Ingres 2006 Release 2

INGR=S'

rrrrrrrrrrrr

This documentation and related computer software program (hereinafter referred to as the "Documentation") is for
the end user's informational purposes only and is subject to change or withdrawal by Ingres Corporation ("Ingres")
at any time.

This Documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of Ingres. This Documentation is proprietary information of Ingres and protected
by the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this Documentation for
their own internal use, provided that all Ingres copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of

the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. The user consents to Ingres obtaining injunctive relief precluding any unauthorized use of the
Documentation. Should the license terminate for any reason, it shall be the user's responsibility to return to Ingres
the reproduced copies or to certify to Ingres that same have been destroyed.

To the extent permitted by applicable law, INGRES PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IN NO EVENT WILL INGRES BE LIABLE TO THE
END USER OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF INGRES IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The use of any product referenced in this Documentation and this Documentation is governed by the end user's
applicable license agreement.

The manufacturer of this Documentation is Ingres Corporation.

For government users, the Documentation is delivered with "Restricted Rights" as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Copyright © 2007 Ingres Corporation. All Rights Reserved.

Ingres, OpenROAD, and EDBC are registered trademarks of Ingres Corporation. All other trademarks, trade names,
service marks, and logos referenced herein belong to their respective companies.

Contentis

Chapter 1. About This Guide

OV IV W . o 1-1
Purpose of This Manual 1-1
AU ENCE . . oo 1-1
CONtENES . e 1-2
CONVENEIONS . . . 1-2

Statements and CommMaAaNdSt 1-2
System Specific TeXt. 1-3
Related Manuals o 1-4

Chapter 2: Embedded QUEL for C

EQUEL Statement Syntax for C 2-1
Margin 2-1
TN O . . 2-1
Line Continuation 2-2
COMMIENES . .o 2-2
SEriNg Literals . .. 2-4

C Variables and Data TYpPeS e 2-4
Variable and Type Declarations 2-5
The Scope of Variables 2-22
Variable Usage 2-23
Data Type CoNVerSION e 2-31

Dynamically Built Param Statements 2-37
Syntax of Param Statements 2-38
Practical Uses of Param Statements 2-41
Indicator Variables in Param Statements 2-42
Using the Sort Clause in Param Retrieves. e 2-42
Param Versions of Cursor Statements i 2-43

Runtime Error ProCESSINGttt e e e e e e e e e e e e e 2-45
Programming for Error Message Output 2-45

Precompiling, Compiling, and Linking an EQUEL Program 0., 2-48
Generating an Executable Program 2-48
Linking an EQUEL Program—UNIX. 2-51
Linking an EQUEL Program—VIMS 2-52
Include File ProCessing e e 2-53

Contents iii

Coding Requirements for Writing EQUEL Programs. 2-56

EQUEL/C PreproCessor ErTOrsS e e 2-57
PreproCessor Error MEeSSagesot e 2-57
Sample Applications 2-59

The Department-Employee Master/Detail Application 2-59

The Employee Query Interactive Forms Application 2-66

The Table Editor Table Field Application 2-70

The Professor-Student Mixed Form Application 2-75

An Interactive Database Browser Using Param Statements............ 2-81

Chapter 3: Embedded QUEL for COBOL

EQUEL Statement Syntax for COBOL i e e 3-1
Margin . . 3-1
TN O . . o 3-2
Line ContinuUation. 3-2
COMMIBNES . o . 3-2
String Literals o 3-4
The Param FUNCHION e e 3-5

COBOL Variables and Data TYPESt e e e 3-5
Variable and Type Declarations 3-5
Data TY PSS .o e 3-8
The Scope of Variables 3-18
Variable Usage 3-18
Data Type CONVEISIONttt e e e e e e e e e e e e e e e e e e e 3-22

Dynamically Built Param Statements 3-28

RuNtime Error ProCeSSINgo e e e 3-28
Programming for Error Message Output 3-28

Precompiling, Compiling, and Linking an EQUEL Program 3-32
Generating an Executable Program 3-32
Source Code Format 3-35
The COBOL Compiler—VMS ... 3-36
Incorporating Ingres into the Micro Focus RTS—UNIX 3-37
Include File ProCessingo o 3-43
Including Source Code with Labels. 3-45
Coding Requirements for Writing EQUEL Programs. i 3-46
EQUEL/COBOL PreproCessor ErrOrsSttt e e e e e e e e 3-50

PreproCessor Error MeSSages i 3-50

Sample Applications 3-54
UNIX and VMS—The Department-Employee Master/Detail Application....................... 3-54
UNIX and VMS—The Employee Query Interactive Forms Application 3-67
UNIX and VMS—The Table Editor Table Field Application 3-75

iv. Embedded QUEL Companion Guide

UNIX and VMS—The Professor-Student Mixed Form Application 3-85

Chapter 4. Embedded QUEL for Fortran

EQUEL Statement Syntax for Fortran 4-1
Margin o 4-1
TN O . . 4-1
Line Continuation 4-2
COMMIENES . . 4-2
SERiNG Literals ... 4-3

Fortran Variables and Data Ty pesS i e 4-4
Variable and Type Declarations 4-4
Compiling and Declaring External Compiled Forms - Windows 4-15
The Scope of Variables 4-18
Variable Usage o 4-19
Data Type CONVEISIONot et e e e e e e e e e e e e e 4-22

Dynamically Built Param Statements 4-26
Syntax of Param Statements 4-27
Practical Uses of Param Statements 4-32
Indicator Variables in Param Statements 4-33
Using the Sort Clause in Param Retrieves. i 4-34
Param Versions of Cursor Statements 4-34

Runtime Error ProCeSSIiNg e 4-39
Programming for Error Message Output i 4-40

Precompiling, Compiling, and Linking an EQUEL Program it iiiinann.. 4-46
Generating an Executable Program 4-46
Linking an EQUEL Program - UNIX e e 4-50
Linking an EQUEL Program - VMS 4-51
Linking an EQUEL Program - WindOWS e 4-52
Include File ProCeSSIiNg . ..ot 4-53
Including Source Code with Labels 4-57
Coding Requirements for Writing EQUEL Programs 4-57
EQUEL/Fortran Preprocessor Errors 4-58

Preprocessor Error MESSages i 4-58

Sample Applications 4-60
UNIX and VMS—The Department-Employee Master/Detail Application 4-60
UNIX and VMS—The Employee Query Interactive Forms Application 4-72
UNIX and VMS—The Table Editor Table Field Application........ 4-79
UNIX and VMS—The Professor-Student Mixed Form Application 4-89
UNIX, VMS, Windows—An Interactive Database Browser Using Param Statements 4-102

Contents v

Chapter 5: Embedded QUEL for Ada

EQUEL Statement Syntax for Ada 5-1
Margin . .o 5-1
TN O . . o 5-1
Line ContinUation. 5-2
COMMIBNES o . 5-2
String Literals o 5-4
Block Delimiters 5-5

Ada Variables and Data Types 5-5
Variable and Type Declarations 5-5
Compilation Units and the Scope of Variables 5-25
Variable Usage 5-31
Data Type CoNVerSiON 5-36

Dynamically Built Param Statements 5-39

Runtime Error ProCeSSIiNg 5-40
Programming for Error Message Output i 5-40

Precompiling, Compiling and Linking an EQUEL Program i, 5-41
Generating an Executable Program 5-41
Include File ProCesSSiNgot 5-46
Coding Requirements for Writing EQUEL Programs. i, 5-48
EQUEL/Ada PreproCessor ErrOrs e 5-49

PreproCessor Error MESSages o 5-50

Sample Applications 5-53
The Department-Employee Master/Detail Application 5-53
The Employee Query Interactive Forms Application 5-60
The Table Editor Table Field Application e 5-64
The Professor-Student Mixed Form Application 5-69

Chapter 6: Embedded QUEL for BASIC

EQUEL Statement Syntax for BASIC 6-1
BASIC Line Numbers and the EQUEL Mark 6-1
TN O . . o 6-2
Line Continuation. 6-3
COMMIENTS . . .o 6-3
SEriNg Literals . ..o 6-5
Integer Literals 6-5

BASIC Variables and Data TYPES e 6-5
Variable and Type Declarations 6-6
The Scope of Variables 6-17
Variable Usage 6-19

vi Embedded QUEL Companion Guide

Data Type COoNVerSION e e e 6-22

Dynamically Built Param Statements 6-26
Runtime Error ProCESSINGttt e e e e e e e e e e e e e e e 6-26
Programming for Error Message Output 6-26
Precompiling, Compiling and Linking an EQUEL Program 6-28
Generating an Executable Program 6-28
Include File ProCessing 6-31
Coding Requirements for Writing EQUEL Programs 6-33
EQUEL/BASIC PreproCessOr ErrOrSttt e e e e e e e 6-34
Preprocessor Error MeSSages i 6-34
Sample Applications 6-37
The Department-Employee Master/Detail Application......... 6-37
The Employee Query Interactive Forms Application. 6-43
The Table Editor Table Field Application 6-47
The Professor-Student Mixed Form Application.......... 6-52

Chapter 7: Embedded QUEL for Pascal

EQUEL Statement Syntax for Pascal 7-1
Margin .. 7-1
TN Or . . 7-1
Line Continuation 7-2
COMMIBNES .. 7-2
String Literals o 7-4
Block Delimiters 7-5

Pascal Variables and Data Types 7-5
Variable and Type Declarations 7-5
Compilation Units and the Scope of Objects 7-23
Variable Usage 7-28
Data Type CoNVerSION e 7-34

Dynamically Built Param Statements 7-39

Runtime Error ProCeSSIiNg e 7-39
Programming for Error Message Output i 7-39

Precompiling, Compiling, and Linking an EQUEL Program it 7-40
Generating an Executable Program 7-40
Include File ProCeSSINg . ..ot e 7-44
Coding Requirements for Writing EQUEL Programs i, 7-46
EQUEL/Pascal Preprocessor ErrOrs e e e 7-48

PreproCessor Error MESSages i 7-49

Sample Applications 7-54
The Department-Employee Master/Detail Application 7-54
The Employee Query Interactive Forms Application. 7-61

Contents vii

The Table Editor Table Field Application

The Professor-Student Mixed Form Application

Index

viii

Embedded QUEL Companion Guide

Chapter 1: About This Guide

Overview

This chapter briefly describes the Embedded QUEL Companion Guide and
discusses how to use this manual most effectively. The chapter also describes
conventions used in this documentation and lists other manuals that are
relevant to this manual.

Purpose of This Manual

Audience

This guide describes how to use Embedded QUEL (EQUEL) with the following
programming languages:

n CandC++

n COBOL
n Fortran
n Ada

n BASIC
n Pascal

For the most part EQUEL is identical in syntax and functionality across all
supported host programming languages. Therefore the documentation
describes it independently of any one host language in the QUEL Reference
Guide, which covers database statements, and in the Forms-based Application
Development Tools User Guide, which covers forms statements. The host
language-dependent details of its use are described in this Companion Guide.

This manual is designed for programmers who have a working knowledge of
QUEL and C, COBOL, Fortran, Ada, BASIC, or Pascal. It must be read in
conjunction with the QUEL Reference Guide and the Forms-based Application
Development Tools User Guide, as it discusses only those issues on which the
various host languages diverge.

Chapter 1: About This Guide 1-1

Contents

Contents

Each chapter in this guide discusses EQUEL for a particular host language.

Each chapter contains the following sections:

Section Description

EQUEL Statement Syntax Language-specific issues of EQUEL
statement syntax

Variables and Data Types Declaration and use of language-specific
program variables in EQUEL

Dynamically Built Param The param feature that dynamically builds

Statements EQUEL statements.
Note: This feature is supported in EQUEL/C
and EQUEL/Fortran only.

Runtime Error Processing A user-defined EQUEL error handler

Precompiling, Compiling and The EQUEL preprocessor for the host

Linking an EQUEL Program language and the steps required to create,
compile, and link an EQUEL program

Preprocessor Error Messages EQUEL preprocessor error messages
specific to the host language

Remaining sections Sample programs that illustrate many
EQUEL features

Conventions

This section describes the conventions that Ingres documentation uses for
consistency and clarity.
Statements and Commands

Ingres documentation handles statements and commands as follows.

Terminology

The documentation observes the following distinction in terminology:
n A command is an operation that you execute at the operating system level

n A statement is an operation that you embed within a program or execute
interactively from the Terminal Monitor

1-2 Embedded QUEL Companion Guide

System Specific Text

Syntax

A statement can be written in 4GL, a host programming language (such as
C), or a database query language (SQL or QUEL).

This manual uses the following conventions to describe statement and
command syntax specifications:

Convention Usage

Boldface Indicates keywords, symbols or punctuation that
you must type as shown

Italic Represents a variable name for which you must
supply an actual value

[1 (brackets) Indicate an optional item

{ } (braces) Indicate an optional item that you can repeat as

many times as appropriate

| (vertical bar) Used between items in a list to indicate that you
should choose one of the items

The following example illustrates the syntax conventions:

create table tablename (columnname format
{,columnname format})
[with_clause]

System Specific Text

VMS

Although Ingres generally operates the same way on all systems, there are a
few system-specific differences you need to know about. Where information
differs by system, read the information that follows the name of your system,
as follows:

This text is specific to the UNIX environment.

This text is specific to the VMS environment.

This text is specific to the Windows environment. ®

The symbol M indicates the end of the system-specific text.

Chapter 1: About This Guide 1-3

Related Manuals

In some instances, system-specific differences are indicated by using
parenthesis (). For example: This is useful for program libraries that are using
make dependencies (UNIX) or MMS dependencies (VMS).

Related Manuals

This guide is part of a series of manuals that describe the full range of Ingres
products.

To learn more about concepts and functions related to EQUEL, see the
following manuals:

n QUEL Reference Guide

n Character-based Querying and Reporting Tools User Guide

n Forms-based Application Development Tools User Guide

1-4 Embedded QUEL Companion Guide

Chapter 2: Embedded QUEL for C

This chapter describes the use of EQUEL with the C and C++ programming
languages.

EQUEL Statement Syntax for C

Margin

Terminator

This section describes the language-specific ground rules for embedding QUEL
database and forms statements in a C or C++ program. An EQUEL statement
has the following general syntax:

EQUEL_statement

For information on QUEL statements, see the QUEL Reference Guide. For
information on EQUEL/FORMS statements, see the Forms-based Application
Development Tools User Guide.

The following sections describe how to use the various syntactical elements of
EQUEL statements as implemented in C.

There are no specified margins for EQUEL statements in C. Always place two
number signs (##) in the first two positions of a line. The rest of the
statement can begin anywhere else on the line.

An EQUEL/C statement does not need a statement terminator. It is
conventional not to use a statement terminator in EQUEL statements.
However, you can use the C statement terminator, the semicolon (;), at the
end of EQUEL statements because the preprocessor ignores it.

For example, the preprocessor considers the following two statements as the
same:

sleep 1

and
sleep 1;

Chapter 2: Embedded QUEL for C 2-1

EQUEL Statement Syntax for C

Line Continuation

Comments

EQUEL statements that are made up of a few other statements, such as a
display loop, only allow a semicolon after the last statement. For example:

display empform /* No semicolon here */
initialize /* No semicolon here */
activate menuitem "Help" /* No semicolon here */
#{

message "No help yet"; /* Semicolon allowed */
#Ht sleep 2; /* Semicolon allowed */
#H}

finalize; /* Semicolon allowed on last statement */

When using a retrieve loop, place a semicolon after the retrieve statement to
disassociate the loop code inside the braces from the retrieve statement
itself. Variable declarations made visible to EQUEL follow the normal C
declaration syntax. Thus, you must terminate variable declarations in the
normal way for C, with a semicolon.

There are no special line-continuation rules for EQUEL/C. You can break an
EQUEL statement between words and continue it on any number of
subsequent lines. An exception to this rule is that you cannot continue a
statement between two words that are reserved when they appear together,
such as declare cursor. For a list of double keywords, see the QUEL
Reference Guide. Start each continuation line with ## characters. You can put
blank lines between continuation lines.

If you want to continue a character-string constant across two lines, end the
first line with a backslash character (\), and continue the string at the
beginning of the next line. In this case, do not place ## characters at the
beginning of the continuation lines.

For examples of string continuation, see String Literals in this chapter.

Two kinds of comments can appear in an EQUEL program: EQUEL comments
and host language comments. The /* and */ characters delimit EQUEL
comments and must appear on lines beginning with the ## sign.

Because the EQUEL comment delimiters are the same as those for the C
language, all comments appearing on EQUEL lines in a C program (those
beginning with ##) are treated as EQUEL comments. Whereas the
preprocessor passes C comments through as part of its output, it strips EQUEL
comments out of the program and does not pass them through. Thus, source
code comments that you desire in the preprocessor output should be entered
as C comments—on lines other than EQUEL lines.

2-2 Embedded QUEL Companion Guide

EQUEL Statement Syntax for C

The following restrictions apply to any EQUEL or C comments in an EQUEL/C
program:

n

If anything other than ## appears in the first two positions of a line of
EQUEL source, the precompiler treats the line as host code and ignores it.
The only exception to this is a string-continuation line. For details, see

String Literals in this chapter.

Comments cannot appear in string constants. If this occurs, the
preprocessor interprets the intended comment as part of the string
constant.

In general, you can put EQUEL comments in EQUEL statements wherever
you can legally put a space. However, comments cannot appear between
two words that are reserved when they appear together, such as declare
cursor. See the list of EQUEL reserved words in the QUEL Reference
Guide.

The following additional restrictions apply only to C comments in an EQUEL/C
program:

n

C comments cannot appear between component lines of EQUEL block-type
statements. These include retrieve, initialize, activate, unloadtable,
formdata, and tabledata, all of which have optional accompanying blocks
delimited by open and close braces. C comment lines cannot appear
between the statement and its block-opening delimiter.

For example:

retrieve (ename = employee.name)

/* Illegal to put a host comment here! */
{

/* A host comment is legal here */

printf ("Employee name: %s", ename);
)

C comments cannot appear between the components of compound
statements. In particular, it is illegal for a C comment to appear between
any two adjacent components of the display statement. This includes
display itself and its accompanying initialize, activate, and finalize
statements.

For example:

display empform
/* Illegal to put a host comment here! */
initialize (empname = "Fred McMullen")
/* Host comment illegal here! */
activate menuitem "Clear":
{
/* Host comment here is fine */
clear field all

/* Host comment illegal here! */
activate menuitem "End":

{
breakdisplay

/* Host comment illegal here! */
finalize

Chapter 2: Embedded QUEL for C 2-3

C Variables and Data Types

String Literals

The QUEL Reference Guide specifies these restrictions on a statement-by-
statement basis.

EQUEL comments are legal, however, in the locations the previous paragraph
describes, as well as wherever a host comment is legal. For example:
retrieve (ename = employee.name)
/* This is an EQUEL comment, legal in this
location and it can span multiple lines */
{
printf ("Employee name %s", ename);
)

You can use either double quotes (") or single quotes (') to delimit string
literals in EQUEL/C. Be sure that you begin and end each string literal with the
same delimiter.

Whichever quote mark you use, you can embed it as part of the literal itself.
Just precede it with a backslash. For example:

append comments
(fieldl = "a double \" quote is in this string")

or

append comments
#HHt (fieldl = 'a single \' quote is in this string')

To include the backslash character as part of the string, precede it with
another backslash.

To continue a string literal to additional lines, use the backslash character (\).
The preprocessor ignores the backslash and the following newline character,
so that the following line can continue both the string and any further
components of the EQUEL statement. Any leading spaces on the next line are
considered part of the string. This follows the C convention. For example, the
following EQUEL statements are legal:

message 'Please correct errors found in updating \
the database tables.'

append to employee (empname = "Freddie \
Mac", empnum = 222)

C Variables and Data Types

This section describes how to declare and use C program variables in EQUEL.

2-4 Embedded QUEL Companion Guide

C Variables and Data Types

Variable and Type Declarations

The following section describes variable and type declarations.

EQUEL Variable Declaration Procedures

You must make known to the processor any C language variable that you use
in an EQUEL statement so that it can determine the type of the variable. You
must precede the variable declaration in an EQUEL/C program by two number
signs (##) that begin in the first column position of the line. If a variable is
not used in an EQUEL statement, you do not need to use humber signs.

Reserved Words in Declarations

In declarations, all EQUEL keywords are reserved. Therefore, you cannot
declare types or variables with the same name as those keywords. Also, the
following EQUEL/C keywords, used in declarations, are reserved and cannot be
used elsewhere, except in quoted string constants:

auto extern long typedef
char float register union
define globaldef short unsigned
double globalref static varchar
enum int struct

Note that not all C compilers reserve every keyword listed. However, the
EQUEL/C preprocessor does reserve all these words.

The EQUEL preprocessor does not distinguish between uppercase and
lowercase in keywords. When generating C code, it converts any uppercase
letters in keywords to lowercase. The following example shows that although
the following declarations are initially unacceptable to the C compiler, the
preprocessor converts them into legitimate C code. Lines without ## in the
first two column positions pass through without case conversion.

defINE ARRSIZE 256

/* "defINE" is converted to "define" */
INT numarr [ARRSIZE];
#Ht /* "INT" is equivalent to "int" */

The rule just described is true only for keywords. The preprocessor does
distinguish between case in program-defined types and variable names.

Variable and type names must be legal C identifiers beginning with an
underscore or alphabetic character.

Chapter 2: Embedded QUEL for C 2-5

C Variables and Data Types

Data Types

The EQUEL/C preprocessor accepts the C data types in the following table and
maps them to corresponding Ingres types. For further information on type
mapping between Ingres and C data, see Data Type Conversion in this
chapter.

C Data Types and Corresponding Ingres Types

C Data Type Ingres Data Type
long integer

int integer

short integer

char integer

(no indirection)

double float

float float

char * character

(character pointer)

char [] character
(character array)

unsigned integer
unsigned int integer
unsigned long integer
unsigned short integer
unsigned char integer
long int integer
short int integer
long float float

2-6 Embedded QUEL Companion Guide

C Variables and Data Types

The Integer Data Type

The EQUEL preprocessor accepts all C integer data types. Even though some
integer types do have C restrictions (for example, values of type short must
be in the limits of your machine). The preprocessor does not check these
restrictions. At runtime, data type conversion is determined according to
standard C numeric conversion rules. For details on numeric type conversion,
see Data Type Conversion in this chapter.

The type adjectives long, short, or unsigned can qualify the integer type.

In the type mappings table just presented, the C data type char has three
possible interpretations, one of which is the Ingres integer data type. The
adjective unsigned can qualify the char type when it is used as a single-byte
integer. If a variable of the char data type is declared without any C
indirection, such as an array subscript or a pointer operator (the asterisk), it is
considered a single-byte integer variable. For example:

char age;

is a legal declaration and can be used to hold an integer Ingres value. If the
variable is declared with indirection, it is considered an Ingres character string.

You can use an integer variable with any numeric-valued object to assign or
receive numeric data. For example, you can use it to set a field in a form or to
select a column from a database table. It can also specify simple numeric
objects, such as table field row numbers.

The following example shows the way several C data types are interpreted by
EQUEL:

char age; /* Single-byte integer */

short empnums[MAXNUMS]; /* Short integers array*/

long *global_index; /* Pointer to 1long integer */
unsigned 1int overtime;

The Floating-point Data Type

The preprocessor accepts float and double as floating-point data types. The
internal format of double variables is the standard C runtime format.

You can only use a floating-point variable to assign or receive numeric data.
You cannot use it to specify numeric objects, such as table field row numbers.
Note that long float, a construct allowed in some compilers, is accepted as a
synonym for double.

float salary;
double sales;

Chapter 2: Embedded QUEL for C 2-7

C Variables and Data Types

VMS

If you declare long floating variables to be used with EQUEL statements, you
should not compile your program with the g_float command line qualifier
when you are using the VAX C compiler. This qualifier changes the long float
internal storage format, causing runtime numeric errors. ™

The Character String Data Type

Define Declaration

Any variables built up from the char data type, except simple variables
declared without any C indirection, are compatible with any Ingres character
string objects. As previously mentioned, a variable of type char declared
without any C indirection is considered an integer variable. The preprocessor
treats an array of characters and a pointer to a character string in the same
way. Always null-terminate a character string if the string is to be assigned to
an Ingres object. Ingres automatically null terminates any character string
values that are retrieved into C character string variables. Consequently, any
variable that you use to receive Ingres values must be declared as the
maximum object length, plus one extra byte for the C null string terminator.
For more information, see Runtime Character Conversion in this chapter.

The following example declares three character variables—one integer and two
strings:

char age; /* Single byte integer */

char *name; /* To be a pointer to a string */
charbuf[16];

/*

** To be used to receive at most 15 bytes of string
** data, plus a null string terminator
*/

For more information on character strings that contain embedded nulls, see
The Varying Length String Type in this chapter.

The EQUEL preprocessor accepts the ## define directive, which defines a
name to be a constant value. The EQUEL preprocessor replaces the ## define
statement with the C # define statement.

The syntax for the ## define statement is:

define constant_name constant_value

2-8

Embedded QUEL Companion Guide

C Variables and Data Types

Syntax Notes:

n The constant_value must be an integer, floating-point, or character
string literal. It cannot be an expression or another name. It cannot be left
blank, as would happen if you intend to use it later with the # ifdef
statement. If the value is a character string constant, you must use double
quotes to delimit it. Do not use single quotes to delimit constant_name in
order to make it be interpreted as a single character constant, because the
preprocessor translates the single quotes into double quotes. For example,
both of the following names are interpreted as string constants, even
though the first may be intended as a character constant:

define QUITFLAG 'Q'
define ERRORMSG "Fatal error occurred."

n The preprocessor does not accept casts before constant_value. In general,
the preprocessor does not accept casts, and it interprets data types from
the literal value.

You can only use a defined constant to assign values to Ingres objects.
Attempting to retrieve Ingres values into a constant causes a preprocessor
error.

define minempnum 1
define maxsalary 150000.00
define defaultnm "No-name"

EQUEL does not recognize a C define declaration with only one #.

Variable Declarations Syntax
The syntax of a variable declaration is:

[storage_class] type_specification
declarator {, declarator};

where each declarator is:
variable_name [= initial_value]

Syntax Notes:
n Storage_class is optional, but if specified can be any of the following:

auto
extern
register
static
varchar

VMS also uses globaldef and globalref unless you are using ANSI C on VMS.

Chapter 2: Embedded QUEL for C 2-9

C Variables and Data Types

The storage class provides no data type information to the preprocessor. For
more detail on the EQUEL-defined varchar storage class, see The Varying
Length String Type in this chapter.

n Although register variables are supported, be careful when using them in
EQUEL statements. In database statements, such as the append and
retrieve statements, the preprocessor generates C function calls which
may pass a variable by reference using the ampersand operator (&).
However, some compilers do not allow you to use register variables in this
manner.

n Because of the syntactic similarity between the EQUEL register statement
and the C register declaration, the preprocessor does not allow you to
represent the initial object name in the EQUEL register statement with a
host variable.

n The type_specification must be an EQUEL type, a type built up with
a typedef declaration (and known to the preprocessor), or a structure or
union specification. For a discussion of Typedef declarations, see Type
Declarations Syntax in this chapter. For a discussion of structures, see
Structure Declarations Syntax in this chapter.

n Precede the variable_name by an asterisk (*), to denote a pointer
variable, or follow it by a bracketed expression ([expr]), to denote an
array variable. For a discussion of pointers, see Pointer Declarations
Syntax in this chapter. For a discussion of arrays, see Array Declarations
Syntax in this chapter.

n Begin the variable_name with a legal C identifier name that starts with an
underscore or alphabetic character.

n The preprocessor does not evaluate the initial_value. Consequently,
the preprocessor accepts any initial value, even if it can later cause a C
compiler error. For example, the preprocessor accepts both of the
following initializations, even though only the first is a legal C statement:

char *msg = "Try again";
int rowcount = {0, 123};

The following example illustrates some valid EQUEL/C declarations:

extern int first_employee;
auto long update_mode = 1;

static char *names[3] = {"neil", "mark", "barbara"};
static char *names[3] = {"john", "bob", "tom"};

char **nameptr = names;

short name_counter;

float last_salary = 0.0, cur_salary = 0.0;

double stat_matrix[STAT_ROWS] [STAT_COLS];

2-10 Embedded QUEL Companion Guide

C Variables and Data Types

Type Declarations Syntax

The syntax of a type declaration is:

typedef type specification
typedef_name {, typedef_name};

Syntax Notes:

n

Array Declarations Syntax

The typedef keyword acts like a storage class specifier in a
variable declaration, except that the resulting typedef_name is marked as
a type name and not as a variable name.

The type_specification must be an EQUEL/ C type, a type built up

with a typedef declaration and known to the preprocessor, or a structure
or union specification. For a discussion of structures, see Structure
Declarations Syntax in this chapter.

Precede the typedef_name by an asterisk (*), to denote a pointer type, or
follow it by a bracketed expression ([expr]), to denote an array type. For a
discussion of pointers, see Pointer Declarations Syntax in this chapter. For
a discussion of arrays, see Array Declarations Syntax in this chapter.

The preprocessor accepts an initial value after typedef_name, although
you should avoid putting one there because it would not signify anything.
Most C compilers allow an initial value that is ignored after the
typedef_name. The initial value is not assigned to any variables declared
with that typedef.

typedef short INTEGER2;

typedef char CHAR_BUF[2001], *CHAR_PTR;
INTEGER2 i2;

CHAR_BUF logbuf;

CHAR_PTR name_ptr = (char *)0;

The syntax of a C array declaration is:

array_namel[dimension] {[dimension]}

In the context of a simple variable declaration, the syntax is:

type_specification array_variable_name[dimension] {[dimension]};

In the context of a type declaration, the syntax is:

typedef type specification array_type_name[dimension]
{[dimension]};

Chapter 2: Embedded QUEL for C 2-11

C Variables and Data Types

Syntax Notes:

n

The preprocessor does not evaluate the dimension specified in the
brackets. Consequently, the preprocessor accepts any dimensions,
including illegal dimensions such as non-numeric expressions, which later
cause C compiler errors.

For example, the preprocessor accepts both of the following declarations,
even though only the second is legal C:

typedef int SQUARE["bad expression"];

/* Non-constant expression */

#H int cube_5[51[511[5];

You can specify any number of dimensions. The preprocessor notes

the number of dimensions when the variable or type is declared. When the
variable is later referenced, it must have the correct number of indices.

An array variable can be initialized, but the preprocessor does not verify
that the initial value is an array aggregate.

An array of characters is considered to be the pseudo character string
type.

The following example illustrates the use of array declarations:

#i#
##
#i#

define COLS 5

typedef short SQUARE [COLS] [COLST;
SQUARE sq;
static int matrix[3][3] =
{ {11, 12, 13},
{21, 22, 23},
{31, 32, 33} };
char buf [50];

Pointer Declarations Syntax

The syntax of a C pointer declaration is:

{} pointer_name

In the context of a simple variable declaration, the syntax is:

In

type_specification *{*} pointer_variable _name;
the context of a type declaration, the syntax is:

typedef type specification *¥{*} pointer_type name;

Embedded QUEL Companion Guide

C Variables and Data Types

Syntax Notes:

n You can specify any number of asterisks. The preprocessor notes
the number specified when the variable or type is declared. When the
variable is later referenced, it must have the correct number of asterisks.

n A pointer variable can be initialized, but the preprocessor does not verify
that the initial value is an address.

n A pointer to the char data type is considered to be the pseudo
character string type.

n You can use arrays of pointers.

The following example illustrates the use of pointer declarations:

extern int min_value;
int *valptr = &min_value;
char *tablename = "employee";

Structure Declarations Syntax
A C structure declaration has three variants depending on whether it has a tag
and/or a body. The following sections describe these variants.

A Structure with a Tag and a Body
The syntax of a C structure declaration with a tag and a body is:

struct tag_name {
structure_declaration {structure_declaration?}

b
where structure_declaration is:

type_specification
member {, member};

In the context of a simple variable declaration, the syntax is:
struct tag_name {
structure_declaration {structure_declaration}
} [structure_variable _name]j;
In the context of a type declaration, the syntax is:
typedef struct tag name {

structure_declaration {structure_declaration}
} structure_type name;

Chapter 2: Embedded QUEL for C 2-13

C Variables and Data Types

Syntax Notes:

n

Wherever the keyword struct appears, the keyword union can
appear instead. The preprocessor treats them as equivalent.

Each member in a structure_declaration has the same rules as a variable
of its type. For example, as with variable declarations, the
type_specification of each member must be a previously defined type or
another structure. Also, you can precede the member name by asterisks or
follow it by brackets. Because of the similarity between structure members
and variables, the following discussion focuses only on those areas in
which they differ.

A structure member can be a nested structure declaration. For example:

struct person

{

#i# charname [40] ;

#H struct

##t {

#Ht int day, month, year;
##t } birth_date;

##t } owner;

Only structure members that will be referenced in EQUEL statements need
to be declared to EQUEL. The following example declares a C structure
with the fileloc member that is not known to EQUEL:

struct address {
#Ht int number ;
#i# char street[30];
#Ht char town[20];
#i# short zip;
FILE *fileloc; /* Unknown to EQUEL */

} addr[20];

Although the preprocessor permits an initial value after each member
name, do not put one there because it causes a compiler syntax error.

If you do not specify the structure variable_name, the declaration is
considered a declaration of a structure tag.

A structure variable can be initialized, but the preprocessor does not verify
that the initial value is a structure aggregate.

The following example illustrates the use of a tag and a body:

#i#
##
#i#
##
#i#
##
#i#
##
#i#

define max_employees 1500
typedef struct employee

{

char name[21];
short age;
double salary;

} employee_desc;
employee_desc employees[MAX_EMPLOYEES];
employee_desc *empdex = &employees[0];

2-14

Embedded QUEL Companion Guide

C Variables and Data Types

A Structure with a Body and No Tag
The syntax of a C structure declaration with a body and no tag is:

struct {
structure_declaration {structure_declaration}
} structure_variable_name;

where structure_declaration is the same as in the previous section.
In the context of a simple variable declaration, the structure’s syntax is:

struct {
structure_declaration {structure_declaration}
} structure_variable_name;

In the context of a type declaration, the structure’s syntax is:

typedef struct {
structure_declaration {structure_declaration’}
} structure_type name;

Syntax Notes:

n All common clauses have the same rules as in the previous section.
For example, struct and union are treated as equivalent, and the same
rules apply to each structure member as to variables of the same type.

n Specify the structure_variable_name when there is no tag. In fact, the
actual structure definition applies only to the variable being declared.

