tasks using the create dbevent and
drop dbevent statements. For more information, see the SQL Reference Guide.

Ensuring Data Integrity 213

Database Events

How Database Events Are Used

After a database event is defined for a table, it can be raised by all
applications connected to the database, assuming appropriate privileges have
been granted, as described in Database Event Grants (see page 174).

The event can be raised from interactive or embedded SQL applications, as a
result of triggering a security alarm, or in a database procedure (where it can,
in turn, be invoked by rules). It can also be received by all applications
connected to the database and registered to receive the event.

In general, database events work as follows:

 An application or the DBMS raises an event, that is, issues a notification
that a defined event has occurred.

 The DBMS notifies monitor applications that are registered to receive the
event.

 The receiving application responds to the event by performing the action
the monitor application designer specified when writing the program.

Note: You can also trace database events. For details, see the chapter “Using
Monitoring and Tracing Tools” in the System Administrator Guide.

214 Ingres 2006 R2 Database Administrator Guide

Database Events

Raise an Event

To raise a database event, use the raise dbevent statement from interactive or
embedded SQL applications or from within a database procedure.

A session can raise any event that is owned by the effective user, and any
event for which the effective user, group, role, or public has been granted the
raise privilege. For more information on granting privileges, see the chapter
“Ensuring Access Security.”

The raise dbevent statement requires you to specify an event_name
parameter, which is the same as the value you enter in the Create Database
Event dialog when you create the dbevent object using VDBA.

When the raise dbevent statement is issued, the DBMS sends an event
message to all applications that are registered to receive the specified
database event. If no applications are registered to receive the event, raising
the event has no effect.

The optional event_text parameter is a string that can be used to pass context
information or program handles to receiving applications. For example, use
event_text to pass the name of the application that raised the event. You can
retrieve this value using inquire_sql.

The with [no] share parameter enables you to specify which of the applications
registered to receive the event are actually notified. If you specify with share
or omit this parameter, the DBMS notifies all registered applications when the
event is raised. If you specify with noshare, the DBMS notifies only the
application that raised the event (assuming the program was also registered to
receive the event).

If a transaction issues the raise dbevent statement and the transaction is
subsequently rolled back, event queues are not affected by the rollback. The
raised event remains queued to all sessions that registered for the event. The
event queue is described in Receive an Event (see page 216).

For the complete statement syntax and additional information about using the
statement, see the raise dbevent entry in the SQL Reference Guide.

Ensuring Data Integrity 215

Database Events

Register to Receive an Event

To register to receive a database event, use the register dbevent statement
from interactive or embedded SQL applications or from within a database
procedure. For each event, the registration is in effect until the session
removes the event registration or disconnects from the database.

A session can register for any event that is owned by the effective user, and
any event for which the effective user, group, role, or public has been granted
the register privilege. Sessions must register for each event to be received.
For more information on granting privileges, see the chapter “Ensuring Access
Security.”

The DBMS issues an error if:

 A session attempts to register for a non-existent event.

 A session attempts to register for an event for which the session does not
have register privilege.

 A session attempts to register twice for the same event.

If the register dbevent statement is issued from within a transaction that is
subsequently rolled back, the registration is not rolled back.

For the complete statement syntax and additional information about using the
statement, see the register dbevent entry in the SQL Reference Guide.

Receive an Event

To receive event information, an application must perform two steps:

 Remove the next event from the session’s event queue (using get
dbevent, or implicitly, using whenever dbevent or set_sql dbeventhandler).

 Inquire for event information (using inquire_sql).

Get the Next Event from the Event Queue

The get dbevent statement gets the next event, if any, from the queue of
events that have been raised and for which the application has registered.

216 Ingres 2006 R2 Database Administrator Guide

Database Events

Obtain Event Information

To obtain event information, your application must issue the inquire_sql
statement. With this statement, you specify one or more parameters to
determine the type of information to retrieve. For example, to retrieve the text
specified in the event_text parameter when the event was raised, use
inquire_sql(dbeventtext).

For the complete statement syntax and additional information about using
these statements, see the get dbevent and inquire_sql entries in the SQL
Reference Guide.

Ensuring Data Integrity 217

Database Events

Example: Using Database Events with Rules

The following example illustrates the use of database events in conjunction
with rules in a manufacturing application. In this case, events are used to
detect when a drill gets too hot; they take the drill off-line:

1. Create a database event named drill_hot to be raised when the drill
overheats.

2. Create a database procedure that raises the drill_hot event; the procedure
is executed when the rule defined in step 3 is triggered.

For example, the following procedure, take_drill_down, logs the time at
which the drill was disabled and raises the drill_hot event:

Parameters

drill_id

Statements

insert into drill_log
 select date('now'), 'OFFLINE', drill.*
 from drill where id = :drill_id;
raise dbevent drill_hot;

3. Create a rule named drill_hot that is triggered whenever the drill
temperature is logged. (This presumes another application that monitors
and logs drill temperatures. This is created in the next step.)

For example, create a rule to execute the take_drill_down procedure
(created in step 2) after any update operation in which the temperature
column was changed. Using the following where clause causes the rule to
be fired if the temperature exceeded 500 degrees:

new.temperature > 500

The drill_id parameter must be passed as shown below:

drill_id = drill.id

4. Finally, create an application that monitors the status of the drills.

In the following example, the monitor application registers to receive the
drill_hot event and checks for events. If the monitor application receives
the drill_hot event, it sends mail to a supervisor and sends the signals
required to disable the drill:

exec sql register dbevent drill_hot;
...
exec sql get dbevent
exec sql inquire_sql (:evname = eventname,);
if (evname = 'drill_hot') then
 send mail
 take drill offline
endif;

218 Ingres 2006 R2 Database Administrator Guide

Database Events

The various pieces function together as follows:

1. The drill monitor application periodically logs the drill temperature to the
drill log table.

2. When the drill monitor application logs a drill temperature in excess of 500
degrees, the drill_hot rule fires.

3. The drill_hot rule executes the take_drill_down database procedure, which
raises the drill_hot event.

4. Finally, the event monitor process detects the drill_hot event, sends mail
to notify the responsible user, and sends a signal that disables the
overheated drill.

Remove an Event Registration

To remove a database event registration, use the remove dbevent statement
from interactive or embedded SQL applications or from within a database
procedure.

Using remove dbevent simply “unregisters” an application for a particular
database event. The event is still defined for the database and can be received
by other applications that are still registered.

After an event registration is removed, the DBMS does not notify the
application when the specified event is raised. Pending event messages are not
removed from the event queue.

For the complete statement syntax and additional information about using the
statement, see the remove dbevent entry in the SQL Reference Guide.

Drop Database Events

You can drop a dbevent object from the database, in which case it cannot be
raised and applications cannot register to receive it. Pending event messages
are not removed from the event queue.

If an event is dropped while applications are registered to receive it, the event
registrations are not dropped until each application disconnects from the
database or removes its registration for the dropped event. If the event is
recreated (with the same name), it can again be received by registered
applications.

Ensuring Data Integrity 219

Chapter 11: Choosing Storage Structures
and Secondary Indexes

This chapter describes storage structures, secondary indexes, and keys. It will
help you decide on the best structure and corresponding options to suit your
needs.

Storage Structure Terminology
A storage structure is a file arrangement providing a way to access data in a
database table.

Keyed storage structures provide fast access to a particular row or set of rows
in a database table.

A key is the field or fields that the table is indexed on. Specifying this key
gives you quick access to the rows you are looking for.

The index contains the contents of the key fields.

A secondary index allows you to specify an additional key.

Storage Structure and Performance
Ingres provides multiple types of storage structures. Each storage structure
provides optimal performance for particular types of queries and applications.
Choosing the best storage structure is essential to maintaining good
performance.

When you create or modify a table, you can choose the appropriate storage
structure and specify options to fine-tune the structure.

Choosing Storage Structures and Secondary Indexes 221

Types of Storage Structures

Types of Storage Structures
The types of storage structures are summarized here:

Heap

The default non-keyed storage structure with sequential data entry and
access. There is also a compressed heap structure (cheap) with trailing
blanks removed.

Hash

A keyed storage structure with algorithmically chosen addresses based on
key data values. There is also a compressed hash structure (chash) with
trailing blanks removed.

ISAM

A keyed storage structure in which data is sorted by values in key columns
for fast access. The index is static and needs remodification as the table
grows. There is also a compressed ISAM structure (cISAM) with trailing
blanks removed.

B-tree

A keyed storage structure in which data is sorted by values in key
columns, but the index is dynamic and grows as the table grows. There is
also a compressed B-tree structure (cB-tree) with trailing blanks removed.

For more information on the compressed structure for each of the above
types, see the chapter “Maintaining Storage Structures.”

Another storage structure, R-tree, can be used only on secondary indexes, as
described in R-tree Secondary Index (see page 254).

Heap Storage Structure
Whenever you create a table without specifying a storage structure, the
storage structure assigned is heap. In a heap structure, the table has no key—
it is simply a heap of data. When you add a row, it is added to the end of the
heap. This makes heap the fastest storage structure to use when you are
initially loading tables or adding a large quantity of data.

However, when you want to retrieve a particular row from a heap table, you
must search through every row in the table looking for rows that qualify. This
makes heap relatively slow for retrieval if tables have more than a few pages.
For more information, see the chapter “Maintaining Storage Structures.”

Note: The heapsort structure is like heap, but with the rows sorted and
duplicates removed (unless duplicates are allowed).

222 Ingres 2006 R2 Database Administrator Guide

Heap Storage Structure

Structure of a Heap Table

A heap table consists of a chain of pages. The layout of the sample heap table,
employee, is shown below:

 empno name age salary comment
 +---
Page 0 | 17| Shigio | 29| 28000.000|
 | 9| Blumberg | 33| 32000.000|
 | 26| Stover | 38| 35000.000|
 | 1| Mandic | 46| 43000.000|
 |---
Page 1 | 18| Giller | 47| 46000.000|
 | 10| Ming | 23| 22000.000|
 | 27| Curry | 34| 32000.000|
 | 2| Ross | 50| 55000.000|
 |---
Page 2 | 19| McTigue | 44| 41000.000|
 | 11| Robinson | 64| 80000.000|
 | 28| Kay | 41| 38000.000|
 | 3| Stein | 44| 40000.000|
 |---
Page 3 | 20| Cameron | 37| 35000.000|
 | 12| Saxena | 24| 22000.000|
 | 29| Ramos | 31| 30000.000|
 | 4| Stannich | 36| 33000.000|
 |---
Page 4 | 21| Huber | 35| 32000.000|
 | 13| Clark | 43| 40000.000|
 | 30| Brodie | 42| 40000.000|
 | 5| Verducci | 55| 55000.000|
 |---
Page 5 | 22| Zimmerman | 26| 25000.000|
 | 14| Kreseski | 25| 24000.000|
 | 31| Smith | 20| 10000.000|
 | 6| Aitken | 49| 50000.000|
 |---
Page 6 | 23| Gordon | 28| 27000.000|
 | 15| Green | 27| 26000.000|
 | 7| Curan | 30| 30000.000| Fire
 | 24| Sabel | 21| 21000.000|
 |---
Page 7 | 16| Gregori | 32| 31000.000|
 | 8| McShane | 22| 22000.000|
 | 25| Sullivan | 38| 35000.000|
 |
 +---

Choosing Storage Structures and Secondary Indexes 223

Heap Storage Structure

Because table scans are expensive, heap is not a good structure to use while
querying large tables. A retrieval of this type must look at every page in the
employee table:

Select * from employee
 where employee.name = 'Sullivan';

A retrieval like this also scans the entire table, even though Shigio’s record is
the first row of the first page:

Select * from employee
 where employee.name = 'Shigio';

Because heap tables do not eliminate duplicate rows, the entire table must be
scanned in case there is another employee named Shigio on another page in
the table.

224 Ingres 2006 R2 Database Administrator Guide

Heap Storage Structure

Heap as Default Structure for Loading Data

Heap is used as the default storage structure when a table is first created,
because it is assumed that a newly created table is likely to be loaded with
data.

Loading is optimized by not doing “per row” logging. Therefore, you must load
into an empty table. This can be a table that was just created and into which
no data has ever been added or deleted. Or it can be an existing table that
was truncated by clicking Delete All Data in the Modify Table Structure dialog
or by using the modify to truncate statement.

The empty table must also have the following characteristics:

 The table must not be journaled or have secondary indexes.

 The table must not have system-maintained keys.

 You must have an exclusive lock on the table.

Heap is also the best structure to use for adding data. Additions to a heap
table progress quickly because inserted rows are added to the end of the heap.
There is no overhead of calculating what page the row is on. The disadvantage
is that the heap structure does not make use of deleted row space except at
the end of the table.

Aside from compressed storage structures, the heap structure produces tables
with the smallest number of pages. This is because every page in a heap table
is filled as completely as possible. This is referred to as a 100% fill factor. A
heap table is approximately half the size of the same table modified to hash
because hash uses a 50% default fill factor instead of 100%.

After loading or adding the data, you can modify the table to another storage
structure. (Do not modify an empty table to another storage structure before
loading the data.)

To free deleted space, remodify the table to heap using the Modify Table
Structure dialog or the modify statement.

Very small tables can usually be left as heap tables. If the table fits on one to
five pages as a heap, there is no speed advantage to modifying it to a different
structure.

Note: The heap structure is sometimes used for large tables in conjunction
with a secondary index. This can be useful in a situation where the table is so
large it cannot be modified, but an accelerated access method is needed.

Choosing Storage Structures and Secondary Indexes 225

Heap Storage Structure

When to Use Heap

Heap is a good storage structure to use in any of these cases:

 You are bulk-loading data into the table.

 The table is only a few pages long (a lookup table).

 You always retrieve every row in the table without sorting.

 You are using a secondary index on a large table and must conserve
space.

Do not use heap for large tables when query performance is the top priority.
Heap is also a poor storage structure to use if you look up particular rows by
key value.

Heap Troubleshooting

The following are problems encountered with heap storage structure, and their
solutions:

Problem Solution

Access is slow on a table created
from another table (for example,
using the create table as select
statement or the Create Table as
Select check box in the Create
Table dialog).

Change the storage structure of the
table from which you are selecting the
data, or specify a storage structure other
than heap for the table you are creating.

Space once used by deleted rows
is never reused.

Modify the table to reclaim the deleted
row space (for example, using the
modify statement or the Modify Table
Structure dialog). In this case, you can
still choose heap as the storage
structure.

Selects and updates are slow. If the table is not small, modify it to
another storage structure. Heap is used
only for small tables because the entire
table is always scanned. Alternatively,
you can create a secondary index.

Inserts are not concurrent. Use row locking if the page size is
greater than 4 KB, or modify to another
structure. All inserts to a heap table are
sent to the last page.

226 Ingres 2006 R2 Database Administrator Guide

Hash Storage Structure

Hash Storage Structure
Hash is the keyed storage structure that calculates a placement number or
address by applying a hashing algorithm to the key data value. A hashing
algorithm is a function that does mathematical computations to a piece of data
to produce a number. It always produces the same number for the same piece
of data.

Hash is the fastest access method for exact match queries (that is, with no
pattern matching). A quick calculation is used to determine which pages to
search, but there is no additional I/O necessary for index scanning, as there is
in an ISAM or B-tree table. However, hash is more limited in the types of
queries it can handle, because the hashing algorithm is not useful in looking
for ranges of values, handling partial key restrictions, or doing pattern
matching. The entire table must be scanned for these queries.

Using the Modify Table Structure dialog or the modify statement, you can
change any table to the hash storage structure. When you modify a table to
hash, you must specify a key. If you do not specify a key; otherwise, the first
column is used.

Modifying a table to hash involves several calculations. Taking the number of
rows currently in the table, and calculating how many rows can fit on a 2000-
byte page, modify calculates how many main pages are necessary. (Main
pages are data pages where the rows are actually stored.)

To help the hashing algorithm distribute the data evenly, as well as to allow
plenty of room to add new data, this figure is doubled (referred to as 50% fill
factor). This is the number of main pages assigned to the table. The hashing
algorithm decides on which main page the row resides by calculating its
hashing address.

Choosing Storage Structures and Secondary Indexes 227

Hash Storage Structure

Structure of a Hash Table

An example illustrates how a hash table is structured and what hashing
means:

 The example uses an employee table that has 31 rows, 500 bytes each.

 The table is modified to hash on the age field, using the Structure of Table
dialog. For a full description of modify procedures, see the chapter
“Maintaining Storage Structures.” You can also use this modify statement:

modify employee to hash on age;

The number of main pages needed is calculated. The number chosen is always
at least seven, no matter how small the table is. The number of main pages
chosen is approximately twice the number of pages required if the table were
a heap. Normally hash uses a 50% fill factor, although if the row width is
greater than 1000 bytes, it uses a 100% fill factor.

The calculation used is this:

Main pages = (Rows_in_Table / Rows_per_page) * 2

31 rows_in_table / 4 rows_per_page = 8 (round up)
 8 * 2 = 16;

Main pages for employee table = 16

The main pages calculation is checked against the Min Pages and Max Pages
values. If these were specified, the result must fall in this range.

When a table is modified to hash, a skeletal table is set up with an appropriate
number of main pages. Although 16 pages can actually be used, as shown in
the calculation above, for illustration purposes assume 10 main pages are
chosen. The table is built by placing each row on the page where its key
hashes.

The chart in the following example illustrates what a table looks like after
modifying to hash on age. Remember that the actual hashing function is a
complex algorithm that supports all of the data types. For simplicity, however,
the following examples use the module function as a hashing algorithm.

Here is an example of a hashing function:

Main Page = Key MOD Main_Pages

Ross, Age 50 50 mod 10 = 0; hashes to page 0
McShane, Age 22 22 mod 10= 2; hashes to page 2
.
.
.

228 Ingres 2006 R2 Database Administrator Guide

Hash Storage Structure

After this hashing process is completed for all 31 rows, the table looks like
this:

 +----------------------------+
Page 0 | 50|Ross | 55000.000|
 | 20|Smith | 10000.000|
 | 30|Curan | 30000.000|
 | 20|Sabel | 21000.000|
 |----------------------------|
Page 1 | |
 | |
 | |
 | |
 |----------------------------|
Page 2 | 22|McShane | 22000.000|
 | 32|Gregori | 31000.000|
 | 42|Brodie | 40000.000|
 | |
 |----------------------------| Overflow Chain for Page 3
Page 3 | 33|Blumberg | 32000.000| |----------------------------|
 | 43|Clark | 40000.000|-->| 23|Ramos | 30000.000|
 | 23|Ming | 22000.000| | 53|McTigue | 41000.000|
 | 43|Kay | 38000.000| |----------------------------|
 |----------------------------|
Page 4 | 24|Saxena | 22000.000|
 | 34|Curry | 32000.000|
 | 44|Stein | 40000.000|
 | 64|Robinson | 80000.000|
 |----------------------------|
Page 5 | 55|Verducci | 55000.000|
 | 35|Huber | 32000.000|
 | 25|Kreseski | 24000.000|
 | |
 |----------------------------|
Page 6 | 26|Zimmerman | 25000.000|
 | 46|Mandic | 43000.000|
 | 36|Stannich | 33000.000|
 | |
 |----------------------------|
Page 7 | 37|Cameron | 35000.000|
 | 47|Giller | 46000.000|
 | 27|Green | 26000.000|
 | |
 |----------------------------|
Page 8 | 38|Stover | 35000.000|
 | 38|Sullivan | 35000.000|
 | 28|Gordon | 27000.000|
 | |
 |----------------------------|
Page 9 | 49|Aitken | 50000.000|

Choosing Storage Structures and Secondary Indexes 229

Hash Storage Structure

 | 29|Shigio | 28000.000|
 | |
 | |
 +----------------------------+

To retrieve the employee data about employees who are 49 years old:

Select * from employee
 Where employee.age = 49;

The table is hashed on age, and the qualification has specified an age. The
hashing algorithm is used to determine the main page on which rows with
ages of 49 are located:

49 mod 10 = 9

The lookup goes directly to Page 9, instead of looking through the entire table,
and returns the row requested.

To find all employees who are age 53, the calculation is:

53 mod 10 = 3

These rows are found on main Page 3. However, a search through the page,
looking for 53, shows it is not there. There is an overflow page, though, and
searching this page finds the row. Overflow pages are associated with a
particular main page. They can slow down processing time because searches
are required not only on the main page but the overflow chain connected to
the main page as well.

Inserts, updates, and deletes work the same way retrievals do. If you want to
append a new row, the row is placed on the page the new employee’s age
hashes to. Therefore, if you add an employee with age 22, 22 mod 10 is 2, so
this employee is placed on main Page 2.

To find all employees who are older than 50, there is no way of directly
locating these rows using the hashing algorithm; you must hash on every
possible value greater than 50. Instead, the table is treated as a heap table
and every page is scanned, starting from Page 0 through to Page 9 including
all overflow pages, looking for qualifying rows.

To retrieve the row where the employee’s name is Shigio, does the age key
help? Because the table is not hashed on name, and Shigio’s age is unknown,
the entire table must be scanned, from Page 0 through Page 9, looking for
rows where the employee name is Shigio. This retrieval treats the table like a
heap table, scanning every main and overflow page. To retrieve a row you
need without scanning the entire table, specify the value of the key for the
row.

230 Ingres 2006 R2 Database Administrator Guide

Hash Storage Structure

Retrievals Supported by Hash

The hash storage structure allows multi-column keys, but every column in the
key must be specified in a query to take advantage of the hash access
method. For instance, to hash the employee table on both age and name, use
the Structure of Table dialog.

Alternatively, use the following modify statement:

modify employee to hash on age,name;

The following queries make use of the hash key:

select * from employee
 where employee.age = 28
 and employee.name = 'Gordon';

select * from employee
 where employee.age = 28
 and employee.name = 'Gordon'
 or employee.age = 29
 and employee.name = 'Quan';

The next queries do not use the hash key, because the entire key has not
been specified:

select * from employee
 where employee.age = 28;

select * from employee
 where employee.name = 'Gordon';

select * from employee
 where employee.age = 28
 and employee.name like 'Gor%';

select * from employee
 where employee.age = 28
 or employee.name = 'Gordon';

Choosing Storage Structures and Secondary Indexes 231

Hash Storage Structure

When to Use Hash

Hash is the fastest structure to use when you specify an exact match of the
whole key value. Hash does not efficiently support pattern matching, range
searches, or partial key specification with multi-column keys. For these queries
the entire table must be scanned.

Hash is a good storage structure to use if you always retrieve the rows based
on a known key value, such as order number or employee number.

Hash is a poor storage structure to use in any of these cases:

 You use pattern matching.

 You retrieve ranges of values.

 You specify part of a multi-column key.

Hash Troubleshooting

The following are problems encountered with hash storage structure, and their
solutions:

Problem Solution

Pattern matching and range scans
used; performance slow.

Use ISAM or B-tree instead.

Partial key of multi-column key
used; performance slow.

Use ISAM or B-tree instead.

Overflow pages occur in table after
adding rows.

Remodify.

Overflow pages occur in newly
modified table.

If key is repetitive, this is normal but
undesirable. If key is unique, hashing
algorithm does not distribute data well;
try increasing minpages. If column is a
character column that only partially
varies (for example, AAAAA1 AAAAA2),
consider using ISAM instead.

232 Ingres 2006 R2 Database Administrator Guide

ISAM Storage Structure

ISAM Storage Structure
ISAM is a keyed storage structure in which data is sorted by the value in the
key column, and the index is static.

ISAM is a more versatile storage structure than hash. It supports pattern
matching, range scans, and partial key specification, as well as exact match
retrievals.

ISAM tables use a static index that points to a static number of main pages.
The index contains key ranges and pointers either to other index pages or to
the data page where rows with that key range are found.

Using the Modify Table Structure dialog or the modify statement, you can
change any table to the ISAM storage structure. When you modify a table to
ISAM, you must specify a key; otherwise, the first column is used as a key.

Choosing Storage Structures and Secondary Indexes 233

ISAM Storage Structure

Structure of an ISAM Table

Here is a simple example that illustrates how the ISAM structure works. The
employee table, which has 31 rows with a byte-width of 500, is modified to
ISAM on employee number. The results are shown in the following table:

 empno name age salary
Index Pages +--
 |1 |Mandic |46| 43000.000|
 <=4 |2 |Ross |50| 55000.000|Data Page 1
 =Page 1 |3 |Stein |44| 40000.000|
 <=4 |4 |Stannich |36| 33000.000|
 ? |--
 >=5 >4 and |5 |Verducci |55| 55000.000|
 <=8 |6 |Aitken |49| 50000.000|Data Page 2
<=8 =Page 2 |7 |Curan |30| 30000.000|
? |8 |McShane |22| 22000.000|
>8 |--
 >8 and |9 |Blumberg |33| 32000.000|
 <=12 |10 |Ming |23| 22000.000|Data Page 3
 =Page 3 |11 |Robinson |64| 80000.000|
 <=12 |12 |Saxena |24| 22000.000|
 ? |--
 >=13 >12 and |13 |Clark |43| 40000.000|
 <=16 |14 |Kreseski |25| 24000.000|Data Page 4
<=16 =Page 4 |15 |Green |27| 26000.000|
? |16 |Gregori |32| 31000.000|
>16 |--
 |17 |Shigio |35| 32000.000|
 <=20 >16 and |18 |Giller |47| 46000.000|Data Page 5
 ? <=20 |19 |McTigue |44| 41000.000|
 >20 =Page 5 |20 |Cameron |37| 35000.000|
 |--
 |21 |Huber |35| 32000.000|
<=24 >20 and |22 |Zimmerman |26| 25000.000|Data Page 6
? <=24 |23 |Gordon |28| 27000.000|
>24 =Page 6 |24 |Sabel |21| 21000.000|
 |--
 |25 |Sullivan |38| 35000.000|
 >24and |26 |Stover |38| 35000.000|Data Page7
 <=28 <=28 |27 |Curry |34| 32000.000|
 ? =Page7 |28 |Kay |41| 38000.000|
 >28 |--
 |29 |Ramos |31| 30000.000|
 >28 |30 |Brodie |42| 40000.000|Data Page8
 =Page8 |31 |Smith |20| 10000.000|
 |
 +--

234 Ingres 2006 R2 Database Administrator Guide

ISAM Storage Structure

Suppose you want to retrieve the employee data about employee number 11.
Starting at the beginning of the index (at the left in the example), follow the
index over to data Page 3, which contains rows of employees with employee
numbers greater than 8 and less than or equal to 12. Scanning this page, you
find employee number 11’s row.

If you want to find all employees with employee numbers greater than 24, use
the index, which directs you to Page 7, where you begin scanning the
remainder of the table looking for qualifying rows.

To retrieve the row where the employee’s name is Shigio, empno key does not
help, because the index was constructed on empno and not on name. You
must scan the entire table, from Page 0 through Page 9.

To append a new employee with an empno of 32, the search scans through
the index to the largest key value less than 32. On the page with that key
(Page 8), the new row is placed on the first available space on that page. If no
room is left on that page, the row is placed on an overflow page.

Choosing Storage Structures and Secondary Indexes 235

ISAM Storage Structure

Retrievals Supported by ISAM

ISAM can limit a scan if you specify at least the leftmost part of the key for the
desired rows. ISAM also limits the pages scanned if you are looking for ranges
of the key.

 If the key is a character key, ISAM supports character matching with
limited scan if you specify at least the leftmost part of the key.

 If the key is a multi-column key, ISAM limits the pages scanned only if you
specify at least the leftmost part of the key.

For instance, assume you modified the employee table to ISAM on name and
age using the Structure of Table dialog. Alternatively, you can use the
following modify statement:

modify employee to ISAM on name, age;

The following retrievals make use of the ISAM key:

select * from employee
 where employee.name like 'S%';

select * from employee
 where employee.name = 'Shigio'
 and employee.age > 30;

In contrast, the following retrievals do not make use of the ISAM key, because
the leftmost part of the key (name) is not restricted:

select * from employee
 where employee.age = 32;

select * from employee
 where employee.name like '%S'
 and employee.age = 32;

select * from employee
 where employee.name like '%higio%';

236 Ingres 2006 R2 Database Administrator Guide

ISAM Storage Structure

When to Use ISAM

ISAM is a versatile storage structure because it supports both exact match and
range retrievals. ISAM indexes and main pages are static—if you are
appending many rows, remodify to avoid overflow pages. For tables that are
mostly static, ISAM can be preferable to B-tree.

Because ISAM indexes are static, no locking needs to be done on the ISAM
index. In a heavily concurrent update environment, this feature makes ISAM
more appealing than B-tree, where pages of the index must be locked when
splitting or updating occurs.

ISAM is a good storage structure to use when the table is relatively static, and
retrievals tend to use any of the following:

 Pattern matching

 Ranges of key values

 Only the leftmost part of a multi-column key

ISAM is a poor storage structure to use in any of these cases, which causes
overflow pages:

 The table is growing at a rapid rate.

 The table is too large to modify.

 The key is sequential, that is, each key number is higher than the last and
the data is not static. This is because adding data with sequential keys
adds a lot of overflow pages at the last main page.

ISAM Troubleshooting

The following are problems encountered with the ISAM storage structure, and
their solutions:

Problem Solution

You try to use pattern matching, but
do not specify the leftmost
character.

F does not use the ISAM index,
whereas F* does. If you cannot modify
the search condition, the entire table
must be scanned.

You try to use just part of a multi-
column key, but do not specify the
leftmost column.

If you cannot modify the search
condition, create a secondary index
with only the columns on which you
are searching.

The table is growing quickly and new
rows are added to overflow pages.

Use B-tree instead.

Choosing Storage Structures and Secondary Indexes 237

B-tree Storage Structure

B-tree Storage Structure
B-tree is the keyed storage structure in which data is sorted by value in the
key column for fast access on the exact value and range retrievals, and the
index is dynamic. It is the most versatile storage structure. The B-tree
structure allows for keyed access and supports range searches and pattern
matching. The B-tree index is dynamic, growing as the table grows. This
eliminates the overflow problems that static structures like ISAM and hash
present as they grow. B-tree also allows for maximum concurrent use of the
table.

B-tree design incorporates a sparse index that points to pages in a leaf level.
The leaf level is a dense index that points to the rows on the data pages in the
table. The benefit of this indexing approach is that it minimizes splitting cost:
when splitting does occur, the actual data rows need not move. Only the leaf
and index levels require reorganization, as described in Index Growth in a B-
tree Table (see page 241).

238 Ingres 2006 R2 Database Administrator Guide

B-tree Storage Structure

Structure of a B-tree Table

A B-tree can be viewed as four separate parts:

 A free list header page, which is used to keep track of allocated pages that
are not currently being used

 One or more index pages, which contain leaf page numbers and the range
of key values to expect on each leaf page

 One or more leaf pages, which identify the data page and row where the
data is stored

 One or more data pages, where the user data is actually stored

The smallest B-tree has four pages, one of each type.

Note: If a secondary index is modified to B-tree, it cannot contain data pages.
Instead, the leaf pages of the secondary index reference the main table’s data
pages. For more information, see Secondary Indexes (see page 250).

The index level is similar to the ISAM index, except that the ISAM index points
to data pages, whereas the B-tree index level points to leaf pages. The
number of index pages is dependent on the width of the key and the number
of leaf pages, because eventually the index pages point to a particular leaf
page. Usually the index level is small, because it needs to point to only the leaf
pages.

The leaf page level is considered a dense index because it tells the location of
every row in the table. In dense indexes, rows on data pages do not move
during a split; that causes their tids to change. Tids identify every row on
every data page. For a complete discussion of tids, see Tids (see page 259).

The index level is considered a sparse index, because it contains only a key
value and a pointer to a page.

The following diagram illustrates the three B-tree levels: index page, leaf
page, and data page. It illustrates the relationship between the three levels,
but cannot be realistic. In actuality, if the key width name were only 30
characters, the row width were 500 bytes, and there were only 31 employees,
this B-tree has only a free list header page, one index page, one leaf page,
and 8 data pages (instead of 4 leaf pages and 3 index pages).
 +----------------------------------+
 | ROOT |
 | |
 | <= McShane |
INDEX PAGE +----------------------------------+
LEVEL / \
 / \
+-------------------------------------+ +---------------------------------+
| Key Leaf Page | | Key Leaf Page |

Choosing Storage Structures and Secondary Indexes 239

B-tree Storage Structure

<= Giller 1		> McShane <= Shigio 3
> Giller <= McShane 2		> Shigio 4
+-------------------------------------+ +---------------------------------+

LEAF PAGE LEVEL
Leaf Page 1 Leaf Page 2 Leaf Page 3 Leaf Page 4
Aitken 1,0 Gordon 3,0 McTigue 5,0 Smith 7,0
Blumberg 1,1 Green 3,3 Ming 5,1 Stannich 7,1
Brodie 1,3 Gregori 3,2 Ramos 5,2 Stein 7,2
Cameron 1,2 Huber 3,1 Robinson 5,3 Stover 7,3
Clark 2,0 Kay 4,0 Ross 6,0 Sullivan 8,0
Curan 2,1 Kreseski 4,1 Sabel 6,1 Verducci 8,1
Curry 2,2 Mandic 4,2 Saxena 6,2 Zimmerman 8,2
Giller 2,3 McShane 4,3 Shigio 6,3

DATA PAGE LEVEL
 +---+
Page 1 0 |Aitken | 1| 49| 50000.000 |
 1 |Blumberg | 2| 33| 32000.000 |
 2 |Cameron | 4| 37| 35000.000 |
 3 |Brodie | 3| 42| 40000.000 |
 |---|
Page 2 0 |Clark | 5| 43| 40000.000 | Associated Data
 1 |Curan | 6| 30| 30000.000 | Page for Leaf
 2 |Curry | 7| 34| 32000.000 | Page 1
 3 |Giller | 8| 47| 46000.000 |
 |---|
Page 3 0 |Gordon | 9| 28| 27000.000 |
 1 |Huber | 12| 35| 32000.000 |
 2 |Gregori | 11| 32| 31000.000 |
 3 |Green | 10| 27| 26000.000 |
 |---|
Page 4 0 |Kay | 13| 41| 38000.000 | Associated Data
 1 |Kreseski | 14| 25| 24000.000 | Page for Leaf
 2 |Mandic | 15| 46| 43000.000 | Page 2
 3 |McShane | 16| 22| 22000.000 |
 |---|
Page 5 0 +McTigue | 17| 44| 41000.000 +

To look for an employee named Kay, the search starts from the root node,
where a name that precedes McShane in the alphabet directs you down the
left side of the index.

The index page on the left shows that leaf Page 2 is the appropriate page on
which to look, because Kay comes between Giller and McShane in the
alphabet.

On leaf Page 2, Kay’s record is identified as being on data Page 4, row 0.
Going directly to data Page 4, row 0, Kay’s record is located.

240 Ingres 2006 R2 Database Administrator Guide

B-tree Storage Structure

Associated Data Pages in a B-tree Table

Every leaf page has an associated data page. The associated data page is
where new rows are added. A leaf page can actually point to several different
pages, but new data is only added to the associated data page. When an
associated data page fills up, a new associated data page is attached to the
leaf page. If you delete rows that exist on the current associated data page,
the deleted space is reused.

Having one associated data page per leaf page provides a good chance for
rows with similar key ranges to exist on the same data page, thereby
increasing the likelihood that data references occur on the same data page.

Index Growth in a B-tree Table

The major difference between ISAM and B-tree is that the B-tree index grows
as the table grows. If you added these five new employees to the ISAM
employee table, keyed on name: Zanadu, Zentura, Zilla, Zorro, Zumu, these
names are put on the last page of the ISAM table. Because they do not all fit
on the last page, they are put onto an overflow page attached to the last page.

If you added these five new employees to the B-tree table, you add the new
names to the appropriate leaf page (Page 4, in this case) and their records go
on the associated data page for leaf Page 4. Because the associated data page
fills up, a new associated data page is assigned to Page 4. If the leaf page is
full, and cannot hold all five names, the leaf page splits into two leaf pages,
and a reference to the new leaf page in the index is added. If the index page
can no longer hold a reference to another leaf page, the index is split as well.

Splitting in a B-tree Table

Splitting occurs fairly frequently while the table is small and growing. As the
table gets larger, splitting occurs less frequently (unless a sequential key is
used) and usually only in the leaf or lowest index level.

Repeated inserts into the right-most leaf of a B-tree table create empty leaf
pages rather than half-full ones. This improves insert and retrieval
performance, and increases disk space efficiency.

Choosing Storage Structures and Secondary Indexes 241

B-tree Storage Structure

Locking and B-tree Tables

During normal B-tree traversal, leaf and data pages are logically locked until
the end of the transaction. B-tree index pages are only temporarily locked
during query execution. The index page lock is released after the page has
been searched.

When searching the B-tree index, ladder locking is used: a lock is taken on the
first index page, which points to another index page. The next index page is
locked and, once it is locked, the first lock is dropped, and so on down the
index to the leaf level.

The locking system always locks the leaf and data pages when accessing B-
tree tables. Because of this, locking in a B-tree table requires twice as many
locks as locking an ISAM or hash table. It is wise to set the maxlocks
escalation factor higher than the default when using the B-tree storage
structure. For details, see the set lockmode statement in the SQL Reference
Guide.

Sorted Order in a B-tree Table

In the diagram in Structure of a B-tree Table (see page 239), rows for Huber
and Green are not in sorted order on the data page. This happens if Huber’s
record was appended before Green’s. They both end up on the same data
page, but slightly out of order. This happens in ISAM as well. However, if you
tried the following retrieval, you retrieve the rows in sorted order if the
employee table was a B-tree. This is because the leaf pages are used to point
to the data rows, and the leaf pages maintain a sorted sequence:

select * from employee
 where employee.name like 'G%';

The data on the data pages is not guaranteed to be sorted, but the access,
which is always through the leaf pages, guarantees that the data is retrieved
in sorted order. (This is not true for ISAM.)

Because the leaf entries are in sorted order, the maximum aggregate for a B-
tree key does not require a table scan. Instead the index is read backwards.

242 Ingres 2006 R2 Database Administrator Guide

B-tree Storage Structure

Deleted Rows in a B-tree Table

If rows are deleted on the associated data page, the space is reused the next
time a row is appended to that page. If rows are deleted from a data page that
is no longer associated, the space is not reused. If all the rows on a non-
associated data page are deleted, the page is immediately added to the free
list and becomes available for reuse.

Note: The only way to free up unused data pages completely and return disk
space to the operating system is to change the storage structure to B-tree.
You can do this using the Modify Table Structure dialog or using the modify
statement.

The reason that deleted space on a non-associated data page is not
automatically reused is to speed the append operation. Appending to one
particular page (the “associated data page”) is faster than tracking and
checking all the available free space on non-associated data pages; appending
to the associated data page also provides better key clustering when data
addition occurs in sorted key order. Because appends generally occur more
frequently than deletes, preserving the performance of the append operation
seems wiser than reusing deleted space from non-associated data pages.

When to Use B-tree

B-tree is the most versatile storage structure, as it supports both exact match
and range retrievals and includes a dynamic index, so that frequent
remodification is not necessary.

B-tree is a good storage structure to use in any of these cases:

 The table is growing at a rapid rate.

 You use pattern matching.

 You retrieve ranges of key values.

 You retrieve using only the leftmost part of a multi-column key.

B-tree is a poor storage structure to use if:

 The table is relatively static.

 The table is small, static, and access is heavily concurrent.

Choosing Storage Structures and Secondary Indexes 243

ISAM or B-tree?

B-tree Troubleshooting

The following are problems encountered with the B-tree storage structure, and
their solutions:

Problem Solution

You tried to use pattern matching,
but did not specify the leftmost
character.

Specify the leftmost part of the key;
F does not use the B-tree index,
but F* does. If you cannot modify the
search condition, the entire table
must be scanned.

You tried to use just part of a multi-
column key, but did not specify the
leftmost column.

Specify the leftmost column of the
multi-column key. If you cannot
modify the search condition, create a
secondary index with only the
columns on which you are searching.

You are deleting frequently, as well as
adding data.

To reclaim space, periodically select
Shrink B-tree Index in the Modify
Table Structure dialog, or use the
modify to merge or modify
statements.

ISAM or B-tree?
The B-tree and ISAM data structures share many of the same advantages over
the other storage structures, but they differ in important respects.

244 Ingres 2006 R2 Database Administrator Guide

ISAM or B-tree?

When to Choose ISAM over B-tree

The ISAM storage structure has the following advantages over B-tree:

 ISAM is better for static tables (ones that have no updates on key fields,
appends, or deletes) where no overflow chains exist.

 ISAM requires fewer disk operations to visit a data page than B-tree,
because B-tree has an additional leaf level.

 ISAM is much better for small tables. B-tree requires a minimum of a free
list header page, a root page, a leaf page, and a data page. ISAM requires
only a root and a data page. B-trees for less than 10 to 15 pages are
better stored as ISAM. B-tree tables take up more space than do ISAM
tables; this is most noticeable when tables are small.

 ISAM requires no locking in the index pages, while B-tree incurs index
locking; therefore concurrent performance in the index of a B-tree is not
as good as concurrent performance in the index pages of an ISAM.
However, concurrent usage in B-tree data pages is better than concurrent
usage in ISAM data pages if the ISAM table has long overflow chains.

When to Choose B-tree over ISAM

The B-tree storage structure has the following advantages over ISAM:

 B-tree is essential in tables that are growing at a rate that quickly causes
overflow in an ISAM structure (for example, situations where there are
ever-increasing keys).

 B-tree is better when sorting on the key is required, because sequential
access (for example, select * from emp) to data in B-tree is automatic;
there is no need to add a sort clause to queries, if you are sorting on the
primary key. B-tree also eliminates sorting of the joining column when
joining on key columns; sort-merge queries are more efficient if the tables
joined are B-tree.

Choosing Storage Structures and Secondary Indexes 245

Storage Structure Comparison Summary

Storage Structure Comparison Summary
The following chart is a quick reference for deciding which storage structure to
use.

Why a particular storage structure is good or bad for the condition listed is
described in Storage Structures and Performance (see page 261). Information
on secondary indexes is described in Secondary Indexes (see page 250).

Ratings in the following chart are as follows: 1-Excellent, 2-Good, 3-OK,
4-Bad, N/A-not applicable.

Requirement Heap Hash ISAM B-
tree

Pattern matching 4 4 1 1

Range searches 4 4 1 1

Exact-match keyed retrievals 4 1 2 2

Sorted data (without sort-by) 4 4 2 1

Concurrent updates 4 1 1 2

Addition of data without needing to modify 2 3 3 1

Sequential addition of data (incremental
key)

1* 2 4 1

Initial bulk copying of data 1 2 2 2

Table growth: none, static N/A 1 1 2

Table growth: some, periodically plan to
modify

N/A 1 1 2

Table growth: great deal — too fast to
modify

3 3 3 1

Table size: small (under 15 main pages) 2 1 1 3

Table size: medium (disk space available
for any modify)

4 1 1 1

Frequent deletions 4 1 1 3

Frequent updates 4 1 1 2

Secondary index structure N/A 1 1 1

* Refers to secondary indexes used with a heap table.

246 Ingres 2006 R2 Database Administrator Guide

Keys

Keys
Structures that provide fast access to particular rows or sets of rows require
that one or more columns be specified as the key of the table. The key column
or columns are used to index the table. When specifying a value for this key, a
partial value (the leftmost part of the key) is allowed unless the structure is
hash.

Key Columns

When a key value is specified, instead of scanning the entire table, the search
uses the index (or hashes the key) to go directly to the page in the table
where the row with that key resides.

Choosing which columns to use as key columns is not always clear cut. To
understand what a key column does, let us look again at the employee table.
Consider the query:

select * from employee
 where name = 'Shigio';

The column called name (assuming it is unique) is a good candidate for the
key for the employee table. If the employee table is keyed on name, finding
the employee record where the name is Shigio is faster than scanning the
entire table.

Good columns for keys are columns referenced in the where clause portion of
the query, not the target list. Columns that restrict the number of rows
returned and joining columns, demonstrated in the two examples below, are
candidates for keys:

where name = 'Shigio'
where e.dept = d.dept

A join qualification by itself is not restrictive, so if there also exists a restrictive
qualification in the where clause, choose the restriction as the key column. For
example:

select empno from employee
 where employee.name = dept.manager
 and dept.name = 'Technical Support';

The most restrictive qualification in this where clause is:

dept.name = 'Technical Support'

Choosing Storage Structures and Secondary Indexes 247

Keys

The dept table is keyed on name. Keying dept on manager is not necessary for
this query, because once the row for the department named Technical Support
is identified, you know the manager. The employee table is also keyed on
name, because once the manager of the dept table is known, the search can
do a keyed lookup into the employee table. Empno is not a key candidate in
this query, because it appears in the target list, not the where clause.

Note: The order of qualifications in the where clause is not important, as the
Ingres optimizer decides the appropriate order of execution.

Often, there are multiple candidate keys in a single query. Generally, the most
restrictive column is the best key. The following example illustrates this:

Select empno from employee
 Where employee.sex = 'F'
 And employee.salary > 20000'>
 And employee.name like 'Shigi%';

In this case, there are three columns that are potential keys. However, these
first two qualifications are not very restrictive because “M” and “F” are the only
two values for the key sex, and many employees are likely to have the
selected salary qualification:

employee.sex = 'F'

employee.salary > 20000

The most restrictive qualification is probably:

employee.name like 'Shigi%'

Thus, name is chosen as the key column. Once you find all rows with names
beginning with Shigi, it takes little time to determine which of these rows are
female and make more than 20000, because the number of rows you are
looking at is only a small subset of the employee records.

248 Ingres 2006 R2 Database Administrator Guide

Keys

Secondary Keys

When evaluating multiple queries, you find situations where one table needs
more than one key. Secondary indexes (see page 250) can provide a
secondary key and can be employed in these circumstances, but indexes must
be used with discretion, as they add overhead to update, delete, and insert
operations.

For example, perhaps the administration department decides empno is the
appropriate key for the employee table, but the shipping department prefers
address as the key column of the table. Secondary indexes can alleviate this
problem, but you have to weigh factors, such as the number of times a
particular query is executed, the acceptable response time for a query, the
time of day the query is likely to be executed, and the importance of a query
in the global view of the application.

In evaluating how to key the employee table, each query type is ranked as in
the following example:

Query Number

Executed
Per Day

Acceptable
Response
Time

Time of
Day

1 select * from employee
where empno = 123;

KEY = empno

2000 1 second 7-4

2 select name from employee
order by empno;

no key, but sorted by
empno

1 2 hours after 5

3 select salary from employee
where name = 'Shigio';

KEY = name

20 30 sec 9-5

4 select name from employee
where comment = 'Fire';

KEY = comment

1 30 sec 9-5

Choosing Storage Structures and Secondary Indexes 249

Secondary Indexes

The most important query to key in this list is Query 1 because it is executed
frequently, requires fast response, and is pivotal to the application. The key
choice for employee table is the empno column.

Query 2 does not contain a restriction, so no key decision must be made. Also,
this report can be run at night, so CPU time is not crucial. Therefore, B-tree on
empno is a good choice of storage structure and key, because both Query 1
and Query 2 benefit.

Query 3 is important, but it is not executed as frequently, nor does it require
as immediate a response. A secondary key on name is appropriate.

Query 4 is not executed frequently, and although the importance rating for
this query was high, it is advantageous to either work out a different
implementation strategy or discourage the user from using this query often.
The comment field is particularly large and empty and, therefore, is not a good
key choice. A separate fired table can be set up that lists the employees who
had been fired that day; this table is joined to the employee table.

Secondary Indexes
Secondary indexes provide a mechanism for specifying an additional key to the
base table.

For instance, assume that an employee table containing name (employee’s
name) and empno (employee number) columns is hashed on empno, but
occasionally data must be retrieved based on the employee’s name rather than
the employee number. You can create a secondary index on the name column
of the table.

250 Ingres 2006 R2 Database Administrator Guide

Secondary Indexes

Ways to Work with Indexes

You can create and work with indexes using either VDBA or SQL statements.

In VDBA, using the Indexes branch for a particular table in the Database
Object Manager window, you can:

 Create index objects

 View existing index objects, including the detailed properties of each
individual object

 Drop index objects

Indexes are dropped automatically when the base table is destroyed. Indexes
are also dropped when the base table is modified, unless the Persistence
option is specified for the index.

For the detailed steps for performing these procedures in VDBA, see the
Procedures section of online help.

In SQL, you can accomplish these tasks using the create index, drop, and help
index statements. For more information, see the SQL Reference Guide.

Choosing Storage Structures and Secondary Indexes 251

Secondary Indexes

Implementation and Overhead of Secondary Indexes

Secondary indexes are actually tables that are automatically tied to the base
table. Secondary indexes must be updated whenever the base table is
changed, so they must be used sparingly. The user need not explicitly
reference the secondary index for it to be used in a query. In fact, you cannot
directly update a secondary index and probably never reference it. If the
Ingres optimizer sees that an index is available to help solve the query,
generally the index is used.

By default, secondary indexes are created as ISAM tables. You can change the
storage structure of the index by modifying the secondary index once it is
created, or by specifying another structure when you create the index.

In VDBA, you create indexes using the Create Indexes dialog and modify them
using the Modify Index Structure dialog. For more information on modifying an
existing index, see the chapter “Maintaining Storage Structures.”

The following example shows the relationship of a secondary index to a base
table:

Select * from xnameselect name,tid from employee
name	tidp		name	tid
--------------------------		-------------------------		
Aitken	3072		Gregori	0
Blumberg	512		Sabel	1
Brodie	3584		Blumberg	512
Cameron	1024		Kay	513
Clark	4096		Shigio	514
Curan	1536		Cameron	1024
Curry	4608		Mandic	1025
Giller	2048		Stannich	1026
Gordon	5120		Curan	1536
Green	2560		McTigue	1537
Gregori	0		Stover	1538
Huber	3073		Giller	2048
Kay	513		Ramos	2049
Kreseski	3585		Verducci	2050
Mandic	1025		Green	2560
McShane	4097		Ross	2561
McTigue	1537		Aitken	3072
Ming	4609		Huber	3073
Ramos	2049		Saxena	3074
Robinson	5121		Brodie	3584
Ross	2561		Kreseski	3585
Sabel	1		Smith	3586
Saxena	3074		Clark	4096
Shigio	514		McShane	4097
Smith	3586		Stein	4098
Stannich	1026		Curry	4608
Stein	4098		Ming	4609
Stover	1538		Sullivan	4610
Sullivan	4610		Gordon	5120
Verducci	2050		Robinson	5121
Zimmerman	5122		Zimmerman	5122
---------------------------		-------------------------		

252 Ingres 2006 R2 Database Administrator Guide

Secondary Indexes

There is a row in the secondary index xname for every row in the employee
table. There is also a column called tidp. This is the tid of the row in the base
table. Tids identify every row on every data page. For a complete discussion of
tids, see Tids (see page 259). The tidp entry for an employee is the tid of the
employee’s record in the base table.

There are no limits to the number of secondary indexes that can be created on
a table. However, there is overhead involved in the maintenance and use of a
secondary index that you must be aware of:

 When you add a row to the base table, you add an entry into every
secondary index on the table as well.

 When a row in the base table moves, causing the tid to change, every
secondary index must be updated to reflect this change. In a base table,
rows move when the key is updated or if the table is compressed and a
row is replaced that no longer fits in the same page.

Note: For a compressed table, when a varchar(width) column is updated
and then recompressed, the row size can change.

 When the base table is updated, so that there is a change of the value in a
column, which is used as the key of a secondary index, the key of the
secondary index has to be updated as well.

 When processing a query execution plan for a query, the more indexes
and plans possible for the query, the longer it takes to decide what query
execution plan to use.

Choosing Storage Structures and Secondary Indexes 253

Secondary Indexes

R-tree Secondary Index

An R-tree storage structure is a secondary index for multi-dimensional object
management extension data types that can provide the requisite functions
(nbr and hilbert).

The R-tree index is a secondary index only. The access method of the base
table is B-tree, hash, heap, or ISAM. The R-tree index uses two functions to
describe and sort its data. The R-tree index is built on the nbr (normalized
bounding rectangle) function of the original object, not the object itself. The
nbr function describes the location of each object. The hilbert function sorts
the nbr values so that nbr records describing close locations are close to one
another in the R-tree index table.

For more information on the nbr and hilbert functions and for more
information on handling objects, see the Object Management Extension User
Guide.

An R-tree index allows Ingres to answer range queries, such as: “find all
records where its position overlaps this spot,” quickly. Without an R-tree
index, the whole database must be read. Consider two tables: Table A is a
table of houses, and Table B contains park information and location. The
query, “select all houses where the house intersects a park” is an example of a
spatial join. Without an R-tree index, the spatial join reads Table B entirely for
each row in Table A.

When creating an R-tree index (for example, using the Create Indexes dialog
or the create index statement) you must include range values, which specify
the minimum and maximum values of the index column.

254 Ingres 2006 R2 Database Administrator Guide

Secondary Indexes

The following example illustrates an R-tree index:

select shape, hex(hilbert), tidp from xfio_shape_ix;

+---+------------+-------+
|shape |col2 |tidp |
+---+------------+-------+
((6644550,2412235),(6651911,2425562))	182343433792	0
((5711593,7469490),(5720615,7473074))	2CBBAFC085E6	1541
((5755540,7431379),(5765798,7468084))	2CBC38CC815C	1543
((5764642,7468084),(5776333,7489652))	2CCEABAE4E25	1542
((5760044,7471142),(5775065,7492024))	2CCEAC433EF1	1544
((4392392,7367220),(4392773,7368251))	2F0514CC452B	3
((4393222,7381338),(4393696,7382470))	2F05ECE43CA5	1536
((6105365,8716914),(6119516,8719411))	7BC8B02F74CE	1539
((6104208,8719411),(6123227,8733088))	7BC8B47DB378	1538
((6082882,8707086),(6104747,8708099))	7BCA043955D6	1540
((8995748,12135179),(8999981,12144160))	8F8235359771	1537
((9289826,13632441),(9325335,13663808))	9356B03B9AA0	1
((9268185,13666317),(9286628,13724240))	93591514F7A8	4
((9396304,16145868),(9397279,16148181))	95C328081C95	2
((11623892,4873084),(11624345,4874079))	DF6722ADDB47	7
((11624186,4871079),(11624855,4871713))	DF6727B0C6D0	6
((11622165,4875404),(11624949,4877801))	DF672D336FDD	8
((11621206,4874079),(11624345,4876640))	DF672D738440	10
((11621807,4874417),(11624499,4877759))	DF672D7B50C1	9
((11610646,4875871),(11612145,4878603))	DF67321EEFB6	5
+---+------------+-------+
(20 rows)

The shape column contains the nbr coordinates. The col2 column contains the
hilbert number for the nbr. The tidp column corresponds to the tid value of the
object (see page 259) in the base table. Tids identify every row on every data
page.

Choosing Storage Structures and Secondary Indexes 255

Secondary Indexes

Secondary Indexes and Performance

Secondary indexes are generally used to index into the base table they see,
although if the query can be executed in the secondary index alone, the base
table need not be visited. Using secondary indexes to help complete queries
that are otherwise executed on the base table can dramatically reduce the
query execution time.

For example, assume a secondary index exists on the name column for the
employee table, and the following query is executed:

select empno, age, name
 from employee
 where name like 'A%';

First, records beginning with an “A” in the secondary index are located, and
using the tidp column, each tidp is used to do a tid lookup into the employee
table, to get the rest of the information about the employee, namely empno
and age. Tids (see page 259) identify every row on every data page.

Both the secondary index and the base table are used in this query. However,
had the retrieval asked only for employee.name rather than empno and age,
the base table is not used, and the number of disk I/Os executed is reduced by
more than 50%.

Even in some situations requiring scans of the entire table, you can
dramatically improve performance by loading the columns retrieved into the
secondary index, so that probing the base table is not necessary. An example
is shown in Example: Loading Retrieved Columns into a Secondary Index to
Improve Performance (see page 257).

256 Ingres 2006 R2 Database Administrator Guide

Secondary Indexes

Example: Load Retrieved Columns into a Secondary Index to Improve Performance

In this example, the table bigtable contains 100,000 rows and 20,000 pages.

First, follow these steps to modify the bigtable to use a B-tree structure keyed
on three columns:

1. In VDBA, open the Modify Table Structure dialog for bigtable. For more
information, see the chapter “Maintaining Storage Structures” and online
help.

2. Enable Change Storage Structure and click Structure.

The Structure of Table dialog opens.

3. Select B-tree in the Structure drop-down list, enable col1, col2, and col3 in
the Columns group box to specify them as keys, and then click OK.

The Structure of Table dialog closes.

4. Click OK

The Modify Table Structure dialog closes.

Next, a select statement is issued in which the key columns are specified in
the where clause. This search requires a full table scan, even though the three
columns in question are key columns in the bigtable structure:

select col1, col2, col3 from bigtable
 where col1 = 'Colorado', col2 = 17, col3 = 'repo';

Creating a secondary index on the three columns alleviates this problem.

Follow these steps to create a secondary index, with name xbig:

1. In VDBA, open the Create Indexes dialog for bigtable. For more
information, see online help.

2. Enter xbig in the Index Name edit control.

3. For each of the key columns, col1, col2, and col3, select the column in the
Base Table Columns list box, and click the double-right arrow (>>) to add
it to the Index Columns list box, and then click OK.

The index xbig is 500 pages. Issuing the exact same query as before (shown
again below) now uses the secondary index, thereby reducing the scan from
20,000 pages to 500 pages:

select col1, col2, col3 from bigtable
 where col1 = 'Colorado', col2 = 17, col3 = 'repo';

Aggregates on secondary indexes can be more efficient, because the index is
so much smaller than the base table. For example, if there was a secondary
index on col1, this aggregate is processed in much less time:

select avg(col1) from bigtable;

Choosing Storage Structures and Secondary Indexes 257

Secondary Indexes

Forced Use of Secondary Indexes

You can force a secondary index to be used by referencing it in the query, but
the optimizer must ensure that this is never necessary. For example, consider
the following query:

select * from emp
 where emp.name = 'Shigio';

To force it to use a secondary index, change it to the following:

select * from emp, xname
 where xname.tidp = emp.tid
 and xname.name = 'Shigio';

Two Secondary Indexes

There is no reason for having two secondary indexes on the same column, for
example, one hash and one ISAM. Instead, use the index giving you the most
versatile access path because the overhead of maintaining and using two
indexes is more than the disk I/O saved for a few queries.

If you need two access paths, and you want one to be hash and the other to
be ISAM or B-tree, you can use ISAM (or B-tree) for the base table access
method and hash for the index. ISAM and B-tree cluster similar data on the
same data page, while hash randomizes data, so that ranges of values are not
clustered. With the base table as ISAM or B-tree, range retrievals find the
physical rows clustered on the same data pages, reducing the amount of disk
I/O needed to execute range queries. If the base table is hash, the ISAM index
points to the qualifying rows, but these rows are spread randomly about the
table instead of being clustered on the same data pages.

258 Ingres 2006 R2 Database Administrator Guide

Tids

Tids
Every row on every data page is uniquely identified by its page and row,
known as its tid, or tuple identifier. Tids are designed to be used internally by
the data manager. They are not supported for use in user-written programs.

Note: Tids were not designed to provide unique row identifiers for user data or
to provide quick access. Tids are not stored, but are only calculated addresses,
so they are unreliable row markers and are likely to change; in short, they
must not be used by user programs or queries. We advise that you use tids for
informational debugging purposes only. For more information, see the chapter
“Understanding the Locking System.”

Tids can be used for direct access into tables. B-tree leaf pages use tids to
locate rows on data pages. Also, secondary indexes use tids to indicate which
row the key value is associated with in the base table. When a secondary
index is used to access a base table, the tid found in the tidp column is used to
locate the row immediately in the base table. (The tidp column corresponds to
the tid value of the object in the base table.) The base table’s index structure
is ignored and access is directly to the page and row.

A listing of the tids in the employee table illustrates tid numbering. The
employee table is 500 bytes wide, so four rows fit on each 2048-byte data
page.

Tid values start at 0 and jump by 512 each time a new page is encountered.
In a page, each row is sequentially numbered:

0, 1, 2, 3, 512, 513, 514, 515, 1024, 1025, and so on.

For example, the relationship of tids to empno’s in the employee table is
illustrated as follows:

|empno |tid|
|---------------------------|
| 1| 0| Page 0 Row 0
| 2| 1| Row 1
| 3| 2| Row 2
| 4| 3| Row 3
| 5| 512| Page 1 Row 0
| 6| 513| Row 1
| 7| 514| Row 2
| 8| 515| Row 3
| 9| 1024| Page 2 etc.
10	1025
11	1026
12	1027
13	1536

Tids are not stored as part of each row; they are calculated as the data page is
accessed.