The following example illustrates the use of a body with no tag:
define MAX_EMPLOYEES 1500

struct

#H{

#Ht char name[21];
short age;

double salary;

} employees[MAX_EMPLOYEES];

A Structure with a Tag and No Body
The syntax of a C structure declaration with a tag and no body is:
struct tag_name
In the context of a simple variable declaration, the syntax is:

struct tag_name structure_variable_name;

Chapter 2: Embedded QUEL for C 2-15

C Variables and Data Types

In the context of a type declaration, the syntax is:
typedef struct tag_name structure_type_name;

Syntax Notes:

n All common clauses have the same rules as in the previous section.
For example, struct and union are treated as equivalent, and the
structure can be initialized without the preprocessor checking for a
structure aggregate.

n The tag_name must refer to a previously defined structure or union.
The preprocessor does not support forward structure declarations.
Therefore, when referencing a structure tag in this type of declaration, the
tag must have already been defined. In the declaration below, the tag
“new_struct” must have been previously declared:

typedef struct new_struct *NEW_TYPE;

The following example illustrates the use of a tag and no body:

union a_name

{

it char nm_full[30];
#it struct

#Ht {

#it char nm_first[10];

it char nm_mid[2];

#it char nm_last[18];

#t } nm_parts;

Y,

union a_name empnames[MAX_EMPLOYEES] ;

Enumerated Integer Types

An enumerated type declaration, enum, is treated as an integer declaration.
The syntax of an enumerated type declaration is:

enum [enum_tag]
{ enumerator [= integer_literal]
{, enumerator [= integer_literall} } [enum_vars];

The outermost braces ({ and }) represent actual braces you type.

Syntax Notes:

n If you use the enum_tag, the list of enumerated literals (enumerators)
and enum variables (enum_vars) is optional, as in a structure declaration.
The two declarations that follow are equivalent. The first declaration
declares an enum_tag, while the second declaration uses that tag to
declare a variable.

2-16 Embedded QUEL Companion Guide

C Variables and Data Types

First declaration:

enum color {RED, WHITE, BLUE};
/* Tag, no variable */
enum color col; /* Tag, no body, has variable */

Second declaration:

enum color {RED, WHITE, BLUE} col;
/* Tag, body, has variable */

If you do not use the enum_tag, the declaration must include a list of
enumerators, as in a structure declaration.

n You can use the enum declaration with any other variable
declaration, type declaration, or storage class. For example, the following
declarations are all legal:

typedef enum {dbTABLE, dbCOLUMN, dbROW,
dbVIEW, dbGRANT} dbOBJ;

dbOBJ obj, objs[10];
extern dbOBJ *obj_ptr;

n Enumerated variables are treated as integer variables and
enumerated literals are treated as integer constants.

The Varying Length String Type

All C character strings are null-terminated. (For more information, see The
Character String Data Type in this chapter). Ingres data of type char or
varchar can contain random binary data including the zero-valued byte (the
null byte or "\0” in C terms). If a program uses a C char variable to retrieve or
set binary data that includes nulls, the EQUEL runtime system is not able to
differentiate between embedded nulls and the null terminator. Unlike other
programming languages, C does not blank-pad fixed length character strings.

In order to set and retrieve binary data that may include nulls, a new EQUEL/C
storage class, varchar, has been provided for varying length string variables.
varchar identifies the following variable declaration as a structure that
describes a varying length string, namely, a 2-byte integer representing the
count and a fixed length character array. Like other storage classes previously
described, the keyword varchar must appear before the variable declaration:
varchar struct {

short current_length;

#it char data_buffer [MAX_LENGTH] ;
} varchar_structure;

Syntax Notes:
n The word varchar is reserved and can be in uppercase or lowercase.

n The varchar keyword is not generated to the output C file.

Chapter 2: Embedded QUEL for C 2-17

C Variables and Data Types

n The varchar storage class can only refer to a variable declaration, not to a
type definition. For example, the following declaration is legal because it
declares the variable “vch”:

varchar struct {

#it short buf_size;
#i# char buf[100] ;
#t } vch;

But the varchar declaration of the structure tag “vch” (without a variable)
is not legal and will generate an error:

varchar struct vch {

#it short buf_size;
#i#t char buf[100] ;
H}

n The structure definition of a varchar variable declaration can be replaced
by a structure tag or typedef reference. For example the following typedef
and varchar declarations are legal:

typedef struct vch_ {

short vcﬁ_count;
#i# char vch_data[VCH_MAX];
} VCH;

varchar VCH vch_1; /* typedef referenced */
varchar struct vch_ vch_2;
/* structure tag referenced */

n The varchar storage class can be used for any type of variable
declaration, including external and static variables, and to qualify nested
structure members. For example, the following declarations are all legal:

static varchar struct _txt {

/* with storage class "static"*/
#i# short tx_len;

char tx_data[TX_MAX];

} txt_var, *txt_ptr, txt_arr[10];

struct {

#it char ename[20] ;

int eage;

##H varchar struct_txt ecomments;

/* nested in structure */

} emp;

typedef short BUF_SIZE;

typedef char BUF[512];

varchar struct {/* members are typedef'd */
#t BUF_SIZE 1len;

#t BUF data;

} vchar;

2-18 Embedded QUEL Companion Guide

C Variables and Data Types

Indicator Variables

An indicator variable is a 2-byte integer variable. You can use these in three
ways in an application:

n In a statement that retrieves data from Ingres, you can use an indicator
variable to determine if its associated host variable was assigned a null.

n In a statement that sets data to Ingres, you can use an indicator variable
to assign a null to the database column, form field, or table field column.

n In a statement that retrieves character data from Ingres, you can use the
indicator variable to ensure that the associated host variable is large
enough to hold the full length of the returned character string.

The base type for an indicator variable must be the integer type short. Any
type specification built up from short is legal, for example:

short ind; /* Indicator variable */
typedef short IND;

IND ind_arr[10]; /* Array of indicators */
IND *ind_ptr; /* Pointer to indicator */

Assembling and Declaring External Compiled Forms - VMS only

You can pre-compile your forms in the Visual Forms Editor (VIFRED). By doing
so, you save the time otherwise required at runtime to extract the form'’s
definition from the database forms catalogs. When you compile a form in
VIFRED, VIFRED creates a file in your directory describing the form in the VAX-
11 MACRO language. VIFRED prompts you for the name of the file on which to
write the MACRO description. After the file is created, you can assemble it into
a linkable object module with the VMS command:

macro filename

The result of this command is an object file containing a global symbol with
the same name as your form.

Before the EQUEL/FORMS addform statement can refer to this global object,
you must declare it to EQUEL with the following syntax:

globalref int *formname;

Syntax Notes:

n The formname is the actual name of the form. VIFRED gives this name to
the variable holding the address of the global object. The formname is also
used as the title of the form in other EQUEL/FORMS statements. In all
statements that use the formname as an argument, except for addform,
you must dereference the name with #.

Chapter 2: Embedded QUEL for C 2-19

C Variables and Data Types

n The globalref storage class associates the object with the external
form definition.

n Although you declare formname as a pointer, you should not precede
it with an asterisk when using it in the addform statement. The following
example shows a typical form declaration and illustrates the difference
between using the form’s object definition and the form’s name. For

example:
globalref int *empform;
addform empform; /* The global object */

display #empform;
/* The name of the form must be dereferenced
** because it is also the name of a variable */

Compiling and Declaring External Compiled Forms -UNIX only

You can precompile your forms in VIFRED. This saves the time that would
otherwise be required at runtime to extract the form’s definition from the
database forms catalogs. When you compile a form in VIFRED, VIFRED creates
a file in your directory describing the form in C. VIFRED prompts you for the
name of the file with the description. After the file is created, you can use the
following €¢c command to compile it into linkable object code:

cc -c filename

The C compiler usually returns warning messages during this operation. You
can suppress these, if you wish, with the -w flag on the cc command line. This
command produces an object file containing a global symbol with the same
name as your form.

Before the EQUEL/FORMS statement addform can refer to this global object,
you must declare it to EQUEL with the following syntax:

extern int *formname;

Syntax Notes:

n The formname is the actual name of the form. VIFRED gives this name to
the variable holding the address of the external object. The formname is
also used as the title of the form in other EQUEL/FORMS statements. In all
statements that use the formname as an argument, except for addform,
you must dereference the name with #.

n The extern storage class associates the object with the external form
definition.

n Although you declare formname as a pointer, you should not precede
it with an asterisk when using it in the addform statement.

2-20

Embedded QUEL Companion Guide

C Variables and Data Types

Concluding Example

UNIX

VMS

The following example shows a typical form declaration and illustrates the
difference between using the form’s object definition and the form’s name.

extern int *empform;

addform empform; /* The global object */

display #empform;

/* The name of the form must be dereferenced */
/* because it is also the name of a variable */

The following example demonstrates some simple EQUEL/C declarations:

define MAX_PERSONS 1000
typedef struct datatypes_ /* Structureof all types */

#{

char d_byte;

##H short d_word;

long d_long;

#it float d_single;

double d_double;
#it char *d_string;

} datatypes;
datatypes d_rec;

char *dbname = "personnel";
char *formname, *tablename, *columnname;

varchar struct {

short len;

#it char binary_data[512];
} binary_chars;

enum color {RED, WHITE, BLUE};

unsigned int empid;
short int vac_balance;

struct person_ /* Structure with a union */

#H{

##t char age;

#Ht long flags;

union

#Ht {

char full_name[30];

#Hi struct {

char firstname[12],
#Ht lastname[18];
#i# } name_parts;

#Hi } person_name;

} person, *newperson, person_store[MAX_PERSONS];

extern int *empform,*deptform; /* Compiled forms */

globalref int *empform, *deptform; /*Compiled forms*/ ™

Chapter 2: Embedded QUEL for C 2-21

C Variables and Data Types

The Scope of Variables

While the EQUEL precompiler understands the scope of a variable, in programs
where this is important, you must ensure that the preprocessor’s scoping of
the variable coincides with that of the C compiler.

In programs without conflict between multiple variables of the same name
declared with different scope, this issue can be ignored. The precompiler does
not need to be made aware of scoping information, and it will consider all
variables visible to it to belong to one global scope covering the entire source
file. Under these circumstances, a second declaration of a particular variable
name will generate an error message from the precompiler, and the second
declaration will be ignored.

In programs where variable names conflict, or for any other reason scoping
becomes an issue, you must observe the following rules to maintain a
consistent understanding of scope between the EQUEL precompiler and the C
compiler:

n To declare a scope for a particular procedure, or randomly in your source
code, use the ## signal with the opening and closing braces. The
preprocessor considers all variables declared in these braces as local to
that EQUEL scope. For example:

if (error)
{
#t int i; /* i is local */
EQUEL statement using 'i'
#Ho)

This is true not only for C blocks, but also for EQUEL statements that are
block structured, such as retrieve. The braces that delimit EQUEL blocks
can also be used as local C blocks and can include variable declarations.

n The above rule holds for fully enclosed declarations, such as in the
example above or for variables local to a procedure. You can also declare
arguments to procedures, but EQUEL may consider these global,
depending on where you put the ## signal. For example:

procl(a)
#i# int a;
{

EQUEL statements using 'a
}

In this context, variable “a” is global to the file, which, although legal, may
conflict with a later procedure declaration:

proc2(a)
char *a;/* EQUEL complains about redeclaration*/
|

EQUEL statements using 'a’
#Ho}

2-22 Embedded QUEL Companion Guide

C Variables and Data Types

Variable Usage

To solve this problem, put a #+# signal on the procedure header and the
parameter list. However, it is not necessary to make all of the parameters
known to EQUEL, nor is it necessary to make the function return type
known. The above problem of procl and proc2 having conflicting
declarations of “a” could be solved as in the following example:

procl(a)

int a;
#H
EQUEL statements using 'a'
oo}
proc2(a)
char *a; /* EQUEL does not give error */
#H

EQUEL statements using 'a'
#Hoo}

Note that this does not imply that EQUEL supports function declarations.
EQUEL only makes use of the scope information.

The rules for the scope of a ##define value are the same as for a
variable. If the ##define statement is in the outermost scope of the file,
it is processed like a C #define and remains in effect for the whole file. If
the ##define is in a particular EQUEL scope (that is, in a procedure with a
#4# on the opening and closing braces), then that EQUEL scope is the
scope of the defined name.

The following program fragments demonstrate a complete EQUEL/C program

syntax:
/* Global declarations */
int globvar;
main()
|
#i#t int arg;
MAIN program uses 'arg' and 'globvar'

#H o}
proc(arg)
int arg;
#H{
float sal;

C and EQUEL code using 'arg', 'sal'

and 'globvar'
#Ho}

C variables declared to EQUEL can substitute for most elements of EQUEL
statements that are not keywords. Of course, the variable and its data type
must make sense in the context of the element. The generic uses of host
language variables in EQUEL statements are discussed in the QUEL Reference
Guide. The following discussion covers only the usage issues particular to C
language variable types.

Chapter 2: Embedded QUEL for C 2-23

C Variables and Data Types

You must verify that the statement using the variable is in the scope of the
variable’s declaration. As an example, the following retrieve statement uses
the variables “namevar” and “numvar” to receive data, and the variable “idno”
as an expression in the where clause:

retrieve (namevar = employee.empname,

numvar = employee.empnum) where
employee.empnum = idno

Simple Variables

The following syntax refers to a simple scalar-valued variable (integer,
floating-point, or character string):

simplename

Syntax Notes:

n If you use the variable to send values to Ingres, it can be any scalar-
valued variable or ##define constant, enumerated variable, or
enumerated literal.

n If you use the variable to receive values from Ingres, it can only be a
scalar-valued variable or enumerated variable.

n Character strings that are declared as:
char *character_string_pointer;
or:
char character_string_buffer[];

are considered scalar-valued variables and should not include any
indirection when referenced.

n External compiled forms that are declared as:

UNIX extern int *compiled_formname; ™
VMS
globalref int *compiled_formname; ™
should not include any indirection when referenced in the addform
statement:
addform compiled_formname;
2-24 Embedded QUEL Companion Guide

C Variables and Data Types

Array Variables

The following example shows a message handling routine. It passes two
scalar-valued variables as parameters: “buffer,” a character string, and
“seconds,” an integer variable.

Print_Message(buffer, seconds)

i char *buffer
##t short seconds
{

#it message buffer
#H sleep seconds
)

The following syntax refers to an array variable:
arrayname [subscript] {[subscript]}

Syntax Notes:

n You must subscript the variable, because only scalar-valued
elements (integers, floating-point, and character strings) are legal EQUEL
values.

n When the array is referenced, the EQUEL preprocessor notes the number
of indices but does not evaluate the subscript values. Consequently, even
though the preprocessor confirms that the correct number of array
indirections is used, it accepts illegal subscript values. You must verify that
the subscript is legal. For example, the preprocessor accepts both of the
following references, even though only the first is correct:

float salary_array[5]; /* declaration */

salary_array[0] /* references */
salary_array[+-1-+]

A character string, declared as an array of characters, is not considered an
array and cannot be subscripted in order to reference a single character.

In fact, single characters are illegal string values, since all character string
values must be null-terminated. For example, if the following variable were

declared:

static char abc[3] = {'a', 'b', 'c'};

you cannot access the character “a” in an EQUEL statement with the
reference:

abc[0]

To perform such a task, declare the variable as an array of three single
character strings:

static char *abc[3] = {"a","b","c"};

Chapter 2: Embedded QUEL for C 2-25

C Variables and Data Types

n Any variable that can be denoted with array subscripting can also
be denoted with pointers. This is because the preprocessor only records
the number of indirection levels used when referencing a variable. The
indirection level is the sum of the number of pointer operators preceding
the variable reference name and the number of array subscripts following
the name. For example, if a variable is declared as an array:

int age_set[2];

it can be referenced as either an array:

age_set[0]

or a pointer:

*age_set

If you use the pointer variant, you must verify that the pointer does not

immediately follow a left parenthesis without a separating space, as “(*" is
a reserved operator. For example:

retrieve (*age_set = e.age)
Note the space between the “(” and the “*”.

n In an EQUEL statement, do not precede references to elements of an array
with the ampersand operator (&) to denote the address of the element.

n Do not subscript arrays of variable addresses that are used with param
target lists. For example:

char target_1ist[200];
#Ht char *addresses[10] ;
#Ht retrieve (param(target_list, addresses))

For more information about parameterized target lists, see Dynamically Built
Param Statements in this chapter.

Pointer Variables
The following syntax refers to a pointer variable:
{}pointername

Syntax Notes:

n Refer to the variable indirectly, because only scalar-valued elements
(integers, floating-point and character strings) are legal QUEL values.

n When the variable is declared, the preprocessor notes the number
of preceding asterisks. Later references to the variable must have the
same indirection level. The indirection level is the sum of the number of
pointer operators (asterisks) preceding the variable declaration name and
the number of array subscripts following the name.

2-26 Embedded QUEL Companion Guide

C Variables and Data Types

n A character string, declared as a pointer to a character, is not considered a
pointer and cannot be subscripted in order to reference a single character.
As with arrays, single characters are illegal string values, because any
character string value must be null-terminated. For example, assuming the
following declaration:

char *abc = "abc";

you could not access the character “a” with the reference:

*abc
n When you declare external compiled forms in UNIX as:
extern int *compiled _formname;
or for VMS as:
globalref int*compiled_formname;
do not include any indirection when referenced in the addform statement.

n As with standard C, any variable that you denote with pointer indirection
can also be denoted with array subscripting. This is true because the
preprocessor only records the number of indirection levels used when
referencing a variable. For example, if a variable is declared as a pointer:

int *age_pointer;

it can be referenced as either a pointer:

*age_pointer;

or an array:

age_pointer[0];

If you use the pointer variant, you must verify that the pointer does not

immediately follow a left parenthesis without a separating space, as “(*" is
a reserved operator. For example:

#Ht retrieve (*age_pointer = e.age)
Note the space between the “(” and the “*.”

The following example uses a pointer to insert integer values into a
database table:

int *numptr;
#Ht static int numarr[6] = {1, 2, 3, 4, 5, 0};

for (numptr = numarr; *numptr; numptr++)
append items (number = *numptr)

For information on pointers to structures and members of structures, see
Structure Variables in this chapter.

Chapter 2: Embedded QUEL for C 2-27

C Variables and Data Types

Structure Variables

Using a Structure Member

You cannot use a structure variable as a single entity. Only elementary
structure members can communicate with Ingres data. This member must be
a scalar value (integer, floating-point, or character string).

The syntax EQUEL uses to refer to a structure member is the same as in C:

structure.member{.member}

Syntax Notes:

n

The structure member the above reference denotes must be a scalar value
(integer, floating-point or character string). There can be any combination
of arrays and structures, but the last object referenced must be a scalar
value. Thus, the following references are all legal in an EQUEL statement,
assuming they all translate to scalar values:

employee.sal /* Structure member */

person[3].name /* Member of element of an array */
structure.mem2.mem3.age /* Deeply nested member */

The preprocessor does not check any array elements that are referred to
in the structure reference and not at the very end of the reference.
Consequently, both of the following references are accepted, even though
one must be wrong, depending on whether “person” is an array:

person[l].age
person.age

Structure references can also include pointers to structures, denoted

by the arrow operator (->). The preprocessor treats the arrow operator
exactly like the dot operator and does not check to see that the arrow is
used when referring to a structure pointer and that the dot is used when
referring to a structure variable. For example, the preprocessor accepts
both of the following references to a structure, although only the second
one is legal C:

struct

#H{

char *name;

int number;
} people[10], *one_person;

people[i]->name /* Should use the dot operator */
one_person->name
/* Correct use of pointer qualifier */

In general, the preprocessor supports unambiguous and direct references
to structure members, as in the following example:
ptrl->struct2.mem3[ind4]->arr5[ind6] [ind7]

In this case, the last object denoted, “arr5[ind6][ind7],” must specify a
scalar-valued object.

2-28 Embedded QUEL Companion Guide

C Variables and Data Types

References to structure variables cannot contain grouping parentheses.
For example, assuming “structl” was declared correctly, the following
reference causes a syntax error on the left parenthesis:

(structl.mem2)->num3

The only exception to this rule occurs when grouping a reference to the
first and main member of a structure by starting the reference with a left
parenthesis followed by an asterisk. Note that the two operators, “(” and
“*" must be bound together without separating spaces, as in the following
example:

(*ptrl)->mem2

Because “(” and “*” are reserved when not separated by spaces, you must
make sure to use the pointer operator (*) correctly after parentheses
when dereferencing simple pointers. For more information, see Pointer
Variables in this chapter.

Structures declared with the varchar storage class do not reference
the structure members. For more information, see Using a Varying Length
String Variable (Varchar) in this chapter.

Using an Enumerated Variable (Enum)

The syntax for referring to an enumerated variable or enumerated literal is the
same as referring to a simple variable:

enum_name

Enumerated variables are treated as integer variables when referenced and
can be used to retrieve data from and assign data to Ingres. The enumerated
literals are treated as integer constants and follow the same rules as integer
constants declared with the ##define statement. Enumerated variables can
only be used to assign data to Ingres.

The following program fragment demonstrates a simple example of the
enumerated type “color”:

##

##

##

##

##

typedef enum {red, white, blue} color;

color col_var, *col_ptr;

static color col_arr[3] = {blue, white, red};

int i;

/* Mapping from color to string */

static char *col_to_str_arr[3] =
{"red","white","blue"};

define ctos(c) col_to_str_arr[(int)c];

/* Fill rows with color array */

for (i =0; i < 3; i++)
append clr (num = i+l, color = col_arr[i])

/*

Chapter 2: Embedded QUEL for C 2-29

C Variables and Data Types

##

##

#i#

** Retrieve the rows -demonstrating a color variable
** and pointer, and arithmetic on a stored color
** value. Results are:

** [1] blue, red
** [2] white, blue
** [3] red, white
*/

col_ptr = &col_arr[0];
retrieve (i = clr.num, col_var = clr.color,
*col_ptr = clr.color+l)

printf("[%d] %s, %s\n", i, ctos(col_var),
ctos(*col_ptr%3));
}

Using a Varying Length String Variable (Varchar)

The syntax for referring to a varchar variable is the same as referring to a
simple variable:

varchar_name

Syntax Notes:

n

When using a variable declared with the varchar storage class, you
cannot reference the two members of the structure individually but only
the structure as a whole. This rule differs from the rule that applies to
regular structure member referencing. For example, the following
declaration and retrieve statement are legal:

varchar struct {

#it short buf_size;
#i# char buf[100] ;
#t } vch;

retrieve (vch = objects.data)

But the following statement will generate an error on the use of the
member “buf_size”:

retrieve (vch = objects.data
#Ht vch.buf_size = length(objects.data))

When you use the variable to retrieve Ingres data, the 2-byte length field
is assigned the length of the data and the data is copied into the fixed
length character array. The data is not null-terminated. You can use a
varchar variable to retrieve data in the retrieve, retrieve cursor,
inquire_ingres, getform, finalize, unloadtable, getrow, and
inquire_frs statements.

When you use the variable to set Ingres data, the program must

assign the length of the data (in the character array) to the 2-byte length
field. You can use a varchar variable to set data in the append, replace,
replace cursor, putform, initialize, loadtable, putrow, insertrow,
and set_frs statements.

2-30

Embedded QUEL Companion Guide

C Variables and Data Types

Using Indicator Variables

The syntax for referring to an indicator variable is the same as for a simple
variable, except that an indicator variable is always associated with a host
variable:

host_variable:indicator_variable
Syntax Note:

The indicator variable can be a simple variable, an array element or
a structure member that yields a short integer. For example:
short ind_var, *ind_ptr, ind_arr[5];

var_l:ind_var

var_2:*ind_ptr

var_3:ind_arr[2]

Data Type Conversion

A C variable declaration must be compatible with the Ingres value it
represents. Numeric Ingres values can be set by and retrieved into numeric
variables, and Ingres character values can be set by and retrieved into
character variables.

Data type conversion occurs automatically for different numeric types, such as
from floating-point Ingres database column values into integer C variables,
and for character strings, such as from varying-length Ingres character fields
into fixed-length C character string variables.

Ingres does not automatically convert between numeric and character types.
You must use one of the Ingres type conversion functions or a C conversion

routine for this purpose.

The following table shows the specific type correspondences for each Ingres

data type.

Ingres and C Data Type Compatibility

Ingres Type C Type
cN char [N+1]
text(N) char [N+1]
char(N) char [N+1]
varchar(N) char [N+1]
char(N)(containing ASCII null bytes) varchar

Chapter 2: Embedded QUEL for C 2-31

C Variables and Data Types

Ingres Type C Type
varchar(N)(containing ASCII null bytes) varchar
il short

i2 short

i4 int

fa float

f8 double
date char [26]
money double

The table above shows a choice of two possible correspondences for the char
and varchar Ingres types. If there is any possibility that database columns of
these types will hold ASCII null bytes, you should use the varchar type in C to
represent this data.

Runtime Numeric Conversion

The Ingres runtime system provides automatic data type conversion between
numeric-type values in the database and the forms system and numeric C
variables. It follows the standard type conversion rules. For example, if you
assign a float variable to an integer-valued field, the digits after the decimal
point of the variable’s value are truncated. Runtime errors are generated for
overflow on conversion.

Unsigned integers can be assigned to and retrieved from the database
wherever plain integers are used. However, take care when using an unsigned
integer whose positive value is large enough to cause the high order bit to be
set. Integers such as these are treated as negative numbers in Ingres
arithmetic expressions and display as negative numbers by the Forms Runtime
system.

The Ingres money type is represented as an 8-byte floating-point value,
compatible with a C double.

Runtime Character Conversion

Automatic conversion occurs between Ingres character string values and C
character string variables. The string-valued objects that can interact with
character string variables, are:

n Names, such as form and column names

n Database columns of type c

2-32

Embedded QUEL Companion Guide

C Variables and Data Types

n Database columns of type text

n Form fields of type ¢

In this context, character string variables are not single byte integers declared
with the char type. They are character string pointers:

char *character_string_pointer;
or references to the character string buffer:
char character_string_buffer[length];

Character string pointers are always assumed to be pointing at legal string
values or variables. As in any C program, any pointer that has not been
initialized to point at a string value will cause either a runtime error, resulting
in program failure, or an insidious problem resulting from the overwriting of
space in memory.

Also, database columns of type char and varchar may optionally be handled
as strings in EQUEL/C. Several considerations apply when dealing with
character string conversions, both to and from Ingres. If your char or varchar
database columns contain ASCII null bytes as data, you should use the C
varchar storage class rather than C character strings to represent this data.

The following notes apply to data represented in C string variables or
constants. For analogous information regarding the varchar storage class, see
The Varying Length String Type in this chapter.

The conversion of C character string variables used to represent Ingres object
names is simple: trailing blanks are truncated from the variables because the
blanks make no sense in that context. For example, the string literals
“empform ” and “empform” refer to the same form and “employees ” and
“employees” refer to the same database table.

The conversion of other Ingres objects is a bit more complicated. First, the
storage of character data in Ingres differs according to whether the medium of
storage is a database column of type c or char, a database column of type
text or varchar, or a character-type form field. Ingres pads columns of type c
and char with blanks to their declared length. Conversely, it does not add
blanks to the data in columns of type text or varchar or in form fields.

Second, the C convention is to null terminate character strings, and the Ingres
runtime system assumes that all strings are null-terminated. For example, the
character string “abc” is stored in a C variable as the string literal “abc”
followed by the C null character, "\0” requiring four bytes.

Chapter 2: Embedded QUEL for C 2-33

C Variables and Data Types

Character string variables cannot contain embedded nulls because the runtime
system cannot differentiate between embedded nulls and the trailing null
terminator. For a description of variables that contain embedded nulls and the
C varchar storage class, see The Varying Length String Type in this chapter.

When retrieving character data from a Ingres database column or form field
into a C character string variable, be sure to always supply enough room in
the variable to accommodate the maximum size of the particular object, plus
one byte for the C null string terminator. (Consider the maximum size to be
the length of the database column or the form field.) If the character string
variable is too small to contain the complete string value together with the null
character, the runtime system may overwrite other space in memory.

However, if the length of a character string variable is known to the
preprocessor, as in the declaration:

char character_string_buffer[fixed_length];

then the runtime system copies at most the specified number of characters
including the trailing null character. In cases where the fixed length of the
variable (less one for the null) is smaller than the data to be copied, the data
is truncated. The specified length must be at /east 2, because one character
and the terminating null are retrieved. If the length is exactly 1, the data is
overwritten.

Furthermore, take note of the following conventions:

n Data stored in a database column of type c or char is padded with blanks
to the length of the column. The variable receiving such data will contain
those blanks, followed by the null character. If the variable is declared
with a fixed length known to the preprocessor, the variable receives that
many characters, including the terminating null.

n Data stored in a database column of type text or varchar is not
padded with blanks. The character string variable receives only the actual
characters in the column, plus the terminating null character. Remember
that if char or varchar database columns contain null characters as data,
you should represent them with C variables of the varchar storage class,
thus avoiding this normal string-handling behavior.

n Data stored in a character form field contains no trailing blanks.
The character string variable receives only the actual characters in the
field, plus the terminating null character.

When inserting character data into an Ingres database column or form field
from a C variable, note the following conventions:

n When data is moved from a C variable into a database column of type c or
char and the column is longer than the variable, the column is padded
with blanks. If the column is shorter than the variable, the data is
truncated to the length of the column.

2-34

Embedded QUEL Companion Guide

C Variables and Data Types

n When data is moved from a C variable into a database column of type text
or varchar and the column is longer than the variable, no padding of the
column takes place. However, all characters in the variable, including
trailing blanks, are inserted. Therefore, you may want to truncate any
trailing blanks in character string variables before storing them in columns
of these types. If the column is shorter than the variable, the data is
truncated to the length of the column.

n When data is inserted from a C variable into a character form field and the
field is longer than the variable, no padding of the field takes place. In
addition, all trailing blanks in the data are truncated before the data is
inserted into the field. If the field is shorter than the data (even after all
trailing blanks have been truncated), the data is truncated to the length of
the field.

When comparing character data in an Ingres database column with character
data in a C variable, note the following convention:

n When comparing data in ¢, character, or varchar database columns with
data in a character variable, all trailing blanks are ignored. Trailing blanks
are significant in text. Initial and embedded blanks are significant in
character, text, and varachar; they are ignored in c.

Caution: The conversion of character string data between Ingres objects and C
variables often involves the trimming or padding of trailing blanks, with
resultant change to the data. If trailing blanks have significance in your
application, give careful consideration to the effect of any data conversion.
Care should be taken if using the standard strcmp function to test for a
change in character data, because blanks are significant in that function.

The Ingres date data type is represented as 25-byte character string. Your
program should allow 26 characters to accommodate the C null byte at the
end.

Using Varchar to Receive and Set Character Data

You can use the C varchar storage class to retrieve and set character data.
Normally varchar variables are used when simple C char variables are not
sufficient, as when null bytes are embedded in the character data. In those
cases the runtime system cannot differentiate between embedded nulls and
the null terminator of the string. When using varchar variables, the 2-byte
length specifier indicates how many bytes are used in the fixed length
character array. The runtime system sets this length after data retrieval or by
the program before assigning data to Ingres. This length does not include a
null terminator, as the null terminator is not copied or included in the data.
The runtime system copies, at most, the size of the fixed length data buffer
into the variable.

You can also use varchar variables retrieve character data that does not
contain embedded nulls. Here too, no null terminator is included in the data.

Chapter 2: Embedded QUEL for C 2-35

C Variables and Data Types

Because varchar variables never include a null terminator, the program
should avoid sending the data member of varchar variables to C functions
that assume null-terminated strings (such as strlen and strcmp).

The following program fragment demonstrates the use of the varchar storage
class for C variables:

##
#i
##
#i#
##
#i#
##
#i#

#i#

#i#

/*
* %
* X

* %

*/

##

/*
* %
* %
* %
*/
#H
##

static varchar struct vch_ {

short vch_length;

char vch_data[10]; /* Statically initialized */
} vch_store[3] = { /* data with nulls */

3. {'1', 2", '3'}},
(6. {'1', '2', '3', "\@', '5', '6'}},
(8, {'\@', '2', '3', '4', "\@', '6', '7', '8'}}
¥

varchar struct vch_ vch_res;

int i, j;

Add all three rows of data from table above
(including nulls). Note that the members of
the varchar structure are not mentioned.

for (i =0; i > 3; i++)
{

append vch (row = i+l; data = vch_store[i])

Now RETRIEVE the data back. Note that the runtime
system implicitly assigns to the length field the
size of the data.

retrieve (i = vch.row, vch.res = vch.data)

{

/*
** Print the values of each row. Before printing
** the values, convert all embedded nulls to the
¥ '?'character for printing. The results are:
** [1] '123'
*x [2] '123?56'
** [3] '?2347678'
*/
for (j = 0; j > vch_res.vch_length; j++)

if (vch_res.vch_data[j] == '\0")
vch_res.vch_data[j] = '?"';

/* Note the use of '%/.*s' format here.

** This is because varchar data doesn't

** contain a null terminator so length is used.
*/

printf("[%d] '%.*s'\n", i,
vch_res.vch_length, vch_res.vch_data);

}

2-36

Embedded QUEL Companion Guide

Dynamically Built Param Statements

Dynamically Built Param Statements

EQUEL/C supports a special kind of dynamically built statement called a
param statement. While the ability to supply names, expression values, and
even entire qualifications in the form of host variables, as described in the
QUEL Reference Guide, provides much dynamic flexibility, param statements
considerably enhance this flexibility. Param statements determine at runtime,
not only the names, but also the number and data types of target-list
elements. This feature, for example, allows construction of a completely
general program that can operate on any table or form that you specify at
runtime.

A general restriction on param statements is that you cannot use param
target lists in repeat queries.

In EQUEL/C, param versions are available for all statements in which:
n Assighments are made between host variables and database columns

n Assighments are made between host variables and form fields (or
tablefield columns)

Not only retrieve, append, and replace, but also many forms-related
statements such as getform, putform, initialize, loadtable, insertrow,
and several others, have param versions.