Choosing Storage Structures and Secondary Indexes 259

Tids

If overflow pages are encountered, the tid values increase by more than 512;
after the overflow chain, they again decrease. Overflow chains are particular to
main data pages; however, they are always allocated at the end of the file as
they are needed.

To illustrate overflow, assume the employee table was hashed with maxpages
= 5. Given the following modify and select statements, the tid numbering is as
shown here:

modify emp to hash on empno
 where maxpages = 5;
select name, tid from emp;

|name |tid|
|---------------------------------|
|Clark | 0| Page 0
Green	1
Mandic	2
Robinson	3
Smith	2560
Verducci	2561
Brodie	512
Giller	513
Kay	514
Ming	515
Saxena	3072

Every tid value is unique. When a table is heap, tids always increase in value,
because the pages always follow each other. B-tree data pages are not
accessed directly, so tid values are not accessed sequentially (data is always
sorted by key).

Tid values change as rows move; if a compressed row is expanded, its tid can
change; if a key value is updated, the row is moved and the row’s tid changes.
Although tids are retrievable, their values are unreliable in application
programs. Use tids only to help to understand the structure of tables.

260 Ingres 2006 R2 Database Administrator Guide

Chapter 12: Maintaining Storage
Structures

Maintaining good performance is one of the major responsibilities of the DBA.
Performance-enhancing tasks related to storage structures include modifying
the database tables, compressing storage structures, and managing overflow.

This chapter discusses how and when to use the modify procedures to change
storage structures for tables and secondary indexes. As part of regular system
maintenance, you should use modify procedures to eliminate overflow pages
and recover disk space for deleted rows.

This chapter describes how to perform modify procedures using VDBA, rather
than SQL statements.

For additional information on database performance, see the chapter
“Improving Database and Query Performance.”

Storage Structures and Performance
The data for each table is stored in a file on disk. Tables consist of pages with
a size that you define when you create the table. For example, you can specify
a page size of 2 KB, 4 KB, and so forth by powers of two up to 64 KB. Each
page has a certain amount of overhead, which depends on the page size.
Relevant values and how they are calculated for each possible page size are
described in Space Requirements for Tables (see page 449).

Each page stores a number of rows. The number of rows per page varies,
according to the row width, the storage structure of the table, whether or not
the table is compressed, and how much data has been added or deleted
because the table was last modified. Rows cannot span pages, limiting the
maximum row width to the per-page data size.

The page is an important concept in understanding query performance
because it affects the amount of disk I/O a query does, as well as the amount
of CPU resources required to read through a table.

Maintaining Storage Structures 261

Storage Structures and Performance

Display the Number of Pages in a Table

To see how many pages are in a table, you can use either VDBA or an SQL
statement.

In VDBA, select a table and select the Pages tab.

In SQL, use the help table statement. For more information, see the SQL
Reference Guide.

A display for a B-tree table is shown in this example:

Name: emp
Owner: ingres
Created: 22-sep-2006 10:27:00
Location: ii_database
Type: user table
Version: II9.0
Page size: 2048
Cache priority: 0
Alter table version: 0
Alter table totwidth: 70
Row width: 70
Number of rows: 32
Storage structure: B-tree
Compression: none
Duplicate Rows: not allowed
Number of pages: 6
Overflow data pages: 0
Journaling: enabled
Base table for view: yes
Permissions: none
Integrities: none
Optimizer statistics: none
Column Information:
 Key
Column Name Type Length Nulls Defaults Seq
name varchar 20 no no 1
title varchar 15 no yes
hourly_rate money no yes
manager varchar 20 yes null

Secondary indexes: none

262 Ingres 2006 R2 Database Administrator Guide

Storage Structures and Performance

Limitations of Heap Structure

Without help from the storage structure, when you want to retrieve a
particular row from a table, you must search through every row to see if it
qualifies. (Searching through every row is called scanning the table.) Stopping
at the first row that qualifies is not enough, because multiple rows can qualify.

Consider the data shown in a sample heap table:

 empno name age salary comment
 +---
Page 0 | 17 | Shigio | 29| 28000.000|
 | 9 | Blumberg | 33| 32000.000|
 | 26 | Stover | 38| 35000.000|
 | 1 | Mandic | 46| 43000.000|
 |---
Page 1 | 18 | Giller | 47| 46000.000|
 | 10 | Ming | 23| 22000.000|
 | 27 | Curry | 34| 32000.000|
 | 2 | Ross | 50| 55000.000|
 |---
Page 2 | 19 | McTigue | 44| 41000.000|
 | 11 | Robinson | 64| 80000.000|
 | 28 | Kay | 41| 38000.000|
 | 3 | Stein | 44| 40000.000|
 |---
Page 3 | 20 | Cameron | 37| 35000.000|
 | 12 | Saxena | 24| 22000.000|
 | 29 | Ramos | 31| 30000.000|
 | 4 | Stannich | 36| 33000.000|
 |---
Page 4 | 21 | Huber | 35| 32000.000|
 | 13 | Clark | 43| 40000.000|
 | 30 | Brodie | 42| 40000.000|
 | 5 | Verducci | 55| 55000.000|
 |---
Page 5 | 22 | Zimmerman | 26| 25000.000|
 | 14 | Kreseski | 25| 24000.000|
 | 31 | Smith | 20| 10000.000|
 | 6 | Aitken | 49| 50000.000|
 |---
Page 6 | 23 | Gordon | 28| 27000.000|
 | 15 | Green | 27| 26000.000|
 | 7 | Curan | 30| 30000.000|Fire
 | 24 | Sabel | 21| 21000.000|
 |---
Page 7 | 16 | Gregori | 32| 31000.000|
 | 8 | McShane | 22| 22000.000|
 | 25 | Sullivan | 38| 35000.000|
 |
 +---

With this heap structure, a retrieval such as the following looks at every page
in the emp table:

select * from emp where emp.name = 'Sullivan';

Maintaining Storage Structures 263

Modify Procedures

Although the Shigio record is the first row in the table, the following retrieval
also looks at every row in the table:

select * from emp where emp.name = 'Shigio';

Because the table is not sorted, the entire table must be scanned in case there
is another employee named Shigio on another page in the table.

Retrieval from a large table can be costly in time and system resources. To
understand the performance consequences of a scan of a large table, assume
that the emp table is actually 300,000 pages, rather than 8. Further, assume
the disks can manage approximately 30 disk I/Os per second. Assume one
disk I/O per page. With a heap storage structure, the example select operation
takes 300,000 / 30 = 10,000 seconds (or 2 hours, 46 minutes) in disk access
time alone, not counting the CPU time taken to scan each page once it is
brought in from disk, and assuming no other system activity.

For a large table, a different storage structure is needed. A production system
cannot tolerate a three-hour wait to retrieve a row. The solution is to provide a
storage structure that allows for keyed access, like hash, ISAM, or B-tree.

Modify Procedures
To improve performance, you can change tables to a more effective storage
structure by using modify procedures.

Key Columns and Performance

For hash, ISAM, and B-tree structures, you must specify key columns. (Heap
and heapsort tables do not have key columns.) There is no limit to the number
of key columns that can be specified, but as key columns increase,
performance declines slightly.

Tools for Modifying Storage Structures

In VDBA, to change a table from one storage structure to another, use the
Modify Table Structure dialog. By enabling the Change Storage Structure radio
button and clicking Structure, you activate the Structure of Table dialog,
where you can specify the parameters for the storage structure type and other
structure-specific characteristics. For secondary indexes, the Modify Index
Structure dialog offers a similar option to enable the Structure of Index dialog.
For more information, see Modifying Storage Structures in online help.

Using SQL, you can accomplish this task with the modify statement. For more
information, see the SQL Reference Guide.

264 Ingres 2006 R2 Database Administrator Guide

Modify Procedures

Cautions When Using the Modify Procedure

Keep in mind the following effects of the modify procedure when you are
modifying the storage structure:

 Locking—During the modify procedure, the table is exclusively locked and
inaccessible to other users.

 Secondary Indexes—Secondary indexes are destroyed when you modify
the base table storage structure. Modifying Secondary Indexes (see
page 281) provides more information.

 Disk Space—When a table storage structure is modified, temporary sort
files are created. Before the old table can be deleted, a new table must be
built. Once it is completely built, the old table is deleted, and the
temporary file is renamed with the old table name. Space Requirements
for Modify Operations (see page 456) provides more information.

 Partitioned tables—Modifying a table with a large number of partitions
requires a large amount of space in the transaction log file. It is possible to
fill the log file with a modify of a partitioned table.

Options to the Modify Procedure

The modify procedure provides several options:

 Min Pages

 Max Pages

 Allocation

 Extend

 Fillfactor

 Leaffill

 Nonleaffill

 Unique

 Compression

The MinPages, MaxPages, Allocation, Fillfactor, Leaffill, and Nonleaffill options
take effect during the modify procedure only, but are remembered in the
system catalog description of the table. They will be applied again by a future
modify-to-reconstruct, and will be output as part of the table description by
copydb and unloaddb. The Extend, Unique, and Compression options are
continuously active throughout the life of the table.

In VDBA, these options are in the Structure of Table and Structure of Index
dialogs.

Maintaining Storage Structures 265

Modify Procedures

Number of Pages

Min Pages and Max Pages are valid options only when you are modifying the
table to hash. These options allow you to control the hashing algorithm to
some extent, extending the control offered by the Fillfactor option.

The Min Pages option is useful if the table will be growing rapidly or if you
want few rows per page to increase concurrency so multiple people can update
the same table.

You can achieve nearly the same effect by specifying a low value for the
Fillfactor option, but the fill factor is based on the current size of the table, as
described in Alternate Fill Factors (see page 271).

To force a specific number of main pages, use the Min Pages option to specify
a minimum number of main pages. The number of main pages used are at
least as many as specified, although the exact number of Min Pages specified
is not used.

Example: Modify Structure and Force a Higher Number of Main Pages for a Table

For example, for the emp table in the previous chapter you can force a higher
number of main pages by specifying the minimum number of main pages
when you modify the table to hash. If you specify 30 main pages for the table,
which has 31 rows, you have approximately one row per page.

Follow these steps to modify the storage structure of the emp table:

1. In VDBA, open the Structure of Table dialog for the table. For more
information, see online help.

2. Select Hash from the Structure drop-down list.

3. Enter 30 in the Min Pages edit control.

4. Enable the age column in the Columns list.

To specify a maximum number of main pages to use, rather than the system
choice, use the Max Pages option. If the number of rows does not completely
fit on the number of pages specified, overflow pages are allocated. If fewer
pages are needed, the lesser number is used. Max Pages is useful mainly for
shrinking compressed hash tables more than otherwise happens.

You can achieve nearly the same effect by specifying a high value for the
Fillfactor option, but the fill factor is based on the current size of the table, as
described in Alternate Fill Factors (see page 271).

266 Ingres 2006 R2 Database Administrator Guide

Modify Procedures

Example: Specify a Maximum Number of Main Pages for a Table

The following example modifies the emp table, specifying a Max Pages value.

1. In VDBA, open the Structure of Table dialog for the table. For more
information, see online help.

2. Select Hash from the Structure drop-down list.

3. Enter 100 in the Max Pages edit control.

4. Enable the empno column in the Columns list.

Remember that Max Pages controls only the number of main pages; it does
not affect overflow pages. For example, assume your data takes 100 pages in
heap. If you modify the table to hash and limit the number of main pages to
50, the remainder of the data goes onto overflow pages.

Allocation of Space

Use the Allocation option to pre-allocate space. You can modify the table to an
allocation greater than its current size to leave free space in the table. (The
default is four pages if no allocation has been specified.)

Doing this allows you to avoid a failure due to lack of disk space, or to provide
enough space for table expansion instead of having to perform a table extend
operation. Extending a Table or Index (see page 281) provides more
information.

The allocated size must be in the range 4 to 8,388,607 (the maximum number
of pages in a table). The specified size is rounded up, if necessary, to make
sure the allocation size for a multi-location table or index is always a multiple
of sixteen.

Note: If the specified number of pages cannot be allocated, the modify
procedure is aborted.

After an allocation is specified, it remains in effect and does not need to be
specified again when the table or index is modified.

Example: Allocate 1000 Pages to a Table

The following example specifies that 1000 pages be allocated to table
inventory:

1. In VDBA, open the Structure of Table dialog for the table. For more
information, see online help.

2. Select B-tree from the Structure drop-down list.

3. Enter 1000 in the Allocation edit control.

The space allocated is 1008, due to rounding.

Maintaining Storage Structures 267

Modify Procedures

Extension of Space

The Extend option allows you to control the amount of space by which a table
is extended when more space is required. (The default extension size is 16
pages.)

The size must be in the range 1 to max_size, where the max_size is calculated
as:
8,388,607 – allocation_size.

The specified Extend size is rounded up, if necessary, to make sure the size for
a multi-location table or index is always a multiple of sixteen.

Note: If the specified number of pages cannot be allocated, the operation fails
with an error.

After an extend size has been specified for the table or index, it remains in
effect and does not need to be specified again when the table or index is
modified.

Example: Extend a Table in Blocks of 1000 Pages

The following example specifies that the table inventory be extended in blocks
of 1000 pages:

1. In VDBA, open the Structure of Table dialog for the table. For more
information, see online help.

2. Select B-tree from the Structure drop-down list.

3. Enter 1000 in the Extend edit control.

The extension space is 1008, due to rounding.

268 Ingres 2006 R2 Database Administrator Guide

Modify Procedures

Guidelines for Choosing an Extend Size

When choosing an extend size, keep the following in mind:

 When extending a table, not only the physical extension must be
performed, but the extension must also be recorded. Therefore, avoid an
excessively small extend size that requires many additional small
extensions.

 In an environment that is short of disk space, a large extend size can
cause an operation to fail, even when there is sufficient disk space for the
particular operation.

 Windows: On a file system that requires the underlying files to be written
to when allocating disk space, a large extend size can be undesirable
because it affects the performance of the operation that causes the
extension.

 UNIX: On a file system that requires the underlying files to be written to
when allocating disk space, a large extend size can be undesirable because
it affects the performance of the operation that causes the extension.

 VMS: On file systems that provide calls for allocating disk space, a large
extend size helps reduce the amount of table fragmentation.

Default Fill Factors

Each storage structure has a different default fill factor. The term fill factor
refers to the number of rows that are actually put on a data page divided by
the number of rows that fit on a data page for a particular structure.

The various fill factors enable you to add data to the table without running into
overflow problems. Because the data pages have room to add data, you do not
have to remodify.

For instance, a heap table fits as many rows as possible on a page; this is
known as 100% fill factor. However, ISAM and B-tree data pages are filled
only to 80% capacity, leaving room to add 20% more data before a page is
completely full.

The default data page fill factors are as follows:

Storage Structure Default Fill
Factor

Multiply
Heap Size by

Number of Pages
Needed for 100 Full
Pages

B-tree 80% 1.25 125 + index pages

compressed B-tree 100% 1 100 + index pages

hash 50% 2 200

Maintaining Storage Structures 269

Modify Procedures

Storage Structure Default Fill
Factor

Multiply
Heap Size by

Number of Pages
Needed for 100 Full
Pages

compressed hash 75% 1.34 134

heap 100% 1 100

compressed heap 100% 1 100

ISAM 80% 1.25 125 + index pages

compressed ISAM 100% 1 100 + index pages

The default B-tree index page fill factors are as follows:

Storage Structure Default Fill Factor

B-tree leaf 70%

B-tree index 80%

The first table shows that if a heap table is 100 pages and you modify that
table to hash, the table now takes up 200 pages, because each page is only
50% full.

Note: Depending on the system allocation for tracking used and free pages,
the number of pages can be approximate. For more information, see the
chapter “Calculating Disk Space.”

270 Ingres 2006 R2 Database Administrator Guide

Modify Procedures

Alternate Fill Factors

You can tailor the fill factor for various situations. For instance, if the table is
not going to grow at all, use a 100% fill factor for the table. On the other
hand, if you know you are going to be adding a lot of data, you can use a low
fill factor, perhaps 25%. Also, if your environment is one where updates are
occurring all the time and good concurrency is important, you can set the fill
factor low.

Note: Fill factor is used only at modify time. As you add data, the pages fill up
and the fill factor no longer applies.

When specifying a fill factor other than the default, you must keep the
following points in mind:

 Use a high fill factor when the table is static and you are not going to be
appending many rows.

 Use a low fill factor when the table is going to be growing rapidly. Also,
use a low fill factor to reduce locking contention and improve concurrency.
A low fill factor distributes fewer keys per page, so that page level locks
lock fewer records.

Specifying fill factor is useful for hash and ISAM tables. However, for B-tree
tables, because data pages only are affected, the Fillfactor option must be
used with the Leaffill or Nonleaffill options. See Leaf Page Fill Factors (see
page 273) and Index Page Fill Factors (see page 274).

For hash tables, typically a 50% fill factor is used for uncompressed tables.
You can raise or lower this, but raising it too high can cause more overflow
pages than desirable. You must always measure the overflow in a hash table
when setting a high fill factor—fill factors higher than 90% are likely to cause
overflow.

If you are using compressed ISAM tables and are adding data, make sure you
set the fill factor to something lower than the default 100%, or you
immediately add overflow pages.

Normally, uncompressed ISAM tables are built with an 80% fill factor. You can
set the fill factor on ISAM tables to 100%, and unless you have duplicate keys,
you cannot have overflow problems until after you add data to the table.

In VDBA, you control the fill factor of the data pages using the Fillfactor option
in the Structure of Table and Structure of Index dialogs.

Maintaining Storage Structures 271

Modify Procedures

Example: Set Fill Factor to 25% on a Hash Table

This example sets the fill factor on a hash table to 25%, rather than the
default of 50%, by modifying the emp table:

1. In VDBA, open the Structure of Table dialog for the table. For more
information, see online help.

2. Select Hash from the Structure drop-down list.

3. Enter 25 in the Fillfactor edit control.

4. Enable the empno column in the Columns list.

Example: Set Fill Factor to 100% on an Uncompressed ISAM Table

This example sets the fill factor on an uncompressed ISAM table to 100%:

1. In VDBA, open the Structure of Table dialog for the table. For more
information, see online help.

2. Select Isam from the Structure drop-down list.

3. Enter 100 in the Fillfactor edit control.

4. Enable the name column in the Columns list.

272 Ingres 2006 R2 Database Administrator Guide

Modify Procedures

Leaf Page Fill Factors

It is possible to specify B-tree leaf page fill factors at modify time. This is the
percentage of the leaf page that is used during the modify procedure. The
remaining portion of the page is available for use later when new rows are
added to the table.

The purpose of the fill factor is to leave extra room on the leaf pages to do
inserts without causing leaf page splits. This is useful if you modify a table to
B-tree and plan to add rows to it later.

In VDBA, you control these values using the Leaffill options in the Structure of
Table dialog.

The Leaffill option specifies the percentage of each leaf page to be filled at the
time the table is modified to B-tree or cB-tree. The Leaffill default is 70, which
means that 70% of the leaf page is filled at modify time and 30% remains
empty for future use.

For example, assume that the key-tid pair requires 400 bytes of storage. This
means that five key-tid pairs fit on a single 2 KB B-tree leaf page. However, if
the leaf page fill factor is specified at 60%, only three key-tid pairs are
allocated on each B-tree leaf page at modify time. If subsequent updates to
the table cause two new rows on this leaf page, they are placed in the empty
space on the leaf page. The key-tid pairs are reordered on the leaf page from
min to max. If more than two new rows need to be added to this leaf page,
there is not enough space and the leaf page has to split.

Maintaining Storage Structures 273

Modify Procedures

Index Page Fill Factors

It is possible to specify B-tree index page fill factors at modify time. This is the
percentage of the index page that is used during the modify procedure. The
remaining portion of the page is available for use later when new rows are
added to the table. The purpose of the fill factor is to leave extra room on the
index pages to do inserts without causing index page splits. This is useful if
you modify a table to B-tree and plan to add rows to it later.

In VDBA, you control these values using the Nonleaffill options in the Structure
of Index dialog.

The Nonleaffill option specifies the percentage of each index page that is to be
filled at the time the table is modified to B-tree. That is, it is similar to Leaffill,
but for index pages instead of leaf pages. The Nonleaffill default is 80. This
means that 80% of the index page is used at modify time and 20% remains
empty for future use.

For example, assume that the key-tid pair requires 500 bytes of storage. This
means that four key-tid pairs fit on a single B-tree index page. However, if the
index page fill factor is specified at 75%, only three key-tid pairs are allocated
on each 2 KB B-tree index page at modify time. If subsequent updates to the
table cause another leaf page to be allocated, the empty space on the index
page is used to hold a key-tid pair for that new leaf page. If there are enough
new rows to cause two new leaf pages to be added to that index page, the
index page must split. For more information, see Tids (see page 259).

Setting a fill factor of lower than 60 on leaf pages can help reduce locking
contention when B-tree leaf pages are splitting, because index splitting is
reduced. Setting Leaffill low for small but quickly growing B-trees is advisable.

When you specify a high Leaffill, index splitting is almost guaranteed to occur
because leaf pages immediately fill up when data is added. Thus, you want to
avoid a high fill factor unless the B-tree table is relatively static. Even in this
case, use an ISAM table.

Ensuring Key Values Are Unique

Unique keys can be enforced automatically for hash, ISAM, and B-tree tables
using the modify procedure.

274 Ingres 2006 R2 Database Administrator Guide

Modify Procedures

Benefits of Unique Keys

Benefits of unique keys are:

 A good database design that provides unique keys enhances performance.

 You are automatically ensured that all data added to the table has unique
keys.

 The Ingres optimizer recognizes tables that have unique keys and uses
this information to plan queries wisely.

In most cases unique keys are an advantage in your data organization.

Disadvantages of Unique Keys

The disadvantages of unique keys include a small performance impact in
maintaining uniqueness. You must also plan your table use so that you do not
add two rows with the same key value.

Specify Unique Keys

In VDBA, unique keys can be specified as Row or Statement in the Unique
group box in the Structure of Table and Structure of Index dialogs:

 Row indicates that uniqueness is checked as each row is inserted.

 Statement indicates that uniqueness is checked after the update statement
is executed.

If you do not want to create a unique key, select the No option.

Example: Prevent the Addition of Two Names with the Same Number

The following example prevents the addition of two employees in the emp
table with the same empno:

1. In VDBA, open the Structure of Table dialog for the emp table. For more
information, see online help.

2. Select Isam from the Structure drop-down list.

3. Enable Row in the Unique radio button group box.

4. Enable the empno column in the Columns list.

If a new employee is added with the same employee number as an existing
record in the table, the row is not added, and you are returned a row count of
zero.

Note: An error is not returned in this case; only the row count shows that the
row was not added. Be aware of this if you are writing application programs
using unique keys.

Maintaining Storage Structures 275

Modify Procedures

Example: Modify a Table to Hash and Prevent the Addition of Two Names with the Same Number

The following example modifies the emp table to hash and prevents the
addition of two employees in the emp table with the same empno.

1. In VDBA, open the Structure of Table dialog for the emp table. For more
information, see online help.

2. Select Hash from the Structure drop-down list.

3. Enable Row in the Unique radio button group box.

4. Enable the empno column in the Columns list.

The rows in the following example have unique keys. Although employee #17
and #18 have the same records except for their employee numbers, the
employee numbers are unique, so these are valid rows after the modification:

 Empno Name Age Salary
17	Shigio	29	28000.000
18	Shigio	29	28000.000
1	Aitken	35	50000.000

The following two rows do not have unique keys. These two rows cannot both
exist in the emp table after modification to hash unique on empno:

 Empno Name Age Salary
 | 17 | Shigio | 29| 28000.000|
 | 17 | Aitken | 35| 50000.000|

Table Compression

All storage structures—except R-tree secondary index and heapsort—permit
tables and indexes (where present) to be compressed.

Compression is controlled using the Key and Data options in the Compression
group box in the Structure of Table and Structure of Index dialogs. By default,
there is no compression when creating or modifying.

Not all parts of all storage structures can be compressed, as summarized in
the table below:

Storage Structure Data Key

B-tree Base Table Yes Yes

 Secondary Index No Yes

hash Base Table Yes No

 Secondary Index Yes No

heap Base Table Yes No

276 Ingres 2006 R2 Database Administrator Guide

Modify Procedures

Storage Structure Data Key

 Secondary Index N/A N/A

heapsort Base Table No No

 Secondary Index N/A N/A

ISAM Base Table Yes No

 Secondary Index Yes No

R-tree Base Table N/A N/A

 Secondary Index No No

Note: In VDBA, selecting Data in the Compression group box in the Structure
of Table dialog does not affect keys stored in ISAM or B-tree index and leaf
pages—only the data on the data pages is compressed. To compress index
entries on B-tree index pages, select Key instead.

ISAM index pages cannot be compressed.

Compression of tables compresses character and text columns. Integer,
floating point, date, and money columns are not compressed, unless they are
nullable and have a null value.

Trailing blanks and nulls are compressed in character and text columns. For
instance, the emp table contains a comment column that is 478 bytes.
However, most employees have comments that are only 20 to 30 bytes in
length. This makes the emp table a good candidate for compression because
478 bytes can be compressed into 30 bytes or fewer, saving nearly 450 bytes
per row.

Furthermore, as many rows are placed on each page as possible, so that the
entire emp table (31 rows) that normally took eight 2KB pages as a heap,
takes just one page as a compressed heap. In this example, pages were
limited to four rows per page, but by using compression, many more rows can
be held per page.

There is no formula for estimating the number of rows per page in a
compressed table, because it is entirely data dependent.

Maintaining Storage Structures 277

Modify Procedures

When to Compress a Table

When a table is compressed, you can reduce the amount of disk I/O needed to
bring a set of rows from disk. This can increase performance if disk I/O is a
query-processing bottleneck.

For instance, having compressed the emp table from eight pages down to one
page, the following query performs only one disk I/O, whereas prior to
compression as many as eight disk I/Os were required:

select * from emp;

In a large table, compression can dramatically reduce the number of disk I/Os
performed to scan the table, and thus dramatically improve performance on
scans of the entire table. Compression is also useful for conserving the amount
of disk space it takes to store a table.

Compression Overhead

Compression must be used wisely, because the overhead associated with it
can sometimes exceed the gains.

If a machine has a fast CPU, disk I/O can be the bottleneck for queries.
However, because compression incurs CPU overhead, the benefits must be
weighed against the costs, especially for machines with smaller CPUs.
Compression can increase CPU usage for a query because data must be
decompressed before it is returned to the user. This increase must be weighed
against the benefits of decreased disk I/O and how heavily loaded the CPU is.
High compression further reduces disk I/O, but uses even more CPU
resources.

There is overhead when updating compressed tables. As rows are compressed
to fit as many as possible per page, if you update a row so that it is now larger
than it was before, it must be moved to a new spot on the page or even to a
new page. If a row moves, its tid, or tuple identifier, also changes, requiring
that every secondary index on the compressed table also be updated to reflect
the new tid. For more information, see Tids (see page 259).

278 Ingres 2006 R2 Database Administrator Guide

Modify Procedures

For example, if you change Shigio’s comment from “Good” to “Excellent,”
Shigio’s record length grows from 4 bytes to 9 bytes and does not fit back in
exactly the same place. His record needs to be moved to a new place (or
page), with updates made to any secondary indexes of this table (if the emp
table was B-tree, the appropriate B-tree leaf page is updated instead).

Compressed tables must be avoided when updates that increase the size of
text or character columns occur frequently, especially if there are secondary
indexes involved—unless you are prepared to incur this overhead. If you do
compress and are planning to update, use a fill factor lower than 100% (75%
for hash); the default fill factor for compressed tables is 75% for hash with
data compression, 100% for the others. With free space on each page, moved
rows are less likely to be placed on overflow pages. For more information, see
Options to the Modify Procedure (see page 265).

Page Size

The default page size is 2 KB. The corresponding buffer cache for the
installation must also be configured with the page size you specify or you
receive an error. For more information, see the “Configuring Ingres” chapter in
the System Administrator Guide.

For more information on page size see Storage Structures and Performance
(see page 261).

In VDBA, you specify page size using the Page Size option in the Structure of
Table and Structure of Index dialogs.

Shrinking a B-tree Index

To maintain good concurrency and performance, the B-tree index is not rebuilt
after deletions. Deletions occur at the leaf and data page level, but an empty
leaf page is not released. If your environment is one where many deletions are
performed, you must occasionally update the index

In VDBA, you do this using the Shrink B-tree Index option in the Modify Table
Structure and Modify Index Structure dialogs.

In SQL, you accomplish this task with the modify statement. The “to merge”
clause is the same as the Shrink B-tree Index option. For more information,
see the SQL Reference Guide.

Maintaining Storage Structures 279

Modify Procedures

The Shrink B-tree Index option is also important for users with incremental
keys, which can incur lopsided indexes after heavy appends to the end of the
table.

Not updating the index to reflect unused leaf pages can cause the index to be
larger than necessary.

For example, if the emp table is keyed on empno (ranging from 1 to 31), and
you fire all employees with employee numbers less than 16, the B-tree index
does not shrink, but is unbalanced. This is shown in the following "Before"
diagram:

 Before

 <=16 >16

 / \
 <=8 >8 <=24 >24
 / \ / \
<=4 >4 <=12 >2 <=20 >20 <=28 >28

Page 1 Page 2 Page 3 Page 4
(deleted (deleted valid valid
 data) data) data data

To re-balance the index level, you can use the Shrink B-tree Index option. It
also reclaims unused leaf pages that otherwise are never reused. This is shown
in the following "After" diagram:

 After

 <= 24 >24

 / \
 <=16 >16 <=28 >28

 Page 3 Page 4
 valid valid
 data data

 Free page list: 1,2

The index is rebuilt, and empty leaf pages are marked as free, but otherwise
leaf and data pages remain untouched. Therefore, this procedure is neither as
time-consuming nor as disk-space intensive as modifying the table structure
using the Change Storage Structure option. Shrink B-tree Index, however,
does not re-sort the data on the data pages. Modifying the structure to B-tree
is the only option for resorting data on data pages.

280 Ingres 2006 R2 Database Administrator Guide

Modify Procedures

Extending a Table or Index

You can extend (add pages to) a table or index. You must specify the number
of pages you want to add. Using this option does not rebuild the table or drop
any secondary indexes.

In VDBA, you can extend a table or index by enabling the Add Pages radio
button in the Modify Table Structure or Modify Index Structure dialogs and
specifying the number of pages to add.

In SQL, you can accomplish this task with the modify statement. The “with
extend” clause is the same as the Add Pages option. For more information, see
the SQL Reference Guide.

Modifying Secondary Indexes

Secondary indexes are destroyed by default when you modify the base table
storage structure. They are destroyed automatically because secondary
indexes use the tidp column to reference the row of the base table to which
they are pointing. When you modify a table, all the tids of the rows in the base
table change, rendering the secondary index useless. For more information,
see Tids (see page 259).

Persistence Option

You can use the Persistence option when creating or modifying a secondary
index to specify that the index be recreated whenever the base table is
modified.

In VDBA, this option is found in the Structure of Index and the Create Indexes
dialogs. By default, indexes are created with no persistence.

In SQL, you can accomplish this task with the create index and modify
statements. The [no]persistence clause is the same as the Persistence option.
For more information, see the SQL Reference Guide.

Example: Enable the Persistence Option

For example, assuming the secondary index empidx was created without
enabling the Persistence option, you can modify it to enable this feature, as
follows:

1. In VDBA, open the Structure of Index dialog for the empidx index. For
more information, see online help.

2. Select B-tree from the Structure drop-down list.

3. Enable the Persistence check box.

Maintaining Storage Structures 281

Modify Procedures

Changing the Index Storage Structure

The default storage structure for secondary indexes is ISAM; you can choose a
different structure when creating an index.

To do this in VDBA, use the Create Indexes dialog.

You can also modify the index to another storage structure after it has been
created.

To do this in VDBA, use the Structure of Index dialog.

If a secondary index is modified to B-tree, it cannot contain any data pages.
Instead, the leaf pages in the secondary index point directly to data pages in
the main table.

Overflow can occur in secondary indexes, as well as base tables, and must be
monitored. One way to handle overflow is to use B-tree as the default index
structure. If overflow is not a problem, ISAM or hash can be preferable
because the indexes are smaller, require less locking, and reuse deleted space.

Secondary indexes are smaller and can be modified more quickly than the
base table. When they are used, overflow occurs less frequently because only
key values are stored, rather than the entire row.

Because it is quicker to build secondary indexes than to modify the base table,
it is easier to experiment with different choices of secondary indexes and
different storage structures for them. Remember, however, that it can take
longer to update a table with secondary indexes than one without them.

A high degree of duplication in a secondary key can lead to overflow in the
secondary index. Repetitive keys are not recommended. Performance benefits
can be derived by the inclusion of another column in the secondary index that
makes the entire key less repetitive. The less repetitive key reduces the
likelihood of overflow chains, resulting in better performance when updates
made to the base table require updates to the secondary index. Because
overflow chains are reduced, locking and searching overhead is lessened.

If the secondary index to be stored is ISAM or B-tree and the key is not
unique, the tidp column is automatically included in the key specified when the
index is modified. This achieves key uniqueness without any loss of
functionality when the key is used for matches.

282 Ingres 2006 R2 Database Administrator Guide

Modify Procedures

Example: Create a B-tree Index for a Table

The following example creates a B-tree index for the emp table:

1. In VDBA, open the Create Indexes dialog for the table. For more
information, see the online help. Also see the chapter “Choosing Storage
Structures and Secondary Indexes.”

2. Enter an appropriate name in the Index Name edit control.

3. Select B-tree from the Structure drop-down list.

4. Select an appropriate key column in the Base Table Columns list box, and
click the double-right arrow (>>) to add the column to the Index Columns
list box.

Example: Modify an Existing Index to B-tree

This example modifies an existing index to use the B-tree storage structure
(assuming it was created using another storage structure):

1. In VDBA, open the Structure of Index dialog for the index. For more
information, see online help.

2. Select B-tree from the Structure drop-down list.

3. Enable the appropriate columns in the Columns list.

Remodifying B-tree Tables

If you suspect that the data on the data pages is scattered over several data
pages, you can modify the table to B-tree again. You can check this by
retrieving the tids as well as the column values, and looking at the pages they
reflect.

Remodifying sorts the data and builds the B-tree index, placing like keys on
the same data pages, which can slightly reduce the number of disk I/Os
required to access the data. For more information, see Tids (see page 259).

This type of modification is especially useful when the key size is small, the
row size is large, and the data has not been appended in sorted order.
Remodifying a B-tree is also useful when you have deleted many rows and
must reclaim disk space. For more information, see Tracking of Used and Free
Pages (see page 454).

Maintaining Storage Structures 283

Modify Procedures

Examples: Remodifying a Table to B-tree

The first example represents the table before modification, and the second
example shows it after modification.

The following retrieval touches all three data pages before modification but
only one page after modification:

select * from emp where emp.age = 35;

The following table shows the leaf and data pages prior to modification. The
records with a key of 35 are found on several data pages:

Leaf Page
key page,row (tid)
35 1,2 (514)
35 2,2 (1026)
35 3,3 (1539)
36 2,3 (1027)
37 3,2 (1538)

Data Pages
Page 1 Page 2 Page 3
1,1 (513) 29 2,1 (1025) 29 3,1 (1537) 30
1,2 (514) 35 2,2 (1026) 35 3,2 (1538) 37
1,3 (515) 30 2,3 (1027) 36 3,3 (1539) 35

The following example modifies the emp table, respecifying B-tree as its
structure.

1. In VDBA, open the Structure of Table dialog for the table. For more
information, see online help.

2. Select B-tree from the Structure drop-down list.

3. Enable the age column in the Columns list.

After you perform this modification, the table looks as follows. All records with
a key of 35 are clustered together on Page 2:

Page 1 Page 2 Page 3
1,1 (513) 29 2,1 (1025) 35 3,1 (1537) 36
1,2 (514) 29 2,2 (1026) 35 3,2 (1538) 37
1,3 (515) 30 2,3 (1027) 35

284 Ingres 2006 R2 Database Administrator Guide

Overflow Management

Common Errors During the Modify Procedure

When using the modify procedure in VDBA, the most common errors include:

 A “duplicate key” error message when you use the Unique option (or the
to unique clause of the modify statement). To resolve this problem,
determine which rows have duplicate keys and delete these rows.

You can locate these rows with the following query:

select key_col, count(*) as repeat_number
 from table_name
 group by key_col
 having count(*) > 1;

 An error when modifying a table. You can be completely out of disk space
on the file system the modify procedure is trying to use. Clear up disk
space on this file system.

Overflow Management
Overflow chains can slow down performance considerably. Overflow must be
monitored and prevented as much as possible.

Preventing or reducing overflow requires you to do the following:

 Carefully monitor overflow in both primary tables and secondary indexes

 Avoid the use of repetitive keys, including both primary keys and
secondary index keys

 Modify table structure to redistribute poorly distributed overflow

 Understand the overflow implications when choosing a particular storage
structure

Maintaining Storage Structures 285

Overflow Management

Measure the Amount of Overflow

You can monitor overflow using either VDBA or an SQL statement.

In VDBA, select a table or secondary index in the Database Object Manager
window, and click the Pages tab.

In SQL, you can monitor overflow with the help table statement. For more
information, see the SQL Reference Guide.

For tables, overflow data is displayed in red in the pie chart, as indicated in the
legend. Heap tables are considered as one main page, with an overflow chain
attached to the main page. For B-tree tables, overflow occurs only at the leaf
level and only with duplicate keys.

The iitables catalog (a view into the iirelation catalog) includes one row for
each table in the database. It contains pertinent information for evaluating
overflow.

For example, the following query results in the information shown in the table:

select table_name, storage_structure,
 number_pages, overflow_pages
 from iitables

table_name storage_structure number_page
s

overflow_pages

manager hash 22 4

department B-tree 5 0

parts B-tree 5 0

orders heap 3 0

The above figures are approximate; they are updated only when they change
by a certain percentage (5%) to prevent performance degradation by
continuously updating these catalogs. Also, if transactions that involve many
new pages are backed out during a recovery, the page counts cannot be
updated. Page counts are guaranteed to be exact only after modification.

In evaluating overflow, if the number of overflow pages is greater than 10-
15% of the number of data pages, expect performance degradation. Overflow
must be regularly monitored to ensure that performance does not degrade as
rows are appended to tables.

286 Ingres 2006 R2 Database Administrator Guide

Overflow Management

Repetitive Key Overflow

Storage structures other than heap that have a high degree of duplication in
the key values are likely to have overflow because duplicate keys are stored in
overflow pages. Keys with a high degree of duplication are not recommended.
This applies to secondary index keys as well as primary keys.

Repetitive key overflow occurs, for example, if the emp table is keyed on sex,
resulting in two primary pages for the values “M” and “F.” The remainder of
the pages are overflow pages to these two primary pages.

Consider if the following query is run:

select * from student
 where student.sex = 'F'
 and student.name = 'Baker';

The key is used to find the first primary page. The search goes down the entire
overflow chain for “F” looking for all names Baker. Every page is checked.
Because this query looks restrictive, the locking system probably chooses to
page level lock. The query locks 10 pages and eventually escalates to a table
level lock. Wait for the table level lock if other users are updating. Finally, the
search finishes scanning the overflow chain and returns the row.

Retrieval performance with a duplicate key is still better than for a heap table
because only half the table is scanned.

However, update performance suffers. If a user wants to append a new female
student, the locking system starts by exclusively locking pages in the “F”
overflow chain. If another 10 pages need to be locked eventually, the locking
system attempts to escalate to an exclusive table level lock. If only one user is
updating the table, the lock is easily obtained. If multiple users are trying to
update the table at the same time, deadlock is likely.

User1 and User2 both exclusively hold 10 pages in the table. User1 wants to
escalate to an exclusive table level lock so the query can continue, but User1
cannot proceed until User2 drops the exclusive page level locks User2 holds.
User2 also wants to obtain an exclusive table level lock, but cannot proceed
until User1 releases the locks. This is deadlock, which can seriously degrade
update performance. For more information, see the chapter “Understanding
the Locking System.”

Maintaining Storage Structures 287

Overflow Management

Poorly Distributed Overflow

Overflow that is not uniformly distributed, that is, it is concentrated around
one or two primary pages, is poorly distributed. A classic example of poorly
distributed overflow occurs when new rows are added to a table with a key
that is greater than all the keys that already exist in the table (for example, a
time stamp). If this table has an ISAM structure, the table builds up overflow
in the last primary page, and all operations involving this overflow chain can
exhibit poor performance. This type of table is best stored as a B-tree or hash.

Overflow and ISAM and Hash Tables

In hash and ISAM tables that have had a large amount of data added and have
not been remodified, overflow and the resulting performance degradation is
easy to understand. A keyed retrieval that normally touches one page now has
to look through not only the main data page, but also every overflow page
associated with the main data page. For every retrieval, the amount of disk
I/O increases as the number of overflow pages increases.

Overflow pages are particular to a main data page for ISAM and hash tables,
not to the table itself. If a table has 100 main pages and 100 overflow pages,
it is likely that the overflow pages are distributed over many main data pages
(that is, each main data page has perhaps one overflow page). A keyed
retrieval on such a table possibly causes only one additional I/O rather than
100 additional I/Os.

For more information on overflow in hash tables, see Alternate Fill Factors (see
page 271).

For ISAM tables, because the ISAM index is static, if you append a large
number of rows, the table can begin to overflow. If there is no room on a page
to append a row, an overflow page is attached to the data page. For example,
if you wanted to insert empno #33, there is no more room on the data page,
so an overflow page is allocated for the data page as shown in the following
diagram:

Page 8 Overflow Page for Primary Page 8
---------------------------		-------------------------------						
29	Ramos	31	30000.000		33	Quinn	33	20000.000
30	Brodie	42	40000.000	--->				
31	Smith	20	10000.000					
32	Horst	26	50000.000					
---------------------------		-------------------------------						

For hash and ISAM tables, one way of looking at overflow is by looking at the
tids of rows and analyzing the way the tids grow in a sequential scan through
the table. For more information, see Tids (see page 259).

288 Ingres 2006 R2 Database Administrator Guide

Overflow Management

Example: Showing Overflow Distribution

The sample code shown here can be customized to show overflow distribution.
Each time a primary page is encountered, the tid’s value grows by 512. If a
primary page has associated overflow pages, the tid’s value jumps by more
than 512. So if you run the embedded SQL/C program shown in Sample Code
to Show Overflow, the output looks like that shown in Output from Sample
Code.

Sample Code to Show Overflow

page_val = 0;
exec sql select key, tid
 into :key_val, :tid_val
 from tablename
exec sql begin;
 if (tid_val == page_val)
 {
 printf("Primary Page %d, tid = %d,",(page_val/512)+1, tid_val);
 printf(" Starting key value = %d0", key_val);
 page_val = page_val + 512;
 old_tid_val = tid_val;
 overflow_page = 0;
 }
 else
 {
 if (tid_val > old_tid_val + 1)
 {
 overflow_page++;
 printf("\n Overflow page %d,tid = %d0",over_page,tid_val);
 }
 old_tid_val = tid_val;
 }
exec sql end;

Output from Sample Code

Primary Page 1, tid = 0, Starting Key Value = 123
 Overflow page 1,tid = 2048
 Overflow page 2,tid = 2560
 Overflow page 3,tid = 3072
 Overflow page 4,tid = 3584
Primary Page 2, tid = 512, Starting Key Value = 456
 Overflow page 1,tid = 4096
 Overflow page 2,tid = 4608
 Overflow page 3,tid = 5120
 Overflow page 4,tid = 5632

Maintaining Storage Structures 289

Overflow Management

B-tree Tables and Overflow

Eliminating overflow is one of the major benefits of the B-tree storage
structure. Overflow in a B-tree occurs only at the leaf level and only if you
have a significant number of duplicate keys.

For example, if 30 new employees all joined the company and all had the last
name Aitken, the attempt is made to add their records to leaf page 1. In this
case, because leaf page 1 can hold only 8 keys (remember that the leaf page
can actually hold 2000/(key_size + 6)), an overflow leaf page is added to hold
all the duplicate values. This is different than splitting the leaf page, because
the same index pointer can still point to the same leaf page and be accurate.
There are no additional key/leaf page entry added to the index.

In B-tree tables, you can look at overflow in the leaf level by running a query
of the following type, substituting your B-tree table name for t, your B-tree
keys for the keycol values, and the width of the key for key_width:

select keycol1, keycol2, overflow =
 (count(*)/keys_per_page)-1
 from tablename t
 group by keycol1, keycol2;

Notes:

 This query is not needed for a B-tree index, in which the automatic
inclusion of the tidp column in the key prevents overflow.

 For B-tree tables with key compression selected, in the select statement
you can substitute an estimate of the average key size for key_width.

 For keys_per_page calculations, see the chapter “Calculating Disk Space.”

The results of this query give an approximation of the amount of overflow at
the leaf level, per key value. The query works by calculating the number of
keys that fit on a page and dividing the total number of particular key
incidents—grouped by key—by this value. For instance, if there are 100
occurrences of a particular key and 10 keys fit on each page, there are nine
overflow pages at the leaf level.

Other tables can incur overflow pages for reasons other than duplicate keys;
hence, overflow distribution can involve more than simply running a query.

290 Ingres 2006 R2 Database Administrator Guide

Overflow Management

Secondary Indexes and Overflow

Overflow must be monitored in secondary indexes, as well as in the primary
tables. Even if the base table has a low overflow percentage, the secondary
indexes can badly overflow. Except when the base table is a heap or B-tree
table, the base table generally overflows before the secondary index.

Secondary indexes need to be monitored and modified at interim points—even
between base table modifications—to ensure a low percentage of overflow
pages. More information is provided in Modifying Secondary Indexes (see
page 281).

Maintaining Storage Structures 291

Chapter 13: Using the Query Optimizer

This chapter describes the query optimizer and how to use its features to
obtain the best performance for your queries.

Overview of the Query Optimizer
Ingres uses a query optimizer to develop sophisticated query execution
strategies. The query optimizer makes use of basic information such as row
size, number of rows, primary key fields and indexes defined, and more
specific data-related information such as the amount of data duplication in a
column.

The data-related information is available for use by the query optimizer only
after statistics have been generated for the database. For more information,
see Database Statistics (see page 295). Without knowing exactly what data
you have stored in your table, the query optimizer can only guess what your
data looks like.

Consider the following examples:

select * from emp where empno = 13;
select * from emp where sex = 'M';

In each query, the guess is that few rows can qualify. In the first query, this
guess is probably correct because employee numbers are usually unique. In
the second query, however, this guess is probably incorrect because a
company typically has as many males as females.

Using the Query Optimizer 293

Overview of the Query Optimizer

Why does it make any performance difference how restrictive the assumption
is about your query? For a single-table, keyed retrieval where you are
specifying the key, there is probably no difference at all. The key is used to
retrieve your data. However, in a multi-table query with several restrictions,
knowing what your data looks like can help determine the best way to execute
your query. The following example shows why:

select e.name, e.dept, b.address
 from emp e, dept d, bldg b
 where e.dept = d.dname
 and d.bldg = b.bldg
 and b.state = 'CA'
 and e.salary = 50000;

There are many ways of executing this query. If appropriate keys exist, the
probable choice is to execute the query in one of these two ways:

 Retrieve all the employees with a salary of 50000. Join the employees with
a salary of 50000 to the department table, join the employees with their
valid departments to the valid buildings. The tables are processed in the
following order:

emp --> dept --> bldg

 Retrieve all the buildings with a state of CA. Join the valid buildings with
the department table, and join the qualifying departments to the valid
employees. The tables are processed in the following order:

bldg --> dept --> emp

The difference between these two possibilities is the order in which the tables
are joined. Which method is preferable? Only if you knew exactly how many
employees made $50,000, how many buildings were in California, and how
many departments were in each building, can you pick the best strategy.

The best (that is, the fastest) query execution strategy can be determined only
by having an idea of what your data looks like—how many rows qualify from
the restriction, and how many rows join from table to table.

Query Execution Plans (QEPs) (see page 313), generated by the query
optimizer each time you perform a query, illustrate how a query is executed.
By optimizing your database, you can optimize the QEPs that are generated,
thereby making your queries more efficient.

294 Ingres 2006 R2 Database Administrator Guide

Database Statistics

Database Statistics
When you generate statistics for a database, you are optimizing the database,
which affects the speed of query processing. More complete and accurate
statistics generally result in more efficient query execution strategies, which
further result in faster system performance.

The extent of the statistics to be generated for a database can be modified by
various options, including restricting the tables and columns that are used.

Note: Deleting all the rows in a table does not delete the statistics.

Generate Statistics

In VDBA, use the Optimize Database dialog to generate database statistics for
the database that is currently selected in the Database Object Manager
window.

For more information, see the online help topic Generating Database Statistics.
For a complete description of all the options, see online help for the Optimize
Database dialog.

At the command line, you can accomplish this task with the optimizedb
command. For more information, see the Command Reference Guide.

Using the Query Optimizer 295

Database Statistics

Assumptions of the Query Optimizer

If a database has not been optimized, the query optimizer assumes that:

 All exact match restrictions return 1% of the table, except where a key or
index is defined to be unique, in which case one row is returned for the
indexed attribute:

where emp.empno = 275

Note: To override the default of 1% for exact match qualifications, use the
Configuration-By-Forms opf_exact_key parameter.

 All range qualifications (<, <=, >=, >) and like predicates, in which the
first character is not a wild card, return 10% of the table for each
qualification. Thus, if there are three (non-exact match) qualifications, the
following amount of the table is selected:

1/10 x 1/10 x 1/10 = 1/1000

Note: To override the default of 10% for range qualifications, use the CBF
opf_range_key parameter.

 All “not equals” qualifications (<>) and like predicates, in which the first
character is a wild card, return 50% of the table for each qualification. The
default 50% for these qualifications can be overidden by the
Configuration-By-Forms opf_non_key parameter.

All joins are assumed to be one-to-one, based on the smaller data set; for
example, when table1 with 100 rows is joined with table2 with 1000 rows,
the estimated result is 100 rows.

 When there are restrictions on the join tables, the number of resulting
rows is greater than or equal to the lower bound of 10% of qualifying rows
from the smaller table.

If these assumptions are not valid for your data, you must optimize the
database by generating statistics for it.

296 Ingres 2006 R2 Database Administrator Guide

Database Statistics

Resources Required During Optimization

Optimizing a database generally requires disk space, because temporary tables
are created.

While the optimization process is running, the locking system takes an
exclusive lock for a brief period on the user table being optimized. Whenever
possible, tables on which statistics are created are not locked while statistics
are gathered. This means that updates to the optimized table are not disabled
for long periods. However, it is recommended that you optimize the database
during off-hours.

When running optimizedb from the command line, the “–o filename” option
can be used to collect the desired statistics in an external file without requiring
any database locks. At a later, more convenient time, the statistics can be
loaded into the catalog with the “-i filename” option, using the same external
file. This approach requires no locks on the user table. For more information
on the optimizedb command, see the Command Reference Guide.

System Modification After Optimization

Because optimizing a database adds column statistics and histogram
information to the system catalogs, you should run the system modification
operation on your database after optimizing it.

Running system modification modifies the system tables in the database to
optimize catalog access. You should do this on a database periodically to
maintain peak performance.

Using the Query Optimizer 297

Database Statistics

Run System Modification

To run system modification, use either of the following methods.

In VDBA, use the System Modification dialog, as described in online help topic
Optimizing System Tables. For a complete description of all the options, see
online help for the System Modification dialog.

At the command line, use the sysmod command. For more information, see
the Command Reference Guide.

Example: Run System Modification in VDBA

To specify only those system tables affected by the optimization process, do
the following:

1. Open the System Modification dialog in VDBA.

2. Enable Specify in the Tables group box.

3. Enable iihistogram and iistatistics in the resulting list box, and click OK.

Information Collected by the Optimizer

When you optimize a database, the following information is collected:

 The number of unique values in those columns selected for optimization

 A count showing what percentage of those column values are NULL

 The number of duplicate values there are in those columns in the whole
table, on average, or whether all values are unique. This is termed the
repetition factor.

 A histogram showing data distribution for each of those columns. Sample
histograms and further information on their contents can be found in
Optimization Output (see page 304).

The query optimizer can use this information to calculate the cost of a
particular QEP.

298 Ingres 2006 R2 Database Administrator Guide

Database Statistics

Types of Statistics to Generate

When optimizing a database, you can create several types and levels of
statistics by specifying options.

First, you can specify what set of data the statistics are gathered on:

 Non-sampled statistics—all rows in the selected tables are retrieved

 Sampled statistics—a subset of rows from the selected tables is retrieved

Next, either of the following can be created, based on the selected data set.
This division determines how much information about the distribution of data
the statistics can hold:

 Full statistics—a histogram for the whole range of column values is created

 Minmax statistics—a histogram showing only minimum and maximum
values is created

Non-Sampled and Sampled Statistics

When generating statistics for a database, by default all rows of the selected
tables are used in the generation of statistics. These non-sampled statistics
represent the most accurate statistics possible, because all data is considered.

When the base table is large, you must use sampled statistics. With a
sufficient sampling, statistics created are almost identical to statistics created
on the full table. The processing for sampled statistics is discussed in greater
detail in Sampled Optimizer Statistics (see page 351).

Generate Sampled Statistics

In VDBA, to specify a percentage of rows to be sampled, enable Statistics on
Sample Data check box, and specify the percentage using the Percentage
control in the Optimize Database dialog.

Full Statistics

When optimizing a database, full statistics are generated by default. Full
statistics carry the most information about data distribution (unless the data is
modified significantly after statistics are collected).

The cost of their creation (in terms of system resources used), however, is the
highest of all types. For each selected column the table is scanned once, and
the column values are retrieved in a sorted order. Depending on the
availability of indexes on the selected columns, a sort can be required,
increasing the cost even further.

The process of generating such complete and accurate statistics can require
some time, but there are several ways to adjust this.

Using the Query Optimizer 299

Database Statistics

Generate Full Statistics on Sample Data

You can shorten the process of creating full statistics by enabling the Statistics
on Sample Data check box in VDBA.

This example generates full statistics with a sampling of 1% rows of the emp
table:

1. In VDBA, open the Optimize Database dialog for the database. (For more
information, see online help.) Specify the following:

 Enable the Statistics on Sample Data check box.

 Enter 1 for the Percentage.

 Enable the Specify Tables check box, and then click Tables.

The Specify Tables dialog appears.

2. Enable the emp table, and click OK.

You are returned to the Optimize Database dialog.

3. Click OK.

Minmax Statistics

Minmax statistics are “cheaper” than full statistics to create. In most cases
they require only one scan of the entire table. Statistics created have
information only about minimum and maximum values for a column. This can
be acceptable if the distribution of values in the column is reasonably even.
However, if the values of a particular column are skewed, minmax statistics
can mislead the query optimizer and result in poor query plan choices.

In VDBA, to specify minmax statistics, enable the Min Max Values check box in
the Optimize Database dialog.

Example: Generate Statistics with Only Minimum and Maximum Values for a Table

This example generates statistics with only minimum and maximum values for
the employee table:

1. In VDBA, open the Optimize Database dialog for the table. For more
information, see online help.

2. Enable the Min Max Values check box.

3. Enable the Specify Tables check box.

4. Click Tables to open the Specify Tables dialog.

5. Enable the employee table, and click OK.

6. Click OK.

300 Ingres 2006 R2 Database Administrator Guide

Database Statistics

Key Column Statistics

Key column statistics create full or minmax statistics on key or indexed
columns only. These statistics are generated by enabling the Gen Statistics on
Keys/Index check box in the Optimize Database dialog. The effect of this
option is the same as specifying key and index columns for a table using the
Specify Columns dialog. For more information, see Generating Database
Statistics in online help. Using the Gen Statistics on Keys/Index check box
saves you some work by determining from the catalogs which columns are
keys and indexed.

Examples: Create Statistics on Key or Indexed Columns Only

This example generates full statistics for all key and indexed columns in the
employee table:

1. In VDBA, open Optimize Database dialog for the table. For more
information, see online help.

2. Enable the Gen Statistics on Keys/Index check box.

3. Enable the Specify Tables check box.

4. Click Tables to open the Specify Tables dialog.

5. Enable the employee table, and click OK.

6. Click OK.

To generate minmax statistics on a 1% sampling, do the following in the
Optimize Database dialog:

1. Enable the Gen Statistics on Keys/Index check box.

2. Enable the Min Max Values check box.

3. Enable the Statistics on Sample Data check box.

4. Enter 1 for the Percentage.

5. Enable the Specify Tables check box.

6. Click Tables to open the Specify Tables dialog.

7. Enable the employee table, and click OK.

8. Click OK.

All key and indexed columns in the table are processed regardless of any
column designations specified using the Specify Columns dialog. For example,
assume that dno is a data column and kno is a key column in the employee
table.

Using the Query Optimizer 301

Database Statistics

The following example for generating full statistics is the same as the first
example in this section, except that in addition to key and index columns,
statistics are generated also for the dno column:

1. Enable the Gen Statistics on Keys/Index check box.

2. Enable the Specify Tables check box.

3. Click Tables to open the Specify Tables dialog.

4. Enable the employee table, and click OK

5. Enable the Specify Columns check box.

6. Click Columns to open the Specify Columns dialog.

7. Enable the dno and kno columns, and click OK.

8. Click OK.

The kno column designation in Step 6 is superfluous, because this is a key
column and the Gen Statistics on Keys/Index check box is enabled.

Statistics from an Input Text File

Statistics can be read in from a text file. The input file must conform to a
certain format, which is identical to that produced when you direct output to a
file when displaying statistics. Display Optimizer Statistics (see page 346)
provides more information.

The file can be edited to reflect changes in data distribution as required, before
submitting the file for use during the optimization process. However, this can
potentially mislead the query optimizer into generating poor query plans.
Manually editing statistics must be done only if you have a full understanding
of the data and how the statistics are used in Ingres.

Details on creating and using text files as input when optimizing a database
are provided in Statistics in Text Files (see page 348).

302 Ingres 2006 R2 Database Administrator Guide

Database Statistics

About Optimizing Columns

Collecting statistics is generally a time-consuming process, because it requires
scanning large amounts of data. The techniques described so far--except for
Key Column Statistics (see page 301)--collect statistics on all columns of the
indicated tables.

It is not necessary, however, to choose all columns in all tables in your
database when optimizing. The query optimizer uses statistics on a column
only if needed to restrict data or if it is specified in a join. Therefore, it is a
good idea to limit creation of statistics only to those columns used in a
where clause.

The DBA or table owner usually understands the table structure and content
and is able to predict how the various columns are used in queries. Thus,
someone familiar with the table can identify columns that are used in the
where clause.

Given these queries:

select name, age from emp
 where dept = 'Tech Support';

select e.name, e.salary, b.address
 from emp e, bldg b, dept d
 where e.dept = d.dname
 and d.bldg = b.bldg;

Candidate columns for optimization are:

emp table: dept
dept table: dname, bldg
bldg table: bldg

Based on their use in these sample queries, there is no reason to obtain
statistics on employee name, age, salary, or building address. These columns
are listed in the target list only, not the where clause of the query.

Columns used in the where clause are often indexed to speed up joins and
execution of constraints. If this is the case, specify the Gen Statistics on
Keys/Index option to create statistics on key (that is, indexed) columns.
However, it is often just as important to create statistics on non-indexed
columns referenced in where clauses.

Create Statistics on Keys

In VDBA, to create statistics on key (that is, indexed) columns, enable the Gen
Statistics on Keys/Index check box in the Optimize Database dialog.