Consider, again, the reason that these special versions of statements are
needed. Non-param EQUEL statements, though relatively flexible in terms of
substituting variables for expression constants, database and form object
names, and entire where clauses, are nevertheless fixed at compile time in
the number and data type of the objects to or from which assignment is made
at runtime. Look at the following non-param retrieve statement, for
example:

char charvarl[100];

int intvarl;
float floatvarl;

char tablel[25];
char coll[25], col2[25], col3[25];

/*

** Assignments are made at runtime to all variables
** declared in the two lines immediately above,

** representing names of database objects. Then the
** following RETRIEVE statement gets data from the
** specified table and columns.

retrieve (charvarl = tablel.coll,
intvarl = tablel.col2,
#t floatvarl = tablel.col3)

Chapter 2: Embedded QUEL for C 2-37

Dynamically Built Param Statements

In this example, host variables represent all components of the target list—the
table name and the names of all three columns. What cannot vary in this way
of coding, however, is the fact that the retrieve statement gets values from
exactly three columns, and that you must hard-code the data types of those
three columns into the program. Param statements allow you to transcend
those restrictions.

Syntax of Param Statements

These statements are called param statements because of the param
function in place of its target list. The param function has the following
syntax:

param (target_string, var_address_array)

Thus, for example, a param retrieve statement might look like this:

retrieve (param (targetstr, varaddr))
where qual_string

The target_string is a formatted target list string that can be either a C string
variable or a C string constant. Normally it is a variable, since the purpose of
this feature is to allow statements to be built at runtime. The
var_address_array is an array of pointers to which values are assigned at
runtime. The elements in this array then hold the addresses of variables of
appropriate types to receive or supply data for the table columns or form fields
with which the param statement interacts.

The target_string looks like a regular target list expression, except where a C
variable intended to receive or supply data in an assignment would normally
appear. In place of these names, the target_string contains symbolic type
indicators representing the variables. For each of these type indicators
appearing in the target list, there must be an address recorded in the
corresponding element of the var_address_array, beginning with
var_address_array[0].

At runtime, EQUEL processes the statement by associating the variable
addresses with the type indicators embedded in the target_string. Addresses
must previously have been placed in the cells of the array in a sequence
corresponding to the sequence of type indicators in the target_string, such
that the statement will find a list of the correct number of C variables of the
correct type.

The variable-type indicators can be any of the following:

i2 two-byte integer (short)
i4 four-byte integer (int or long)
f4 four-byte floating-point number (float)

2-38

Embedded QUEL Companion Guide

Dynamically Built Param Statements

f8 eight-byte floating-point number (double)

c[N] character string, text

V[N] data stored in a structure of the EQUEL-defined varchar storage
class/char

In the list above, the length specifier N is optional. For further storage class
information, see The Varying Length String Type in this chapter.

In this context, the format indicator must always agree with the C variable
that supplies or receives the data. This format does not need to be the same
as that of the column where the data is stored in the database. Store data to
be retrieved from, or inserted into, table columns of type date in character
arrays of a length of at least 26 in your program. Items of type money should
be retrieved into program variables of type float or double.

When you reference ordinary character-string data in a param target list, you
can use the “c” type indicator with or without specifying the number of
characters to be assigned. The optional length specification has the following
effect, depending on the kind of statement in which the target list appears:

n In an input statement, such as append or putform, the length
specification, N, attached to a “c” type indicator, limits to N the number of
bytes actually assigned from the C character string variable to the
database or form object. The length specification should not include the
null string-termination byte. If N is specified, the string need not be null-
terminated.

n In an output statement, such as retrieve or getform, the length
specification limits to N the number of bytes of actual data assigned from
the database or form object to the C character string variable (this is the
number of bytes assigned before the null string-terminator is appended).
In this context, the length specifier can be useful for preventing the EQUEL
runtime system from writing more bytes into a C program variable than
the variable has room to hold. In the absence of the length specifier,
EQUEL would write into the variable the full length of data located in the
column or field and then append the null byte as string terminator.

You must use another type indicator, “v”, when referencing data stored in a
buffer of the EQUEL-defined varchar storage class. (For information about this
special storage class, see The Varying Length String Type in this chapter.) The
varchar class receives and sends data that may contain the ASCII null
character as valid data. This applies to both the char and varchar data types
in QUEL. Since the C language ordinarily uses the null character as a string
terminator, ordinary string-handling routines are not appropriate for this type
of data.

Chapter 2: Embedded QUEL for C 2-39

Dynamically Built Param Statements

A length specifier, N, can also be used in conjunction with the “v” type
indicator. If used, it has the following effect:

n In an input statement, such as append or putform, it is ignored. The
count of valid characters, contained in the varchar C structure itself,
overrides in this case.

n In an output statement, such as retrieve or getform, it limits the humber
of bytes actually transferred into the data buffer of the varchar C
structure.

The following example contains a param append statement:

main ()

#it {
/*
** Declare variables to be used for supplying data
** to the database

*/
char ch_var[27];
int int_var;

double doub_var;

/* Declare variables for the PARAM target list, the
** array of variable addresses, and the database

** table to be used

*/

char targlist[100];
char *varaddr[10];
char tablename[25];

/* Now assign values to variables in order to set up
** the PARAM statements. In a real application, this
** would be done during the process of interacting

** with the user, as well as by obtaining

** information from system catalogs, or from the

** FRS, about the number and data type of table

** columns. In this example, the assignments are

** hard-coded.

*/

strcpy (tablename, "employee");

/* The following target list is for use with
** the APPEND statement. Note that the type

** indicators appear on the right-hand side of
** the assignments. Column names appear on the
** left-hand side.

*/

strcpy (targlist,
"empname=%c, empnum=%i4, salary=%f8");

/* The next three statements assign, to an array of
** character pointers, the addresses of variables
** which will supply data for the APPEND statement.
** Because the values being assigned are addresses
** of several different types of variables, they

** need to be cast to character-pointer type.

*/

varaddr[0] = (char *) ch_var;

2-40 Embedded QUEL Companion Guide

Dynamically Built Param Statements

varaddr[1] = (char *) &int_var;
varaddr[2] = (char *) &doub_var;
/* Next, values are assigned to the data variables
** themselves. Again, in an actual application this
** would likely be done by interacting with the
** user.
*/

strcpy (ch_var, "Swygart, Jane");
int_var = 332;
doub_var = 37500.00;

ingres "personnel"
append to tablename (param (targlist, varaddr))
#H exit

exit (0);
)

Practical Uses of Param Statements

Most applications do not need param statements because programs are
usually intended for specific purposes and are based on databases whose
designs are known at the time the programs are coded. Param statements
are crucial mainly for generic programs. An example of such a program is QBF,
the Ingres user-interface program capable of operating on any database and
any table, form, or joindef specified by the user.

It is difficult to illustrate practical examples of param statements because in
an actual application, you must code to determine the name, number and data
type of the objects to be manipulated in a param statement target list, in
addition to the coding required to obtain or operate on data values. For an
extended practical example, see An Interactive Database Browser Using Param
Statements in this chapter.

The target string and address array are customarily built from information
obtained from various sources: the user, the formdata and tabledata
statements, and the Ingres system catalogs. In an EQUEL/FORMS program, a
typical scenario prompts the user for the name of a form to operate on, and
then uses the formdata and tabledata statements to get name and type
information about the fields. Subsequently, the various param target lists and
address arrays the program needs are built using this information. The
examples here illustrate only the syntax of the param statements themselves,
as well as simplified mechanics of setting up their component parts.

The example above, with a param append, is typical for an input statement,
where values are being supplied to the database or form from program
variables. Other input statements include replace, initialize, putform,
loadtable, putrow, and so forth.

Chapter 2: Embedded QUEL for C 2-41

Dynamically Built Param Statements

Output statements are similar, except that the type indicators appear on the
left-hand side of the assignment statements in the param target list. In these
statements, program variables receive data from the database or the form.
Output statements include retrieve, getform, finalize, unloadtable,
getrow, and so forth. For the format of the param target lists for cursor
statements, see Param Versions of Cursor Statements in this chapter.

Indicator Variables in Param Statements

You can code param statements to accommodate data assigned to or from
nullable columns and form fields. The syntax is analogous to that previously
described, with the exception that, in the target string, type indicators are
needed in place of both the data variable and the indicator variable. Since
indicator variables are always 2-byte integers, you can use the i2 type
indicator used for this purpose. A sample target list of a param retrieve
statement, including indicator variables, might look like this:

targ list = "%c:%i2=e.empname, %f8:%i2=e.salary";

The var_address_array corresponding to this target list needs four cells,
initialized in the following order:

1. A character-string pointer

2. A pointer to a short

3. A pointer to a double

4. Another pointer to a short

When the retrieve statement executes, one or both of the short variables can
contain the value -1 if null data were present in that row of the table.

Using the Sort Clause in Param Retrieves

Unlike the non-param version of the retrieve statement, the param version
has no application-supplied names for result columns. The non-param
retrieve uses the same names as for the host variables used to receive the
data, but in a param retrieve these names are not present in the statement.
Only the type indicators are seen by the EQUEL runtime system when the
param retrieve is executed.

In order to meet the need for result column names in the statement, Ingres
generates internal names. If you want to include a sort clause in a param
retrieve, you must use the internally generated result column names as
arguments to the sort clause. These names are “ret_varl”, “ret_var2”, and so
forth, named sequentially for all the result columns represented by type
indicators in the target list. (Ignore null indicators in determining this
sequence.) For example, assume a target list as in the previous section:

tlist = "%c:%i2=e.empname,%f8:%i2=e.salary";

2-42

Embedded QUEL Companion Guide

Dynamically Built Param Statements

If you want to retrieve and sort by the result column representing salary,
you must supply the internal name “ret_var2” to the sort clause:

retrieve (param(tlist,varaddr))
sort by ret_var2:d

This sorts by the second result column, in descending order.

Param Versions of Cursor Statements

There are param versions for cursor versions of the retrieve and replace
statements. In the case of the cursor retrieve, the param target list is used in
the retrieve cursor statement, not in the declare cursor statement. The
non-param retrieve cursor target list is simply a comma-separated list of C
variables corresponding to the result columns identified in the declare cursor
statement. Therefore, the target string in the param version is a comma-
separated list of type indicators, optionally with associated type indicators for
the null indicator variables.

When you code the declare cursor statement for use with the param version
of retrieve cursor, you should take advantage of the fact that the entire
target list in declare cursor can be replaced by a host string variable. This, in
effect, allows the whole retrieve statement in declare cursor to be
determined at runtime. Then, the components of the param retrieve cursor
can be built dynamically for the associated declare cursor statement.

The target string for a retrieve cursor statement might look something like
the following:

targlist = "%C:%i2,%f8:%i2";

This target list is appropriate for a retrieve cursor where the associated
declare cursor retrieved two nullable columns—one character string and one
floating-point value.

The replace cursor statement also supports a param version. Its target list
looks the same as in the non-cursor version of replace.

The following is a somewhat expanded example, showing both the declare
cursor, retrieve cursor, and replace cursor:

include <stdio.h>
main()
{
double atof();
/*
** Declare variables to be used for supplying
** data to the database

*/
char ch_var[27];
int int_var;
double doub_var;
short null_ind;

Chapter 2: Embedded QUEL for C 2-43

Dynamically Built Param Statements

##

#i#

#i#

#it

* %
* %
* %
* %
* %
* %

*/

/*
* %
* %

*/
re
re
re
re
de

fo

/*

** Declare variables for the various target
** 1ists and the arrays of variable addresses
*/

char decl_cursor_list[100];
char ret_cursor_list[100];
char repl_cursor_1ist[100];
char *ret_varaddr[10];

char *repl_varaddr[5];

int thatsall, ingerror;

char newsalary[20];

thatsall = ingerror = 0;
ingres "personnel"

/*

Assign values of target lists for DECLARE CURSOR,
RETRIEVE CURSOR, and REPLACE CURSOR. The second and
third of these have PARAM clauses. The first
doesn't need one, as it transfers no data. In the
target 1list for RETRIEVE CURSOR, a null indicator
is included for the floating-point value.

strcpy (decl_cursor_list,
"employee.empname,employee.age,employee.salary");
strcpy (ret_cursor_list, "%c26, %i4, %f8:%i2");
strcpy (repl_cursor_list, "salary=%f8");

Assign pointer values to the address array
for the RETRIEVE CURSOR statement.

t_varaddr[0]
t_varaddr[1]
t_varaddr[2]
t_varaddr[3]

(char *) ch_var;
(char *) &int_var;
(char *) &doub_var;
(char *) &null_ind;

clare cursor cursor4d for
retrieve (decl_cursor_list)
r direct update of (salary)

open cursor cursoré

wh
{

i

ile (ingerror == 0 && thatsall == 0)

retrieve cursor cursord (param(ret_cursor_list,
ret_varaddr))

inquire_ingres (ingerror = errorno,

thatsall = endquery)

/*

** If an Ingres error occurred, or if no

** more rows found for the cursor, break loop
*/

f (ingerror 0)
{
printf ("Error occurred, exiting ...\n");
break;

}

2-44 Embedded QUEL Companion Guide

Runtime Error Processing

if (thatsall == 1)
{
printf ("No more rows\n");
break;

/* If salary for this record is null, print name
** and age, prompt the user to enter the salary,
** and replace the value in that row. If salary
** is not null, print name, age, and salary.

*/
if (null_ind == -1)
printf ("%s, %d\n", ch_var,int_var);
printf ("Enter Salary: ");
gets (newsalary);
doub_var = atof(newsalary);
if (doub_var 0)
{
repl_varaddr[@] = (char *) &doub_var;
replace cursor cursoré4
#H (param(repl_cursor_list,repl_varaddr))
}
}
else

printf ("%s, %d, %10.2f\n", ch_var, int_var,
doub_var);

}
} /* end "while" loop */
close cursor cursor4d
exit

exit (0);

Runtime Error Processing

This section describes a user-defined EQUEL error handler.

Programming for Error Message Output

By default, all Ingres and forms system errors are returned to the EQUEL
program, and default error messages are printed on the standard output
device. As discussed in the QUEL Reference Guide, you can also detect the
occurrences of errors in the program by using the inquire_ingres and
inquire_frs statements. (Use inquire_frs for checking errors after forms
statements. Use inquire_ingres for all other EQUEL statements.)

Chapter 2: Embedded QUEL for C 2-45

Runtime Error Processing

This section discusses an additional technique that enables your program not
only to detect the occurrences of errors, but also to suppress the printing of
default Ingres error messages, if you choose. The inquire statements detect
errors but do not suppress the default messages.

This alternate technique entails creating an error-handling function in your
program and passing its address to the Ingres runtime routines. This makes
Ingres automatically invoke your error handler whenever a Ingres or a forms-
system error occurs. You must declare the program error handler as follows:

int funcname (errno)

int *errno;

{

}

You must pass this function to the EQUEL routine IIseterr() for runtime
bookkeeping using the statement:

IIseterr(funcname);

This forces all runtime Ingres errors through your function, passing the Ingres
error number as an argument. If you choose to handle the error locally and
suppress Ingres error message printing, the function should return 0;
otherwise the function should return the Ingres error number received.

Avoid issuing any EQUEL statements in a user-written error handler defined to
IIseterr, except for informative messages, such as message, prompt, sleep
and clear screen, and messages that close down an application, such as
endforms and exit.

The example below demonstrates a typical use of an error function to warn
users of access to protected tables. This example passes through all other
errors for default treatment.

int locerr(ingerr)

int *ingerr;

{

define TBLPROT 5003

/* error number for protected table */

if (*ingerr == TBLPROT)

{
printf("You are not authorized for this
operation.\n");
return 0;

}

else

{

}
}

return *ingerr;

main()

{

ingres dbname
IIseterr(locerr);

##H exit

#H o}

2-46 Embedded QUEL

Companion Guide

Runtime Error Processing

A more practical example would be a handler to catch deadlock errors. For
deadlock, a reasonable handling technique in most applications is to suppress
the normal error message and simply restart the transaction.

The following EQUEL program executes a Multi-Query Transaction and handles
Ingres errors, including restarting the transaction on deadlock.

In this example, a program-defined error handler, rather than the
inquire_ingres statement, detects Ingres errors. This technique allows the
normal Ingres error message to be suppressed in the case of deadlock and the
transaction to automatically restart without the user’s knowledge.

define err_deadlock 4700
define err_noerror 0

int ingerr = err_noerror; /* Ingres error */

main()

#H{
int errproc();
int deadlock();

ingres "equeldb" /* set up test data */
create item (name=cl0, number=i4)
IIseterr(errproc);

for(;:)
{ /* Loop until success or fatal error */
begin transaction /* start MQT*/
#HHt append to item (name="Neil", number=38)
if (deadlock()) /* deadlock? */
continue; /* yes, try again */
replace item (number=39) where item.name="Neil"
if (deadlock()) /* deadlock? */
continue; /* yes, try again */
#Ht delete item where item.number=38
if (deadlock()) /* deadlock? */
continue; /* yes, try again */
end transaction
break;
}
destroy item
##H exit
#Ho}
Heo/*

** errproc
** - User-defined error routine for Ingres
#Ho*/

int
errproc(errno)
int *errno;

{

ingerr = *errno; /* set the global flag */
/*

** If we return 0, Ingres will not print a message
*/

if (*errno == err_deadlock)

return 0;
else

return *errno;

Chapter 2: Embedded QUEL for C 2-47

Precompiling, Compiling, and Linking an EQUEL Program

##H ** deadlock

** - User-defined deadlock detector

** - If the global error number is not ERR_DEADLOCK,
#Hxx* it aborts the program and the transaction. If
** the error number is ERR_DEADLOCK, no ABORT
#Hxx is necessary because the DBMS will automatically
** ABORT an existing MQT.

int
deadlock()
{
if (ingerr) {
if (ingerr == err_deadlock)
{
ingerr = err_noerror;
/* Reset for next time */
return (1); /* Program will try again */
}
else

{
printf ("Aborting -- Error #%d\n",
ingerr);
#H abort
#Ht exit
exit(-1);

return 0;
)}

Precompiling, Compiling, and Linking an EQUEL Program

This section describes the EQUEL preprocessor for C and the steps required to
precompile, compile, and link an EQUEL program.

Generating an Executable Program

Once you have written your EQUEL program, the preprocessor must convert
the EQUEL statements into C code. This section describes the use of the
EQUEL preprocessor. Additionally, it describes how to compile and link the
resulting code to obtain an executable file.

2-48 Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

The EQUEL Preprocessor Command

The following command line invokes the C preprocessor:

eqc {flags} {filename?}

where flags are

-d

f[filename

-n.ext

-0

-0. ext

=S

Adds debugging information to the runtime database error
messages EQUEL generates. The source file name, line number,
and the erroneous statement itself are printed with the error
message.

Writes preprocessor output to the named file. If the -f flag is
specified without a filename, the output is sent to standard
output, one screen at a time. If the -f flag is omitted, output is
given the basename of the input file, suffixed *“.c".

Sets integer size to N bytes. Nis 1, 2, or 4. The default is 4.

Writes preprocessor error messages to the preprocessor’s listing
file, as well as to the terminal. The listing file includes
preprocessor error messages and your source text in a file named
filename.lis, where filename is the name of the input file.

Like -1, but the generated C code also appears in the listing file.

Specifies the extension used for filenames in ##include and
##include inline statements in the source code. If -n is omitted,
include filenames in the source code must be given the extension

w ”

.qc”.
Directs the preprocessor not to generate output files for include
files.

This flag does not affect the translated include statements in the
main program. The preprocessor generates a default extension for
the translated include file statements unless you use the -o.ext
flag.

Specifies the extension the preprocessor gives to both the
translated include statements in the main program and the
generated output files. If this flag is not provided, the default
extension is “c.” If you use this flag in combination with the -o
flag, then the preprocessor generates the specified extension for
the translated include statements, but does not generate new
output files for the include statements.

Reads input from standard input and generates C code to
standard output. This is useful for testing statements you are not
familiar with. If the -l option is specified with this flag, the listing
file is called “stdin.lis.” To terminate the interactive session, type
Control D for UNIX or Control Z for VMS.

Chapter 2: Embedded QUEL for C 2-49

Precompiling, Compiling, and Linking an EQUEL Program

-w Prints warning messages.

-#|-p Generates # line directives to the C compiler (by default, they are
in comments). This flag can prove helpful when debugging the
error messages from the C compiler.

-? Shows the available command line options for eqc.

The EQUEL/C preprocessor assumes that input files are named with the
extension “.qc”. You can override this default by specifying the file extension
of the input file(s) on the command line. The output of the preprocessor is a
file of generated C statements with the same name and the extension “.c”.

If you enter the command without specifying any flags or a filename, Ingres
displays a list of flags available for the command.

The following table presents the options available for eqc.

Eqc Command Examples

Command Comment

eqc filel Preprocesses “filel.qc” to “filel.c”

eqc - file2.xc Preprocesses “file2.xc” to “file2.c” and creates listing
“file2.lis”

eqc -s Accepts input from standard input and writes generated

code to standard output

eqc -ffile3.out file3 Preprocesses “file3.qc” to “file3.out”

eqc Displays a list of flags available for this command
The C Compiler
UNIX The preprocessor generates C code You can use the UNIX cc command to

compile this code. All of the cc command line options can be used.

The following example preprocesses and compiles the file “test1”.

eqc testl.qc
cc -c testl.c W

VMS The preprocessor generates C code. You should use the VMS cc (VAX-11 C)
command to compile this code. You can use most of the cc command line
options. However, you should not use the g_float qualifier (to the VAX C
compiler) if floating-point values in the file are interacting with Ingres
floating-point objects.

2-50 Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

The following example preprocesses and compiles the file “test1”. Both the
EQUEL preprocessor and the C compiler assume the default extensions.

eqc testl
cc/list testl M

Note: Check the Readme file for any operating system specific information on
compiling and linking EQUEL/C programs.

Linking an EQUEL Program—UNIX

EQUEL programs require procedures from an Ingres library. The required
library is listed in the following examples and must be included in your compile
or link command after all user modules. The library must be specified in the
order shown in the following examples.

Programs without Embedded Forms

The following example demonstrates the link command of an EQUEL program
called “dbentry” that has been preprocessed and compiled:

cc -o dbentry dbentry.o
$II_SYSTEM/ingres/lib/libingres.a
-Im -1c

Note that you must include both the math library and the C runtime library.

Ingres shared libraries are available on some Unix platforms. To link with
these shared libraries replace “libingres.a” in your link command with:

-L $II_SYSTEM/ingres/lib -linterp.l -1frame.1l -1qg.1 \
-lcompat.1l

To verify if your release supports shared libraries check for the existence of
any of these four shared libraries in the $II_SYSTEM/ingres/lib directory. For
example:

1s -1 $II_SYSTEM/ingres/lib/1libg.1.*

Compiling and Linking Precompiled Forms

The technique of declaring a precompiled form to the FRS is discussed in the
Forms-based Application Development Tools User Guide. To use such a form in
your program, you must also follow the steps described here.

Chapter 2: Embedded QUEL for C 2-51

Precompiling, Compiling, and Linking an EQUEL Program

In VIFRED, you can select a menu item to compile a form. When you do this,
VIFRED creates a file in your directory describing the form in C. VIFRED lets
you select the name for the file. After creating the C file this way, you can
compile it into linkable object code with the cc command:

cc filename

The output of this command is a file with the extension “.0". You then link this
object file with your program by listing it in the link command, as in the
following example, which includes the compiled form “empform.o”:

cc -o formentry formentry.o

empform.o

$II_SYSTEM/ingres/lib/1libingres.a
-lm -1c

Linking an EQUEL Program—VMS$

EQUEL programs require procedures from several VMS shared libraries in order
to run properly. After preprocessing and compiling an EQUEL program, you
can link it. Assuming the object file for your program is called “dbentry,” use
the following link command:

link dbentry.obj, -

ii_system:[ingres.files]equel.opt/opt,-
sys$library:vaxcrtl.olb/library

The last line in the link command shown above links in the C runtime library
for certain basic C functions, such as printf. This line is optional. Use it only if
you use those functions in your program.

It is recommended that you do not explicitly link in the libraries referenced in
the EQUEL.OPT file. The members of these libraries change with different
releases of Ingres. Consequently, you can be required to change your link
command files in order to link your EQUEL programs.

Assembling and Linking Pre-Compiled Forms

The technique of declaring a pre-compiled form to the FRS is discussed in the
Forms-based Application Development Tools User Guide. To use such a form in
your program, you must also follow the steps described here.

In VIFRED, you can select a menu item to compile a form. When you do this,
VIFRED creates a file in your directory describing the form in the VAX-11
MACRO language. VIFRED lets you select the name for the file. Once you have
created the MACRO file this way, you can assemble it into linkable object code
with the VMS command:

macro filename

2-52

Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

The output of this command is a file with the extension “.obj”. You then link
this object file with your program (in this case nhamed “formentry”) by listing it
in the link command, as in the following example:
link formentry, -

empform.obj, -

ii_system:[ingres.files]equel.opt/opt, -

sys$library:vaxcrtl.olb/1library

Linking an EQUEL Program without Shared Libraries

While the use of shared libraries in linking EQUEL programs is recommended
for optimal performance and ease-of-maintenance, non-shared versions of the
libraries have been included in case you require them. Non-shared libraries
required by EQUEL are listed in the equel.noshare options file. The options file
must be included in your link command after all user modules. Libraries must
be specified in the order given in the options file.

The following example demonstrates the link command of an EQUEL program
called “dbentry” that has been preprocessed and compiled:
link dbentry,-

ii_system:[ingres.files]equel.noshare/opt, -
sys$library:vaxcrtl.olb/library

Include File Processing

The EQUEL include statement provides a means to include external files in
your program’s source code. Its syntax is:

include filename

Filename is a quoted string constant specifying a file name, a system
environment variable in UNIX or a logical name in VMS that points to the file
name.

You must use the default extension *.qc” in names of include files unless you
override this requirement by specifying a different extension with the -n flag
of the eqc command.

This statement is normally used to include variable declarations, although it is
not restricted to such use. For more details on the include statement, see the
QUEL Reference Guide.

Chapter 2: Embedded QUEL for C 2-53

Precompiling, Compiling, and Linking an EQUEL Program

The included file is preprocessed and an output file with the same name but
with the default output extension “.c” is generated. You can override this
default output extension with the -o0.ext flag on the command line. The
reference in the original source file to the included file is translated in the
output file to the specified include output file. If you use the -o flag with no
extension, no output file is generated for the include file. This is useful for
program libraries that are using make dependencies for UNIX or MMS
dependencies for VMS.

If you use both the -0.ext and the -o flags, then the preprocessor generates
the specified extension for the translated include statements in the programs.
However, it does not generate new output files for the statements.

For example, assume that no overriding output extension is explicitly given on
the command line. The EQUEL statement:

include "employee.qc"

is preprocessed to the C statement:

include "employee.c"
and the file "employee.qc” is translated into the C file "employee.c.”

As another example, assume that a source file called “inputfile” contains the
following include statement:

include "MYDECLS";

The name "MYDECLS"” can be defined as a system environment variable
pointing to the file “/dev/headers/myvars.qc” by means of the following
command at the system level:

setenv MYDECLS "/dev/headers/myvars.qc"

Assume now that “inputfile” is preprocessed with the command:
eqc -o.h inputfile

The command line specifies “.h"” as the output file extension for include files.
As the file is preprocessed, the include statement shown earlier is translated
into the C statement:

include "/dev/headers/myvars.h"

and the C file “/dev/headers/myvars.h” is generated as output for the original
include file, “/dev/headers/myvars.qc.”

You can also specify include files with a relative path. For example, if you
preprocess the file “/dev/mysource/myfile.qc,” the EQUEL statement:

include "../headers/myvars.qc"

is preprocessed to the C statement:

include "../headers/myvars.c"

2-54 Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

and the C file “/dev/headers/myvars.c” is generated as output for the original
include file, “/dev/headers/myvars.qc.” ®

VMS The name “"mydecls” is defined as a system logical name pointing to the file
“dral:[headers]myvars.qc” by means of the following command at the DCL
level:

define mydecls dral: [headers]myvars.qc

Assume now that “inputfile” is preprocessed with the command:

eqc -o.h inputfile

The command line specifies “.h” as the output file extension for include files.
As the file is preprocessed, the include statement shown earlier is translated
into the C statement:

include "dral:[headers]myvars.h"

and the C file “dral:[headers]myvars.h” is generated as output for the original
include file, “dral:[headers]myvars.qc”.

You can also specify include files with a relative path. For example, if you
preprocess the file “dral:[mysource]myfile.qc”, the EQUEL statement:

include '[-.headers]myvars.qc'

is preprocessed to the C statement:

include "[-.headers]myvars.qc"
and the C file “dral:[headers]myvars.c” is generated as output for the original
include file, “dral:[headers]myvars.qc”. ®

Including Source Code with Labels

Some EQUEL statements generate labels in the output code. If you include a
file containing such statements, you must be careful to include the file only
once in a given C scope. Otherwise, you may find that the compiler later
issues C warning or error messages to the effect that the generated labels are
defined more than once in that scope.

The statements that generate labels are the retrieve statement and all the
EQUEL/FORMS block-type statements, such as display and unloadtable.

Chapter 2: Embedded QUEL for C 2-55

Precompiling, Compiling, and Linking an EQUEL Program

Coding Requirements for Writing EQUEL Programs

The following sections describe coding requirements for writing EQUEL
programs.

Comments Embedded in C Output

Each EQUEL statement generates one comment and a few lines of C code. You
may find that the preprocessor translates 50 lines of EQUEL into 200 lines of
C. This may result in confusion about line numbers when you are debugging
the original source code. To facilitate debugging, each group of C statements
associated with a particular statement is preceded by a comment
corresponding to the original EQUEL source. (Note that only executable
EQUEL statements are preceded by a comment.) Each comment is one line
long and informs the reader of the file name, line number, and type of
statement in the original source file. The -# flag to equel makes the C
comment a C compiler directive, causing any error messages generated by the
C compiler to refer to the original file and line humber; this may be useful in
some cases.

One consequence of the generated comment is that you cannot comment out
embedded statements by putting the opening comment delimiter on an earlier
line. You have to put the opening comment delimiter on the same line, before
the ## delimiter, to cause the preprocessor to treat the complete statement
as a C comment.

Embedding Statements Inside C If Blocks

As mentioned above, the preprocessor may produce several C statements for
a single EQUEL statement. However, all the statements generated by the
preprocessor are delimited by left and right braces, composing a C block. Thus
the statement:

if (!dba)

retrieve (passwd
where s.username

s.#passwd)
userid

produces legal C code, even though the QUEL retrieve statement produces
more than one C statement. However, two or more EQUEL statements
generate multiple C blocks, so you must delimit them yourself, just as you
would delimit two C statements in a single if block. For example:

if (!dba)

{
message "Confirming your user id"
retrieve (passwd = security.#passwd)
where security.usrname = userid

}

2-56

Embedded QUEL Companion Guide

Preprocessor Error Messages

VMS

Because the preprocessor generates a C block for every EQUEL statement,
the VAX C compiler can generate the error “Internal Table Overflow” when a
single procedure has a very large number of EQUEL statements and local
variables. You can correct this problem by splitting the file or procedure into
smaller components. ®

An EQUEL Statement that Does Not Generate Code

The declare cursor statement does not generate any C code. This statement
should not be coded as the only statement in C constructs that does not allow
null statements. For example, coding a declare cursor statement as the only
statement in a C if statement not bounded by left and right braces would
cause compiler errors:

if (using_database)
#Ht declare cursor empcsr for retrieve (employee.ename)
else

printf("You have not accessed the database.\n");

The code the preprocessor generates is:

if (using_database)
else
printf("You have not accessed the database.\n");

which is an illegal use of the C else clause.

EQUEL/C Preprocessor Errors

To correct most errors, you may wish to run the EQUEL preprocessor with the
listing (=I) option on. The listing is sufficient for locating the source and reason
for the error.

For preprocessor error messages specific to the C language, see the next
section.

Preprocessor Error Messages

E_EO0001

The following is a list of error messages specific to the C language:

“The #define statement may be used only with values, not names. Use
typedef if you wish to make "%0c’ a synonym for a type.”

Explanation: The #define directive accepts only integer, floating-point or
string literals as the replacement token. You may not use arbitrary text as the
replacement token. To define type names you should use typedef. The
embedded preprocessor #define is not as versatile as the C #define.

Chapter 2: Embedded QUEL for C 2-57

Preprocessor Error Messages

E_EO0002

E_E00003

E_EO0004

E_EO0005

E_EO0006

“Cast of #define value is ignored.”

Explanation: The preprocessor ignores a cast of the replacement value in a
#define statement. Casts, in general, are not supported by the embedded C
preprocessor. Remove the cast from the #define statement.

“Incorrect indirection on variable’%0c’. Variable is subscripted, [], or
dereferenced, *,%1c time(s) but declared with indirection of%?2c.”

Explanation: This error occurs when the address or value of a variable is
incorrectly expressed because of faulty indirection. For example, the name of
an integer array has been given instead of a single array element, or, in the
case of character string variables, a single element of the string (that is, a
character) has been given instead of a pointer to the string or the name of the
array.

Either redeclare the variable with the intended indirection or change its use in
the current statement.

“Last component of structure reference’®%0c’ is illegal.”

Explanation: This error occurs when the preprocessor encounters an
unrecognized name in a structure reference. The user may have incorrectly
typed the name of structure element or may have failed to declare it to the
preprocessor.

Check for misspellings in component names and that all of the structure
components have been declared to the preprocessor.

Unclosed block — %0x unbalanced left brace(s).

Explanation: The preprocessor reached the end of the file still expecting one
or more closing braces (}). Make sure that you have no opening braces in an
unclosed character or string constant, or have not accidentally commented out
a closing brace. Also remember that the preprocessor ignores #ifdef
directives, so having several opening braces in alternate paths of an #ifdef
will confuse the preprocessor.

Unsupported forward declaration of C function “%0c”".

Explanation: The preprocessor does not support function declarations. For
example, the following declaration will cause this error:

##int func():

Remove the ## mark from the function declaration.

2-58 Embedded QUEL Companion Guide

Sample Applications

E_EO0007

E_E00008

E_EO0009

Unsupported definition of nested C function “%0c”. Check for missing closing
brace of preceding function.

Explanation: (EQUEL) The preprocessor does not support nested function
definitions. This error commonly occurs when the user has omitted the ##
mark on the closing brace of the previous function definition.

“Incorrect declaration of C varchar variable is ignored. The members of a
varchar structure variable may consist only of a short integer and a fixed
length character array.”

Explanation: Varchar variables (variables declared with the varchar storage
class) must conform to an exact varying length string template so that Ingres
can map to and from them at runtime. The length field must be exactly two
bytes (derived from a short), and the character string field must be a single-
dimensioned C character array. The varchar clause must be associated with a
variable declaration and not with a type definition or structure tag declaration.

Check the varchar structure declaration. Make sure that both structure
members are declared properly.

“Missing’="in the initialization part of a C declaration.”
Explanation: The preprocessor allows automatic initialization of variables and

expects the regular C syntax. Insert an equals sign between the variable and
the initializing value.

Sample Applications

This section contains sample applications.

The Department-Employee Master/Detail Application

This application using two database tables joined on a specific column. This
typical example of a department and its employees demonstrates how to
process two tables as a master and a detail.

The program scans through all the departments in a database table, in order
to reduce expenses. Department information is stored in program variables.
Based on certain criteria, the program updates department and employee
records. The conditions for updating the data are the following:

Departments:

n If a department has made less than $50,000 in sales, the department
is dissolved.

Chapter 2: Embedded QUEL for C 2-59

Sample Applications

Employees:

n If an employee was hired since the start of 1985, the employee is
terminated.

n If the employee’s yearly salary is more than the minimum company wage
of $14,000 and the employee is not nearing retirement (over 58 years of
age), the employee takes a 5% pay cut.

n If the employee’s department is dissolved and the employee is not
terminated, the employee is moved into a state of limbo (the
“toberesolved” database table, described below) to be resolved by a
supervisor.

This program uses two cursors in a master/detail fashion. The first cursor is for
the Department table, and the second is for the Employee table. The create
statements used to create the tables are shown below. The cursors retrieve all
the information in their respective tables, some of which is updated. The
cursor for the Employee table also retrieves an integer date interval whose
value is positive if the employee was hired after January 1, 1985.

Each row that is scanned, both from the Department table and the Employee
table, is recorded into the system output file. This file serves as a log of the
session and as a simplified report of the updates that were made.

Each section of code is commented for the purpose of the application and also
to clarify some of the uses of the EQUEL statements. The program illustrates
table creation, multi-query transactions, all cursor statements and direct
updates. For purposes of brevity, error handling on data manipulation
statements is simply to close down the application.

The following two create statements describe the Employee and Department
database tables:

create dept
#Ht (name = cl2, /* Department name */

#i# totsales = money, /* Total sales */

#Ht employees = i2) /* Number of employees */
create employee

(name = c20, /* Employee name */

#Ht age = 1il, /* Employee age */

idno = 14, /* Unique employee id */

#it hired = date, /* Date of hire */

dept = cl10, /* Employee department */
#Ht salary = money) /* Yearly salary */

/* Global variable set 1in error handler */
int is_error = 0;

/*
** Procedure: MAIN
** Purpose: Main body of the application. Initialize the

** database process each department, and terminate the session.
** Parameters:

** None

*/

2-60 Embedded QUEL Companion Guide

Sample Applications

main()
{
printf("Entering application to process expenses.\n");
Init_Db();
Process_Depts();
End_Db();
printf("Successful completion of application.\n");
}
/*

** Procedure: Init_Db

** Purpose: Initialize the database.

** Start up the database, and abort if an error.
** Before processing employees, create the table
** for employees who lose their department,

** "toberesolved". Initiate the multi-statement

** transaction.

** Parameters:

** None

*/

Init_Db()

##

char err_text[257];
int Error_Proc();

ingres personnel;

/* Inform Ingres runtime system about error handler */
IIseterr(Error_Proc);

printf ("Creating \"To_Be Resolved\" table.\n");
create toberesolved

(name = c20,

age =11,

idno = i4,
hired = date,
dept = clo,

salary = money)

if (is_error)
{
inquire_ingres (err_text = errortext)
printf("Fatal error on creation:\n%s", err_text);

exit
exit(-1);
}
begin transaction
#H)
/*

** Procedure: End_Db

** Purpose: Close off the multi-statement transaction and
** access to the database after successful completion

** of the application.

** Parameters:

** None

End_Db()

#H {

end transaction
exit

#t)

Chapter 2: Embedded QUEL for C 2-61

Sample Applications

/*

** Procedure: Process_Depts

** Purpose: Scan through all the departments, processing each one.
** Tf the department has made less than $50,000 in sales,

** then the department is dissolved. For each department

** process all the employees (they may even be moved to

** another table). If an employee was terminated, then

** update the department's employee counter. No error

** checking is done for cursor updates.

** Parameters:

** None

*/

Process_Depts()

#H

struct dpt { /* Corresponds to the "dept" table */

char name[13];

double totsales;

short employees;

} dpt;

1int no_rows = 0; /* Cursor loop control */

define min_dept_sales 50000.00 /* Min sales of department */

short emps_term = 0; /* Employees terminated */
short deleted dept; /* Was the dept deleted? */
char *dept_format; /* Formatting value */

is_error = 0; /* Initialize error flag */

range of d IS dept

declare cursor deptcsr for

retrieve (d.name, d.totsales, d.employees)
for direct update of (name, employees)

open cursor deptcsr
if (is_error)
Close_Down();

while (!no_rows)
{
is_error = 0;
retrieve cursor deptcsr
(dpt.name, dpt.totsales, dpt.employees)
inquire_equel (no_rows = endquery)

if (!no_rows)

/* Did the department reach minimum sales? */
if (dpt.totsales < min_dept_sales)
{
#Ht delete cursor deptcsr

/* If error occurred in deleting row, close down */

if (is_error)
Close_Down() ;

deleted_dept = 1;
dept_format = " -- DISSOLVED --";
}

else

{
deleted_dept = 0;

dept_format = ;
}
/* Log what we have just done */
printf("Department: %l4s, Total Sales: %12.3f %s\n",
dpt.name, dpt.totsales, dept_format);

/* Now process each employee in the department */

2-62 Embedded QUEL Companion Guide

Sample Applications

Process_Employees(dpt.name, deleted_dept, &emps_term);

/* If some employees were terminated, record this fact */
if (emps_term > 0 &% !deleted_dept)

replace cursor deptcsr

#Ht (employees = dpt.employees - emps_term)

/* If error occurred in update, close down application */
if (is_error)
Close_Down();
}
}

close cursor deptcsr
#Ho}

/*

** Procedure: Process_Employees

** Purpose: Scan through all the employees for a particular
** department. Based on given conditions the employee
** may be terminated, or given a salary reduction.

** 1. If an employee was hired since 1985 then the

** employee is terminated.

¥ 2. If the employee's yearly salary is more than

** the minimum company wage of $14,000 and the

** employee is not close to retirement (over 58

** years of age), then the employee takes a 5%

** salary reduction.

** 3. If the employee's department is dissolved and
** the employee is not terminated, then the employee
** s moved into the "toberesolved" table.

** Parameters:

** dept_name - Name of current department.
** deleted_dept - 1Is current department being dissolved?
** emps_term - Set Tlocally to record how many

** employees were terminated for the
** current department.
*/

Process_Employees(dept_name, deleted_dept, emps_term)
char *dept_name;

short deleted_dept;

short *emps_term;

#H

struct emp { /* Corresponds to "employee" table */
char name[21];

short age;

#Hint idno;

char hired[26];

float salary;

##int hired_since_85;

} emp;

intno_rows = 0; /* Cursor loop control */
define min_emp_salary 14000.00 /* Minimum employee salary */
define nearly_retired 58
define salary_reduc 0.95
char *title; /* Formatting values */
char *description;

is_error = 0; /* Initialize error flag */
/*
** Note the use of the Ingres function to find out who was hired
** since 1985.
*/
range of e is employee
declare cursor empcsr for

Chapter 2: Embedded QUEL for C 2-63

Sample Applications

##

#i#

/*

##
#it

##

retrieve (e.name, e.age, e.idno, e.hired, e.salary, res

int4(interval("days", e.hired-date("01-jan-1985"))))
where e.dept = dept_name
for direct update of (name, salary)

open cursor empcsr
if (is_error)
Close_Down () ;

emps_term = 0; /* Record how many */
while (!no_rows)
{

is_error = 0;

retrieve cursor empcsr (emp.name, emp.age, emp.idno,
emp.hired, emp.salary, emp.hired_since_85)
inquire_equel (no_rows = endquery)

(!'no_rows)

if (emp.hired_since_85 > 0)
{
delete cursor empcsr
if (is_error)
Close_Down();
title = "Terminated:";
description = "Reason: Hired since 1985.";
(*emps_term)++;
}

else

/* Reduce salary if not nearly retired */
if (emp.salary > MIN_EMP_SALARY)
{

if (emp.age < nearly retired)

replace cursor empcsr
(salary = salary * salary_reduc)
if (is_error)
Close_Down();
title = "Reduction: ";
description = "Reason: Salary.";
}

else

/* Do not reduce salary */
title = "No Changes:";
description = "Reason: Retiring.";

}

else /* Leave employee alone */

{
title = "No Changes:";
description = "Reason: Salary.";

}

Was employee's department dissolved ? */

if (deleted_dept)

{
append to toberesolved (e.all)
where e.idno = emp.idno
if (is_error)
Close_Down() ;
delete cursor empcsr

}

}

2-64

Embedded QUEL Companion Guide

Sample Applications

/*

#i#
#i#
/*

* X
* %
* X
* %
* X

*/

* %
* %

*/

int
Err
int
{ .
i
r

}

Log the employee's information */
printf(" %s %6d, %20s, %2d, %8.2f; %s\n",
title, emp.idno, emp.name, emp.age, emp.salary, description);

}

close cursor empcsr
is_error = 0;

}

Procedure: Close_Down

Purpose: If an error occurs during the execution of an
EQUEL statement, the error handler sets a flag which
may cause this routine to be called. For simplicity,
errors cause the current transaction to be aborted and
the application to be closed down.

Close_Down ()

{

char err_text[257];

inquire_ingres (err_text = ERRORTEXT)
printf("Closing down because of database
error:\n%s", err_text);

abort

exit

exit(-1);

}

Procedure: Error_Proc
Purpose: Process Ingres errors

Set global "is_error" flag, allowing appropriate action
after individual database statements. Return @ so that
Ingres runtime system will suppress error messages.
Parameters:

ingerr - Pointer to integer containing

ingres error number.

or_Proc(ingerr)
*ingerr;

s_error = 1;
eturn 0;

Chapter 2: Embedded QUEL for C 2-65

Sample Applications

The Employee Query Interactive Forms Application

This section contains a sample EQUEL/FORMS application that uses a form in
query mode to view a subset of the Employee table in the Personnel
database. An Ingres query qualification is built at runtime using values entered
in fields of the form “empform.”

The objects used in this application are:

Object Description

personnel The program’s database environment.

employee A table in the database, with six columns:
name (c20)
age (i1)
idno (i4)
hired (date)
dept (c10)

salary (money).

empform A VIFRED form with fields corresponding in hame and type
to the columns in the Employee database table. The Name
and Idno fields are used to build the query and are the only
updatable fields. "Empform” is a compiled form.

A display statement drives the application. This statement allows the runtime
user to enter values in the two fields that build the query. The Build_Query
and Exec_Query procedures make up the core of the query that is run as a
result. Note the way the values of the query operators determine the logic that
builds the where clause in Build_Query. The retrieve statement encloses a
submenu block that allows the user to step through the results of the query.

The retrieved values are not updated, but any employee screen can be saved
in a log file using the printscreen statement in the save menu item.

The following create statement describes the format of the Employee
database table:

create employee

(name = c20, /* Employee name */

#H age =1il, /* Employee age */

#Ht idno = i4, /* Unique employee id */

#t hired = date, /* Date of hire */

#Ht dept = clo, /* Employee department */

#t salary = money) /* Annual salary */

/*

** Procedure: MAIN

** Purpose: Entry point into Employee Query application.

2-66 Embedded QUEL Companion Guide

Sample Applications

*/
main()
{
#it
extern int *empfrm; /* Compiled form - UNIX */
/* For VMS the compiled form is declared using the statement
** 'globalref int *empform;'
*/
char where_clause[101]; /* For WHERE clause qualification */
/*
** Initialize global WHERE clause qualification buffer
** to be an Ingres default qualification that is
** always true
*/
strcpy (where_clause, "1=1");
forms

message "Accessing Employee Query Application .
1ingres personnel

range of e is employee
addform empfrm

display #empfrm query
initialize

activate menuitem "Reset"

#H{
clear field all
#H o}

activate menuitem "Query"

/* Verify validity of data */
#H# validate

Build_Query(where_clause);

Exec_Query(where_clause);

)
activate menuitem "LastQuery"
#t |
Exec_Query(where_clause)
#H)
activate menuitem "End"
|
#Ht breakdisplay
)

finalize

clear screen
endforms

#H exit

)} /* main */

/*

** Procedure: Build_Query

** Purpose: Build an Ingres query from the values in the
*x 'name' and 'idno' fields in 'empfrm.'

Chapter 2: Embedded QUEL for C 2-67

Sample Applications

** Parameters: where_clause

* X

Pointer to array for building WHERE clause.

Build_Query(where_clause)

char
{
char
int
int
/* Query

* %
* X

*where_clause

ename[21]; /* Employee name */
eidno; /* Employee id */
name_op, id_op; /* Query operators */

operator table maps integer values to string

query operators static char
xopertab[] = {'=', 'I=', '<', '>' <= '>='};

getform #empfrm

##
##

#i

/*
* %
* %

* %

* %
* %
* %
* %

*/

#t
##
#it

(Ename
Eidno

name, nameop = getoper(name),
idno, idop = getoper(idno))

/* Fill in the WHERE clause */
if (name_op == 0 &k id_op == 0)

{
}

else

{

strcpy (where_clause,'l1=1");

if (name_op !=0 && id_op != 0)

{
/* Query on both fields */
sprintf (where_clause, "e.name %s \"%s\"
and e.idno %s %d",
opertab[name_op -1], ename,
opertab[id_op -1], eidno);

else if (name_op != 0)

/* Query on the "name" field */
sprintf (where_clause, "e.name %s \"%s\"",
opertab[name_op -1], ename);

}

else

/* Query on the '"idno" field */
sprintf (where_clause, "e.idno %s %d",
opertab[id_op -1], eidno);

}

Procedure: Exec_Query

Purpose:

*/**

Given a query buffer defining a WHERE clause, issue

a RETRIEVE to allow the runtime user to browse the

employee found with the given qualification.

Parameters: where_clause

- Contains WHERE clause qualification.

Exec_Query(where_clause)
char *where_clause;

{

2-68 Embedded QUEL Companion Guide

Sample Applications

##
#i#
##
#i#
##

##

##
#i#

#i#

#i#

#i#

##

#i
##

#i#

#i#

/* Empl

char
short
int
char
char
float
int

retrieve (ename = e.name, eage = e.age,

oyee data */

ename[21];
eage;
eidno;
ehired[26];
edept[11];
esalary;

rows; /*Were rows found? */

eidno = e.idno,

ehired = e.hired, edept = e.dept, epay = e.salary)

= eidno, hired = ehired,

Do nothing, and continue with the RETRIEVE loop. The

where where_clause
{
/* put values on to form and display them */
putform empfrm
(name = ename, age = eage, idno
dept = edept, salary = epay)
redisplay
submenu
activate menuitem "Next"
{
/*
* %
** last one will drop out.
*/
}
activate menuitem "Save"
/* Save screen data in log file */
printscreen (file = 'query.log')
/* Drop through to next employee */
}
activate menuitem "End"
/* Terminate the RETRIEVE loop */
endretrieve
}
}
inquire_equel (rows = ROWCOUNT)
if (rows == 0)
{
message "No rows found for this query"
else
{
clear field all
message "Reset for next query"
}
sleep 2
}

Chapter 2: Embedded QUEL for C 2-69

Sample Applications

The Table Editor Table Field Application

This EQUEL/FORMS application uses a table field to edit the Person table in the
Personnel database. It allows the user to update a person’s values, remove the
person, or add new persons. Various table field utilities are provided with the
application to demonstrate their use and their interaction with an Ingres
database.

The objects used in this application are:

Object Description
personnel The program’s database environment.
person A table in the database, with three columns:
name (c20)
age (i2)

number (i4)

Note: number is unique.

personfrm The VIFRED form with a single table field.
persontbl A table file in the form, with two columns:
name (c20)
age (i4).

When initialized, the table field includes the hidden number
(i4) column.

When the application begins, a retrieve statement is issued to load the table
field with data from the Person table. Once the table field has been loaded, the
user can browse and edit the displayed values. Entries can be added, updated,
or deleted. When finished, the values are unloaded from the table field, and, in
a multi-statement transaction, the user’s updates are transferred back into the
Person table.

The following create statement describes the format of the Person database
table:

create person

#i# (name = c20, /* Person name */

#H age = 12, /* Age */

#Ht number = i4) /* Unique id number */

/*

** Global structure pers corresponds to "person" table
*/

struct {

char pname[21]; /* Full name (with C null) */
int page; /* Age of person */
int pnumber; /* Unique person number */

2-70 Embedded QUEL Companion Guide

Sample Applications

int maxid; /* Max person id number */
}pers;

/*

** Procedure: MAIN

** Purpose: Entry point into Table Editor program.
*/

main()

{

/* Table field row states */

define stundef © /* Empty or undefined row */

define stnew 1 /* Appended by user */

define stunchanged 2 /* Loaded by program - not updated */
define stchange 3 /* Loaded by program - since changed */
define stdelete 4 /* Deleted by program */

/* Table field entry information */

int state; /* State of data set entry */
int record; /* Record number */

int lastrow; /* Last row in table field */

/* Utility buffers */
char msgbuf[256]; /* Message buffer */
char respbuf[256]; /* Response buffer*/

/* Status variables */
int update_error; /* Update error from database */
int update_rows; /* Number of rows updated */

int xact_aborted; /* Transaction aborted */

/* Start up Ingres and the FORMS system */
ingres "personnel"

forms

/* Verify that the user can edit the "person" table */
prompt noecho ("Password for table editor: ", respbuf)

if (strcmp(respbuf, "MASTER_OF _ALL") != 0)
{

message "No permission for task. Exiting . . ."
endforms
##H exit

exit(-1);

##message "Initializing Person Form . . ."
##range of p is person
##forminit personfrm

/*
** Initialize "persontbl" table field with a data set in FILL
** mode so that the runtime user can append rows. To keep track
** of events occurring to original rows that will be loaded into
** the table field, hide the unique person number.
*/

inittable personfrm persontbl fill (number = i4)

Load_Table();

display personfrm update
initialize

Chapter 2: Embedded QUEL for C 2-71

Sample Applications

##

##
##

##

activate menuitem "Top"

{

/*
** Provide menu, as well as the system FRS key to scroll
** to both extremes of the table field.

*/
scroll personfrm persontbl to 1
}
activate menuitem "Bottom"
{
scroll personfrm persontbl to end /* Forward */
}
activate menuitem "Remove"
{
/*

** Remove the person in the row the user's cursor is on.
*/
deleterow personfrm persontbl /* Record later */

}

activate menuitem "Find"
{
/*
** Scroll user to the requested table field entry.
** Prompt the user for a name, and if one is typed in
** loop through the data set searching for it.

*/
prompt ("Person's name : ", respbuf)
if (respbuf[0@] == '\0')
#Ht resume field persontbl
unloadtable personfrm persontbl
(pers.pname = name, record = _record, state = _state)
#H{
/* Do not compare with deleted rows */
if ((strcmp(pers.pname, respbuf) == 0) && (state != stDELETE))
{
#Ht scroll personfrm persontbl TO record
resume field persontbl
}
#H}
/* Fell out of loop without finding name */ sprintf(msgbuf,
"Person \"%s\" not found in table [HIT RETURN] ", respbuf);
#t prompt noecho (msgbuf, respbuf)
#H o}
activate menuitem "Exit"
#t
validate field persontbl
breakdisplay
#H)
finalize
/*

* %
*%
* %
*%
* %

*/

Exit person table editor and unload the table field. If any
updates, deletions or additions were made, duplicate these
changes in the source table. If the user added new people we
must assign a unique person id before returning it to

the table. To do this, increment the previously saved
maximum id number with each insert.

2-72

Embedded QUEL Companion Guide

Sample Applications

/* Do all the updates in a transaction */
begin transaction

update_error = 0;
xact_aborted = 0;

message "Exiting Person Application . . .";
unloadtable personfrm persontbl
(pers.pname = name, pers.page = age,

pers.pnumber = number, state = _state)

#H{

/* Appended by user. Insert with new unique id */
if (state == stnew)
{

pers.maxid = pers.maxid + 1;
repeat append to person (name = @pers.pname,
#Ht age = @pers.page,
number = @pers.maxid)

}
/* Updated by user. Reflect in table */
else if (state == stchange)

repeat replace p (name = @pers.pname, age = @pers.page)

where p.number = @pers.pnumber
}
/*
** Deleted by user, so delete from table. Note that only
** original rows are saved by the program, and not rows
** appended at runtime.

*/
else if (state == stdelete)
{
repeat delete from p where p.number = @pers.pnumber

}
/* Else UNDEFINED or UNCHANGED - No updates */

/*
** Handle error conditions -
** If an error occurred, then abort the transaction.
** If no rows were updated then inform user, and
** prompt for continuation.

*/
#it inquire_ingres (update_error = errorno, update_rows=rowcount)
if (update_error) /* Error */
{
#Ht inquire_equel (msgbuf = errortext)
abort
xact_aborted = 1;
endloop

else if (lupdate_rows)

sprintf(msgbuf,
"Person \"%s\" not updated. Abort all updates? ",
pers.pname) ;

#H prompt (msgbuf, respbuf)

if (respbuf[@] == "Y' || respbuf[0] == 'y')
abort

xact_aborted = 1;

endloop

}

}

#}

Chapter 2: Embedded QUEL for C 2-73

Sample Applications

if (!xact_aborted)
end transaction /* Commit the updates */

endforms /* Terminate the FORMS and Ingres */
##H exit

if (update_error)

printf("Your updates were aborted because of error:\n");
printf(msgbuf);
printf("\n");

}

} /* Main Program */

/*

** Procedure: Load_Table

** Purpose: Load the table field from the "person" table. The
** columns "name" and "age" will be displayed, and

** "number" will be hidden.

** Parameters:

** None

** Returns:

** Nothing

*/

Load_Table()
#H{
/* Set up error handling for loading procedure */

message "Loading Person Information .

/* Fetch the maximum person id number for later use */
retrieve (pers.maxid = max(p.number))

/* Fetch data, and load table field */

retrieve (pers.pname = p.name, pers.page = p.age,
pers.pnumber = p.number)

##H

loadtable personfrm persontbl

(name = pers.pname, age = pers.page,

##t number = pers.pnumber)

)

} /* Load_Table */

2-74 Embedded QUEL Companion Guide

Sample Applications

The Professor-Student Mixed Form Application

This EQUEL/FORMS application lets the user browse and update information
about graduate students who have a specific professor. The program is
structured in a master/detail fashion, with the professor being the master
entry, and the students the detail entries. The application uses two forms—one
to contain general professor information and another for detailed student

information.
Object Description
personnel The program’s database environment.
professor A database table with two columns:
pname (c25)
pdept (c10).
See its create statement below for a full description.
student A database table with seven columns:
sname (c25)
sage (il1)
sbdate (¢25)
sgpa (f4)
sidno(il)
scomment (text(200))
sadvisor (€25).
See the create statement below for a full description. The
sadvisor column is the join field with the pname column in
the Professor table.
masterfrm The main form has the pname and pdept fields, which
correspond to the information in the Professor table, and
studenttbl table field. The pdept field is display-only.
“Masterfrm” is a compiled form.
studenttbl A table field in “masterfrm” with two columns, sname and
sage. When initialized, it also has five more hidden columns
corresponding to information in the Student table.
studentfrm The detail form, with seven fields, which correspond to
information in the Student table. Only the sgpa, scomment,
and sadvisor fields are updatable. All other fields are
display-only. “Studentfrm” is a compiled form.
grad A global structure, whose members correspond in name

and type to the columns of the Student database table, the
“studentfrm” form and the “studenttbl” table field.

Chapter 2: Embedded QUEL for C 2-75

Sample Applications

The program uses the “"masterfrm” as the general-level master entry, in which
data can only be retrieved and browsed, and the “studentfrm” as the detailed
screen, in which specific student information can be updated.

The runtime user enters a name in the pname (professor name) field and then
selects the Students menu operation. The operation fills the displayed and
hidden columns of the studenttbl table field with detailed information of the
students reporting to the named professor. The user can then browse the table
field (in read mode), which displays only the names and ages of the students.
To request more information about a specific student, select the Zoom menu
operation. This operation displays the form “studentfrm.” The fields of
“studentfrm” are filled with values stored in the hidden columns of
“studenttbl.” The user can make changes to three fields (sgpa, scomment and
sadvisor). If validated, these changes will be written back to the database
table (based on the unique student id), and to the table field’s data set. This
process can be repeated for different professor names.

The following two create statements describe the Professor and Student
database tables:

create student /* Graduate student table */

(sname = c25, /* Name */

sage = il, /* Age */

sbdate = c25, /* Birth date */

sgpa = f4, /* Grade point average */

sidno = i4, /* Unique student number */

scomment = text(200), /* General comments */
sadvisor = c25) /* Advisor's name */

create professor /* Professor table */

(pname = c25, /* Professor's name */

pdept = clO@) /* Department */

** GLOBAL declaration
** grad student record maps to database table

*/

struct {

char sname[26] ;

short sage;

char sbdate[26];

float sgpa;

#int sidno;

char scomment[201] ;
char sadvisor[26];
} grad;

/*

** Procedure: DECLARE FORMS
*/

extern int *masterfrm; /* Compiled forms - UNIX */

extern int *studentfrm;
/* For VMS, to declare the compiled form use the statements
** 'globalref int *masterfrm;' and 'globalref int *studentfrm;'
*/

/*

** Procedure: MAIN

** Purpose: Start up program and call Master driver.
*/

2-76 Embedded QUEL Companion Guide

Sample Applications

mai

##
#i#

#i#
##

Mas

##
##
##
}
/*
* %
* %
* %
* %
* %

Mas
#it
/*
#it
#Ht
#it
#it}

/*

* %

* %
* %
* %

*/
#i#
##
#i#
##
#it
##

##
##

##

nQ
/* Start up Ingres and the FORMS system */
forms
message "Initializing Student Administrator . . ."

ingres personnel
range of p is professor, s is student

ter();
clear screen

endforms
exit

Procedure: Master

Purpose: Drive the application, by running "masterfrm", and

allowing the user to "zoom" into a selected student.
Parameters:
None - Uses the global student "grad" record. */

ter()
{
Professor info maps to database table */
struct {
char pname[26];
char pdept[11];
prof;

Useful forms system information */
int lastrow; /* Lastrow in table field */
int istable; /* Is a table field? */

Local utility buffers */

char msgbuf[100]; /* Message buffer */

char respbuf[256]; /* Response buffer */

char old_advisor[26]; /* 0ld advisor before ZOOM */

Externally compiled master form - UNIX */
extern int *masterfrm;
For VMS use 'globalref int *masterfrm;' */

addform masterfrm

Initialize "studenttbl" with a data set in READ mode.
Declare hidden columns for all the extra fields that
the program will display when more information is
requested about a student. Columns "sname" and "sage"
are displayed, all other columns are hidden, to be
used in the student information form.

inittable #masterfrm studenttbl read
(sbdate = c25,

sgpa = float4,

sidno = integer4,

scomment = c200,
sadvisor = c20)

display #masterfrm update
initialize

{

message "Enter an Advisor name .

Chapter 2: Embedded QUEL for C 2-77

Sample Applications

sleep 2
)

activate menuitem "Students", FIELD "pname"
#H

/* Load the students of the specified professor */
getform (prof.pname = pname)

/* If no professor name is given then resume */
if (prof.pname[@] == '\0')
resume field pname

/*
** Verify that the professor exists. Local error
** handling just prints the message, and continues.
** We assume that each professor has exactly one
** department.
*/
prof.pdept[0] = '\O';
retrieve (prof.pdept = p.pdept)
where p.pname = prof.pname

if (prof.pdept[0] == '\@")
{

sprintf(msgbuf,
"No professor with name \"%s\" [RETURN]", prof.pname);
prompt noecho (msgbuf, respbuf)
clear field all
resume field pname

}
/* Fill the department field and load students */
putform (pdept = prof.pdept)
redisplay /* Refresh for query */
Load_Students(prof.pname) ;

resume field studenttbl

#Ht} /* "Students" */
activate menuitem "Zoom"
{

/*

** Confirm that user is on "studenttbl", and that
** the table field is not empty. Collect data from
** the row and zoom for browsing and updating.
*/

dinquire_frs field #masterfrm (istable = table)

if (istable == 0)

{
prompt noecho
#Ht ("Select from the student table [RETURN]", respbuf)
resume field studenttbl

}

inquire_frs table #masterfrm (lastrow = lastrow)

if (lastrow == 0)

{
prompt noecho ("There are no students [RETURN]", respbuf)
resume field pname

}

2-78 Embedded QUEL Companion Guide

Sample Applications

/* Collect all data on student into global record */
getrow #masterfrm studenttbl

#i# (grad.sname = sname,

#H grad.sage = sage,

grad.sbdate = sbdate,

grad.sgpa = sgpa,

grad.sidno = sidno,

grad.scomment = scomment,

grad.sadvisor = sadvisor)

** Display "studentfrm", and if any changes were made
** make the updates to the local table field row.
** Only make updates to the columns corresponding to
** writable fields in "studentfrm". If the student
** changed advisors, then delete this row from the
** display.
*/
strcpy(old_advisor, grad.sadvisor);
if (Student_Info_Changed())

{

if (strcmp(old_advisor, grad.sadvisor) != 0)
deleterow #masterfrm studenttbl

else
#it putrow #masterfrm studenttbl
(sgpa = grad.sgpa,
#H scomment = grad.scomment,
#Ht sadvisor = grad.sadvisor)

)} /* "Zoom" */

activate menuitem "Exit"
#H {

breakdisplay

#Hy /* "Exit" */

finalize
} /* Master */

/*

** Procedure: Load_Students

** Purpose: Given an advisor name, load into the "studenttbl"
** table field all the students who report to the

** professor with that name.

** Parameters:

** advisor - User specified professor name.

** Uses the global student record.

*/

Load_Students (advisor)
#Ht char *advisor;
{
/*
** Clear previous contents of table field. Load the table
** field from the database table based on the advisor name.
** Columns "sname" and "sage" will be displayed, and all
** others will be hidden.
*/
message "Retrieving Student Information .
clear field studenttbl

retrieve
(grad.sname = s.sname,
grad.sage = s.sage,

Chapter 2: Embedded QUEL for C

2-79

Sample Applications

grad.sbdate = s.sbdate,

grad.sgpa = s.sgpa,

#i# grad.sidno = s.sidno,

grad.scomment = s.scomment,
grad.sadvisor = s.sadvisor)
where s.sadvisor = advisor

{
loadtable #masterfrm studenttbl
(sname = grad.sname,
sage = grad.sage,
sbdate = grad.sbdate,
sgpa = grad.sgpa,
sidno = grad.sidno,
scomment = grad.scomment,
sadvisor = grad.sadvisor)

} /* Load_Students */

/*

** Procedure: Student_Info_Changed

** Purpose: Allow the user to zoom into the details of a
** selected student. Some of the data can be updated
** by the user. If any updates were made, then reflect
** these back into the database table. The procedure
** returns TRUE if any changes were made.

** Parameters:

** None - Uses with data in the global "grad" record.
** Returns:

** TRUE/FALSE - Changes were made to the database.

** Sets the global "grad" record with the new data. */

int Student_Info_Changed()

{
int changed; /* Changes made to data in form */
int valid_advisor; /* Valid advisor name ? */

extern int *studentfrm; /* Compiled form - UNIX */
/* For VMS use 'globalref int *studentfrm;' for the compiled form */

/* Control ADDFORM to only initialize once */
static int loadform = 0;

if (!loadform)
{
message "Loading Student form .
addform studentfrm
loadform = 1;

}

display #studentfrm fill
initialize

(sname = grad.sname,

sage = grad.sage,

sbdate = grad.sbdate,

sgpa = grad.sgpa,

sidno = grad.sidno,

scomment = grad.scomment,
sadvisor = grad.sadvisor)

activate menuitem "Write"
{

/*
** If changes were made then update the database
** table. Only bother with the fields that are not
** read-only.

2-80 Embedded QUEL Companion Guide

Sample Applications

#i

*/

inquire_frs form (changed = change)
(changed == 1)
{

validate
message "Writing changes to database. . ."

getform

(grad.sgpa = sgpa,
grad.scomment = scomment,
grad.sadvisor = sadvisor)

Enforce integrity of professor name */
valid_advisor = 0;

retrieve (valid_advisor = 1)
where p.pname = grad.sadvisor
if (valid_advisor == 0)
{
message "Not a valid advisor name"
#Ht sleep 2
resume field sadvisor
}
else
{
#H replace s (sgpa = grad.sgpa, scomment = grad.scomment,
#Ht sadvisor = grad.sadvisor)
#H where s.sidno = grad.sidno
#Ht breakdisplay
}
}
#H) /* "Write" */
activate menuitem "Quit"
#t
/* Quit without submitting changes */
changed = 0;
breakdisplay
#t) /* "Quit" */
finalize
return (changed == 1);
} /* Student_Info_Changed */

An Interactive Database Browser Using Param Statements

This application lets the user browse and update data in any table in any
database. You should already have used VIFRED to create a default form
based on the database table to be browsed. VIFRED builds a form whose fields
have the same names and data types as the columns of the database table
specified.

Chapter 2: Embedded QUEL for C 2-81

Sample Applications

The program prompts the user for the name of the database, the table, and
the form. In the Get_Form_Data procedure, it uses the formdata statement
to find out the name, data type and length of each field on the form. It uses
this information to dynamically build the elements for the param versions of
the retrieve, append, putform and getform statements. These elements
include the param target string, which describes the data to be processed,
and the array of variable addresses, which informs the statement where to get
or put the data. The type information the formdata statement collects
includes the option of making a field nullable. If a field is nullable, the program
builds a target string that specifies the use of a null indicator, and it sets the
corresponding element of the array of variable addresses to point to a null
indicator variable.

After the components of the param clause have been built, the program
displays the form. If the user selects the Browse menu item, the program
uses a param version of the retrieve statement to obtain the data. For each
row, the putform and redisplay statements exhibit this data to the user. A
submenu allows the user to get the next row or to stop browsing. When the
user selects the Insert menu item, the program uses the param versions of
the getform and append statements to add a new row to the database.