Using the Query Optimizer 303

Database Statistics

Optimization Output

When you optimize a database, output is generated to show the statistics. For
example, if the Print Histogram option was enabled when optimizing the
database, and you chose to optimize the name and sex columns of the emp
table, the following output is typical:

*** statistics for database demodb version: 00850
*** table emp1 rows:1536 pages:50 overflow pages:49
*** column name of type varchar (length:30, scale:0, nullable)
date:2000_02_24 15:40:38 GMT unique values:16.000
repetition factor:96.000 unique flag:N complete flag:0
domain:0 histogram cells:32 null count:0.0000 value length:8
cell: 0 count:0.0000 repf:0.0000 value:Abbot \037
cell: 1 count:0.0625 repf:96.0000 value:Abbot
cell: 2 count:0.0000 repf:0.0000 value:Beirne \037
cell: 3 count:0.0625 repf:96.0000 value:Beirne
cell: 4 count:0.0000 repf:0.0000 value:Buchanam
cell: 5 count:0.0625 repf:96.0000 value:Buchanan
cell: 6 count:0.0000 repf:0.0000 value:Cooper \037
cell: 7 count:0.0625 repf:96.0000 value:Cooper
cell: 8 count:0.0000 repf:0.0000 value:Dunham \037
cell: 9 count:0.0625 repf:96.0000 value:Dunham
cell: 10 count:0.0000 repf:0.0000 value:Ganley \037
cell: 11 count:0.0625 repf:96.0000 value:Ganley
cell: 12 count:0.0000 repf:0.0000 value:Hegner \037
cell: 13 count:0.0625 repf:96.0000 value:Hegner
cell: 14 count:0.0000 repf:0.0000 value:Jackson\037
cell: 15 count:0.0625 repf:96.0000 value:Jackson
cell: 16 count:0.0000 repf:0.0000 value:Klietz \037
cell: 17 count:0.0625 repf:96.0000 value:Klietz
cell: 18 count:0.0000 repf:0.0000 value:Myers \037
cell: 19 count:0.0625 repf:96.0000 value:Myers
cell: 20 count:0.0000 repf:0.0000 value:Petersom
cell: 21 count:0.0625 repf:96.0000 value:Peterson
cell: 22 count:0.0000 repf:0.0000 value:Rumpel \037
cell: 23 count:0.0625 repf:96.0000 value:Rumpel
cell: 24 count:0.0000 repf:0.0000 value:Singer \037
cell: 25 count:0.0625 repf:96.0000 value:Singer
cell: 26 count:0.0000 repf:0.0000 value:Stec \037
cell: 27 count:0.0625 repf:96.0000 value:Stec
cell: 28 count:0.0000 repf:0.0000 value:Washings
cell: 29 count:0.0625 repf:96.0000 value:Washingt
cell: 30 count:0.0000 repf:0.0000 value:Zywicki\037
cell: 31 count:0.0625 repf:96.0000 value:Zywicki
unique chars: 14 9 11 11 9 11 6 3
char set densities: 0.5200 0.3333 0.4762 0.6667 0.0952 0.1111 0.0633 0.0238

*** statistics for database demodb version: 00850
 *** table emp rows:1536 pages:50 overflow pages:49

304 Ingres 2006 R2 Database Administrator Guide

Database Statistics

 *** column sex of type char (length:1, scale:0, nullable)
 date:23-feb-2000 10:12:00 unique values:2.000
 repetition factor:768.000 unique flag:N complete flag:0
 domain:0 histogram cells:4 null count:0.0000000 value length:1
 cell: 0 count:0.0000000 repf:0.0000000 value:E
 cell: 1 count:0.0006510 repf:1.0000000 value:F
 cell: 2 count:0.0000000 repf:0.0000000 value:L
 cell: 3 count:0.9993489 repf:1535.0000000 value:M
 unique chars: 2
char set densities: 0.1428571

The display items are as follows:

database

Database name

version

Version of the catalog from which statistics were derived. Shown only if
version is 00605 or later.

table

Table currently processing

rows

Current number of rows in table as stored in the iitables catalog

pages

Number of pages (from the iitables catalog)

overflow pages

Number of overflow pages (from the iitables catalog)

column

Column currently processing

type

Column data type. The length, scale, and nullable indicators are obtained
from the iicolumns catalog.

Using the Query Optimizer 305

Database Statistics

date

Time and date when statistics were created

unique values

Number of unique values found in the table

repetition factor

Average number of rows per unique value. The repetition factor times the
number of unique values must produce the row count.

unique flag

“Y” if unique or nearly unique, “N” if not unique

complete flag

All possible values for the column exist in this table. When this column is
used in a join predicate with some other column, it tells the query
optimizer that every value in the other column must be a value of this
column as well. This knowledge enables the query optimizer to build more
accurate query plans for the join.

domain

Not used

histogram cells

Number of histogram cells used (0 to 500 maximum)

null count

Proportion of column values that are NULL, expressed as a real number
between 0.0 and 1.0

value length

Length of cell values

cell

For each cell, a cell number, count (proportion of rows whose values fall
into this cell: between 0.0 and 1.0), average number of duplicates per
unique value in the cell, and the upper bound value for the cell

unique chars

Number of unique characters per character position. Shown only for
character columns.

char set densities

Relative density of the character set for each character position. Shown
only for character columns.

306 Ingres 2006 R2 Database Administrator Guide

Database Statistics

The number of unique values the column has is calculated. The count listed for
each cell is the fraction of all the values falling between the lower and upper
boundaries of the cell. Statistics for the sex column show that there are no
rows with values less than or equal to ‘E,’ 0.06510% of rows with values equal
to ‘F,’ no rows with values in the ‘G’ to ‘L’ range, and 99.93% of the rows with
values equal to ‘M.’ The cell count includes those rows whose column values
are greater than the lower cell bound but less than or equal to the upper cell
bound. All cell counts must add to 1.0, representing 100% of the table rows.

Looking at the cells for the name column, you see that between the lower
bound cell 0, “Abbot \037”, and cell 1, “Abbot”, 6.25% of the employee’s
names are located:

cell: 0 count:0.0000000 repf:0.0000000 value:Abbot \037
cell: 1 count:0.0625000 repf:96.000000 value:Abbot

A restriction such as the following brings back about 6.25% of the rows in the
table:

where emp.name = 'Abbot'

The character cell value \037 at the end of the string is octal for the ASCII
character that is one less than the blank. Therefore, cell 0 in the name
example represents the value immediately preceding ‘Abbot’ in cell 1. This
indicates that the count for cell 1 includes all rows whose name column is
exactly ‘Abbot.’

In addition to the count and value, each cell of a histogram also contains a
repetition factor (labeled “repf” in the statistics output). This is the average
number of rows per unique value for each cell, or the “per-cell” repetition
factor. The query optimizer uses these values to compute more accurate
estimates of the number of rows that result from a join. This is distinct from
the repetition factor for the whole column displayed in the header portion of
the statistics output.

Using the Query Optimizer 307

Database Statistics

Histogram Cells

A histogram can have up to 500 cells. The first cell of a histogram is always an
“empty” cell, with count = 0.0. It serves as the lower boundary for all values
in the histogram. Thus, all values in the column are greater than the value in
the first cell. This first cell is usually not included when discussing number of
cells, but it is included when statistics are displayed.

A histogram in which there is a separate cell for each distinct column value is
known as an “exact” histogram. If there are more distinct values in the column
than cells in the histogram, some sets of contiguous values must be merged
into a single cell. Histograms in which some cells represent multiple column
values are known as “inexact” histograms.

You can control the number of cells used, even for inexact histograms. You can
choose to set the number of inexact cells to the same number you chose for
an exact histogram, or to some other number that seems appropriate. If your
data is unevenly distributed, the data distribution cannot be apparent when
merged into an inexact histogram with the default 15 cells. Increasing the
number of cells can help.

You can control the number of cells your data is merged into even if you go
above the maximum number of histogram cells you requested. You can choose
to set the default merging number to the same number you chose for the
maximum, or a lesser number, if the default of 15 cells seems inappropriate. If
your data is unevenly distributed, the data distribution cannot be apparent
when merged into the default 15 cells, and controlling the merging factor can
help.

To control the maximum histogram cells, use the Max Cells “Exact” Histogram
option in the Optimize Database dialog (the maximum value accepted is 249).
You can control the number of cells that your data is merged into if you go
beyond the maximum number of unique values using the Max Cells “Inexact”
Histogram option in the Optimize Database dialog. By default, the number of
cells used when merging into an inexact histogram is 15, and the maximum
value is 499.

For example, set the maximum number of unique histogram cells to 200, and
if there are more than 200 unique values, merge the histogram into 200 cells.
To do this, set both the Max Cells “Exact” Histogram and the Max Cells
“Inexact” Histogram options in the Optimize Database dialog to 200.

Set the maximum number of unique histogram cells to 100, and if there are
more than 100 unique values, merge the histogram into 50 cells. To do this,
set Max Cells “Exact” Histogram to 100 and Max Cells “Inexact” Histogram to
50.

308 Ingres 2006 R2 Database Administrator Guide

Database Statistics

When using these options, remember that the goal is to accurately reflect the
distribution of your data so that there can be an accurate estimate of the
resultant number of rows from queries that restrict on these columns. The
query optimizer uses linear interpolation techniques to compute row estimates
from an inexact histogram and the more cells it has to work with, the more
accurate are the resulting estimates. The cost of building a histogram is not
dependent on the number of cells it contains and is not a factor when
determining how many cells to request.

Statistics and Global Temporary Tables

Because global temporary tables only exist for the duration of an Ingres
session, Optimize Database cannot be used to gather statistical information
about them. Without histograms, the query optimizer has no knowledge about
the value distributions of the columns in a global temporary table. Ingres
maintains a reasonably accurate row count for global temporary tables, and
this row count can be used by the query optimizer to compile a query which
accesses a global temporary table.

The row counts alone are usually enough to permit the compilation of efficient
query plans from queries, which reference global temporary tables, in
particular because they often contain relatively small data volumes. However,
the lack of histograms on global temporary tables can cause poor estimates of
the number of rows resulting from the application of restriction or join
predicates. These poor estimates can in turn cause the generation of inefficient
query plans. This typically happens with large global temporary tables or
tables with columns having skewed value distributions, which are not well
handled by the default estimation algorithms of the query optimizer.

To help deal with such situations, there is a mechanism available to associate
“model” histograms with global temporary tables.

Using the Query Optimizer 309

Database Statistics

How You Associate “Model” Histograms with Global Temporary Tables

To associate “model” histograms with global temporary tables, follow these
steps:

1. Create a persistent table with the same name as the global temporary
table being modeled. The schema qualifier for the table must be either the
user ID of the executing user of the application creating and accessing the
global temporary table, or the special user ID “_gtt_model”. Its column
definitions must include at least those from the global temporary table for
which histograms are to be built. The column names and types must
exactly match those of the global temporary table.

2. Populate the persistent table with a set of rows, which is representative of
a typical instance of the global temporary table.

3. Run optimizedb on those columns of the persistent table for which
histograms are desired (typically, the columns contained in where clauses
in any referencing queries).

4. After the histograms have been built, the persistent table can be emptied
of rows, to release the space it occupies. This must be done with a “delete
from xxx” statement, to delete the rows but leave the catalog definition
(and histograms).

When the query optimizer analyzes where clause predicates with columns from
a global temporary table, it looks for the catalog definition of a similarly
named persistent table with a schema qualifier matching the ID of the
executing user or _gtt_model. If one is found, it looks for histograms on
similarly named columns whose type and length exactly match those of the
global temporary table columns. If these conditions are satisfied, it uses the
model histograms.

Not all faulty query plans involving global temporary tables can be improved
this way. The modeling technique depends on the fact that all or most
instances of the global temporary table have similar value distributions in the
histogrammed columns. If this is not true, a single instance of the table (as
with the model persistent table) will not be representative of them all, and can
improve the query plans in some executions of the application, but degrade
other executions.

310 Ingres 2006 R2 Database Administrator Guide

Database Statistics

When to Rerun Optimization

Optimization does not necessarily need to be run whenever data is changed or
added to the database. Optimization collects statistics that represent
percentages of data in ranges and repetition factors. For instance, the
statistics collected on employee gender show that 49% of the employees are
female and 51% are male. Unless this percentage shifts dramatically, there is
no need to rerun optimization on this column, even if the total number of
employees changes.

You must rerun optimization if there are modifications to the database that
alter the following:

 Repetition factor

 Percentage of rows returned from a range qualification (that is, your
histogram information is incorrect)

For example, if you had run complete statistics on the empno column early in
your company’s history, your repetition factor is correct because all employees
still have unique employee numbers. If you used ranges of employee numbers
in any way, as you added new employees your histogram information is less
accurate.

If your company originally had 100 employees, 10% of the employees have
employee numbers greater than 90. If the company hired an additional 100
employees, 55% of the employees have employee numbers greater than 90,
but the original histogram information does not reflect this.

Columns that show this type of “receding end” growth and are used in range
queries can periodically need to have optimization run on them (exact match
on employee number is not affected, because the information that says all
employee numbers are unique is still correct).

Even if the statistics are not up-to-date, the query results are still correct.

Using the Query Optimizer 311

Database Statistics

Example: Before and After Optimization

If statistics are available on a column referenced in a where clause, the query
optimizer uses the information to choose the most efficient QEP.
Understanding how this information is used can be helpful in analyzing query
performance. For more information, see Query Execution Plans (see
page 313).

Two QEPs showing the effect of optimization are presented here. The first is a
QEP before optimizing; the second shows the same query after optimization.
The query used is a join, where both the r and s tables use the B-tree storage
structure:

select * from r, s
 where s.a > 4000 and r.a = s.a;

QEP Before Optimization

Before obtaining statistics, the optimizer chooses a full sort-merge (FSM) join,
because it assumes that 10% of each table satisfies the qualification “a >
4000,” as shown in the QEP diagram below:

QUERY PLAN 4,1, no timeout, of main query
 FSM Join(a)
 Heap
 Pages 1 Tups 267
 D15 C44
 / \
 Proj-rest Proj-rest
 Sorted(a) Sorted(a)
 Pages 5 Tups 1235 Pages 1 Tups 267
 D11 C12 D4 C3
 / /
 r s
 B-Tree(a) B-Tree (a)
 Pages 172 Tups 12352 Pages 37 Tups 2666

312 Ingres 2006 R2 Database Administrator Guide

Query Execution Plans

QEP After Optimization

After obtaining statistics, the optimizer chooses a Key join, because only one
row satisfies the qualification “a > 4000,” as shown in the QEP diagram below:

QUERY PLAN 4,1, no timeout, of main query
 K Join(a)
 Heap
 Pages 1 Tups 1
 D4 C1
 / \
 Proj-rest r
 Sorted(a) B-Tree(a)
 Pages 1 Tups 1 Pages 172 Tups 12352
 D2 C1
 /
 s
 B-Tree(a)
 Pages 37 Tups 2666

The cost of the key join is significantly less than the cost of the FSM join
because the join involves far fewer rows.

Query Execution Plans
When the query optimizer evaluates a query (such as the SQL statements
select, insert, update, delete, and create table as), it generates a QEP showing
how the query is executed. Once the QEP has been generated, it can be used
one or more times to execute the same query. Because there are often many
different ways to optimize a given query, choosing the best QEP can have a
significant impact on performance.

You can display a diagram or graph of the QEP selected, which can be used to
gain insight into how queries are handled by the query optimizer. Knowing
how to read and analyze QEPs can allow you to detect, and often avoid, hidden
performance problems. After examining a QEP you can, for example, decide
that you need to optimize your database to provide the optimizer with better
statistics, as described in Database Statistics (see page 295).

Note: Examining QEPs can help you understand what is involved in executing
complex queries in single-user situations. For multi-user performance issues,
see the chapter “Understanding the Locking System.”

Using the Query Optimizer 313

Query Execution Plans

Information on a QEP

The information that can appear on a QEP is as follows:

Table or Index Name

Indicates the table on which the query is being run or the secondary index,
if any is selected by the query optimizer for execution of the query. This
information is provided for orig nodes only (described under Type of Nodes
in a QEP below).

Label

Indicates the type of node. For example, Proj-rest identifies a projection-
restriction node (described under Type of Nodes in a QEP below).

Storage Structure

Indicates the storage structure in use, as follows, where key is the primary
key, and NU indicates that the key structure cannot be used:

B-tree(key|NU)

Hashed(key|NU)

Heap

Isam(key|NU)

Total Number of Pages and Tuples

Indicates the total number of pages involved at the node, and the total
number of tuples (rows).

Query Cost Information

Indicates the cumulative amounts of cost that are anticipated at each
stage in the execution of the query. This cost is a blend of the CPU
consumption and the number of disk I/Os involved in plan execution. The
information is shown in the following form:

 Dx estimates the disk I/O cost. x approximates the number of disk
reads to be issued.

 Cy estimates the CPU usage, which has been subjected to a formula
which turns it into an equivalent number of disk I/Os. y units can be
used to compare amounts of CPU resources required.

 Nz is shown for Star databases only. z represents the network cost of
processing the query.

Because these values are cumulative up the tree, the top node carries the
total resources required to execute the query. The cost involved in
executing a specific node is, therefore, the values for that node, minus
those of the child node (or both child nodes in the case of a join node).

The QEP graph you see in VDBA indicates both the cumulative cost and the
cost for the individual node. For more information, see Viewing QEP Node
Information in online help.

314 Ingres 2006 R2 Database Administrator Guide

Query Execution Plans

View a QEP

In general, it is a good idea to test run a query (that is, view the QEP).

In VDBA, if you open the SQL Scratchpad window and click Execute QEP, you
automatically see the query execution plan in a graphical form. For step-by-
step instructions, see Viewing the Query Execution Plan in online help.

From a terminal monitor or embedded SQL, you can see the QEP by using the
set qep statement. On the set statement, the [no]optimizeonly, [no]qep, and
joinop [no]timeout clauses pertain to QEPs. For more information, see the
SQL Reference Guide. The QEP is displayed in text-only format when using
SQL.

Control QEP Generation Using a Environment Variable

To control whether QEPs are generated using an operating system
environment variable, issue the following commands:

Windows:

set ING_SET=set qep

UNIX:

C shell:

setenv ING_SET "set qep"

Bourne shell:

ING_SET = "set qep"

export ING_SET

VMS:

define ING_SET "set qep"

Using the Query Optimizer 315

Query Execution Plans

Text-Only QEP

In a terminal monitor, a QEP is displayed as a tree, where each node has one
or two children:

 Parent
 / \
 Child Child
 /
 Parent
 / \
 Child Child

Only join nodes have two children. Other nodes have a left child only.
Information on node types is provided in Types of Nodes in a QEP (see
page 318).

The tree is read from bottom to top and from left to right, starting with the
child nodes at the bottom, going up to the intermediate child nodes, if any,
and finally up to the first parent node:

QEPs as Data Flow Trees

The bottom up approach in the tree diagram mirrors the flow of data during
the execution of a query plan.

Rows are read in the leaf nodes of the query plan, where clauses are applied
to reduce the number of rows as soon as possible, with qualified rows being
passed up through the remaining nodes of the query plan.

Intermediate plan nodes can sort the data or join it to rows from other tables.

Each successive node performs some refinement on the rows received from
below. The final result rows emerge from the top of the plan as requested by
the query.

316 Ingres 2006 R2 Database Administrator Guide

Query Execution Plans

Modes for Showing Tree Diagrams

In the SQL Scratchpad window, you can show the tree diagram in one of two
modes:

 Preview mode gives you a condensed version of the tree, where you can
point to a particular node to see its detailed information.

 Normal mode displays the detailed information as part of the tree diagram.

Note: A query that has been modified to include views, integrities, and/or
grants, is more involved. The QEP diagram for an involved query (as shown by
set qep) can be very wide. On a printout, the diagram can even wrap so that
similar levels in the tree appear on different levels. You can find it easier to
read such a QEP if you cut and paste the diagram into the correct levels.

Graphical QEP

In VDBA, QEP diagrams appear in the query information pane as a graph, as
shown in this example:

For a detailed description of each element in the graph and the meaning of the
colors, see Viewing QEP Node Information in online help.

Using the Query Optimizer 317

Types of Nodes in a QEP

Types of Nodes in a QEP
Each node in a QEP has detailed information associated with it, depending on
the type of node.

The types of nodes are as follows:

 Orig (or leaf) node—describes a particular table

 Proj-rest node—describes the result of a projection and/or where clause
restriction applied to a subsidiary node

 Join node—describes a join. One of the following strategies is used:

– Cartesian product

– Full sort merge

– Partial sort merge

– Key and tid lookup joins

– Subquery joins

 Exchange node—describes a point at which separate plan fragments
execute concurrently on different threads as part of a parallel query plan

Sort Nodes in a QEP

Many types of nodes can also be shown as sort nodes. A sorting node causes
the data to be sorted as it is returned. Any node other than an orig node can
appear with a sort indication. A query with a sort clause on it has a sort node
as the topmost node in the QEP. This type of node displays:

 Total number of pages and tuples

 Query cost information

For a description of each of these parts of the display, see Information on a
QEP (see page 314).

Sort nodes make use of a sort buffer and so consume primarily CPU resources,
requiring disk I/O only when the volume of data to be sorted cannot be
accommodated in the sort buffer. The heapsort algorithm is used; it is very
fast on both unordered data and data which is nearly sorted.

318 Ingres 2006 R2 Database Administrator Guide

Types of Nodes in a QEP

Non-Join Nodes in a QEP

Types of non-join nodes are as follows:

 Orig

 Projection-restriction

 Exchange

Orig Nodes

Orig nodes are nodes with no children. When reading a QEP, you should first
find the orig nodes of the tree. Orig nodes are the most common type of QEP
node.

Orig nodes describe a base table or secondary index being accessed from the
query. This type of node displays the following:

 Table or index name

 Storage structure

 Total number of pages and tuples

For a description of each of these parts of the display, see Information on a
QEP (see page 314).

Using the Query Optimizer 319

Types of Nodes in a QEP

Projection-Restriction Nodes

A projection-restriction (proj-rest) node describes the result of a projection
and/or where clause restriction applied to a subsidiary node. It defines how a
subsidiary node is to key into the table and what qualification to use on the
table. This type of node displays the following:

 A label identifying it as a proj-rest node

 Storage structure (which is usually heap)

 Total number of pages and tuples

 Query cost information

 Optionally, sort information (whether the data produced by this node is
already sorted or requires sorting)

For a description of each of these parts of the display, see Information on a
QEP (see page 314).

Proj-rest nodes are used to remove data irrelevant to the query from a table,
so that the minimum amount of data is carried around during the execution of
the query. Therefore, only those columns referenced in the target list and
where clause for a table are projected, and only those rows that satisfy the
where clause restrictions are retained for use higher in the plan.

All you see is the amount of disk I/O required to read the appropriate rows
from the node below, and that amount depends on what storage structures
were used and the number of pages accessed.

Exchange Nodes

Exchange nodes appear in parallel query plans. An exchange node results in
one or more threads being spawned to execute the plan fragment beneath the
node. It allows different portions of a complex query plan to execute
concurrently, reducing the overall elapsed time taken to execute the query.
This type of node displays:

 Estimated reduction in execution time due to the presence of the exchange
node

 Count of child threads spawned to execute the plan fragment below the
exchange node

 PC Join count, the number of join fragments performed by a partition
compatible join

For more information, see Parallel Query Execution (see page 338).

320 Ingres 2006 R2 Database Administrator Guide

Types of Nodes in a QEP

Examples of Non-join Nodes

Here are QEP examples that illustrate non-join nodes. The Sample Tables
section describes the tables and indexes used in these examples.

Sample Tables

In these examples, the following two tables are used:

1. Table arel(col1, col2, col3):

Name: arel
Owner: supp60
Created: 26-oct-1998 08:50:00
Location: ii_database
Type: user table
Version: II2.5
Row width: 413
Number of rows: 156
Storage structure: hash
Duplicate Rows: allowed
Number of pages: 70
Overflow data pages: 6

Column Information:

Column Key
Name Type Length Nulls Defaults Seq
col1 integer 4 yes no 1
col2 integer 4 yes no
col3 varchar 400 yes no
Secondary indexes: aindex (col2) structure: isam

2. Table brel(col1,col2):

Name: brel
Owner: supp60
Created: 26-oct-1998 08:53:00
Location: ii_database
Type: user table
Version: II2.5
Row width: 10
Number of rows: 156
Storage structure: isam
Duplicate Rows: allowed
Number of pages: 3
Overflow data pages: 1

Column Information:

Column Key
Name Type Length Nulls Defaults Seq
col1 integer 4 yes n 1

Using the Query Optimizer 321

Types of Nodes in a QEP

col2 integer 4 yes no
Secondary indexes: none

Primary Key Lookup

This is an example of a simple primary key lookup. The QEP is shown below for
the following SQL query:

select col1, col2 from arel
 where col1 = 1234
 order by col2;

QUERY PLAN 3,1, no timeout, of main query
 Sort Keep dups
 Pages 1 Tups 1
 D1 C0
 /
 Proj-rest
 Sorted(col1)
 Pages 1 Tups 1
 D1 C0
 /
 arel
 Hashed(col1)
 Pages 70 Tups 156

Reading this QEP diagram from bottom to top, Hashed(col1) means the row is
being read through the index to return only those rows for which “col1 =
1234,” as opposed to Hashed(NU) where NU indicates that the key structure
cannot be used and all rows are returned. The projection-restriction node
selected the rows matching the where constraint and removed superfluous
columns. The final sort node reflects the sort clause on the query.

322 Ingres 2006 R2 Database Administrator Guide

Types of Nodes in a QEP

Select on a Non-Keyed Field

The following is an example of a select on a non-keyed field. The QEP is shown
below for the following SQL query:

select col1, col2 from arel
 where col3 = 'x'
 order by col1;

QUERY PLAN 3,1, no timeout, of main query
 Sort Keep dups
 Pages 1 Tups 1
 D9 C0
 /
 Proj-rest
 Heap
 Pages 1 Tups 1
 D9 C0
 /
 arel
 Hashed(NU)
 Pages 70 Tups 156

In this example the Hashed(NU) implies that the table had to be scanned (that
is, all 70 pages had to be visited). Without optimization statistics, the query
optimizer uses a best guess approach (1% for equalities and 10% for non-
equalities).

The query optimizer takes into account disk read-ahead or group reads when
performing scans of tables—although 70 pages of data have to be read to scan
arel, the estimated disk I/O value is only nine reads (D9) due to this effect.
The query optimizer assumes a typical read-ahead of eight pages when
performing scans, so here 70/8 reads generates an estimate of nine disk
operations.

Join Nodes in a QEP

There is an inner and an outer tree beneath every join node, which function
similarly to an inner and outer program loop. By convention, the left-hand tree
is called the outer tree, and the right-hand tree is called the inner tree.

There are various types of join nodes, described individually below, but the
joining method is the same: for each row from the outer tree, there is a join to
all of the rows that can possibly qualify from the inner tree. The next row from
the outer tree is processed, and so on.

Any join node can have outer join information if an outer join is present.

Using the Query Optimizer 323

Types of Nodes in a QEP

Cartesian Product Node

The Cartesian product, or cart-prod, strictly follows the unoptimized join
model, with each row in the outer node compared to all rows from the inner
node. This does not mean that all rows are actually read, only that all rows
that satisfy the conditions of the query are compared.

A typical abbreviated example of a QEP diagram involving a cart-prod is shown
below:

 Cart-Prod
 / \
 proj-rest table
 /
 table

This node is displayed with the following information on a QEP diagram:

 A label identifying it as a cart-prod join node, along with the column(s) on
which processing is done

 If an outer join has been requested, one of the following labels indicating
the type of join:

[LEFT JOIN]
[FULL JOIN]
[RIGHT JOIN]

 Storage structure (which is usually heap)

 Total number of pages and tuples

 Query cost information

 Optionally, sort information (whether the data produced by this node is
already sorted or requires sorting)

324 Ingres 2006 R2 Database Administrator Guide

Types of Nodes in a QEP

The cart-prod is most frequently observed in disjoint queries (that is, when
use of correlation variables and table names are mixed in the query).
However, the following cases can also generate cart-prods, without adversely
affecting performance:

 Queries involving ORs that can usually be decomposed into a sequence of
smaller queries

 No join specification (a disjoint table or no where clause, so that there is
no relationship between the two tables)

 Small tables or amounts of data

 Non_equijoins, such as a query with the following where clause:

where r1.col1 > r2.col2

Cart-prods are sometimes associated with substantial estimates for disk I/O
usage and affect performance adversely.

This example shows a QEP diagram with a cart-prod join node resulting from
the following simple disjoint query:

select arel.col1 from arel, arel a
 where a.col1 = 99;

QUERY PLAN 7,1, no timeout, of main query
 Cart-Prod
 Heap
 Pages 1 Tups 243
 D9 C4
 / \
 Proj-rest Proj-rest
 Sorted(NU) Heap
 Pages 1 Tups 2 Pages 1 Tups 156
 D1 C0 D8 C1
 / /
 arel arel
 Hashed(col1) Hashed(NU)
 Pages 70 Tups 156 Pages 70 Tups 156

Using the Query Optimizer 325

Types of Nodes in a QEP

Full Sort Merge Node

The full sort merge (FSM) is a more optimal join: it typically joins the inner
and outer subtrees with many fewer comparisons than the cart-prod requires.
This is done by assuring that both subtrees are sorted in the order of the join
columns. If one or the other is not already sorted (for example, by being read
from a B-tree index constructed on the join columns), the query plan can
include a sort to put the rows in the correct order. This allows the rows of the
outer subtree to be joined to the matching rows of the inner subtree with one
pass over each. The inner subtree is not scanned multiple times, as with the
cart-prod join.

A typical abbreviated example of a QEP diagram involving an FSM is shown
below:

 join
 / \
 sort sort
 / /
 proj-rest proj-rest
 / /
 table table

This node is displayed with the following information on a QEP diagram:

 A label identifying it as a FSM join node, along with the column(s) on
which join processing is done

 If an outer join has been requested, one of the following labels indicating
the type of join:

[LEFT JOIN]
[FULL JOIN]
[RIGHT JOIN]

 Storage structure (which is usually heap) or a list of sort columns if the
data is being sorted

 Total number of pages and tuples

 Query cost information

 Optionally, sort information (whether the data produced by this node is
already sorted or requires sorting)

The FSM is most common when a “bulk” join takes place with no row
restrictions on either table involved in the join, as with an SQL select
statement of the following form:

select * from r1, r2 where r1.joincol = r2.joincol;

326 Ingres 2006 R2 Database Administrator Guide

Types of Nodes in a QEP

This example shows a QEP diagram with an FSM join node resulting from such
a bulk join:

select a.col2, b.col2 from arel a, brel b
 where a.col1 = b.col1;
QUERY PLAN 5,1, no timeout, of main query
 FSM Join(col1)
 Heap
 Pages 1 Tups 156
 D9 C40
 / \
 Proj-rest Proj-rest
 Sorted(eno) Sorted(eno)
 Pages 1 Tups 156 Pages 1 Tups 156
 D8 C1 D1 C1
 / /
arel brel
Hashed (NU) Isam (NU)
Pages 70 Tups 156 Pages 3 Tups 156

Using the Query Optimizer 327

Types of Nodes in a QEP

Partial Sort Merge Node

The partial sort merge (PSM) is a cross between a full sort merge and a cart-
prod. The inner tree must be in sorted order. The outer tree can be sorted or
partially sorted. The outer tree in PSM scenarios can always be derived from
an ISAM table. Comparisons proceed as for the full sort merge until an outer
value is found to be out of order. At that point the inner loop is restarted.
Because ISAM tables are reasonably well ordered (depending on how many
rows have been added because the last reorganization), the number of inner
loop restarts is typically small.

A typical abbreviated example of a QEP diagram involving a PSM is shown
below:

 Join
 / \
 proj-rest sort
 / /
 table proj-rest
 /
 table

This node is displayed with the following information on a QEP diagram:

 A label identifying it as a PSM join node, along with the columns on which
processing is done

 If an outer join has been requested, one of the following labels indicating
the type of join:

[LEFT JOIN]
[FULL JOIN]
[RIGHT JOIN]

 Storage structure (which is usually heap)

 Total number of pages and tuples

 Query cost information

 Optionally, sort information (whether the data produced by this node is
already sorted or requires sorting)

328 Ingres 2006 R2 Database Administrator Guide

Types of Nodes in a QEP

The following example shows a QEP diagram with a PSM join:

select a.col2, b.col2 from arel a, brel b
 where a.col1 = b.col2;

QUERY PLAN 6,1, no timeout, of main query
 PSM Join(col1)
 Heap
 Pages 1 Tups 156
 D9 C26
 / \
 Proj-rest Proj-rest
 Heap Sort on(col1)
 Pages 1 Tups 156 Pages 1 Tups 156
 D1 C1 D8 C1
 / /
 brel arel
 Isam(col2) Hashed(NU)
 Pages 3 Tups 156 Pages 70 Tups 156

Using the Query Optimizer 329

Types of Nodes in a QEP

Hash Join Node

The hash is an optimized join that replaces the FSM join when one or both of
the subtrees must be sorted. It functions by loading the rows of one subtree
into a memory resident hash table, keyed on the values of the join columns.
The rows of the other subtree are hashed on their join key values into the
hash table, allowing very efficient matching of joined rows. By avoiding the
sort(s) of the FSM join, the hash join can be much more efficient.

A typical abbreviated example of a QEP diagram involving a hash join is shown
below:

 Join
 / \
 proj-rest proj-rest
 / /
 table table

This node is displayed with the following information on a QEP diagram:

 A label identifying it as a hash join node, along with the columns on which
join processing is done

 If an outer join has been requested, one of the following labels indicating
the type of join:

[LEFT JOIN]
[FULL JOIN]
[RIGHT JOIN]

 Storage structure (which is usually heap) or a list of sort columns if the
data is being sorted

 Total number of pages and tuples

 Query cost information

 Optionally, sort information (whether the data produced by this node is
already sorted or requires sorting)

Like the FSM join, the hash join is most common when a bulk join takes place
with no row restrictions on either table involved in the join, as with an SQL
select statement of the following form:

select from r1,r2 where r1.joincol= r2.joincol;

330 Ingres 2006 R2 Database Administrator Guide

Types of Nodes in a QEP

This example shows a QEP diagram with hash join node resulting from such a
bulk join:

select a.col2, b.col2 from arel a, brel b
where a.col1 = b.col2;

QUERY PLAN 1,1, no timeout, of main query
 HASH Join(col1)
 Heap
 Pages 1 Tups 156
 D9 C40
 / \
 Proj-rest Proj-rest
 Heap Heap
 Pages 1 Tups 156 Pages 1 Tups 156
 D8 C1 D1 C1
 / /
 arel(a) brel (b)
 Hashed (NU) Isam (NU)
 Pages 70 Tups 156 Pages 3 Tups 156

Using the Query Optimizer 331

Types of Nodes in a QEP

Key and Tid Lookup Join Node

In key and tid lookup joins, the outer and inner data set is not static. For each
outer row, the join selects values and forms a key to search in the inner join.
A key lookup join uses keyed access through the structure of the inner table or
index, and a tid lookup join uses the tuple identifier (tid) value. For more
information, see Tids (see page 259).

A typical abbreviated example of a QEP diagram involving this type of join is
shown below:

 Join
 / \
 sort btree (or hash or isam)
 \
 proj-rest
 \
 table

This node is displayed with the following information on a QEP diagram:

 A label identifying it as a key (K) or tid (T) lookup join, along with the
column(s) on which processing is done

 If an outer join has been requested, the following label indicating the type
of join:

[LEFT JOIN]

 Storage structure (which is usually heap)

 Total number of pages and tuples

 Query cost information

 Optionally, sort information (whether the data produced by this node is
already sorted or requires sorting)

This case is seen most frequently where the outer subtree proj-rest returns
few rows, so it is faster to do a keyed lookup (on an ISAM, hash, or B-tree
table) than any of the sort merge operations.

332 Ingres 2006 R2 Database Administrator Guide

Types of Nodes in a QEP

The following example shows a QEP diagram with a key lookup join:

select b.col1, b.col2, a.col2
 from arel a, brel b
 where a.col3 = 'x' and a.col1 = b.col1;

 K Join(col1)
 Heap
 Pages 1 Tups 2
 D3 C0
 / \
 Proj-rest brel
 Heap Isam(col1)
 Pages 1 Tups 2 Pages 3 Tups 156
 D1 C0
 /
 arel
 Hashed(NU)
 Pages 70 Tups 156

In the next example of a tid lookup join, access to the base table is through
the secondary index, and proj-rest collects tids for sorting. The tids are used
for a direct tid lookup in the base table. Therefore, the storage structure of the
base table is NU:

select a.col1, a.col2 from arel a
 where a.col2 = 99
 order by a.col2;

 Sort(col2)
 Pages 1 Tups 1
 D4 C1
 /
 T Join(tidp)
 Heap
 Pages 1 Tups 1
 D4 C0
 / \
 Proj-rest arel
 Sort on(tidp) Hashed(NU)
 Pages 1 Tups 1 Pages 70 Tups 156
 D2 C0
 /
 aindex
 Isam(col2)
 Pages 2 Tups 156

Using the Query Optimizer 333

Types of Nodes in a QEP

Subquery Join Node

The subquery join is specific to SQL because SQL allows subselects as part of a
query. These nodes join rows from a query to matching rows of a contained
subselect, thus allowing the subselect restrictions on the query to be
evaluated.

A typical abbreviated example of a QEP diagram involving a subquery join is
shown below:

 SE join
 / \
 proj-rest Tn
 /
 table

In this diagram, Tn identifies the QEP constructed to evaluate the subselect.

This node is displayed with the following information on a QEP diagram:

 A label identifying it as a subquery (SE) join, along with the column(s) on
which processing is done

 Storage structure (which is usually heap)

 Total number of pages and tuples

 Query cost information

 Optionally, sort information (whether the data produced by this node is
already sorted or requires sorting)

The following example shows a QEP diagram with a subquery join:

select * from arel a
 where a.col2 = (
 select col2 from brel b
 where a.col1 = b.col1)
 and col1 = 5;

QUERY PLAN 3,1, no timeout, of T1
 Proj-rest
 Heap
 Pages 1 Tups 1
 D1 C0
 /
 brel
 Hashed(col1)
 Pages 3 Tups 156

334 Ingres 2006 R2 Database Administrator Guide

Types of Nodes in a QEP

QUERY PLAN 4,2, no timeout, of main query
 SE Join(col1)
 Heap
 Pages 1 Tups 1
 D2 C0
 / \
 Proj-rest T1
 Heap Heap
 Pages 1 Tups 1 Pages 1 Tups 1
 D1 C0
 /
 arel
 Hashed(col1)
 Pages 70 Tups 156

In the QEP pane of the SQL Scratchpad window in VDBA, these two QEPs are
shown in separate tabs.

Subquery joins are reasonably expensive because the subselect must be
executed once for each row of the outer subtree. The query optimizer contains
logic to flatten various types of subselects into normal joins with the
containing query. This allows more optimal joins to be used to evaluate the
subselect.

As an example of the subselect flattening enhancement features of the query
optimizer, consider the following subselect:

select r.a from r where r.c =
 (select avg(s.a) from s
 where s.b = r.b and r.d > s.d);

Instead of two scans of table r, the query optimizer has eliminated a scan of
table r by evaluating the aggregate at an interior QEP node. The QEP appears
similar to the previous example:

QUERY PLAN 7,1, no timeout, of main query
 Hash Join(b)
 avg(s.a)
 Heap
 Pages 2 Tups 359
 D133 C171
 / \
 Proj-rest Proj-rest
 Sorted(b) Heap
 Pages 1 Tups 359 Pages 40 Tups 359
 D65 C112 D32 C3
 / /
 r s
 Btree (b,c) Hashed(NU)
 Pages 44 Tups 359 Pages 44 Tups 359

Using the Query Optimizer 335

Types of Nodes in a QEP

Multiple Query Execution Plans

The query optimizer can generate multiple QEPs if the query includes any of
the following objects:

 SQL subqueries (in, exists, all, any, and so on.)

 SQL union clause

 SQL group by clause

 Views that need to be materialized

As an example of multiple QEPs, consider the processing of a view on a union.
The following statement creates the view:

create view view1 as
 select distinct col1 from arel
union
 select distinct col2 from arel;

There are two selects, designated #1 and #2 in their respective QEPs below.
Now consider the query optimizer action in evaluating the following query:

select * from view1;

This generates three QEPs, which are shown in order in the example QEP
diagrams that follow:

1. The first select in the union

2. The second select in the union

3. Main query—the merged result of the two unioned selects

QUERY PLAN of union view T0
 Sort Unique
 Pages 1 Tups 156
 D1 C10
 /
 Proj-rest
 Heap
 Pages 1 Tups 156
 D1 C0
 /
 aindex
 Isam(col2)
 Pages 2 Tups 156

336 Ingres 2006 R2 Database Administrator Guide

Types of Nodes in a QEP

QUERY PLAN of union subquery
 Sort Unique
 Pages 1 Tups 156
 D4 C10
 /
 Proj-rest
 Heap
 Pages 1 Tups 156
 D4 C0
 /
 arel
 Hashed(NU)
 Pages 70 Tups 156

QUERY PLAN of main query
 Sort Unique
 Pages 1 Tups 156
 D19 C20
 /
 Proj-rest
 Heap
 Pages 1 Tups 156
 D12 C11
 /
 T0
 Heap
 Pages 1 Tups 156

In the QEP pane of the SQL Scratchpad window in VDBA, these QEPs are
shown in separate tabs.

More Complex QEPs

The previous series of QEPs on the different classes of joins involved only two
tables. More complex QEPs involving joins with three or more tables can be
read as a sequence of two-table joins that have already been described, with
the query optimizer deciding what is the optimal join sequence. The key to
understanding these complex QEPs is recognizing the join sequences and the
types of joins being implemented.

Using the Query Optimizer 337

Types of Nodes in a QEP

Parallel Query Execution

With its thread support, Ingres has long supported the concurrent execution of
separate queries. For short OLTP style queries, this permits a many fold
increase in the number of such queries that can be executed in a given unit of
time.

Ingres has the additional capability to split up the execution of individual long
running queries over multiple threads. This parallel execution of a single
complex query reduces the time to execute it.

Parallel query plans are implemented in Ingres by the introduction of the
exchange node type. For more information, see Sample Parallel QEPs (see
page 341).

An exchange node marks the boundary between processing threads in a query
plan. It can spawn one or many threads to execute the query plan fragment
below the exchange node concurrent with the fragment above the exchange
node. The exchange node itself passes or exchanges rows from threads below
the node to the thread above the node.

338 Ingres 2006 R2 Database Administrator Guide

Types of Nodes in a QEP

Types of Parallelism

Ingres compiles exchange nodes into queries to implement any of three types
of parallelism:

 Inter-node (pipelined) parallelism – an exchange node that spawns a
single thread effectively pipelines rows from the plan fragment below the
node to the plan fragment above the node. For example, an exchange
node below a sort node allows the plan fragment below to generate rows
at the same time as sorting is being done for previous rows. Plan
fragments that produce and consume rows at the same rate can effectively
overlap their processing, reducing the overall execution time for the query.

 Inter-node (bushy) parallelism – exchange nodes inserted over essentially
independent query plan fragments allow those fragments to execute
independently of one another. A specialized case of bushy parallelism
occurs in union queries when a single exchange node is placed above the
unioned selects. One thread is created for each of the select plan
fragments, allowing the selects to be processed concurrently.

 Intra-node (partitioned table) parallelism – a single exchange node is
placed above the orig node for a partitioned table. The exchange node
creates several (4, 8, and so forth) child threads, each one of which
retrieves data from a subset of the partitions of the table. This allows the
concurrent reading of rows from the different partitions, clearly reducing
the elapsed time required to process the table. A variation on partitioned
parallelism (called a partition compatible join) occurs when two partitioned
tables with the same number of partitions are joined using their respective
partitioning columns. The query optimizer places the exchange node above
the join in the query plan, resulting in mini-joins being performed between
the rows of compatible pairs of partitions. These mini-joins are performed
concurrently on different threads.

Using the Query Optimizer 339

Types of Nodes in a QEP

Enabling Parallel Query Plans

The generation of parallel query plans is controlled by several configuration
parameters, as well as a session level Set statement. The opf_pq_dop
parameter defines the degree of parallelism or maximum number of exchange
nodes that can be compiled into a query plan. A value of 0 or 1 prevents the
generation of parallel plans, but any other positive value enables them. The
session level set parallel <n> statement can be used to override the CBF
parameter, where <n> is the degree of parallelism for queries compiled in the
session.

The opf_pq_threshold parameter is a companion to opf_pq_dop and defines
the cost threshold of a query plan before exchange nodes are inserted into it.
Because there are slight overheads in initiating parallel query plans, compile
only plans that benefit from parallel processing. The Ingres query optimizer
currently compiles a serial query plan as it always has. If the degree of
parallelism is defined to permit exchange nodes to be added to the plan, the
cost estimate of the serial plan must still exceed the threshold value before a
parallel plan is generated. The cost estimate is computed as the sum of the C
and D numbers at the top of the query plan.

340 Ingres 2006 R2 Database Administrator Guide

Types of Nodes in a QEP

Sample Parallel QEPs

The following example shows a QEP diagram with a 1:n exchange node above
a join node. It shows eight threads being created to divide the work of the
join.

Two joins each of pairwise compatible partitions of the underlying tables are
performed by each thread, all in parallel.

select a.col1, b.col2

 from aprel a, bprel b

 where a.col1 = b.col1

 and b.col2 between 500 and 1500

 Exchange
 Heap
 Pages 319 Tups 14012
 Reduction 4301
 Threads 8
 PC Join count 16
 D689 C6386
 /
 Hash Join(col1)
 Heap
 Pages 319 Tups 14012
 PC Join count 16
 D689 C6386
 / \
 Proj-rest Proj-rest
 Heap Heap
 Pages 73 Tups 10000 Pages 83 Tups 14012
 D384 C100 D305 C140
 / /aprel bprelB-Tree(NU) B-Tree(col2)
Pages 768 Tups 10000 Pages 12872 Tups 299814
Partitions 128 Partitions 16
PC Join count 16 PC Join count 16

Using the Query Optimizer 341

Types of Nodes in a QEP

This example shows a union select in which the exchange node generates one
thread to process each of the selects.

select a.col1 from arel a
 union all select b.col2 from brel b

QUERY PLAN 1,3, no timeout, of union subquery

 Proj-rest
 Heap
 Pages 25 Tups 8197
 D283 C82
 /
brel
(b)
Heap
Pages 1132 Tups 8197

QUERY PLAN 1,2, no timeout, of union subquery

 Proj-rest
 Heap
 Pages 16 Tups 5126
 D218 C51
 /
arel
(a)
Heap
Pages 872 Tups 5126

QUERY PLAN 1,1, no timeout, of main query

 Exchange
 Heap
 Pages 54 Tups 17886
 Reduction 242
 Threads 2
 D501 C266
 /
 Proj-rest
 Heap
 Pages 54 Tups 17886 D501 C266
 /
T3
Heap
Pages 16 Tups 17886

342 Ingres 2006 R2 Database Administrator Guide

Types of Nodes in a QEP

Optimizer Timeout

The query optimizer does not search for further execution plans if it believes
that the best plan it has found so far takes less time to execute than the time
it has taken evaluating QEPs. In this case, the query optimizer times out,
stopping its operation and returning with the best QEP it has found up to that
point.

You can tell if the query optimizer timed out by checking the header of the
QEP for set qep diagrams or the Timeout check box in the QEP pane of the
SQL Scratchpad window in VDBA. In the QEP pane the Timeout check box is
disabled if the optimizer was able to find the optimal QEP without timing out.
If the optimizer timed out before searching all QEPs, this check box is enabled.
In QEP diagrams generated using set qep, these same conditions are indicated
in the QEP diagram header using the keywords “no timeout” and “timed out,”
respectively.

The timeout feature is controlled using the SQL set statement with the joinop
[no]timeout clause, as discussed in the set statement entry in the SQL
Reference Guide. By default, the optimizer times out, but you can turn the
timeout feature off to enable the query optimizer to evaluate all plans. To do
this, issue the following statement (for example, from the VDBA SQL
Scratchpad window, from a terminal monitor, or from within an embedded SQL
application):

set joinop notimeout

To turn the timeout feature back on, the corresponding statement is:

set joinop timeout

Because it is elapsed CPU time that is being measured, QEPs that time out can
change, depending on machine load.

To control this feature using an operating system environment variable:

Windows:

set ING_SET=set joinop notimeout

Unix:

C shell:

setenv ING_SET "set joinop notimeout"

Bourne shell:

ING_SET = "set joinop notimeout"

export ING_SET

Using the Query Optimizer 343

Types of Nodes in a QEP

VMS:

define ING_SET "set joinop notimeout"

Note: The fact that the query optimizer has timed out on a particular query
does not guarantee that a better QEP is found; it indicates that not all QEPs
have been checked, and so potentially, a better QEP is found.

Greedy Optimization

The Ingres query optimizer performs an exhaustive search of all possible plans
for executing a query. It computes a cost estimate for each possible plan and
chooses the cheapest alternative according to the cost algorithms. For
relatively simple queries, this process is very fast. However, for queries
involving large numbers of tables, the number of possible plans can be very
large and the length of time spent enumerating them all and associating costs
with them can be significant.

The Optimizer Timeout (see page 343) feature is useful in shortening the time
taken to identify an efficient query plan. However, for very large queries,
queries with large numbers of potentially useful secondary indexes and for
large queries whose tables have large numbers of rows (leading to very
expensive plans that do not timeout quickly), the optimizer can take an
unacceptable length of time producing a viable query plan.

The query optimizer now includes an alternative mechanism for generating
query plans that can greatly reduce the length of compile time. Rather than
enumerate all possible query plans (including all permutations of table join
order, all combinations of tables and useful secondary indexes, and all
“shapes” of query plans), the new “greedy” enumeration heuristic starts with
small plan fragments, using them as building blocks to construct the eventual
query plan. The chosen fragments are always the lowest cost at that stage of
plan construction, so even though large numbers of potential plans are not
considered, those that are chosen are also based on cost estimation
techniques.

This technique is used by default for any query involving at least five base
tables and at least ten base tables, plus potentially useful secondary indexes.
The chosen plans are usually very good, in particular, when the vastly reduced
compile time is taken into consideration. However, for the rare cases in which
the new technique produces a much slower plan, it can be toggled using the
following statements:

[exec sql] set joinop nogreedy

or

exec sql] set joinop greedy

344 Ingres 2006 R2 Database Administrator Guide

Specialized Statistics Processing

Summary for Evaluating QEPs

Here is a list of the main points to check when evaluating a QEP:

 Cart-prods can be caused by errors due to disjoint queries or queries that
involve certain types of OR operations. Also, joins involving calculations,
data type conversions, and non-equijoins can generate cart-prods.
Alternative ways of posing the query is often advised under these
circumstances.

 The NU on the storage structure part in the orig node description is not a
good sign if you believe the storage structure must have been used to
restrict the number of rows being read.

 Verify that the appropriate secondary indexes are being used. Running the
optimization process to generate statistics on the indexed columns allows
the query optimizer to better differentiate between the selectivity powers
of the different indexes for a particular situation.

 If there is little data in a table (for example, less than five pages) the
query optimizer can consider a scan of the table rather than use any
primary or secondary indexes, because little is to be gained from using
them.

 Check that row estimates are accurate on the QEP nodes. If not, run the
optimization process to generate statistics on the columns in question.

Specialized Statistics Processing
Optimizer statistics can be reviewed and processed by several utilities. You
can:

 View and delete statistics

 Unload statistics to a text file

 Load statistics from a text file

 Copy a table and its associated statistics to another database

 Create sampled statistics

Using the Query Optimizer 345

Specialized Statistics Processing

Display Optimizer Statistics

In VDBA, you use the Display Statistics dialog to view and delete statistics that
have already been collected. For more information, see the online help topic
Viewing Database Statistics.

You can also accomplish this task using the statdump system command. For
more information, see the Command Reference Guide.

The usual output is based on statistics generated by the optimization process,
as described in Database Statistics (see page 295).

Display Optimizer Statistics for Individual Tables and Columns

By default, optimizer statistics are shown for all tables and columns in the
current database, but you can view statistics for specific table columns.

In VDBA, you use the Specify Tables and Specify Columns check boxes in the
Display Statistics dialog. For example, specify that statistics be displayed only
for the empno column of the emp table.

Delete Optimizer Statistics

You can delete statistics by enabling the Delete Statistics from Syscat check
box.

Using this check box in conjunction with the Specify Tables and Specify
Columns check boxes, you can specify the tables and columns for which to
delete statistics.

For example, enable the Delete Statistics from Syscat check box, specify the
empno and sex columns from the emp table and the empno column from the
task table.

346 Ingres 2006 R2 Database Administrator Guide

Specialized Statistics Processing

Floating Point Precision in Optimizer Statistics Display

You can specify the precision with which floating point numbers are displayed
in the statistics by enabling the Set Precision Level to check box and entering
a value in the corresponding edit control to determine the number of decimal
digits in the text format of the floating point numbers.

For example, assume a table, t_float, is defined with a column named c_float
of type float, and that the following statements are used to insert values (all of
which are approximately 1.0):

insert into t_float values (0.99999998);
insert into t_float values (0.99999999);
insert into t_float values (1.0);
insert into t_float values (1.00000001);
insert into t_float values (1.00000002);

You can create statistics for this table using the optimization procedure
described in Database Statistics (see page 295).

With its default floating point precision, the standard output is show seven
places after the decimal point. For greater precision, you can enable the Set
Precision Level check box and enter a larger value.

For example, specifying a precision level of 14 generates output similar to the
following, in which there is sufficient precision to maintain a visible difference
in the values:

*** statistics for database demodb version: 00850
*** table t_float rows:5 pages:3 overflow pages:0
*** column c_float of type float (length:8, scale:0, nullable)
date:2000_02_24 15:15:30 GMT unique values:5.000
repetition factor:1.000 unique flag:Y complete flag:0
domain:0 histogram cells:10 null count:0.00000000000000 value length:8
cell: 0 count:0.00000000000000 repf:0.00000000000000 value:0.99999997999999
cell: 1 count:0.20000000298023 repf:1.00000000000000 value:0.99999998000000
cell: 2 count:0.00000000000000 repf:0.00000000000000 value:0.99999998999999
cell: 3 count:0.20000000298023 repf:1.00000000000000 value:0.99999999000000
cell: 4 count:0.00000000000000 repf:0.00000000000000 value:0.99999999999999
cell: 5 count:0.20000000298023 repf:1.00000000000000 value:1.00000000000000
cell: 6 count:0.00000000000000 repf:0.00000000000000 value:1.00000000999999
cell: 7 count:0.20000000298023 repf:1.00000000000000 value:1.00000001000000
cell: 8 count:0.00000000000000 repf:0.00000000000000 value:1.00000001999999
cell: 9 count:0.20000000298023 repf:1.00000000000000 value:1.00000002000000

This can be useful when statistics are output to a text file or input from a text
file. For more information, see Statistics in Text Files (see page 348). When
reading statistics from a text file, the optimization process assumes that all
cell values are in ascending order. You can use the Set Precision Level option
to preserve sufficient precision for floating point numbers.

Using the Query Optimizer 347

Specialized Statistics Processing

Statistics in Text Files

The optimization process can directly read a set of optimizer statistics from an
external text file, rapidly updating the statistics for specific database tables.
This can be useful when:

 Information is being moved from one database to another (for example,
using copydb), and you want to copy the statistics for the tables as well.

 You know the distribution of the data in a table and want to read or input
these values directly, instead of letting the optimization process generate
them for you.

The actual table data is ignored. This gives you a modeling ability, because the
table can actually be empty but there are statistics that indicate the presence
of data and its distribution. The query optimizer uses those false statistics to
determine a QEP. For more information, see Query Execution Plans (see
page 313). This gives the DBA the ability to verify correctness of QEPs without
having to load data into tables.

The text file read by the optimization process can be created in one of two
ways:

 When displaying statistics, you can unload statistics that already exist in
the database and use the generated file as input to the optimization
process.

 You can create an input file from scratch or by editing a file created when
displaying statistics.

Unload Optimizer Statistics to a Text File

To unload optimizer statistics to a text file, you use the Direct Output to
Server File option in the Display Statistics dialog in VDBA. The generated file is
in an appropriate format so that it can be used as input to the optimization
process. This allows:

 Statistics to be easily moved from one database to another

 A default text file to be created if you are generating your own statistics

For example, to dump all statistics from the current database into the file
stats.out, enable the Direct Output to Server File check box and enter
stats.out in the corresponding edit control.

348 Ingres 2006 R2 Database Administrator Guide

Specialized Statistics Processing

Unload Statistics for Selected Tables or Columns

To unload statistics for selected tables or columns, use the Read Statistics
from Server File option in conjunction with the Specify Tables and Specify
Columns check boxes in the Display Statistics dialog in VDBA.

For example, if you want the stats.out file to contain statistics for the entire
arel table and the col1 column in the brel table, enable the Specify Tables
check box, and choose only the arel and brel tables from the Specify Tables
dialog. Enable the Specify Columns check box and choose only the col1 column
for brel from the Specify Columns dialog.

Sample Text File Statistics

A sample output file generated using the Direct Output to Server File option of
the Display Statistics dialog is shown below. This same text file can be used as
input to the optimization process, as described in the next section, Loading
Optimizer Statistics from a Text File:

*** statistics for database demodb version: 00850
*** table brel rows:151 pages:3 overflow pages:1
*** column col1 of type integer (length:4, scale:0, nullable)
date:2000_02_24 16:04:37 GMT unique values:132.000
repetition factor:1.144 unique flag:N complete flag:0
domain:0 histogram cells:16 null count:0.0000000 value length:4
cell: 0 count:0.0000000 repf:0.0000000 value: 0
cell: 1 count:0.0728477 repf:1.3750000 value: 23
cell: 2 count:0.0728477 repf:1.8333334 value: 31
cell: 3 count:0.0728477 repf:1.3750000 value: 59
cell: 4 count:0.0728477 repf:1.1000000 value: 138
cell: 5 count:0.0728477 repf:1.0000000 value: 151
cell: 6 count:0.0728477 repf:1.0000000 value: 162
cell: 7 count:0.0728477 repf:1.0000000 value: 173
cell: 8 count:0.0662252 repf:1.2500000 value: 181
cell: 9 count:0.0662252 repf:1.1111112 value: 193
cell: 10 count:0.0662252 repf:1.2500000 value: 202
cell: 11 count:0.0662252 repf:1.0000000 value: 214
cell: 12 count:0.0662252 repf:1.0000000 value: 224
cell: 13 count:0.0662252 repf:1.0000000 value: 236
cell: 14 count:0.0662252 repf:1.2500000 value: 256
cell: 15 count:0.0264901 repf:1.0000000 value: 261

Load Optimizer Statistics from a Text File

To load optimizer statistics from a text file, you use the Read Statistics from
Server File option in the Optimize Database dialog. For example, if the file
arelbrel.dat contains statistics for the arel and brel tables, these are loaded
into the database by enabling the Read Statistics from Server File check box
and entering arelbrel.dat in the corresponding edit control.

Using the Query Optimizer 349

Specialized Statistics Processing

Load Statistics for Selected Tables or Columns

If the input file contains statistics for multiple tables, you can load selected
tables or columns by using the Read Statistics from Server File option, in
conjunction with the Specify Tables and Specify Columns check boxes in the
Optimize Database dialog.

For example, if the file arelbrel.dat contains statistics for the arel and brel
tables, just the statistics for arel are loaded into the database by enabling the
Specify Tables check box and choosing only the arel table from the Specify
Tables dialog.

To load only statistics for column col3 of the arel table, enable the Specify
Columns check box and choose only the col3 column from the Specify Columns
dialog.

Update Row and Page Counts

The input file for the optimization process contains information about the
number of rows, as well as primary and overflow page counts in a table.
However, because these values are critical to correct operation, these input
values are normally disregarded when creating statistics, leaving the catalog
values untouched.

You can force the values in the input file to be used when loading the statistics
by enabling the Read Row and Page check box in the Optimize Database
dialog.

Important! This option must be used with extreme care, because it sets
critical values.

This option can be useful for certain specialized processing, such as query
modeling and performance problem debugging. Bear in mind that the row
count value can be modified for the table and its indexes. However, the page
count is modified for the table only—the index page count values remains
unchanged.

350 Ingres 2006 R2 Database Administrator Guide

Specialized Statistics Processing

Copy a Table and Associated Statistics

You can copy a table and its associated optimizer statistics from one database
to another using copydb and statistics that have been unloaded to a text file.
This is usually much faster than copying only the table and rerunning the
optimization process to recreate the statistics.

Note: Doing this makes sense only if the statistics are up-to-date.

First, unload the table and its statistics to text files, as described in the steps
below:

1. Enter the following command to generate copy.in and copy.out scripts for
the arel table:

copydb olddb arel

2. Copy the are1 table out of the olddb database:

sql olddb <copy.out

3. Use the Display Statistics dialog in VDBA to unload the statistics for the
are1 table to a text file named are1.dat. For more information, see online
help.

Next, copy the table and statistics back into the new database:

1. Copy the are1 table into the new database:

sql newdb <copy.in

2. Use the Optimize Database dialog in VDBA to load the statistics for the
are1 table from the text file are1.dat in Step 3 of the previous example.
For more information, see online help.

Sampled Optimizer Statistics

The optimization process allows you to create sampled optimizer statistics on
database tables. For large tables, sampled statistics are usually much faster to
generate than full statistics, and if the percentage of rows to be sampled is
chosen appropriately, they can be nearly as accurate.

Sampled statistics are generated by only looking at a certain percentage of the
rows in a table. The percentage must be chosen so that all significant
variations in the data distribution are likely to be sampled.

The sampled rows are selected by randomly generating values for the tuple
identifier (tid), so tid values are required to support this functionality.

Using the Query Optimizer 351

Specialized Statistics Processing

Create Sampled Statistics

To specify sampled statistics and the percentage of rows to be sampled, you
use the Statistics on Sampled Data check box and the Percentage control in
the Optimize Database dialog. For example, to optimize the table bigtable,
sampling 3% of the rows, perform the following steps. For more information,
see online.