/*

** Global declarations

*/

/*

** Target string buffers for use in PARAM clauses of GETFORM,

** PUTFORM, APPEND and RETRIEVE statements. Note that the APPEND
** and PUTFORM statements have the same target string syntax.

** Therefore in this application, because the form used

** corresponds exactly to the database table, these two statements
** can use the same target string, "put_target_ list".

*/
char put_target_1ist[1000] = {0};
##t /* For APPEND and PUTFORM statements */

char get target_1ist[1000]
char ret_target 1ist[1000]

{0}; /* For GETFORM statement */
{0}; /* For RETRIEVE statement */

define maxcols 127 /* DB maximum number of columns */
define charbufsize 3000 /* Size of "pool" of char strings */

/*

** An array of addresses of program data for use in the PARAM

** clauses. This array will be initialized by the program to point
** to variables and null indicators.

*/
char *var_addresses[MAXCOLS*2];

/* Addresses of variables and indicators */
/*

** Variables for holding data of type integer, float and

** character string.Note that to economize on memory usage,

** character data is managed as segments on one large array,

** "char_vars". Numeric variables and indicators are managed as an
** array of structures. The addresses of these data areas

** are assigned to the "var_addresses" array, according to

** the type of the field/database column.

*/

char char_vars[CHARBUFSIZE +1]; /* Pool for character data */

struct {

2-82 Embedded QUEL Companion Guide

Sample Applications

int intv; /* For integer data */
double fltv; /* For floating-point data */
short indv; /* For null indicators */

} vars[MAXCOLS];

/*
** Procedure: main
** Purpose: Start up program and Ingres, prompting user for

*x names of form and table. Call Get_Form_Data() to obtain
** profile of form. Then allow user to interactively
*x browse the database table and/or append new data.
*/
main()
#H
#t char dbname[25], formname[25], tabname[25];
##int ing_error; /* Catch database and forms errors *
#int num_updates; /* Catch error on database appends */
int want_next; /* Browse flag */
forms
prompt ("Database name: ", dbname)
/*
** Use of "-E" flag tells Ingres not to quit on start-up
** errors
*/

ingres "-E" dbname
inquire_ingres (ing_error = errorno)
if (ing_error > 0)

#Ht message "Could not start Ingres. Exiting."
exit
#t endforms
exit(-1);
}

/* Prompt for table and form names */
prompt ("Table name: ", tabname)
range of t is tabname
inquire_ingres (ing_error = errorno)
if (ing_error > 0)

#it message "Nonexistent table. Exiting."
#Ht exit
endforms
exit(-1);
}
prompt ("Form name: ", formname)

forminit formname

/* A1l forms errors are reported through INQUIRE_FRS */
inquire_frs frs (ing_error = errorno)
if (ing_error > 0)

{
#i# message "Could not access form. Exiting."
exit
#it endforms
exit(-1);
}
/*

** Get profile of form. Construct target lists and access
** variables for use in queries to browse and update data.
*/

Chapter 2: Embedded QUEL for C 2-83

Sample Applications

##

#it

#it

##
#it

if (!Get_Form_Data (formname, tabname))

{
message "Could not profile form. Exiting."
exit
endforms
exit(-1);
}
/*

** Display form and interact with user, allowing browsing and
** appending of new data.
*/
display formname fill
initialize
activate menuitem "Browse"
{
/*
** Retrieve data and display first row on form, allowing
** user to browse through successive rows. If data types
** from table are not consistent with data descriptions
** obtained from user’s form, a retrieval error will
** occur. Inform user of this or other errors.
** Sort on first column. Note the use of "ret_varN" to
** indicate the column name to sort on.
*/
retrieve (param(ret_target_list, var_addresses))
sort by ret_varl

want_next = 0;
putform formname (param(put_target list, var_addresses))
inquire_frs frs (ing_error = errorno)

if (ing_error > 0)

message "Could not put data into form"
endretrieve

/* Display data before prompting user with submenu */
redisplay
submenu
activate menuitem "Next"
{
message "Next row"
want_next = 1;
}
activate menuitem "End"

{

endretrieve
}
} /* End of Retrieve Loop */

inquire_ingres (ing_error = errorno)
if (ing_error > 0)

message "Could not retrieve data from database"

else if (want_next == 1)

{
/* Retrieve loop ended because of no more rows */
message "No more rows"

}

sleep 2

/* Clear fields filled in submenu operations */
clear field all
}

2-84 Embedded QUEL Companion Guide

Sample Applications

#i#
##

#i#

activate menuitem "Insert"
{
getform formname (param(get_target_list, var_addresses))
inquire_frs frs (ing_error = errorno)
if (ing_error > 0)
{
clear field all
resume
}

append to tabname (param(put_target_list, var_addresses))

inquire_ingres (ing_error = errorno, num_updates = rowcount)

if (ing_error > 0 || num_updates == 0)

message "No rows appended because of error."

}
else
{
message "One row inserted"
}
sleep 2
}
activate menuitem "Clear"
{
clear field all
}

activate menuitem "End"

breakdisplay
}

finalize
exit
endforms

}

Procedure: Get_Form Data
Purpose: Get the name and data type of each field of a

form using the FORMDATA loop. From this information,
build the target strings and array of variable
addresses for use in the PARAM target list of
database and forms statements. For example, assume
the form has the following fields:

Field name Type Nullable?
name character No
age integer Yes
salary money Yes

Based on this form, this procedure will construct
the following target string for the PARAM clause of
a PUTFORM statement:

"name = %c, age = %i4:%i2, salary = %f8:i2"

Note that the target strings for other statements
have differing syntax, depending on whether the
field/column name or the user variable is the
target of the statement.

The other element of the PARAM clause, the
"var_addresses" array, would be constructed by

Chapter 2: Embedded QUEL for C

2-85

Sample Applications

* %
* X
* %
* X
* %
* X
* %
* X
* %
* X
* %

*/

HHFHHFRFHH

##
#i#

##

##

##
#it

#t

this procedure as follows:

var_addresses[0]
var_addresses[1]
var_addresses[2]
var_addresses|[3]
var_addresses[4]

pointer into "char_vars" array
address of vars[0].intv
address of vars[0].indv
address of vars[l].fltv
address of vars[1l].indv

Parameters:
formname
- Name of form to profile.
int
Get_Form_Data(formname)
char *formname;
{
int ing_error;
int fld_type; /* Data type of field */
char fld_name[25]; /* Name of field */
int fld_length; /* Length of (character) field */
int is_table; /* Is field a table field? */
char loc_target[15]; /* Temporary target description */
int addr_cnt = 0; /* Number of variable addresses */
int fld_cnt = 0; /* Index to variable structures array */
char *char_ptr = char_vars; /* Index into character pool */
int ret_stat = 1; /* Return status */
/* Data types of fields */
define date 3
define money 5
define int 30
define float 31
define char 20
define vchar 21
define C 32
define text 37
formdata formname
{
/* Get data information and name of each field */
inquire_frs field "" (fld_type=datatype, fld_name=name,
fld_length = length, is_table = table)
/* Return on errors */
inquire_frs frs (ing_error = errorno)
if (ing_error > 0)
{
ret_stat = 0;
enddata
}
/*
** This application does not process table fields.
** However, the TABLEDATA statement is available
** to profile table fields.
*/
if (is_table == 1)
{
message "Table field in form"
sleep 2
ret_stat = 0;
enddata
}

/* More fields than allowable columns in database? */

2-86 Embedded QUEL Companion Guide

Sample Applications

##

##

##

##

if (fld_cnt >= maxcols)

{
message
"Number of fields exceeds allowable database columns"
sleep 2
ret_stat = 0;
enddata
}

/* Separate target list items with commas */
if (fld_cnt > Q)

{
strcat (put_target_list, ",");
strcat (get_target_list, ",");
strcat (ret_target_list, ",");
}

/* Field/col name is the target in put/append statements */
strcat (put_target list, fld_name);

/*

** Enter data type information in target list. Point array
** of addresses into relevant data pool. Note that by

** testing the absolute value of the data type value, the

** program defers the question of nullable data to a later
** segment of the code, where it is handled in common for

** all types.
** (Recall that a negative data type indicates a nullable
** field.)

*/

switch (abs(fld_type))
{
case int:
strcat (put_target_list, "= %i4");
strcat (get_target list, "%i4");
strcat (ret_target_list, "%i4");
var_addresses[addr_cnt++]
= (char *)&vars[fld_cnt].intv;
break;
case float:
case money:
strcat (put_target_list, "= %f8");
strcat (get_target list, "%f8");
strcat (ret_target_list, "%f8");
var_addresses[addr_cnt++] =
(char *)&vars[fld_cnt].fltv;
break;
case C:
case char:
case text:
case vchar:
case date:
strcat (put_target list, "=%c");
sprintf (loc_target, "%%c%d", fld_length);
strcat (get_target_list, loc_target);
strcat (ret_target_list, loc_target);
/*
** Assign a segment of character buffer as space
** for data associated with this field. If
** assignment would cause overflow, give error
** and return.
*/
if (char_ptr + fld_length >= &char_vars[CHARBUFSIZE])
{

message "Character data fields will cause overflow"

Chapter 2: Embedded QUEL for C 2-87

Sample Applications

##

##

#i#

#i#

##

#i#

} /

/* If
** and
*/

if (f1l

st
st
st
var_ad

}

/* Rea
fld_cn

/*

** Fie
*/ sta
strcat
strcat
strcat
strcat
strcat

} /¥

return ret_s

sleep 2
ret_stat = 0;
enddata

var_addresses[addr_cnt++] = char_ptr;
char_ptr += fld_length +1;
/* Allow room for terminator */

break;
default:

message "Field has unknown data type"

ret_stat = 0;

enddata
* End switch */

field is nullable, complete target lists

address assignments to allow for null data.
d_type \ 0)
rcat (put_target list, ":%i2");

rcat (get_target list, ":%i2");
rcat (ret_target list, ":%i2");
dresses[addr_cnt++] = (char *)&vars[fld_cnt].indv;

dy for next structure variable */
t++;
1d/column name is the object in getform/retrieve
tements */
(get_target_list, "=");
(get_target_list, fld_name);
(ret_target_list, "=");

(ret_target_list, "t.");
(ret_target_list, fld_name);

End of formdata loop */

tat;

} /* Get_Form_Data */

2-88

Embedded QUEL Companion Guide

Chapter 3: Embedded QUEL for COBOL

This chapter describes the use of EQUEL with the COBOL programming
language.

EQUEL Statement Syntax for COBOL

Margin

UNIX

VMS

This section describes the language-specific ground rules for embedding QUEL
database and forms statements in a COBOL program. An EQUEL statement has
the following general syntax:

EQUEL_statement

For information on QUEL statements, see the QUEL Reference Guide. For
information on EQUEL/FORMS statements, see the Forms-based Application
Development Tools User Guide.

The following sections describe how to use the various syntactical elements of
EQUEL statements as implemented in COBOL.

There are no specified margins for EQUEL statements in COBOL. Because you

must always place the two number signs (##) in the first two positions of the
line, COBOL sequence numbers are not allowed in EQUEL lines. The rest of the
statement can begin anywhere else on the line.

The COBOL code that the preprocessor generates conforms to Micro Focus
COBOL II source code format. For more details on the output format, see
Precompiling, Compiling, and Linking an EQUEL Program in this chapter. ®

The COBOL code generated by the preprocessor conforms to COBOL source
code format (ANSI or VAX COBOL terminal format, depending on whether
you specify the -a flag in the preprocessor terminal line). For more details on
the output format, see Precompiling, Compiling, and Linking an EQUEL
Program in this chapter. ®

Chapter 3: Embedded QUEL for COBOL 3-1

EQUEL Statement Syntax for COBOL

Terminator

Line Continuation

Comments

An EQUEL/COBOL statement does not need a statement terminator. However,
do use a COBOL separator period to terminate an EQUEL statement if that
statement marks the end of a group of COBOL statements. For example, the
separator period can appear after an EQUEL statement that indicates the end
the scope of an IF statement as follows:

IF (GIVE_MESSAGE = 1) THEN

MESSAGE "Continuing with processing"
SLEEP 2.

When it translates the above code into COBOL statements, the preprocessor
places the COBOL separator period at the end of the last generated COBOL
statement. For more details on the COBOL separator period and EQUEL
statements, see Precompiling, Compiling, and Linking an EQUEL Program in
this chapter.

Because variables declared to EQUEL follow the normal COBOL declaration
syntax, you must terminate variable declarations in the normal way for
COBOL, with a period.

There are no special line continuation rules for EQUEL/COBOL. You can

break an EQUEL statement between words and continue it on any number of
subsequent lines. An exception to this rule is that you cannot continue a
statement between two words that are reserved when they appear together,
such as declare cursor. For a list of double keywords, see the QUEL
Reference Guide. Start each continuation line with the ## characters. You can
use blank lines between continuation lines.

If you want to continue a character-string constant across two lines, end the
first line with a backslash character (\) and continue the string at the
beginning of the next line, in the area which is sometimes used for sequence
numbers of COBOL statements. In this case, do not place the ## characters at
the beginning of the continuation lines.

For examples of string continuation, see String Literals in this chapter.

Two kinds of comments can appear in an EQUEL program: EQUEL comments
and host language comments. The /* and */ characters delimit EQUEL
comments and must appear on lines beginning with the ## sign.

3-2 Embedded QUEL Companion Guide

EQUEL Statement Syntax for COBOL

For example:

/* Update name and salary */
APPEND TO EMPLOYEE (ename = EMPNAME, esal = esal*.l)
MESSAGE "salary updated" /* Updates done */

The preprocessor strips EQUEL comments that appear on lines beginning with
the ## sign out of the program. These comments do not appear in the output
file.

The preprocessor treats host language comments that appear on lines that do
not begin with the ## sign as host code. It passes them through to the output
file unchanged. Therefore, if you want source code comments in the
preprocessor output, enter them as COBOL comments.

The following restrictions only apply to EQUEL comments:

n In general, EQUEL comments can be put in EQUEL statements wherever a
space can legally occur. However, comments cannot appear between two
words that are reserved when they appear together, such as declare
cursor. See the list of EQUEL reserved words in the QUEL Reference
Guide.

n EQUEL comments cannot appear in string constants. If this occurs, the
preprocessor interprets the intended comment as part of the string
constant.

The following additional restrictions apply only to COBOL comments:

n COBOL comments cannot appear between component lines of EQUEL
block-type statements. These include retrieve, initialize, activate,
unloadtable, formdata, and tabledata, all of which have optional
accompanying blocks delimited by open and close braces. Do not put
COBOL comment lines between the statement and its block-opening
delimiter.

For example:

RETRIEVE (ENAME = employee.name)

* Illegal to put a host comment here!

#H{

* A host comment is perfectly legal here
DISPLAY "Employee name 1is" ENAME

#H o}

n COBOL comments cannot appear between the components of compound
statements, in particular the display statement. It is illegal for a COBOL
comment to appear between any two adjacent components of the display
statement, including display itself and its accompanying initialize,
activate, and finalize statements.

For example:

DISPLAY EMPFORM

* illegal to put a host comment here!

INITIALIZE (empname = "FRISCO McMULLEN")
* Host comment illegal here!

ACTIVATE MENUITEM "Clear":

Chapter 3: Embedded QUEL for COBOL 3-3

EQUEL Statement Syntax for COBOL

String Literals

#{

* Host comment here is fine
CLEAR FIELD ALL

#H o}

* Host comment illegal here!

ACTIVATE MENUITEM "End":

{
BREAKDISPLAY
#Ho}
* Host comment illegal here!
FINALIZE

These restrictions are discussed on a statement-by-statement basis in the
QUEL Reference Guide.

On the other hand, EQUEL comments are legal in the locations described in
the previous paragraph, as well as wherever a host comment is legal. For
example:

RETRIEVE (ENAME = employee.name)

/* This is an EQUEL comment, legal in this location

#Ht and it can span multiple lines */

#Ht
DISPLAY "Employee name" ENAME

woy

You use double quotes to delimit string literals in EQUEL/COBOL. You can
embed double quotes as part of the literal itself by doubling it. For example:

APPEND comments
(fieldl = "a double "" quote is in this string")

The COBOL single quote character delimiter is also accepted by the
preprocessor and is converted to a double quote.

To continue an EQUEL statement to additional lines, use the backslash (\)
character at the end of the first line. Any leading spaces on the next line are
considered part of the string. Therefore, the continued string should start in
column 1 on the next line in the area that would be considered the Sequence
Number Area on COBOL lines.

For example, the following is a legal EQUEL statement:

APPEND TO employee (empname = "Freddie \
Mac", empnum = 222)

Note that any string literals that are generated as output by the preprocessor
will follow COBOL rules.

3-4 Embedded QUEL Companion Guide

COBOL Variables and Data Types

The Param Function

EQUEL/COBOL does not currently support param versions of statements.
Param statements are supported in EQUEL/C, EQUEL/Fortran, and
EQUEL/PL1.

COBOL Variables and Data Types

This section describes how to declare and use COBOL program variables in
EQUEL.

Variable and Type Declarations

This section describes how to declare variables to EQUEL. It provides a general
description of declaration sections and a detailed description of the declaration
syntax for all data types.

EQUEL Variable Declaration Procedures

Any COBOL language variable an EQUEL statement uses must be made known
to the processor so that it can determine the type of the variable. Use two
number signs (##) to begin a declaration of a variable in an EQUEL/COBOL
program. Begin the signs in the first column position of the line. If the variable
is not used in an EQUEL statement, you do not need to use number signs, and
the rules in the following sections do not apply.

Declare EQUEL/COBOL variables in the FILE or the STORAGE sections of the
DATA DIVISION.

The Declare Statement

The WORKING-STORAGE SECTION for each program block must include the
EQUEL statement:

DECLARE

This statement makes the preprocessor generate a COBOL COPY statement of
a file of declarations needed by the Ingres runtime system. You cannot
successfully compile an EQUEL/COBOL program unless you include the
declare statement in the WORKING-STORAGE SECTION.

Chapter 3: Embedded QUEL for COBOL 3-5

COBOL Variables and Data Types

Data ltem Declaration Syntax

This section describes rules and restrictions for declaring EQUEL/COBOL data
items. EQUEL recognizes only a subset of legal COBOL declarations.

The following template is the complete data item declaration format that
EQUEL/COBOL accepts:

level-number
[data-name | FILLER]
[REDEFINES data-item]
[[IS] GLOBAL]
[[IS] EXTERNAL]
[PICTURE [IS] pic-string]
[[USAGE [IS]] use-type]
[SIGN clause]
[SYNCHRONIZED clause]
[JUSTIFIED clause]
[BLANK clause]
[VALUE clause]
[OCCURS clause] .

Syntax Notes:

n Data declaration clauses can be in any order, with the following two
exceptions:

— The data-name or FILLER clause, if given, must immediately follow
the level number.

— The REDEFINES clause, if given, must immediately follow the data-
item or FILLER clause.

n The level-number can range from 01 to 49. Level number 77 (for
noncontiguous data items) is also valid and the preprocessor regards it as
identical to level 01. The EQUEL/COBOL preprocessor does not support
levels 66 (which identifies RENAMES items) and 88 (which associates
condition names with values).

Follow the COBOL rules for specifying the organization of data when you
assign level numbers to your EQUEL data items. Like the COBOL compiler,
the preprocessor recognizes that a data item belongs to a record or group
if its level number is greater than the record or group level number.

n The data-name must begin with an alphabetic character or an underscore,
which can be followed by alphanumeric characters, hyphens, and
underscores. The word FILLER may appear in place of data-name;
however, you cannot explicitly reference a FILLER item in an EQUEL
statement. If the data-name or FILLER clause is omitted, FILLER is the
default.

3-6 Embedded QUEL Companion Guide

COBOL Variables and Data Types

n The preprocessor accepts but does not use the REDEFINES, GLOBAL,
EXTERNAL, SIGN, SYNCHRONIZED, JUSTIFIED, BLANK, and VALUE
clauses. Consequently, illegal use of these clauses goes undetected at
preprocess time but generates COBOL errors later at compile time. For
example, the preprocessor does not check that a GLOBAL clause appears
only on an 01 level item, nor that a SIGN clause appears only on a
numeric item.

n The preprocessor expects a PICTURE clause on the COMP, COMP-3,
COMP-5 (UNIX only) and DISPLAY use-types.

Do not use a PICTURE clause on INDEX use-types and on the UNIX
COMP-1 and COMP-2 use-types.

Although the preprocessor recognizes all the valid COBOL PICTURE
symbols, it only makes use of the type and size information needed for
runtime support. It does not, for instance, complain about certain illegal
combinations of editing symbols in picture strings. EQUEL accepts PIC as
an abbreviation for PICTURE. You must specify the picture string on the
same line as the keyword PICTURE.

n For a description of the valid use-types for the USAGE clause and their
interaction with picture strings, see Data Types in this chapter.

n The preprocessor accepts the OCCURS clause for all data items in the
level range 02 through 49. The preprocessor does not use the information
in the OCCURS clause, except to note that the item described is an array.
If you use an OCCURS clause on level 01, the preprocessor issues an
error but generates correct code so that you can compile and link the
program.

Reserved Words in Declarations

You cannot declare types or variables with the same name as EQUEL
keywords. You can only use them in quoted string constants. All EQUEL
keywords are reserved. In addition to EQUEL keywords, the following
EQUEL/COBOL keywords are reserved and cannot be used except in quoted
string constants.

ASCENDING DECLARE PACKED_DECIMAL
BLANK DEPENDING PIC

BY* DESCENDING PICTURE
CHARACTER DISPLAY* POINTER

COMP-1 EXTERNAL REDEFINES
COMP-2 FILLER REFERENCE

Chapter 3: Embedded QUEL for COBOL 3-7

COBOL Variables and Data Types

COMP-3

COMP-4

COMP-5

COMP-6

CoMP
COMPUTATIONAL-1
COMPUTATIONAL-2
COMPUTATIONAL-3
COMPUTATIONAL-4
COMPUTATIONAL-5
COMPUTATIONAL-6
COMPUTATIONAL

GLOBAL¥*
IN*
INDEX*
INDEXED
IS*

JUST
JUSTIFIED
KEY*
LEADING
OCCURS
OF*

ON*

SEPARATE
SIGN
SYNC
SYNCHRONIZED
TIMES

TO
TRAILING
USAGE
VALUE
WHEN
ZERO

The EQUEL preprocessor does not distinguish between uppercase and
lowercase in keywords. When it generates COBOL code, it converts any
lowercase letters in keywords to uppercase. This rule is true only for
keywords. The preprocessor does distinguish between case in program-defined
types and variable names.

Variable and type names must be legal COBOL identifiers beginning with an
alphabetic character or an underscore.

Data Types
EQUEL/COBOL supports a subset of the COBOL data types. The following table
maps the COBOL data types to their corresponding Ingres types. Note that the
COBOL data type is determined by its category, picture and usage.
COBOL Type Ingres Type
Category PICTURE USAGE
ALPHABETIC any DISPLAY character
ALPHANUMERIC any DISPLAY character
ALPHANUMERIC any DISPLAY character
EDITED
NUMERIC 9(p) where p <= COMP, DISPLAY integer
10
NUMERIC 9(p)VI(s) where COMP, DISPLAY float
p+s <=9
3-8 Embedded QUEL Companion Guide

COBOL Variables and Data Types

COBOL Type Ingres Type
Category PICTURE USAGE
NUMERIC 9(p) where p <= COMP-3 integer
10
NUMERIC INDEX integer
NUMERIC EDITED any DISPLAY integer,
float
VMS NUMERIC COMP-1 float
NUMERIC COMP-2 float @

COMP is an abbreviation for COMPUTATIONAL. You can use either form.
Note that POINTER data items are not supported. The following sections
describe the various data categories and the manner in which EQUEL interacts
with them.

The Numeric Data Category - UNIX
EQUEL/COBOL accepts the following declarations of numeric variables:

level-number data-name PIC [1IS] pic-string [USAGE [1S]]
COMP|COMP-3|COMP-5 |DISPLAY.
level-number data-name [USAGE [IS]] INDEX.

Syntax Notes:

n Use the symbol “S” on numeric picture strings to indicate the presence of
an operational sign.

n The picture string (pic-string) of a COMP, COMP-3, COMP-5 data item
can contain only the symbols “9”, *S”, and “V” in addition to the
parenthesized length.

n In order to interact with Ingres integer-valued objects, the picture string of
a COMP, COMP-3 or DISPLAY or COMP-5 item must describe a
maximum of 10 digit positions with no scaling.

n Do not use a picture string for INDEX data items. While the preprocessor
ignores such a picture string, the compiler does not allow it.

You can use any data items in the numeric category to assign and receive
Ingres numeric data in database tables and forms. However, you can only use
non-scaled COMP, COMP-3, COMP-5 and DISPLAY items of 10 digit
positions or less to specify simple numeric objects, such as table field row
numbers. Generally, try to use COMP data items with no scaling to interact
with Ingres integer-valued objects, since the internal format of COMP data is
compatible with Ingres integer data.

Chapter 3: Embedded QUEL for COBOL 3-9

COBOL Variables and Data Types

Ingres effects the necessary conversions between all humeric data types, so
the use of DISPLAY and COMP-3 scaled data items is allowed. For more
information on type conversion, see Data Type Conversion in this chapter.

The following example contains nhumeric data categories:

01 QUAD-INTVAR PIC S9(10) USAGE COMP.

01 LONG-INTVAR PIC S9(9) USAGE COMP.

01 SHORT-INTVAR PIC S9(4) USAGE COMP.

01 DISPLAY-VAR PIC S9(10) USAGE DISPLAY.

01 PACKED-VAR PIC S9(12)V9(4) USAGE COMP-3.

Numeric Data ltems with Usage COMP-5 - UNIX

Ingres supports data items declared with USAGE COMP-5. When you specify
this clause, the data item is stored in the same machine storage format as the
native host processor rather than in the byte-wise Micro Focus storage format.
Of course, sometimes the two storage formats are identical. Since the Ingres
runtime system that is linked into your COBOL runtime support module (RTS)
is written in C, it is important that Ingres interact with native data types rather
than Micro Focus data types. Consequently, many of your normal USAGE
COMP data items are transferred (using COBOL MOVE statements) into
internally declared Ingres USAGE COMP-5 data items. Data items declared
with this USAGE will cause a compiler informational message (209-1) to occur.

The Numeric Data Category - VMS

EQUEL/COBOL accepts the following declarations of numeric variables:

level-number data-name PIC [1IS] pic-string [USAGE [1S]]
COMP|COMP-3|COMP-5 |DISPLAY.
level-number data-name [USAGE [IS] COMP-1|COMP-2| INDEX.

Syntax Notes:

n Use the symbol “S” on numeric picture strings to indicate the presence of
an operational sign.

n The picture string (pic-string) of a COMP, COMP-3 data item can contain
only the symbols “9”, "S”, and “V” in addition to the parenthesized length.

n In order to interact with Ingres integer-valued objects, the picture string of
a COMP, COMP-3, or DISPLAY item must describe a maximum of 10
digit positions with no scaling.

n Do not use a picture string for INDEX, COMP-1, or COMP-2 data items.
While the preprocessor ignores such a picture string, the compiler does not
allow it.

3-10

Embedded QUEL Companion Guide

COBOL Variables and Data Types

You can use any data items in the numeric category to assign and receive
Ingres numeric data in database tables and forms. However, you can only use
non-scaled COMP, COMP-3, and DISPLAY items of 10 digit positions or less
to specify simple numeric objects, such as table field row numbers. Generally,
try to use COMP data items with no scaling to interact with Ingres integer-
valued objects, since the internal format of COMP data is compatible with
Ingres integer data.

Similarly, COMP-1 and COMP-2 data items are compatible with Ingres floating-
point data.

Ingres effects the necessary conversions between all numeric data types, so
the use of DISPLAY and COMP-3 scaled data items is allowed. For more
information on type conversion, see Data Type Conversion in this chapter.

The following example contains numeric data categories:

01 QUAD-INTVAR PIC S9(10) USAGE COMP.
01 LONG-INTVAR PIC S9(9) USAGE COMP.
01 SHORT-INTVAR PIC S9(4) USAGE COMP.
01 DISPLAY-VAR PIC S9(10) USAGE DISPLAY.

01 SING-FLOATVAR USAGE COMP-1.
01 DOUB-FLOATVAR USAGE COMP-2.
01 PACKED-VAR PIC S9(12)V9(4) USAGE COMP-3.

The Numeric Edited Data Category
The syntax for a declaration of numeric edited data is:

level-number data-name PIC [IS] pic-string [[USAGE [IS]]
DISPLAY].

Syntax Notes:

n The pic-string can be any legal COBOL picture string for numeric edited
data. The preprocessor notes only the type, scale, and size of the data
item.

n In order to interact with Ingres integer-valued objects, the picture string
must describe a maximum of 10 digit positions with no scaling.

While you can use numeric edited data items to assign data to, and receive
data from, Ingres database tables and forms, be prepared for some loss of
precision for numeric edited data items with scaling. The runtime interface
communicates using integer (COMP) or packed (COMP-3) variables for UNIX
or float (COMP-2) variables for VMS.

In moving from these variables into your program’s edited data items,
truncation can occur due to MOVE statement rules and the COBOL standard
alignment rules. For more information on type conversion, see Data Type
Conversion in this chapter.

Chapter 3: Embedded QUEL for COBOL 3-11

COBOL Variables and Data Types

The following example illustrates the numeric edited data category:

01 DAILY-SALES PIC $$%,$$9DB USAGE DISPLAY.
01 GROWTH-PERCENT PIC ZZZ.9(3) USAGE DISPLAY.

The Alphabetic, Alphanumeric, and Alphanumeric Edited Categories

Declaring Records

EQUEL/COBOL accepts data declarations in the alphabetic, alphanumeric, and
alphanumeric edited categories. The syntax for declaring data items in those
categories is:

level-number data-name PIC [IS] pic-string
[[USAGE [IS]] DISPLAY].

Syntax Note:

n The pic-string can be any legal COBOL picture string for the alphabetic,
alphanumeric and alphanumeric edited classes. The preprocessor notes
only the length of the data item and that the data item is in the
alphanumeric class.

You can use alphabetic, alphanumeric, and alphanumeric edited data items
with any Ingres object of character (c, char, text or varchar) type. You can
also use them to replace names of objects such as forms, fields, tables and
columns. However, when a value is transferred into a data item from a Ingres
object it is copied directly into the variable storage area without regard to the
COBOL special insertion rules. When data in the database is in a different
format from the alphanumeric edited picture, you must provide an extra
variable to receive the data. You can then MOVE the data into the
alphanumeric edited variable. However, if data in the database is in the same
format as the alphanumeric edited picture (which would be the case, for
example, if you had inserted data using the same variable you are retrieving
into), you can assign the data directly into the edited data item, without any
need for the extra variable. For more information on type conversion, see Data
Type Conversion in this chapter.

The following example illustrates the syntax for these categories:

01 ENAME PIC X(20).
01 EMP-CODE PIC xx/99/00.

EQUEL/COBOL accepts COBOL record and group declarations. The following
syntax declares a record:

01 data-name.
record-item.
{record-item.}

3-12 Embedded QUEL Companion Guide

COBOL Variables and Data Types

where record-item is a group item:

level-number data-name.
record-item.
{record-item.}

or an elementary item:
level-number data-name elementary-item-description.

Syntax Notes:

n The record must have a level number of 01. Thereafter, the level numbers
of record-items can be 02 through 49. The preprocessor applies the same
rules as the COBOL compiler in using the level humbers to order the
groups and elementary items in a record definition into a hierarchical
structure.

n If you do not specify the elementary-item-description for a record item,
the record item is assumed to be a group item.

n The elementary-item-description can consist of any of the attributes
described for data declarations (see Data Item Declaration Syntax in this
chapter). The preprocessor does not confirm that the different clauses are
acceptable for record items.

n The OCCURS clause, denoting a COBOL table, may appear on any record
item.

n Only record-items that EQUEL statements reference need to be declared to
EQUEL. The following example declares a COBOL record with several
“filler” record-items that are not declared to EQUEL:

01 PERSON-REC.

#i 02 NAME.
03 FIRST-NAME PIC X(10).
03 FILLER PIC X.
03 LAST-NAME PIC X(15).
#i# 02 STREET-ADDRESS.
#i# 03 ST-NUMBER PIC 99999 DISPLAY.
03 FILLER PIC X.
03 STREET PIC X(30).
#i# 02 TOWN-STATE.
#i 03 TOWN PIC X(20).
03 FILLER PIC X.
#i# 03 STATE PIC X(3).
03 FILLER PIC X.
#i# 03 ZIP PIC 99999 DISPLAY.

Chapter 3: Embedded QUEL for COBOL 3-13

COBOL Variables and Data Types

Indicator Data ltems

An indicator data item is a 2-byte integer numeric data item. There are three
possible ways to use these in an application:

n In a statement that retrieves data from Ingres, you can use an indicator
data item to determine if its associated host variable was assigned a null
value.

n In a statement that sets data to Ingres, you can use an indicator data item
to assign a null to the database column, form field, or table field column.

n In a statement that retrieves character data from Ingres, you can use the
indicator data item as a check that the associated host variable is large
enough to hold the full length of the returned character string.

An indicator declaration must have the following syntax:

level-number indicator-name PIC [IS] S9(p) [USAGE [IS]] COMP.
where p is less than or equal to 4.
The following is an example of an indicator declaration:

01 IND-VAR
PIC S9(2) USAGE COMP.

Compiling and Declaring External Compiled Forms - UNIX

You can precompile your forms in the Visual Forms Editor (VIFRED). This saves
the time otherwise required at runtime to extract the form’s definition from
the database forms catalogs. When you compile a form in VIFRED, VIFRED
creates a file in your directory describing the form in C. VIFRED prompts you
for the name of the file. Once the C file is created, you can use the following
command to compile it into a linkable object module:

cc -c filename.c

This command produces an object file containing a global symbol with the
same name as your form. Before the EQUEL/FORMS statement addform can
refer to this global object, you must use the following syntax to declare it to
EQUEL:

01 formname [IS] EXTERNAL PIC S9(9) [USAGE [IS]] COMP-5.

Some platforms do not support the above syntax. If EXTERNAL data items
cannot be referenced in your COBOL program, use an alternative procedure.
For an alternate procedure, see Including External Compiled Forms in the RTS
in this chapter.