1. Enable the Statistics on Sample Data check box.

2. Enter 3 for the Percentage.

3. Enable the Specify Tables check box.

4. Click Tables to open the Specify Tables dialog.

5. Enable the bigtable table, and click OK.

6. Click OK.

When sampling, the query optimizer chooses rows randomly from the base
table and inserts them into a temporary table. Rows are selected in such a
way that uniqueness of column values are preserved (conceptually, when
sampling, a row can be selected not more than once). Full statistics, or
minmax if requested, are created on the temporary table and stored in the
catalogs as statistics for the base table. The temporary table is deleted. Be
sure you have enough free disk space to store this temporary table, and that
create_table permission has been granted to the user running the optimization
process. For information on granting permissions, see the chapter “Ensuring
Access Security.”

You have control over the percentage of rows that are sampled. It is
worthwhile to experiment with this percentage. When the percentages are too
small for a good sampling, the statistics created change as percentage figures
change. As you increase the percentage, eventually a plateau is reached
where the statistics begin coming out almost the same. The smallest
percentage that provides stable statistics is the most efficient number.

352 Ingres 2006 R2 Database Administrator Guide

Composite Histograms

Composite Histograms
Optimization is usually performed on individual columns. However, it is
possible for Ingres to create and use histograms created from the
concatenation of the key column values of a base table key structure or a
secondary index. Such histograms are called composite histograms.

Composite histograms are useful in ad hoc query applications in which there
are where clause restrictions on varying combinations of columns. Such
applications can have a variety of secondary indexes constructed on different
permutations of the same columns with the goal of allowing the query
optimizer to pick an index tailored to the specific combination of restrictions
used in any one query.

For example, consider a table X with columns A, B, C, D, E, etc. and secondary
indexes defined on (A, B, C), (B, C, D), (B, A, E). Consider a query with a
where clause such as “A = 25 and B = 30 and E = 99”. With histograms on the
individual columns, the Ingres query optimizer finds it difficult to differentiate
the cost of solving the query using the (A, B, C) index and the (B, A, E) index.
This is because of the technique used to determine the combined effect of
several restrictions on the same table. However, with composite histograms
defined on each index, the optimizer combines the three restrictions into a
single restriction on the concatenated key values, and the (B, A, E) index
clearly produces the best looking query plan.

Composite histograms can be created on the concatenated key values of a
secondary index and on the concatenated key values of a base table index
structure.

Using the Query Optimizer 353

Chapter 14: Understanding the Locking
System

This chapter describes how the locking system works. Ingres is a concurrent
database system, which means it allows multiple users to access the same
data at the same time. The purpose of this chapter is to provide you with the
knowledge you need to maximize concurrent performance and analyze
associated problems.

The chapter describes modes and levels of locks, how long locks are held,
locking examples, locking parameters and the set lockmode statement, how to
avoid deadlock situations, how to monitor locks, and how to improve
concurrency.

Concurrency and Consistency
In any database management system with multiple users, there is a trade-off
between concurrency and consistency. Ideally, you want all users to be able to
access any data at virtually any time (concurrency) but you must ensure that
changes to the database are done in an orderly sequence that maintains the
underlying structure of the data (consistency).

The task of the locking system is to manage access to resources shared by
user databases, tables, and pages to guarantee the consistency of the shared
data. Various types of locks are used to ensure that the database does not
become inconsistent through concurrent accesses.

Locking System Configuration
The locking system works with the Ingres DBMS Server to coordinate access to
databases.

The system administrator initially configures the locking system during
installation by setting parameters. The locking parameters are installation-
wide. They can be changed after installation only by the system administrator.

On UNIX systems, shared memory and semaphores are used as resources
during lock control. The shared memory and semaphores used by your
installation are configured in the operating system when the UNIX kernel is
configured.

For more information, see the System Administrator Guide.

Understanding the Locking System 355

Lock Types

Lock Types
The locking system grants two types of locks:

Logical locks

Are held for the life of a transaction. The logical lock is held until you
commit, roll back, or abort the transaction.

A transaction is a group of statements processed as a single database
action and can consist of one or more statements.

Physical locks

Can be used and released in a transaction. The locking system uses them
to synchronize access to resources.

356 Ingres 2006 R2 Database Administrator Guide

Lock Modes

Lock Modes
A lock has a mode that determines its power—for example, whether it
prevents other users from reading, or only from changing, the data.

The six lock modes are as follows:

X

Exclusive locks or write locks. Only one transaction can hold an exclusive
lock on a resource at any given time. A user of this lock is called a writer.

U

Update locks. Only one transaction can hold an update lock on a resource
at any given time. This lock mode is used for update cursors. Update lock
protocols are used by Ingres to increase concurrency and reduce
deadlocks, because update locks can be converted to shared locks for rows
and pages that are not updated.

S

Shared locks or read locks. Multiple transactions can hold shared locks on
the same resource at the same time. No transaction can update a resource
with a shared lock. A user of this lock is called a reader.

IX, IS

Intended exclusive and intended shared locks. Whenever the locking
system grants an exclusive (X) or shared (S) lock on a page in a table, it
grants an intended exclusive (IX) or intended shared (IS) lock on the
table. An intended lock on a table indicates finer locking granularity (that
pages in the table are being accessed). An IX lock indicates that pages are
being updated, while IS indicates that pages are being read.

SIX

Shared intended exclusive locks. These locks specify a resource as “shared
with intent to update.” They can be considered as combining the
functionality of S (shared) locks and IX (intended exclusive) locks. SIX
locks are used in table locking strategies, where possible, to minimize the
extent of exclusive locking required. The Ingres DBMS Server’s buffer
manager uses these locks to modify pages in its cache.

N

Null locks. These are locks that do not block any action but preserve the
number in the value block of the locks or preserve data structures for
further use.

Understanding the Locking System 357

Lock Levels

Lock Levels
Locks can be of several levels. The level of a lock refers to the scope of the
resource on which the lock is requested or used, for example, whether the lock
affects:

 A single row

 A single page

 A table as a whole

 An entire database

The levels of locks subject to user control are row, page and table. Queries
and commands use other lock levels that affect concurrency, such as database
and table control locks.

Lock levels are as follows:

Row

Manages access to the row. Use row-level locking in situations where page
locking can cause unnecessary contention or where increased concurrency
is desired.

Row-level locking is not supported for tables that have a page size of 2 KB.
Maxlocks is ignored with row-level locking (it only refers to page-level
locks), but the number of row locks cannot exceed the maximum number
of locks allowed per transaction, as specified by the system administrator
when the locking system was configured. If it does, the row locks are
escalated to a table-level lock. For more information, see Escalation of
Locks (see page 363).

Page

Manages access to the data page, except by readers with the lockmode set
to readlock = nolock. For more information, see Readlock = Nolock Option
(see page 379).

Table

Manages all access to a table, except by readers with the lockmode set to
readlock = nolock. For more information, see Readlock = Nolock Option
(see page 379).

Database

Affects the ability of all users to connect to that database. A user blocked
by an exclusive database lock is not able to connect to the database and
receives an error message indicating that an exclusive lock is held.

358 Ingres 2006 R2 Database Administrator Guide

How the Locking System Works

Control

Manages a table while its schema is changed or loaded. This lock is always
a physical lock.

For example, during the operation of data management utilities
(create/drop table, create/drop index, create table as, modify and modify
to relocate—or their equivalent operations in VDBA), an exclusive table
control lock is used. This combination of mode and level of lock insures
that no transaction can read a table while its schema is changed or loaded,
even though the lockmode of the user is set to readlock = nolock. For
more information, see Readlock = Nolock Option (see page 379).
Conversely, readers can block data management utilities during schema
read operations.

Value

When row locking, provides phantom protection for serializable users and
serializes duplicate checking for unique indexes.

Note: We recommend that you be aware of what resources you lock during
application development, database maintenance, and ad hoc queries.

For details on the set lockmode operation and user-controlled locking, see
User-Controlled Locking (see page 371). For details on the set lockmode
statement syntax, see the SQL Reference Guide.

How the Locking System Works
The locking system controls locking by doing the following:

 Managing and queuing lock requests

 Detecting deadlock situations

Lock Requests

When you either issue a statement or a command or perform the equivalent
operation using VDBA, implicit requests for locks are made.

In addition, the locking system considers the following factors to determine
what mode and level of lock, if any, to take:

 Are there any locks available in the system?

 Does the query involve reading or changing data?

 What resources are affected by the query?

 Are any other locks held on the affected resources?

Understanding the Locking System 359

How the Locking System Works

Available Locks in the System

When the system administrator configures the logging and locking system, the
total number of available locks is set. As each lock is used, a counter is
decremented to reflect the number of locks still available. If a lock request is
received after all available locks have been used, the request cannot be
satisfied until a lock is freed.

If this happens frequently, your system administrator can reconfigure the
maximum number of locks. For details, see the System Administrator Guide.

Lock Grants

Whether the locking system can grant a lock depends on whether another
transaction holds a lock on the resource requested and, if so, what mode of
lock that other transaction holds. If another transaction already holds an
exclusive lock on the resource in question, a new lock cannot be used. The
second request must wait.

The locking system uses intended shared and intended exclusive locks on a
table to determine quickly whether a table-level lock can be used on that
table, as follows:

 An intended shared lock on the table means that a shared lock has been
used on at least one page of the table; nevertheless, a shared lock, if
available, can still be used at either the page or table level.

 An intended exclusive lock on the table means that an exclusive lock has
been used on at least one page of the table; no table-level lock can be
used on the table on behalf of another user until the current page-level
lock has been released.

Lock Mode Compatibility

The following table shows which granted lock modes are compatible with the
requested mode:

 Granted Mode

Req. Mode NL IS IX S SIX U X

NL Yes Yes Yes Yes Yes Yes Yes

IS Yes Yes Yes Yes Yes No No

IX Yes Yes Yes No No No No

S Yes Yes No Yes No No No

360 Ingres 2006 R2 Database Administrator Guide

How the Locking System Works

 Granted Mode

Req. Mode NL IS IX S SIX U X

SIX Yes Yes No No No No No

U Yes No No Yes No No No

X Yes No No No No No No

For meaning of the lock mode abbreviations, see Lock Modes (see page 357).

How the Default Lock Mode is Determined

The locking system determines the default lock mode as follows:

 When you perform a read operation from the database, such as a select
operation, a shared lock is requested on the affected resources for the
transaction.

 When you perform an operation that writes to the database, such as an
update, insert, or delete operation, the locking system requests an
exclusive lock on the affected resources for the transaction. Update lock
protocols are used by Ingres to increase concurrency and reduce
deadlocks, because update mode locks can be converted to shared locks
for rows and pages that are not updated. Update mode locks are
converted to exclusive locks for rows and pages that are updated.

The default state of the locking system ensures that no user can read data
being changed and no user can change data being read. However, users can
read data that is being read by other users. This means that the locking
system can grant an:

 S lock for User2 on resource R, provided User1 does not already hold an X
lock on R.

 X lock on resource R for User2, provided User1 does not already hold an S
or X lock on R.

 S lock on resource R for User2, even if User1 already holds an S lock on R.

This default strategy is adequate for most situations. When it is not, you can
establish a different strategy using the set lockmode statement. For details,
see User-Controlled Locking (see page 371).

Understanding the Locking System 361

How the Locking System Works

How the Locking Level is Determined

By default, Ingres determines the best locking level to use. Ingres selects the
locking level as page or table, depending on the optimizer's estimates of the
number of pages to be read.

If the estimated number of pages to be read is greater than the session
maxlocks limit, or if the entire table is to be read, Ingres uses table level
locking. Otherwise, Ingres uses page level locking, and then escalates to table
level locking if the number of page locks requested exceeds the session
maxlocks per table, per query limit.

Initial Locking Level

In evaluating the query on which the lock is being requested, the Query
Optimizer determines the level of lock as follows:

 If a query involves a single table with only a primary key, page-level locks
are requested.

 If the optimizer estimates that no more than maxlocks pages are needed,
the page-level locks are requested.

 If the Query Optimizer estimates that a query is touching more than the
number of pages to which maxlocks is set, the query is executed with a
table-level lock.

 If the Query Optimizer estimates that a query is touching all the pages in
the table, the query is executed with a table-level lock.

This strategy saves the overhead of accumulating multiple page-level locks
and prevents the contention caused by lock escalation. For example, on a
query that is not restrictive or does not use a key to locate affected records,
the locking system grants a table-level lock at the beginning of query
execution.

362 Ingres 2006 R2 Database Administrator Guide

How the Locking System Works

Escalation of Locks

When page locking, if the number of pages in a table on which locks are held
reaches maxlocks during a query, the locking system escalates to table-level
locks. To do this it:

 Stops accumulating page-level locks

 Acquires an appropriate (S or X) table-level lock

 Releases all the page-level locks it has accumulated

The locking system also escalates to table-level locks in an attempt to
complete a transaction if it exceeds the maximum number of locks allowed or
the installation has run out of locks. If this occurs, an error is issued and the
transaction is backed out. To avoid this situation in the future, the system
administrator can bring down the installation and reconfigure the locking
system.

Note: The issuing of lock escalation messages is configurable.

Methods for Changing How Locking is Handled

The following methods can be used to change how Ingres handles locking:

 Set the system_lock_level parameter. The system administrator can
override the default locking level by setting the system_lock_level
parameter. This parameter sets the default locking level for an entire
Ingres instance.

By default, system_lock_level is set to DEFAULT, in which Ingres decides
the locking level. For details on the default behavior, see How the Locking
Level is Determined (see page 362). Other valid values for
system_lock_level are ROW, PAGE, and TABLE. Each of the default lock
levels is subject to escalation. For example, if system_lock_level is set to
PAGE, the default locking level is page, and then Ingres escalates to a
table-level lock if the number of page locks requested exceeds the session
maxlocks per table, per query limit.

 Use the set lockmode statement to change parameters that determine how
locking is handled. For example, using maxlocks you can reset the
maximum number of page-level locks that can be requested per table per
query before escalating to a table-level lock.

Note: The set lockmode statement cannot be issued in a transaction.

For details, see User-Controlled Locking (see page 371).

Understanding the Locking System 363

How the Locking System Works

Summary of Default Locks

The following table describes what mode and level of lock is invoked by default
when a query is issued.

Statement or
Command

Comment Mode Level

create index On base table:

On index:

X
X
X

Table lock
Control lock
Table lock

create rule On base table: X Table lock

create table On table: X
X

Table lock
Control lock

create view On view:

On base table:

X
X

X

Table lock
Control lock

Table lock

drop On table: X Table lock

grant On base table: X Table lock

modify On table: X
X

Table lock
Control lock

select For each table involved in
the select:

If query touches 50 (or
maxlocks) pages:

IS
and
S

S

S

Table lock

Page lock(s) on
pages in table

Control lock

Table lock

sysmod On database: X Database lock

update, insert, or
delete

On table involved in
update, insert, or delete:

If query touches 50 (or
maxlocks) pages:

On other tables used in
query but not being
changed:

IX
and
X

X

S

Table lock

Page lock(s) on
pages in table

Table lock

See lock for select
statement

364 Ingres 2006 R2 Database Administrator Guide

How the Locking System Works

Releasing of Locks

A transaction accumulates locks on resources until you commit or roll back.
When a transaction is committed, the results are written to the database, and
all the locks accumulated during the transaction are released. A rollback aborts
the transaction and releases accumulated locks.

You commit transactions during a session by doing one of the following:

 Issuing the commit statement after one or more SQL queries

 Using the set autocommit on statement. This causes a commit to occur
after every SQL query that was successfully executed during the session.

For details on the set statement using the autocommit parameter, see the
SQL Reference Guide.

After a commit is executed, the current transaction is terminated and you are
in a new transaction as soon as the next SQL statement is issued.

All open transactions are automatically committed when you end your session.

Important! If you do not issue the commit statement during a session when
the set autocommit is off, all locks requested on the resources affected by
your queries are held until your session ends. Your entire session is treated
like one transaction and can cause concurrency problems.

Understanding the Locking System 365

Example: Single User Locking

Example: Single User Locking
This example illustrates the use of locking when a single user initiates a
transaction.

In this example, a user issues a single query transaction (SQT) consisting of:

 An SQL statement to read data on the employee named Jeff from the table
named EMP

 A commit

Here is the sequence of operations:

1. The user issues a select statement followed by a commit statement:

2. select * from emp where name = 'Jeff';
commit;

3. An “IS” lock is used on the EMP table and a page-level “S” lock on the
page containing the Jeff row.

The query is restrictive (only the row specified in the where clause is to be
retrieved), and the table itself has an ISAM structure indexed on ‘name’,
so the entire table does not have to be scanned. The locking system can
use the index to go directly to the row for Jeff. Thus, an S lock on the
entire table is not necessary; an IS table-level lock and an S lock on the
page containing the row for Jeff are sufficient.

4. The Jeff row is retrieved.

5. The transaction is terminated and the locks held are released.

After retrieving the row for Jeff, if the user were to issue an update statement
and change that record before issuing the commit, and if there were no other
shared locks on the page, the locking system converts the shared page-level
lock to an exclusive lock, and the IS lock on the table to an IX lock.

366 Ingres 2006 R2 Database Administrator Guide

Example: Multiple User Locking

Example: Multiple User Locking
This example illustrates locking when multiple users initiate concurrent
transactions against the same tables. In this case, users must wait for
appropriate locks.

The first user (User1) initiates a transaction to update the salary of each
employee in the Techsup department to 30000. Another user (User2) issues a
query to read the salary and floor of the employee named Dan. Both users end
their transactions with a commit statement.

Both transactions affect the tables:

 Emp, which is keyed on name with a secondary index on deptno

 Dept, which is keyed on dname

Because of the way these tables are indexed, only a few pages in the tables
need to be accessed, so page-level locking is used.

The following tables show the first four pages of the EMP and DEPT tables.

EMP Table

The EMP table is an ISAM structure keyed on the name column, and with a
secondary index on the deptno column:

Page Name Salary Deptno

1 Andy
Candy
Dan

55000
50000
25000

9
6
7

2 Ed
Fred
Jeff

20000
20000
35000

2
8
4

3 Kevin
Lenny
Marty

40000
30000
25000

3
6
8

4 Penny
Susan
Tami

50000
20000
15000

9
1
6

Understanding the Locking System 367

Example: Multiple User Locking

DEPT Table

The DEPT table is an ISAM structure keyed on the dname column:

Page Deptno Dname Floor

1 1
2
3

Accting
Admin
Develop

5
4
4

2 4
5
6

Mgr
Prod
Sales

3
2
3

3 7
8

Shipping
Techsup

2
1

4 9
10

VP
WP

5
5

Locks Granted

The following shows the locks that are requested on behalf of both users:

Table Page User 1 Locks User 2 Locks

Emp Entire table
1
2
3
4

IX

X
X

IS
S

Dept Entire table
1
2
3
4

IS

S

IS

S

368 Ingres 2006 R2 Database Administrator Guide

Example: Multiple User Locking

Here is the sequence of operations:

1. User1 issues the following statements:

update emp set salary = 30000 where deptno in
 (select deptno from dept
 where dname = 'Techsup');
commit;

2. User2 issues the following statements:

select e.salary, d.floor from emp e, dept d
 where d.deptno = e.dept
 and e.name = 'Dan';
commit;

3. On behalf of User1, the following locks are requested:

 An IS lock on the DEPT table

 An S lock on the third page of the DEPT table where the record for the
Techsup department is located

The subselect statement starts executing, which retrieves the Techsup
record.

4. On behalf of User2, the following locks are requested:

 An IS lock on the EMP table

 An S lock on the first page of the EMP table where the record for the
employee named Dan is located

 An IS lock on the DEPT table

 An S lock on the third page of the DEPT table where the Shipping
record is located

The select statement starts executing, which retrieves the salary for
employee Dan from the EMP table and the floor on which he works from
the DEPT table, using the deptno value 7.

5. On behalf of User1, the following locks are requested:

 An IX lock on the EMP table

 An X on the second and third page of the EMP table where the updates
is made

The update statement starts executing, setting the value of the salary
column for all employees in the Techsup department to 30000.

6. On behalf of User2, the commit statement is executed; releasing all locks
held in User2’s behalf.

7. On behalf of User1, the commit statement is executed; committing all
updates and releasing all locks held in User1’s behalf.

Understanding the Locking System 369

Ways to Avoid Lock Delays

Waiting for Locks

If an IX lock is taken on a table on behalf of User1, User2 must wait to retrieve
all the values from the table until User1 completes his transaction and releases
all locks. This occurs because one user is updating at least one page in a table
and the default is that no other user can read the entire table.

For example, assume that User2 in the previous example had issued the
following statements instead:

select * from emp;
commit;

In this simple case, the waiting time is negligible, but had User1 issued a
complicated update on a large number of rows in the EMP table, User2 must
wait a long time.

Ways to Avoid Lock Delays
To prevent delays due to lock waits, there are several approaches:

 Keep transactions as short as possible. Use set autocommit on if possible.

 Set the “readlock = nolock” lockmode when possible, to avoid waiting for
shared locks.

 Use the set lockmode parameter timeout to indicate how long to wait for a
lock. The default is to wait forever. If the timeout is reached, an error is
returned and the current statement (not the transaction) is aborted. You
must check for this error in your application code.

For details on the set lockmode statement, see User-Controlled Locking (see
page 371).

370 Ingres 2006 R2 Database Administrator Guide

User-Controlled Locking

User-Controlled Locking
User-controlled locking is available through the set lockmode option of the set
statement. This option provides the following types of locking parameters:

 Locking behavior

 Locking mode requested when reading data

 Maximum number of page locks

 Maximum length of time a lock request can remain pending

Important! You cannot issue the set lockmode statement in a transaction.
You can issue it as the first statement in a session or after a commit
statement.

For details on the syntax for the set lockmode statement, see the SQL
Reference Guide.

Understanding the Locking System 371

User-Controlled Locking

Ways to Specify a Set Lockmode Statement

There are several ways to specify the set lockmode statement:

 Issue the set lockmode statement from a terminal monitor, for example:

set lockmode session where readlock = nolock;

 Include the set lockmode statement in an embedded language program.
This affects only the session of the user issuing the statement.

 Specify set lockmode with any of the following environment variables or
logicals:

– ING_SYSTEM_SET—affects all users.

– ING_SET—if set at the installation-wide level, affects all users. If set at
the local level, affects the user who set it.

– ING_SET_dbname—same as ING_SET but affects only the specified
database.

– dbname_SQL_INIT—affects only the SQL terminal monitor for the
specified database. It can be set at the installation-wide level or the
local level.

For example, to specify readlock = nolock for your sessions with the set
lockmode option using ING_SET, issue the following commands at the
operating system prompt:

Windows:

set ING_SET="set lockmode session where readlock = nolock"

UNIX:

C shell:

setenv ING_SET "set lockmode session where readlock = nolock"

Bourne shell:

ING_SET = "set lockmode session where readlock = nolock"

export ING_SET

VMS:

define ing_set

 "set lockmode session where readlock = nolock"

372 Ingres 2006 R2 Database Administrator Guide

User-Controlled Locking

The set statements pointed to by the environment variables or logicals are
executed whenever a user connects to the server. The environment variables
or logicals can be set installation-wide or locally in each user’s environment.
For further details on setting these environment variables or logicals, see the
System Administrator Guide.

Range of the Set Lockmode Statement

With the set lockmode statement, you can:

 Set locking parameters for a particular table. For example:

set lockmode on emp where readlock = nolock;

 Set locking parameters for the duration of a session. For example:

set lockmode session where readlock = nolock;

If multiple set lockmode statements are issued for the same session or table,
the most recent statement is the one in effect. Setting a locking parameter on
a specific table has precedence over the session setting. Any lockmode
settings issued during a session end when that session ends.

When to Change the Locking Level

There are several situations where the page-level locking default is not
appropriate:

 If a query is not restrictive or does not make use of the key for a table,
scanning the entire table is required. In that case, the locking system
automatically starts with a table-level lock; you do not need to specify it.

 If there are a number of unavoidable overflow pages, it is preferable to set
table-level locking for reasons of efficiency.

 If, during execution of a query, more than maxlocks pages on a table must
be locked (often because of an overflow chain), the locking system
escalates to a table-level lock. It releases the page locks that have been
accumulated. Because accumulating page locks when a table lock was
really necessary is a waste of resources, table locking from the outset is
preferable.

 If multiple users are concurrently running queries to change data,
deadlock can occur.

Deadlock occurs when multiple transactions are waiting for each other to
release locks, and none of them can complete. For a discussion on
deadlock, see Deadlock (see page 385).

If page locking causes unnecessary contention, row-level locking can be
used.

Understanding the Locking System 373

User-Controlled Locking

Change the Locking Level with Set Lockmode

To specify table-level locking, use the following statement:

set lockmode session where level = table;

To specify row-level locking, use the following statement:

set lockmode session where level = row;

The Maxlocks Value

By default, the locking system escalates to a table-level lock after locking 50
pages in a table during a query.

Note: Lock escalation can lead to deadlock.

By changing the value for maxlocks to a number greater than 50, you can
reset the number of locks that are requested before escalation occurs.

Increasing this value requires more locking system resources, so the
installation configuration for the maximum number of locks must be raised;
but this can provide better concurrency in a table with unavoidable overflow
chains.

Change Maxlocks Value with Set Lockmode

The following statement changes the number of pages in the EMP table that
can be locked during a transaction from 50 to 70:

set lockmode on emp where maxlocks = 70;

With the new maxlocks value, the locking system escalates to a table-level
lock only after more than twenty pages have been locked in table EMP during
a query.

374 Ingres 2006 R2 Database Administrator Guide

User-Controlled Locking

Timeout Value for a Lock Wait

By default, the locking system waits for a lock indefinitely. (The default is “0,”
that is, no timeout.) For example, if User1 is running a report and User2 issues
an insert statement for the table used for the report, the insert appears to
“hang” while waiting for a lock. User2’s transaction waits for a lock on the
table until User1’s report has completed, no matter how long that takes.

If you are not certain how long users in your database wait for locks, you need
to limit the period of time (expressed in seconds) a user waits for a lock. This
can be done using the timeout option of the set lockmode statement.

If a lock is not used in the amount of time specified, the statement is rolled
back (not the entire transaction) and an error is returned. This error must be
trapped and handled in embedded SQL and 4GL programs.

To immediately return control to the application when a lock request is made
that cannot be granted without incurring a wait, use timeout=nowait on the
set lockmode statement.

Set a Timeout Value for a Lock Wait

To limit to thirty seconds the time that a lock request remains pending, issue
the following statement:

set lockmode session where timeout = 30;

To immediately return control to the application when a lock request is made
that cannot be granted without incurring a wait, issue the following statement:

set lockmode session where timeout = nowait

Understanding the Locking System 375

User-Controlled Locking

Guidelines for Timeout Handling

If you embed a set lockmode with timeout in an application, timeout must be
carefully handled by the application. There are two cases, depending on
whether cursors are used in the embedded application:

 No cursors—if a timeout occurs while processing a statement in a multiple
query transaction, only the statement that timed out is rolled back. The
entire transaction is not rolled back unless the user specifies rollback in
the set session with on_error = rollback statement. For this reason, the
application must be able to trap the error, and either re-issue the failed
statement, or roll back the entire transaction and retry it starting with the
first query. For more information on the set session statement, see the
SQL Reference Guide.

 Cursors open—if one or more cursors are open when timeout occurs during
a multiple query transaction, the entire transaction is rolled back and all
cursors are closed.

We recommend that the timeout error handler check on the transaction status
so it can tell which case was used. This can be done with an inquire_sql
statement that retrieves the transaction state. For example, in the following
statement xstat has a value of 1 if the transaction is still open:

exec sql inquire_sql (:xstat = transaction);

For a detailed description of the inquire_sql statement, see the SQL Reference
Guide.

376 Ingres 2006 R2 Database Administrator Guide

User-Controlled Locking

Example: Timeout Program

The following program example, written in ESQL/C and using the Forms
Runtime System, checks for timeout and retries the transaction.

The program assumes an interface using a form to enter the department
name, manager name, and a list of employees. The program inserts a new row
into the department table to reflect the new department and updates the
employee table with the new department name. An ESQL error handler checks
for timeout. If timeout is detected, the user is asked whether to try the
operation again.

/* Global variable used by main and by error handler */
int timeout;
main()
{
 int myerror();
 exec sql begin declare section;
 char deptname[25];
 char mgrname[25];
 char empname[25];
 char response[2];
 exec sql end declare section;
 . . .
 exec sql set lockmode session where timeout = 15;
 exec sql set_ingres(errorhandler=myerror);
 . . .
/* Assume this activate block starts a new transaction */
 exec frs activate menuitem 'addemp';
 exec frs begin;
 while (1)
 {
 timeout=0;
 exec frs getform empform (:deptname=dept, :mgrname=mgr);
exec sql insert into dept (dname, mgr)
 values (:deptname, :mgrname);
 if (!timeout)
 {
 exec frs unloadtable empform emptbl (:empname=name);
 exec frs begin;
 exec sql update emp set dept = :deptname
 where ename = :empname;
 if (timeout)
 exec frs endloop;
 /* Terminate unloadtable */
 exec frs end;
 }
 if (!timeout)
 {
 exec sql commit;
 break;
 }
 else
 {

Understanding the Locking System 377

User-Controlled Locking

 exec sql rollback;
 exec frs prompt ('Timeout occurred. Try again? (Y/N)',
 :response);
 if (*response == 'N')
 break;
 }
 }
 exec frs end;
 . . .
}
int
myerror()
{
#define TIMEOUT 4702
 exec sql begin declare section;
 int locerr;
 exec sql end declare section;
 exec sql inquire_sql (:locerr = dbmserror);
 if (locerr == TIMEOUT)
 timeout = 1;
}

Readlock Option

Pages locked for reading are normally locked with a shared lock. A shared lock
on a page does not prevent multiple users from reading that data
concurrently.

However, a user trying to change data on the locked page must wait for all
shared locks to be released, because changing data requires exclusive locks.

This can be a problem if one user is running a long report that accesses a table
with a shared lock. No users can make changes to the locked table data until
the report is complete.

378 Ingres 2006 R2 Database Administrator Guide

User-Controlled Locking

Readlock = Nolock Option

Setting the lockmode to readlock = nolock on a table accessed by a user
running a long report allows others users to modify the table data while the
report is running. Using readlock = nolock does not affect any query that
updates, deletes, or inserts rows in a table.

Note: If readlock is set to nolock, and rows are changed while a report is
being run on the table, the report is not a consistent snapshot of the table.
Before using this strategy, consider the importance of the consistency and
accuracy of the data.

A table control lock is used to ensure that no reader of any type (including
when readlock = nolock is set) can look at a table when:

 It is being loaded using the copy or the create table as select statement

 Its schema is being created or changed, using any of the following
statements; a readlock = nolock reader blocks the following operations:

– create table

– create index

– create view

– create integrity

– drop

– modify

Whereas shared locks prevent other users from obtaining write locks and slow
down their performance, setting readlock = nolock can improve concurrent
performance and reduce the possibility of deadlocks.

Set Readlock to Nolock

To set readlock to nolock, issue the following statement:

set lockmode session where readlock = nolock;

Understanding the Locking System 379

User-Controlled Locking

When readlock=nolock is Beneficial

Setting readlock to nolock is beneficial when:

 Running a report to get an overview of the data, and absolute consistency
is not essential.

 Updates, inserts, or deletes to a table involve isolated operations on single
rows rather than multiple query transactions or iterative operations on
multiple rows.

 Reports are needed on tables that are being concurrently updated. Reports
slow down the updates and vice versa. Setting readlock = nolock on the
reporting sessions improves concurrency. (If the report must provide a
consistent snapshot, it is preferable to set readlock = exclusive and get
the report done quickly.)

 Running reports “in batch” with a low priority. Running reports this way
causes the locking of tables and pages for extended periods because of the
lower priority. Setting readlock = nolock allows reporting to run at a low
priority without disrupting other online users.

When readlock=nolock is Undesirable

Setting readlock to nolock is undesirable when:

 Other users are doing updates that use multiple query transactions or
iterative operations (for example, increase all salaries by 10%), yet it is
necessary that a report accurately take a “snapshot” of the table, either
before or after the complete transaction has taken place.

 Using multiple query transactions that include updates that reference data
from other tables. Here you cannot guarantee the consistency of data
between the tables with readlock = nolock.

380 Ingres 2006 R2 Database Administrator Guide

User-Controlled Locking

Readlock = Exclusive Option

A locking option that is useful in special circumstances is setting readlock to an
exclusive lock.

Here is an example where controlling the shared lock locking level is
necessary. User1 submits a multiple query transaction that retrieves data into
a table field that the user is allowed to change before writing changes back
into the table. At the same time, User2 submits a multiple query transaction to
retrieve the same set of data into his or her table field, makes changes to the
data, and writes the changes back to the table.

Eventually, the two users deadlock. Each is waiting for the other to finish and
release the shared lock, so that each one can get an exclusive lock to make
changes.

If the retrievals and changes had not been done with a multiple query
transaction, no deadlock has occurred, because the shared locks are released
before the requests for exclusive locks are made. But the exclusive lock
transaction is necessary to prevent data from changing between the times you
read the data and write to it.

It is preferable to exclusively lock the data when reading it into the table field,
so that no other user can also retrieve the same set of data until the first user
is finished. This can be achieved by setting exclusive readlock.

If it is likely that User1 holds these locks for a long time after retrieving into
the table field and before committing changes, set timeout. For this reason,
changing data inside a multiple query transaction is discouraged.

Set readlock = exclusive

To set readlock to exclusive, using the following statement:

set lockmode session where readlock = exclusive;

Understanding the Locking System 381

User-Controlled Locking

Isolation Levels

Isolation levels allow users to specify an appropriate compromise between
consistency and concurrency. This feature makes it possible to increase
concurrency when the absolute consistency and accuracy of the data is not
essential.

Ingres supports four isolation levels defined by the ANSI/ISO SQL92 standard:

 Read Uncommitted (RU)

 Read Committed (R)

 Repeatable Read (RR)

 Serializable

The highest degree of isolation is called “serializable” because the concurrent
execution of serializable transactions is equivalent to a serial execution of the
transactions. Serializable execution is the default behavior of Ingres
transactions because it offers the highest degree of protection to the
application programmer. This highest degree of isolation, however, is the
lowest degree of concurrency.

At lower degrees of isolation, more transactions can run concurrently, but
some inconsistencies can occur.

Inconsistencies During Concurrent Transactions

The ANSI/ISO specifies three inconsistencies that can occur during the
execution of concurrent transactions:

 Dirty Read—transaction T1 modifies a row. Transaction T2 reads that row
before T1 performs a commit. If T1 performs a rollback, T2 reads a row
that was never committed and is considered to have never existed.

 Non-repeatable Read—transaction T1 reads a row. Transaction T2 modifies
or deletes that row and performs a commit. If T1 attempts to reread the
row, it can receive the modified value or discover that the row has been
deleted.

 Phantom Rows—transaction T1 reads the set of rows N that satisfy some
search condition. Transaction T2 executes SQL statements that generate
one or more rows that satisfy the search condition used by transaction T1.
If transaction T1 repeats the initial read with the same search condition, it
obtains a different collection of rows.

382 Ingres 2006 R2 Database Administrator Guide

User-Controlled Locking

Inconsistencies and Isolation Levels

The following table shows how the ANSI standard defines which
inconsistencies are possible (Yes) and impossible (No) for a given isolation
level:

Isolation Level Dirty Read Non-Repeatable
Read

Phantom Rows

Read Uncommitted Yes Yes Yes

Read Committed No Yes Yes

Repeatable Read No No Yes

Serializable No No No

For programmers who are aware of possible inconsistencies, lower degrees of
isolation can dramatically improve throughput.

The most commonly cited example of this is a cursor-based program that
scans through a large table, examining many rows, but updating only a few
rows. Under normal serializable execution, this transaction takes share locks
on all rows or pages that it reads—typically, it takes a shared lock on the
entire table—thus locking out all update activity on the table until the
transaction commits or aborts.

Read Uncommitted Isolation Level

The Read Uncommited (RU) isolation level provides greatly increased read and
write concurrency, but it suffers from the “dirty read” anomaly. Greater
concurrency is achieved because the RU transaction does not acquire locks on
data being read and other transactions can immediately read or/and modify
the same rows. RU is ideal for applications where the reading of uncommitted
data is not a major concern.

Understanding the Locking System 383

User-Controlled Locking

Read Committed Isolation Level

The Read Committed (RC) isolation level is well suited to allowing increased
concurrency that is more controlled than at the RU level. RC transactions do
not perform dirty reads but rather hold a lock on data while reading the data.
For “cursored” queries, a lock is held on the current data item (page or row)
pointed to by the cursor. The lock is automatically released when the cursor is
positioned to the next item or closed. However, if any data on the current item
of the cursor is changed, the lock must be held until the transaction commits.
Such locking strategy is called cursor stability, and it defines an isolation level
slightly stronger than “classical” RC.

The reason for cursor stability at the RC isolation level is to prevent cursor lost
updates that are possible if locks are released immediately after data is read.
The problem occurs when a transaction T1 running at the “classical” RC
isolation level reads a data item; transaction T2 updates the data item and
commits; T1 updates the data based on its earlier read value and also
commits. T2’s update is lost! Because of cursor stability, this problem does not
exist in Ingres at the RC and higher isolation levels. At the same time, the RC
mode does not guarantee that a transaction sees the same data if it repeats
the initial read.

Cursor stability assumes that whenever the user is accessing a row with a
cursor, this row is locked. However, if the user issues a complex cursor
declaration that involves a join, and the results of the join are placed into a
temporary buffer to be sorted before being updated, the assumption can be
wrong. The problem exists because, in this case, the fetch statement returns
rows to the user, not from the base table, but from the temporary buffer.
When the user attempts to update the “current” row of the cursor, the server
locates the proper row of the base table by its TID taken from the temporary
buffer. The user expects a lock to be held on the base table row until the row
has been processed, but at the RC isolation level, the lock is released when
the row is placed into the temporary buffer. Therefore, the row to be updated
no longer exists or no longer meets the criteria in the where clause. To
prevent this problem, the server automatically upgrades the isolation level
from “RC” to “RR” when the query is initiated.

Repeatable Read Isolation Level

In Repeatable Read (RR) isolation mode, locks are automatically released from
data opened for reading but never read. With this option, if the application
process returns to the same page and reads the same row again, the data
cannot have changed. At the same time, repeatable read does not prevent
concurrent inserts: if the same select statement is issued twice (in the same
transaction), “phantom rows”can occur.

384 Ingres 2006 R2 Database Administrator Guide

Deadlock

Serializable Isolation Level

The Serializable isolation mode requires that a selected set of data not change
until transaction commit. The page locking protocols prevent phantoms
because the page locks cover the pages that hold the phantom. Simple row-
level locking can provide repeatable read, but preventing phantoms in the
serializable mode requires extra locks. These locks include data page locks for
the ISAM and heap tables, value locks for the hash table, and leaf page locks
for the B-tree table.

An isolation level is automatically increased from RC and RR to serializable for
any operation on system catalogs and during the checking of integrity
constraints or the execution of actions associated with referential constraints.
This is necessary to ensure data integrity. However, if an integrity constraint is
implemented by a user-defined rule, it is the user’s responsibility to provide
the appropriate isolation level.

Deadlock
Deadlock is a different condition than waiting for a lock. It occurs when one
transaction is waiting for a lock held by another transaction at the same time
that the other transaction is waiting for a lock held by the first. Both
transactions block each other from completing. One of the transactions must
be aborted to break the deadlock and allow the other to proceed.

Deadlock should be avoided.

Understanding the Locking System 385

Deadlock

Deadlock Example

This example (where the set autocommit option is off) depicts a situation that
produces deadlock.

User1 initiates a multiple query transaction to read all the data from the
employee table and insert a record with the department name Sales into the
DEPT table. Shortly after, User2 initiates a multiple query transaction to read
all the data from the DEPT table and to insert a record with the employee
name Bill into the EMP table.

Here is the sequence of operations:

1. User1 issues the statement:

select * from emp;

2. On behalf of User1’s transaction, a shared lock is requested on the EMP
table and execution of the select statement begins.

3. User2 issues the statement:

select * from dept;

4. On behalf of User2’s transaction, a shared lock is requested on the DEPT
table and execution of the select statement begins.

5. User1 enters the following statement:

insert into dept (dname) values 'Sales';

6. User2 enters the following statement:

insert into emp (name) values 'Bill';

7. User1’s implicit request for an IX lock on the DEPT table is blocked
because there is a shared lock on the table.

8. User2’s implicit request for an IX lock on the EMP table is blocked because
there is a shared lock on the table.

User1’s transaction must wait for User2’s transaction to release the shared
lock on the department table, but this can never happen unless User2’s
transaction can finish. To finish, User2’s transaction needs to obtain an
exclusive lock on the employee table, which it cannot get until User1’s
transaction releases its shared lock on it.

Thus, both transactions are waiting for each other. Neither transaction can
finish until the locking system checks on all transactions waiting for locks to
make sure deadlock has not occurred.

When a deadlock is discovered, the locking system aborts one of the
transactions, allowing the other transaction to continue. The user whose
transaction was aborted receives an error.

386 Ingres 2006 R2 Database Administrator Guide

Deadlock

All updates made by the transaction are backed out. For this reason, the
deadlock error must be trapped and the transaction retried in an application
program.

Deadlock does not occur frequently if transactions are concise and no lock
escalation occurs (either page to table or shared lock to exclusive lock). A
deadlock is always logged to the error log.

Deadlock in Single Query Transactions

Because the locking system uses page-level locking, accumulating locks one
by one, deadlock can occur even when single query transactions are being
used. At least two transactions must be accessing the database, and at least
one user must be modifying rows. Deadlock does not occur when only select
statements are executing, because shared locks do not conflict with each
other.

It is possible for deadlock to occur during a single query transaction when:

 Different access paths to pages in the base table are used

 Lock escalation occurs

Lock escalation deadlock can be caused by any of the following:

 Converting shared lock to exclusive lock

 Overflow chains

 System lock limits exceeded

 maxlocks exceeded

 B-tree index splits

Understanding the Locking System 387

Deadlock

Different Access Paths as a Source of Deadlock

Multiple transactions updating table data using different access paths can
cause single query deadlocks.

Consider the following example in which the EMP table has an ISAM structure
indexed on name and a hash secondary index on empno.

1. User1, accessing the EMP table through the secondary index, grants an
exclusive lock on the fourth page of the table.

2. User2, accessing the EMP table by way of the ISAM key on the base table,
grants an exclusive lock on the third page.

3. User1 needs an exclusive lock on the third page, but cannot get one
because User2 already has a lock on it.

4. User2 needs an exclusive lock on the fourth page, but cannot get one
because User1 already has a lock on it.

388 Ingres 2006 R2 Database Administrator Guide

Deadlock

Lock Escalation as a Source of Deadlock

When multiple transactions are updating a table, and lock escalation occurs,
they can deadlock. This escalation is probably caused by one of three
situations:

 A transaction has run into a lock limit and can only continue by escalating
to table-level locks.

 More than maxlocks pages need to be locked during the course of a query.

 There are long overflow chains.

If you are running into locking limits, either raise these limits or shorten the
multiple query transactions.

If lock escalation deadlock is occurring frequently, consider using the set
lockmode statement to force table-level locking on the table or to increase
maxlocks.

To understand how lock escalation can produce deadlock, consider the
following example in which two users are trying to insert into the same table
that has many overflow pages:

User1 tries to insert a record, and because of the long overflow chain
exclusively locks ten pages. Meanwhile, User2 also tries to insert a record and
grants locks down another overflow chain.

During the processing of User1’s query, the transaction reaches maxlocks
pages and needs to escalate to an exclusive table-level lock; but, because
User2 still holds an intent exclusive (IX) lock on the table, User1’s request
must wait.

User2’s query also needs to lock more than maxlocks pages, so a request is
made to escalate to an exclusive table-level lock. User2’s request is also
blocked, because User1 is holding an intent exclusive (IX) lock on the table.

Deadlock occurs in that neither user can proceed because each is blocking the
other.

When many concurrent users are inserting into a small B-tree table, index
splits are likely to occur and deadlock can occur because the locking level in
the index must be escalated to exclusive.

Understanding the Locking System 389

Deadlock

Overflow Chains and Locking

Tables with excessive overflow pages can cause locking problems because all
overflow pages must be searched. Each page is locked individually and locks
are kept all the way down the overflow chain. Escalation to table-level locking
while locking an overflow chain can cause deadlock in heavily concurrent
environments, as well as slow down the query processing time. If you have a
table with many unavoidable overflow pages (that is, they are still present
after a remodify), use the set lockmode statement to do the following:

 Establish table-level locking as the default for that table

 Increase maxlocks

390 Ingres 2006 R2 Database Administrator Guide

Deadlock

Deadlock in Applications

The following program sample checks for deadlock after each statement of a
multiple query transaction. If deadlock occurs when a statement is issued, and
that statement is the victim, the entire transaction containing the statement
aborts and the application is sent back to the beginning of the transaction,
where it is retried until it completes without deadlock.

This sample program is written in embedded SQL/Fortran:

exec sql include SQLCA;
exec sql whenever sqlerror goto 100;
exec sql whenever not found continue;
exec sql begin declare section;
 integer*4 x;
exec sql end declare section;

x = 0;

exec sql commit;

10 continue;

exec sql select max(empno) into :x from emp;
exec sql insert into emp (empno) values (:x + 1);
exec sql commit;

goto 200;

100 if (sqlcode .eq. -4700) then goto 10
 endif

200
 .
 .

In this example, if deadlock occurs, there is no need to issue the rollback
statement, because the transaction has already been aborted.

If deadlock was not checked for and handled, and the select statement to
retrieve the maximum employee number failed with a deadlock, the program
flow continues and the next statement issued, the insert statement, is
completed:

insert into emp (empno) values (:x + 1)

Because the select statement did not complete, this statement inserts the
value “1,” which probably is not the maximum employee number.

The default behavior in embedded SQL programs is to continue when an error
occurs, and that errors are not printed by default. To handle an error, you
need to specify the desired behavior in the whenever sqlerr statement or to
check the sqlca.sqlcode manually after each SQL statement.

Understanding the Locking System 391

Tools for Monitoring Locking

Ingres 4GL provides the while and endloop statements that perform the
function of a goto statement and allow for checking and handling of deadlock.
The following is an example of Ingres 4GL:

initialize(flag=integer2 not null,
 err=integer2 not null) =
{
}
'Go' = {
 flag := 1;
 a: while 1=1 do
 b: while flag=1 do
 repeated update empmax
 set maxempno=maxempno + 1;
 inquire_ingres (err = errno);
 if err = 49900 then
 endloop b; /* jump to endwhile of loop b */
 endif;
 repeated insert into emp (empno)
 select maxempno from empmax;
 inquire ingres (err = errorno);
 if err = 49900 then
 endloop b; /* jump to endwhile of loop b */
 endif;
 flag := 0; /*resets flag if MST successful */
 endwhile; /* end of loop b */
 if flag = 0 then
 commmit
 endloop a; /* jump to endwhile of loop a */
 endif;
 endwhile; /* end of loop a */
}

Tools for Monitoring Locking
You can identify problems with concurrency using one of the following lock
monitoring tools:

 The Performance Monitor utility in VDBA, which displays locking data in a
GUI environment

 The lock_trace trace flag, which displays specific locking activity

 The lockstat utility, which provides a summary listing and a “snapshot” of
all of the locking activity in your installation

 The Interactive Performance Monitor (IPM), which provides locking data in
a forms-based monitoring utility

392 Ingres 2006 R2 Database Administrator Guide

Tools for Monitoring Locking

Performance Monitor

The Performance Monitor utility allows you to view locking information in an
easy-to-use GUI environment. By clicking on the Locking System branch in the
window, you can immediately see a summary of the locking system
information in the Detail pane.

Locking information you can view in the Performance Monitor includes:

 Lock lists

 Locked resources (databases, tables, pages, and others)

 Information about a lock (including the lock list, server, session, and
resource of the lock)

The navigational tree in the left pane allows you to drill down to the
information you need quickly, making it easy to identify locking conditions that
need attention.

VDBA provides an alternative set of system administration tools, including
monitoring performance. For instructions on using VDBA screens to monitor
performance, see VDBA online help.

For more information on using the Performance Monitor utility, see the System
Administrator Guide.

Understanding the Locking System 393

Tools for Monitoring Locking

Set lock_trace Statement

The set lock_trace statement enables you to start and stop lock tracing at any
time during a session. This statement has the following syntax:

set [no]lock_trace

Important! Use set lock_trace as a debugging or tracing tool only. The
lock_trace option is not a supported feature. This means that you must not
include this feature in any application-dependent procedure.

To use set lock_trace you can:

 Issue the set lock_trace statement from a terminal monitor. For example,
to start tracing locks, issue the following statement:

set lock_trace;

To stop tracing locks, issue the following statement:

set nolock_trace;

 Include the set lock_trace statement in an embedded language program.

 Specify set lock_trace with an environment variable or logical. For
example, to start lock tracing with ING_SET issue the following statement
at the operating system prompt:

Windows:

set ING_SET=set lock_trace

UNIX:

C shell:

setenv ING_SET "set lock_trace"

Bourne shell:

ING_SET="set lock_trace"
export ING_SET

VMS:

define ing_set "set lock_trace"

The same methods are used for set lockmode. For details on these methods,
see Ways to Specify a Set Lockmode Statement (see page 372).

When you use set lock_trace during a session, you receive information about
locks used and released by your statements. This information is displayed with
the results of your statement.

If you use an environment variable/logical to set the lock_trace flag, you
receive output for utility startup queries as well as for query language
statements.

394 Ingres 2006 R2 Database Administrator Guide

Tools for Monitoring Locking

lock_trace Output

An example of lock_trace output is shown here. The column headings above
the example are added in this guide to help describe the output.

Action Level Qual. Mode Timeout Key

LOCK: PAGE PHYS Mode: S Timeout: 0 Key: (inv,iiattribute,21)
UNLOCK: PAGE Key: (inv,iiattribute,21)
LOCK: PAGE PHYS Mode: S Timeout: 0 Key: (inv,iiindex,11)
UNLOCK: PAGE Key: (inv,iiindex,11)
LOCK: TABLE PHYS Mode: IS Timeout: 0 Key: (inv,parts)
LOCK: PAGE Mode: S Timeout: 0 Key: (inv,parts,0)

The lock_trace output is in the following format:

action level qualifiers Mode: Timeout: Key:

where:

action

Is the action, which can be LOCK, UNLOCK, or CONVERT. For example, a
lock was used (LOCK) or released (UNLOCK).

level

Is the lock level, which can be TABLE, PAGE, ROW, or VALUE.

Other strings may appear, such as SV_PAGE or BM_DATABASE, which are
internal cache control locks.

qualifiers

Specify more information about the lock. The qualifier can be:

NOWT—Do not wait if the lock is unavailable.

PHYS—Lock can be released prior to end of transaction (physical lock).

Blank—Lock is held until the transaction commits or aborts (logical lock).

Other qualifiers that may appear have internal meaning only.

Mode

Is the lock mode. Values can be:

S = shared lock

U = update lock

X = exclusive lock

IS = intended share

IX = intended exclusive

N = null lock

SIX = shared intended exclusive

Understanding the Locking System 395

Tools for Monitoring Locking

Timeout

Is the default timeout or the timeout set with set lockmode statement.

Key

Describes the resource being locked. It consists of the database name,
table name, partition and page number (shown as P.p where P is the
physical partition number, and p is the page number), and (for row
locking) the row number.

For VALUE level locks, the Key is database name, table name, and three
numbers describing the value being locked. If the table is partitioned, the
table name may be shown as an internal partition name, which looks like
“iiXXX ppPPP-table name” where XXX is an internally assigned number,
and PPP is the physical partition number. For example:

LOCK: TABLE PHYS Mode: IX Timeout: 0 Key: (emp,ii119 pp2-range_1)

396 Ingres 2006 R2 Database Administrator Guide

Tools for Monitoring Locking

lock_trace Example

The set lock_trace output for the following transaction is shown here.

select * from parts where color = 'red';
update parts set price = 10 where partno = 11;
commit;

This guide numbers the lines of output in the example. Each line number is
explained.

Note: If you run the same query several times, you begin to receive less set
lock_trace output because the system catalog information is being cached.

select * from parts where color = 'red'

+------+-------------+------+-----------+-----+
|partno|partname |color |wt |price|
 --

(1) LOCK: PAGE PHYS Mode: S Timeout: 0 Key: (inv,iirelation,11)
(2) LOCK: PAGE PHYS Mode: S Timeout: 0 Key: (inv,iiattribute,21)
(3) UNLOCK: PAGE Key: (inv,iiattribute,21)
(4) LOCK: PAGE PHYS Mode: S Timeout: Key: (inv,iiattribute,19)
(5) UNLOCK: PAGE Key: (inv,iiattribute,19)
(6) UNLOCK: PAGE Key: (inv,iirelation,11)
(7) LOCK: PAGE PHYS Mode: S Timeout: 0 Key: (inv,iiindex,11)
(8) UNLOCK: PAGE Key: (inv,iiindex,11)
(9) LOCK: TABLE PHYS: Mode: IS Timeout: 0 Key: (inv,parts)
(10)LOCK: PAGE Mode: S Timeout: 0 Key: (inv,parts,0)

1A12	Truck	red	290.000	$16.00
1B5	Bean bag	red	198.000	$18.00
20G	Laser	red	165.000	$15.80
+-----+-------------+--------+----------+--------+

(3 rows)

update parts set price = 10 where partno = 20G

(11)LOCK: TABLE PHYS Mode: IX Timeout: 0 Key: (inv,parts)
(12)LOCK: PAGE Mode: U Timeout: 0 Key: (inv,parts,0)
(13)LOCK: PAGE Mode: X Timeout: 0 Key: (inv,parts,0)

(1 row)

commit

(14)UNLOCK: ALL Tran-id: 092903CB0A7

End of Request

Understanding the Locking System 397

Tools for Monitoring Locking

The following is an explanation of the lock_trace output:

1. A shared physical lock was taken on page 11 of the iirelation table of the
inv (inventory) database.

Remember that physical locks are internal and are released as soon as
possible.

2. A shared physical lock was taken on page 21 of the iiattribute table of the
inventory database.

3. The lock on page 21 of the iiattribute table was released.

4. A shared physical lock was taken on page 19 of the iiattribute table of the
inventory database.

5. The lock on page 19 of the iiattribute table was released.

6. The lock on page 11 of the iirelation table was released.

7. A shared physical lock was taken on page 11 of the iiindex table of the
inventory database.

8. The lock on page 11 of the iiindex table was released.

9. An intended shared lock was taken on the parts table.

This is the first lock in this example that was placed on a user table.

10. A shared lock was taken on page 0 of the parts table.

11. An intended exclusive lock was taken on the parts table.

12. An update lock was taken on page 0 of the parts table.

13. An exclusive lock was taken on page 0 of the parts table.

14. All locks used during this transaction were released.

398 Ingres 2006 R2 Database Administrator Guide

Performance During Concurrency

Performance During Concurrency
When multiple users are performing selects, updates, inserts, and deletes on
the same set of tables concurrently, consider the following when evaluating
performance:

 If there are no users changing data in a set of tables, multiple, concurrent
users reading data have no performance problems associated with
concurrency. There are no deadlock problems, either.

Once a writer mixes with the readers of a table, concurrent performance is
affected, because the writer can acquire exclusive write locks on pages or
tables. Deadlocks can occur, causing reduced performance for users who
are “backed out” from the deadlock.

 Remember that locks acquired during a multiple query transaction are held
until the commit statement is executed. This can affect concurrent
performance. Query-By-Forms uses multiple query transactions.

 Whenever possible, users must work in their own tables or download into
their own tables with create table as select statements. Doing so offloads
tables where there is heavy concurrent activity.

 Nolock can be beneficial in certain situations.

 Use can be made of the Visual Forms Editor’s form validations, rather than
table-lookup validations that lock the reference table, because they are
read only at form start-up time.

Approaches for Handling Heavy Concurrent Usage

In a heavy concurrent usage situation, there are two approaches:

 The “never-escalate-at-any-cost” approach

Concurrent users are working in different regions of the table. Extreme
care is taken by the person whose role it is to deal with concurrency
problems (the system administrator or the DBA, or both), to ensure that
nobody escalates to a table-level lock.

 The “table lock” approach

This approach, which minimizes the occurrence of deadlock, applies when
there is much concurrent activity on smaller tables or in one part of a
larger table.

Understanding the Locking System 399

Performance During Concurrency

The Never Escalate Approach

The "never-escalate" approach is appropriate when the users are working in
different parts of the table, they are running simple queries and updates, and
making full use of primary and secondary indexes. The goal is to have users
coexist as much as possible in the same tables, where no one impedes another
user’s performance by acquiring table locks.

Considerations of the “never escalate” approach include:

 A single-table keyed query starts with page locking, unless the set
lockmode statement has been issued. Page locks are acquired until
maxlocks is reached, at which point lock escalation occurs. By checking
the tuple identifiers (tids) of rows visited, you can estimate the number of
pages visited in a specific table.

 More complex queries can remove a table-level lock, if the query optimizer
thinks that maxlocks pages are used.

 Make sure that you are using primary and secondary indexes effectively.
Check how many pages are returned from a keyed, primary or secondary
lookup to check that it is less than maxlocks for that table. The optimize
database operation must be run at least on primary and secondary keys to
help the optimizer make estimates.

 Monitor overflow levels in tables with ISAM and hash primary and
secondary indexes.

 It is advisable to reduce fillfactors to lower than the default if tables with
ISAM or hash storage structures are used, because this provides more
room in the table after the modify.

 Make sure maxlocks is set to an appropriate figure, such as ten percent of
table size.

When choosing storage structures while using the “never escalate” approach,
the basic principle is that ISAM or hash structures with little or no overflow are
better than small B-trees in a concurrent environment. The reason is that
growing B-trees involve some locking when index pages split.

However, as the percentage of overflow builds up in the hash or ISAM
structure, they become inferior to B-trees, because locks are held down
overflow chains. In particular, if any overflow chain being visited is greater
than maxlocks, escalation to table locks can occur. This increases the risk of
deadlocks when there are multiple users in the same table.

At what point the trade-off occurs depends on the circumstances, such as how
frequently modify statements can be performed. Experimentation is advised.
Overflow buildup must be checked in secondary indexes as well as primaries.

Concurrent performance analysis is much more difficult to analyze than single
user performance. Be prepared to experiment using the guidelines presented.

400 Ingres 2006 R2 Database Administrator Guide

Performance During Concurrency

The Table Lock Approach

The “table lock” approach is used only when there are unsolvable bottlenecks.
The philosophy behind the approach says that it is better to have users queue
up in an orderly manner to get into a table, thereby avoiding the risk of
deadlock, than have them waste time backing out of deadlock situations.

Important! Before using this approach, ensure that lock escalation and
transaction size are minimized.

This approach is appropriate when extensive table scanning is needed, as with
set functions such as max and min. In these cases it is advisable to keep an
extra table around containing max and min values, or to search for max and
min values directly in a secondary index without reference to the base table.

In multiple query transactions, table-level locks reduce the likelihood of
deadlocks but do not eliminate them. The following statement reduces the
likelihood of deadlock in a multiple query transaction:

set lockmode on tablename
 where level = table;

This also applies to B-tree tables when they are small.

Under some circumstances setting readlock = exclusive is useful. For example,
when running a select followed by an update statement.

Understanding the Locking System 401

Chapter 15: Backing Up and Recovering
Databases

This chapter describes the following backup and recovery features of Ingres:

 Checkpointing and journaling to back up a database or selected tables

 Unloading a database

 Copying a database to back up particular tables or all objects you own in a
database

 Using operating system backups to replace current or destroyed tables in a
database

 Roll forward of a database to recover a database or selected tables from
checkpoints and journals

You should back up your database regularly so that you can recover your data
if necessary. Databases or tables can be damaged accidentally by hardware
failure or human error. A disk crash, power failure or surge, operating system
bugs, or system crashes, for example, can destroy or damage your database
or tables in it.

Full or Partial Recovery
Ingres allows you to perform full recovery, which involves recovering an entire
database, or partial recovery, which recovers selected tables in a database.

Partial recovery entails recovering data from a backup copy at a level of
granularity finer than the entire database. In the event of failure, Ingres can, if
possible, mark less than the whole database physically inconsistent. The
advantage of partial recovery is that it reduces recovery times by requiring
only recovery of logically or physically invalid data.

Logging System
The logging system keeps track of all database transactions automatically. It is
comprised of the following facilities and processes:

 Logging facility, which includes the transaction log file

 Recovery process (dmfrcp)

 Archiver process (dmfacp)

Backing Up and Recovering Databases 403

Logging System

Logging Facility

Each installation has an installation-wide transaction log file that keeps track
of all transactions for all users. The log file can be distributed among up to
sixteen partitions (locations), although Ingres treats the files as one logical
file.

With dual logging enabled, the installation has an alternate log file. With dual
logging, a media failure on one of the logs does not result in the loss of data or
the interruption of service. If one of the log file disks fail, the logging system
automatically switches over to access the other log without interrupting the
application.

When log files are properly configured, the use of dual logging has a negligible
impact on system performance.

Note: If your system is configured for Ingres Cluster Solution, each node in
the Ingres cluster maintains a separate Archiver and Recovery error log. Each
log is distinguished by having _nodename appended to the base log name,
where nodename is the Ingres node name for the host machine as returned by
iipmhost. Dual logging is also provided on clusters.

Log Space Reservation

During normal online processing, space is reserved in the transaction log file
for possible use during recovery when it is rolling back transactions. The
reserved space is used to write Compensation Log Records (CLRs), which
describe the work performed during the rollback.

Generally, the logging system reserves approximately as much log file space
to perform the rollback as was required to log the original operation.
Exceptions are insert and update operations, which require less reserved space
than the original log.

In the Log File page in the Performance Monitor window, you can see a close
approximation of the log file space required for both normal log writes and for
CLRs. Also displayed is the number of log file blocks reserved for use by the
recovery system at any point in time.

To access the Log File page, you click on the Log Information branch in the
Performance Monitor window, and click the Log File tab in the Properties pane.

You can also accomplish these tasks using the sysmod command and the set
log_trace statement. For more information on the sysmod command, see the
Command Reference Guide. For more information on the set log_trace
statement, see Set Log_Trace Statement (see page 447) and the SQL
Reference Guide.

404 Ingres 2006 R2 Database Administrator Guide

Data Verification Before Backup

Recovery Process

The recovery process (dmfrcp) handles online recovery from server and
system failures. The logging system writes consistency points into the
transaction log file to ensure that all databases are consistent up to that mark
and to allow online recovery to take place when a problem is detected. While a
transaction is being rolled back, users can continue working in the database.

The recovery process is a multi-threaded server process, similar to a normal
DBMS server. However, the recovery process does not support user
connections. The process must remain active whenever the installation is
active.

Archiver Process

The archiver process (dmfacp) removes completed transactions from the
transaction log file and, for journaled tables, writes them to the corresponding
journal files for the database. Each database has its own journal files, which
contain a record of all the changes made to the database after the last
checkpoint was taken. The archiver process “sleeps” until sufficient portions of
the transaction log file are ready to be archived or until the last user exits
from a database.

Data Verification Before Backup
As the DBA, you must know that the data in your database is good (can be
accessed) before backing it up. This can assure that a successful recovery can
be made if it becomes necessary to restore the database from the backup
copy.

Backing Up and Recovering Databases 405

Static or Dynamic Backup

Methods of Verifying Data Accessibility

One method of verifying the accessibility of your tables is to write a script that
automatically checks each of the tables and system catalogs in your database.

Otherwise, you can use one of the following suggested methods in VDBA:

 Modify system tables to predetermined storage structures using the
System Modification dialog.

 Modify user table storage structures using the Modify Table Structure
dialog.

 Use any procedure that affects all the rows that are being backed up in
each table. (For example, select all the rows from the tables using an SQL
Scratchpad window.)

If rows in a table are not accessible, you receive an error message. If this
happens, restore the table from an earlier checkpoint before doing a new
backup.

 Check the integrity of specific tables using the Verify Database dialog. (For
each table, specify report for Mode, table for Operation, and a table
name.)

For the detailed steps for performing these procedures, see online help.

You can also accomplish these tasks using the sysmod, modify, select, and
verifydb commands. For more information, see the Command Reference
Guide.

Static or Dynamic Backup
You can make static (snapshot) backups of your entire database, or selected
tables by using checkpoints.

To make a dynamic backup of your database, use checkpointing in
combination with journaling.

These backup methods enable you to restore data up to the last checkpoint, or
the last journaled transaction, respectively.

406 Ingres 2006 R2 Database Administrator Guide

Checkpoints

Checkpoints
Checkpoints provide you with a snapshot of the database at the time you took
the checkpoint.

Each time you perform this operation, a new checkpoint of the database is
taken.

A record of up to 99 checkpoints can be maintained at any point. We
recommend that at least one database-level checkpoint be included in this
record.

The use of the Database Infodb menu command to verify the status of the
database and checkpoints is encouraged. This ensures that a valid database
checkpoint is always available.

Running a checkpoint does not affect the current state of journaling for the
database. For details on how to enable and disable journaling with a
checkpoint, see Database Journaling (see page 420) and Disable Journaling
(see page 422).

Tables that have had journaling enabled after the previous checkpoint have
their journaling status changed from “enabled after next checkpoint” to just
“enabled.”

To checkpoint a database or tables, you must be a privileged user (operator
privilege or system administrator). For more information, see the chapter
“Ensuring Access Security.”

Ways to Checkpoint a Database

In VDBA, you can create a new checkpoint for a database by using the
Checkpoint dialog, invoked by the Database Checkpoint menu command.

The detailed steps for performing this procedure can be found in the
Procedures section of online help for VDBA. See Checkpoints (see page 409).

You can also accomplish this task using the ckpdb system command. For more
information, see the Command Reference Guide.

Table-level Checkpoints

You should use table-level checkpoints only as a supplement to—not a
substitute for—database-level checkpoints.

Backing Up and Recovering Databases 407

Checkpoints

Database versus Table-Level Checkpoints

Use caution in the area of table-level checkpoints and recovery. Generally, full
database checkpoints are recommended over table-level checkpoints. When
using table-level checkpoints and restores, it is important—at the very least—
to back up all dependent tables with a full checkpoint.

Table-level checkpoints are restricted in their recoverability when the
checkpointed table has been dropped or the table has been modified through
any DDL statement. In these cases, the table-level checkpoint is rendered
unusable. There is also danger in compromising the referential integrity of the
database when rolling forward a table without journaling.

Performing table-level checkpoints on system catalogs is not permitted.
Frequent database checkpointing of the iidbdb database is strongly
encouraged.

Roll Forward of Tables

Whenever a database is rolled forward, it is recommended that a new
checkpoint be taken to allow subsequent table-level roll forward activities.

When a roll forward is performed at the table level, you can choose either to
roll forward the table excluding or including all secondary indexes. You cannot
specify a secondary index name as a table.

If it is necessary to do a roll forward with the No Secondary Index option, the
base table’s secondary index in the RDF cache become inconsistent. To clear
the inconsistency, do one of the following:

 Drop or recreate the inconsistent secondary index

 Restart Ingres to refresh the RDF cache

If additional assistance is required, call Ingres Technical Support.

408 Ingres 2006 R2 Database Administrator Guide

Checkpoints

Checkpoint Template File

A file called the checkpoint template file, cktmpl.def, drives the checkpoint and
roll forward operations. The cktmpl.def file allows you to customize backup
and recovery processes and provides additional information tracking. It is
possible to modify the backup process so that the names of the tables that are
specified during a table-level backup are written to a text file.

The II_CKTMPL_FILE environment variable overrides the default cktmpl.def file
for a particular user. This must be used when testing modifications to the
cktmpl.def file before it is made available to the entire installation so that
other users in the installation are not affected.

For checkpoint template codes and parameters, see Checkpoint Template File
Description (see page 438).

Online and Offline Checkpoints

Checkpoints can be performed online or offline.

Online Checkpoints

An online checkpoint can be performed while sessions are connected to the
database. This is the default when taking a checkpoint.

An online checkpoint stalls until any transactions running against the database
are committed. Any new transactions started during the stall phase of the
online checkpoint cannot run until the stall phase is completed.

Offline Checkpoints

An offline checkpoint can be performed when no one is using the database. To
perform an offline checkpoint in VDBA, enable the Exclusive Lock checkbox in
the Checkpoint dialog.

When you specify the Exclusive Lock option, you can also specify the Wait
option to wait for the database to be free before performing the checkpoint.

The behavior with or without the Wait option specified is described as follows:

 If specified, the wait can be as long as necessary for the database to
become free before taking the checkpoint.

 If not specified, and there are sessions connected to the database, an
error message is returned and the checkpoint is not performed. This is the
default.

Backing Up and Recovering Databases 409

Checkpoints

Checkpoints and Locking

By default, an exclusive lock is not taken on the database when you take a
checkpoint. Other users who are using the database at the time of the
checkpoint can continue working online. During this time, transactions in
progress are placed in the dump file for the database.

When you perform a roll forward, the dump files are used to restore the
database to its state when the checkpoint was taken. It updates the database
from journals, if the database is journaled.

There are two cases, however, in which checkpointing takes an exclusive
database lock. These are if either of the following options in the Checkpoint
dialog are used:

 The Exclusive Lock option is specified to take the checkpoint offline.

 The Enable Journaling or Disable Journaling options are specified to enable
or disable journaling.

If you want to continue the present journaling status, use neither journaling
option.

Outdated Checkpoints

After you take a new checkpoint, you can delete previous checkpoints and
journals.

Delete Checkpoints Using VDBA

In VDBA, specify the Delete Previous option in the Checkpoint dialog.

Up to 98 checkpoints can be deleted in this way.

410 Ingres 2006 R2 Database Administrator Guide

Checkpoints

Manual Deletion of Checkpoints

If you have taken more than 98 checkpoints after the last time you created a
checkpoint with the Delete Previous option in VDBA, you must delete the
additional old checkpoints manually using a system command.

Observe the following cautions when manually deleting checkpoints:

 Do this only after creating a checkpoint with the Delete Previous option in
VDBA.

 Be sure that you do not delete the most recent checkpoint. You can
identify the most recent checkpoint by its version number.

When you checkpoint a database, a checkpoint file is created for each location
on which the database is stored. The names of the checkpoint files are in the
format shown by the following example:

C000v00l.ckp

where v shows the version number of the checkpoint sequence and l shows
the location number of the data directories. The most recent checkpoint file
has the highest version number. To obtain this number, select the database
and choose the Infodb command from the Database menu. View the
information in the Infodb dialog.

Delete Outdated Checkpoints Manually

To delete old checkpoints manually, use an operating system command, as
follows:

Windows: Use the Windows del command from the
II_CHECKPOINT\ingres\ckp\dbname directory.

UNIX: Use the UNIX rm command from the ii_checkpoint/ingres/ckp/dbname
directory, where ii_checkpoint is the value of II_CHECKPOINT as displayed by
the ingprenv command.

VMS: Use the VMS delete command.

Backing Up and Recovering Databases 411

Checkpoints

Delete the Oldest Checkpoint

You can delete the oldest available full database checkpoint, along with
associated journal and dump files, by enabling the Delete Oldest Checkpoint
check box in the Database Characteristics dialog, invoked by the Operations
Alter DB menu command in VDBA.

This option operates only for full database checkpoints, not partial
checkpoints. For more information about the Database Characteristics dialog,
see Database Characteristics (see page 424).

Delete Invalid Checkpoints

You can delete invalid checkpoints, along with associated journal and dump
files, by enabling the Delete Invalid Checkpoint check box in the Database
Characteristics dialog (see page 424), invoked by the Operations Alter DB
menu command in VDBA.

This option operates only for full database checkpoints, not partial
checkpoints.

For more information about the alterdb command, see the Command
Reference Guide.

Checkpoints and Destroyed Databases

Important! A checkpoint is a backup of an existing database. If you destroy
the database (with the Edit Drop menu command), you cannot recreate it from
a checkpoint, because this deletes a database’s associated checkpoints as well.

To destroy your database and recreate it, use the Unloaddb menu command,
appearing off the Database Generate Scripts submenu. For more information,
see the chapter “Loading and Unloading Databases.”

Parallel Checkpointing in UNIX

In UNIX, you can checkpoint to a disk or a tape in parallel.

412 Ingres 2006 R2 Database Administrator Guide

Checkpoints

Checkpoint to Disk

To checkpoint a multi-location database to disk in parallel, issue the ckpdb
command with the #m flag followed by the number of parallel checkpoints to
be run. For example, to save two data locations at a time to the
II_CHECKPOINT location, the command is as follows:

ckpdb \#m2 dbname

Checkpoint to Tape

To checkpoint a multi-location database to tape in parallel, in the Checkpoint
dialog, specify multiple table devices to be used in the Tape Device edit
control. For example, enter the following:

/dev/rmt/0m,/dev/rmt/1m

This saves one location per tape—the first location can be stored on device
0m; the second on device 1M. The third location can be stored on whichever
device is finished first. The remaining locations can be stored on the next free
device. The operator is prompted to insert a new tape for each location.

When performing parallel checkpointing to tape in UNIX, keep in mind the
following:

 Recovery does not have to be in parallel if a checkpoint was done in
parallel.

 Each tape label must include the checkpoint number, database name, and
location number.

 Each tape device must be the same medium, that is, all 4mm or all 8mm;
mixing is not permitted.

 The maximum number of devices that can be used is limited by the
system’s input and output bandwidth.

Backing Up and Recovering Databases 413

Checkpoints

Putting Checkpoints on Tape in Windows

In Windows, the backup system uses the Windows backup utility to create
checkpoints on tape. This utility allows you to back up on multiple tapes. The
program prompts you for more tapes as needed during the checkpoint
procedure.

The backup uses the commands in the following batch file:

%II_SYSTEM%\ingres\bin\ckcopyt.bat

You can tailor these commands to meet your needs (for example, to meet
local conventions such as tape labeling).

For detailed information on backing up to tape, please see your Windows
documentation on backup utilities.

Putting Checkpoints on Tape in UNIX

In UNIX, the backup system uses an operating system utility, such as tar
(Berkeley UNIX) or cpio (System V), to create checkpoints. Both cpio and tar
are limited to handling files that fit on a single tape. Because checkpoints of
larger databases abort at the end of the first tape, you must estimate both the
checkpoint size and the tape capacity before checkpointing these databases. If
you estimate that the checkpoint exceeds the tape size, follow instructions in
Checkpointing to Multiple Tapes in UNIX (see page 417).

414 Ingres 2006 R2 Database Administrator Guide

Checkpoints

Estimate Checkpoint File Size in UNIX

A separate checkpoint file is created for each location to which a database has
been extended.

Follow these steps to estimate the size of checkpoint files:

1. Issue the following command at the operating system prompt:

du ii_database/ingres/data/default/dbname

where ii_database is the value of the environment variable II_DATABASE
displayed by the ingprenv command.

For other locations, substitute the name of the directory associated with
the location name.

2. If your operating system uses tar, increase the resulting block size of the
directory by 5%.

3. The du command displays the directory size in blocks. To get the file size
in bytes, multiply the block size by the number of bytes in a block on your
operating system.

For information on the number of bytes in a block on your system, see your
operating system manual.

Tape Capacity in UNIX

The capacity of a tape depends on the following:

 Density at which the tape is written

 Length of the tape

 Size of the blocks written on the tape

 Length of the inter-record gap (IRG)

Standard 9-track tape drives write at either 800, 1600, or 6250 bits per inch
(bpi), so the bits per inch specification is the same as bytes per inch. The
standard tape length is 2400 feet.

Block sizes, which are not standardized, are important because of what is
between the blocks—the IRG. A typical IRG is .75 inches of empty tape
separating each block from the next.

Backing Up and Recovering Databases 415

Checkpoints

Estimate Tape Capacity in UNIX

You can use the following formula to estimate the size of the file in bytes that
a tape can accommodate:

F = (B + (I * D))/(12 * B * D * L)

where:

 F is the file size in bytes

 B is the block size in bytes

 D is the density in bits per inch

 L is the length of the tape in feet

 I is the IRG in inches

The sample file sizes in the following table were calculated for a standard 2400
foot tape, assuming an IRG of .75:

Tape Size IRG Block Size Density File Size (MB)

2400 .75 512 1600 13.8

2400 .75 512 6250 17.7

2400 .75 8192 1600 40.2

2400 .75 8192 6250 114.5

After using this formula to calculate the file size, you need to add an arbitrary
amount to allow for miscalculations. You do not want a tape to run off the reel
because you miscalculated the size of the file that fits. A reasonable amount to
add is 5% of a tape’s capacity.

If your system uses a cartridge tape or other storage media, contact the
vendor for the specifications that allow you to make the calculations described
above.

416 Ingres 2006 R2 Database Administrator Guide

Checkpoints

Checkpointing to a Single Tape in UNIX

To checkpoint a database to a single tape:

1. Mount a tape reel.

2. In the Checkpoint dialog, enter the name of the tape drive in the Tape
Device edit control.

The equivalent ckpdb command at the operating system prompt is as
follows with a tape drive named “/dev/rmt8”:

ckpdb -m/dev/rmt8 dbname

The backup created by this checkpoint writes over everything that was on the
tape previously.

Checkpointing to Multiple Tapes in UNIX

When checkpoint files exceed the tape size, follow the appropriate procedure
depending on whether the file fits on a disk.

When Checkpoint File Fits on a Disk

If the checkpoint file exceeds the size of the tape, but fits on a disk, follow
these steps:

1. Follow normal procedures for checkpointing to disk.

2. Have your operating system administrator move the checkpoints from disk
to tape. Use a standard system backup method, such as cpio or dump.

If some of the database’s tables are stored in alternate locations, separate
checkpoint files are created for them in the checkpoint location. These files
are small enough to be moves to single tapes.

Caution! To System V Users: It is possible for large checkpoints to exceed
the ulimit on your system. (The ulimit is a tunable operating system
parameter that sets a limit on file size.)

Backing Up and Recovering Databases 417

Checkpoints

When Checkpoint File Does Not Fit on a Disk

If the checkpoint file exceeds the size of the tape and does not fit on a disk,
you must checkpoint the database using the operating system. To successfully
checkpoint a database, you have to lock all users out during the entire
process.

To lock out all users and take the checkpoint, follow this procedure:

1. To synchronize journaling, checkpoint the database to a null device by
specifying the following options in the Checkpoint dialog:

 Exclusive Lock

 Wait

 Delete Previous

 Tape Device: /dev/null

The Wait option causes the checkpointing to wait until all user locks have
been released before beginning the checkpoint.

The Delete Previous option removes all previous checkpoints and journals.

The Tape Device specification causes the checkpoint to be placed in
/dev/null, which is a nonexistent device. This makes the database “think”
it is being checkpointed and causes journaling to be correctly
synchronized. At this time, all changes to the database are guaranteed to
be on disk.

2. To lock the database, start a new process:

C shell:

After the first message from the checkpoint is printed, press Ctrl+Z.

Bourne shell:

Log in at another terminal immediately after the checkpoint begins.

Start the new process by issuing the following command at the operating
system prompt:

ingres -l +w dbname

The +w flag causes a wait until that lock is granted.

3. After the checkpoint finishes:

C shell:

If the checkpoint process is stopped (csh job control), put the job back in
the foreground; wait for the process to complete.

Bourne shell:

Wait for the process to complete.

418 Ingres 2006 R2 Database Administrator Guide

Journals

4. Have your operating system administrator use standard system backup
methods to back up the database directory to tape.

Make sure that the backup method used allows you to save the files and
recover them to their original places on the system. Some backup
methods have limitations. The volcopy command, for instance, requires
that the database disk device be unmounted and unavailable for use by
any users during the copy. Additionally, it saves files by saving the entire
file system.

5. For the C shell:

Leave the second process stopped (csh).

For the Bourne shell:

Leave the second process at the SQL prompt (*) until the backup is
complete.

6. Quit from the SQL prompt held by the second process.

Putting Checkpoints on Tape in VMS

To initiate a checkpoint in VMS, ready the tape and issue the ckpdb command
with the –m option. For more information about the ckpdb command, see the
Command Reference Guide.

The backup system uses the VMS BACKUP utility to create checkpoints. This
utility allows you to back up on multiple tapes. The program asks for more
tapes as needed during the checkpoint procedure.

The backup uses the following command in the script:

II_SYSTEM:[INGRES.FILES.CHECKPOINT]CKP_TO_TAPE.COM

You can tailor this command to meet your needs (for example, to meet local
conventions such as tape labeling).

For detailed information on backing up to tape, see your VMS backup
documentation.

Journals
For a dynamic backup of your database, use journals in combination with
checkpoints.

Journals. keep track of all changes made to journaled tables after the last
checkpoint

Backing Up and Recovering Databases 419

Journals

Checkpoints and Audits During Journaling

When you are journaling a database, you should do the following:

 Take regular checkpoints of your database to minimize recovery time.

 Periodically verify that your journaling data is correct by auditing the
database. For information, see Audit Trails (see page 427).

Tools for Performing Journaling

You can perform journaling tasks in VDBA or using system commands.

For the detailed steps for performing journaling procedures in VDBA, see the
Procedures section of online help.

The system commands for journaling tasks are the ckpdb and alterdb
commands. For more information, see the Command Reference Guide.

Database or Table-level Journaling

Journaling can be selected for an entire database or on a table-by-table basis.

Database Journaling

The recommended approach is to journal the entire database rather than
specifc tables. Tables in journaled databases are created “with journaling” if
that is the default_journaling setting of the server class used by the Ingres
DBMS Server you are connected to.

Disable journaling on specific tables only if a rollforward recovery of those
tables is not important. You must exercise caution when creating non-
journaled tables in journaled databases. Non-journaled tables cannot be
audited when the database is audited, in addition to their lack of roll forward
recovery. Following a roll forward recovery, the relationship between journaled
and non-journaled tables can be confusing.

Table-level Journaling

If you choose to journal selected tables, you are responsible for ensuring that
all related objects are also journaled (for example, that all tables associated
with a view are journaled).

420 Ingres 2006 R2 Database Administrator Guide

Journals

Enable Journaling on an Entire Database

To journal an entire database, use the Enable Journaling option in the
Checkpoint dialog in VDBA.

Note: The only tables that are enabled are those whose journaling status is
“enabled after next checkpoint.” Tables whose journaling status is “disabled”
cannot be enabled.

New Tables and Journaling

The journaling of new tables begins, as follows:

 If you have enabled journaling on the database and the table is created
with journaling enabled, the new tables begin journaling immediately.

 If you have not enabled journaling on the database, the new tables begin
journaling after you take a checkpoint with the Enable Journaling option in
the Checkpoint dialog (although tables created with journaling disabled are
never enabled even after journaling is enabled for the database as a
whole).

Start Journaling on a Database Not Checkpointed

To start journaling on a database that has not yet been checkpointed, in VDBA
invoke the Checkpoint dialog (by choosing the Database Checkpoint menu
command) and set the Enable Journaling option.

Journaling and Online/Offline Checkpoints

The first time journaling is turned on in a particular database, you must
checkpoint the database by setting the Enable Journaling option in the
Checkpoint dialog. This ensures that the checkpoint is taken offline and with
an exclusive lock on the database.

Once you have enabled journaling by checkpointing offline with the Enable
Journaling option, you can maintain the “journaling on” status and take online
checkpoints by not subsequently setting the Enable Journaling option when
you take a checkpoint. Online checkpoints permit users to continue using the
database while the checkpoint is being taken.

Once you have enabled journaling for the database by checkpointing offline
with the Enable Journaling option, you can take an offline checkpoint to start
journaling of tables for which journaling is enabled after the next checkpoint.

Any explicit journaling option causes the checkpoint to be taken offline,
exclusively locking the database.

Backing Up and Recovering Databases 421

Journals

Disable Journaling

To disable journaling, disable the Journaling check box in the Options dialog
invoked from the Create Table dialog.

Stop Journaling on a Table

To stop journaling a particular table, issue the following statement from the
query language monitor:

set nojournaling on tablename;

Methods for Stopping Journaling on All Tables

You can stop journaling all the tables in a database using either of the
following methods in VDBA:

 Creating a checkpoint using the Disable Journaling option in the
Checkpoint dialog.

 Altering a database using the Database Characteristics dialog.

Note: This takes effect immediately; therefore, it must be used only for
emergencies. For information, see Disabling Journaling When
Checkpointing (see page 422).

To re-enable journaling on a table or database that has had journaling
disabled, use the Checkpoint dialog.

Disabling Journaling When Checkpointing

When you choose the Disable Journaling option in the Checkpoint dialog,
journaling is stopped for all tables in a database.

This causes a checkpoint of the specified database to be taken and journaling
to be stopped. After stopping journaling, you can still take periodic checkpoints
of the database.

422 Ingres 2006 R2 Database Administrator Guide

Journals

Disabling Journaling When Altering a Database

When you alter a database with the Disable Journaling option (using the
Database Characteristics dialog), journaling of a database is halted
immediately, regardless of whether users are connected to the database.

This option is provided as a method for recovering from journaling system
problems that prevent the archiver from moving transaction log file records to
the database journal files, for example, if the disk partition containing the
journal files is not periodically purged of obsolete journal files and the partition
becomes full. If the logging system is unable to move records from the log file
to the journal files, the transaction log file eventually fills up, causing a
LOGFULL condition. When this occurs, no database activity can proceed until
the LOGFULL state is cleared.

Important! Using this option to disable journaling makes the displayed value
for the journaling status inconsistent. Tables are “journaling enabled,” even
though journaling is disabled for the database as a whole and you expect to
see “enabled after next checkpoint.”

For step-by-step instructions, see Altering Database Characteristics in
Procedures of VDBA online help.

Backing Up and Recovering Databases 423

Journals

Example: Disable Journaling by Altering the Database

To disable journaling on a database by altering the database, follow these
steps.

Note: This procedure must be performed by the DBA of the database. It does
not require a database lock and can be run even while the log file is full
(LOGFULL).

1. Select the database in the Database Object Manager and choose the Alter
DB command from the Operations menu.

The Database Characteristics dialog appears.

2. Enable the Disable Journaling check box and click OK.

At this point the database is no longer journaled.

Caution! Do not roll forward a database that has journaling disabled. Any
transactions committed after the alter database operation, or that were
still in the transaction log file at the time journaling was disabled, are lost.

3. To check the database state, choose the InfoDb command from the
Database menu.

Using the Infodb dialog, you can determine whether journaling has been
disabled.

4. Schedule a new checkpoint to re-enable journaling as soon as it is
possible. To do this, select the database in the DOM window and choose
the Checkpoint command from the Database menu.

The Checkpoint dialog appears.

5. Enable the Enable Journaling check box and click OK.

Database Characteristics

The Database Characteristics dialog allows you to disable journaling and to
change several database characteristics, including:

 Change journal block settings

 Delete oldest checkpoint

 Set verbose mode

To perform this operation, you must be the owner of the database or have the
operator privilege.

424 Ingres 2006 R2 Database Administrator Guide

Journals

Journal File Size

Journal files are created by the archiver process by the first journal write after
a checkpoint takes place. Additional journal files are created as prior files are
filled.

By default, journal files are created with:

 A target number of journal blocks of 512

 A block size of 16, 384 bytes

 An initial allocation of 4 blocks

This results in a target journal file size of 8 MB (16, 384 * 512 bytes).
Although most users find these parameters satisfactory, all three can be
modified by using the Database Characteristics dialog, using the Block, Size,
and Initial edit controls.

Target Journal Size

The Database Characteristics dialog specifies the target journal size in the
Block edit control. The possible values are between 32 to 65536.

A journal file is closed and a new one is created when either a checkpoint is
taken (actually, when the first write after a checkpoint is taken) or when the
journal file fills.

The Block edit control allows some control over when the logging system
declares a journal file full. This parameter is known as the “target journal file
size” because the exact size of a journal file cannot be easily predicted. The
archiver closes off journal files, if they grow larger than the target number of
blocks, only at the completion of an archive cycle. Longer archive cycles imply
more variation in journal file sizes.

Upon successful completion of this command, a message is written to the
errlog.log. The updated block value can be observed as the infodb parameter
“Target journal size”.

The command takes effect immediately (or more accurately, the next time the
archiver reads the configuration file).

The initial journal size (specified in the Initial edit control) can be affected by
this command.

Backing Up and Recovering Databases 425

Journals

Journal Block Size

The Database Characteristics dialog allows you to specify the journal block size
in the Size edit control. Valid journal block sizes are 4096, 8192, 16384,
32768, and 65536 bytes.

Archiver (dmfacp) performance is affected by the journal file block size. You
normally change the block size (Size edit control) in conjunction with the
number of target journal blocks (Block edit control). This allows you to target
the creation of journal files of a given size. Changing the block size without
also changing the number of blocks in a journal file changes the target size of
the file.

You typically change the journal block size immediately after the database is
created, before the initial checkpoint is taken with the journaling option.
Thereafter, changing the journal block size is generally required only for
installations with a relatively high volume of journaled data. You can only
change the journal block size when journaling is not currently enabled.

To change the journal block size on a database that is currently journaled,
perform the following operations:

 Take a checkpoint and disable journaling using the Checkpoint dialog

 Set the journal block size using the Database Characteristics dialog

 Take a checkpoint and enable journaling using the Checkpoint dialog

Upon successful completion of this operation, a message is written to the
errlog.log. The updated journal file block size can be observed as the infodb
“Journal block size” parameter.

Initial Journal Size

The Database Characteristics dialog allows you to specify the initial journal
size in the Initial edit control. Valid journal block sizes are from 0 to the
current target journal size (which can be obtained using infodb).

The Initial option allows a measure of control over when journal file disk space
allocation takes place, but only for the first journal file created after a
checkpoint is taken.

You can change the initial journal size at any time, and it takes effect when
the next database journal file is created. In the case of an offline checkpoint,
this can be some time after a checkpoint is taken. In the case of an online
checkpoint, the file allocation occurs during execution of the checkpoint.

Upon successful completion of this command, a message is written to the
errlog.log. The updated block value can be obtained from the “Initial journal
size” parameter in the Infodb dialog (invoked by the Database Infodb menu
command).

426 Ingres 2006 R2 Database Administrator Guide

Journals

Considerations When Resizing Journal Files

Preallocating space in journal files using the Database Characteristics dialog
can reduce the likelihood of running out of journal file disk space.

Filling a journal file causes the archiver to stop, and if left untreated,
eventually causes the log file to fill, which brings the system to a halt.

With the alter database operation you can, for example, request creation of
journal files of a given size and also request preallocation of the entire file. If
the file is sufficiently large, this eliminates the possibility of running out of
journal disk space during normal online processing.

This can, however, cause unused journal space to be wasted. If excessive
space is allocated during journal file creation, that disk space can be made
unavailable when a subsequent checkpoint operation takes place.

If it is necessary to control journal file size more accurately, the archiver must
be awakened more frequently. This can be accomplished with smaller
consistency point (CP) intervals, allowing more frequent archiver “wake-ups.”
The consistency point interval can be configured using the Configuration
Manager. For details on the Configuration Manager utility, see Using the
Configuration Manager in online help. Smaller CP intervals can affect system
performance, although the processing involved is for a short interval of time.

Considerations When Resizing Journal Files on UNIX

On UNIX systems, disk space must be physically written when a journal file is
extended. When a journal file is filled, a new one is created. It is undesirable
for performance to be affected by file allocation that occurs at unplanned
intervals.

You can use the alter database space preallocation features to manage when
the allocation takes place, allowing control over when the allocation time delay
occurs. A significant amount of journal file I/O can occur when the first journal
file is created, with the archiver being unavailable during this time. This can be
observed as an online checkpoint taking a long time to complete, or the
archiver performing a large amount of work when the first journal write after
an offline checkpoint takes place.

Audit Trails

In addition to using journals for recovery, you can use journals to produce
audit trails of changes to a database. You must be the DBA for the database or
have the security privilege to perform an audit on a database.

Audit your database periodically to verify that your journals are correct.

Backing Up and Recovering Databases 427

Journals

Tools for Auditing a Database

In VDBA, the audit database operation is performed using the Audit Database
dialog, invoked by the Operations Audit menu command. For the detailed
steps for performing this procedure, see the Procedures section of online help.

To accomplish this task with a system command, use the auditdb command.
For more information, see the Command Reference Guide.

Understanding the Audit Operation

The Audit Database dialog in VDBA enables you to produce a listing or file of
changes made to journaled tables after the last checkpoint. It is possible that
this listing does not include all changes that have been made after the last
checkpoint for the following reasons:

 Because the audit database does not exclusively lock the database, other
users can complete a transaction while the audit is running.

 If other users are using the database when you perform an audit, a
completed transaction cannot have been moved to the journal files.

The audit database operation scans journal files twice. A prescan is performed
to filter out undesired information (for example, aborted transaction data). The
second scan outputs journal records of interest. To improve program
performance, the Before edit control value terminates both scans when an End
Transaction record is found that has a time later than that specified.

When the Inconsistent check box is enabled, you are allowed to view journals
that the database has marked as inconsistent.

Note: The audit database operation can still fail if core catalogs are
inconsistent.

When the Wait check box is enabled, the audit waits until journals are current.
“Current” in this context means either of the following:

 No further archiving is required on the database.

 The archiver has copied all log file information up to the log file end-of-file
when the audit database request was initiated.

Note: If a large amount of unarchived information remains in the log file when
this request is initiated, a significant delay in processing can occur.

428 Ingres 2006 R2 Database Administrator Guide

Journals

Load an Audit Trail as a Table

To make querying the data easier, you can create an audit trail as a file in
your current directory and load the file into a table in your database. To do
this, follow these steps:

1. In the Audit Database dialog, enable the Output Files check box and
specify the corresponding files to create an audit trail file in the current
directory.

Note: You must have first specified at least one table. Also, you can
specify files only if the table you are auditing has fewer than 1940 bytes
per row.

For example, the audit database operation extracts a record of the
changes to an employee table from the journal for a particular database.
The changes in the current directory can be placed in a file named
empaudit.trl.

2. To copy the file into a database table, create a table to hold the audit trail
data.

When creating the table, include the audit trail and employee table
columns shown below. Enter the audit trail columns before the table’s
columns, in the order shown. If you do not, the copy operation can fail
when you try to copy the audit trail data into the table.

Column Name Data Type Description

date date not null
with default

Date and time of the beginning of the multi-
query transaction that contained the
operation

username char(32) not
null with
default

User name of the user who performed the
operation

operation char(8) not
null with
default

Insert, update, or delete operation

tranid1 integer not
null with
default

Transaction identification number.
Concatenated with tranid2.

tranid2 integer not
null with
default

Transaction identification number.
Concatenated with tranid1.

table_id1 integer not
null with
default

Table identification number. Corresponds to
value in table_reltid column of iitables
system catalog for specified table.

Backing Up and Recovering Databases 429

Journals

Column Name Data Type Description

table_id2 integer not
null with
default

Table identification number. Corresponds to
value in table_reltidx column of iitables
system catalog for specified table.

name varchar(20) Employee name

age integer Employee age

salary money Employee salary

dname varchar(10) Department name

manager varchar(20) Employee manager

3. Use the copy statement to load the new table with the data from the file
from Step 2.

In the following example, the data in the empaudit.trl file is copied to the
empaudit table:

Windows:

copy empaudit() from 'C:\users\joe\empaudit.trl';

UNIX:

copy empaudit() from '/usr/joe/empaudit.trl';

VMS:

copy empaudit() from '[usr.joe]empaudit.trl';

The table created from the audit trail (in this example, the empaudit table)
contains:

 A row for each row added to the employee table

 A row for each row removed

 Two rows for each update: one showing the row before the update and
the other showing the row after the update

430 Ingres 2006 R2 Database Administrator Guide

Backup by Copying

Backup by Copying
You can copy a database to back up the tables, views, and procedures that
you own in a database.

Because any user authorized to use a database can use the copy database
operation, this is a useful backup method for a non-DBA, who can use it to
back up tables, views, and procedures.

By default, all of the tables, views, and procedures that you own in the
database are copied. If you specify table names, only those tables are copied.

For a complete explanation of the copy database operation, see the chapter
“Loading and Unloading Databases.”

Backup by Unloading
Unloading a database is a time-consuming method for backing up and
recovering your database, because all of your database’s files must be
unloaded and reloaded. For this reason, it is recommended that you use
checkpointing instead.

However, unloading a database can be useful as a backup tool because it
enables you to:

 Generate copy scripts, which can be used to recreate your database.

 Recover particular tables by editing the copy.in scripts. For a description of
the copy.in scripts, see the chapter “Loading and Unloading Databases.”

For the detailed steps for generating these scripts using VDBA, see the
Procedures section of online help. See the Creating Unload and Reload Scripts
topic.

To accomplish this task using a system command, use the unloaddb
command. For more information, see the Command Reference Guide.

Backing Up and Recovering Databases 431

Recovery

Recovery
To recover a database from checkpoints and journals or from checkpoints only,
you use the roll forward operation. This operation lets you recover the
following:

 A non-journaled database from a checkpoint

 A journaled database from checkpoints and journals

 A database from a tape checkpoint

 Selected tables

Rollforward Operation

Performing a roll forward of a database overwrites the current contents of the
database being recovered.

When you roll forward a database, the database is locked to prevent errors
from occurring. If the database is busy, the roll forward operation waits for the
database to be free before recovering it. (If you specify the Wait option, the
rollforwarddb operation pauses until all users have left the database. If you do
not specify the Wait option, you get a message that the database is in use.)

If the target checkpoint was taken online (when the database was in use), the
roll forward operation does the following:

 Restores the database from the checkpoint location to the database
location.

 Applies the log records in the dump location to the database, which
restores the database to the state when the checkpoint began. The log
records contain the transactions that were in progress when the
checkpoint was taken.

Because there were no transactions in progress during an offline
checkpoint, this step is not performed when restoring a database from an
offline checkpoint.

 Applies the journal records to the database, if the database is journaled.

432 Ingres 2006 R2 Database Administrator Guide

Recovery

A roll forward can write Compensation Log Records (CLRs) to the transaction
log file while executing the rollback phase of a roll forward recovery. This
happens rarely, only if incomplete transaction histories are written to the
journals. This is an unlikely condition except when the transaction log file is
lost (or, if running with dual logging, when both copies are lost). In this case,
it is possible for journal files to grow in size as a consequence of performing a
roll forward.

To perform a roll forward, you must be the DBA for the database or have the
operator privilege.

Tools for Performing a Roll Forward Operation

In VDBA, to roll forward a database, use the Roll Forward DB dialog, invoked
by the Database Rollforward DB menu command. For the detailed steps for
performing this procedure, seethe Procedures section of online help for VDBA.
See the Recovering a Database from Checkpoints topic.

To use a system command to accomplish this task, use rollforwarddb
command. For more information, see the Command Reference Guide.

Recover a Journaled Database

To recover a specific database from the last checkpoint and journal, where
both the checkpoints and journals are stored online, select the default options
in the Roll Forward DB dialog.

Recover a Non-Journaled Database

To recover a non-journaled database from the last checkpoint, enable the
From Last Checkpoint check box in the Roll Forward DB dialog.

Recover a Database from Tape Checkpoints

To recover a database whose checkpoints are on tape, mount the tape reel
containing the checkpoints. Select the default options in the Roll Forward DB
dialog and also specify the tape drive in the From Tape Device edit control.

The checkpoint is read from the tape and the journal files are applied, if the
database is journaled, to bring your database up to date.

Backing Up and Recovering Databases 433

Recovery

Parallel Roll Forward from Disk (UNIX)

To roll forward a multi-location database to disk in parallel, issue the
rollforwarddb command the #m flag followed by the number of parallel
restores to be run.

For example, to restore two data locations at a time from the II_CHECKPOINT
location, the command is as follows:

rollforwarddb #m2 dbname

Parallel Roll Forward from Tape (UNIX)

To roll forward a multi-location database from tape in parallel, specify the
devices to be used in the From Tape Device edit control. For example, the
following tape device can be specified:

/dev/rmt/0m,/dev/rmt/1m

This restores one location per tape—the first location can be restored from
device 0m; the second location can be restored from device 1M. The third
location can be restored from whichever device is finished first. The remaining
locations can be restored from the next free device. The operator is prompted
to insert the numbered tape into the free device.

Some points to be aware of when performing parallel roll forward from tape in
UNIX include:

 Recovery does not have to be in parallel if a checkpoint was done in
parallel.

 Recovery can be in parallel if a checkpoint was not done in parallel.

 Each tape label must include the checkpoint number, database name, and
location number.

 Each tape device must be the same medium, that is, all 4mm or all 8mm;
mixing is not permitted.

 The maximum number of devices that can be used is limited by the
system’s input and output bandwidth.

434 Ingres 2006 R2 Database Administrator Guide

Recovery

Table Recovery Using Roll Forward

You can specify that only certain tables are recovered during a roll forward
database operation. (Journals of tables in the database must be enabled.)
When doing table-level recovery, you can optionally move the table to a new
location.

Note: The database must be extended to the new locations before the
rollforward.

In the Roll Forward DB dialog, some of the available options that relate to
specifying tables include:

 Specifying individual tables

 Relocating tables

 Continue processing on error conditions

 Inhibiting automatic recovery of secondary indexes

Note: Table recovery is not allowed if structural changes have been made to
the table after the checkpoint (that is, if you have modified the table, created
indexes or altered the number of columns in the table).

Retract Changes Using Roll Forward

If a user makes a serious error in a table that is being journaled, the changes
can be retracted. Use roll forward to restore the database up to the beginning
of the transaction in which the error occurred.

For example, to restore a database from the previous checkpoint to its
condition at 8:00 A.M. on August 17, 1998, specify the following options in the
Roll Forward DB dialog:

 Verbose check box enabled

 From Last Checkpoint check box enabled

 From Journal check box enabled

 Before: 17-aug-1998:08:00:00

This retracts all changes made to the database after this time, not just those
made to the table with the error.

To ensure that the error is not reintroduced when you perform a roll forward in
the future, take a new checkpoint to reset the journals.

Backing Up and Recovering Databases 435

Recovery

Recover a Subset of Data Using Roll Forward

The roll forward end time option (specified in the Before edit control) permits
the recovery of a subset of data in the journal file. The option is useful when
problems have been encountered in a full roll forward database operation or
when, for example, a critical piece of data has been inadvertently deleted.

There is one important consideration when using this option. As this form of
recovery does not restore the database to the state reflected by the full set of
journals, it is critical that a checkpoint of the database be performed after the
recovery completes. If not, another roll forward performed later can leave the
database in an inconsistent state.

The only recommended course of action is to roll forward a database with the
Before value specified:

 Roll forward the database again

 Checkpoint the database, preferably specifying the Delete Previous option
(to delete previous checkpoints)

Note: The Before and End options operate on End Transaction timestamps,
not on the time that a user can associate with an update. The audit database
End and Before options (in the Audit Database dialog) also operate on End
Transaction timestamps, and can be used to check anticipated roll forward
results.

436 Ingres 2006 R2 Database Administrator Guide

Recovery

Recover a Database from an Old Checkpoint

If the most recent checkpoint has been damaged or is unreadable, it is
possible to recover from an older checkpoint. You can use either a specific
checkpoint number or the most recent usable checkpoint.

To recover the database from a particular checkpoint and apply all journals
after that time, enable the From Specified Checkpoint check box and enter the
checkpoint number in the corresponding spin box.

The checkpoint sequence number must be a valid checkpoint number. You can
verify this number in the Infodb dialog, invoked by the Database Infodb menu
command.

If the most recent checkpoint is unfinished and you want to recover using the
most recent usable finished checkpoint, enable the From Specified Checkpoint
check box and do not enter a corresponding checkpoint number.

The From Specified Checkpoint option can also be used with the After and
Before edit controls if you want to restore a database to its state at some
previous moment in time.

Caution! You must exercise extreme caution with the After and Before
options. Because these commands roll the database forward to a point in time
other than that fully represented by the journals, transactions that were
performed after the Before time or before the After time are lost. Partially
completed transactions can be backed out by the roll forward process.
Furthermore, a checkpoint must always be performed after completion of such
a roll forward, thereby ensuring that obsolete journal data is not inadvertently
reused in a subsequent recovery (or by an audit database operation to
produce inaccurate auditing results).

Note: The audit database After and Before options behave as do the
equivalent roll forward flags, and can be used to predict roll forward results.

For a full explanation of the options associated with roll forward operation, see
the Roll Forward DB dialog topic in the VDBA online help. It can be accessed
through the Recovering a Database From Checkpoints topic in the Procedures
section.

Backing Up and Recovering Databases 437

Checkpoint Template File Description

Recover from the Loss of the Transaction Log File

In the unlikely event of a loss of the transaction log file (or, if dual logging is
enabled, loss of both file copies), the following recovery procedure can be used
to restore as much database information as is possible.. Follow these steps:

1. Create a new transaction log file. For more information, see the
Installation Guide.

2. The next action differs, depending on whether offline or online backups
take place. Included in the latter class of systems are those that employ
journaling capabilities.

 For offline backups

 Installations using their own backup and recovery mechanisms
(implying no use of online checkpoint or journaling facilities) only need
to restore database directories and bring the system back up. No
directed recovery is needed, after backups are done during a period
when there is no system activity, and when all database information is
resident on disk.

 For online backups and roll forward

If you are using online checkpoints and journaled databases, bring the
installation back up with the newly initialized log file. All databases
open at the time of the failure can be marked inconsistent by the
recovery process. Each must be recovered in turn by the roll forward
database operation. The Enable Journaling option with roll forward is
specified for journaled databases; this option is not specified for those
databases that are not journaled.

Note: A roll forward operation restores databases to a consistent state even if
incomplete transaction histories have been copied to the journal files.

Checkpoint Template File Description
The checkpoint template file drives the checkpoint and roll forward operations.
If needed, you can tailor the file to meet the requirements of your site.

For example, if the database exists on multiple locations, checkpointing backs
up each location to a separate tape or disk and, in turn, roll forward restores
each location one at a time. If you want to use a different backup method or
only one tape for all locations, you can edit this command file.

438 Ingres 2006 R2 Database Administrator Guide

Checkpoint Template File Description

Checkpoint Template Codes

In the checkpoint template file, a four-character uppercase code at the
beginning of each line provides the following information:

The first character indicates when the command is to be used. Valid characters
are:

B (Begin)—the command is to be executed before the device is used. It
indicates setup work done prior to the execution of the command.

P (Prework)—the command is to be executed before the work is executed.

I—the command begins table-level recovery (initializes only).

W (Work)—the command activates the device. It indicates the execution of the
command.

F—the command ends table-level recovery (comments only).

E (End)—the command is executed after the device is used. It indicates
cleanup work done after the operation is complete.

The second character indicates whether the command specifies several types
of checkpointing and roll forward options. Valid characters are:

S—the command is for checkpointing only.

R—the command is for roll forward only.

E—the command is for both checkpointing and roll forward.

D—the command is for delete file processing.

C—the command checks if a database checkpoint exists before the roll
forward.

J—journals are to be applied, for a roll forward.

U—dumps are to be applied, for a roll forward.

The third character specifies the device. Valid characters are:

T—the command on that line refers to reading from or writing to a tape.

D—the command refers to disk operations.

E—the command applies to both types of devices.

The fourth character specifies the data. Valid characters are:

D—the command is for a database.

A—the command is for all databases.

T—the command is for table(s).

E—the command is for either a database or table.

R—the command is for a raw location (database and table level are the same)

Backing Up and Recovering Databases 439

Checkpoint Template File Description

Examples: Checkpoint Template Code

Here are examples of a checkpoint template code:

WSTD identifies the command line to use during the working (W) phase of a
checkpoint which is saving (S) a database to tape (T), for a database (D).

BRDT identifies the command line to use during the begin (B) phase of a roll
forward operation that is restoring (R) from disk (D) for a table (T).

Substitution Parameters

The checkpoint template file can optionally include substitution parameters
that can be filled in at run time, to specify things like:

 Which database directory to back up

 Which tape device the user specified in the Checkpoint dialog

The parameters consist of a “%” and a single uppercase character, as follows:

%T

The type of operation: 0 if to tape, 1 if to disk.

%N

The total number of locations being written.

%M

For the begin or end operations, the incremental/current location number.
For save or restore operations, this starts at 1 and is incremented after
each save or restore command.

%D

The path to the database directory being saved or restored.

%C

The path to the checkpoint directory of disk files or the device name if to
tape.

%F

The name of the checkpoint file created or read from.

%A

%C prepended to %F in a form to produce a fully specified file (that is, %A
= %C/%F).

440 Ingres 2006 R2 Database Administrator Guide

Checkpoint Template File Description

%X

The name of the table, pertinent to the work commands executed under
table processing.

%B

Expanded during execution to represent the list of internal files that are
associated with a table checkpoint. This parameter is pertinent to the work
commands executed under table processing.

The “%” parameters in the commands are replaced by ckpdb and/or
rollforwarddb when the command is executed.

Valid Code Combinations in the Checkpoint Template File

The valid code combinations in the checkpoint template file are shown here:

B [S,R,E,J,U] [T,D,E] [T,D,E,A]
P [S,R] [T,D] [D,T]
W [S,R,E,J,U,D,C] [T,D,E] [T,D,E,A]
I [,R,E] [T,D,E] [T,E]
F [,R,E] [T,D,E] [T,E]
E [S,E] [T,D] [D,T,E]

For every entry with a first character of B, there must be an accompanying
entry beginning with E.

This section demonstrates how the codes are used in the checkpoint template
file to perform checkpointing and roll forward operations in a variety of ways.

Checkpointing

The checkpointing operation (ckpdb command) executes the following
sequence of codes in the cktmpl.def file:

Bsxy Beginning checkpoint
Wsxy Executed once for each location
Esxy Ending checkpoint

where:

x denotes D for disk, T for tape, or E for both.
y denotes D for database, T for table, or E for both.

Backing Up and Recovering Databases 441

Checkpoint Template File Description

Roll Forward

The roll forward operation (rollforwarddb command) processes the following
codes in the cktmpl.file:

WCxA for each location

If table processing is specified, the following codes are executed:

BRxT once per location
IRxT once per location
WDxT for each table
WRxT for each table
FRxT once per location
EExE once (note that ERxT is executed if available)

If an entire database is being recovered (rather than specific tables), the
following codes are executed:

BRxD once for each location
WDxD once for each location
WRxD once for each location
EExE once (note that ERxD is executed if available)

For all roll forward operations, the following codes are executed:

BUxA if dumps are to be applied
WUxA
EExE
BJxA if journals are to be applied
WJxA
EExE

442 Ingres 2006 R2 Database Administrator Guide

Checkpoint Template File Description

Format of the Checkpoint Template File in Windows

The checkpoint template file uses the two batch files, ckcopyd.bat (for
checkpointing to disk) and ckcopyt.bat (for checkpointing to tape).

The checkpoint template file, cktmpl.def, can be found in the folder
%II_SYSTEM%\ingres\files.

Each line contains a command preceded by a four-character code that tells
when to use the command.

By altering this file, or the two batch files that it calls, you can change how
checkpoints are performed. You can add or delete flags to the underlying
operating system commands, or you can supply your own batch files to
perform the backup and restore steps.

For example, the command:

BSTD: echo Beginning checkpoint to tape %C of %N locations

indicates what is done initially, before the device is used (B), when
checkpointing is used to save (S) a database location to tape (T), for a
database (D).

As another example, when executing a checkpoint on a database that spans
multiple locations, one of the following commands is executed once for each
location (WSTD for backup to tape, WSDD for backup to disk):

WSTD: ckcopyt %N %D BACKUP

WSDD: ckcopyd %D %A BACKUP

The commands instruct the checkpoint operation to call either the ckcopyt.bat
or ckcopyd.bat batch command file to do the actual backup.

The checkpoint utility automatically substitutes the appropriate values for
“%N,” “%D,” and “%A.”

The ckcopyt.bat batch file calls the Windows backup backup command and
passes it the name of the directory for the location, and other operating
system flags.

Backing Up and Recovering Databases 443

Checkpoint Template File Description

Format of the Checkpoint Template File in UNIX

The checkpoint template file, cktmpl.def, uses the UNIX tar command. This file
can be found in $II_SYSTEM/ingres/files.

Each line is a command preceded by a four-character code that instructs the
checkpoint operation when to use the command.

By altering this file you can change how checkpoints are performed. You can
add or delete flags from the tar commands or you can supply your own shell
scripts to perform the backup and restore steps.

For example, the command:

BSTD: echo beginning checkpoint to tape %C of
 %N locations

indicates what is done initially, before the device is used (B), when the
checkpoint operation is used to save (S) a database location to tape (T) for a
database (D).

As another example, when executing a checkpoint on a database that spans
multiple locations, the following command is executed once for each location:

PSTD: echo mount tape %N and press return;
 read foo;

WSTD: cd %D; /bin/tar cbf 20 %C *

The command instructs the checkpoint operation to save each location on a
tape and to use the tar command with the parameter cbf 20. The checkpoint
utility automatically substitutes the appropriate value for “%N,” “%D,” and
“%C.”

444 Ingres 2006 R2 Database Administrator Guide

Checkpoint Template File Description

Format of the Checkpoint Template File in VMS

The checkpoint template file, cktmpl.def, can be found in
$II_SYSTEM:[INGRES.FILES].

The checkpoint template file uses the four-letter key described above to begin
each line. A line can specify an individual tape and disk handling command or
the name of a user-written command file to provide more complex processing
such as backing up all of a database’s locations concurrently.

Defaults are provided so that sites using standard processing do not need to
alter the checkpoint template file.

Here are some example lines from a cktmpl.def file:

WSTD: @ckp_to_tape "%N" "%D" "%C" "%F"
WSDD: @ckp_to_disk "%D" "%A"
WRTD: @rollfwd_from_tape "%N" "%D" "%C" "%F"
WRDD: @rollfwd_from_disk "%A" "%D"

Each of these example lines specifies the name of a command file and
establishes requests for run-time information.

Alternate Checkpoint Template File in UNIX

The alternate checkpoint template file, cktmpl_cpio.def, uses the UNIX cpio
command to backup and restore the database files. This file can be found in
$II_SYSTEM/ingres/files.

To use this template file, enter the following command to override the default
cktmpl.def template file:

ingsetenv II_CKTMPL_FILE $II_SYSTEM/ingres/files/cktmpl_cpio.def

Backing Up and Recovering Databases 445

Backup and Recovery of the Master Database (iidbdb)

Backup and Recovery of the Master Database (iidbdb)
The iidbdb database is your Ingres installation’s master database. It contains
information about your installation as a whole, such as:

 Which databases exist in this installation

 Where user databases are located

 Which locations can be used for files

 Which users can access databases

The iidbdb also contains information about groups, roles, and database
privileges defined for your site.

The iidbdb is journaled by default.

The iidbdb and Checkpointing

You should regularly checkpoint and journal the iidbdb database. Ckpdb and
rollforwarddb are the supported utilities for recovering the iidbdb if it is lost or
damaged for any reason. The system catalogs containing the installation
information for groups, roles and database privileges are stored in the iidbdb
database and can only be recovered from backups.

For the detailed steps for performing these procedures, see the Procedures
section of online help for VDBA. See the topic Setting Checkpoints and the
topic Recovering a Database from Checkpoints.

446 Ingres 2006 R2 Database Administrator Guide

Set Log_Trace Statement

Set Log_Trace Statement
You can use the log_trace option of the set statement to start and stop tracing
of logfile writes. Using this option requires the trace privilege.

Important! Do not use set log_trace only as a debugging or tracing tool. Do
not base applications on Set log_trace output because it is not guaranteed to
remain the same across releases. You are not guaranteed of the support of set
log_trace in this or future releases.

To start tracing log writes, issue the following statement:

set log_trace;

To stop tracing log writes, issue the following statement:

set nolog_trace;

When you use set log_trace during a session, you receive a list of the log
records written during execution of your query, along with other information
about the log. Set log_trace output includes:

 The length of the log and the amount of space reserved for its CLR. For
more information on CLRs, see Log Space Reservation (see page 404).

 If the log write is a normal log record (do/redo) or a CLR.

 If the log record can be copied to the journal file.

If the log is associated with a special recovery action.

Backing Up and Recovering Databases 447

Chapter 16: Calculating Disk Space

This chapter discusses how to calculate the disk space needed for the various
files and operations of an Ingres installation.

An Ingres installation requires disk space for storing the system executables
as well as for data tables. Disk space is also used during the execution of
many commands. Adequate resources are needed for the user account of the
installation owner, for the DBA, and for the end users to ensure that the
installation is free of problems due to inadequate disk space.

Space Requirements for Tables
This section defines terms applicable to page size and gives calculations for
estimating the amount of disk space needed for tables. These are
approximations—your table can be much larger, depending on compression
and the size of key values.

The calculations are based on newly modified tables. Using the number of rows
in the table to determine table size becomes less accurate after data has been
deleted or added.

VDBA provides a calculation tool that allows you to calculate disk space
requirements for any storage structure quickly and easily. For procedures, see
online help.

Calculate Space Requirements for Heap Tables

Note: If rows in the table span pages, use the procedure in Calculate Space
Requirements When Rows Span Pages (see page 453) instead.

Use the following procedure to determine the amount of space needed to store
the data in a heap table:

1. Create the table.

2. Determine the number of rows that fit on a page.

select tups_per_page from iitables where table_name = ‘tablename’;

3. Determine the total number of pages needed if the table is a heap.

total_heap_pages = num_rows / tups_per_page

Calculating Disk Space 449

Space Requirements for Tables

Calculate Space Requirements for Hash Tables

Note: If rows in the table span pages, use the procedure in Calculate Space
Requirements When Rows Span Pages (see page 453) instead.

Follow these steps to determine the amount of space needed to store the data
in a hash table.

1. Create the table and modify it to hash.

2. Determine the number of rows that fit on a page, adjusted for the data
page fillfactor to be used.

select tups_per_page * table_dfillpct/100 from iitables where
table_name = ‘tablename’;

3. Determine the total number of pages needed for a hash table.

total_hash_pages = (num_rows/(tups_per_page)

Note: Because hashing does not guarantee an equal distribution of rows,
the actual number of pages required can be greater than calculated above.

450 Ingres 2006 R2 Database Administrator Guide

Space Requirements for Tables

Calculate Space Requirements for ISAM Tables

Follow these steps to determine the amount of space needed to store the data
in an ISAM table:

1. Create the table and modify it to ISAM.

2. Determine the number of rows that fit on a page (adjusted for data page
fillfactor) and the number of keys that fit on an index page.

select tups_per_page * table_dfillpct/100, keys_per_page from iitables
where table_name = ‘tablename’;

3. Determine the number of data pages needed for the table:

data_pages = (num_rows / tups_per_page)

Note: When rows span pages, determine the number of data pages using
the calculation in Calculate Space Requirements When Rows Span Pages
(see page 453) instead.

4. Determine the number of index pages needed for the table:

index_pages = data_pages / keys_per_page

Note: When rows span pages, use the following calculation instead:

index-pages = num_rows / keys_per_page

5. Determine the total number of pages needed for the table. The total
includes data pages and index pages. The total number of allocated pages
in an ISAM table is never less than keys_per_page.

total_isam_pages = data_pages + index_pages

if (total_isam_pages < keys_per_page)

total_isam_pages = keys_per_page

Calculating Disk Space 451

Space Requirements for Tables

Calculate Space Requirements for B-tree Tables

Follow these steps to determine the amount of space needed to store the data
in a B-tree table:

1. Create the table and modify it to B-tree.

2. Determine the number of rows that fit on a page, the number of keys that
fit on an index page, and the number of keys that fit on a leaf page
(adjusted by the appropriate fillfactors):

select tups_per_page * table_dfillpct/100, keys_per_page *
table_ifillpct/100, keys_per_leaf * table_lfillpct/100 from iitables where
table_name = ‘tablename’;

3. Determine the number of leaf pages needed. Save the remainder of the
division because it is used later:

leaf_pages = (num_rows/keys_per_leaf)

remainder = modulo (num_rows / (keys_per_leaf)

4. Determine the number of data pages needed.

data_pages = leaf_pages * (keys_per_leaf / tups_per_page)

Note: When rows span pages, determine the number of data pages using
the calculation in Calculate Space Requirements When Rows Span Pages
(see page 453) instead.

5. If the remainder from Step 3 is greater than 0, adjust the number of leaf
and data pages:

a. leaf_pages = leaf_pages + 1

b. Round the division up to the nearest integer:

 data_pages = data_pages + (remainder / tups_per_page)

Note: When rows span pages, Step 5b does not apply.

6. Determine the number of sprig pages.

sprig_pages: The number of index pages that have leaf pages as their next
lower level:

a. If leaf_pages <= keys_per_page, then sprig_pages = 0

b. Otherwise, calculate as follows, and round up to the nearest integer:

 sprig_pages = (leaf_pages / keys_per_page)

452 Ingres 2006 R2 Database Administrator Guide

Space Requirements for Tables

7. Determine the number of index pages.

index_pages: The number of index pages that are not sprig pages. This is
done iteratively. Do the following if sprig_pages > keys_per_page:

x = sprig_pages
do
 {
 x = x / keys_per_page
 index_pages = index_pages + x
 }
while (x > keys_per_page>

8. Determine the total space required. The total includes data pages, leaf
pages, sprig pages, and index pages.

total_btree_pages = data_pages + leaf_pages + sprig_pages +
index_pages

Calculate Space Requirements When Rows Span Pages

Follow these steps to determine the amount of space needed to store the data
in a table with rows that span pages:

1. Determine the number of pages per row, as follows:

pages_per_row = row_size / max row size

where max_row_size is the maximum row size for the table, as shown in
Maximum Row Size Per Page Size (see page 453).