3-14 Embedded QUEL Companion Guide

COBOL Variables and Data Types

Syntax Notes:

n The formname is the actual name of the form. VIFRED gives this name to
the global object. The formname is used to refer to the form in
EQUEL/FORMS statements after the form has been made known to the
FRS using the addform statement.

n The EXTERNAL clause causes the linker to associate the formname data
item with the external formname symbol.

The following example shows a typical form declaration and illustrates the
difference between using the form’s global object definition and the form’s
name. (Currently, this example does not work on all Micro Focus platforms.)

DATA DIVISION.
WORKING-STORAGE SECTION.

01 empform IS EXTERNAL PIC S9(9) USAGE COMP-5.
* Other data declarations.

PROCEDURE DIVISION.

* Program initialization.

* Making the form known to the FRS via the global

* form object.
#Ht ADDFORM empform.

* Displaying the form via the name of the form.
DISPLAY #empform
* The program continues.

For information on using external compiled forms with your EQUEL program,
see Including External Compiled Forms in the RTS in this chapter.

Assembling and Declaring External Compiled Forms -VMS

You can pre-compile your forms in VIFRED. This saves the time otherwise
required at runtime to extract the form’s definition from the database forms
catalogs. When you compile a form in VIFRED, VIFRED creates a file in your
directory describing the form in the VAX-11 MACRO language. VIFRED prompts
you for the name of the file with the MACRO description. After the MACRO file
is created, you can use the VMS command to assemble it into a linkable object
module:

macro filename

Chapter 3: Embedded QUEL for COBOL 3-15

COBOL Variables and Data Types

This command produces an object file containing a global symbol with the
same name as your form. Before the EQUEL/FORMS statement addform can
refer to this global object, you must declare it to EQUEL, with the following
syntax:

01 formid PIC S9(9) [USAGE [IS]] COMP VALUE [IS] EXTERNAL
formname.

Syntax Notes:

n The formid is a COBOL data item. It is used with the addform
statement to declare the form to the Forms Runtime System (FRS).

n The formname is the actual name of the form. VIFRED gives this name to
the global object. The formname is used to refer to the form in
EQUEL/FORMS statements after the form is made known to the FRS with
the addform statement.

n The EXTERNAL clause causes the VAX linker to associate the formid data
item with the external formname symbol.

The example below shows a typical form declaration and illustrates the
difference between using the form’s object definition (the formid) and the
form’s name (the formname).

DATA DIVISION.
WORKING-STORAGE SECTION.

01 EMPFORM-ID PIC S9(9) USAGE COMP VALUE IS EXTERNAL
empform.

* Other data declarations.
PROCEDURE DIVISION.

Program initialization.

* Making the form known to the FRS via the global form
* object.

#Ht ADDFORM EMPFORM-ID.

* Displaying the form via the name of the form.

#t DISPLAY empform

* The program continues.

For information on linking your EQUEL program with external compiled forms,
see Assembling and Declaring External Compiled Forms -VMS in this chapter.

3-16

Embedded QUEL Companion Guide

COBOL Variables and Data Types

Concluding Examples

VMS

The following UNIX and VMS examples demonstrate some simple EQUEL
declarations.

*Data item to hold database name.

01 DBNAME PIC X(9) VALUE IS "Personnel".

* Scaled data

01 SALARY PIC S9(8)V9(2) USAGE COMP.

01 MONEY PIC S999V99 USAGE COMP-3.

* Array of numerics

#H 01 NUMS.

02 NUM-ARR PIC S99 OCCURS 10 TIMES.

* Record of a full name and a redefinition of its parts.
01 NAME-REC.

02 FULL-NAME PIC X(20).
#i# 02 NAME-PARTS REDEFINES FULL-NAME.
03 FIRST-NAME PIC X(8).

#it 03 MIDDLE-INIT PIC X(2).

03 LAST-NAME PIC X(10).

* Record for fetching and displaying.

01 OUT-REC.

02 FILLER PIC X(15) VALUE "Value fetched: ".
#i 02 FROM-DB PIC S9(4) USAGE DISPLAY.

* Miscellaneous attributes (some declaration clauses are
* ignored by preprocessor)

01 SALES-TOT PIC S9(6)V99 SIGN IS TRAILING.
01 SYNC-REC.

02 NUM1 PIC S99 USAGE COMP SYNCHRONIZED.
#it 02 FILLER PIC X VALUE SPACES.

02 NUM2 PIC S99 USAGE COMP SYNCHRONIZED.
01 RIGHT-ALIGN PIC X(30) JUSTIFIED RIGHT.

01 NUM-OUT PIC S99V99 USAGE DISPLAY BLANK WHEN ZERO.

#Ht DECLARE. M

* Data item to hold database name.

01 DBNAME PIC X(9) VALUE IS "Personnel".
* Scaled data

01 SALARY USAGE COMP-1.

01 MONEY PIC S999V99 USAGE COMP-3.

* Array of numerics

01 NUMS.

02 NUM-ARR PIC S99 OCCURS 10 TIMES.

* Record of a full name and a redefinition of its parts.
01 NAME-REC.

02 FULL-NAME PIC X(20).
#i# 02 NAME-PARTS REDEFINES FULL-NAME.
03 FIRST-NAME PIC X(8).

Chapter 3: Embedded QUEL for COBOL 3-17

COBOL Variables and Data Types

03 MIDDLE-INIT PIC X(2).
#i 03 LAST-NAME PIC X(10).

* Record for fetching and displaying.
01 OUT-REC.

#Ht 02 FILLER PIC X(15) VALUE "Value fetched: ".
#Ht 02 FROM-DB PIC S9(4) USAGE DISPLAY.

* Miscellaneous attributes (ignored by preprocessor)

#H 01 SALES-TOT PIC S9(6)V99 SIGN IS TRAILING.
01 SYNC-REC.

#t 02 NUM1 PIC S99 USAGE COMP SYNCHRONIZED.
#Ht 02 FILLER PIC X VALUE SPACES.

#Ht 02 NUM2 USAGE COMP-2 SYNCHRONIZED.

01 RIGHT-ALIGN PIC X(30) JUSTIFIED RIGHT.

01 NUM-OUT PIC S99V99 USAGE DISPLAY BLANK WHEN ZERO.
#H DECLARE. M

The Scope of Variables

Variable Usage

You can reference all variables declared to EQUEL. The preprocessor accepts
them from the point of declaration to the end of the file. This is not true for
the COBOL compiler, which generally allows references to only those variables
declared in the current program units. Because the preprocessor does not
terminate the scope of a variable in the same way the COBOL compiler does,
do not redeclare variables of the same name to the preprocessor in a single
file even where the variables are declared in separately compiled program
units. If two programs in a single file each use variables of the same name and
type in EQUEL statements, you must declare only the first with the ## signal.

COBOL variables (that is, data items) declared to EQUEL can substitute for
most elements of EQUEL statements that are not keywords. Of course, the
variable and its data type must make sense in the context of the element. The
generic uses of host language variables in EQUEL statements are described the
QUEL Reference Guide. The following discussion covers only the usage issues
particular to COBOL language variable types.

The following retrieve statement uses the variables "NAMEVAR"” and
“"NUMVAR" to receive data, and the variable "IDNO"” as an expression in the
where clause:

RETRIEVE (NAMEVAR = employee.empname,

#i# NUMVAR = employee.empnum) WHERE
#t employee.empnum = IDNO

3-18 Embedded QUEL Companion Guide

COBOL Variables and Data Types

To distinguish the minus sign used as a subtraction operator in an EQUEL
statement from the hyphen used as a character in a data item name, you
must delimit the minus sign by blanks. For example, the statement:

APPEND TO employee (ename="Jones", eno=ENO-2)

indicates that the data item “"ENO-2" is to be appended to column “eno”. To
append a value two less than the value in the data item “"ENO” you must
instead use the following statement:

APPEND TO employee (ename="Jones", eno=ENO - 2)

Note the spaces surrounding the minus sign.

Elementary Data ltems

The following syntax refers to a simple scalar-valued data item (numeric,
alphanumeric, or alphabetic):

simplename

The following program fragment demonstrates a typical error handling
paragraph. The data items “"BUFFER” and "SECONDS" are scalar-valued
variables.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 SECONDS PIC S9(4) USAGE COMP.
#t 01 BUFFER PIC X(100).
DECLARE.

* Program code
ERROR-HANDLE .

#Ht MESSAGE BUFFER.
#Ht SLEEP SECONDS.

* More error code.

Chapter 3: Embedded QUEL for COBOL 3-19

COBOL Variables and Data Types

COBOL Tables

Record Data Items

The following syntax refers to a COBOL array or table:
tablename(subscript{,subscript})

Syntax Notes:

n You must subscript the tablename because only elementary data items are
legal EQUEL values.

n When you declare a COBOL table, the preprocessor notes from the
OCCURS clause that it is a table and not some other data item. When you
later reference the table, the preprocessor confirms that a subscript is
present but does not check the legality of the subscript inside the
parentheses. Consequently, you must ensure that the subscript is legal
and that the correct number of subscripts are used.

In the following example, the variable "SUB1” is used as a subscript and does
not need to be declared to EQUEL declaration section, because the
preprocessor ignores it.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 FORMNAMES.

02 FORM-TABLE PIC X(8) OCCURS 3 TIMES.
01 SUB1 PIC S9(4) USAGE COMP VALUE ZEROES.
DECLARE.

PROCEDURE DIVISION.
BEGIN.

* Program code

PERFORM VARYING SUB1 FROM 1 BY 1
UNTIL SUB1 > 3

FORMINIT FORM-TABLE(SUB1).
END-PERFORM.

* More program code.

You cannot use a record data item (also referred to as a structure variable) as
a single entity in an EQUEL statement. Only elementary data items can
communicate with Ingres objects and data.

EQUEL and COBOL use the same syntax to refer to an elementary record item:

elementary-item-name IN | OF{ groupname IN | OF} recordname

3-20 Embedded QUEL Companion Guide

COBOL Variables and Data Types

Syntax Notes:

n

The jitem in the above reference must be a scalar value (numeric,
alphanumeric, or alphabetic). You can use any combination of tables and
records, but the last referenced item must be a scalar value. Thus, the
following references are all legal:

* Element of a record

SAL IN EMPLOYEE
SAL OF EMPLOYEE

* Element of a record as an item of a table
NAME IN PERSON(3)

* Deeply nested element
ELEMENTARY-ITEM OF GROUP3 OF GROUP2 OF REC

The qualification of an elementary item in a record can be elliptical; that
is, you do not need to specify all the names in the hierarchy in order to
reference the item. You must not, however, use an ambiguous reference
that does not clearly qualify an item. For example, assume the following
declaration:

01 PERSON.

02 NAME PIC X(30).
#i# 02 AGE PIC S9(4) USAGE COMP.
02 ADDR PIC X(50).

If you reference the variable "NAME”, the preprocessor assumes the
elementary item “"NAME IN PERSON” is being referred to. However, if there
also was the declaration:

01 CHILD.

02 NAME PIC X(30).
#i# 02 PARENT PIC X(30).

then the reference to "NAME” is ambiguous, because it can refer to either
“NAME IN PERSON” or “"NAME IN CHILD.”

Subscripts, if present, must qualify the data item declared with the
OCCURS clause.

The following example uses the record "EMPREC"” that contains the elementary
data items “ENO”, “ENAME,” AGE,"” “JOB,” “SALARY,” and “DEPT”. Assume
“EMPREC"” was declared to EQUEL in the file “employee.dcl”.

DATA DIVISION.

WORKING-STORAGE SECTION.
* See above for description.

#i#
##

EXEC SQL INCLUDE "employee.dcl".
DECLARE.

PROCEDURE DIVISION.
* Program Code

#i
##
#i#
##

PUTFORM empform
(eno = ENO IN EMPREC, ename = ENAME IN EMPREC,
age = AGE IN EMPREC, job = JOB IN EMPREC,
sal = SAL IN EMPREC, dept = DEPT IN EMPREC)

Chapter 3: Embedded QUEL for COBOL 3-21

COBOL Variables and Data Types

Note that you can write the putform statement without the "EMPREC”
qualifications, assuming there were no ambiguous references to the item
names:

PUTFORM empform

#Ht (eno = ENO, ename = ENAME, age = AGE,
#Ht job = JOB, sal = SAL, dept = DEPT)

Using Indicator Data ltems

The syntax for referring to an indicator data item is the same as for an
elementary data item, except that an indicator variable is always associated
with another COBOL data item:

data_item:indicator_item

Syntax Note:

n The indicator data item must be a 2-byte integer numeric elementary data
item. For example:

01 IND-1 PIC S9(4) USAGE COMP.

01 IND-TABLE.

#i# 02 IND-2 PIC S9(4) USAGE COMP OCCURS 5 TIMES.
01 NUMVAR PIC S9(9) USAGE COMP.

01 EMPNAMES.

#i# 02 ENAME PIC X(30) OCCURS 5 TIMES.

01 SUB1 PIC S9(4) USAGE COMP VALUE ZEROES.

APPEND TO employee (empnum=NUMVAR:IND-1)
RETRIEVE (ENAME(SUB1): IND-2(SUB1)=
employee.empname)
#H{
program code
ADD 1 TO SUB1
#H o}

Data Type Conversion

A COBOL data item must be compatible with the Ingres value it represents.
Numeric Ingres values can be set by and retrieved into COBOL numeric and
numeric edited items, and Ingres character values can be set by and retrieved
into COBOL character data items, that is, alphabetic, alphanumeric, and
alphanumeric edited items.

Data type conversion occurs automatically for different numeric types, such as
from floating-point Ingres database column values into integer COBOL
variables, and for character strings, such as from varying-length Ingres
character fields into fixed-length COBOL character string buffers.

Ingres does not automatically convert between numeric and character types,
such as from Ingres integer fields into COBOL alphanumeric data items. You
must use the Ingres type conversion functions, the Ingres ascii function, or
the COBOL STRING statement to effect such conversion.

3-22

Embedded QUEL Companion Guide

COBOL Variables and Data Types

The following table shows the default type compatibility for each Ingres data
type. Note that some COBOL types are omitted from the table because they do
not exactly match a Ingres type. Use of those types necessitates some
runtime conversion, which may possibly result in some loss of precision.

UNIX There is no exact match for float, so use COMP-3. M

Ingres Types and Corresponding COBOL Data Types

Ingres Type

UNIX COBOL Type

VMS COBOL Type

cN PIC X(N) PIC X(N)

text(N) PIC X(N) PIC X(N)

char(N) PIC X(N). PIC X(N).

varchar(N) PIC X(N). PIC X(N).

il PIC S9(2) USAGE PIC S9(2) USAGE COMP.
COMP.

i2 PIC S9(4) USAGE PIC S9(4) USAGE COMP.
COMP.

i4 PIC S9(9) USAGE PIC S9(9) USAGE COMP.
COMP.

f4 PIC S9(10)V9(8) USAGE COMP-1.
USAGE COMP-3.

f8 PIC S9(10)V9(8) USAGE COMP-2
USAGE COMP-3.

date PIC X(25). PIC X(25).

money PIC S9(10)V9(8) USAGE COMP-2.
USAGE COMP-3.

decimal PIC S9(P-S)V(S) PICS9(P-S)V(S)

USAGE COMP-3.

USAGE COMP-3.

Note that Ingres stores decimal as signed. Thus, use a signed decimal
variable if it interacts with a Ingres decimal type. Also, Ingres allows a
maximum precision of 31 while COBOL allows only 18.

Decimal Type Conversion

A Ingres decimal value that will not fit into a COBOL variable will either be
truncated if there is loss of scale or cause a runtime error if loss of significant

digits.

Chapter 3: Embedded QUEL for COBOL 3-23

COBOL Variables and Data Types

Runtime Numeric Type Conversion

The Ingres runtime system provides automatic data type conversion between
numeric-type values in the database and the forms system and numeric
COBOL data items. It follows the standard COBOL type conversion rules. For
example, if you assign the value in a scaled COMP-3 data item for UNIX or a
COMP-1 data item for VMS to an integer-valued field in a form, the digits
after the decimal point of the data item’s value are truncated. Runtime errors
are generated for overflow on conversion.

The preprocessor generates COBOL MOVE statements to convert various
COBOL data types. These can again be converted at runtime based on the final
value being set or retrieved. Note that the standard COBOL data conversion
rules hold for all these generated MOVE statements, with a potential loss of
precision.

Floats are coerced to decimal types by Ingres at runtime. The preprocessor
uses temporary data items when moving values between numeric DISPLAY
data items and Ingres objects. Depending on the PICTURE clause of the
DISPLAY item, these temporary data items are either:

n COMP-3 or 4-byte COMP-5 for UNIX
or

n COMP-2 or 4-byte COMP for VMS

Numeric DISPLAY ltems and Temporary Data ltems

Numeric DISPLAY Temporary Item’s Data Temporary Item'’s
Item’s Picture Type - UNIX Data Type - VMS
With scaling PIC S9(9)V9(9) USAGE COMP-2

COMP-3
With > 10 numeric digits PIC S9(9)V9(9) USAGE COMP-2

COMP-3
No scaling and 10 4-byte COMP-5 4-byte COMP

numeric digits

COMP-3 items used to set or receive Ingres values also require some runtime
conversion. This is not true if you are setting or receiving decimal data. This is
true for Micro Focus COBOL when float values are received into COMP-3.

The preprocessor also generates code to use a temporary data item when
Ingres data is to interact with a COBOL unscaled COMP data item whose
picture string is exactly 10.

3-24

Embedded QUEL Companion Guide

COBOL Variables and Data Types

VMS

Because a COBOL non-scaled numeric item whose picture contains 10 or
fewer digits is regarded as compatible with the Ingres integer type,
EQUEL/COBOL assigns such data to a temporary COBOL 4-byte COMP-5
data item to allow it to interact with Ingres integer data. Note that the range
of the Ingres i4 type does not include a/l 10-digit numbers. If you have 10-
digit numeric data outside the Ingres range, you should use a COMP-3 data
item and choose the Ingres float type.

You can use only COMP data items or items that get assigned to temporary 4-
byte COMP-5 data items (as described above) to set the values of Ingres
integer objects, such as table field row nhumbers. You can, however, use any
numeric data items to set and retrieve numeric values in Ingres database
tables or forms.

The Ingres money type is represented as a COMP-3 data item. ®

A COBOL non-scaled numeric item whose picture contains 10 or fewer digits
is regarded as compatible with the Ingres integer type. However, the VAX
standard data type for an unscaled 10-digit COMP item is a quadword (8
bytes). Therefore, EQUEL/COBOL assigns such data to a temporary COBOL 4-
byte COMP data item to allow it to interact with Ingres integer data. Note
that the range of the Ingres i4 type does not include a/l 10-digit numbers. If
you have 10-digit numeric data outside the Ingres range you should use a
COMP-1 or COMP-2 data item and choose the Ingres float type.

You can use only COMP data items or items that get assigned to temporary 4-
byte COMP data items (as described above) to set the values of Ingres integer
objects, such as table field row numbers. You can, however, use any numeric
data items to set and retrieve numeric values in Ingres database tables or
forms.

The Ingres money type is represented as COMP-2, an 8-byte floating-point
value. ®

Runtime Character Conversion

Automatic conversion occurs between Ingres character string values and
COBOL character variables (alphabetic, alphanumeric, and alphanumeric
edited data items). There are four string-valued Ingres objects that can

interact with character variables:

n Ingres names, such as form and column names
n Database columns of type c or char
n Database columns of type text or varchar

n Form fields of type ¢

Chapter 3: Embedded QUEL for COBOL 3-25

COBOL Variables and Data Types

Several considerations apply when dealing with character string conversions,
both to and from Ingres.

The conversion of COBOL character variables used to represent Ingres names
is simple: trailing blanks are truncated from the variables, because the blanks
make no sense in that context. For example, the string constants “empform ”
and “empform” refer to the same form and “employees ” and “employees”
refer to the same database table.

The conversion of other Ingres objects is a bit more complicated. First, the
storage of character data in Ingres differs according to whether the medium of
storage is a database column of type c or char, a database column of type
text or varchar, or a character-type form field. Ingres pads columns of type c
and char with blanks to their declared length. Conversely, it does not add
blanks to the data in columns of type text, or varchar in form fields.

Second, the COBOL convention is to blank-pad fixed-length character strings.
For example, the character string “abc” may be stored in a COBOL PIC X(5)
data item as the string “abc” followed by two blanks.

When character data is retrieved from a database column or form field into a
COBOL character variable and the variable is longer than the value being
retrieved, the variable is padded with blanks. If the variable is shorter than the
value being retrieved, the value is truncated. You must always ensure that the
variable is at least as long as the column or field, in order to avoid truncation
of data. You should note that, when a value is transferred into a data item
from a Ingres object, it is copied directly into the variable storage area without
regard to the COBOL special insertion rules.

When inserting character data into an Ingres database column or form field
from a COBOL variable, note the following conventions:

n When data is inserted from a COBOL variable into a database column of
type c or char and the column is longer than the variable, the column is
padded with blanks. If the column is shorter than the variable, the data is
truncated to the length of the column.

n When data is inserted from a COBOL variable into a database column of
type text or varchar and the column is longer than the variable, no
padding of the column takes place. Furthermore, by default, all trailing
blanks in the data are truncated before the data is inserted into the text
or varchar column. For example, when a string “abc” stored in a COBOL
PIC X(5) data item as “abc ” (refer to above) is inserted into the text or
varchar column, the two trailing blanks are removed and only the string
“abc” is stored in the database column. To retain such trailing blanks, you
can use the Ingres notrim function. It has the following syntax:

notrim(charvar)

where charvar is a character variable. An example that demonstrates this
feature follows this section. If the text or varchar column is shorter than
the variable, the data is truncated to the length of the column.

3-26

Embedded QUEL Companion Guide

COBOL Variables and Data Types

When data is inserted from a COBOL variable into a ¢ form field and the

field is longer than the variable, no padding of the field takes place. In
addition, all trailing blanks in the data are truncated before the data is

inserted into the field. If the field is shorter than the data (even after all
trailing blanks have been truncated), the data is truncated to the length of

the field.

When comparing character data in a Ingres database column with character
data in a COBOL variable, note the following convention:

n

Caution! As previously described, the conversion of character string data

When comparing data in a ¢, character, or varchar database column with

data in a character variable, all trailing blank are ignored. Initial and

embedded blanks are significant in character, text, and varchar; they

are ignored in c.

between Ingres objects and COBOL variables often involves the trimming or
padding of trailing blanks, with resultant change to the data. If trailing blanks
have significance in your application, give careful consideration to the effect of
any data conversion.

The Ingres date data type is represented as a 25-byte character string: PIC
X(25).

The program fragment in the following examples demonstrates the notrim

function and the truncation rules explained above:

DATA DIVISION.
WORKING-STORAGE SECTION

01 ROW PIC S9(4) USAGE COMP.
01 DATA PIC X(7).

DECLARE.

PROCEDURE DIVISION.

BEGIN.

MOVE "abc " TO DATA.

*

#i#

*
*

#it

*
*

#it

*
*
*

#it
##

Set up the table for testing
CREATE texttype (#row = i2, #data = text(10))

The first APPEND adds the string "abc" (blanks
truncated)
APPEND TO texttype (#row = 1, #data = data)

The second APPEND adds the string "abc ",
with 4 trailing blanks
APPEND TO texttype (#row = 2, #data = NOTRIM(data))

The RETRIEVE will get the second row because
the NOTRIM function in the previous APPEND
caused trailing blanks to be inserted as data.

RETRIEVE (row = texttype.#row)
WHERE length(texttype.#data) = 7

DISPLAY "Row found = " ROW. M

Chapter 3: Embedded QUEL for COBOL

3-27

Dynamically Built Param Statements

VMS

DATA DIVISION.
WORKING-STORAGE SECTION

##
#it
##

01 ROW PIC S9(4) USAGE COMP.
01 DATA PIC X(7).
DECLARE.

PROCEDURE DIVISION.

BEGIN.

*

##

*
*

##

*
*

##

*
*
*

##
#it

Set up the table for testing
CREATE texttype (#row = i2, #data = text(10))

The first APPEND adds the string "abc"
(blanks truncated)
APPEND TO texttype (#row = 1, #data = data)

The second APPEND adds the string "abc ", with
4 trailing blanks
APPEND TO texttype (#row = 2, #data = NOTRIM(data))

The RETRIEVE will get the second row because
the NOTRIM function 1in the previous APPEND
caused trailing blanks to be inserted as data.

RETRIEVE (row = texttype.#row)
WHERE length(texttype.#data) = 7
DISPLAY "Row found = " ROW. M

Dynamically Built Param Statements

The param feature dynamically builds EQUEL statements. EQUEL/COBOL does
not currently support param versions of statements. Param statements are

supported in EQUEL/C and EQUEL/Fortran.

Runtime Error Processing

This section describes a user-defined EQUEL error handler.

Programming for Error Message Output

By default, all Ingres and forms system errors are returned to the EQUEL
program, and default error messages are printed on the standard output
device. As discussed in the QUEL Reference Guide and the Forms-based
Application Development Tools User Guide, you can also detect the
occurrences of errors by means of the program using the inquire_ingres and
inquire_frs statements. (Use the latter for checking errors after forms
statements. Use inquire_ingres for all other EQUEL statements.)

3-28 Embedded QUEL Companion Guide

Runtime Error Processing

Because COBOL does not allow the use of local function arguments, you
cannot use the EQUEL error handling procedure described in the QUEL
Reference Guide that entails creating an error-handling function and passing
its address to the Ingres runtime routine IIseterr().

Instead, you can simulate the operations of an error function using the
set_ingres statement. You can also use this statement to suppress the
default messages. The general syntax of the set_ingres statement is:

set_ingres(EQUELconst=val{,EQUELconst=val})

where

n EQUELconst is one of the valid EQUEL constants to which status
information can be assigned.

n val is the value that is assigned to the EQUEL status flag. This may be a
constant or a program variable containing the value to assign.

The following table presents two of the legal values and types for EQUELconst.

Set_ingres Constant Values

Constant Value Description

errormode integer Indicates to EQUEL whether to display Ingres
error messages or not, using the normal Ingres
error printing routines. Assigning 0 to errormode
silences Ingres error printing. Assigning 1 to
errormode normalizes Ingres error printing. The
default value is 1, and error messages are printed.

errordisp integer Displays the error message that corresponds to
the last error encountered by Ingres or EQUEL.
Assigning 1 to errordisp displays the message.

With these commands, you can perform most of the error-handling functions
available in other EQUEL languages. However, the errordisp constant used
with the set_ingres statement displays the last Ingres or EQUEL error on the
standard output device. If you wish to obtain the text of the last error while at
the same time suppressing the default printing of messages, you can use the
set_ingres statement in conjunction with the inquire_ingres statement, as
follows:

* Silence EQUEL errors messages
SET_INGRES (ERRORMODE = 0)

REPLACE employee (empname = "Fred")
* Check to see if an error occurred.

* Assume that "errorvar" is a numeric data item that
* has been declared to EQUEL.

Chapter 3: Embedded QUEL for COBOL 3-29

Runtime Error Processing

INQUIRE_INGRES (errorvar = ERRORNO)

IF (errorvar 0) THEN
PERFORM ERROR-PROC
END-IF

ERROR-PROC.

* Assume that "errorstr" is an alphanumeric data item
* that has been declared to EQUEL.
INQUIRE_INGRES (errorstr = ERRORTEXT)

DISPLAY "Error text is" errorstr

You should be aware that the set_ingres method of error handling makes it
difficult for the program to detect conversion errors when returning data to the
COBOL program in a retrieve loop. This happens because the check for the
error condition can only be made at the completion of the retrieve loop.

The following example demonstrates how the set_ingres command may be
used to process error message printing:

DATA DIVISION.

WORKING-STORAGE DIVISION.
01 REAL-VAR PIC S9(8)V9(6) USAGE COMP-3 VALUE 0.469.
01 CON-ERR PIC 7999.
DECLARE.

PROCEDURE DIVISION.
MAIN.
INGRES "Equeldb".

/* Create a temporary table */
CREATE temp (ccol = c2, icol = i2)
APPEND TO temp (ccol = "ab", icol = 1)

#Ho/*

Silence EQUEL error messages and do a replacement
that causes a conversion error between a c2

column and a numeric data item.

#Ho*/

SET_INGRES (ERRORMODE = 0)
REPLACE temp (icol = 2) WHERE temp.ccol = REAL-VAR

/* Check the EQUEL conversion error and display
the message. */
INQUIRE_INGRES (CON-ERR = ERRORNO)

DISPLAY "Conversion error was ", CON-ERR.

DESTROY temp
* Continue program here.

A more practical example is a handler to catch deadlock errors. For deadlock,
a reasonable handling technique in most applications is to suppress the normal
error message and simply restart the transaction.

3-30

Embedded QUEL Companion Guide

Runtime Error Processing

The following EQUEL program executes a Multi-Query Transaction and handles
Ingres errors, including restarting the transaction on deadlock.

In this example, Ingres error messages are silenced, using the set_ingres
command with the errormode option. When errors do occur, they are tested
for deadlock. Note that if deadlock does occur, the transaction is restarted
automatically without your knowledge.

IDENTIFICATION DIVISION.
PROGRAM-ID. MQTHANDLER.

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 INGERR PIC S9(4) USAGE COMP.

01 ERR-DISP PIC ZZZ799 USAGE DISPLAY.
01 ERR-TEXT PIC X(80).

01 ING-DEADLOCK PIC S9(4) USAGE COMP.
DECLARE.

PROCEDURE DIVISION.

MAIN.
* Initialize test data & Ingres table, and silence
* Ingres errors.

PERFORM INIT-DB

* Perform transaction, it includes appending
* and replacing data.
PERFORM PROCESS-DATA

* End multi-statement transaction and Ingres
* interface.
END TRANSACTION
DESTROY ITEM
#HOEXIT
STOP RUN.

INIT-DB.
* Start up Ingres and create a temporary
* test relation.
INGRES testdb
CREATE item (name=cl@, number=i4)

* Silence Ingres error messages
SET_INGRES (ERRORMODE = 0).

PROCESS-DATA.
* Begin a multi-query transaction and reset
* deadlock flag.
BEGIN TRANSACTION.

APPEND TO item (name = "Barbara", number=38)
PERFORM DEADLOCK
IF (ING-DEADLOCK = 1)
GO TO PROCESS-DATA
END-IF

REPLACE item (number=39) WHERE item.name="Barbara"
PERFORM DEADLOCK
IF (ING-DEADLOCK = 1)
GO TO PROCESS-DATA

Chapter 3: Embedded QUEL for COBOL 3-31

Precompiling, Compiling, and Linking an EQUEL Program

END-IF

DELETE item WHERE item.number=38
PERFORM DEADLOCK
IF (ING-DEADLOCK = 1)
GO TO PROCESS-DATA

END-IF.
DEADLOCK.
* If the Ingres error is deadlock, the DBMS will
* automatically abort an existing MQT. If the error is
* not deadlock, abort the transaction and the program.

INQUIRE_INGRES (INGERR = ERRORNO)
IF (INGERR > @) THEN
IF (INGERR = 4700) THEN
* Deadlock has occurred
MOVE 1 TO ING-DEADLOCK

ELSE
* DISPLAY Ingres error message & abort the
* transaction
MOVE INGERR TO ERR-DISP
DISPLAY "Aborting on Error" ERR-DISP
#t INQUIRE_INGRES (ERR-TEXT = ERRORTEXT)
DISPLAY ERR-TEXT
#it ABORT
#Ht DESTROY item
#it EXIT
STOP RUN
END-IF
ELSE

* Reset deadlock flag
MOVE © TO ING-DEADLOCK
END-IF.

Precompiling, Compiling, and Linking an EQUEL Program

This section describes the EQUEL preprocessor for COBOL and the steps
required to precompile, compile, and link an EQUEL program.

Generating an Executable Program

Once you have written your EQUEL program, it must be preprocessed to
convert the EQUEL statements into COBOL code. This section describes the
use of the EQUEL preprocessor. Additionally, it describes how to compile the
resulting COBOL code.

3-32 Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

The EQUEL Preprocessor Command

VMS

The following command line invokes the COBOL preprocessor:

eqcbl {flags} {filename}

where flags are

-f[filename]

-lo

-n. ext

-0

-0. ext

Accepts and generates output in ANSI format. Use this flag if
your source code is in ANSI format and you wish to compile the
program with the cobol command line qualifier ansi_format.
The code that the preprocessor generates is also in ANSI format.
If you omit this flag, the preprocessor accepts input and
generates output in VAX COBOL terminal format. For more
information, see Source Code Format in this chapter. @

Adds debugging information to the runtime database error
messages EQUEL generates. The source file name, line number,
and the erroneous statement are printed with the error
message.

Writes preprocessor output to the named file. If the -f flag is
specified without a filename, the output is sent to standard
output, one screen at a time. If you omit the -f flag, output is
given the basename of the input file, with the “.cob” extension.

Writes preprocessor error messages to the preprocessor’s listing
file, as well as to the terminal. The listing file includes
preprocessor error messages and your source text in a file
named filename.lis, where filename is the name of the input file.

Like -1, but the generated COBOL code also appears in the listing
file.

Specifies the extension used for filenames in ## include and
#4# include inline statements in the source code. If -n is
omitted, include filenames in the source code must be given the
extension “.qcb”.

Directs the processor not to generate output files for include
files.

This flag does not affect the translated include statement in the
main program. The preprocessor generates a default extension
for the translated include file statements unless you use the -
o.ext flag.

Specifies the extension the preprocessor gives to both the
translated include statements in the main program and the
generated output files. If this flag is not provided, the default
extension is “.qcb”.If you use this flag in combination with the -o
flag, then the preprocesssor generates the specified extension
for the translated include statements, but does not generate

Chapter 3: Embedded QUEL for COBOL 3-33

Precompiling, Compiling, and Linking an EQUEL Program

new output files for the include statements.

-S Reads input from standard input and generates COBOL code to
standard output. This is useful for testing unfamiliar statements.
If the -1 option is specified with this flag, the listing file is called
“stdin.lis.”

To terminate the interactive session, type Control D (UNIX) or
Control Z (VMS).

-w Prints warning messages.

-? Shows what command line options are available for eqcbl.

The EQUEL/COBOL preprocessor assumes that input files are named with the
extension “.qcb”. To override this default, specify the file extension of the
input file(s) on the command line. The output of the preprocessor is a file of
generated COBOL statements with the same name and the extension “.cbl”
(UNIX) or “.cob” (VMS).

If you enter only the command, without specifying any flags or a filename, a
list of flags available for the command is displayed.