Round up to the nearest integer.

2. Determine the number of data pages needed for the table, as follows:

data_pages = num_rows * pages_per_row

Maximum Row Size Per Page Size

Table rows span pages if the row size is greater than the maximum row size
for the table page size, as shown in this table:

Page Size Max Row Size

2048 (2 KB) 2008 bytes

4096 (4 KB) 3988 bytes

8192 (8 KB) 8084 bytes

16384 (16 KB) 16276 bytes

32768 (32 KB) 32660 bytes

Calculating Disk Space 453

Space Requirements for Tables

Page Size Max Row Size

65536 (64 KB) 65428 bytes

Space Requirements for Compressed Tables

Table size for compressed tables is not possible to determine by an algorithm
because the number of fields that can be compressed, and what percentage
they can be compressed, differ for every table.

To get any sort of estimate, you must guess the amount by which each record,
on the average, can be compressed. Use this estimated record width to
determine the size of the table as if it were uncompressed, using the rules set
forth above.

Tracking of Used and Free Pages

The DBMS space management handles used and free page tracking. A table
uses a combination of a single free header page (H) and one or more free map
pages (M) to track free and used pages.

In VDBA, to view the graphical display of the pages, select a table and select
the Pages tab.

Each free map page can track 16,000 pages, recording whether the page is
free or used. As tables are allowed to grow past 16,000 pages, there can be
more than one free map page in a table.

Free map pages are tracked by the free header page, whose location is
recorded in the system catalog entries for the table.

Free header and free map pages are additional pages required for each table
page count.

Note: All tables in the database can grow by a minimum of two pages. One
free map page is added per 16,000 pages.

Note: For B-tree tables, all empty disassociated data pages and any pages on
the old free list are marked as “used.” The only way to reclaim this space is to
select Shrink B-tree Index in the Modify Table Structure dialog in VDBA, or use
the modify table to B-tree statement in SQL. For more information, see the
SQL Reference Guide.

454 Ingres 2006 R2 Database Administrator Guide

Space Requirements for Journal Files

Calculation of Allocated Table Size

VDBA automatically calculates table size based on the number of allocated
pages. Using VDBA, select a table and select the Pages tab to view the pages
property sheet.

Alternatively, the allocated_pages field in the iitables standard catalog can be
used to calculate table size based on the number of allocated pages. You can
calculate:

 The size of the table on disk as:

iitables.allocated_pages * PageSize

 The number of free pages left in the table as:

iitables.allocated_pages – iitables.number_pages

Space Requirements for Journal Files
Journal files are created in the database’s journal directory. This is a single
directory.

The archiver moves log file records for journaled tables affected by committed
transactions to the database’s journal file during periodic sweeps through the
log file. The journal files are never directly connected to user sessions—they
are written only by the archiver.

The following conditions cause a new journal file to be started:

 Once the journal file reaches a certain size (currently about 8 megabytes)
a new journal file is started.

 Each checkpoint (set in VDBA) starts a new journal file upon its successful
completion, because the journal files contain records of changes made
after a specific checkpoint was taken.

You can delete old, unneeded journal files using VDBA. For more information,
see Setting Checkpoints in online help.

To accomplish this task at the command line, use the ckpdb system command.
For more information, see the Command Reference Guide.

Calculating Disk Space 455

Space Requirements for Modify Operations

Space Requirements for Modify Operations
Modify operations require additional working disk space because a new version
of the table must be built before the old table can be removed. In most cases,
modify operations require about two or three times more space than the
original table size. This is only an approximation; the amount of disk space
actually needed can vary.

The free disk space is also required during modify to relocate and modify to
reorganize operations.

For information about relocating and changing the location of storage
structures, see the Modifying Storage Structures topic in online help for VDBA.
For details on the DBA use of these operations, see Techniques for Moving a
Table to a New Location (see page 68).

In SQL, you can accomplish these tasks with the modify to reorganize and
modify to relocate statements. For more information, see the SQL Reference
Guide.

The maintain_locations privilege is needed to perform the operation on
location objects in VDBA or to issue the modify location statement in SQL. The
maintain_locations privilege allows users to do the following:

 Control the allocation of disk space

 Create new locations or allow new locations to be created

 Modify or remove existing locations

456 Ingres 2006 R2 Database Administrator Guide

Space Requirements for Modify Operations

Factors Affecting Space Requirements for Modify Operations

The following are important factors that affect disk space requirements:

 You need at least twice the disk space of the table (“2X”), one copy of the
original table and one copy of the new table.

 The new table size can be increased if an index is being added.
Conversely, space can be freed if an index is no longer necessary. Index
space can vary widely depending on the size of the key.

 If you are modifying to a sorted structure (ISAM, B-tree) or to hash, an
additional copy of the original table is needed, thus requiring three times
the disk space of the table (“3X”).

 If you are modifying a compressed table, calculate disk space based on the
uncompressed size. In the worst case, this is the row size times the
number of rows.

Usually going from a compressed structure to an uncompressed structure
increases the table size, and going the other way decreases its size. The
amount of change cannot be predicted and is dependent on the data in the
table. If many NULL values are present and if many string fields have
trailing blanks, the use or omission of compression is very noticeable.

 Fill factor, minpages, leaffill, and nonleaffill also play a role in the resulting
table size. For details, see Options to the Modify Procedure (see
page 265).

Summary of Space Requirements for Modify Operations

The following table provides a summary for estimating disk space
requirements.

In the table, “O+N” (Original+New tables) corresponds roughly to twice the
table size (2X) and “O+N+S” to three times the table size (3X). The space
required can be affected by whether an index is added (“I” in the table) or
existing index space freed (“U” in the table).

Original
Table
Structure

Modified to

 Heap Hash ISAM B-tree

Heap O+N O+N+S O+N+S+I O+N+S+I

Hash O+N O+N+S O+N+S+I O+N+S+I

ISAM O+N-U O+N+S-U O+N+S O+N+S

B-tree O+N-U O+N+S-U O+N+S O+N+S

Calculating Disk Space 457

Space Requirements for Sorts

Legend:

O = Original table size
N = New table size
S = A sort is required
I = Index is being added
U = Space freed because an index is no longer necessary

Note: Remember that numerous factors contribute to the actual disk space
used in a particular modify operation. Additional factors include compression
and the various fill values.

Space Requirements for Sorts
Sorting occurs commonly during many index, copy, and modify operations.
(Sorting also occurs in the processing of the equivalent SQL statements.)

When the size of the sort requires disk space, temporary work locations are
used.

A default work location area is defined during installation.

The disk space required for sorting depends on how much sorting needs to be
done. If the table to be sorted is badly out of sorted order, more space can be
used than if it is in nearly sorted order.

For a nearly sorted table, the amount of work location space is equal to the
uncompressed size of the table.

For a table that is badly out of order, the maximum work location space is two
times the uncompressed size of the table, and the space required per location
can be estimated by the formula:

(2 * uncompressed_table_size) / number_of_work_locations

458 Ingres 2006 R2 Database Administrator Guide

Space Requirements for Sorts

Insufficient Sort Space

If any work location runs out of disk space during a sort, the sort fails and the
associated transaction is aborted.

To correct this situation, you can add additional work locations or provide
more space on the device that filled (by removing or relocating unneeded
files). Alternatively, the device that filled can be dropped through the set work
locations statement.

For information about work locations and the set work locations statement,
see Work Locations (see page 45). For a discussion on deleting unneeded files,
see the chapter “Maintaining Databases.”

Orphaned Sort Files

Sort files can be left in work locations after certain types of failures.

In VDBA, use the “verify database” procedure to remove these orphaned files.
For more information, see Verifying a Database in VDBA online help.

To accomplish this task at the command line, use the verifydb command. For
more information, see the Command Reference Guide.

Factors Affecting Sort Performance

The use of multiple work locations does not generally affect overall sort
performance.

In UNIX, the performance of very large sorts can be affected by the amount of
available operating system cache memory. While most aspects of server
performance are largely unaffected by the OS cache size, sorts employ the OS
cache, as well as the Ingres DBMS Server DMF cache. Sorting time can
sometimes be improved by configuring additional OS memory.

Calculating Disk Space 459

Chapter 17: Improving Database and
Query Performance

This chapter contains information on how to improve and optimize query and
database performance. Good performance requires planning and regular
maintenance.

The techniques and procedures in this chapter may help you to solve a
performance problem yourself or to accurately define the problem if you must
call customer support.

Note: This chapter assumes that Ingres is running satisfactorily. If you are
encountering problems with the operation of Ingres, first see the System
Administrator Guide for troubleshooting information.

Locking and Concurrency Issues
If your performance problem occurs in a multi-user environment or if the
query runs slowly or hangs intermittently, you can have a concurrency
problem.

Concurrency problems occur when several users access the same tables and at
least one is a writer. If your query needs to access objects that are locked, the
session waits indefinitely for locks to be released unless the lockmode timeout
is set or a deadlock occurs.

Improving Database and Query Performance 461

Locking and Concurrency Issues

Lock Waits and Performance

To monitor locks, use the Lock Information branch of the Performance Monitor
window in VDBA to monitor lock waits. For details, see Viewing Performance
Information in online help. The Performance Monitor can also be accessed by
choosing Ingres Visual Performance Monitor from the Ingres menu.

If you find lock waits, identify the queries that are holding locks on the
resources you are waiting to access. You must modify your locking strategy to
avoid future problems.

Pay particular attention to:

 maxlocks

 readlock = nolock

 timeout

 set lock_trace command

If the lock being waited on was created as the result of lock escalation, your
system is configured with too few system-wide locks. This is a configuration
issue; see the System Administrator Guide.

If lock escalation occurs because too many locks are taken on a given table’s
pages, a set lockmode statement can be issued to increase this threshold. The
default is 10 before escalation occurs. For more information, see the chapter
“Understanding the Locking System.”

462 Ingres 2006 R2 Database Administrator Guide

Locking and Concurrency Issues

Multi-query Transactions and Performance

Remember that a transaction accumulates locks on resources until you roll
back or commit. A transaction that is waiting for locks, or that is not waiting
for a lock but nevertheless seems unusually slow, can be using excessive
server or system resources.

Here are suggestions:

 Keep your transactions as short as possible.

 Commit your transactions quickly:

– You create large multi-query transactions (MQTs) unless you use set
autocommit on or commit after each statement. Statements
accumulate as one multi-query transaction until you commit.

– MQTs must not include prompts that hang the transaction until a user
responds, or sleeps that prevent your transaction from being released
quickly.

 Avoid bottlenecks in your transaction such as:

– Insert to heap table with secondary indexes

– Counter table updates

– Iterative deletes

– Unbounded long iterations

Improving Database and Query Performance 463

Locking and Concurrency Issues

Overflow and Performance

Overflow chains slow concurrent performance. Overflow pages are attached to
the main data page if a record must be added to a full main page. The query
that touches one main data page must now touch that page plus each
associated overflow page. This increases I/O, cause concurrency problems,
and uses up locking system resources.

Here are suggestions:

 Monitor overflow chains.

Check the number of overflow pages for your tables and secondary
indexes. To monitor overflow in VDBA, select a table or secondary index in
the Database Object Manager window, and click the Pages tab. Use the
legend to interpret the information displayed.

If the number of overflow pages is greater than 10-15% of the number of
data pages, expect performance degradation.

 Check for duplicate keys. Overflow problems are often caused by them.

 Consider trying a different storage structure. Some table structures create
long overflow chains when much new data is added. For details, see
Storage Structure and Overflow (see page 465).

 Decrease overflow

Here are ways to decrease overflow and improve concurrency:

– Use unique keys.

– Modify the table to reorganize it; with a B-tree structure, simply
specify the Shrink B-tree Index option.

– Consider tailoring the table’s fill factor.

For additional information, see the sections on overflow and fill factor in the
chapters “Choosing Storage Structures and Secondary Indexes” and
“Maintaining Storage Structures.”

464 Ingres 2006 R2 Database Administrator Guide

Locking and Concurrency Issues

Storage Structure and Overflow

Here are overflow considerations for each storage structure:

 Heap—Heap tables are created as one main page with an overflow chain.
There is no overflow management.

 Hash—Overflow pages occur in a newly modified table if the key is
repetitive; this is normal but undesirable. Check a freshly modified table.
If there is overflow, consider using ISAM instead.

 ISAM—ISAM has a fixed index that can cause long overflow chains. Modify
frequently or use B-tree for a non-static table. Use heap structure for large
bulk updates and modify back to ISAM to avoid update performance
problems.

 B-tree—No overflow if there are no duplicate keys, so consider making
keys unique. Overflow occurs only at the leaf level. Use the Shrink B-tree
Index option to reorganize it. Use heap structure for bulk loads, modify to
B-tree.

Set Statements and Locking Strategy

There are a variety of set statements you can use to manage your locking
strategy.

Be sure you are using user-defined lockmodes and isolation levels to their
fullest to avoid concurrency and deadlock. For assistance with strategy, see
the chapter “Understanding the Locking System.” For command syntax, see
your query language reference guide.

Pay particular attention to:

 Deadlock

 Lock_trace flag

 Maxlocks

 Readlock = nolock

 Timeout

For additional information on the use of the set statement to customize the
query environment, see the System Administrator Guide.

Improving Database and Query Performance 465

Database Maintenance Issues

Database Maintenance Issues
If your query used to run quickly and is now slower, or the speed of the query
changes depending on the constants specified in the where clause, your
problem can be poor database maintenance.

To optimize performance, set up maintenance procedures that run DBA
utilities.

The following features are especially useful in tracking performance problems:

 Optimization

 Modification of table and index structure

 System modification

 Verification

For discussions of maintenance issues, see the chapters “Maintaining
Databases,” “Maintaining Storage Structures,” and “Using the Query
Optimizer.”

Optimization and Performance

The optimization feature collects statistics that are used by the query
optimizer to determine the best query execution plan (QEP) to use for your
queries.

Follow these optimization guidelines:

 Periodically run optimization on all your databases to generate statistics
for columns that are keys or indexed. List the other columns you need as
an argument to this command.

 Run full optimization statistics on columns referenced in where clauses of
strategic queries that are having problems.

 For very large tables, create statistics based on sample data.

 When there are significant changes to your data distribution, run
optimization on the affected columns.

 Do not collect excessive statistics, because you build up large optimizer
tables with unused data.

 Run system modification after every optimization.

To perform optimization, use the optimizedb command or, in VDBA use the
Optimize Database dialog.

466 Ingres 2006 R2 Database Administrator Guide

Database Maintenance Issues

Table and Index Modification and Performance

You can modify a table or index to:

 Reorganize data on new data pages

 Free deleted record space

 Reduce overflow chains

 Adjust the fill factor

Use the Shrink B-tree Index option (or modify to merge statement) to:

 Reorganize index pages of B-tree tables

 Reduce overflow chains

Use the Change Location option (or modify to relocate statement) to move
your tables to balance disk access.

To perform modification, use the modify statement or, in VDBA use the Modify
Table Structure and Modify Index Structure dialogs.

System Modification and Performance

The system modification feature modifies system catalogs to predetermined
storage structures.

 Run system modification on the iistatistics system catalog after
optimization.

 Run system modification on ii_rcommands if you create and update a lot of
Report-Writer reports.

 Regularly using system modification reduces overflow in your system
catalogs. Run it often if catalog changes are frequent due to development
or if you use many create or drop statements in your applications.

To perform system modification, use the sysmod command or, in VDBA, use
the System Modification dialog

Improving Database and Query Performance 467

Design Issues and Performance

Verification and Performance

Use the verification utility to:

 Destroy or list unrequired disk files, expired tables, or temporary tables in
your database

 Clean up fragmented disk space

To perform verification, use the verifydb command or, in VDBA, use the Verify
Database dialog.

Design Issues and Performance
Good query performance requires planning.

Carefully plan the design of the following:

 Storage structures and indexes

 Keys

 Queries

For help in identifying performance issues, see the chapters “Ensuring Data
Integrity,” “Maintaining Databases,” “Maintaining Storage Structures,” and
“Using the Query Optimizer.”

Other important design issues are:

 Database design

 Validation checks and integrities

 Grants and views

 Application design

468 Ingres 2006 R2 Database Administrator Guide

Design Issues and Performance

Hierarchy for Diagnosing Design-based Performance Problems

A thorough performance analysis must include each item in the following list.
Areas are listed in the order of greatest gain. For example, if your database
design is flawed, perfect server configuration cannot help you avoid query
performance problems.

1. Database design

2. Storage structures and index design. See the chapter “Choosing Storage
Structures and Secondary Indexes.”

3. Key design. See the chapter “Choosing Storage Structures and Secondary
Indexes.”

4. Constraints. See the chapter “Managing Tables and Views.”

5. Validation checks and integrities. See the chapters “Ensuring Access
Security” and “Ensuring Data Integrity.”

6. Grants and views. See the chapter “Ensuring Access Security.”

7. Query design.

8. Application design.

9. Concurrency. See the chapter “Understanding the Locking System” and
the System Administrator Guide.

10. DBA utilities and maintenance. See the chapter “Maintaining Databases.”

11. Operating system resources and tuning. See the System Administrator
Guide.

12. Server configuration. See the System Administrator Guide.

Storage Structures and Index Design and Performance

Choosing the correct table storage structure for your needs can improve
concurrency and query performance. Remember that there is no substitute for
testing and benchmarking your queries.

For tips on choosing storage structures and advantages and disadvantages of
the various storage structures, see the chapter “Choosing Storage Structures
and Secondary Indexes.” For information on modifying and compressing
storage structures and a discussion of overflow, see the chapter “Maintaining
Storage Structures.”

Key Design and Performance

Key design is a complex subject. For additional information on keys, see the
chapter “Choosing Storage Structures and Secondary Indexes.”

Improving Database and Query Performance 469

Design Issues and Performance

Characteristics of Good Keys

Good keys have the following features:

 Use columns referenced in the where clauses and joins of your queries

 Are unique

Always document reasons for maintaining non-unique keys.

All keyed storage structures can enforce unique keys. They are:

 Short

 Static

 Non-nullable

Characteristics of Bad Keys

Bad keys have the following features:

 Wide

– Use wide keys with caution.

– You get fewer rows per page.

– Evaluating the hash function takes more time with wide keys.

– A wide key deepens the index level of B-tree and ISAM logarithmically,
with respect to key width. B-tree is the least affected table structure.

– Consider using a surrogate key as an alternative.

 Non-static

Updating the index can slow performance.

 Non-uniform duplication

A mix of high and low duplication can cause inconsistent query
performance.

 Sequential

– Sequential keys must be used with care.

– ISAM tables can be lopsided and the overflow chains can cause
concurrency problems.

– Control sequential key problems with a frequent modify schedule.

470 Ingres 2006 R2 Database Administrator Guide

Design Issues and Performance

Multi-Column Keys and Performance

Multi-column keys have special issues. If used improperly in your query, the
key cannot be used and the search does a full-table scan.

Keep the following in mind:

 Use the most unique and frequently used columns for the left member of a
multi-column key.

 Searches on B-tree and ISAM tables must use at least the leftmost part of
a multi-column key in a query, or a full-table scan can result.

 Searches on hash tables must use an exact match for the entire key in the
query, or a full-table scan can result.

 Optimizer statistics are approximated by adding the statistics of the
columns making up a multi-column key.

Surrogate Keys and Performance

When you use a short surrogate or internal key to replace a bad key, or
because there is no good key, consider the performance trade-offs. The set
processing of data includes the overhead of deriving the key.

Surrogate key types include:

 Natural

Universal (a social security number or zip code are examples)

 Environmental

These are local to an organization, like an employee number.

 Design artificial. These are:

– Local to an application

– Hard to remember

– Hard for users to understand

– Can be hidden from users

Improving Database and Query Performance 471

Information Needed By Customer Support

Query Design and Performance

Query design is a complex subject. Following these tips will improve the
performance of your queries:

 Conversion joins are joins where two columns of different data types are
joined in a query, either explicitly or implicitly. These joins are frequently
the result of database design problems and must be avoided.

 Avoid using function joins.

– Functions in the where clause force a full-table scan.

– Control uppercase and lowercase, and so on, at input time.

 Some complex OR queries can be rewritten as unions.

 Evaluate QEPs for critical queries:

Can large table scans be avoided?

– Is an additional index needed?

– Are Cartesian products with large tables used?

– Are function joins used?

 Use repeated queries for queries that are used many times.

 Do not forget to commit.

Consider using set autocommit on.

Information Needed By Customer Support
If you have worked through the query performance evaluation and your
problem is not resolved, call customer support. Before calling, follow these two
procedures:

 Isolate and analyze the suspect query

 Create a test case

472 Ingres 2006 R2 Database Administrator Guide

Information Needed By Customer Support

Isolate and Analyze the Problem Query

To determine whether the problem is due to the user interface, the query
itself, or a software bug, follow these steps:

1. Isolate a poorly performing query from your user interface using the trace
flag set printqry, which prints queries before they are optimized and
executed. Identify the query that seems to hang.

For details on setting printqry, see the System Administrator Guide.

Execute the query in a terminal monitor or from within the VDBA SQL
Scratchpad window, and determine if performance is the same. If
performance is only a problem when the query is executed from the user
interface, you have identified an application problem. If performance is the
same, continue.

2. In a terminal monitor, issue the following statements to display the QEP
without running the query:

set qep;
set optimizeonly;

Now, execute your query and save the output to a file for examination.
After running the query, exit the terminal monitor session or turn query
execution back on using:

set nooptimizeonly;

For details on these set statements, see the System Administrator Guide.

3. Review the Design Issues section and evaluate the QEP for your query. For
example, you can look for:

 Large table scans that can be avoided

 An additional index that is needed

 Cartesian products with large tables

 Function joins

 If you are not able to identify your problem and suspect a software
bug, submit your query and a test case to customer support.

Improving Database and Query Performance 473

Information Needed By Customer Support

Create a Test Case

To create a test case, follow these steps:

1. Verify that you are using the most recent release of Ingres available for
your platform.

2. Collect the information customer support needs to duplicate your problem.

Customer support needs the following information in ASCII files that you
can send by e-mail, UUCP, or on a tape:

 The exact query that causes the error to occur

 The QEP generated by the problem query

 Dump optimizer statistics for all the tables in the query (use the Direct
Output to Server File option in the Display Statistics dialog in VDBA, or
the statdump command with the -o flag)

 The help table tablename information for all the tables that the query
references (or equivalent information obtained from within VDBA)

 The help index indexname information for all secondary indexes of
tables in the query (or equivalent information obtained from within
VDBA)

 The help permit on table tablename information for grants on all the
tables in the query (or equivalent information obtained from within
VDBA)

 A query of the system catalogs for information about each table. Look
at iirelation and select relpages, reltups, relmain, and relprim, where
the relid is equal to each table and index in the query.

The create scripts and data for all the tables, indexes, and grants that the
query references. When generating the scripts, you must specify the Create
Printable Data Files option. For information on generating these scripts, see
the chapter “Loading and Unloading Databases.”

474 Ingres 2006 R2 Database Administrator Guide

Appendix A: System Catalogs

This appendix describes the Standard Catalog Interface catalogs, the Extended
System catalogs, and the DBMS System Catalogs.

If you are developing applications that need to query the system catalogs, you
must use the Standard Catalog Interface, so that your applications will be
upwardly compatible.

The Standard Catalog Interface described in this appendix corresponds to the
formats you find when the iidbcapabilities catalog contains the following
values:

CAP_CAPABILITY CAP_VALUE

STANDARD_CATALOG_LEVEL 00904

The DBMS System Catalogs and Extended System Catalogs are unsupported
and can change at any time. Information about these catalogs is provided
solely for your convenience. In providing this information, the company makes
no commitment to maintain compatibility with any feature, tool, or interface.
The company does not provide support, either through customer support or
release maintenance channels, for the resolution of any problems or bugs
arising from the use of unsupported features, tools, or interfaces.

System Catalogs 475

System Catalog Characteristics

System Catalog Characteristics
System catalogs are tables that store information required by Ingres. These
catalogs can be used in programs to access (but not update) information about
the system.

Unless otherwise noted, values in system catalogs are left-justified, and
columns are non-nullable.

The length of char fields, as listed in the Data Type column, is a maximum
length; the actual length of the field is installation-dependent. When
developing applications that access these catalogs, you must allocate storage
on the basis of the length as shown in the Data Type column.

All dates stored in system catalogs have the following format (underscores and
colons are required):

yyyy_mm_dd hh:mm:ss GMT (Greenwich Mean Time)

To display the format of catalogs, use the help table statement.

Standard Catalog Interface
The Standard Catalog Interface is a group of tables and views defined on the
system catalogs.

All database users can read the Standard Catalog Interface catalogs, but only
a privileged user can update them.

Standard Catalogs for All Databases

The standard catalogs for all databases are as follows:

iiaccess iialt_columns iiaudittables

iicolumns iiconstraint_indexes iiconstraints

iidb_comments iidb_subcomments iidbcapabilities

iidbconstants iidistcols iidistschemes

iievents iifile_info iihistograms

iiindex_columns iiindexes iiingres_tables

iiintegrities iikeys iikey_columns

iilog_help iilpartitions iimulti_locations

476 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

iipermits iiphysical_tables iiprocedures

iiproc_access iiproc_params iirange

iiref_constraints iiregistrations iirules

iisecurity_alrams iisession_privileges iisequences

iistats iisynonyms iitables

iiviews

iiaccess Catalog

The standard interface catalog for information about permissions on tables,
views, and indexes:

Column Name Data Type Description

table_name char(32) Name of the database object.

table_owner char(32) Owner of the object.

table_type char(1) T—Object is a base table.

V—Object is a view.

I—Object is an index.

system_use char(1) S—System catalog object.

U—User object.

permit_user char(32) Name of grantee.

permit_type char(64) Privilege granted.

iialt_columns Catalog

All columns defined as part of an alternate key have an entry in iialt_columns:

Column Name Data Type Description

table_name char(32) The table to which column_name
belongs.

table_owner char(32) The table owner.

key_id integer The number of the alternate key for
this table.

column_name char(32) The name of the column.

key_sequence smallint Sequence of column in the key,
numbered from 1.

System Catalogs 477

Standard Catalog Interface

iiaudittables Catalog

The iiaudittables catalog provides a list of currently registered security audit
log files for the database. This catalog is a view on the underlying Enterprise
Access table storing audit registration information.

Column Name Data Type Description

table_name char(32) The name of the virtual security audit
table

table_owner char(32) The registered name of the table
owner, as determined by the register
table statement

audit_log char(256) The full file name specification of the
underlying security audit log

register_date date The date and time the audit table was
registered

iicolumns Catalog

For each queriable object in the iitables catalog, there are one or more entries
in the iicolumns catalog. Each row in iicolumns contains the logical information
on a column of the object. Iicolumns is used by Ingres tools and user
programs to perform dictionary operations and dynamic queries:

Column Name Data Type Description

table_name char(32) The name of the table. Must be a
valid object name.

table_owner char(32) The owner of the table. Must be a
valid user name.

column_collid integer The column's collation ID. Valid
values are 1 for unicode, 2 for
unicode_case_insensitive, and 3 for
sql_character. The background
default is -1.

column_name char(32) The column's name. Must be a valid
object name.

478 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

column_datatype char(32) The column's data type name
returned to users and applications:
INTEGER
SMALLINT
INT
FLOAT
REAL
DECIMAL
DOUBLE PRECISION
CHAR
CHARACTER
VARCHAR
LONG VARCHAR
BYTE
LONG BYTE
C
TEXT
MONEY
INGRESDATE
ANSIDATE
TIME
TIMESTAMP
INTERVAL

column_length integer The length of the column returned to
users and applications. If a data
type contains two length specifiers,
this column uses the first length. Set
to zero for the data types which are
specified without length (money and
date). Displays the precision for
decimal data. This length is not the
actual length of the column's
internal storage.

column_scale integer The second number in a two-part
user length specification; for type
name (len1, len2) it is len2.

column_nulls char(1) Y if the column can contain null
values, N if the column cannot
contain null values.

column_defaults char(1) Y if the column is given a default
value when a row is inserted. N if
the column is not given a default
value.

System Catalogs 479

Standard Catalog Interface

Column Name Data Type Description

column_sequence integer The number of this column in the
corresponding table's create
statement, numbered from 1.

key_sequence integer The order of this column in the
primary key, numbered from 1. For
a table, this indicates the column's
order in the primary storage
structure key. If 0, this column is
not part of the primary key.

sort_direction char(1) Defaults to A for ascending when
key_sequence is greater than 0.
Otherwise, this value is a blank.

480 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

column_ingdatatype integer Contains the numeric representation
of the column's external data type
(the data type returned to users and
applications). If the installation has
user-defined data types (UDTs), this
column contains the data type that
the UDT is converted to when
returned to an Ingres/Tool product.
If the value is positive, the column is
not nullable; if the value is negative,
the column is nullable. The data
types and their corresponding values
are:
INTEGER 30/-30
FLOAT 31/-31
C 32/-32
TEXT 37/-37
INGRESDATE* 3/-3
DECIMAL 10/-10
MONEY 5-/5
CHAR 20/-20
VARCHAR 21/-21
LONG VARCHAR 22/-22
BYTE 23/-23
LONG BYTE 25/-25
TABLE_KEY 12/-12
OBJECT_KEY 11-/11
ANSIDATE 4/-4
TIME WITHOUT TIMEZONE 6/-6
TIME WITH TIMEZONE 7/-7
TIME 8/-8
TIMESTAMP WITHOUT TIMEZONE
9/-9
TIMESTAMP WITH TIMEZONE 18/-18
TIMESTAMP 19/-19
INTERVAL YEAR TO MONTH 33/-33
INTERVAL DAY TO SECOND 34/-34

* Returned to applications as
strings.

column_internal_
datatype

char(32) The internal data type of the
column: char, c, varchar, text,
integer, float, date, decimal, money,
table_key, object_key. If the
installation has user-defined data
types, this column contains the
user-specified name.

System Catalogs 481

Standard Catalog Interface

Column Name Data Type Description

column_internal_
length

integer The internal length of the column.
For example, for data type smallint,
this column contains 2. Contains 0 if
the data type is fixed-length. The
length does not include the null
indicator byte for nullable columns,
nor the length specifier byte for
varchar and text columns.

column_internal_
ingtype

smallint Contains the numeric representation
of the internal data type. See
column_ingdatatype for a list of
valid values. If the installation has
user-defined data types, this column
contains the user-specified data type
number.

column_system_
maintained

char(1) Y if the column is system-
maintained, N if not system-
maintained.

column_updateable char(1) Y if the column can be updated, N if
not, blank if unknown.

column_has_default char(1) Y if the column is defined as with
default or default value,
N if the column is defined as not
default,
U if the column is defined without a
default, (blank) if unknown.

column_default_val varchar(1501) The value of the default, if the
column has one, which is inserted
into the column automatically if no
value is specified during an insert. It
contains surrounding and embedded
quotes for character defaults, per
ISO Entry SQL92 semantics.

Null, if the default is not specified,
NOT DEFAULT, or Unknown.

security_audit_key char(1) Y if the column is a security audit
key, N if not.

482 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

iiconstraint_indexes Catalog

The iiconstraint_indexes catalog contains information about constraint
indexes:

Column Name Data Type Description

constraint_name char(32) The name of the constraint

schema_name char(32) The name of the schema

index_name char(32) The name of the index

iiconstraints Catalog

The iiconstraints catalog contains constraint information:

Column Name Data Type Description

constraint_name char(32) The name of the constraint

schema_name char(32) The name of the schema

table_name char(32) The name of the table

constraint_type char(1) The type of constraint

create_date char(25) The date the constraint was created

text_sequence integer The text sequence number

text_segment varchar(240) The text, or portion, of the constraint
definition

system_use char(1) Contains U if the object is a user
object or G if generated by the
system for the user. A status of G is
used for constraints or views with
check option. Used by utilities to
determine which objects need
reloading.

iidb_comments Catalog

The iidb_comments catalog contains table comments:

Column Name Data Type Description

object_name char(32) The name of the primary object being
commented on (table, view or index)

System Catalogs 483

Standard Catalog Interface

Column Name Data Type Description

object_owner char(32) The name of the object's owner

object_type char(1) Always T; the comment is on the
table, view or index denoted by
object_name.

short_remark char(60) The text of the short remark, or blank
if none

text_sequence integer Always 1; the sequence number of
the long_remark.

long_remark varchar
(1600)

The text of the long remark, or a
zero-length string if none

iidb_subcomments Catalog

The iidb_subcomments catalog contains column comments.

Column Name Data Type Description

object_name char(32) The name of the primary object being
commented on (table, view or index)

object_owner char(32) The name of the object's owner

subobject_name char(32) The name of the secondary object
being commented on (table, view or
index)

subobject_type char(1) Always C; the comment is on a
column.

short_remark char(60) The text of the short remark, or blank
if none

text_sequence integer Always 1; the sequence number of
the long_remark.

long_remark varchar(1600) The text of the long remark, or a
zero-length string if none

484 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

iidbcapabilities Catalog

The iidbcapabilities catalog contains information about the capabilities
provided by the DBMS. The following table describes the columns in the
iidbcapabilities catalog:

Column Name Data Type Description

cap_capability char(32) Contains one of the values listed in
the Capability column of the table
below.

cap_value char(32) The contents of this field depend on
the capability; see the Value column
in the table below.

The cap_capability column in the iidbcapabilities catalog contains one or more
of the following values:

Capability Value

COMMON/SQL_LEVEL This is a depreciated column maintained for
backward compatibility. Use OPEN/SQL_LEVEL
instead.

DB_DELIMITED_CASE Case mapping semantics of the database with
respect to delimited identifiers for database
objects:

LOWER for lowercase is the Ingres setting.
MIXED for mixed case is set for an ISO Entry
SQL92 compliant installation.

If the value is MIXED, an identifier must be
enclosed in double quotes to maintain case as
originally defined. Otherwise, it is treated as a
regular identifier (converted to uppercase).

DB_NAME_CASE Case mapping semantics of the database with
respect to regular identifiers for database
objects:

LOWER for lowercase is the Ingres setting.
UPPER for uppercase is set for an ISO Entry
SQL92 compliant installation.

DB_REAL_USER_CASE Case mapping of user names as retrieved by
the operating system.

LOWER for lowercase is the Ingres setting.
MIXED for mixed case or UPPER for uppercase
is set as specified during installation.

System Catalogs 485

Standard Catalog Interface

Capability Value

DBMS_TYPE The type of DBMS the application is
communicating with. Valid values are the same
as those accepted by the with DBMS = clause
used in queries. Examples: INGRES, STAR,
RMS. The default value is INGRES.

DISTRIBUTED Y if the DBMS is distributed, N if not.

ESCAPE Contains Y if DBMS supports the ESCAPE
clause of the LIKE predicate in the WHERE
clause of search statements; contains N if
ESCAPE is not supported.

INGRES Y if the DBMS supports all aspects of Release 6
and Ingres; otherwise N. Default is Y.

INGRES/SQL_LEVEL Version of SQL supported by the DBMS.
Examples:

00600 6.0

00601 6.1

00602 6.2

00603 6.3

00604 6.4

00605 OpenIngres1.x

00800 OpenIngres 2.0 and Ingres II 2.0

00850 Ingres II 2.5

00860 Ingres 2.6

00902 Ingres r3

00904 Ingres 2006

00000 DBMS does not support SQL

486 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

Capability Value

INGRES/QUEL_LEVEL Version of QUEL supported by the DBMS.
Examples:

00600 6.0

00601 6.1

00602 6.2

00603 6.3

00604 6.4

00605 OpenIngres1.x

00800 OpenIngres 2.0 and Ingres II 2.0

00850 Ingres II 2.5

00860 Ingres 2.6

00902 Ingres r3

00904 Ingres 2006

00000 DBMS does not support QUEL

INGRES_RULES Y if the DBMS supports rules; N if it does not.

INGRES_UDT Y if the DBMS supports user-defined data
types; N if the DBMS does not support user-
defined data types.

INGRES_AUTH_GROUP Y if the DBMS supports group identifiers, N if it
does not.

INGRES_AUTH_ROLE Y if the DBMS supports role identifiers, N if it
does not

INGRES_LOGICAL_KEY Y if the DBMS supports logical keys, N if it does
not.

MAX_COLUMNS Maximum number of columns allowed in a
table. Current setting is 1024.

MIXEDCASE_NAMES Y if case is significant in object names. N if
ABC, Abc, and abc are all equivalent object
names.

NATIONAL_CHARACTER_
SET

Y if the DMBS supports Unicode, N if it does
not.

System Catalogs 487

Standard Catalog Interface

Capability Value

OPEN_SQL_DATES Contains LEVEL 1 if the Enterprise Access
Server supports the OpenSQL date data type.
It appears when using Enterprise Access. If
absent, OpenSQL date data type is implicitly
supported if accessing a standard DBMS
server.

OPEN/SQL_LEVEL Version of OpenSQL supported by the DBMS.

Examples:

00600 6.0

00601 6.1

00602 6.2

00603 6.3

00604 6.4

00605 OpenIngres1.x

00800 OpenIngres 2.0 and Ingres II 2.0

00850 Ingres II 2.5

00860 Ingres 2.6

00902 Ingres r3

00904 Ingres 2006

Current setting is 00904.

Note: Use this name instead of the older and
depreciated COMMON/SQL_LEVEL.

OWNER_NAME Contains N if schema.table table name format
is not supported. Contains Y if schema.table
format is supported; contains QUOTED if
schema.table is supported with optional quotes
(schema.table). The default is QUOTED.

PHYSICAL_SOURCE T indicates that iitables contains physical table
information.
P (a depreciated setting) indicates that only
iiphysical_tables contains the physical table
information.

T is the default and only current usage.

QUEL_LEVEL Text version of QUEL support level. Currently
II9.0.4

SAVEPOINTS Y if savepoints behave exactly as in Ingres,
else N. Default is Y

488 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

Capability Value

SLAVE2PC Indicates if the DBMS supports Ingres 2-phase
commit slave protocol:

Y for Release 6.3 and above
N for Star
N usually for Enterprise Access

If not present, Y is assumed.

SQL_LEVEL Text version of SQL support level. Currently
II9.0.4

STANDARD_CATALOG_
LEVEL

Release of the standard catalog interface
supported by this database. Valid values:

00602
00604
00605
00800
00850
00860
00902
00904 (the current setting)

This appendix describes the catalogs for
release 00904. For catalog formats of other
releases, see the appropriate documentation
set.

UNIQUE_KEY_REQ Y if the database service requires that some or
all tables have a unique key. N or not present
if the database service allows tables without
unique keys.

iidbconstants Catalog

The iidbconstants catalog contains values required by the Ingres tools. The
following table describes the columns in the iidbconstants catalog:

Column Name Data Type Description

user_name char(32) The name of the current user.

dba_name char(32) The name of the database's owner.

system_owner varchar(32) The name of the catalog owner
($ingres).

System Catalogs 489

Standard Catalog Interface

iidistcols Catalog

The iidistcols catalog describes the columns that generate partitioning values
for a partitioned table. Each partitioned table has one row per partitioning
column per dimension in iidistcols. (Dimensions that do not use a value-based
partitioning scheme do not appear in iidistcols.) The following table describes
the columns in the iidistcols catalog:

Column Name Data Type Description

table_name char The name of the partitioned table.

table_owner char The name of the table's owner.

dimension integer The dimension being described,
counting from 1.

column_name char The name of the partitioning column.

column_sequence integer The sequence of this column in this
dimension's partitioning value,
counting from 1.

column_datatype char The column's data type:
INTEGER
SMALLINT
INT
FLOAT
REAL
DECIMAL
DOUBLE PRECISION
CHAR
CHARACTER
VARCHAR
LONG VARCHAR
BYTE
LONG BYTE
C
TEXT
DATE
MONEY

490 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

iidistschemes Catalog

The iidistschemes catalog describes the partitioning scheme of a partitioned
table. Each partitioned table has one row per partitioning dimension in
iidistschemes. The following table describes the columns in the iidistschemes
catalog:

Column Name Data Type Description

table_name char The name of the partitioned table.

table_owner char The name of the table's owner.

dimension integer The dimension being described,
counting from 1.

partitioning_columns integer The number of columns that make up
the partitioning value for a value-
based partitioning rule.

logical_partitions integer The number of logical partitions in
this dimension.

partitioning_rule varchar The partitioning rule:
AUTOMATIC
HASH
LIST
RANGE

iievents Catalog

The iievents catalog provides user data associated with a named event. For
complete information about database events, see Database Events (see
page 213).

Column Name Data Type Description

event_name char(32) Name of the event. This name is
unique among all events owned by
user.

event_owner char(32) Owner of the event. This name can be
referenced in the different event
statements to qualify the event.

text_sequence integer Text sequence of create dbevent text.

text_segment varchar(240) Text segment of create dbevent text.

System Catalogs 491

Standard Catalog Interface

iifile_info Catalog

The iifile_info catalog enables you to determine the file name for a specified
table or index. One row is returned for each location on which the table
resides:

Column Name Data Type Description

table_name char(32) Name of the table.

owner_name char(32) Owner of the table.

file_name char(8) Name of the file that contains the table

file_ext char(3) Extension of the file that contains an
extent of the table. The first extent
bears the extension t00; succeeding
extensions are numbered t01, t02, and
so on. If a table is comprised of more
than one extent, one row is returned
for each extent.

location char(32) The location of the file.

base_id integer First part of the internal relation ID.
This value is used to assign the file
name, and uniquely identifies a table
and its indexes.

index_id integer Second part of the internal relation ID;
used to distinguish a base table from
its indexes, and the indexes from each
other.

iihistograms Catalog

The iihistograms table contains histogram information used by the optimizer:

Column Name Data Type Description

table_name char(32) The table for the histogram. Must be a
valid object name.

table_owner char(32) The table owner's user name.

column_name char(32) The name of the column.

text_sequence integer The sequence number for the
histogram, numbered from 1. There
can be several rows in this table, used
to order the text_segment data when
histogram is read into memory.

492 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

text_segment char(228) The encoded histogram data, created
by optimizedb.

iiindex_columns Catalog

For indexes, any columns that are defined as part of the primary index key has
an entry in iiindex_columns. For a full list of all columns in the index, use the
iicolumns catalog:

Column Name Data Type Description

index_name char(32) The index containing column_name.
This is an object name.

index_owner char(32) The index owner. Must be a valid user
name.

column_name char(32) The name of the column. Must be a
valid object name.

key_sequence integer Sequence of column in the key,
numbered from 1.

sort_direction char(1) Defaults to A for ascending.

iiindexes Catalog

Each table with a table_type of I in the iitables table has an entry in iiindexes:

Column Name Data Type Description

index_name char(32) The index name. Must be a valid object
name.

index_owner char(32) The index owner's user name.

create_date char(25) Creation date of index.

base_name char(32) The base table name. Must be a valid object
name.

base_owner char(32) The base table owner. Must be a valid user
name.

storage_structure char(16) The storage structure for the index: heap,
hash, isam, or btree.

is_compressed char(1) Y if the table is stored in compressed format,
N if the table is uncompressed, blank if
unknown.

System Catalogs 493

Standard Catalog Interface

Column Name Data Type Description

key_is_compress
ed

char(1) Contains Y if the table uses key compression,
N if no key compression, or blank if
unknown.

unique_rule char(1) U if the index is unique, D if duplicate key
values are allowed, or blank if unknown.

unique_scope char(1) R if this object is row-level, S if statement-
level, blank if not applicable

system_use char(1) Contains S if the object is a system object, U
if user object, G if generated by the system
for the user, or blank if unknown. Used by
utilities to determine which tables need
reloading.

persistent char(1) Y if the index re-created after a modify of the
table,
N if not

index_pagesize integer Stores the page size of an index.

iiingres_tables Catalog

This standard interface catalog presents information about tables, views, and
indexes in a slightly different format than iitables.

Column Name Data Type Description

table_name char(32) Name of the table

table_owner char(32) Owner of the table.

expire_date char(25) How long to save this table. A value of
1970_01_01 00:00:00 GMT indicates
table never expires.

table_integrities char(1) Y if integrities exist on this table, N
otherwise.

table_permits char(1) Y if permits exist on this table, N
otherwise.

all_to_all char(1) Y if any user can perform any
operation on this table, N otherwise.

ret_to_all char(1) Y if any user can retrieve data from
this table.

row_width integer Maximum width of tuple in bytes.

494 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

is_journaled char(1) N : Is not journaled
Y : Is journaled.
C : Is journaled after next checkpoint.

view_base char(1) N if a view never existed on this table,
else Y if at least one view existed for
this table. This retains a Y value even
after all views on this table are
dropped.

modify_date char(25) Date of last modify performed on the
table, or the table creation date if
never modified.

table_ifillpct smallint Fill factor for B-tree index pages,
otherwise unused.

table_dfillpct smallint Fill factor for data pages if table does
not have HEAP structure.

table_lfillfct smallint Fill factor for B-tree leaf pages.

table_minpages integer Minimum number of hash buckets to
use if modifying to HASH structure.

table_maxpages integer Maximum number of hash buckets to
use if modifying to HASH structure

location_name char(32) Name of first (perhaps only) location
for data files.

table_reltid integer Unique numeric table identifier.

table_reltidx integer Unique numeric index identifier. Is zero
if this is a base table.

iiintegrities Catalog

Iiintegrities contains one or more entries for each integrity defined on a table.
Because the text of the integrity definition can contain more than 240
characters, iiintegrities can contain more than one row for a single integrity.
The text can contain new lines and can be broken mid-word across rows.

This table is keyed on table_name and table_owner:

Column Name Data Type Description

table_name char(32) The table name.

table_owner char(32) The table owner's user name.

System Catalogs 495

Standard Catalog Interface

Column Name Data Type Description

create_date char(25) The integrity's creation date. This is a date
field.

integrity_numbe
r

smallint The number of this integrity.

text_sequence integer The sequence number for the text, numbered
from 1.

text_segment varchar
(240)

The text of the integrity definition.

iikeys Catalog

The iikeys catalog contains information about keys used in internal indexes to
support unique constraints and referential integrities:

Column Name Data Type Description

constraint_name char(32) The name of the constraint.

schema_name char(32) The name of the schema.

table_name char(32) The name of the table.

column_name char(32) The name of the column.

key_position smallint A number indicating the key position.

iikey_columns Catalog

This standard interface catalog presents information about the key columns for
indexes and base tables not using a heap structure:

Column Name Data Type Description

table_name char(32) Name of the table key is on.

table_owner char(32) Owner of the table.

column_name char(32) Name of key component column.

key_sequence smallint Position of column in key. 1 being the
most significant component.

sort_direction varchar(1) A : Ascending sort. (currently only
ascending indexes are supported)

496 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

iilog_help Catalog

This standard interface catalog presents information about table/view/index
attributes (columns) in an alternate format to iicolumns.

Column Name Data Type Description

table_name char(32) Name of the object column is part of.

table_owner char(32) Owner of the object.

create_date char(25) Date object was created.

table_type char(8) T : attribute is part of a table.

V : attribute is part of a view.

I : attribute is part of an index.

table_subtype char(1) Currently unused and defaulted to N.

table_version char(5) II3.0 for current release of product.

system_use char(1) S : Part of a system catalog.

U : part of a user object.

column_name char(32) Name of attribute.

column_datatype char(32) Long name of datatype for this column.

column_length integer Size in bytes of data.

column_nulls char(1) N : Not nullable

Y : Column supports nulls.

column_defaults char(1) N : No default for this column.

Y : A default value exists for this
column.

column_sequence smallint Position of this column in table.

key_sequence smallint Position in key for this table or zero
(0).

System Catalogs 497

Standard Catalog Interface

iilpartitions Catalog

The iilpartitions catalog describes each logical partition, and the partitioning
values or range associated with that partition. Each logical partition of a
partitioned table has at least one row in iilpartitions. Specifically, there is one
row per column component for each partitioning value and for each logical
partition in each dimension of the partitioned table. The columns are described
in the following table:

Column Name Data Type Description

table_name char The name of the partitioned table.

table_owner char The name of the table's owner.

dimension integer The dimension being described,
counting from 1.

logical_partseq integer The logical partition sequence number
in its dimension, counting from 1
partition_name.

partition_name char The partition's name. If no name is
assigned in the partition definition, a
name of the form iipartNN is shown,
where NN is an arbitrary sequence
number.

value_sequence integer The partitioning value being described,
counting from 1. A logical partition not
based on user values (AUTOMATIC,
HASH) has one iilpartitions entry with a
zero value_sequence.

column_sequence integer The column component in the
partitioning value, counting from 1. A
logical partition not based on user
values (AUTOMATIC, HASH) has one
iilpartitions entry with a zero
column_sequence.

operator varchar If the partitioning is based on user
values (LIST or RANGE), this is the
operator applied to the value: <, <=,
=, >=, >, and DEFAULT. The = and
DEFAULT operators are for LIST, the
others are for RANGE. Logical partition
entries for non-user-value partitioning
have blanks in the operator column.

498 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

value varchar If the partitioning is based on user
values, this is the column value. The
value is meaningless if operator is
DEFAULT. The value is NULL if the
partitioning is AUTOMATIC or HASH.

Here are examples of using iilpartitions to view the partitioning values for a
table:

select dimension
logical_partseq
value_sequence
column_sequence
operator
varchar(value,30) from iilpartitions where table_name = 'partitioned_table'
and table_owner = 'thedba' order by dimension
logical_partseq
value_sequence
column_sequence;

iimulti_locations Catalog

For tables located on multiple volumes, this table contains an entry for each
additional location on which a table resides. The first location for a table can
be found in the iitables catalog.

This table is keyed on table_name and table_owner:

Column Name Data Type Description

table_name char(32) The table name.

table_owner char(32) The table owner's user name.

loc_sequence integer The sequence of this location in the list
of locations, as specified in the modify
command. This is numbered from 1.

location_name char(32) The name of the location.

System Catalogs 499

Standard Catalog Interface

iipermits Catalog

The iipermits catalog contains one or more entries for each permit defined.
Because the permit definition can contain more than 240 characters, iipermits
can contain more than one row for a single permit. The text can contain new
lines and can be broken mid-word across rows.

This table is keyed on object_name and object_owner:

Column Name Data Type Description

object_name char(32) The table or procedure name. Must be
a valid object name.

object_owner char(32) The owner of the table or procedure.

permit_grantor char(32) The name of the user granting the
permit.

object_type char(1) The type of the object: T for a table or
view; P for a database procedure.

create_date char(25) The permit's creation date.

permit_user char(32) The user name to which this permit
applies.

permit_depth smallint Indicates relative ordering distance of
the permit holder from the object
owner, as established in the grant with
grant option statement(s).

permit_number smallint The number of this permit.

text_sequence integer The sequence number for the text,
numbered from 1.

text-segment varchar(240) The text of the permission definition.

500 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

iiphysical_tables Catalog

Caution! The iiphysical_tables catalog no longer exists in the next major
release. Your applications must query iitables for physical table information.

The information in the iiphysical_tables catalog overlaps with some of the
information in iitables. This information is provided as a separate catalog
primarily for use by Enterprise Access products. You can query the
physical_source column, in iidbcapabilities, to determine whether you must
query iiphysical_tables. If you do not want to query iidbcapabilities, you must
always query iiphysical_tables to be sure of getting the correct information.

If a queriable object is type T or I (index Ingres installation only), it is a
physical table and can have an entry in iiphysical_tables as well as iitables.

In most Enterprise Access products, this table is keyed on table_name plus
table_owner:

Column Name Data Type Description

table_name char(32) The table name. This is an object
name.

table_owner char(32) The table owner's user name

table_stats char(1) Y if this object has entries in the
iistats table

table_indexes char(1) Y if this object has entries in the
iiindexes table that see this as a base
table

is_readonly char(1) Y if updates are physically allowed on
this object

concurrent_access char(1) Y if concurrent access is allowed

num_rows integer The estimated number of rows in the
table. Set to -1 if unknown.

storage_structure char(16) The storage structure of the table.
Possible values are heap, btree, isam,
or hash.

is_compressed char(1) Indicates if the table is stored in
compressed format. Y if it is
compressed, N if not compressed,
blank if unknown

key_is_compressed char(1) Contains Y if the table uses key
compression, N if no key
compression, or blank if unknown

System Catalogs 501

Standard Catalog Interface

Column Name Data Type Description

duplicate_rows char(1) U if rows must be unique, D if
duplicates are allowed, blank if
unknown

unique_rule char(1) U if the storage structure is unique, D
if duplicates are allowed, blank if
unknown or inapplicable

number_pages integer The estimated number of physical
pages in the table. Set to -1 if
unknown.

overflow_pages integer The estimated number of overflow
pages in the table. Set to -1 if
unknown.

row_width integer The size (in bytes) of the
uncompressed binary value for a row
in the object. Set to -1 if this is
unknown.

allocation_size integer The allocation size, in pages. Set to -
1 if unknown.

extend_size integer The extend size, in pages. Set to -1 if
unknown.

allocated_pages integer The total number of pages allocated
to the table

row_security_audit char(1) Y if per-row security auditing is
enabled for this table. If not, N.

table_pagesize integer Stores the page size of a table

table_relversion short int Table layout version. Starts at zero
(0) when table is first created and is
incremented whenever column
layouts are altered.

table_reltotwid integer Width of table record in bytes

502 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

iiprocedures Catalog

The iiprocedures catalog contains one or more entries for each database
procedure defined on a database. Because the text of the procedure definition
can contain more than 240 characters, iiprocedures can contain more than one
entry for a single procedure. The text can contain new lines and can be broken
mid-word across rows.

This table is keyed on procedure_name and procedure_owner:

Column Name Data Type Description

procedure_name char(32) The database procedure name, as
specified in the create procedure
statement.

procedure_owner char(32) The procedure owner's user name.

create_date char(25) The procedure's creation date.

proc_subtype varchar(1) Reserved for future use. Currently set
to N to indicate native.

text_sequence integer The sequence number for the
test_segment.

text_segment varchar(240) The text of the procedure definition.

system_use char(1) Contains U if the object is a user
object or G if generated by the
system for the user. Used by utilities
to determine which objects need
reloading.

iiproc_access Catalog

The iiproc_access is a standard interface catalog for information about
database procedures:

Column Name Data Type Description

object_name char(32) Name of database procedure.

object_owner char(32) Owner of database procedure.

permit_grantor char(32) Grantor of privilege to this procedure.

object_type char(1) Always P. (Object is of type database
procedure).

create_date char(25) When procedure was created.

System Catalogs 503

Standard Catalog Interface

Column Name Data Type Description

permit_user char(32) Name of the grantee.

permit_depth smallint Depth of dependencies this procedure
permission depends on. Utilities, such
as unloaddb, use this number to make
sure that statements used to recreate
permissions are output in the correct
order.

permit_number smallint Reserved for future usage.

text_sequence integer Sequence number for when definition
of procedure spans multiple text
segments. Starts with 1.

text_segment varchar(240) Procedure definition text.

iiproc_params Catalog

The iiproc_params is a standard interface catalog for information about
procedure parameters:

Column Name Data Type Description

procedure_name char(32) Name of database procedure

procedure_owner char(32) Owner of database procedure

param_name char(32) Name of parameter

param_sequence smallint Which argument to procedure this
parameter corresponds to. (1 = first)

param_datatype char(32) Datatype of parameter.

param_datatype_code smallint Numeric representation of datatype.
See column_ing_datatype in iicolumns
for these values.

param_length integer The length of the column returned to
users and applications. If a data type
contains two length specifiers, this
column uses the first length. Set to
zero for the data types that are
specified without length (money and
date). Displays the precision for
decimal data. This length is not the
actual length of the column's internal
storage.

504 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

param_scale integer The second number in a two-part user
length specification; for type name
(len1, len2) it is len2.

param_nulls char(1) Y indicates this parameter is NULL.

param_defaults char(1) Y indicates that this parameter has a
default value.

param_default_val varchar(150
1)

Default value used if default parameter
provided.

iirange Catalog

The iirange catalog contains the range values for an rtree index:

Column Name Data Type Description

rng_baseid integer Identifier for the base table

rng_indexid integer Identifier for the rtree index table

rng_ll1 float Lower-left coordinate of range
box for the first dimension

rng_ll2 float Lower-left coordinate of range
box for the second dimension

rng_ll3 float Lower-left coordinate of range
box for the third dimension. This
column is currently not in use.

rng_ll4 float Lower-left coordinate of range
box for the forth dimension. This
column is currently not in use.

rng_ur1 float Upper-right coordinate of range
box for the first dimension

rng_ur2 float Upper-right coordinate of range
box for the second dimension

rng_ur3 float Upper-right coordinate of range
box for the third dimension. This
column is currently not in use.

rng_ur4 float Upper-right coordinate of range
box for the forth dimension. This
column is currently not in use.

System Catalogs 505

Standard Catalog Interface

Column Name Data Type Description

rng_dimension smallint Dimension of range box.
Currently, the value is
automatically 2.

rng_hilbertsize smallint The size of the hilbert function for
the range

rng_datatype smallint The data type of the range box,
either box or ibox

rng_type char(1) The data type of the range box's
coordinates:

i = integer
f = float

iiref_constraints Catalog

The iiref_constraints catalog contains information about referential constraints:

Column Name Data Type Description

ref_constraint_name char(32) The name of the referential
constraint.

ref_schema_name char(32) The name of the schema on
which the referential
constraint applies.

ref_table_name char(32) The name of the table on
which the referential
constraint applies.

unique_constraint_name char(32) The name of the unique
constraint.

unique_schema_name char(32) The name of the schema on
which the unique constraint
applies.

unique_table_name char(32) The name of the schema on
which the unique constraint
applies.

506 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

iiregistrations Catalog

The iiregistrations catalog contains the text of register statements, and is used
by Star and Enterprise Access products:

Column Name Data Type Description

object_name char(32) The name of the registered table,
view, or index.

object_owner char(32) The name of the owner of the table,
view, or index.

object_dml char(1) The language used in the registration
statement. S for SQL or Q for QUEL.

object_type char(2) Describes the object type of
object_name. The values are T if the
object is a table, V if it is a view, or I
if the object is an index.

object_subtype char(1) Describes the type of table or view
created by the register statement. For
Star, this is L for a link. For an
Enterprise Access, this is I for an
imported object.

text_sequence integer The sequence number of the text
field, numbered from 1.

text_segment varchar
(240)

The text of the register statement.

iirules Catalog

The iirules catalog contains one row for each rule defined in a database:

Column Name Data Type Description

rule_name char(32) The name of the rule.

rule_owner char(32) The name of the person who defined
the rule.

table_name char(32) The name of the table that the rule
was defined against.

text_sequence integer The sequence number for the text
segment.

text_segment varchar(240) The text of the rule definition.

System Catalogs 507

Standard Catalog Interface

Column Name Data Type Description

system_use char(1) Contains U if the object is a user object
or G if generated by the system for the
user. A status of G is used for
constraints or views with check option.
Used by utilities to determine which
objects need reloading.

iisecurity_alarms Catalog

The iisecurity_alarms catalog contains information about the security alarms
created on tables in the local database. This catalog is a view of security alarm
information held in the system iiprotect table:

Column Name Data Type Description

alarm_name char(32) The name of the security alarm.

object_name char(32) The name of the table to which the
security alarm applies.

object_owner char(32) The name of the user who created the
security alarm.

object_type char(1) The type of object to which the
security alarm applies. Currently this
field contains T for table.

create_date char(25) The date the security alarm was
created.

subject_type char(1) The values are U if the security_user is
a user, G if it is a group, R if it is a
role, or P if it is a public identifier.

security_user char(32) The user to which the security alarm
applies.

security_number smallint The security alarm number. This
number can be obtained from help
security_alarm and is used in the drop
security_alarm statement.

dbevent_name char(32) Database event associated with the
alarm.

dbevent_owner char(32) Owner of the database event.

dbevent_text char(256) Text of the database event.

text_sequence integer The sequence number for the text
portion of this row.

508 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

text_segment varchar(240) The create security_alarm statement
(or portion thereof) used to create this
security alarm.

iisession_privileges Catalog

Standard interface catalog for information about subject privilege statuses for
the current session:

Column Name Data Type Description

priv_name char(32) Name of privilege.

priv_access char(1) Y if privilege held, N otherwise.

iisequences Catalog

The iisequences catalog contains information about all sequences defined in
the database.

Column Name Data Type Description

Seq_name Char(32) The name of the sequence.

Seq_owner Char(32) The sequence owner's user name.

Create_date Date The date on which the sequence was
defined.

Modify_date Date The date on which the sequence was
last altered.

Data_type Varchar(7) The data type of the sequence (integer
or decimal).