The following table presents the options available with eqcbl.

Eqcbl Command Options

Command Comment

eqcbl filel Preprocesses “filel.qcb” to:

filel.cbl (UNIX)
filel.cob (VMS)

eqcbl -I file2.xc Creates listing “file2.lis” and preprocesses
“file2.xcb” to:

file2.cbl (UNIX)
file2.cob (VMS)

eqcbl -s Accepts input from standard input and write
generated code to standard output

eqcbl -ffile3.out file3 Preprocesses “file3.qcb” to “file3.out”

eqcbl Displays a list of available flags

3-34 Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

Source Code Format

Format Considerations—UNIX

The preprocessor produces MF COBOL II source code in ANSI format using
certain conventions. Indicators for comments and continued string literals are
placed in column 7. The 01 level number for data declarations known to the
preprocessor is output in Area A, starting at column 8. All other generated
statements are placed in Area B, starting at column 12. No statements
generated extend beyond column 72. COBOL statements and declarations
unknown to the preprocessor appear in the preprocessor output file unchanged
from the input file.

The preprocessor does not generate any code in columns 1 - 6 (the Sequence
Area). Do not, however, precede EQUEL statements with sequence numbers—
the ## signal must always appear in the first two columns. Also, although the
preprocessor never generates code beyond column 72 no matter which format
is used, it does accept code in columns 73 - 80. Therefore, anything placed in
that area on an EQUEL line must be valid EQUEL code.

Format Considerations—VMS

The preprocessor can produce source code written in either VAX COBOL
terminal format or ANSI format. The default is terminal format; if you require
ANSI format, you should indicate so with the -a flag on the preprocessor
command line. The COBOL code that the preprocessor generates for EQUEL
statements follows the format convention you have chosen.

When you specify the -a flag, the preprocessor generates code using certain
conventions. Indicators for comments and continued string literals are placed
in column 7. The 01 level number for data declarations known to the
preprocessor is output in Area A, starting at column 8. All other generated
statements are placed in Area B, starting at column 12. No statements
generated extend beyond column 72. Note that COBOL statements and
declarations unknown to the preprocessor appear in the preprocessor output
file unchanged from the input file.

The preprocessor does not generate any code in columns 1 - 6 (the Sequence
Area) when you specify the -a flag. Do not, however, precede EQUEL
statements with sequence numbers—the ## signal must always appear in the
first two columns. Also, although the preprocessor never generates code
beyond column 72 no matter which format you use, it does accept code in
columns 73 - 80. Therefore, anything placed in that area on an EQUEL line
must be valid EQUEL code.

Chapter 3: Embedded QUEL for COBOL 3-35

Precompiling, Compiling, and Linking an EQUEL Program

The COBOL Compiler—VMS

The preprocessor generates COBOL code. You should use the VMS cobol
(VAX-11 C) command to compile this code.

The following example preprocesses and compiles the file “testl.” Both the
EQUEL preprocessor and the COBOL compiler assume the default extensions.

$ eqcbl testl
$ cobol/list testl

Note: Check the Readme file for any operating system specific information on
compiling and linking EQUEL/COBOL programs.

Linking an EQUEL Program

EQUEL programs require procedures from several VMS shared libraries in order
to run properly. After preprocessing and compiling an EQUEL program, you
can link it. Assuming the object file for your program is called “dbentry,” use
the following link command:

$ link dbentry.obj,-
ii_system:[ingres.files]equel.opt/opt

It is recommended that you do not explicitly link in the libraries referenced in
the EQUEL.OPT file. The members of these libraries change with different
releases of Ingres. Consequently, you can be required to change your link
command files in order to link your EQUEL programs.

Assembling and Linking Precompiled Forms

The technique of declaring a pre-compiled form to the FRS is discussed in the
QUEL Reference Guide. To use such a form in your program, you must also
follow the steps described here.

In VIFRED, you can select a menu item to compile a form. When you do this,
VIFRED creates a file in your directory describing the form in the VAX-11
MACRO language. VIFRED lets you select the name for the file. After creating
the MACRO file this way, you can assemble it into linkable object code with the
VMS command

macro filename

The output of this command is a file with the extension “.0bj”. You then link
this object file with your program (in this case named “formentry”) by listing it
in the link command, as in the following example:

$ 1link formentry,-

empform.obj, -
ii_system:[ingres.files]equel.opt/opt

3-36

Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

Linking an EQUEL Program without Shared Libraries

While the use of shared libraries in linking EQUEL programs is recommended
for optimal performance and ease-of-maintenance, non-shared versions of the
libraries have been included in case you require them. Non-shared libraries
required by EQUEL are listed in the equel.noshare options file. The options file
must be included in your link command after all user modules. Libraries must
be specified in the order given in the options file.

The following example demonstrates the link command of an EQUEL program
called “dbentry” that has been preprocessed and compiled:

$ link dbentry,-
ii_system:[ingres.files]equel.noshare/opt

Incorporating Ingres into the Micro Focus RTS—UNIX

Before you can run any EQUEL/COBOL program, you must create a new Micro
Focus Runtime System (RTS), linked with the Ingres libraries. This will enable
your EQUEL/COBOL programs to access the necessary Ingres routines at
runtime.

If you are not sure your COBOL RTS is linked to the Ingres libraries, you can
perform a simple test. Preprocess, compile, and run a simple EQUEL/COBOL

program that connects and disconnects from Ingres. For example, the simple
test file “test.qcb” could include the lines:

INGRES dbname
EXIT dbname

If your COBOL RTS is not linked to the Ingres libraries, you will receive the
COBOL runtime error number 173 when you run the program:
$ eqcbl test.qcb
$ cob test.cbl
$ cobrun test
Load error: file ’IIingopen’
error code: 173, pc=1A, call=1l, seg=0
173 Called program file not found in drive/directory

Note: Check the Readme file for any operating system specific information on
compiling and linking ESQL/COBOL programs.
The COBOL Runtime System

To compile the code produced by the preprocessor, use the Micro Focus cob
command.

The following example preprocesses and compiles the file “test1.”

$ eqcbl testl.gbc
$ cob testl.cbl

Chapter 3: Embedded QUEL for COBOL 3-37

Precompiling, Compiling, and Linking an EQUEL Program

When you use the cob command to compile the generated COBOL code using
the cob command, the compiler issues the following informational message:

01 III4-1 PIC S9(9) USAGE COMP-5 SYNC VALUE ©.

209_I

*x COMP-5 1is machine specific format.

COMP-5 is an Ingres-compatible numeric data type (see COBOL Variables and
Data Types in this chapter), and a data item of that type is included in the
Ingres system COPY file. You can ignore this warning or you can suppress it
using the cob compiler directive or command line flag:

cob -C warning=1

Also, because the program will be run through the COBOL interpreter that is
linked to the Ingres runtime system, do not modify the default values of the
COBOL compiler align and ibmcomp directives. To run your EQUEL/COBOL
test program, use the ingrts command (an alias to your Ingres-linked RTS):

ingrts testl

For more information on building and linking the Interpreter (or RTS), see
Incorporating Ingres into the Micro Focus RTS—UNIX in this chapter.

Building an Ingres RTS Without the Ingres FRS

If you are using the COBOL screen utilities and do not need the Ingres forms
runtime system (FRS) incorporated into your COBOL runtime support module,
then you can link the RTS exclusively for database activity.

This section describes how to provide the COBOL RTS with all Ingres runtime
routines.

Create a directory in which you want to store the Ingres-linked RTS. For
example, if the COBOL root directory is “/usr/lib/cobol”, you may want to add
a new directory “/usr/lib/cobol/ingres” to store the Ingres/COBOL RTS. From
that new directory, issue the commands that extract the Ingres Micro Focus
support modules, link the Ingres COBOL RTS, and supply an alias to run the
new program. The shell script shown below performs all of these steps. Note
that “$I1I_SYSTEM" refers to the path-name of the Ingres root directory on
your system:

#

These 2 steps position you in the directory in which
you want to build the RTS

#

mkdir /usr/lib/cobol/ingres

cd /usr/1lib/cobol/ingres

#

Extract 2 Ingres Micro Focus COBOL support modules
#

ar xv $II_SYSTEM/ingres/lib/libingres.a iimfdata.o
ar xv $II_SYSTEM/ingres/lib/1libingres.a iimflibg.o
#

Now link the new Ingres COBOL RTS (this example ¢

3-38

Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

calls it "ingrts")

#

cob -x -e "" -0 ingrts \
iimfdata.o iimflibg.o \
$II_SYSTEM/ingres/lib/libingres.a \
-lc -1m

#

Provide an alias to run the new program (distribute to
RTS users)

#

alias ingrts /usr/1lib/cobol/ingrts

Ingres shared libraries are available on some Unix platforms. To link with
these shared libraries replace “libingres.a” in the cob command with:

-L $II_SYSTEM/ingres/1lib -linterp.l -1frame.l -1q.1 \
-lcompat.1

To verify if your release supports shared libraries check for the existence of
any of these four shared libraries in the $II_SYSTEM/ingres/lib directory. For
example:

1s -1 $II_SYSTEM/ingres/1ib/1ibqg.1.*

Since the resulting RTS is quite large, the temporary holding directory required
by COBOL may need to be reset. By default, this directory is set to “/usr/tmp”.
If you are issued “out of disk space” errors during the linking of the
Ingres/COBOL RTS, you should consult your COBOL Programmer’s Reference
Manual to see how to modify the TMPDIR environment variable.

Note that you may need to specify other system libraries in addition to the “-
Im” library on the cob command. The libraries required are the same as those
needed to link an EQUEL/C program. The library nhames may be added to the
last line of the cob command shown above. For example, if the “inet” and the
“inetd” system libraries are required, the last line of the cob command would
be:

-1c -Im -1linet -linetd

At this point you are ready to run your EQUEL/COBOL program.

Building an RTS with the Ingres FRS

If you are using the Ingres forms system in your EQUEL/COBOL programs,
then you must include the Ingres FRS in the RTS. The link script shown below
builds an RTS that includes the Ingres FRS:

#

Optional: Assume you are in an appropriate directory
as described in the previous section.

#

cd /usr/lib/cobol/ingres

#

Extract 3 Ingres Micro Focus support modules

#

ar xv $II_SYSTEM/ingres/lib/1libingres.a iimfdata.o

ar xv $II_SYSTEM/ingres/lib/libingres.a iimflibg.o

Chapter 3: Embedded QUEL for COBOL 3-39

Precompiling, Compiling, and Linking an EQUEL Program

ar xv $II_SYSTEM/ingres/lib/libingres.a iimffrs.o
#
Now 1link the new Ingres COBOL RTS (example calls
it "ingfrs")
#
cob -x -e "" -0 ingfrs \
iimfdata.o iimflibg.o iimffrs.o \
$II_SYSTEM/ingres/lib/1libingres.a \
-lc -1m
Provide an alias to run the new program (distribute
to RTS users)
#
alias ingfrs /usr/lib/cobol/ingfrs

Here, too, you may be required to specify other system libraries on the cob
command line. For information about how to specify other system libraries on
the cob command line, see Building an Ingres RTS Without the Ingres FRS in
this chapter.

Including External Compiled Forms in the RTS

Procedure 1

The description of how to build an Ingres RTS that can access the Ingres forms
system does not include a method with which to include compiled forms into
the RTS. (Compiled forms are pre-compiled form objects that do not need to
be retrieved from the database. Refer to your language reference manual for a
description of precompiled forms.) Since the compiled forms are external
objects (in object code), you must link them into your RTS.

Because some UNIX platforms allow you to use the Micro Focus EXTERNAL
clause to reference objects linked into your RTS and some do not, two
procedures are given here. The first procedure describes how to include
external compiled forms in the RTS on a platform that does permit the use of
the EXTERNAL clause. The second procedure describes how to perform this
task on a platform that does not allow EXTERNAL data items to reference
objects linked to the RTS.

Use this procedure if your platform accepts the EXTERNAL clause to reference
objects linked into your RTS.

1. Build and compile the form(s) in VIFRED.

When you compile a form in VIFRED, you are prompted for the name of
the file, and VIFRED then creates the file in your directory describing the
form in C.

2. Compile the C file into object code:
$ cc -c formfile.c
3. Link the compiled forms into your RTS by modifying the cob command line

to include the object code files for the forms. List the files before listing
the system libraries that will be linked.

3-40 Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

Procedure 2

For example:

cob -x -e -0 ingfrs \
iimfdata.o iimflibg.o iimffrs.o \
forml.o form2.o \

Use this procedure if your platform does not allow you to use the Micro Focus
EXTERNAL clause to reference objects linked into your RTS. The extra step
forces the external object to be loaded into your RTS and allows access to it
through your EQUEL/COBOL program.

1.

Build and compile the form(s) in VIFRED.

When you compile a form in VIFRED, you are prompted for the name of
the file, and VIFRED then creates the file in your directory describing the
form in C.

Compile the C file into object code:

$ cc -c formfile.c

Write a small EQUEL/C procedure that just references and initializes the
form(s) to the Ingres FRS using the addform statement.

Make sure that the name of the procedure follows conventions allowed for
externally called names. For example, external names may be restricted to
14 characters on some versions of COBOL.

For example:

add_forml()
{

extern int *forml;
ADDFORM forml

}
add_form2()
{

extern int *form2;
ADDFORM form2

}

Build the object code for the initialization of the compiled form(s):

$ eqc filename.qc
$ cc -c filename.c

where filename.qc is the name of the file containing the procedure written
in Step 3.

Link the compiled form(s) and the initialization references to the form(s)
into your RTS by modifying the cob command line to include the object

files for the forms and the procedure. Specify the object files before the

list of system libraries.

Chapter 3: Embedded QUEL for COBOL 3-41

Precompiling, Compiling, and Linking an EQUEL Program

For example:

cob -x -e "" -o ingfrs \
iimfdata.o iimflibg.o iimffrs.o \
filename.o forml.o form2.o \

where filename.o is the name of object code file resulting from Step 4,
containing the initialization references to the forms “form1” and “form2.”

6. Replace the addform statement in your source program with a COBOL
CALL statement to the appropriate C initialization procedure. For example,
what would have been:

ADDFORM forml

becomes:
CALL "add_forml".

To illustrate this procedure, assume you have compiled two forms in VIFRED,
“empform” and “deptform,” and need to be able to access them from your
EQUEL/COBOL program without incurring the overhead (or database locks) of
the forminit statement. After compiling them into C from VIFRED, turn them
into object code:

$ cc -c empform.c deptform.c

Now create an EQUEL/C file, “addforms.qc”, that includes a procedure (or two)
that initializes each one using the addform statement:

add_empform()
{

extern int *empform;
ADDFORM empform

}

add_deptform()
{

extern int *deptform;
ADDFORM deptform

}

Now build the object code for the initialization of these 2 compiled forms:

$ eqc addforms.qc
$ cc -c addforms.c

Then link the compiled forms and the initialization references to those forms
into your RTS:
cob -x -e "" -0 ingfrs \
iimfdata.o iimflibg.o iimffrs.o \
addforms.o empform.o deptform.o \

Finally, be sure to replace the appropriate addform statements in your source
code with COBOL CALL statements.

3-42

Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

Note, of course, that you may store all your compiled forms in an archive
library that will not require the constant modification of a link script. The
sample applications (see Sample Applications in this chapter) were built using
such a method that included a single file, “"addforms.qc”, and an archive
library, “compforms.a”, that included all the compiled forms referenced in the
sample applications.

If, at a later time you are able to reference EXTERNAL data items directly
from your COBOL source code, then the intermediate step of creating an
EQUEL/C addform procedure can be skipped, and your compiled form is
declared as an EXTERNAL PIC S9(9) COMP-5 data-item in your
EQUEL/COBOL source code:

01 empform IS EXTERNAL PIC S9(9) USAGE COMP-5.

4 ADDFORM empform

The external object code for each form must still be linked into the RTS but
there is no need to write an EQUEL/C intermediate file, or call an external C
procedure to initialize the compiled form for you.

Include File Processing

The EQUEL include statement provides a means to include external files in
your program’s source code. Its syntax is:

include filename

Filename is a double quoted string constant specifying a file name or an
environment variable that points to the file name. You must use the default
extension “.qcb” on names of include files unless you override this
requirement by specifying a different extension with the -n flag of the eqcbl
command.

This statement is normally used to include variable declarations although it is
not restricted to such use. For more details on the include statement, see the
QUEL Reference Guide.

The included file is preprocessed and an output file with the same name but
with the default output extension “.cbl” for UNIX or “.lib” for VMS is
generated. You can override this default output extension with the -o.ext flag
on the command line. The reference in the original source file to the included
file is translated in the output file to the specified include output file. If you use
the -o flag, with no extension, no output file is generated for the include file.
In VMS this is useful for program libraries that are using VMS MMS
dependencies.

Chapter 3: Embedded QUEL for COBOL 3-43

Precompiling, Compiling, and Linking an EQUEL Program

VMS

For example, assume that no overriding output extension was explicitly given
on the command line. The EQUEL statement:

INCLUDE "employee.qcb"

is preprocessed to the COBOL statement:
COPY "employee.cbl"

and the file "employee.qcb” is translated into the COBOL file "employee.cbl.”.

As another example, assume that a source file called “inputfile” contains the
following include statement:

INCLUDE "mydecls"

The name “mydecls” is defined as a system environment variable pointing to
the file “/src/headers/myvars.qcb” by means of the following command at the
shell level:

$ setenv mydecls /src/headers/myvars.qcb

Assume now that “inputfile” is preprocessed with the command:
$ eqcbl -o.hdr inputfile

The command line specifies “.hdr” as the output file extension for include files.
As the file is preprocessed, the include statement shown earlier is translated
into the COBOL statement:

COPY "/src/headers/myvars.hdr"

and the COBOL file “/src/header/myvars.hdr” is generated as output for the
original include file, “/src/header/myvars.gbc.”

You can also specify include files with a relative path. For example, if you
preprocess the file “/src/mysource/myfile.qcb,” the EQUEL statement:

INCLUDE "../headers/myvars.qcb"

is preprocessed to the COBOL statement:
COPY "../header/myvars.cbl"

and the COBOL file “/src/headers/myvars.cbl” is generated as output for the
original include file, “/src/headers/myvars.qcb.” ™

If you use both the -o0.ext flag and the -0 flags, then the preprocessor
generates the specified extension for the translated include statements in
the program, but does not generate new output files for the statements.

For example, assume that no overriding output extension was explicitly given
on the command line. The EQUEL statement:

INCLUDE "employee.qcb"

3-44 Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

is preprocessed to the COBOL statement:
COPY "employee.lib"

and the employee.qcb file is translated into the COBOL file “employee.lib.”

As another example, assume that a source file called “inputfile” contains the
following include statement:

INCLUDE "mydecls"

The name “"mydecls” is defined as a system logical name pointing to the file
“dral:[headers]myvars.qcb” by means of the following command at the DCL
level:

$ define mydecls dral:[headers]myvars.qcb

Assume now that “inputfile” is preprocessed with the command:

$ eqcbl -o.hdr inputfile

The command line specifies “.hdr” as the output file extension for include files.
As the file is preprocessed, the include statement shown earlier is translated
into the COBOL statement:

COPY "dral:[headers]myvars.hdr"

and the COBOL file “dral:[headers]myvars.hdr” is generated as output for the
original include file, “dral:[headers]myvars.qcb.”

You can also specify include files with a relative path. For example, if you
preprocess the file “dral:[mysource]myfile.qcb,” the EQUEL statement:

INCLUDE "[-.headers]myvars.qcbh"
is preprocessed to the COBOL statement:

COPY "[-.headers]myvars.lib" M

Including Source Code with Labels

Some EQUEL statements generate labels in the output code. If you include a
file containing such statements, you must be careful to include the file only
once in a given COBOL scope. Otherwise, you may find that the compiler later
issues COBOL warning or error messages to the effect that the generated
labels are defined more than once in that scope.

The statements that generate labels are the retrieve statement and all the
EQUEL/FORMS block-type statements, such as display and unloadtable.

Chapter 3: Embedded QUEL for COBOL 3-45

Precompiling, Compiling, and Linking an EQUEL Program

Coding Requirements for Writing EQUEL Programs

This section describes the coding requirements for writing EQUEL programs.

Comments Embedded in COBOL Output

Each EQUEL statement generates one comment and a few lines of COBOL
code. You may find that the preprocessor translates 50 lines of EQUEL into 200
lines of COBOL. This may result in confusion about line numbers when you
debug the original source code. To facilitate debugging, a comment
corresponding to the original EQUEL source precedes each group of COBOL
statements associated with a particular statement. (A comment precedes only
executable EQUEL statements.) Each comment is one line long and describes
the file name, line number, and type of statement in the original source file.

Embedding Statements In IF and PERFORM Blocks

The preprocessor can produce several COBOL statements for a single EQUEL
statement. In most circumstances, you can simply nest the statements in the
scope of a COBOL IF or PERFORM statement.

There are some EQUEL statements for which the preprocessor generates
COBOL paragraphs and paragraph names. These statements are:

retrieve
display
formdata
unloadtable
submenu

These statements cannot be nested in the scope of a COBOL IF or PERFORM
statement because of the paragraph names the preprocessor generates for
them.

Another consequence of these generated paragraphs is that they can
terminate the scope of a local COBOL paragraph, thus modifying the intended
flow of control. For example, a paragraph generated by the preprocessor in a
source paragraph can cause the program to return prematurely to the
statement following the PERFORM statement that called the source
paragraph. To ensure that control does not return prematurely, you must use
the THROUGH clause in the PERFORM statement.

The following example demonstrates the use of PERFORM-THROUGH and an
EXIT paragraph to force correct control flow:

3-46

Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

DATA DIVISION.
WORKING-STORAGE SECTION.

01 ENAME PIC X(20).
DECLARE

PROCEDURE DIVISION.
BEGIN.

* Initialization of program
* Note the THROUGH clause to ensure correct control
* flow.
PERFORM UNLOAD-TAB THROUGH END-UNLOAD.
* User code
UNLOAD-TAB.
* This paragraph includes a paragraph generated by the

* preprocessor

UNLOADTABLE Empform Employee (ENAME = Lastname)

#Ht {
APPEND TO person (name = ENAME)
)}

* This paragraph-name and EXIT statement causes control
* to pass back to the caller’s scope
END-UNLOAD.
EXIT.

VMS

* This paragraph-name causes control to pass back to
* the callers scope

END-UNLOAD.

USER-PARAGRAPH.

*Program continues M

COBOL Periods and EQUEL Statements

You can optionally follow an EQUEL statement with a COBOL separator period
although the preprocessor never requires that a period follow an EQUEL
statement. If the period is present at the end of an EQUEL statement,
however, the last COBOL statement that the preprocessor generates for that
statement also ends with a period. Therefore, you should follow the same
guidelines for using the separator period in EQUEL statements as in COBOL
statements. For instance, do not add a period at the end of an EQUEL
statement occurring in the middle of the scope of a COBOL IF or PERFORM
statement. If you include the separator period in such a case, you prematurely
end the scope of the COBOL statement. Similarly, when an EQUEL statement
is the /ast statement in the scope of a COBOL IF, you must follow it with a
period (or, alternatively, an END-IF) to terminate the scope of the IF.

Chapter 3: Embedded QUEL for COBOL 3-47

Precompiling, Compiling, and Linking an EQUEL Program

For example:

IF ERR-NO > © THEN
* Do not use a separating period in the middle of an IF
* statement.
#Ht MESSAGE "You cannot update the database"
* Be sure to use a separating period at the end of
* an IF statement.
#Ht SLEEP 2.

In the example above, the absence of the period after the first message
statement causes the preprocessor to generate code without the separator
period, thus preserving the scope of the IF statement. The period following
the sleep statement causes the preprocessor to generate code with a final
separator period, terminating the scope of the IF.

An EQUEL Statement that Does Not Generate Code

The declare cursor statement does not generate any COBOL code. Do not
code this statement as the only statement in any COBOL construct that does
not allow null statements. For example, coding a declare cursor statement as
the only statement in a COBOL IF statement causes compiler errors:

IF USING-DATABASE=1 THEN
#H DECLARE CURSOR empcsr FOR
RETRIEVE (employee.ename)

ELSE
DISPLAY "You have not accessed the database".

The code generated by the preprocessor would be:

IF USING-DATABASE=1 THEN
ELSE
DISPLAY "You have not accessed the database".

which is an illegal use of the COBOL ELSE clause.

Efficient Code Generation

This section describes the COBOL code generated by the EQUEL/COBOL
preprocessor.

COBOL Strings and EQUEL Strings

COBOL stores string and character data in a machine-dependent data item.
The EQUEL runtime routines are written in another language (C) that verifies
lengths of strings by the location of a null (LOW-VALUE) byte. Consequently,
COBOL strings must be converted to EQUEL runtime strings before the call to
the runtime routine is made.

3-48 Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

In some languages, EQUEL generates a nested function call that accepts as its
argument the character data item and returns the address of the EQUEL null-
terminated string. COBOL does not have nested function calls, and simulating
this would require two expensive COBOL statements. EQUEL/COBOL knows the
context of the statement and, in most cases, will MOVE the COBOL string
constant or data item in a known area that has already been null-terminated.
This extra statement is cheaper than the nested function call of other
languages, as it generates a single machine instruction. Even though your
COBOL-generated code may look wordier and longer than other EQUEL-
generated code, it is actually as efficient. ™

VMS VAX/VMS COBOL stores string and character data in a machine-dependent
descriptor. The EQUEL runtime routines are written in another language (C)
that verifies lengths of strings by the location of a null (LOW-VALUE) byte.
Consequently, COBOL strings must be converted to EQUEL runtime strings
before the call to the runtime routine is made.

In some languages, EQUEL generates a nested function call that accepts as its
argument the VAX string descriptor and returns the address of the EQUEL null-
terminated string. COBOL does not have nested function calls, and simulating
this would require two expensive COBOL statements. EQUEL/COBOL knows the
context of the statement, and in most cases will MOVE the COBOL string
constant or data item in a known area that is already null terminated. This
extra statement is cheaper than the nested function call of other languages, as
it generates a single machine instruction. Even though your COBOL-generated
code can look wordier and longer than other EQUEL-generated code, it is
actually as efficient. ™

COBOL IF-THEN-ELSE Blocks

There are some statements that normally generate an IF-THEN-ELSE
construct in other languages that instead generate IF-GOTO constructs in
COBOL. The reason for this is that there is no way to ensure that no EQUEL-
generated (or programmer-generated) period will appear in an IF block.
Consequently, in order to allow any statement in this scope, EQUEL generates
an IF-GOTO construct. The code generated by EQUEL for this construct is
actually very similar to the code generated by any compiler for an IF-THEN-
ELSE construct and as efficient.

Chapter 3: Embedded QUEL for COBOL 3-49

Preprocessor Error Messages

COBOL Function Calls

UNIX

VMS

COBOL supports function calls with the USING clause for UNIX or the
GIVING clause for VMS. This allows a function to return a value into a
declared data item. EQUEL generates many of these statements by assigning
the return values into internally declared data items, and then checking the
result of the function by checking the value of the data item. This is less
efficient than other languages that check the return value of a function using
its implicit value (stored in a register). The generated COBOL has the
overhead of assigning the value to a data item. An EQUEL/COBOL generated
function call that tests the result can look like:

ICALL "IIFUNC" USING IIRESULT
IF (IIRESULT = @) THEN ... M

CALL "IIFUNC" GIVING IIRESULT
IF (IIRESULT = @) THEN ... ™

EQUEL/COBOL Preprocessor Errors

To correct most errors, you may wish to run the EQUEL preprocessor with the
listing (=I) option on. The listing will be sufficient for locating the source and
reason for the error.

For preprocessor error messages specific to the COBOL language, see the next
section.

Preprocessor Error Messages

E_E40001

The following is a list of errors messages specific to the COBOL language.
Ambiguous qualification of COBOL data item “%0c”

Explanation: This data item is not sufficiently qualified in order to distinguish
it from another data item. It is likely that the data item is an elementary
member of a COBOL record or group.

To avoid reference ambiguity qualify the data item further by using IN or OF.
When using COBOL table subscripts (with parenthesis), the subscripted item
must be unambiguous when the left parenthesis is processed. The
preprocessor generates code using the most recently declared instance of the
ambiguous data item.

3-50 Embedded QUEL Companion Guide

Preprocessor Error Messages

E_E40002

E_E40003

E_E40004

E_E40005

E_E40006

Unsupported COBOL numeric picture string “%0c”".

Explanation: An invalid picture character was encountered while processing a
numeric picture string. A numeric picture string may include the following:

The preprocessor treats the data item as though it was declared:
PICTURE S9(8) USAGE COMP.

COMP picture “%0c” requires too many storage bytes. Try USAGE COMP-3.

Explanation: The COMPUTATIONAL data type must fit into a maximum of 4
bytes. Numeric integers of more than 9 digits require VAX quad-word integer
storage (8 bytes), which is incompatible with the Ingres internal runtime data
types.

Try reducing the picture string or declaring the data item as COMP-3 or COMP-
2 which is compatible with Ingres floating-point data. An exception is made to
allow non-scaled 10-digit numeric picture strings (PICTURE S(10) USAGE
COMP), which is representable by a 4-byte integer.

No ## declare before first EQUEL statement “%0c".

Explanation: You must issue the ## declare statement before the first
embedded statement. The preprocessor generates code that references data
items declared in a file copied by the ## declare statement. Without issuing
the ## declare statement, the COBOL compiler will not accept those
references.

“%0c” is not an elementary data item. Records cannot be used.

Explanation: In this usage, COBOL records or tables cannot be used. In order
to use this data item you must refer to an elementary data item that is a
member of the record, or an element of the COBOL table.

COBOL declaration level %0c is out of bounds.

Explanation: Only levels 01 through 49 and 77 are accepted for COBOL data
item declarations. Level humbers outside of this range will be treated as
though they are level 01.

Syntax errors caused in leading clauses of a COBOL declaration may cascade
and generate this error message for the occurs and value clauses of the
erroneous declaration.

Chapter 3: Embedded QUEL for COBOL 3-51

Preprocessor Error Messages

E_E40007

E_E40008

E_E40009

E_E4000A

E_E4000B

Data item requires a picture string in this usage.

Explanation: The specified usage clause requires a COBOL picture string in
order to determine preprocessor data item type information. Not all usage
clauses require a picture string. Data items with usage comp, comp-3 and
display do require a picture string. If no picture string is specified the
preprocessor will treat the data item as though it was declared:

PICTURE X(10) USAGE DISPLAY.
Data item on level %0c has no parent of lesser level.

Explanation: A data item declared on a level that is greater than the level of
the most recently declared data item is considered to be a subordinate
member of that group. The previous level, therefore, must be the level
number of a COBOL record or group declaration. This is typical with a COBOL
record containing a few elementary data items.

A data item declared on a level that is less than the level of the most recently
declared data item is considered to be on the same level as the “parent” of
that data item. Level numbers violating this rule will be treated as though they
are level 01.

Keyword picture and the describing string must be on the same line.

Explanation: When the preprocessor scans the COBOL picture string, it must
find the picture keyword and the corresponding string description on the
same line in the source file. The picture word and the string can be separated
by the is keyword. The preprocessor will treat the declaration as though there
was no picture clause.

“%0c” is not a legally declared data item.

Explanation: The specified data item was not declared but has been used in
place of a COBOL variable in an embedded statement.

Unsupported picture “%0c” is numeric-display. usage comp assumed.

Explanation: Some versions of the COBOL preprocessor do not support
numeric display data items. For example:

PICTURE S9(8) USAGE DISPLAY.

If this is the case, you should use COMPUTATIONAL data items and assign to
and from display items before using the data item in embedded statements.

3-52 Embedded QUEL Companion Guide

Preprocessor Error Messages

E_E4000C

E_E4000D

E_E4000E

E_E4000F

E_E40011

E_E40012

E_E40013

E_E40014

E_E40015

COBOL occurs clause is not allowed on level 01.

Explanation: The occurs clause must be used with a data item that is
declared on a level greater than 01. This error is only a warning, and treats
the data item correctly (as though declared as a COBOL table). A warning may
also be generated by the COBOL compiler.

EQUEL/COBOL does not support param target lists.

Explanation: This feature is not documented and should not be used with
EQUEL COBOL.

Picture “"%0c” is too long. The maximum length is %1c.
Explanation: COBOL picture strings must not exceed the maximum length

specified in the error message. Try to collapse consecutive occurrences of the
same picture symbol into a “repeat count.” For example:

PICTURE 599999999 becomes PICTURE S9(8)
Picture “"%0c” contains non-integer repeat count, %1c.
Explanation: A COBOL “repeat count” in a picture string was either too long

or was not an integer. The preprocessor treats the data item as though
declared with a picture with a repeat count of 1. For example:

S9(1) or X(1).

Usage type "%0c” is not supported.

Explanation: This usage type is currently not supported.
Picture “"%0c” has two sign symbols (S).

Explanation: The specified nhumeric picture string has two sign symbols. The
preprocessor will treat the data item as though it was declared:

PICTURE S9(8) USAGE COMP.
Picture “%0c"” has two decimal point symbols (V).

Explanation: The specified numeric PICTURE string has two decimal point
symbols. The preprocessor will treat the data item as though it was declared:

PICTURE S9(8) USAGE COMP.

Missing quotation mark on continued string literal.

Explanation: The first non-blank character of a continued string literal must
be a quotation mark in the indicator area. A missing quotation mark in the

continued string literal or the wrong quotation mark will generate this error.

COBOL data item “%0c” is a table and must be subscripted.

Chapter 3: Embedded QUEL for COBOL 3-53

Sample Applications

E_E40016

E_E40017

Explanation: The data item is a COBOL table and must be subscripted in
order to yield an elementary data item to retrieve or set Ingres data.

COBOL data item “%0c” is not a table and must not be subscripted.

Explanation: You have included subscripts when referring to a data item that
was not declared as a COBOL table.

Duplicate COBOL data declaration “%0c” clause found.

Explanation: You have included either a duplicate USAGE, PICTURE, or
OCCURS data declaration clause when declaring a data item.

Sample Applications

This section contains sample applications.

UNIX and VMS—The Department-Employee Master/Detail Application

This section contains a sample master/detail application that uses two
database tables joined on a specific column. This typical example of a
department and its employees demonstrates how to process two tables as a
master and a detail.

The program scans through all the departments in a database table, in order
to reduce expenses. Department information is stored in program variables.
Based on certain criteria, the program updates department and employee
records. The conditions for updating the data are the following:

Departments:

n If a department has made less than $50,000 in sales, the department is
dissolved.