Seq_length Smallint The size of the sequence value (in
bytes)

Seq_precision Integer The precision of the sequence value (in
decimal digits).

Start_value Decimal(31) The start value (or restart value) of the
sequence.

Increment_value Decimal(31) The increment value of the sequence.

Next_value Decimal(31) The next sequence value to be
assigned.

Min_value Decimal(31) The minimum value of the sequence.

System Catalogs 509

Standard Catalog Interface

Column Name Data Type Description

Max_value Decimal(31) The maximum value of the sequence.

Cache_size Integer The number of cached sequence
values.

Start_flag Char(1) Y if start value was defined, otherwise
N.

Incr_flag Char(1) Y if increment value was defined,
otherwise N.

Min_flag Char(1) Y if minimum value was defined,
otherwise N.

Max_flag Char(1) Y if maximum value was defined,
otherwise N.

Restart_flag Char(1) Y if restart value was defined,
otherwise N.

Cache_flag Char(1) Y if cache value was defined, otherwise
N.

Cycle_flag Char(1) Y if cycle was defined, otherwise N.

Order_flag Char(1) Y if order was defined, otherwise N.

iistats Catalog

This catalog contains entries for columns that have statistics:

Column Name Data Type Description

table_name char(32) The name of the table.

table_owner char(32) The table owner's user name.

column_name char(32) The column name to which the
statistics apply.

create_date char(25) The date on which statistics were
gathered.

num_unique float The number of unique values in the
column.

rept_factor float The repetition factor.

has_unique char(1) Y if the column has unique values, N
otherwise.

510 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

pct_nulls float The percentage (fraction of 1.0) of the
table that contains NULL for the
column.

num_cells integer The number of cells in the histogram.

column_domain integer A user-specified number signifying the
domain from which the column draws
its values; default is 0.

is_complete char(1) Y if the column contains all possible
values in the domain, N otherwise.

stat_version char(8) The version of the statistics for this
column, for example, II3.0.

hist_data_length integer The length of the histogram boundary
values, either the specified length or
optimizedb's computed length.

iisynonyms Catalog

The iisynonyms catalog contains information about the synonyms that have
been defined for the database. Entries appear in iisynonyms when a create
synonym statement is issued. Entries are removed when a drop synonym
statement is issued for an existing synonym, or when a drop table/view/index
statement drops the table on which the synonym is defined:

Column Name Data Type Description

synonym_name char(32) The name of the synonym.

synonym_owner char(32) The owner of the synonym.

table_name char(32) The name of the table, view or index
for which the synonym was created.

table_owner char(32) The owner of the table_name.

System Catalogs 511

Standard Catalog Interface

iitables Catalog

The iitables catalog contains an entry for each queriable object in the database
(table, view, or index). To find out what tables, views, and indexes are owned
by you, you can query this catalog; for example:

select * from iitables where (table_owner = user);

Column Name Data Type Description

table_name char(32) The object's name. Must be a valid
object name.

table_owner char(32) The owner's user name. The creator of
the object is the owner.

create_date char(25) The object's creation date. Blank if
unknown.

alter_date char(25) The last time this table was altered.
This date is updated whenever the
logical structure of the table changes,
either through changes to the columns
in the table or changes to the primary
key. Physical changes to the table,
such as changes to data, secondary
indexes, or physical keys, do not
change this date. Blank if unknown.

table_type char(1) Type of the query object:

T—Table

V—View

I—Index

P—Physical partition (of a partitioned
table)

Further information about views can be
found in iiviews.

table_subtype char(1) Specifies the type of table or view.
Possible values are:

N—(Native) for standard Ingres
databases

L—(Links) for Star

I—(Imported tables) for Enterprise
Access

(Blank) if unknown

512 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

table_version char(5) Version of the object; enables the
Ingres tools to determine where
additional information about this
particular object is stored. This reflects
the database type, as well as the
version of an object in a given
database. For Ingres tables, the value
for this field is II3.0.

system_use char(1) Contains S if the object is a system
object, U if user object, G if generated
by the system for the user, or blank if
unknown. Used by utilities to
determine which tables need reloading.
If the value is unknown, the utilities
use the naming convention of ii for
tables to distinguish between system
and user catalogs. Also, any table
beginning with ii_ is assumed to be a
user interface object, rather than a
DBMS system object. The standard
system catalogs themselves must be
included in the iitables catalog and are
considered system tables.

tups_per_page integer Maximum tuples per data page.

keys_per_page integer Maximum keys per index page for
ISAM and B-tree tables.

keys_per_leaf integer Maximum keys per leaf for B-tree
tables.

The following columns in iitables have values only if table_type is T, I, or P.
Enterprise Access products that do not supply this information set these
columns to -1 for numeric data types, blank for character data types:

Column Name Data Type Description

table_stats char(1) Y if this object has entries in the
iistats table, N if this object does not
have entries. If this field is blank,
you must query iistats to determine
if statistics exist. This column is
used for optimization of databases.

System Catalogs 513

Standard Catalog Interface

Column Name Data Type Description

table_indexes char(1) Y if this object has entries in the
iiindexes table that see this as a
base table, or N if this object does
not have entries. If the field is
blank, you must query iiindexes on
the base_table column. This field is
used for optimization of databases.

is_readonly char(1) N if updates are physically allowed,
Y if no updates are allowed, or blank
if unknown. Used for tables that are
defined to the Enterprise Access
only for retrieval, such as tables in
hierarchical database systems. If
this field is set to Y, no updates
work, independent of the
permissions that are set. If it is set
to N, updates are allowed,
depending on whether the
permissions allow it or not.

concurrent_access char(1) Y if concurrent access is allowed.

num_rows integer The estimated number of rows in
the table. Set to -1 if unknown. If
the iitables row is for a partitioned
table, this value reflects the total
(rows or pages) in all partitions of
the table.

storage_structure char(16) The storage structure for the table:
heap, hash, btree, or isam.

is_compressed char(1) Y if the table is stored in
compressed format, N if the table is
uncompressed, blank if unknown.

key_is_compressed char(1) Contains Y if the table uses key
compression, N if no key
compression, or blank if unknown.

duplicate_rows char(1) D if the table allows duplicate rows,
U if the table does not allow
duplicate rows, blank if unknown.
The table storage structure (unique
vs. non-unique keys) can override
this setting.

514 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

unique_rule char(1) D indicates that duplicate physical
storage structure keys are allowed.
(A unique alternate key exists in
iialt_columns and any storage
structure keys are listed in
iicolumns.)

U if the object is an Ingres object,
indicates that the object has unique
storage structure keys; if the object
is not an Ingres object, it indicates
that the object has a unique key,
described in either iicolumns or
iialt_columns.

Blank indicates that uniqueness is
unknown or does not apply.

number_pages integer The estimated number of used
pages in the table. Set to -1 if
unknown. If the iitables row is for a
partitioned table, this value reflects
the total (rows or pages) in all
partitions of the table.

overflow_pages integer The estimated number of overflow
pages in the table. Set to -1 if
unknown.

partition_dimensions integer For a partitioned table, this is the
number of dimensions (partitioning
levels) in the table's partitioning
scheme. In all other cases, this is
zero.

phys_partitions integer For a partitioned table, this is the
number of physical partitions. For a
physical partition, this is the
partition number (counting from
zero). In all other cases, this is
zero.

row_width integer The size, in bytes, of the
uncompressed binary value for a
row of this query object.

System Catalogs 515

Standard Catalog Interface

The following columns, except for those preceded by an asterisk (*), are used
by the DBMS Server. If an Enterprise Access does not supply this information,
the Enterprise Access sets these columns to the default values: -1 for numeric
columns and a blank for character columns.

The four columns preceded by an asterisk (*) have values only if table_type is
T or I. Enterprise Access products that do not supply this information set these
columns to -1 for numeric data types, blank for character data types:

Column Name Data Type Description

expire_date integer Expiration date of table. This is a
_bintime date.

modify_date char(25) The date when the last physical
modification to the storage structure of
the table occurred. Blank if unknown or
inapplicable.

location_name char(32) The first location of the table. If there
are additional locations for a table,
they are shown in the iimulti_locations
table and multi_locations are set to Y.

table_integrities char(1) Y if this object has Ingres style
integrities. If the value is blank, you
must query the iiintegrities table to
determine if integrities exist.

table_permits char(1) Y if this object has Ingres style
permissions.

all_to_all char(1) Y if this object has Ingres permit all to
all, N if not.

ret_to_all char(1) Y if this object has Ingres permit
retrieve to all, N if not.

is_journalled char(1) Y if journaling is enabled on this
object, N if not. C means that
journaling on the table is
enabled/disabled on the next online
checkpoint, depending on the flag
specified on the checkpoint.

view_base char(1) Y if object is a base for a view
definition, N if not, or blank if
unknown.

multi_locations char(1) Y if the table is in multiple locations, N
if not.

516 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

table_ifillpct smallint Fill factor for the index pages used on
the last modify command in the
nonleaffill clause, expressed as a
percentage (0 to 100). Used for B-tree
structures to rerun the last modify
command.

table_dfillpct smallint Fill factor for the data pages used on
the last modify command in the
fillfactor clause, expressed as a
percentage (0 to 100). Used for B-tree,
hash, and ISAM structures to rerun the
last modify command.

table_lfillpct smallint Fill factor for the leaf pages used on
the last modify command in the leaffill
clause, expressed as a percentage (0
to 100). Used for B-tree structures to
rerun the last modify command.

table_minpages integer Minpages parameter from the last
execution of the modify command.
Used for hash structures only.

table_maxpages integer Maxpages parameter from the last
execution of the modify command.
Used for hash structures only.

table_relstamp1 integer High part of last create or modify
timestamp for the table.

table_relstamp2 integer Low part of last create or modify
timestamp for the table.

table_reltid integer The first part of the internal relation
ID.

table_reltidx integer The second part of the internal relation
ID.

* unique_scope char(1) R if this object is row-level, S if
statement-level, blank if not applicable

* allocation_size integer The allocation size, in pages. Set to -1
if unknown.

* extend_size integer The extend size, in pages. Set to -1 if
unknown.

* allocated_pages integer The total number of pages allocated to
the table.

System Catalogs 517

Standard Catalog Interface

Column Name Data Type Description

row_security_audit char(1) Y if row-level security auditing is
enabled, N if not.

table_pagesize integer Stores the page size of a table.

table_relversion smallint Stores version of table.

table_reltotwidth integer This width includes all deleted columns.

table_reltcpri smallint Indicates a table's priority in the buffer
cache. Values can be between 0 - 8.
Zero is the default, and 1 - 8 can be
specified using the priority clause in
create table or modify table.

iiviews Catalog

The iiviews catalog contains one or more entries for each view in the database.
(Views are indicated in iitables by table type = V.) Because the text_segment
column is limited to 240 characters per row, a single view can require more
than one row to contain all its text; in this case, the text is broken in mid-word
across the sequenced rows. The text column is pure text, and can contain
newline characters:

Column Name Data Type Description

table_name char(32) The view name. Must be a valid object
name.

table_owner char(32) The view owner's user name.

view_dml char(1) The language in which the view was
created: S (for SQL) or Q (for QUEL).

check_option char(1) Y if the check option was specified in
the create view statement, N if not,
blank if unknown.

text_sequence integer The sequence number for the text
field, starting with 1.

text_segment varchar(240) The text of the view definition.

518 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

Standard Catalogs for iidbdb

Standard catalogs that exist only in the master database (iidbdb) are as
follows:

iiaudit

iidatabase_info

iidbprivileges

iiextend_info

ii_location_info

ii_profiles

iirollgrants

iiroles

iisecurity_state

iiusers

iiaudit Catalog

The iiaudit catalog provides the information from which a qualified user (with
security privilege) can read the security audit log. This catalog is a read-only
virtual representation of the underlying non-Ingres table.

For information on reading the audit log, see Access to the Security Audit Log
(see page 188).

Column Name Data Type Description

audittime date The time when the security event
occurred.

user_name char(32) The effective name of the user that
triggered the security event.

real_name char(32) The real name of the user.

userprivileges char(32) The privileges associated with the user
session, with letters denoting the
possession of a subject privilege.

objprivileges char(32) The privileges granted to the user (for
example, when one user is granting
privileges to another), with letters
denoting the possession of a subject
privilege.

database char(32) The name of the database in which the
event was triggered.

System Catalogs 519

Standard Catalog Interface

Column Name Data Type Description

auditstatus char(1) Y indicates the attempted operation
was successful, N indicates it was not.

auditevent char(24) The type of event, which are any of the
following: select, insert, delete,
update, copy into, copy from, execute,
modify, create, destroy or security.

objecttype char(24) The type of object being accessed:
database, application (role), procedure,
table, location, view, security, user,
(security) alarm, rule, dbevent.

objectname char(32) The name of the object being
accessed.

objectowner char(32) The owner of the object being
accessed.

description char(80) The text description of the event.

sessionid char(16) The session associated with the event.

detailinfo char(256) Detailed information about the event .

detailnum integer The sequence number for multiple
detail items needed to describe the
event.

querytext_sequence integer Identifier for associated prepared
query.

iidatabase_info Catalog

This catalog describes attributes about a given database:

Column Name Data Type Description

database_name char(32) Name of the database.

database_owner char(32) Owner of the database.

data_location char(32) Default data location for this database.

work_location char(32) Default work location for this database.

ckp_location char(32) Checkpoint location for this database.

jnl_location char(32) Journal location for this database.

dump_location char(32) Dump file location for this database.

520 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

compat_level char(4) The compatibility level of the Ingres
database. Reflects release at the time
of last upgrade or when database was
created. Currently II/3.0.

compat_level_minor integer Minor compatibility level. Currently
unused, and defaulted to 0.

database_service integer Bitmask of database attributes:

0x00000001 : Database is distributed.

0x00000002 : Is a coordinator
database for distributed databases.

0x00010000 : Non-delimiter identifiers
are translated to upper case.

0x00040000 : Delimited identifiers are
translated to upper case.

0x00080000 : Delimited identifiers are
kept in mixed case.

0x00100000 : The login as returned by
the OS is not translated. If bit is unset
the login name is translated as per the
same rules as are non-delimited
identifiers.

0x40000000 : Database has been
forced consistent.

System Catalogs 521

Standard Catalog Interface

Column Name Data Type Description

access integer Bitmask of database access attributes:

0x00000001 : Database is globally
accessible. If this is cleared database is
a private database.

0x00000004 : Transient setting
marking that database is in the process
of being destroyed.

0x00000008 : Transient setting
marking that database is in the process
of being created.

0x00000010 : Database is operational.
(available for standard DBMS
operations).

0x00000020 : Converting. Database
was created using a previous release of
Ingres, and has not yet been
successfully upgraded.

0x00000040 : Database is in the
process of being upgraded.

database_id integer Unique numeric identifier for this
database in the installation.

iidbprivileges Catalog

The iidbprivileges catalog is a catalog that contains information about the
privileges defined in a database. For more information on privileges and limits,
see Grant in the SQL Reference Guide.

Column Name Data Type Description

database_name char(32) The name of the database on which the
privilege is defined.

grantee_name char(32) The name of the grantee for whom the
privilege is granted. This can be a user
ID, a group identifier, a role identifier,
or public.

gr_type char(1) Indicates the authorization type of the
grantee. Valid entries are U for an
individual user ID, G for a group
identifier, R for a role identifier, and P
for public.

522 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

cr_tab char(1) Indicates if the grantee has the create
table privilege. Values can be U for
undefined, Y for yes, and N for no.

cr_proc char(1) Indicates if the grantee has the create
procedure privilege. Values can be U
for undefined, Y for yes, and N for no.

lk_mode char(1) Indicates if the grantee has the set
lockmode privilege. Values can be U for
undefined, Y for yes, and N for no.

db_access char(1) Y if grantee has access (connect)
privileges to databases.

up_syscat char(1) Y if grantee has update_syscat
privileges and can update catalog
tables.

db_admin char(1) Indicates if the grantee has the
db_admin privilege. Values can be U
for undefined, Y for yes, and N for no.

global_usage char(1) Reserved for future use.

qry_io_lim integer Indicates the limits on I/O queries
defined for the grantee if qry_io is Y.

qry_io char(1) Indicates whether the query_io_limit
privilege has been defined for the
database and authorization type
specified in database_name and
grantee_name, respectively. Valid
values are Y indicating a limit exists, N
indicating no limit, and U indicating the
privilege is undefined.

qry_row_lim integer Indicates the query_row_limit defined
for the grantee if qry_row is Y.

qry_row char(1) Indicates whether the query_row_limit
privilege has been defined for the
database and authorization type
specified in database_name and
grantee_name, respectively. Valid
values are Y indicating a limit exists, N
indicating no limit, and U indicating the
privilege is undefined.

sel_syscats char(1) Y if grantee has select_syscat
privileges.

System Catalogs 523

Standard Catalog Interface

Column Name Data Type Description

tbl_stats char(1) Y if grantee has table_statistics
privileges.

idle_time char(1) Y if grantee has an idle time limit.

idle_time_lim integer The idle time limit in seconds.

conn_time char(1) Y if grantee has a connect time limit.

conn_time_lim integer The connect time limit in seconds.

sess_prio char(1) Y if grantee has the session priority
privilege and can alter session
priorities.

sess_pri_lim integer The highest priority to which a session
owned by this grantee can be set.

iiextend_info Catalog

This catalog provides information about which locations databases have been
extended to:

Column Name Data Type Description

location_name char(32) Location name for this extent.

database_name char(32) Name of database extended to
location_name.

status integer Status of this extent as a bitmask of
the following values:

0x00000001 : Database has been
successfully extended to this location

0x00000002 : Location is used for data
storage.

0x00000004 : Location is used as a
work location.

iilocation_info Catalog

The iilocation_info catalog contains information about the database locations:

Column Name Data Type Description

location_name char(32) The name of the location.

524 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

data_usage char(1) Y if the location has data file usage, N if
not.

jrnl_usage char(1) Y if the location has journal file usage, N if
not.

ckpt_usage char(1) Y if the location has checkpoint file usage,
N if not.

work_usage char(1) Y if the location has work file usage, N if
not.

dump_usage char(1) Y if the location has dump file usage, N if
not.

awork_usage char(1) Y if the location has auxiliary work file
usage, N if not.

location_area char(128) The name of the area's location.

raw_pct integer Percentage of the raw disk area allocated
to this location.

status integer These numbers are the sum of one or
more of these values, which tell what this
location is used for:

DATABASE 8 Database data

WORK 16 Temporary sorting

JOURNAL 64 Journals

CHECKPOINT 512 Checkpoints

iiprofiles Catalog

The standard catalog interface to user profile information:

Column Name Data Type Description

profile_name char(32) Name of this profile.

createdb char(1) Y if profile gives by default the right to
create databases.

R if this subject privilege is enabled by
this profile, but is not part of the
default privileges for this profile.

N profile gives no right to create
databases.

System Catalogs 525

Standard Catalog Interface

Column Name Data Type Description

trace char(1) As per createdb, but for enabling usage
of tracing and debugging features.

audit_all char(1) Y if security audit of all user activity is
enabled by this profile. N otherwise.

security char(1) As per createdb, but for usage of
security-related functions such as the
creation or deletion of users.

maintain_locations char(1) As per createdb, but for enabling the
user to create and change the
characteristics of database and file
locations.

operator char(1) As per createdb, but for enabling the
user to perform database maintenance
operations.

maintain_users char(1) As per createdb, but for enabling the
right to create, alter or drop users,
profiles, groups, and roles, and to
grant or revoke database and
installation resource controls.

maintain_audit char(1) As per createdb, but for enabling the
right to enable, disable, or alter
security audit, and to change security
audit privileges.

auditor char(1) As per createdb, but for registering,
removing and querying audit logs.

audit_query_text char(1) Y if security audit of query text is
enabled by this profile, N otherwise.

expire_date date Date when profile expires. Blank if not
expiration date was specified.

default_group char(32) If specified, group to use if no explicit
group was specified when accessing
the database (E.g. -G option with tm),
and user using this profile does not
have an explicit default group, or
nogroup specified.

526 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

status integer Shorthand numeric representation of
privileges associated with this profile.

Number is a bitmask as follows:

0x00000001 : createdb

0x00000004 : trace

0x00000200 : operator

0x00000400 : audit_all

0x00000800 : maintain_locations

0x00002000 : auditor

0x00004000 : maintain_audit

 0x00008000 : security

0x00010000 : maintain_users

0x01000000 : audit_security_text

iirollgrants Catalog

The standard catalog interface to information about role grants:

Column Name Data Type Description

roll_name char(32) Name of granted role.

grant_type char(1) U if a user.

P if to public.

grantee_name char(32) Name of grantee.

admin_option char(1) Y if grantee can GRANT others this
role.

iiroles Catalog

The standard catalog interface to information about role identifiers:

Column Name Data Type Description

role_name char(32) Name of this role.

createdb char(1) Y if role provides right to create
databases , N otherwise.

System Catalogs 527

Standard Catalog Interface

Column Name Data Type Description

trace char(1) Y if role enables usage of tracing and
debugging features, N otherwise.

audit_all char(1) Y if security audit of all user activity is
enabled by this role, N otherwise.

security char(1) Y if role allows usage of security-
related functions such as the creation
or deletion of users, N otherwise.

maintain_locations char(1) Y if role allows the user to create and
change the characteristics of database
and file locations, N otherwise.

operator char(1) Y if role allows the user to perform
database maintenance operations, N
otherwise.

maintain_users char(1) Y if role enables the right to create,
alter or drop users, profiles, groups,
and roles, and to grant or revoke
database and installation resource
controls, N otherwise.

maintain_audit char(1) Y if role allows user to enable, disable,
or alter security audit, and to change
security audit privileges, N otherwise.

auditor char(1) Y if role enables the registering,
removing, and querying of audit logs,
N otherwise.

audit_query_text char(1) Y if security audit of query text is
enabled by this profile, N otherwise.

528 Ingres 2006 R2 Database Administrator Guide

Standard Catalog Interface

Column Name Data Type Description

internal_status integer Shorthand numeric representation of
privileges associated with this status.

Number is a bitmask as follows:

0x00000001 : createdb

0x00000004 : trace

0x00000200 : operator

0x00000400 : audit_all

0x00000800 : maintain_locations

0x00002000 : auditor

0x00004000 : maintain_audit

0x00008000 : security

0x00010000 : maintain_users

0x01000000 : audit_security_text

internal_flags integer Reserved for future use.

iisecurity_state Catalog

The iisecurity_state catalog contains information about the security auditing
state of the Ingres installation:

Column Name Data Type Description

type char(16) The type of security audit activity:
event - security-relevant events.

name char(32) The name of the security audit class
(such as database or security), as
specified by the audit_type in the
enable security_audit statement.

state char(1) E if this security audit class is enabled,
D if disabled.

number integer A unique identifier for this
activity-type/audit class.

System Catalogs 529

Standard Catalog Interface

iiusers Catalog

The iiusers catalog contains information about the privileges held by users.
For more information on privilege and default_privilege, see CREATE USER in
the SQL Reference Guide.

Column Name Data Type Description

user_name char(32) The user's name, from iiuser.name

createdb char(1) Y if the user has the right, by
default, to create databases.

R if the user has the right to create
databases, but not by default.

N if the user does not have the right
to create a database.

trace char(1) As per createdb, but for enabling
usage of tracing and debugging
features.

audit_all char(1) Y if the user has the right to
security-audit all user activity, N if
not

security char(1) As per createdb, but for usage of
security-related functions such as
the creation or deletion of users.

maintain_locations char(1) As per createdb, but for enabling the
user to create and change the
characteristics of database and file
locations.

operator char(1) As per createdb, but for enabling the
user to perform database
maintenance operations.

maintain_users char(1) As per createdb, but for enabling the
right to create, alter or drop users,
profiles, groups, and roles, and to
grant or revoke database and
installation resource controls.

maintain_audit char(1) As per createdb, but for enabling the
right to enable, disable, or alter
security audit, and to change
security audit privileges.

auditor char(1) As per createdb, but for registering,
removing and querying audit logs.

530 Ingres 2006 R2 Database Administrator Guide

Mandatory and Ingres-Only Standard Catalogs

Column Name Data Type Description

audit_query_text char(1) Y if the user can see query text, N if
not. This is enabled if
security_audit=(query_text) was
specified when creating or altering
the user.

expire_date date Optional expiration date. After this
date, user cannot log on.

profile_name char(32) The profile associated with this user,
if any.

default-group char(32) The user's default group.

internal_status integer Shorthand numeric representation of
privileges associated with this
status.

Number is a bitmask as follows:

0x00000001 : createdb

0x00000004 : trace

0x00000200 : operator

0x00000400 : audit_all

0x00000800 : maintain_locations

0x00002000 : auditor

0x00004000 : maintain_audit

0x00008000 : security

0x00010000 : maintain_users

0x01000000 : audit_security_text

internal_def_priv integer Shorthand numberic representation
of default privileges using the same
weighting scheme as above.

internal_flags integer Shorthand numberic representation
of Ingres system privileges held by
the user.

Mandatory and Ingres-Only Standard Catalogs
Mandatory catalogs are those catalogs that are required for all installations,
including Enterprise Access and non-Enterprise Access installations. Ingres-
only catalogs are required for non-Enterprise Access installations.

System Catalogs 531

Mandatory and Ingres-Only Standard Catalogs

Mandatory Catalogs With Entries Required

The following catalogs must be present on both Enterprise Access and non-
Enterprise Access installations. These catalogs must contain entries.

 iicolumns

 iidbcapabilities

 iidbconstants

 iisynonyms

 iitables

Mandatory Catalogs Without Entries Required

The following catalogs must be present on both Enterprise Access and non-
Enterprise Access installations. However, these catalogs are not required to
contain entries.

 iialt_columns

 iiaudit

 iiaudit_tables

 iiconstraint_indexes

 iiconstraints

 iidb_comments

 iidb_subcomments

 iihistograms

 iiindex_columns

 iiindexes

 iikeys

 iiprocedures

 iiref_constraints

 iiregistrations

 iisecurity_alarms

 iistats

 iiviews

532 Ingres 2006 R2 Database Administrator Guide

Extended System Catalogs

Ingres-Only Catalogs

The following catalogs are required by non-Enterprise Access Ingres
installations.

 iifile_info

 iiintegrities

 iilog_help

 iimulti_locations

 iipermits

 iirules

Extended System Catalogs
Extended System catalogs are used by the Ingres tool products, such as ABF,
VIFRED, and RBF, to store information on user interface objects such as
applications, forms, and reports.

To add or upgrade the catalogs required by a product, you must use the
upgradefe command.

System Catalogs 533

Extended System Catalogs

Organization of Extended System Catalogs

For the purpose of installing and upgrading products, extended system
catalogs are grouped into modules. Each product requires one or more of
these modules. The contents of a module are subject to change with a new
release, as catalogs are added or changed.

By default, when you create a database (using the createdb command) or
upgrade a product (using the upgradefe command), catalogs are created for
all products for which you are authorized. To create catalogs only for specific
products, you must specify the products on the createdb command line. Valid
products are:

 ingres (the base product)

 ingres/dbd

 vision

 windows/4gl

Each of these products requires one or more of the following modules:

Module Name Catalogs in Module

APPLICATION_DEVELOPMENT_1
Base product catalogs

Required by:
Ingres
Ingres Vision

ii_abfclasses
ii_abfdependencies
ii_abfobjects
ii_encoded_forms
ii_fields
ii_forms
ii_gropts
ii_joindefs
ii_qbfnames
ii_rcommands
ii_reports
ii_sequence_values
ii_trim

APPLICATION_DEVELOPMENT_2
Catalogs for OpenROAD

Required by:
OpenROAD

ii_applications
ii_components
ii_dependencies
ii_incl_apps
ii_srcobj_encoded
ii_stored_bitmaps
ii_stored_strings

534 Ingres 2006 R2 Database Administrator Guide

Extended System Catalogs

Module Name Catalogs in Module

APPLICATION_DEVELOPMENT_3

Required by:
Ingres Vision

ii_framevars
ii_menuargs
ii_vqjoins
ii_vqtabcols
ii_vqtables

CORE
Catalogs for Ingres and Ingres tools base
product

Required by:
All products

ii_app_cntns_comp
ii_client_dep_mod
ii_dict_modules
ii_encodings
ii_entities
ii_id
ii_locks
ii_longremarks
ii_objects

DATA_MODEL
catalogs for distributed Ingres

Required by:
INGRES/DBD version 1

ii_atttype
ii_atttype_version
ii_defaults
ii_databases
ii_dbd_acl
ii_dbd_identifiers
ii_dbd_locations
ii_dbd_rightslist
ii_dbd_table_char
ii_domains
ii_enttype
ii_joinspecs
ii_key_info
ii_key_map
ii_limits
ii_rel_cncts_ent
ii_reltype
ii_sqlatts
ii_sqltables

METASCHEMA

Required by:
INGRES/DBD version 2

ii_atttype
ii_defaults
ii_databases
ii_domains
ii_enttype
ii_joinspecs
ii_key_info
ii_key_map
ii_limits
ii_rel_cncts_ent
ii_reltype
ii_sqlatts
ii_sqltables

System Catalogs 535

Extended System Catalogs

Module Name Catalogs in Module

PHYSICAL_DATA_MODELLING

Required by
INGRES/DBD version 2

ii_dbd_acl
ii_dbd_identifiers
ii_dbd_locations
ii_dbd_rightslist
ii_dbd_table_char

Data Dictionary Catalogs

Data dictionary catalogs contain the names of the catalogs installed for Ingres
tools (such as ABF, QBF, and VIFRED). When you invoke one of these
products, the product uses the data dictionary catalogs to determine if the
required catalogs are present; if the catalogs are not present, the product
cannot run.

The ii_client_dep_mod catalog lists the products that have been installed, and
the modules required by the product. The format of ii_client_dep_mod is as
follows:

Column Name Data Type Description

client_name varchar(32) Name of the product (for example,
Ingres).

client_version integer Release of the product.

module_name varchar(32) Module required by the product.

module_version integer Release of module required by this
release of the product.

short_remark varchar(60) Comment regarding product/module
information.

The ii_dict_modules catalog lists the modules that are installed in the
database. (A module is a group of catalogs.) The format of ii_dict_modules is
as follows:

Column Name Data Type Description

module_name varchar(32) Name of the installed module (for
example, CORE).

module_version integer Release number of the installed
module.

short_remark varchar(60) Comment about the module.

536 Ingres 2006 R2 Database Administrator Guide

Extended System Catalogs

Object IDs in Extended System Catalogs

Every user interface object (form, ABF frame, ABF application, report, QBF
JoinDef, and so on) is identified in the extended system catalogs by a unique
number, the object ID. The object ID is generated when the object is created.
For each database, the largest object ID issued to date is stored in the table
ii_id; this value is incremented and issued as the ID for each new object.

An object's name, owner, and other information are stored once only, in the
ii_objects catalog. In all other extended system catalogs, objects are identified
by their object ID.

User programs that insert objects into the extended system catalogs must
generate a unique object ID for each new object by incrementing the object_id
column in the ii_id catalog. Be sure to keep the transaction that updates
ii_id.object_id as short as possible and to recover properly from errors. For
information on handling errors in transactions, see the SQL Reference Guide.

Copying the Extended System Catalogs

Extended system catalogs must only be copied into new databases, and never
into existing databases that contain user interface objects (such as forms or
reports).

Copying extended system catalogs with the copy statement does not create
new object IDs for the copied objects. If the target database already contains
user interface objects, serious problems can result: different objects with the
same object ID (for example, both a form and a report with the same object
ID). Use the appropriate copy utility (copyform, copyrep) to copy objects to
existing databases; the copy utilities generate a new object ID for each object
copied into the target database.

Catalogs Shared by All Ingres Tools

The following extended system catalogs are used by all Ingres tools:

 ii_encodings

 ii_id

 ii_locks

 ii_longremarks

 ii_objects

System Catalogs 537

Extended System Catalogs

ii_encodings Catalog

The ii_encodings catalog contains 4GL frames and procedures encoded into a
compact and portable form. Objects in this catalog are referred to as encoded
objects.

This catalog is structured as btree unique on the encode_object and
encode_sequence columns:

Column Name Data Type Description

object_id integer Currently not used. Is set to either 0
or the same value as the
encode_object column.

encode_object integer The object ID for this encoded object.
Various other information about this
encoded object (such as name and
owner) is kept in the ii_objects
catalog.

encode_sequence smallint A sequence number, starting from 0,
for the rows comprising a single
encoded object. Because objects, for
example a 4GL frame, can be
arbitrarily long, an arbitrary number
of ii_encodings rows are required to
encode the object.

encode_estring varchar
(1990)

A segment of the encoded string.

ii_id Catalog

The ii_id catalog is a heap table containing one column with a single row. The
value in this catalog is the highest object ID currently allocated in this
database. For a newly created database, this value is initialized to 10000 and
can grow as large as the largest positive integer value. Object IDs below
10000 are reserved for system use:

Column Name Data Type Description

object_id integer The highest current object ID in this
database.

538 Ingres 2006 R2 Database Administrator Guide

Extended System Catalogs

ii_locks Catalog

The ii_locks catalog is used by ABF, Vision, and OpenROAD to manage
concurrent user access to applications and application components (such as
frames or procedures). The format of ii_locks is as follows:

Column Name Data Type Description

entity_id integer Object ID of the locked object (application
or application component).

session_id integer ID of the user session that locked the
object.

locked_by varchar(32) User ID that locked the object.

lock_date char(25) Date locked.

lock_type varchar(16) Type of lock:
write if an application component is
locked.
refresh if a concurrent application user
has changed the application flow diagram
(possibly affecting other users' screens).
entry if no change to flow diagram.

ii_longremarks Catalog

The ii_longremarks catalog contains the “long remarks” text associated with
user interface objects. Only those objects that have an associated long remark
are entered in this catalog. Consequently, unless all objects being selected
have a long remark entered, joins between ii_objects and ii_longremarks must
be outer joins. For an example of an outer join between the ii_objects and
ii_longremarks catalogs, see Sample Queries for the Extended System
Catalogs for SQL (see page 542). The current implementation restricts long
remarks to a single row; the sequence column is provided for a future
enhancement to allow remarks of arbitrary length.

The ii_longremarks catalog is structured as btree unique on the object_id and
remark_sequence columns:

Column Name Data Type Description

object_id integer Object ID of the user interface object
this remark belongs to. Various other
information about this object (such as
name, owner and object class) is kept
in the ii_objects catalog.

System Catalogs 539

Extended System Catalogs

Column Name Data Type Description

remark_sequence integer A sequence number for (future)
representation of multiple segments
of text comprising one object's long
remarks.

long_remark varchar(600) The long remarks text associated with
the object.

remark_language integer Currently unused.

ii_objects Catalog

The ii_objects catalog contains a row for every user interface object in the
database. This catalog stores basic information about each object, such as
name, owner, object ID, object class, and creation date.

Objects in this table often have additional information represented in rows of
one or more other user interface catalogs; for example, form objects are also
represented by rows in ii_forms, ii_fields, and ii_trim. In all cases, the object
ID is the key column that is used to join information from multiple catalogs
about a single object.

The ii_objects catalog is a btree table, keyed on the object_class,
object_owner, and object_name columns. The ii_objects catalog has a
secondary index, btree unique, keyed on the object_id column:

Column Name Data Type Description

object_id integer The object identifier, unique among
user interface objects in the database.

object_class integer The object's class. Tells what type of
object this is (form, report, and so on).
For object class definitions, see Object
Classes in the ii_objects Catalog (see
page 541).

object_name varchar(32) The name of the object.

object_owner varchar(32) The object owner's user name.

object_env integer Currently unused.

is_current smallint Currently unused.

short_remark varchar(60) A short descriptive remark associated
with the object.

object_language smallint Currently unused.

540 Ingres 2006 R2 Database Administrator Guide

Extended System Catalogs

Column Name Data Type Description

create_date char(25) The time and date when the object was
initially created.

alter_date char(25) The time and date when the object, or
associated information, was most
recently altered or saved.

alter_count integer A count of the number of times this
object has been altered or saved.

last_altered_by varchar(32) The name of the user who last altered
or saved this object.

Object Classes in the ii_objects Catalog

Object class is a column in the ii_objects catalog. Each object class is as
follows:

Object Class Description

1002 JoinDef

1501 Generic Report

1502 Report-Writer Report

1511 RBF Report

1601 Form

2001 ABF Application

2010 4GL Intermediate Language Code

2021 Host Language Procedure

2050 4GL Procedure

2075 Database Procedure

2110 Global Variable

2120 Constant

2130 Record Definition

2133 Record Attribute

2190 Undefined Procedure

2201 QBFName

2210 4GL Frame

2219 Old 4GL Frame

System Catalogs 541

Sample Queries for the Extended System Catalogs for SQL

Object Class Description

2220 Report Frame

2230 QBF Frame

2249 GBF Frame

2250 Undefined Frame

2260 Vision menuframe

2261 Vision append frame

2262 Vision update frame

2264 Vision browse frame

3001 ABF Form Reference

3501 Dependency Type: member of

3502 Dependency Type: database reference

3503 Dependency Type: call with no use of return code

3504 Dependency Type: call with use of return code

Sample Queries for the Extended System Catalogs for SQL
You can issue queries to get information from the extended system catalogs.
Each query specifies the class code for the type of object being selected.

For details on class codes, see Object Classes in the ii_objects Catalog (see
page 541).

Example: Find Information on Every Report in the Database

This query finds information on every report in the database.

select report=o.object_name, o.object_owner,
 o.short_remark, r.reptype
 from ii_objects o, ii_reports r
 where (o.object_class = 1501 or
 o.object_class = 1502 or
 o.object_class = 1511)
 /* object_classes 1501, 1502, 1511 = reports
 */
 and o.object_id = r.object_id

542 Ingres 2006 R2 Database Administrator Guide

Sample Queries for the Extended System Catalogs for SQL

Example: Find the Name and Tabbing Sequence Number of Fields on a Form

This query finds the name and tabbing sequence number of every simple field
and table field on form “empform” (empform is owned by user “susan”).

select form=o.object_name, f.fldname, f.flseq,
 f.fltype
 from ii_objects o, ii_fields f
 where o.object_class = 1601
 /* object_class 1601 = "form" */
 and o.object_name = 'empform'
 and o.object_owner = 'susan'
 and o.object_id = f.object_id
 and (f.fltype = 0 or f.fltype = 1)
 /* simple field or table field */
 order by flseq

Example: Find Information on Every ABF Application

This query finds information on every ABF application in the database.

select appname=object_name, object_owner
 from ii_objects o
 where o.object_class = 2001
 /* object_class 2001 = "abf application" */

System Catalogs 543

Sample Queries for the Extended System Catalogs for SQL

Example: Find Information on All Frames and Procedures in an Application

The following two queries require two correlation variables on the table
ii_objects. Two variables are required, because we need to find all the frames
and procedures in the application, plus object information on the selected
frames and procedures.

This query finds information on all frames and procedures in application lab.

select appname=o.object_name, o2.object_class,
 2.object_name, o2.object_owner, o2.short_remark
 from ii_objects o, ii_abfobjects a,
 ii_objects o2
 where o.object_name = 'lab'
 and o.object_class = 2001
 /* object_class 2001 = "abf application" */
 and o.object_id = a.applid
 and a.object_id = o2.object_id

This query finds dependency information for all frames and procedures in
application payables. Frames and procedures with no dependencies show up
as a row with ad.name=DUMMY.

select appname=o.object_name, o2.object_class,
 o2.object_name, o2.object_owner,
 o2.short_remark, ad.abfdef_name,
 ad.abfdef_deptype, ad.object_class
 from ii_objects o, ii_objects o2,
 ii_abfobjects a, ii_abfdependencies ad
 where o.object_name = 'payables'
 and o.object_class = 2001
/* object_class 2001 = "abf application" */
 and o.object_id = a.applid
 and a.object_id = o2.object_id
 and a.object_id = ad.object_id
order by object_name

Example: Select Object Information

This query selects object information and long remarks, when available, by
performing an outer join of ii_objects with ii_longremarks.

select o.object_name, o.object_class,
 o.object_owner, o.short_remark, l.long_remark
 from ii_objects o, ii_longremarks l
 where o.object_id = l.object_i
 union all

select o.object_name, o.object_class,
 o.object_owner, o.short_remark, ''
 from ii_objects o
 where not exists
 (select *
 from ii_longremarks
 where ii_longremarks.object_id = o.object_id)
order by object_name

544 Ingres 2006 R2 Database Administrator Guide

Forms System Catalogs

Forms System Catalogs
The forms system requires the following extended system catalogs:

 ii_encoded_forms

 ii_fields

 ii_forms

 ii_trim

ii_encoded_forms Catalog

The ii_encoded_forms catalog contains encoded versions of forms. The
encoding allows forms to be retrieved from the database faster.

The ii_encoded_forms catalog is structured as compressed btree unique on the
object_id and cfseq columns:

Column Name Data Type Description

object_id integer Unique identifier (object ID) for
identifying this form in the ii_objects
catalog. Other information about this
form (such as name, owner, and object
class) is stored in the ii_objects
catalog.

cfseq smallint Sequence number of this record for a
particular encoded form. Record
sequence numbering starts at zero (0).

cfdatsize integer Number of bytes of actual data in
column cfdata.

cftotdat integer Total number of bytes needed to hold
an encoded form.

cfdata varchar(1960) Data area used for holding an encoded
form.

System Catalogs 545

Forms System Catalogs

ii_fields Catalog

The ii_fields catalog contains information on the fields in a form. For every
form, there is one row in this catalog for each field, table field and table field
column. As used below, the word field refers to a simple field, a table field or a
column in a table field. An example of a query that selects information about
fields on a form is in Querying the Extended System Catalogs for SQL (see
page 542).

The ii_fields catalog is structured as btree unique on the object_id and
flsubseq columns:

Column Name Data Type Description

object_id integer Unique identifier (object ID) for
identifying the form this field belongs
to in the ii_objects catalog. Other
information about the form (such as
name, owner, and object class) is
stored in the ii_objects catalog.

flseq smallint The sequence number of the field in
the form (or column in a table field).
This determines the tabbing order
among fields and among columns in a
table field.

fldname varchar(32) The name of the field.

fldatatype smallint The field's data type. Possible values
are listed below with nullable data
types being the negative of the listed
value:

3 date

5 money

20 char

21 varchar

30 integer

31 floating point

32 c

37 text

fllength smallint The internal data length of the field in
bytes. This cannot be the same as the
user-defined length. This is the length
used by Ingres.

546 Ingres 2006 R2 Database Administrator Guide

Forms System Catalogs

Column Name Data Type Description

flprec smallint Reserved for future use.

flwidth smallint The number of characters displayed in
the field on the form including wrap
characters. For example, if the format
for the field is c20.10, flwidth is 20.

If the field is a table field, this value is
the number of columns in the table
field.

flmaxlin smallint The number of lines occupied by the
field (title and data).

flmaxcol smallint The number of columns occupied by
the field (title and data).

flposy smallint The y coordinate of the upper left
corner of the field.

flposx smallint The x coordinate of the upper left
corner of the field.

fldatawidth smallint The width of the data entry area for
the field. If field format is c20.10,
fldatawidth is 10.

fldatalin smallint The y coordinate position of the data
entry area relative to the upper left
corner of the field.

fldatacol smallint The x coordinate position of the data
entry area relative to the upper left
corner of the field.

fltitle varchar(50) The field title.

fltitcol smallint The x coordinate position of the title
relative to the upper left corner of the
field.

fltitlin smallint The y coordinate position of the title
relative to the upper left corner of the
field.

flintrp smallint Reserved for future use.

System Catalogs 547

Forms System Catalogs

Column Name Data Type Description

fldflags integer The field attributes, such as box and
reverse video. Valid (octal) values are:

1 boxed field

04 query-only

10 keep previous values

20 mandatory

40 no row lines (table field)

100 force lowercase

200 force uppercase

400 reverse video

1000 blinking

2000 underline

4000 change intensity

10000 no autotab

20000 no echo

40000 no column title (table field
only)

fldflags (cont'd.) 200000 foreground color 1

400000 foreground color 2

1000000 foreground color 3

2000000 foreground color 4

4000000 foreground color 5

10000000 foreground color 6

20000000 foreground color 7

100000000 invisible

10000000000 row highlight (table
field)

fld2flags integer More attributes for the field, including
scrolling:
0100 scrollable
01000 display-only
04000 derived field

fldfont smallint Reserved for future use.

fldptsz smallint Reserved for future use.

548 Ingres 2006 R2 Database Administrator Guide

Forms System Catalogs

Column Name Data Type Description

fldefault varchar(50) The default value for the field.

flformat varchar(50) The display format for the field (for
example, c10 or f10.2).

flvalmsg varchar(100) The message to be displayed if the
validation check fails.

flvalchk varchar(240) The validation check for the field.

fltype smallint Indicates if the record describes a
regular field, a table field or a column
in a table field. Possible values are:
0 simple field;
1 table field;
2 table field column;

flsubseq smallint A unique identifying record number
with respect to the set of records that
describe all the fields in a form.

ii_forms Catalog

The ii_forms catalog contains one row for each form in a database.

The ii_forms catalog is structured as btree unique, keyed on the object_id
column:

Column Name Data Type Description

object_id integer Unique identifier (object ID) for identifying
this form in the ii_objects catalog. Other
information about the form (such as name,
owner, and object class) is stored in the
ii_objects catalog.

frmaxcol smallint The number of columns the form occupies.

frmaxlin smallint The number of lines the form occupies.

frposx smallint The x coordinate for the upper left corner of
the form.

frposy smallint The y coordinate for the upper left corner of
the form.

System Catalogs 549

Forms System Catalogs

Column Name Data Type Description

frfldno smallint For forms saved before release 6.3/01,
contains the number of updatable regular
and table fields in the form. For forms saved
with or after release 6.3/01, contains the
number of regular and table fields in the
form.

frnsno smallint For forms saved before release 6.3/01, the
number of display-only regular fields in the
form.

frtrimno smallint The number of trim and box graphic trim
strings in the form.

frversion smallint Version number of the form.

frscrtype smallint Reserved for future use.

frscrmaxx smallint Reserved for future use.

frscrmaxy smallint Reserved for future use.

frscrdpix smallint Reserved for future use.

frscrdpiy smallint Reserved for future use.

frflags integer The attributes of the form, such as whether
this a pop-up or normal form. Valid (octal)
values are:

1 Display form with single-line border

200 Display form as pop-up

4000 Display form in narrow -screen mode

10000 Display form in wide-screen mode

fr2flags integer More attributes for the form. Currently
unused.

frtotflds integer The total number of records in the ii_fields
catalog for the form.

550 Ingres 2006 R2 Database Administrator Guide

Forms System Catalogs

ii_trim Catalog

The ii_trims catalog contains the trim strings and box graphic trim for a form.
There is one row for each trim string and for each box graphic trim.

The ii_trim catalog is structured as compressed btree unique on the object_id,
trim_col and trim_lin columns:

Column Name Data Type Description

object_id integer Unique identifier (object ID) for
identifying the form this trim string
belongs to in the ii_objects catalog.
Other information about the form (such
as name, owner, and object class) is
stored in the ii_objects catalog.

trim_col smallint The x coordinate for the starting
position of the trim string or box
graphic trim.

trim_lin smallint The y coordinate for the starting
position of the trim string or box
graphic trim.

trim_trim varchar
(150)

The actual trim string or encoding of
box graphic trim size (number of rows
and columns).

trim_flags integer Attributes of the trim string:
01 box graphic trim
0400 reverse video
01000 blinking
02000 underline
04000 change intensity
0200000 foreground color 1
0400000 foreground color 2
01000000 foreground color 3
02000000 foreground color 4
04000000 foreground color 5
010000000 foreground color 6
020000000 foreground color 7

trim2_flags integer More attributes for the trim string.
Currently unused.

trim_font smallint Reserved for future use.

trim_ptsz smallint Reserved for future use.

System Catalogs 551

ABF System Catalogs

ABF System Catalogs
The extended system catalogs that are required by the ABF system are as
follows:

 ii_abfclasses

 ii_abfdependencies

 ii_abfobjects

 ii_sequence_values

ii_abfclasses Catalog

The ii_abfclasses catalog contains information on the attributes of ABF record
types. Name, owner, and class information is stored in ii_objects; information
about the record types is stored in ii_abfobjects:

Column Name Data Type Description

appl_id integer Object ID of the ABF application that
contains this object.

class_id integer Object ID of the record type containing
the attributes.

catt_id integer Object ID in the ii_objects catalog.

class_order smallint Unused.

adf_type integer Integer code representing the type of
the attribute (user frames,
procedures). Valid values are listed
below; NULLable data types are
represented as the negative of the
listed value:
0 none
3 date
5 money
30 integer
31 floating point
37 text
40 string

type_name varchar(32) Description of adf_type.

adf_length integer Length of return type.

adf_scale integer Scale factor of return type.

552 Ingres 2006 R2 Database Administrator Guide

ABF System Catalogs

ii_abfdependencies Catalog

The ii_abfdependencies table describes how the objects listed in the
ii_abfobjects table depend on each other, and on other database objects such
as reports. To get a list of application dependencies, you must join this table
with ii_objects over the object_id column. For an example of joining
ii_abfdependencies with ii_objects, see Sample Queries for the Extended
System Catalogs for SQL (see page 542).

The ii_abfdependencies catalog is structured as btree, keyed on the
abfdef_applid and object_id columns:

Column Name Data Type Description

object_id integer Object ID of an ABF application object
that is dependent on another object.
Other information about this object
(such as name, owner and object
class) is stored in the ii_objects and
ii_abfobjects catalogs.

abfdef_applid integer Object ID of the ABF application that
contains this object.

abfdef_name varchar(32) Name of depended-upon object. If the
row indicates a frame or procedure's
dependence on an ii_encodings entry,
the name is fid plus the object ID of
the ii_encodings entry. If the row only
exists to avoid an outer join problem
between this table ii_abfobjects and
ii_objects, the name is DUMMY.

abfdef_owner varchar(32) Catalog updater. Present for naming
consistency across user interface
catalogs, not currently important for
correct ABF operation.

object_class integer Object manager class of depended
upon object.

System Catalogs 553

ABF System Catalogs

Column Name Data Type Description

abfdef_deptype integer Type of dependency:

3502 Dependent on a database
object.

3503 Call with no use of return code.

3504 Call with return code.

3505 Menu dependency.

3506 Dependency on a global
variable.

3507 Dependency on a record type.

3508 Dependency on table form
[type of table] declaration.

3509 Dependency on form [type of
form] declaration.

3510 Dependency on form [type of
table field] declaration.

abf_linkname varchar(32) Vision Menu item text for menu
dependency.

abf_deporder integer Vision Order of menu dependency.

ii_abfobjects Catalog

The ii_abfobjects catalog contains ABF-specific information on ABF objects.
Name, owner, and class information on each object is contained in the
ii_objects catalog, and is obtained by joining ii_abfobjects with ii_objects over
the ID column. For an example of joining ii_abfobjects with ii_objects, see the
Querying the Extended System Catalogs for SQL (see page 542). The ABF
application is also considered an object, and corresponds to a row in which
applid=object_id.

The ii_abfobjects catalog is structured as compressed btree unique on the
applid and object_id columns:

Column Name Data Type Description

applid integer Object ID of the ABF application that
contains this object.

554 Ingres 2006 R2 Database Administrator Guide

ABF System Catalogs

Column Name Data Type Description

object_id integer Unique identifier (object ID) for
identifying this object in the ii_objects
catalog. Other information about this
object (such as name, owner, and
object class) is stored in the ii_objects
catalog.

abf_source varchar
(180)

Source file name (without path) for
objects with source files; source path
for the application.

abf_symbol varchar(32) Linker symbol corresponding to object,
for objects that are compiled and
linked (compiled forms, user frames,
procedures).

retadf_type smallint Integer code (ADT type) for return
type of objects that have return types
(user frames, procedures). Possible
values are listed below with NULLable
data types being the negative of the
listed value:
0 none
3 date
5 money
30 integer
31 floating point
37 text
40 string

rettype varchar(32) A textual description of retadf_type.

retlength integer Length of return type.

retscale integer Scale factor of return type.

abf_version smallint Release number for latest update of
object. Contains 0 for release 5.

abf_flags integer 32-bit flag variable; the flags describe
the state of the component.

System Catalogs 555

ABF System Catalogs

Column Name Data Type Description

abf_arg1 varchar(48) Object specific (field 1):
applications: Contains the executable
name.

report or QBF frames: Command line
flags (if specified).

procedures: The host language
(descriptive string only, derived from
fill extension).

constants: The language of the
constant (for example, English or
French).

abf_arg2 varchar(48) Object specific (field 2). If object is:

An application: this field contains its
default starting frame.

Report-writer: this field contains the
output destination (file)

QBF frames: this field contains the
joindef/table flag.

abf_arg3 varchar(48) Object-specific field 3. For applications:
The link option file.

abf_arg4 varchar(48) Object-specific field 4. For applications:
specifies the query language (QUEL or
SQL).

For 3GL or 4GL frame: contains the
date of the last unsuccessful compile.

abf_arg5 varchar(48) Object-specific field 5. For applications:
Contains the role under which the
application runs.

For Vision frames: Contains the date
and time the form was generated.

abf_arg6 varchar(48) Object-specific field 6. For Vision
frames: Contains the date and time the
code was generated.

556 Ingres 2006 R2 Database Administrator Guide

QBF System Catalogs

ii_sequence_values Catalog

The ii_sequence_values catalog is used by the 4GL sequence_value function to
generate a series of increasing values (for example, in an application that
automatically assigns the next invoice number).

The format of ii_sequence_values is as follows:

Column Name Data Type Description

sequence_owner varchar(32) The owner of the table that receives
the sequence value.

sequence_table varchar(32) The table that receives the sequence
value.

sequence_column varchar(32) The column that receives the
sequence value.

sequence_value integer The last value generated by the
sequence_value function.

QBF System Catalogs
The QBF system requires the following extended system catalogs:

 ii_joindefs

 ii_qbfnames

ii_joindefs Catalog

The ii_joindefs catalog contains additional information about join definitions
(JoinDefs) used in QBF. Basic information about the JoinDef is contained in a
row in the ii_objects catalog. Each JoinDef can have several rows in ii_joindefs
associated with it. There are four type of records in ii_joindefs, identified by
the qtype column. The ii_joindefs catalog is structured as compressed btree
unique on the object_id and qtype columns:

Column Name Data Type Description

object_id integer Unique identifier (object ID) for
identifying this JoinDef in the ii_objects
catalog. Other information about the
JoinDef (such as its name, owner, and
object class) is stored in the ii_objects
catalog.

System Catalogs 557

QBF System Catalogs

Column Name Data Type Description

qtype integer The low order byte of this column
indicates the record type of this row, as
follows:

0—Indicates if a table field is used in the
JoinDef.

1—Table information.

2—Column information.

3—Join information.

The high order byte is used as a sequence
number for multiple entries of a particular
record type.

Each JoinDef has exactly one row with
qtype = 0; it has one row with qtype = 1
for each table used in the JoinDef; it has
one row with qtype = 2 for each field
displayed in the JoinDef; it has one row
with qtype = 3 for each pair of columns
joined in the JoinDef.

qinfo1 varchar(32) If qtype = 0, qinfo1 indicates if the
JoinDef is built with a table field format
(Y = yes, N = no). If qtype = 1, qinfo1
contains the name of a table used in the
JoinDef.
If qtype = 2, qinfo1 contains a correlation
name (range variable) for the table used
in the JoinDef that contains the column
named in qinfo2. If qtype = 3, qinfo1
contains a correlation name (range
variable) for a column named in qinfo2
that is joined to the column referenced in
qinfo3 and qinfo4.

qinfo2 varchar(32) If qtype = 0, qinfo2 is not used. If qtype
= 1, qinfo2 indicates whether the table
named in qinfo1 is a Master (0) or Detail
(1) table. If qtype = 2, qinfo2 contains
the name of the column to be used in
conjunction with the correlation name in
qinfo1. If qtype = 3, qinfo2 contains the
name of the column to be joined to the
column referenced in qinfo3 and qinfo4.

558 Ingres 2006 R2 Database Administrator Guide

QBF System Catalogs

Column Name Data Type Description

qinfo3 varchar(32) If qtype = 0, qinfo3 is not used. If qtype
= 1, qinfo3 contains a correlation name
(range variable) for the table named in
qinfo1. If qtype = 2, qinfo3 contains the
field name in the form corresponding to
the column identified by qinfo2. If qtype
= 3, qinfo3 contains a correlation name
(range variable) for a column named in
qinfo4 that is joined to the column
referenced in qinfo1 and qinfo2.

qinfo4 varchar(32) If qtype = 0, qinfo4 is not used. If qtype
= 1, qinfo4 contains the delete rules for
the table named in qinfo1 (0 = no, 1 =
yes). If qtype = 2, qinfo4 contains the
status codes for the column identified by
qinfo1 and qinfo2. These status codes are
expressed as a 3-character text string;
the first character denotes update rules
for values in this column (0 = no, 1 =
yes); the second character denotes
whether this column is part of a join (0 =
no, 1 = yes); the third character denotes
whether this column is a displayed
column (0 = no, 1 = yes). Typically, if the
column is not part of a join the third
character is not used by QBF. If qtype =
3, qinfo4 contains the name of the
column to be joined to the column
referenced in qinfo1 and qinfo2.

qinfo5 varchar(32) The owner of the table referenced by the
joindef.

System Catalogs 559

Report-Writer System Catalogs

ii_qbfnames Catalog

The ii_qbfnames catalog contains information used by QBF on the mapping
between a form and a corresponding table or JoinDef.

The ii_qbfnames catalog is structured as compressed btree unique on the
object_id column:

Column Name Data Type Description

object_id integer Unique identifier (object ID) for
identifying this QBFName in the
ii_objects catalog. Other information
about this QBFName (such as its name,
owner, and object class) is stored in
the ii_objects catalog.

relname varchar(32) The name of a table or JoinDef.

relowner varchar(32) the owner of the table referenced in
the QBFName.

frname varchar(32) The name of a form corresponding to
the table or JoinDef.

qbftype smallint Indicates if the QBFName is mapping a
form to a table (value 0) or JoinDef
(value 1).

Report-Writer System Catalogs
The Report-Writer requires the following extended system catalogs:

 ii_rcommands

 ii_reports

560 Ingres 2006 R2 Database Administrator Guide

Report-Writer System Catalogs

ii_rcommands Catalog

The ii_rcommands catalog contains the formatting, sorting, break, and query
commands for each report, broken down into individual commands.

The ii_rcommands catalog is structured as compressed btree unique, keyed on
the object_id, rcotype, and rcosequence columns:

Column Name Data Type Description

object_id integer Unique identifier (object ID) for
identifying the report this command
belongs to in the ii_objects catalog.
Other information about the report
(such as name, owner and object class)
is stored in the ii_objects catalog.

rcotype char(2) Report command type. Valid values are:

TA—Table for a .data command.

SQ—Piece of SQL query for the .query
command.

QU—Piece of QUEL query for the query
command.

SO—Sort column for a .sort command.

AC—Report formatting or action
command.

OU—Output file name, if specified.

BR—break command information.

DE—declare statement information.

rcosequence smallint The sequence number for this row, in
the rcotype.

rcosection varchar(12) The section of the report, such as
header or footer, to which the
commands refer if rcotype is AC. If
rcotype is QU or SQ, this refers to the
part of the query described. For other
values of rcotype, this field is unused.

System Catalogs 561

Report-Writer System Catalogs

Column Name Data Type Description

rcoattid varchar(32) If rcotype is AC, this indicates either the
column name associated with the
footer/header section or contains the
value PAGE or REPORT or DETAIL.
If SO, this is the name of the sort
column.
If QU, the range variable names are put
in this column.
If BR, the name of the break column is
put in this column.
If DE, the name of the declared variable
is put in this column.

rcocommand varchar(12) Primarily used for the names of the
formatting commands when rcotype is
AC. Also used by SO rcotype to indicate
that the sort column is also a break
column.

rcotext varchar(100) If the rcotype is AC, this contains the
text of the formatting command.
If type OU, this contains the name of
the output file.
If QU or SQ, this contains query text.
If TA, this contains the table name.
If SO, this contains the sort order.
If DE, this contains the text of the
declaration.
If BR, this is unused.

562 Ingres 2006 R2 Database Administrator Guide

Report-Writer System Catalogs

ii_reports Catalog

The ii_reports catalog contains information about reports. There is one row for
every report in the database. Both reports created through RBF and reports
created through sreport contain entries in ii_reports. For an example of a
query that selects information about reports, see Sample Queries for the
Extended System Catalogs for SQL (see page 542).

The ii_reports table is structured as btree unique on the object_id column:

Column Name Data Type Description

object_id integer Unique identifier (object ID) for
identifying this report in the ii_objects
catalog. Other information about the
report (such as name, owner, and
object class) is stored in the ii_objects
catalog.

reptype char(1) The method used to create the report;
S if the report was created by sreport,
and F if the report was created by RBF.

replevel integer The release level of the report, shown
on the copyrep header (not present in
earlier releases). Used internally by
Report tools.

0 for earlier releases
1 for the current release

The default is 0.

repacount smallint The number of rows in the
ii_rcommands catalog with an rcotype
of AC. This is used for internal
consistency.

repscount smallint The number of rows in the
ii_rcommands catalog with an rcotype
of SO. This is used for internal
consistency.

repqcount smallint The number of rows in the
ii_rcommands catalog with an rcotype
of QU. This is used for internal
consistency.

repbcount smallint The number of rows in the
ii_rcommands catalog with an rcotype
of BR. This is used for internal
consistency.

System Catalogs 563

Vision System Catalogs

Vision System Catalogs
Vision requires the following catalogs. These catalogs comprise the
APPLICATION_DEVELOPMENT_3 module.

 ii_framevars

 ii_menuargs

 ii_vqjoins

 ii_vqtabcols

 ii_vqtables

ii_framevars Catalog

The ii_framevars catalog describes the local variables and hidden table fields
of a frame:

Column Name Data Type Description

object_id integer Object ID of the frame.

fr_seq smallint Sequence number (for ordering).

var_field varchar(32) Field name.

var_column varchar(32) Column name (if field is a table field).

var_datatype varchar(105) Data type of the field.

var_comment varchar(60) Comment for the variable.

ii_menuargs Catalog

The ii_menuargs catalog describes the arguments to be passed to a called
frame for a given menu choice:

Column Name Data Type Description

object_id integer Object ID of frame.

mu_text varchar(32) Menu item text.

mu_seq smallint Sequence number beginning at 0 (for
argument ordering).

mu_field varchar(32) Field name in called frame to assign
value to. If field name is of the form
X.Y, this contains the X portion only.

564 Ingres 2006 R2 Database Administrator Guide

Vision System Catalogs

Column Name Data Type Description

mu_column varchar(32) Portion of field name in called frame to
assign value to. Only used when field
name is of form X.Y, in which case this
contains the Y portion.

mu_expr varchar(240) 4GL expression (field, constant, byref(),
etc.) in the parent frame to assign to
field in the called frame.

ii_vqjoins Catalog

The ii_vqjoins catalog describes the joins involved in a visual query:

Column Name Data Type Description

object_id integer Object ID of the frame.

vq_seq smallint Sequence number (for ordering).

join_type smallint Type of join specified by this row.
0 = Master/Detail join.
1 = Master/Lookup join.
2 = Detail/Lookup join.

join_tab1 smallint Index to table 1 of the join. Relative
table number in visual query beginning
with 0.

join_tab2 smallint Index to table 2 of the join. Relative
table number in visual query beginning
with 0. (table 2 is always below table 1
in visual query).

join_col1 smallint Join column for table 1. Index into
array of columns for table 1. (Same as
ii_vqtabcols.vq_seq).

join_col2 smallint Join column for table 2. Index into
array of columns for table 2. (Same as
ii_vqtabcols.vq_seq).

System Catalogs 565

Vision System Catalogs

ii_vqtabcols Catalog

The ii_vqtabcols catalog describes the columns of the tables involved in a
visual query:

Column Name Data Type Description

object_id integer Object ID of the frame.

vq_seq smallint Column sequence number (for
ordering).

tvq_seq smallint Sequence number of table in visual
query from ii_vqtables.

col_name varchar(32) Column name.

ref_name varchar(32) Name used on the form for field
containing data.

adf_type smallint Type information for column. See
description of iicolumns.
column_ingdatatype for details.

adf_length integer Column size in bytes.

adf_scale integer Currently not used.

col_flags integer This column contains multiple pieces of
information about the column in a
bitmap format. The following values
are present (expressed in Hex):
1 = Column is to be used on
form/report.
2 = Column is joined to a detail table
and must be displayed.
4 = Column is joined to a lookup table
and must be displayed.
8 = Column is a subordinate join field;
therefore it cannot be displayed.

0x10 = Column is sequenced (generate
new surrogate key value for INSERT
statements).
0x20 = Column is descending (for
sort).
0x40 = Column is part of the table's
unique key.
0x100 = Set if column allows defaults.

566 Ingres 2006 R2 Database Administrator Guide

Vision System Catalogs

Column Name Data Type Description

col_sortorder smallint Sort order for this column. Set to 0 if
not part of sort sequence. For lookup
tables, this gives the order of the
column in the lookup screen.

col_info varchar(240) Information entered by developer for
this column in visual query. For Browse
& Update frames, this is a query
restriction and is added to the WHERE
clause of the SELECT statement. For
Append frames, this gives default value
information and is either used in 4gl
assignment statements for a displayed
column, or in the INSERT statement for
a not-displayed column.

ii_vqtables Catalog

The ii_vqtables catalog describes the tables involved in a visual query:

Column Name Data Type Description

object_id integer Object ID of the frame.

vq_seq smallint Order of table in visual query.

System Catalogs 567

Vision System Catalogs

Column Name Data Type Description

vq_mode smallint This column contains multiple pieces of
information about the frame as a
whole, in a bitmap format (although
note that the first 4 entries below are
mutually exclusive; only one of them
can appear). Can contain the following
values (in Hex):
0 = Frame has no tables (menu
frame).
1 = Master/Detail frame.
2 = Master only in a table field.
3 = Master only in simple fields.

0x10 = If set, the Qualification
Processing frame behavior is Disabled
(can only be set for Browse & Update
frames)
0x20 = If set, the Next Master
Menuitem frame behavior is Disabled
(can only be set for Browse & Update
frames)
0x40 = If set, the“Hold Locks on
Displayed Data frame behavior is set to
Yes (can only be set for Update
frames).

tab_name varchar(32) Table name.

tab_owner varchar(32) Table owner.

tab_section smallint Visual query section table is in.
0 = table is in master section.
1 = table is in detail section.

tab_usage smallint How this table is used in the visual
query.
0 = Append table.
1 = Update table.
2 = Browse table.
3 = Lookup table.

568 Ingres 2006 R2 Database Administrator Guide

Vision System Catalogs

Column Name Data Type Description

tab_flags integer Bitmap flag that indicates the frame
behaviors in the visual query. Valid
values (in Hex):
0x1 = For lookup table: lookup
requires a qualification screen. For
update table: insertions are allowed
into the table field (only relevant to the
detail table, and to masters in table
field)
0x2 = OK to Delete data in this table.
0x4 = If set: update of join field
cascades to detail; if clear: update of
join field not allowed if details exist.
0x8 = If set: delete of master cascades
to detail; if clear: delete of master not
allowed if details exist.
0x10 = Table does not have a unique
key.
0x20 = DBMS handles referential
integrity on details when join field is
changed. Generated code updates
master table only.
0x40 = DBMS handles referential
integrity on details when master is
deleted.

System Catalogs 569

DBMS System Catalogs

Additional Vision Catalog Information

The Application Flow Diagram and Escape Code provide additional Vision
Catalog information.

Vision's Application Flow Diagram is built from menu item information in the
ii_abfdependencies catalog. See ii_abfdependencies Catalog (see page 553).

Frame Escape Code is stored in the ii_encodings catalog. See ii_encodings
Catalog (see page 538).

All escape code for a frame is combined into one (possibly resequenced) entry
in iiencodings. Each piece of escape code in the entry is preceded by a type
code. For example:

 1 = form-start
 2 = form-end
 3 = query-start
 4 = query-new-date
 5 = query-end
 6 = append-start
 7 = append-end
 8 = update-start
 9 = update-end
10 = delete-start
11 = delete-end
12 = menu-start
13 = menu-end
14 = field-entry
15 = field-change
16 = field-exit
17 = user-menuitem

DBMS System Catalogs
The table names of the DBMS System Catalogs can be used as arguments to
the sysmod command. These tables are not supported for any other use.

System Catalogs for All Databases

Following are the table names of DBMS System Catalogs for all databases. The
information in these catalogs is accessed by selecting from the standard
catalogs:

Catalog Description

iiattribute Describes the properties of each column of a table.

iidbdepends Describes the dependencies between views or
protections and their base tables.

570 Ingres 2006 R2 Database Administrator Guide

DBMS System Catalogs

Catalog Description

iidbms_comment Contains text for comments on tables or columns.

iidefault Stores default values used by any attribute (column)
in any table residing in this database.

iidevices Describes additional locations when a user table spans
more than one location.

iidistcol Lists the partitioning columns for partitioned tables.

iidistscheme Contains information about partitioning schemes for
partitioned tables.

iidistval Contains the partitioning values and directives for LIST
or RANGE partitioned tables.

iievent Contains database event information.

iiextended_relation Contains information about the association between
base tables and the extended tables used to store long
data types.

iigw06_attribute Security audit gateway catalogs.

iigw06_relation Security audit gateway catalogs.

iihistogram Contains database histograms that are collected by
the optimizedb program.

iiindex Describes all the indexes for a table.

iiintegrity Contains information about the integrities applied to
tables.

iikey Contains information about key attributes for unique
and referential constraints.

iipartname Contains logical partition names for partitioned tables.

iipriv Contains information about privileges and their
dependent objects.

iiprivlist Contains list of privilege names.

iiprocedure Contains information about database procedures.

iiprocedure_
parameter

Contains information about database procedure
parameters.

iiprotect Contains information about the protections applied to
tables.

iiqrytext Contains the actual query text for views, protections,
and integrities.

System Catalogs 571

DBMS System Catalogs

Catalog Description

iirel_idx An index table that indexes the iirelation table by table
name and owner.

iirelation Describes each table in the database.

iirule Contains information about rules in the database.

iischema Contains the schema name, owner and ID.

iisecalarm Contains information about security alarms.

iisectype A lookup table for security event types.

iisequence Contains information about all sequences defined in
the database.

iistatistics Contains database statistics that are collected by the
optimizedb program.

iisynonym Contains information on the synonyms that have been
defined for tables, views and indexes.

iitree Contains the DBMS internal representation of query
text for views, protections, and integrities.

iixdbdepends An index table used to find the rows that reference a
dependent object in the iidbdepends catalog.

System Catalogs for iidbdb

Following are the table names of DBMS System Catalogs that exist only in the
master database (iidbdb). These tables can be used as arguments to the
sysmod command. They are not supported for any other use.

The information in these catalogs is accessed by selecting from standard
catalogs when connected to the iidbdb database:

Catalog Description

iicdbid_idx Index on iistar_cdbs

iidatabase Various attributes of the databases existing in this
installation.

iidbid_idx Index on iidatabase.

iidbpriv Contains information about database privileges.

iidbdb_netcost Contains costing information used by Ingres Star.

iidbdb_nodecost Contains costing information used by Ingres Star.

572 Ingres 2006 R2 Database Administrator Guide

DBMS System Catalogs

Catalog Description

iiextend Information about what locations databases have been
extended to.

iigw07_attribute Ingres Management Architecture (IMA) catalog.

iigw07_index Ingres Management Architecture (IMA) catalog.

iigw07_relation Ingres Management Architecture (IMA) catalog.

iilocations Storage locations defined in this installation.

iiprofile User profiles defined in this installation.

iirole Roles defined in this installation

iirolegrant Information about which grantees have role privileges.

iisecuritystate Information relating to the security state of this
installation.

iistar_cdbs Information about Ingres Star coordinator databases in
this installation.

iiuser Users defined in this installation

iiusergroup Group definitions for this installation

Miscellaneous System Catalogs

Following are the table names of system catalogs that are created by default
and are owned by $ingres, but do not fit into any of the previous categories:

Catalog Description

iiocolumns An old system catalog interface that has been replaced by
iicolumns.

iiotables An old system catalog interface that has been replaced by
iitables.

iistar_cdbinfo A standard catalog interface to data that describes
coordinator databases for Ingres Star. For more
information, see the Ingres Star User Guide.

System Catalogs 573

Index

deletions • 243 A described • 238
examples • 239, 284 ABF system • 552
index • 238, 241 access privilege • 169
key • 238 allocation option • 267
leaf pages • 241 alterdb (command)
locking • 242 -delete_oldest_ckp • 412
remodifying • 283, 284 -disable_journaling • 423
sort order • 242 altering
structure • 239 database characteristics • 424
tips • 244 database objects • 32, 43
when to use • 243 group objects • 26

bulk copying • 95 profile objects • 24
byte (data type) role objects • 28

conversion function • 54 table objects • 47, 71, 74
copying • 86 user objects • 23

byte varying (data type) applications
conversion function • 54 changing ownership • 144
copying • 86 copying • 136

moving • 136 C
archiving process • 405
area (database) C (data type) conversion function • 54

creating • 37, 38, 39, 41 -c flag in unloaddb (command) • 125
defined • 35 cartesian product in query execution plan •

324 ASCII format
copying • 106 char (data type)
copying databases in • 131 conversion function • 54
unloading databases in • 125 copying • 86

auditing a database • 427 character fields • 54
auditor (privilege) • 161 check constraints • 57

checkpoint B sequence version number • 411
template file • 438 backup
template file format • 443, 445 copying a database • 431

checkpoint files dynamic • 406, 419
alternate locations • 44 methods • 403
default location • 35 static • 406
described • 31 verifying data accessibility • 405

checkpoints binary copy • 82, 85
and recovery • 432 binary format
deleting • 410, 411 copying databases in • 131
destroyed • 412 unloading databases in • 125
dynamic backup • 419 B-tree storage structure
file size • 415 choosing • 245
journal files • 455 data pages • 241, 243
locking • 410

Index 575

with log (clause) • 119 offline • 410
with maxpages (clause) • 97 on tape • 414
with minpages (clause) • 97 setting • 407
with nonleaffill (clause) • 97 columns (in tables)
with on_error (clause) • 118 data types • 54

copyapp (command) • 144 inserting • 67
copyapp in (command) • 136 keys • 247
copyapp out (command) • 136 modifying • 65
copydb (command) renaming • 65, 66

ASCII format • 131 comment on (statement) • 76
binary format • 131 commit (statement) • 365
copying tables • 134, 143 compression
creating scripts • 143 and table size • 454
files copied • 128 modify disk space • 457
inconsistent databases • 132 concurrency
purpose • 121 described • 355
scripts • 129 heavy • 399
uses • 121 improving • 399
using • 127, 143 issues • 461

copying tips • 399
applications • 136 connect_time_limit (privilege) • 169, 181
binary copy • 82, 85 conversion functions • 54
bulk copy • 83, 95 copy (statement)
copying QBFNames and JoinDefs • 135, 145 binary records • 108
database objects • 134, 142 bulk copy • 83, 95
extended system catalogs • 537 copy from • 80, 86, 94, 106, 108
fixed length • 93, 115 copy into • 80, 85, 93
format considerations • 86 described • 79
formatted • 86 errors • 117
forms • 135 fixed-length records • 108
incremental copy • 83 formatted copy • 82
integrity checking • 114 incremental copy • 83
locking • 84 integrity checks • 84
reports • 137 loading data into tables • 86, 94
tables • 134, 143 nulls • 92
variable length • 94 permissions • 84

copying a database • 431 reading multi-line records • 108
copyrep (command) • 146 reload operation • 80
cpio (UNIX utility) • 417 rollback • 118
create table (statement) specifying file name • 81

duplicate rows • 50 successful use of • 114
inserting columns • 67 syntax • 79
renaming columns • 66 unload operation • 80

create_procedure (privilege) • 169, 181 unloading tables into files • 85
create_table (privilege) • 169, 181 with allocation (clause) • 97
createdb (privilege) • 32 with error_count (clause) • 118
creating with extend (clause) • 97

database event • 213 with fillfactor (clause) • 97
database objects • 32, 43 with leaffill (clause) • 97

576 Ingres 2006 R2 Database Administrator Guide

responsibilities • 18, 261 grants • 167
database events group objects • 26

creating • 213 indexes • 251
described • 213 integrity objects • 198
dropping • 213, 219 procedure objects • 191
example • 218 profile objects • 22, 24
raising • 214, 215 role objects • 28
receiving • 216 rules • 201
registering • 216 security alarms • 184
removing • 219 table objects • 47, 71, 74
using • 214 tables • 48

Database Object Manager window user objects • 23
using • 32, 43 users • 22

database objects views • 70
altering • 32, 43 D creating • 32, 43
deleting • 152 d (data type) • 86
dropping • 32, 43 data
viewing • 32, 43, 151 invalid • 115

databases loading • 79, 92, 119
accessing • 21 data dictionary • 536
altering • 32, 43 data files
audit trails • 427 default location • 35
changing ownership • 142 described • 31
checkpointing • 407 locations • 44
creating • 32, 43 data types
destroying • 26, 28, 198 byte • 86
dropping • 32, 43 byte varying • 86
extending • 34, 44 changing • 65
grants • 169 char • 86
inconsistent • 126, 132 d • 86
keys • 469 date • 86
limits • 32 decimal • 86
maintaining shared • 156 float • 86
procedures • 190, 191 float4 • 86
relocating • 34 formats • 86
roll forward • 433 integer • 86
unextending • 34 integer1 • 86
unloading • 122 long byte • 86
viewing • 43 long char • 86

date (data type) money • 86
conversion function • 54 null indicator • 92
copying • 86 smallint • 86

date null(data type) conversion function • 54 varchar • 86
dates in system catalogs • 476 database access • 21
db_admin (privilege) • 169, 181 database administrator • 141
DBMS system • 570, 572 creating • 18
dbmsinfo • 181 described • 18
dbname_SQL_INIT • 372 ownership hierarchy • 141

Index 577

reload.ing (command file) • 125 deadlocks • 385
table names • 156 decimal (data type)
unload.ing (command file) • 125 conversion function • 54

fillfactor • 269 copying • 86
float (data type) declare global temporary table (statement) •

74 conversion function • 54
copying • 86 declare table (statement) • 77

float4 (data type) default profile • 25
conversion function • 54 delimiters • 116
copying • 86 destroying objects • 23, 26, 28, 32, 43, 47,

71, 74, 152, 184, 191, 198, 213 floating point • 125, 131
formats disk space requirements • 449

ASCII • 125, 131 displaying • 346
binary • 125, 131 drop table (statement) • 74

forms dropping
changing ownership of • 145 database events • 213
copying • 135 indexes • 251
moving • 135 objects • 23, 26, 28, 32, 43, 47, 71, 74,

184, 191, 198, 213 forms system • 545
rules • 201 G dummy field • 86

dump (UNIX utility) • 417 get dbevent (statement) • 216
dump files grant (statement)

default location • 35 database • 169
described • 31 described • 167
use in recovery • 410, 432 examples • 171

duplicates overhead • 176
in columns • 298 granting privileges • 167
table rows • 50 grants

creating • 167 E
database event • 174
evaluating • 175 environment variables or logicals • 372
procedure • 174 exclusive locks • 357, 381
role • 174 expiration date (tables) • 69

group objects • 26 extend option • 268
groups • 26 extended system • 533

extending databases • 34 H
F

hash (storage structure)
defined • 222 -f flag, sql (command) • 131
described • 227, 228 fastload (command)
examples • 228 described • 102
fillfactor • 271 performing • 104
hashing • 228 requirements • 103
key • 227, 231 fields
secondary indexes • 282 fixed length • 93
tips • 232 variable length • 94
when to use • 232 files

heap (storage structure) copying to/from • 80, 81

578 Ingres 2006 R2 Database Administrator Guide

after dropping databases • 35 defined • 222
backup • 446 described • 222, 223
checkpointing • 446 disk space required • 449
recovery • 446 examples • 223

iidbprivileges catalog • 522 tips • 226
iidistcols catalog • 490 when to use • 226
iidistschemes catalog • 491 heapsort (storage structure) • 222
iievents catalog • 491 help table (statement) • 262
iiextend_info catalog • 524 histogram, See also statistics • 308, 353
iifile_info catalog • 492 I iihistograms catalog • 492
iiindex_columns catalog • 493 idle_time_limit (privilege) • 169, 181
iiindexes catalog • 493 ii_abfclasses catalog • 552
iiingres catalog • 494 ii_abfdependencies catalog • 553
iiintegrities catalog • 495 ii_abfobjects catalog • 554
iikey_columns catalog • 496 II_DUMP • 35
iikeys catalog • 496 ii_encoded_forms catalog • 545
iilocation_info catalog • 524 ii_encodings catalog • 538
iilog_help catalog • 497 ii_fields catalog • 546
iilpartitions catalog • 498 ii_forms catalog • 549
iimulti_locations catalog • 499 ii_framevars catalog • 564
iiocolumns catalog • 573 ii_id catalog • 538
iiotables catalog • 573 ii_joindefs catalog • 557
iipermits catalog • 500 II_JOURNAL • 35
iiphysical_tables catalog • 501 ii_locks catalog • 539
iiproc_access catalog • 503 ii_longremarks catalog • 539
iiproc_params catalog • 504 ii_menuargs catalog • 564
iiprocedures catalog • 503 ii_objects catalog • 540
iiprofiles catalog • 525 ii_qbfnames catalog • 560
iirange catalog • 505 ii_rcommands catalog • 561
iiref_constraints catalog • 506 ii_reports catalog • 563
iiregistrations catalog • 507 ii_sequence_values catalog • 557
iiroles catalog • 527 ii_trim catalog • 551
iirollgrants catalog • 527 ii_vqjoins catalog • 565
iirules catalog • 507 ii_vqtabcols catalog • 566
iisecurity_alarms catalog • 508 ii_vqtables catalog • 567
iisecurity_state catalog • 529 iiaccess catalog • 477
iisequences catalog • 509 iialt_columns catalog • 477
iisession_privileges catalog • 509 iiaudit catalog • 519
iistar_cdbinfo catalog • 573 iiaudittables catalog • 478
iistats catalog • 510 iicolumns catalog • 478
iisynonyms catalog • 511 iiconstraint_indexes catalog • 483
iitables catalog • 512 iiconstraints catalog • 483
iiusers catalog • 530 iidatabase_info catalog • 520
iiviews catalog • 518 iidb_comments catalog • 483
incremental copying • 96 iidb_subcomments catalog • 484
indexes iidbcapabilities catalog • 485

creating • 251 iidbconstants catalog • 489
design • 469 iidbdb

Index 579

audit trails • 427 dropping • 251
default file location • 35 secondary • 250
deleting • 410 viewing • 251
described • 31 infodb (command) • 411, 425, 426
files • 455 ING_SET • 372
purpose • 419 ING_SET_dbname • 372
resizing • 425, 427 ING_SYSTEM_SET • 372

INGDEFDEV • 41 K Ingres Cluster Solution • 404
inquire_sql (statement) • 217 keys
integer (data type) bad • 470

conversion function • 54 choosing columns • 247
copying • 86 defined • 247

integer1 (data type) design • 469
conversion function • 54 duplicate • 287
copying • 86 examples • 247

integrity good • 470
constraints • 56, 114, 197 multi-column • 471
general • 209 secondary • 249
objects • 198, 213 surrogate • 471
violation • 199 unique • 274

intended exclusive locks • 357
L intended shared locks • 357

ISAM (storage structure) -l flag in sql (command) • 133
choosing • 245 large objects, See also long byte and long

varchar • 109 defined • 222
described • 234 leaffill • 273
examples • 234 limits in unique constraint • 57
fillfactor • 271, 272 locations
key • 233, 236 alternate • 44, 49, 68
tips • 237 alternate (for tables) • 49, 68
when to use • 237 creating • 43

isolation levels defined • 35
described • 382 initial work location • 45
read committed • 383, 384 multi-location sorts • 45
read uncommitted • 383 multiple (for tables) • 49
repeatable read • 383, 384 raw • 40
serializable • 383, 385 locking

J and the auditdb command • 428
and the copy statement • 84

journaling and the copydb command • 132
described • 419 and the unloaddb command • 126
recovery • 432 copy.in script • 132
starting • 420 copy.out script • 132
starting a new file • 455 deadlock • 385, 461
stopping • 422 defaults • 361
table creation • 50 escalation • 389

journals levels • 358, 362, 373
alternate locations • 44 maximum number of locks • 362

580 Ingres 2006 R2 Database Administrator Guide

copying • 86, 109 maxlocks • 362, 374
modes • 357, 360 M monitoring • 392
optimizer • 362 maintain_audit (privilege) • 162
overflow and • 389 maintain_locations (privilege) • 162
page-level • 358, 362 maintain_users (privilege) • 162
process • 359 maxlocks
purpose • 355 changing • 374
query statements • 364 described • 363
readlock • 378 maxpages (clause) • 266
system • 355 minpages (clause) • 266
table-level • 358, 363 miscellaneous system • 573
timeout • 375, 461 modify (statement)
troubleshooting • 461 allocation option • 267
user-controlled • 371 disk space requirement • 265, 456
waiting • 370, 461 extend option • 268

lockmode (privilege) • 169, 181 fillfactor option • 269
locks key columns • 264

available • 360 locking • 265
default • 364 maxpages (clause) • 266
exclusive • 357 minpages (clause) • 266
granting • 360 modify to hash • 228
intended exclusive • 357, 360 modify to merge • 279
intended shared • 357, 360 modify to relocate • 456
logical • 356 modify to reorganize • 456
modes • 357 options • 265
NL • 360 secondary indexes • 265
null • 357 tips • 285
physical • 356 unique (clause) • 274
releasing • 365 uses • 467
shared • 357 modify to add_extend (statement) • 281
shared intended exclusive • 357 money (data type)
SIX • 357 conversion function • 54
tracing • 392 copying • 86
types • 356 moving
waiting for • 462 applications • 136
write • 357 forms • 135

lockstat (utility) • 392 reports • 137
logging tables • 134, 143

bulk copying • 96 multi-statement transactions (MST) • 56
file • 404

N incremental copy • 96
nologging • 111 nonleaffill • 274
system • 403 null values

long byte (data type) and integrity constraints • 199
conversion function • 54 copying • 92
copying • 86, 109 numeric conversion • 54

long varchar (data type)
conversion function • 54

Index 581

O enabling • 340
sample • 341

object ID • 537 parallelism • 339
object key (data type) conversion function • 54 performance
objects and B-tree index • 279

changing ownership • 141, 142 and overflow • 285, 287
copying • 127, 133 and query execution • 293
destroying/dropping • 23, 26, 28, 32, 43,

47, 71, 74, 184, 191, 198, 213
and storage structures • 261
improving • 461

loading • 109 query execution plan • 313
sharing • 141 table scan • 263
updating • 65, 66 permissions

operator (privilege) • 163 examining • 181
optimizedb (command) hierarchy • 178

column selection • 303 multiple • 177
effect • 295 to create databases • 18, 32
examples • 312 privileges
text file input • 302 access • 169
uses • 466 auditor • 161
when to rerun • 311 classes • 167

optimizedb (command), See also statistics •
311

connect time limit • 169
create procedure • 169

outer join • 323 create table • 169
overflow createdb • 32

and B-tree tables • 290 database admin • 169
and ISAM and hash tables • 288 default • 164
described • 285 examining • 181
distribution • 288 granting • 167
key • 287 idle time limit • 169
managing • 464 lockmode • 169
secondary indexes and • 291 maintain_audit • 162

overhead for grants • 176 maintain_locations • 162
ownership maintain_users • 162

changing for application • 144 operator • 163
changing for forms • 145 query limit • 169
changing for procedures • 142 security • 163
changing for reports • 146 select syscat • 169
changing for tables • 143 session priority • 169

table statistics • 169 P
trace • 164

page size in tables • 54 update syscat • 169
page-level locks • 358 procedure objects • 191
pages (in tables) profile objects • 22, 24

FHDR page • 454 Q locking • 358, 373
number of • 262 QBF system • 557
overflow • 390 query
used and free • 454 design • 472

parallel query execution • 338 flattening • 334
parallel query execution plan

582 Ingres 2006 R2 Database Administrator Guide

reports optimizing • 293
changing ownership of • 146 performance • 461
copying • 137 troubleshooting • 472
moving • 137 query execution plan

Report-Writer system • 560 cartesian product • 324
role data flow trees • 316

identifiers • 26 described • 313
objects • 28 evaluating • 345

roles examples • 321
defined • 28 exchange node • 320
purpose • 26 full sort merge • 326

roll forward join node • 323
from specified checkpoint • 437 key lookup join • 332
operation • 432 listing • 315
procedure • 433 lookup joins • 332
recovering subset of data • 436 multiple table • 336

rollforwarddb (command) • 435 node types • 318
rows (in tables) partial sort merge • 328

duplicate • 50, 51, 52 proj-rest node • 320
locking • 358 purpose • 293

rules reading • 316, 317
before and after • 201 sort node • 318
cascade method • 208 subquery join • 334
creating • 201 tid lookup join • 332
defined • 200 query_cost_limit (privilege) • 169, 181
disabling • 212 query_cpu_limit (privilege) • 169, 181
dropping • 201 query_io_limit (privilege) • 169, 181
general purpose • 209 query_page_limit (privilege) • 169, 181
nullify method • 207 query_row_limit (privilege) • 169, 181
prohibiting execution • 212 R referential integrity • 203
referential integrity violation • 203 raise dbevent (statement) • 215
reject method • 204, 205 readlock
row and statement level • 202 setting • 378
using • 201 setting to exclusive • 381
viewing • 201 setting to nolock • 156, 379

recovery S
about • 432
checkpoints • 433 schemas, creating • 72
from old checkpoint • 437 scripts
methods • 403, 432 copy.in • 129, 132
of database • 432 copy.out • 129, 132
of journaled database • 433 secondary indexes
of non-journaled database • 433 B-tree • 282
process • 405 default structure • 282

referential constraints • 58 described • 250
register dbevent (statement) • 216 examples • 250
relocating database files • 34 for performance • 256
repetition factor • 298, 311 forcing use • 258

Index 583

staid • 193 implementation • 252
Standard Catalog Interface • 476 modifying • 281, 282
standard catalogs • 475 multiple • 258
statdump (command) • 346 overflow • 282, 287
statistics overhead • 252

column selection • 303 using • 256
copying • 351 secondary keys • 249
deleting • 346 security
full • 299 alarm objects • 184
histogram • 298, 311 alarms • 183
key column • 301 audit log • 186, 188
minmax • 300 audit statements • 187
non-sampled • 299 auditing • 186
sampled • 299, 351 built-in • 159
text file input • 302, 348, 349 changes taking effect • 188
types • 299 current audit file name • 190
unloading • 348 events • 186

storage structures privilege • 163
and performance • 261 select_syscat (privilege) • 169
B-tree • 222, 238 session_priority (privilege) • 169, 181
compressed • 276 sessions privileges • 180
default • 222 set (statement)
defined • 221 locking • 465
hash • 222, 227 nojournaling • 422
heap • 222 set autocommit (statement) • 365
ISAM • 222 set lock_trace (statement) • 394
keys • 221, 247 set lockmode (statement)
modifying • 264 changing locking parameters • 363
overflow • 288, 290, 291 maxlocks parameter • 374
types • 222 preventing locking delays • 370

subselects, flattening • 334 range • 373
synonyms • 73 readlock = nolock • 372
sysmod (command) readlock parameter • 379

optimizedb and • 466 timeout parameter • 370, 375
uses • 467 user-controlled locking • 371

system catalogs using • 372
ABF • 552 set log_trace (statement) • 447
dates • 476 set nologging (statement)
DBMS • 570, 572 described • 111
defined • 31, 476 syntax • 111
described • 475 set work locations (statement) • 45
extended • 533 shared locks • 357
forms • 545 smallint (data type)
miscellaneous • 573 conversion function • 54
QBF • 557 copying • 86
Report-Writer • 560 sorting
Standard Catalog Interface • 476 disk space required • 458
Vision • 564 insufficient space • 459

sreport (command) • 146

584 Ingres 2006 R2 Database Administrator Guide

T example • 377
optimizer • 343

table key (data type) conversion function • 54 parameter on set lockmode statement •
370 table objects • 47, 71, 74

table_statistics (privilege) • 169 setting • 375
tables with/without cursors • 376

allocated size • 455 trace (privilege) • 164
alternate locations • 49, 68 tracing • 447
changing locations • 49 transaction log file
changing ownership • 143 space reserved in • 404
checkpointing • 407 when lost • 438
commenting • 76 transactions
compressed • 276, 454 multi-query • 463
copying • 79, 134, 143 unlocking • 365
creating • 48 troubleshooting
creating with duplicates • 50, 51 design issues • 468, 469
creating with journaling • 50 performance problems • 461
creating with noduplicates • 51 query performance • 461
creating without duplicates • 50

U deleting • 152
disk space required • 449

UDTs (user-defined data types) • 86
expiration • 69

unextending databases • 34
file name assignment • 156

unique (clause) • 274
journaling • 420

unique constraints • 57
loading data into • 86, 94, 102

UNIX utilities • 154
loading from multiple files • 106

unloaddb (command)
location • 49, 68

ASCII format • 125
locking • 358, 374, 390

binary format • 125
maintaining • 154

files generated by • 124
modifying storage structure • 264

inconsistent databases • 126
moving • 49, 68, 134, 143

objects unloaded by • 123
multiple locations • 49

purpose • 121
partial recovery • 403

using • 122
retaining templates • 157

unloading database • 431
routine maintenance • 153

update_syscat (privilege) • 169, 181
structure • 261

updating views • 70
utility • 48

user
verify integrity • 155

authorization • 21
viewing • 151

data types • 86
tape

objects • 23
capacity in UNIX • 415

ownership hierarchy • 141
use in backups • 414

privileges • 160
temporary tables • 74

users
text (data type) conversion function • 54

Ingres • 22
tids (tupleidentifiers)

utexe.def • 138
described • 259

V examples • 259
use • 259

varchar (data type) values • 259
conversion function • 54 timeout

Index 585

copying • 86
verifydb (command) • 468
version of standard catalogs • 475
viewing

database objects • 32, 43, 151
group objects • 26
indexes • 251
integrity objects • 198, 213
procedure objects • 191
profile objects • 24
role objects • 28
rules • 201
security alarm objects • 184
table objects • 47, 71, 74
user objects • 23

views
comments to describe • 76
creating • 70
defined • 70
selecting data from • 70
updating • 70, 71
uses • 70

Vision system • 564
VMS utilities • 154

W
Windows utilities • 154
with (clause), copy (statement) • 81, 97
work

files, default location • 35
files, described • 31
location • 45

write locks • 357

586 Ingres 2006 R2 Database Administrator Guide

	Bookshelf
	Ingres Database Administrator Guide
	Contents
	1: Introducing Database Administration
	Audience
	What You Need to Know
	Database Administrators
	Query Language Used in this Guide
	System-specific Text in this Guide
	Terminology Used in this Guide
	Syntax Conventions Used in this Guide

	2: Authorizing User Access
	How You Establish User Access
	Ingres User Types and the DBA
	Users and Profiles
	Working with User Objects
	Users and Permissions
	Working with Profile Objects
	Profiles and Users
	Example: Using a Profile
	Default Profile

	Groups and Roles
	Groups
	Working with Group Objects
	Groups and Permissions
	Group ID at Session Startup
	Default Group

	Roles
	Working with Role Objects
	Roles and Permissions
	Role ID at Session Startup

	3: Creating Databases and Using Alternate Locations
	Types of Files in an Ingres Database
	Working With Database Objects
	Createdb Privilege
	How a Database Is Created
	Extend and Unextend a Database
	Relocate Database Files
	How a Database Is Dropped

	Locations and Areas
	Default Locations
	Alternate Locations
	Create an Area in Windows
	Create an Area in UNIX
	Raw Area in UNIX
	How You Change from Raw to Cooked (Non-raw) Transaction Log

	Create an Area in VMS

	Working with Locations
	Guidelines for Using Locations
	Work Locations
	Initial and Extended Work Locations
	Classification of Extended Work Locations
	Work Locations for a Session

	4: Managing Tables and Views
	Table Management
	Tools for Creating a Table
	Table Ownership
	Table Location
	Requirements for Using an Alternate Location for a Table
	Alternate Location for a Table
	Enable or Disable Journaling
	Duplicate Rows in Tables
	Duplicate Rows When Adding New Rows or Modifying a Table
	Duplicate Rows When Bulk Copying Rows in a Table
	Duplicate Rows in Updated Tables
	Remove Duplicate Rows

	Page Size Specification

	Data Type Conversion Functions for Default Values
	Constraints
	Constraint Types
	Unique Constraints
	Check Constraints
	Referential Constraints
	Primary Key Constraint

	Indexes for Constraints
	Options for Constraint Indexes

	Delete Constraints

	Techniques for Changing Table Columns
	Example: Rename a Column
	Example: Insert a Column

	Techniques for Moving a Table to a New Location
	Relocate a Table
	Reorganize a Table

	Assign an Expiration Date to a Table
	Purge Expired Tables

	Views
	Views and Permissions
	Working with View Objects
	Updates on Views
	Types of Updates Not Permitted on Views

	Schemas
	Tools for Managing Schemas

	Synonyms, Temporary Tables, and Comments
	Synonyms
	Working with Synonym Objects

	Temporary Tables
	Temporary Table Declaration and the Optional SESSION Schema Qualifier
	Examples of Working with Temporary Tables

	Comments to Describe Tables and Views
	The Comment On Statement
	The Declare Table Statement

	5: Populating Tables
	Methods of Populating Tables
	Copy Statement Syntax
	Copy Into (Unload Data) and Copy From (Reload Data)
	File Name Specification on the Copy Statement
	With-Clause Options of the Copy Statement

	Copy Statement Operation
	Binary and Formatted Copying
	Bulk and Incremental Copy
	Copy Permissions and Integrities
	Locking During a Copy

	Binary Copying
	Copy Data into a Binary File
	Reload a Table in Binary Format

	Formatted Copying
	Column Name and Format Specifications
	Summary of Data Types and Storage Formats

	Copy Statement and Nulls
	Copy Data into a Formatted File
	Data with Fixed-Length Fields
	Data with Variable-Length Fields

	Reload Formatted Data

	Bulk Copy
	Bulk Copying Requirements
	Transaction Logging During Bulk and Incremental Copy
	Bulk and Incremental Copy Processing
	Bulk Copy With-Clauses
	Example: Perform a Bulk Copy to Create a Hash Table
	Example: Perform Bulk Copy and Create B-tree Table
	Example: Perform Bulk Copy into a Heap Table

	Fastload Operation
	Requirements for Using Fastload
	Perform a Fastload Operation
	Loading Data in a Multi-CPU Environment

	Advanced Use of the Copy Statement
	Populate Multiple Database Tables Using Multiple FIles
	Load a Table from Multiple Files
	Multi-line File Records

	Load Fixed-Length and Binary Records
	Considerations When Loading Large Objects
	Considerations for Copying Formatted Large Objects
	Example: Copying Formatted Large Objects

	Considerations for Binary Copying a Large Object

	Large Data Loads with the Set Nologging Statement
	Suspend Transaction Logging
	Affects of the Set Nologging Statement
	Before Using the Set Nologging Statement
	Restore Transaction Logging
	Example: Use a Set Nologging Application to Load a New Database
	Example: Use a Set Nologging Application to Load an Existing Database

	Successful Use of the Copy Statement
	How You Check for Integrity Errors
	Reloading Problems
	Invalid Data in the Copy File
	Miscounted Fixed-Length Field Widths in the Copy File
	No nl Delimiter in the Copy File
	Omitted Delimiters Between Fields in the Copy File
	Too Many Delimiters in the Copy File

	Error Handling with the Copy Statement
	Stop or Continue the Copy
	Stop the Copy After a Specified Number of Errors
	Roll Back Rows
	Log Errors During Copy
	Continue the Copy and Log Errors

	Troubleshooting Tips for Data Loading

	6: Loading and Unloading Databases
	Unload and Copy Operations
	Privilege Required for Unload Operation
	Privilege Required for Copy Operation

	Unload Operation
	Objects That Are Unloaded
	Ways to Perform the Unload Database Operation
	Options on the Unload Database Operation
	Files Created During the Unload Database Operation
	Unload in ASCII or Binary Format
	Floating Point Specification for Unload
	Unload to Another Instance
	Locking While Unloading a Database
	Inconsistent Database During an Unload
	Lock Database Exclusively During Unload

	Copy Operation
	Ways to Perform the Copy Database Operation
	Options on the Copy Database Operation
	Objects that Are Copied
	Scripts Produced by the Copy Database Operation
	Reloading Order

	Copy in ASCII or Binary Format
	Floating Point Specification for Copy Database
	Copy a Database to Another Instance
	Locking While Copying a Database
	Inconsistent Database During Copy Operation
	Lock Database Exclusively When Copying

	Copy Individual Database Objects
	Command Scripts
	Prepare to Copy a Database Object
	Copy a Database Object
	Copy Tables
	Example: Move a Table to Another Database

	Copy Forms
	Example: Move Forms to Another Database

	Copy Applications
	Copy Reports
	Example: Copy Reports to Another Database

	Increase Object Limit on Commands

	Ways to Copy and Relocate a Database
	Example: Copy a Database to a New Database
	Example: Copy a Database to a New Database and Use New Locations
	Example: Copy a Database to a New Database and Swap Contents of Locations

	Generate XML and Import XML Operations

	7: Changing Ownership of Databases and Database Objects
	Database Ownership
	How You Change Ownership of a Database Object
	Prepare to Change Ownership of a Database Object
	Change Ownership of a Database Object
	Change Ownership of Tables
	Example: Change Ownership of Table

	Change Ownership of Applications
	Example: Transfer Ownership of an Application to Another User

	Change Ownership of Forms
	Example: Transfer Ownership of Forms to Another User

	Change Ownership of Reports
	Example: Transfer Ownership of Reports to Another User

	How You Change Ownership of a Database

	8: Maintaining Databases
	Ways to View Database Objects
	View Database Objects that Belong to Another User
	List All Tables and Their Owners

	Ways to Delete Database Objects
	Routine Database Maintenance Tips
	Operating System Maintenance Tips
	Verifying Databases
	Databases Shared Among Multiple Users
	How File Names Are Assigned for Tables
	Select File Names Associated with Tables

	Retain Templates of Important Tables

	9: Ensuring Access Security
	Subject Privileges
	Auditor Privilege
	Createdb Privilege
	Maintain_Audit Privilege
	Maintain_Locations Privilege
	Maintain_Users Privilege
	Operator Privilege
	Security Privilege
	Trace Privilege
	Default Privilege

	Other User-Related Security Features
	User Expiration Dates
	User Passwords

	Object Permissions
	Ways to Work with Grants
	Object Ownership and Granting Object Permissions

	Database Grants
	Example: Grant to Prohibit a Group From Creating Tables
	Example: Grant to Set Query_row-limit Privilege for a User

	Table and View Grants
	Procedure Grants
	Database Event Grants
	Role Grants
	Grants and Data Access Restriction

	Grant Overhead
	Multiple Permission Checks
	Authorization Hierarchy
	Database Privileges for a Session
	Dbmsinfo--View Permissions for Current Session
	Example: Return the Value of Query Row Limit for Current Session

	Security Alarms
	Ways to Work with Security Alarm Objects
	Implement a Security Alarm
	Example: Define Security Alarm for a Table for Delete, Insert, and Update
	Example: Define Security Alarm for a Table No Longer in Use

	Security Auditing
	Security Audit Log Configuration
	Security Audit Statements
	Security Audit Levels for Users and Roles
	Security Changes Taking Effect
	Access to the Security Audit Log
	Register the Security Audit Log File
	Obtain the Current Audit File Name

	Database Procedures
	Ways to Work with Procedure Objects
	Implement a Database Procedure
	Example: Database Procedure

	Database Procedures and Control Over Database Access

	Control Access to Data with Staid (UNIX)
	Use Chmod to Set the Setuid Bit
	Example: Refer to Setuid in an Embedded SQL Application

	10: Ensuring Data Integrity
	Integrities
	Constraints Compared with Integrities
	Differences in Error Handling Between Integrities and Constraints
	Differences in Null Handling Between Integrities and Constraints

	Ways to Work with Integrity Objects
	How Integrities Are Used
	Nulls and Integrities
	The Copy Statement and Enforcing Integrities

	Rules
	Rules and Database Procedures
	Ways to Work with Rule Objects
	How Rules Are Used
	Before and After Rules
	Row and Statement Level Rules
	Example: Use a Rule to Implement the Equivalent of an Integrity

	Rules and Transactions
	Enforcing Referential Integrity
	Reject Technique for Enforcing Referential Integrity
	Example: Enforce Referential Integrity Between an Employee and Manager

	Nullify Technique for Enforcing Referential Integrity
	Cascade Technique for Enforcing Referential Integrity

	Enforcing General Integrities
	Enforcing General-Purpose Rules
	Using a Rule to Apply External Resource Controls
	Using a Rule to Extend the Permission System
	Example: Use a General Purpose Rule to Track Changes to Personnel Numbers

	The Copy Statement and Enforcing Rules
	Disable Rules

	Database Events
	Ways to Work with Dbevent Objects
	How Database Events Are Used
	Raise an Event
	Register to Receive an Event
	Receive an Event
	Get the Next Event from the Event Queue
	Obtain Event Information

	Example: Using Database Events with Rules
	Remove an Event Registration
	Drop Database Events

	11: Choosing Storage Structures and Secondary Indexes
	Storage Structure Terminology
	Storage Structure and Performance
	Types of Storage Structures
	Heap Storage Structure
	Structure of a Heap Table
	Heap as Default Structure for Loading Data
	When to Use Heap
	Heap Troubleshooting

	Hash Storage Structure
	Structure of a Hash Table
	Retrievals Supported by Hash
	When to Use Hash
	Hash Troubleshooting

	ISAM Storage Structure
	Structure of an ISAM Table
	Retrievals Supported by ISAM
	When to Use ISAM
	ISAM Troubleshooting

	B-tree Storage Structure
	Structure of a B-tree Table
	Associated Data Pages in a B-tree Table
	Index Growth in a B-tree Table
	Splitting in a B-tree Table

	Locking and B-tree Tables
	Sorted Order in a B-tree Table
	Deleted Rows in a B-tree Table
	When to Use B-tree
	B-tree Troubleshooting

	ISAM or B-tree?
	When to Choose ISAM over B-tree
	When to Choose B-tree over ISAM

	Storage Structure Comparison Summary
	Keys
	Key Columns
	Secondary Keys

	Secondary Indexes
	Ways to Work with Indexes
	Implementation and Overhead of Secondary Indexes
	R-tree Secondary Index
	Secondary Indexes and Performance
	Example: Load Retrieved Columns into a Secondary Index to Improve Performance

	Forced Use of Secondary Indexes
	Two Secondary Indexes

	Tids

	12: Maintaining Storage Structures
	Storage Structures and Performance
	Display the Number of Pages in a Table
	Limitations of Heap Structure

	Modify Procedures
	Key Columns and Performance
	Tools for Modifying Storage Structures
	Cautions When Using the Modify Procedure
	Options to the Modify Procedure
	Number of Pages
	Example: Modify Structure and Force a Higher Number of Main Pages for a Table
	Example: Specify a Maximum Number of Main Pages for a Table

	Allocation of Space
	Example: Allocate 1000 Pages to a Table

	Extension of Space
	Example: Extend a Table in Blocks of 1000 Pages

	Guidelines for Choosing an Extend Size
	Default Fill Factors
	Alternate Fill Factors
	Example: Set Fill Factor to 25% on a Hash Table
	Example: Set Fill Factor to 100% on an Uncompressed ISAM Table

	Leaf Page Fill Factors
	Index Page Fill Factors
	Ensuring Key Values Are Unique
	Benefits of Unique Keys
	Disadvantages of Unique Keys
	Specify Unique Keys
	Example: Prevent the Addition of Two Names with the Same Number
	Example: Modify a Table to Hash and Prevent the Addition of Two Names with the Same Number

	Table Compression
	When to Compress a Table
	Compression Overhead

	Page Size

	Shrinking a B-tree Index
	Extending a Table or Index
	Modifying Secondary Indexes
	Persistence Option
	Example: Enable the Persistence Option

	Changing the Index Storage Structure
	Example: Create a B-tree Index for a Table
	Example: Modify an Existing Index to B-tree

	Remodifying B-tree Tables
	Examples: Remodifying a Table to B-tree

	Common Errors During the Modify Procedure

	Overflow Management
	Measure the Amount of Overflow
	Repetitive Key Overflow
	Poorly Distributed Overflow
	Overflow and ISAM and Hash Tables
	Example: Showing Overflow Distribution

	B-tree Tables and Overflow
	Secondary Indexes and Overflow

	13: Using the Query Optimizer
	Overview of the Query Optimizer
	Database Statistics
	Generate Statistics
	Assumptions of the Query Optimizer
	Resources Required During Optimization
	System Modification After Optimization
	Run System Modification

	Information Collected by the Optimizer
	Types of Statistics to Generate
	Non-Sampled and Sampled Statistics
	Generate Sampled Statistics

	Full Statistics
	Generate Full Statistics on Sample Data

	Minmax Statistics
	Example: Generate Statistics with Only Minimum and Maximum Values for a Table

	Key Column Statistics
	Examples: Create Statistics on Key or Indexed Columns Only

	Statistics from an Input Text File

	About Optimizing Columns
	Create Statistics on Keys

	Optimization Output
	Histogram Cells
	Statistics and Global Temporary Tables
	How You Associate “Model” Histograms with Global Temporary Tables

	When to Rerun Optimization
	Example: Before and After Optimization

	Query Execution Plans
	Information on a QEP
	View a QEP
	Control QEP Generation Using a Environment Variable

	Text-Only QEP
	QEPs as Data Flow Trees
	Modes for Showing Tree Diagrams

	Graphical QEP

	Types of Nodes in a QEP
	Sort Nodes in a QEP
	Non-Join Nodes in a QEP
	Orig Nodes
	Projection-Restriction Nodes
	Exchange Nodes
	Examples of Non-join Nodes

	Join Nodes in a QEP
	Cartesian Product Node
	Full Sort Merge Node
	Partial Sort Merge Node
	Hash Join Node
	Key and Tid Lookup Join Node
	Subquery Join Node

	Multiple Query Execution Plans
	More Complex QEPs
	Parallel Query Execution
	Types of Parallelism
	Enabling Parallel Query Plans
	Sample Parallel QEPs

	Optimizer Timeout
	Greedy Optimization
	Summary for Evaluating QEPs

	Specialized Statistics Processing
	Display Optimizer Statistics
	Display Optimizer Statistics for Individual Tables and Columns
	Delete Optimizer Statistics
	Floating Point Precision in Optimizer Statistics Display

	Statistics in Text Files
	Unload Optimizer Statistics to a Text File
	Unload Statistics for Selected Tables or Columns

	Sample Text File Statistics
	Load Optimizer Statistics from a Text File
	Load Statistics for Selected Tables or Columns
	Update Row and Page Counts

	Copy a Table and Associated Statistics

	Sampled Optimizer Statistics
	Create Sampled Statistics

	Composite Histograms

	14: Understanding the Locking System
	Concurrency and Consistency
	Locking System Configuration
	Lock Types
	Lock Modes
	Lock Levels
	How the Locking System Works
	Lock Requests
	Available Locks in the System
	Lock Grants
	Lock Mode Compatibility
	How the Default Lock Mode is Determined
	How the Locking Level is Determined
	Initial Locking Level
	Escalation of Locks
	Methods for Changing How Locking is Handled

	Summary of Default Locks
	Releasing of Locks

	Example: Single User Locking
	Example: Multiple User Locking
	Waiting for Locks

	Ways to Avoid Lock Delays
	User-Controlled Locking
	Ways to Specify a Set Lockmode Statement
	Range of the Set Lockmode Statement
	When to Change the Locking Level
	Change the Locking Level with Set Lockmode

	The Maxlocks Value
	Change Maxlocks Value with Set Lockmode

	Timeout Value for a Lock Wait
	Set a Timeout Value for a Lock Wait
	Guidelines for Timeout Handling
	Example: Timeout Program

	Readlock Option
	Readlock = Nolock Option
	Set Readlock to Nolock
	When readlock=nolock is Beneficial
	When readlock=nolock is Undesirable

	Readlock = Exclusive Option
	Set readlock = exclusive

	Isolation Levels
	Inconsistencies During Concurrent Transactions
	Inconsistencies and Isolation Levels
	Read Uncommitted Isolation Level
	Read Committed Isolation Level
	Repeatable Read Isolation Level
	Serializable Isolation Level

	Deadlock
	Deadlock Example
	Deadlock in Single Query Transactions
	Different Access Paths as a Source of Deadlock
	Lock Escalation as a Source of Deadlock
	Overflow Chains and Locking

	Deadlock in Applications

	Tools for Monitoring Locking
	Performance Monitor
	Set lock_trace Statement
	lock_trace Output
	lock_trace Example

	Performance During Concurrency
	Approaches for Handling Heavy Concurrent Usage
	The Never Escalate Approach
	The Table Lock Approach

	15: Backing Up and Recovering Databases
	Full or Partial Recovery
	Logging System
	Logging Facility
	Log Space Reservation
	Recovery Process
	Archiver Process

	Data Verification Before Backup
	Methods of Verifying Data Accessibility

	Static or Dynamic Backup
	Checkpoints
	Ways to Checkpoint a Database
	Table-level Checkpoints
	Database versus Table-Level Checkpoints
	Roll Forward of Tables
	Checkpoint Template File

	Online and Offline Checkpoints
	Online Checkpoints
	Offline Checkpoints

	Checkpoints and Locking
	Outdated Checkpoints
	Delete Checkpoints Using VDBA
	Manual Deletion of Checkpoints
	Delete Outdated Checkpoints Manually

	Delete the Oldest Checkpoint
	Delete Invalid Checkpoints
	Checkpoints and Destroyed Databases
	Parallel Checkpointing in UNIX
	Checkpoint to Disk
	Checkpoint to Tape

	Putting Checkpoints on Tape in Windows
	Putting Checkpoints on Tape in UNIX
	Estimate Checkpoint File Size in UNIX
	Tape Capacity in UNIX
	Estimate Tape Capacity in UNIX
	Checkpointing to a Single Tape in UNIX
	Checkpointing to Multiple Tapes in UNIX
	When Checkpoint File Fits on a Disk
	When Checkpoint File Does Not Fit on a Disk

	Putting Checkpoints on Tape in VMS

	Journals
	Checkpoints and Audits During Journaling
	Tools for Performing Journaling
	Database or Table-level Journaling
	Database Journaling
	Table-level Journaling
	Enable Journaling on an Entire Database
	New Tables and Journaling
	Start Journaling on a Database Not Checkpointed

	Journaling and Online/Offline Checkpoints

	Disable Journaling
	Stop Journaling on a Table
	Methods for Stopping Journaling on All Tables
	Disabling Journaling When Checkpointing
	Disabling Journaling When Altering a Database
	Example: Disable Journaling by Altering the Database

	Database Characteristics
	Journal File Size
	Target Journal Size
	Journal Block Size
	Initial Journal Size
	Considerations When Resizing Journal Files
	Considerations When Resizing Journal Files on UNIX

	Audit Trails
	Tools for Auditing a Database
	Understanding the Audit Operation
	Load an Audit Trail as a Table

	Backup by Copying
	Backup by Unloading
	Recovery
	Rollforward Operation
	Tools for Performing a Roll Forward Operation
	Recover a Journaled Database
	Recover a Non-Journaled Database
	Recover a Database from Tape Checkpoints
	Parallel Roll Forward from Disk (UNIX)
	Parallel Roll Forward from Tape (UNIX)
	Table Recovery Using Roll Forward
	Retract Changes Using Roll Forward
	Recover a Subset of Data Using Roll Forward
	Recover a Database from an Old Checkpoint
	Recover from the Loss of the Transaction Log File

	Checkpoint Template File Description
	Checkpoint Template Codes
	Examples: Checkpoint Template Code

	Substitution Parameters
	Valid Code Combinations in the Checkpoint Template File
	Format of the Checkpoint Template File in Windows
	Format of the Checkpoint Template File in UNIX
	Format of the Checkpoint Template File in VMS
	Alternate Checkpoint Template File in UNIX

	Backup and Recovery of the Master Database (iidbdb)
	The iidbdb and Checkpointing

	Set Log_Trace Statement

	16: Calculating Disk Space
	Space Requirements for Tables
	Calculate Space Requirements for Heap Tables
	Calculate Space Requirements for Hash Tables
	Calculate Space Requirements for ISAM Tables
	Calculate Space Requirements for B-tree Tables
	Calculate Space Requirements When Rows Span Pages
	Maximum Row Size Per Page Size

	Space Requirements for Compressed Tables
	Tracking of Used and Free Pages
	Calculation of Allocated Table Size

	Space Requirements for Journal Files
	Space Requirements for Modify Operations
	Factors Affecting Space Requirements for Modify Operations
	Summary of Space Requirements for Modify Operations

	Space Requirements for Sorts
	Insufficient Sort Space
	Orphaned Sort Files
	Factors Affecting Sort Performance

	17: Improving Database and Query Performance
	Locking and Concurrency Issues
	Lock Waits and Performance
	Multi-query Transactions and Performance
	Overflow and Performance
	Storage Structure and Overflow

	Set Statements and Locking Strategy

	Database Maintenance Issues
	Optimization and Performance
	Table and Index Modification and Performance
	System Modification and Performance
	Verification and Performance

	Design Issues and Performance
	Hierarchy for Diagnosing Design-based Performance Problems
	Storage Structures and Index Design and Performance
	Key Design and Performance
	Characteristics of Good Keys
	Characteristics of Bad Keys
	Multi-Column Keys and Performance
	Surrogate Keys and Performance

	Query Design and Performance

	Information Needed By Customer Support
	Isolate and Analyze the Problem Query
	Create a Test Case

	A: System Catalogs
	System Catalog Characteristics
	Standard Catalog Interface
	Standard Catalogs for All Databases
	iiaccess Catalog
	iialt_columns Catalog
	iiaudittables Catalog
	iicolumns Catalog
	iiconstraint_indexes Catalog
	iiconstraints Catalog
	iidb_comments Catalog
	iidb_subcomments Catalog
	iidbcapabilities Catalog
	iidbconstants Catalog
	iidistcols Catalog
	iidistschemes Catalog
	iievents Catalog
	iifile_info Catalog
	iihistograms Catalog
	iiindex_columns Catalog
	iiindexes Catalog
	iiingres_tables Catalog
	iiintegrities Catalog
	iikeys Catalog
	iikey_columns Catalog
	iilog_help Catalog
	iilpartitions Catalog
	iimulti_locations Catalog
	iipermits Catalog
	iiphysical_tables Catalog
	iiprocedures Catalog
	iiproc_access Catalog
	iiproc_params Catalog
	iirange Catalog
	iiref_constraints Catalog
	iiregistrations Catalog
	iirules Catalog
	iisecurity_alarms Catalog
	iisession_privileges Catalog
	iisequences Catalog
	iistats Catalog
	iisynonyms Catalog
	iitables Catalog
	iiviews Catalog

	Standard Catalogs for iidbdb
	iiaudit Catalog
	iidatabase_info Catalog
	iidbprivileges Catalog
	iiextend_info Catalog
	iilocation_info Catalog
	iiprofiles Catalog
	iirollgrants Catalog
	iiroles Catalog
	iisecurity_state Catalog
	iiusers Catalog

	Mandatory and Ingres-Only Standard Catalogs
	Mandatory Catalogs With Entries Required
	Mandatory Catalogs Without Entries Required
	Ingres-Only Catalogs

	Extended System Catalogs
	Organization of Extended System Catalogs
	Data Dictionary Catalogs
	Object IDs in Extended System Catalogs
	Copying the Extended System Catalogs
	Catalogs Shared by All Ingres Tools
	ii_encodings Catalog
	ii_id Catalog
	ii_locks Catalog
	ii_longremarks Catalog
	ii_objects Catalog
	Object Classes in the ii_objects Catalog

	Sample Queries for the Extended System Catalogs for SQL
	Example: Find Information on Every Report in the Database
	Example: Find the Name and Tabbing Sequence Number of Fields on a Form
	Example: Find Information on Every ABF Application
	Example: Find Information on All Frames and Procedures in an Application
	Example: Select Object Information

	Forms System Catalogs
	ii_encoded_forms Catalog
	ii_fields Catalog
	ii_forms Catalog
	ii_trim Catalog

	ABF System Catalogs
	ii_abfclasses Catalog
	ii_abfdependencies Catalog
	ii_abfobjects Catalog
	ii_sequence_values Catalog

	QBF System Catalogs
	ii_joindefs Catalog
	ii_qbfnames Catalog

	Report-Writer System Catalogs
	ii_rcommands Catalog
	ii_reports Catalog

	Vision System Catalogs
	ii_framevars Catalog
	ii_menuargs Catalog
	ii_vqjoins Catalog
	ii_vqtabcols Catalog
	ii_vqtables Catalog
	Additional Vision Catalog Information

	DBMS System Catalogs
	System Catalogs for All Databases
	System Catalogs for iidbdb
	Miscellaneous System Catalogs

	Index