Employees:

n If an employee was hired since the start of 1985, the employee is
terminated.

n If the employee’s yearly salary is more than the minimum company wage
of $14,000 and the employee is not nearing retirement (over 58 years of
age), the employee takes a 5% pay cut.

n If the employee’s department is dissolved and the employee is not
terminated, the employee is moved into a state of limbo (the Toberesolved
database table, which is described later) to be resolved by a supervisor.

3-54 Embedded QUEL Companion Guide

Sample Applications

This program uses two cursors in a master/detail fashion. The first cursor is for
the Department table, and the second is for the Employee table. The create
statements used to create the tables are shown below. The cursors retrieve all
the information in their respective tables, some of which is updated. The
cursor for the Employee table also retrieves an integer date interval whose
value is positive if the employee was hired after January 1, 1985.

Each row that is scanned, both from the Department table and the Employee
table, is recorded into the system output file. This file serves as a log of the
session and as a simplified report of the updates.

Each section of code is commented for the purpose of the application and to
clarify some of the uses of the EQUEL statements. The program illustrates
table creation, multi-query transactions, all cursor statements and direct
updates. For purposes of brevity, error handling on data manipulation
statements is simply to close down the application.

For readability, all EQUEL reserved words are in uppercase.

The two create statements describing the Employee and Department
database tables are shown at the start of the program.

#i CREATE dept

#it (name = cl2, /* Department name */

#Ht totsales = money, /* Total sales */

#t employees = i2) /* Number of employees */
#it CREATE employee

#Ht (name = ¢20, /* Employee name */

#t age =11, /* Employee age */

#Ht idno = i4, /* Unique employee id */
#it hired = date, /* Date of hire */

#H dept = cleo, /* Employee department */
#t salary = money) /* Yearly salary */

IDENTIFICATION DIVISION.
PROGRAM-ID. EXPENSE-PROCESS.

ENVIRONMENT DIVISION.
DATA DIVISION.

WORKING-STORAGE SECTION.

#t DECLARE

*Cursor loop control
#Ht 01 NO-ROWS PIC S9(2) USAGE COMP.

* Minimum sales of department
#it 01 MIN-DEPT-SALES PIC S9(5)V9(2) USAGE COMP
#Ht VALUE IS 50000.00.

* Minimum employee salary
#it 01 MIN-EMP-SALARY PIC S9(5)v9(2) USAGE COMP
#it VALUE IS 14000.00.

* Age above which no salary-reduction will be made

Chapter 3: Embedded QUEL for COBOL 3-55

Sample Applications

#t 01 NEARLY-RETIRED PIC S9(2) USAGE COMP
#it VALUE IS 58.
* Salary-reduction percentage
#t 01 SALARY-REDUC PIC S9(1)V9(2) USAGE COMP
#it VALUE IS 0.95.
* Record corresponding to the "dept" table.
#t 01 DEPT.
#it 02 DNAME PIC X(12).
#Ht 02 TOTSALES PIC S9(7)V9(2) USAGE COMP.
#it 02 EMPLOYEES PIC S9(4) USAGE COMP.
* Record corresponding to the "employee" table
#Ht 01 EMP.
#t 02 ENAME PIC X(20).
#t 02 AGE PIC S9(2) USAGE COMP.
#t 02 IDNO PIC S9(8) USAGE COMP.
#t 02 HIRED PIC X(26).
#it 02 SALARY PIC S9(6)V9(2) USAGE COMP.
#t 02 HIRED-SINCE-85 PIC S9(4) USAGE COMP.
* Count of employees terminated.
#t 01 EMPS-TERM PIC S99 USAGE COMP.
* Indicates whether the employee’s dept was deleted
#Ht 01 DELETED-DEPT PIC S9 USAGE COMP.
* Error message buffer used by CHECK-ERRORS.
#it 01 ERRBUF PIC X(200).
* Error number
#Ht 01 ERRNUM PIC S9(8) USAGE COMP.
* Formatting values for output
#t 01 DEPT-OUT.
#H 02 FILLER PIC X(12) VALUE "Department: ".
#it 02 DNAME-OUT PIC X(12).
#Ht 02 FILLER PIC X(13) VALUE "Total Sales: ".
#it 02 TOTSALES-OUT PIC $,$%%,$%$9.9(2) USAGE DISPLAY.
#Ht 02 DEPT-FORMAT PIC X(19).
#H 01 EMP-OUT.
#it 02 FILLER PIC XX VALUE SPACES.
#Ht 02 TITLE PIC X(11).
#t 02 IDNO-OUT PIC Z9(6) USAGE DISPLAY.
#Ht 02 FILLER PIC X VALUE SPACE.
#t 02 ENAME-OUT PIC X(20).
#Ht 02 AGE-OUT PIC 7Z9(2) USAGE DISPLAY.
#t 02 FILLER PIC XX VALUE SPACES.
#Ht 02 SALARY-OUT PIC $$%,%$39.9(2) USAGE DISPLAY.
#t 02 FILLER PIC XX VALUE SPACES.
#Ht 02 DESCRIPTION PIC X(24).

* %

* Procedure Division
*
* Initialize the database, process each department and

* terminate the session.
* %

PROCEDURE DIVISION.
EXAMPLE SECTION.
XBEGIN.

DISPLAY "Entering application to process expenses".

3-56 Embedded QUEL Companion Guide

Sample Applications

PERFORM INIT-DB THRU END-INITDB.

PERFORM PROCESS-DEPTS THRU END-PROCDEPTS.
PERFORM END-DB THRU END-ENDDB.

DISPLAY "Successful completion of application".

STOP RUN.
X%
* Paragraph: INIT-DB
*
* Start up the database, and abort if there is an error
* Before processing employees, create the table for
* employees who losetheir department,
* "toberesolved". Initiate the multi-statement
* transaction.
* %
INIT-DB.
INGRES "personnel"
* Silence Ingres error printing
#it SET_EQUEL (ERRORMODE = 0)
DISPLAY "Creating ""To_Be_Resolved"" table".
#it CREATE toberesolved
#H (#name = char (20),
#Ht #age = smallint,
#H #idno = integer,
#it #hired = date,
#H #dept = char(10),
#salary = money)
#t INQUIRE_EQUEL (ERRNUM = ERRORNO)
IF ERRNUM NOT = @ THEN
#t INQUIRE_INGRES (ERRBUF = ERRORTEXT)
DISPLAY "Fatal error on creation:"
DISPLAY ERRBUF
#Ht EXIT
STOP RUN
END-IF.
#H BEGIN TRANSACTION
END-INITDB.
EXIT.

* %

* Paragraph: END-DB
*

* Closes off the multi-statement transaction and access to
* the database after successful completion of the application
* X%

END-DB.
#it END TRANSACTION
#it EXIT

END-ENDDB.

EXIT.

* %

* Paragraph: PROCESS-DEPTS
*

* Scan through all the departments, processing each one.

Chapter 3: Embedded QUEL for COBOL 3-57

Sample Applications

##

##

##

##

##

#it

##

##
#it

If the department has made less than $50,000 in sales, then
the department is dissolved. For each department process
all the employees (they may even be moved to another
table).

If an employee was terminated, then update the department’s
employee counter.

PROCESS-DEPTS.

RANGE OF d IS #dept

DECLARE CURSOR deptcsr FOR
RETRIEVE (d.#name, d.#totsales, d.#employees)
FOR DIRECT UPDATE OF (#name, #employees)

OPEN CURSOR deptcsr
PERFORM CHECK-ERRORS.

MOVE © TO NO-ROWS.
PERFORM UNTIL NO-ROWS = 1

RETRIEVE CURSOR deptcsr (DNAME, TOTSALES, EMPLOYEES)
INQUIRE_EQUEL (NO-ROWS = ENDQUERY)
IF NO-ROWS = © THEN
Did the department reach minimum sales?
IF TOTSALES < MIN-DEPT-SALES THEN
DELETE CURSOR deptcsr

PERFORM CHECK-ERRORS
MOVE 1 TO DELETED-DEPT

MOVE " -- DISSOLVED --" TO DEPT-FORMAT
ELSE

MOVE @ TO DELETED-DEPT

MOVE SPACES TO DEPT-FORMAT
END-IF

Log what we have just done

MOVE DNAME TO DNAME-OUT
MOVE TOTSALES TO TOTSALES-OUT
DISPLAY DEPT-OUT

Now process each employee in the department

PERFORM PROCESS-EMPLOYEES THRU
END-PROCEMPLOYEES
MOVE ©@ TO NO-ROWS

If some employees were terminated, record this
fact

IF EMPS-TERM > © AND DELETED-DEPT = @ THEN
REPLACE CURSOR deptcsr
(#employees = EMPLOYEES - EMPS-TERM)
PERFORM CHECK-ERRORS
END-IF

END-IF

END-PERFORM.

3-58

Embedded QUEL Companion Guide

Sample Applications

CLOSE CURSOR deptcsr

END-PROCDEPTS.
EXIT.

* X

* Paragraph: PROCESS-EMPLOYEES

*

* Scan through all the employees for a particular department.
* Based on given conditions the employee may be terminated,
* or given a salary reduction:
* 1.If an employee was hired since 1985 then the employee is
* terminated.
* 2.If the employee’s yearly salary is more than the minimum
* company wage of $14,000 and the employee is not close to
* retirement (over 58 years of age), then the employee take
* takes a 5% salary reduction.
* 3.If the employee’s department is dissolved and the
* employee is not terminated, then the employee is moved
* into the "toberesolved" table.
* %
PROCESS-EMPLOYEES.
* Note the use of the Ingres functions to find out
* who was hired since 1985.
#Ht RANGE OF e IS #employee
#Ht DECLARE CURSOR empcsr FOR
#i# RETRIEVE (e.#name, e.#age, e.#idno, e.#hired ##
e.#salary,res = int4(
#H interval("days",e.#hired - date("01-jan-1985"))
#t)
#Ht)
#t WHERE e.#dept = DNAME
#H FOR DIRECT UPDATE OF (#name, #salary)
#Ht OPEN CURSOR empcsr
PERFORM CHECK-ERRORS.
* Record how many employees are terminated
MOVE @ TO EMPS-TERM.
MOVE @ TO NO-ROWS.
PERFORM UNTIL NO-ROWS = 1
#H RETRIEVE CURSOR empcsr
#t (ENAME, AGE, IDNO, HIRED, SALARY, HIRED-SINCE-85)
#t INQUIRE_EQUEL (NO-ROWS = ENDQUERY)
IF NO-ROWS = © THEN
IF HIRED-SINCE-85 > @ THEN
#t DELETE CURSOR empcsr
PERFORM CHECK-ERRORS
MOVE "Terminated:" TO TITLE
MOVE "Reason: Hired since 1985." TO DESCRIPTION
ADD 1 TO EMPS-TERM
ELSE
* Reduce salary if not nearly retired

Chapter 3: Embedded QUEL for COBOL 3-59

Sample Applications

#i#
##

##

#it

#it

##

* %

IF SALARY > MIN-EMP-SALARY THEN
IF AGE < NEARLY-RETIRED THEN
REPLACE CURSOR empcsr
(#salary = #salary * SALARY-REDUC)
PERFORM CHECK-ERRORS
MOVE "Reduction: " TO TITLE
MOVE "Reason: Salary." TO DESCRIPTION

ELSE

Do not reduce salary

MOVE "No Changes:" TO TITLE

MOVE "Reason: Retiring." TO DESCRIPTION
END-IF

Leave employee alone
ELSE
MOVE "No Changes:" TO TITLE
MOVE "Reason: Salary." TO DESCRIPTION
END-IF

Was employee’s department dissolved?
IF DELETED-DEPT = 1 THEN
RANGE OF e IS #employee
APPEND TO toberesolved (e.all)
WHERE e.#idno = IDNO
PERFORM CHECK-ERRORS
DELETE CURSOR empcsr
END-IF
END-IF

Log the employee’s information
MOVE IDNO TO IDNO-OUT
MOVE ENAME TO ENAME-OUT
MOVE AGE TO AGE-OUT
MOVE SALARY TO SALARY-OUT
DISPLAY EMP-OUT
END-IF
END-PERFORM.
CLOSE CURSOR empcsr
MOVE © TO ERRNUM.

END-PROCEMPLOYEES.
EXIT.

* Paragraph: CHECK-ERRORS
*

* X K K X X X ¥

##

This paragraph serves as an error handler called any time
after INIT-DB has successfully completed

In all cases, it prints the cause of the error, and

aborts the transaction, backing out changes.

Note that disconnecting from the database will

implicitly close any open cursors too. If an error is found
the application is aborted.

CHECK-ERRORS.

MOVE © TO ERRNUM.
INQUIRE_EQUEL (ERRNUM = ERRORNO)
IF ERRNUM NOT = © THEN

Restore Ingres error printing

3-60

Embedded QUEL Companion Guide

Sample Applications

SET_EQUEL (ERRORMODE = 1)

#i INQUIRE_INGRES (ERRBUF = ERRORTEXT)
ABORT

#i# EXIT

DISPLAY "Closing Down because of database error:"
DISPLAY ERRBUF

STOP _RUN
END-IF. M
VMS
CREATE dept
#H# (name = cl2, /* Department name */
#t totsales = money, /* Total sales */
#H employees = i2) /* Number of employees */
CREATE employee
#it (name = 20, /* Employee name */
age = il, /* Employee age */
#t idno = 1i4, /* Unique employee id */
hired = date, /* Date of hire */
#it dept = clo, /* Employee department */
salary = money) /* Yearly salary */

IDENTIFICATION DIVISION.
PROGRAM-ID. EXPENSE-PROCESS.

ENVIRONMENT DIVISION.
DATA DIVISION.

WORKING-STORAGE SECTION.
DECLARE

* Cursor loop control
#it 01 NO-ROWS PIC S9(2) USAGE COMP.

* Minimum sales of department
#H 01 MIN-DEPT-SALES USAGE COMP-2 VALUE IS 50000.00.

* Minimum employee salary
#Ht 01 MIN-EMP-SALARY USAGE COMP-2 VALUE IS 14000.00.

* Age above which no salary-reduction will be made
01 NEARLY-RETIRED PIC S9(2) USAGE COMP VALUE IS 58.

* Salary-reduction percentage
01 SALARY-REDUC USAGE COMP-1 VALUE IS 0.95.

* Indicates whether "toberesolved" table exists in INIT-DB
* paragraph.

#it 01 FOUND-TABLE PIC S9 USAGE COMP.

* Record corresponding to the "dept" table.

#t 01 DEPT.

#it 02 NAME PIC X(12).

02 TOTSALES USAGE COMP-2.

#it 02 EMPLOYEES PIC S9(4) USAGE COMP.

Chapter 3: Embedded QUEL for COBOL 3-61

Sample Applications

* Record corresponding to the "employee" table

#Ht 01 EMP.

#Ht 02 NAME PIC X(20).

#Ht 02 AGE PIC S9(2) USAGE COMP.

#t 02 IDNO PIC S9(8) USAGE COMP.

#Ht 02 HIRED PIC X(26).

#Ht 02 SALARY USAGE COMP-2.

#H 02 HIRED-SINCE-85 PIC S9(4) USAGE COMP.

* Count of employees terminated.

#Ht 01 EMPS-TERM PIC S99 USAGE COMP.

* Indicates whether the employee’s dept was deleted

#Ht 01 DELETED-DEPT PIC S9 USAGE COMP.

* Error message buffer used by CLOSE-DOWN

#t 01 ERRBUF PIC X(100).

* Error number

#Ht 01 ERRNUM PIC S9(8) USAGE COMP.

* Formatting values for output

#Ht 01 DEPT-OUT.

#t 02 FILLER PIC X(12) VALUE "Department: ".
#Ht 02 DNAME PIC X(12).

#it 02 FILLER PIC X(13) VALUE "Total Sales: ".
#H 02 TOTSALES-OUT PIC $,$%%,%$$9.9(2) USAGE DISPLAY.
#it 02 DEPT-FORMAT PIC X(19).

#t 01 EMP-OUT.

#H 02 FILLER PIC XX VALUE SPACES.

#t 02 TITLE PIC X(11).

#Ht 02 IDNO-OUT PIC Z9(6) USAGE DISPLAY.

#t 02 FILLER PIC X VALUE SPACE.

#H 02 ENAME PIC X(20).

#t 02 AGE-OUT PIC Z9(2) USAGE DISPLAY.

#H 02 FILLER PIC XX VALUE SPACES.

#t 02 SALARY-0UT PIC $$%$,$%$9.9(2) USAGE DISPLAY.
#H 02 FILLER PIC XX VALUE SPACES.

#t 02 DESCRIPTION PIC X(24).

* %

* Procedure Division

*
*
*
* %

Initialize the database, process each department and
terminate the session.

PROCEDURE DIVISION.
SBEGIN.

* %

DISPLAY "Entering application to process expenses".
PERFORM INIT-DB THRU END-INITDB.

PERFORM PROCESS-DEPTS THRU END-PROCDEPTS.

PERFORM END-DB THRU END-ENDDB.

DISPLAY "Successful completion of application".
STOP RUN.

* Paragraph: INIT-DB

* X X X X ¥

Start up the database, and abort if there is an error.
Before processing employees, create the table for employees
who lose their department, "toberesolved". Initiate the
multi-statement transaction.

3-62 Embedded QUEL Companion Guide

Sample Applications

INIT-DB.
INGRES "personnel"
* Silence INGRES error printing
SET_EQUEL (ERRORMODE = 0)
DISPLAY "Creating ""To_Be_Resolved"" table".

CREATE toberesolved

#Ht (#name = char(20),
#i# #age = smallint,
#Ht #idno = integer,

##t #hired = date,

#Ht #dept = char(10),
#salary = money)

##t INQUIRE_EQUEL (ERRNUM = ERRORNO)
IF ERRNUM NOT = © THEN
##t INQUIRE_INGRES (ERRBUF = ERRORTEXT)
DISPLAY "Fatal error on creation:"
DISPLAY ERRBUF
#t EXIT
STOP RUN
END-IF.

BEGIN TRANSACTION

END-INITDB.

* %

* Paragraph: END-DB
*

* Closes off the multi-statement transaction and access to

* the database after successful completion of the application.
* %

END-DB.

#i# END TRANSACTION
EXIT

END-ENDDB.

* %

* Paragraph: PROCESS-DEPTS
*

Scan through all the departments, processing each one.

If the department has made less than $50,000 in sales, then
the department is dissolved. For each department process

all the employees (they may even be moved to another table).
If an employee was terminated, then update the department’s
employee counter.

R R I

PROCESS-DEPTS.

#H RANGE OF d IS #dept

DECLARE CURSOR deptcsr FOR

#Ht RETRIEVE (d.#name, d.#totsales, d.#employees)
FOR DIRECT UPDATE OF (#name, #employees)

#t OPEN CURSOR deptcsr
PERFORM CHECK-ERRORS.

Chapter 3: Embedded QUEL for COBOL 3-63

Sample Applications

MOVE © TO NO-ROWS.
PERFORM UNTIL NO-ROWS = 1

#i# RETRIEVE CURSOR deptcsr
(NAME IN DEPT, TOTSALES, EMPLOYEES)
INQUIRE_EQUEL (NO-ROWS = ENDQUERY)

IF NO-ROWS = © THEN
* Did the department reach minimum sales?
IF TOTSALES < MIN-DEPT-SALES THEN

#Ht DELETE CURSOR deptcsr
PERFORM CHECK-ERRORS

MOVE 1 TO DELETED-DEPT

MOVE " -- DISSOLVED --" TO DEPT-FORMAT
ELSE

MOVE ©@ TO DELETED-DEPT

MOVE "" TO DEPT-FORMAT
END-IF

* Log what we have just done
MOVE NAME IN DEPT TO DNAME
MOVE TOTSALES TO TOTSALES-OUT
DISPLAY DEPT-OUT

* Now process each employee in the department

PERFORM PROCESS-EMPLOYEES THRU END-PROCEMPLOYEES
MOVE © TO NO-ROWS

* If some employees were terminated, record this fact

IF EMPS-TERM > © AND DELETED-DEPT = O THEN

#it REPLACE CURSOR deptcsr
#t (#employees = EMPLOYEES - EMPS-TERM)
PERFORM CHECK-ERRORS
END-IF
END-IF

END-PERFORM.
#t CLOSE CURSOR deptcsr

END-PROCDEPTS.

* %

* Paragraph: PROCESS-EMPLOYEES
*

Scan through all the employees for a particular department.
Based on given conditions the employee may be terminated,
or given a salary reduction:
1. If an employee was hired since 1985 then the employee
is terminated.
2. If the employee’s yearly salary is more than the
minimum company wage of $14,000 and the employee
is not close to retirement (over 58 years of age),
then the employee takes a 5% salary reduction
3. If the employee’s department is dissolved and the

R R R R R

3-64 Embedded QUEL Companion Guide

Sample Applications

* employee is not terminated, then the employee
is moved into the "toberesolved" table.
PROCESS-EMPLOYEES.

* Note the use of the INGRES functions to find out who was hired
* since 1985.

#Ht RANGE OF e IS #employee

#Ht DECLARE CURSOR empcsr FOR

RETRIEVE (e.#name, e.#age, e.#idno, e.#hired,

#Ht e.#salary, res = int4(

interval("days",e.#hired - date("01-jan-1985"))
#Ht)

#H)

#Ht WHERE e.#dept = NAME IN DEPT

#H FOR DIRECT UPDATE OF (#name, #salary)

OPEN CURSOR empcsr

PERFORM CHECK-ERRORS.
* Record how many employees terminated
MOVE © TO EMPS-TERM.

MOVE @ TO NO-ROWS.
PERFORM UNTIL NO-ROWS =1

RETRIEVE CURSOR empcsr
(NAME IN EMP, AGE, IDNO, HIRED, SALARY, HIRED-SINCE-85)
INQUIRE_EQUEL (NO-ROWS = ENDQUERY)

IF NO-ROWS = © THEN
IF HIRED-SINCE-85 > O THEN

#Ht DELETE CURSOR empcsr
PERFORM CHECK-ERRORS

MOVE "Terminated:" TO TITLE
MOVE "Reason: Hired since 1985."TO DESCRIPTION
ADD 1 TO EMPS-TERM

ELSE
* Reduce salary if not nearly retired
IF SALARY > MIN-EMP-SALARY THEN
IF AGE < NEARLY-RETIRED THEN

REPLACE CURSOR empcsr
#t (#salary = #salary * SALARY-REDUC)
PERFORM CHECK-ERRORS
MOVE "Reduction: " TO TITLE
MOVE "Reason: Salary."TO DESCRIPTION
ELSE

* Do not reduce salary
MOVE "No Changes:" TO TITLE
MOVE "Reason: Retiring."TO DESCRIPTION
END-IF

Chapter 3: Embedded QUEL for COBOL 3-65

Sample Applications

* Leave employee alone

ELSE

MOVE "No Changes:" TO TITLE

MOVE "Reason: Salary."TO DESCRIPTION
END-IF

* Was employee’s department dissolved?

IF DELETED-DEPT = 1 THEN

RANGE OF e IS #employee

APPEND TO toberesolved (e.all)
WHERE e.#idno = IDNO

PERFORM CHECK-ERRORS

DELETE CURSOR empcsr

END-IF

END-IF

* Log the employee’s information

##

MOVE IDNO TO IDNO-OUT
MOVE NAME IN EMP TO ENAME
MOVE AGE TO AGE-OUT
MOVE SALARY TO SALARY-OUT
DISPLAY EMP-OUT
END-IF
END-PERFORM.
CLOSE CURSOR empcsr

MOVE @ TO ERRNUM.

END-PROCEMPLOYEES.

* %

* Paragraph: CHECK-ERRORS
*

EE R R 3

This paragraph serves as an error handler called any time

after INIT-DB has successfully completed. In all cases,

it prints the cause of the error, and aborts the
transaction, backing out changes. Note that disconnecting
from the database will implicitly close any open cursors
too is aborted. If an error is found the application

CHECK-ERRORS.

##

MOVE ©@ TO ERRNUM.

INQUIRE_EQUEL (ERRNUM = ERRORNO)

IF ERRNUM NOT = O THEN
Restore INGRES error printing
SET_EQUEL (ERRORMODE = 1)
INQUIRE_INGRES (ERRBUF = ERRORTEXT)
ABORT
EXIT
DISPLAY "Closing Down because of database error:"
DISPLAY ERRBUF
STOP RUN

END-IF. M

3-66

Embedded QUEL Companion Guide

Sample Applications

UNIX and VMS—The Employee Query Interactive Forms Application

This EQUEL/FORMS application uses a form in query mode to view a subset of
the Employee table in the Personnel database. An Ingres query qualification is
built at runtime using values entered in fields of the form “empform.”

The objects used in this application are:

Object Description

personnel The program’s database environment.

employee A table in the database, with six columns:

name (c20)
age (i1)

idno (i4)

hired (date)
dept (c10)
salary (money)

empform A VIFRED form with fields corresponding in hame and type
to the columns in the Employee database table. The name
and idno fields are used to build the query and are the only
updatable fields. Empform is a compiled form.

The application is driven by a display statement that allows the runtime user
to enter values in the two fields that will build the query. The Build_Query
and Exec_Query procedures make up the core of the query that is run as a
result. Note the way the values of the query operators determine the logic
used to build the where clause in Build_Query. The retrieve statement
encloses a submenu block that allows the user to step through the results of
the query.

No updates are performed on the values retrieved, but any particular
employee screen may be saved in a log file through the printscreen
statement.

For readability, all EQUEL reserved words are in uppercase.

The following create statement describes the format of the Employee
database table:

CREATE employee

(name = 20, /* Employee name */

#H age =1il, /* Employee age */

#Ht idno = 1i4, /* Unique employee id */
#t hired = date, /* Date of hire */

#Ht dept = clo, /* Employee department */
#t salary = money) /* Annual salary */

IDENTIFICATION DIVISION.

Chapter 3: Embedded QUEL for COBOL 3-67

Sample Applications

PROGRAM-ID. EMPLOYEE-QUERY.

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

#Ht DECLARE

* For WHERE clause qualification

#it 01 WHERE-CLAUSE PIC X(100).

* Query operators

#t 01 NAME-0P PIC S9(8) USAGE COMP.

#it 01 ID-0P PIC S9(8) USAGE COMP.

* Were rows found?

#t 01 ROWS PIC S9(8) USAGE COMP.

#t 01 FORM-VALUES.

#it 02 ENAME PIC X(20).

#t 02 EIDNO PIC S9(8) USAGE COMP.

#it 02 EAGE PIC S9(2) USAGE COMP.

#Ht 02 EHIRED PIC X(25).

#t 02 ESALARY PIC S9(6)V9(2) USAGE COMP-3.
#Ht 02 DISP-IDNO PIC 7277779.

* Note: Compiled forms are not yet accepted as EXTERNAL due
* to restrictions noted in the chapter

* that describes how to 1ink the RTS with compiled forms.
* Consequently the declarations of external form

* objects and the corresponding ADDFORM statement

* have been commented out and replaced by a CALL

* "add_formname" statement.

#t 01 empform PIC S9(9) USAGE COMP-5 IS EXTERNAL.

* Query operator table that maps integer values to string
* query operators

01 OPER-MASKS.
02 FILLER VALUE "= "
02 FILLER VALUE "!="
02 FILLER VALUE "< "
02 FILLER VALUE "> "
02 FILLER VALUE "<=
02 FILLER VALUE ">= "

PROCEDURE DIVISION.
EXAMPLE SECTION.

PIC X(3).
PIC X(3).
PIC X(3).
PIC X(3).
PIC X(3).
PIC X(3).
01 OPER-TABLE REDEFINES OPER-MASKS.
02 OPER OCCURS 6 TIMES PIC X(3).

XBEGIN.
* Initialize WHERE clause qualification buffer to be an
* Ingres default qualification that is always true

MOVE "1=1" TO WHERE-CLAUSE.

FORMS
#Ht MESSAGE "Accessing Employee Query Application..."
#t INGRES "personnel"
* ADDFORM empform
CALL "add_empform".
#Ht DISPLAY #empform QUERY
#i#t INITIALIZE

3-68

Embedded QUEL Companion Guide

Sample Applications

ACTIVATE MENUITEM "Reset"

#Ht {

#H CLEAR FIELD ALL

#Ht }

#t ACTIVATE MENUITEM "Query"

#Ht {

* Verify validity of data
#H VALIDATE

PERFORM BUILD-QUERY THROUGH ENDBUILD-QUERY.
PERFORM EXEC-QUERY THROUGH ENDEXEC-QUERY.

}
ACTIVATE MENUITEM "LastQuery"
##
PERFORM EXEC-QUERY THROUGH ENDEXEC-QUERY.
}
ACTIVATE MENUITEM "End", FRSKEY3
{
BREAKDISPLAY
}
FINALIZE
ENDFORMS
EXIT

STOP RUN.

* %

* Paragraph: BUILD-QUERY
*

* Build a query from the values in the "name and "idno"

* fields in "empform."
* %

BUILD-QUERY.

#i# GETFORM #empform (

#HHt ENAME = name, NAME-OP = GETOPER(name),
#t EIDNO = idno, ID-OP = GETOPER(idno)
#Ht)

* Fill in the WHERE clause

MOVE SPACES TO WHERE-CLAUSE.
IF NAME-OP = © AND ID-OP = © THEN
MOVE "1 = 1" TO WHERE-CLAUSE
ELSE IF NAME-OP NOT = ©@ AND ID-OP NOT = @ THEN

* Query on both fields

MOVE EIDNO TO DISP-IDNO

STRING "e.name " DELIMITED BY SIZE,
OPER(NAME-OP) DELIMITED BY " ",
"tn DELIMITED BY SIZE,
ENAME DELIMITED BY SIZE,
"t DELIMITED BY SIZE,
" and e.idno " DELIMITED BY SIZE,
OPER(ID-OP) DELIMITED BY " ",

DISP-IDNO DELIMITED BY SIZE INTO WHERE-CLAUSE
ELSE IF NAME-OP NOT = @ THEN

* Query on the ’'name’ field
STRING "e.name " DELIMITED BY SIZE,
OPER(NAME-OP) DELIMITED BY " ",
""" DELIMITED BY SIZE,

Chapter 3: Embedded QUEL for COBOL 3-69

Sample Applications

ENAME DELIMITED BY SIZE,
"n't DELIMITED BY SIZE INTO WHERE-CLAUSE

ELSE

* Query on the ’idno’ field
MOVE EIDNO TO DISP-IDNO
STRING "e.idno " DELIMITED BY SIZE,
OPER(ID-OP) DELIMITED BY " ",
DISP-IDNO DELIMITED BY SIZE INTO WHERE-CLAUSE
END-IF.
ENDBUILD-QUERY.
EXIT.

* X
* Paragraph: EXEC-QUERY
*
* Given a query buffer defining a WHERE clause, issue a
* RETRIEVE to allow the runtime user to browse the employee
* found with the given qualification.
* X

EXEC-QUERY.
#Ht RANGE OF e IS employee
#Ht RETRIEVE (EIDNO = e.idno, ENAME = e.name, EAGE = e.age,
##t EHIRED = e.hired, ESALARY = e.salary)
WHERE WHERE-CLAUSE
it {
* Put values onto form and display them
#i# PUTFORM #empform (
#Ht idno = EIDNO, name = ENAME, age = EAGE,
#H# hired = EHIRED, salary = ESALARY)
#H# REDISPLAY
#H# SUBMENU
ACTIVATE MENUITEM "Next", FRSKEY4
i {
* Do nothing, and continue with the RETRIEVE loop.
* The last one will drop out.
}
#Ht ACTIVATE MENUITEM "Save", FRSKEY8
{
* Save screen data in log file
#Ht PRINTSCREEN (FILE = "query.log")
* Drop through to next employee
}
#Ht ACTIVATE MENUITEM "End", FRSKEY3
{
* Terminate the RETRIEVE loop
#H ENDRETRIEVE
#Ht }
#Ht }

3-70 Embedded QUEL Companion Guide

Sample Applications

VMS

##

##

##

#i#

INQUIRE_EQUEL (ROWS = ROWCOUNT)
IF ROWS = @ THEN
MESSAGE "No rows found for this query."

ELSE

END-
SLEE

ENDE

CLEAR FIELD ALL

MESSAGE "No more rows. Reset for next query."

IF.
P 2

XEC-QUERY.

EXIT. A

The create statement describing the format of the Employee database table is
shown first:

#t CREATE employee

#Hit (name = c20,
##t age =1il,

#H idno = i4,

#Ht hired = date,
#H# dept = clo,
##t salary = money)

IDENTIFICATION DIVISION.
PROGRAM-ID. EMPLOYEE-QUERY.

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

Employee name */
Employee age */

Unique employee id */
Date of hire */
Employee department */
Annual salary */

#t DECLARE

* Compiled form

#Ht 01 EMPFORM-ID PIC S9(9) USAGE COMP VALUE IS EXTERNAL empform.
* For WHERE clause qualification

#Ht 01 WHERE-CLAUSE PIC X(100).

* Query operators

#Ht 01 NAME_OP PIC S9(8) USAGE COMP.
#t 01 1ID OP PIC S9(8) USAGE COMP.
* Were rows found?

#Ht 01 ROWS PIC S9(8) USAGE COMP.
#Ht 01 FORM_VALUES.

#it 02 ENAME PIC X(20).

#Ht 02 EIDNO PIC S9(8) USAGE COMP.
#t 02 EAGE PIC S9(2) USAGE COMP.
#H 02 EHIRED PIC X(25).

#t 02 EDEPT PIC X(10).

#Ht 02 ESALARY USAGE COMP-2.

#t 02 DISP_IDNO PIC ZZ77Z779.

* Query operator table that maps integer values to string
* query operators

01

01

OPER_MASKS.
02 FILLER VALUE
02 FILLER VALUE
02 FILLER VALUE
02 FILLER VALUE
02 FILLER VALUE
02 FILLER VALUE

i
e
b
o
h
e

PIC
PIC
PIC
PIC
PIC
PIC

OPER_TABLE REDEFINES OPER_MASKS.
02 OPER OCCURS 6 TIMES

PIC

X(3).
X(3).
X(3).
X(3).
X(3).
X(3).

X(3).

Chapter 3: Embedded QUEL for COBOL 3-71

Sample Applications

PROCEDURE DIVISION.
SBEGIN.

* Initialize WHERE clause qualification buffer to be a default
* qualification that is always true

MOVE "1=1" TO WHERE-CLAUSE.
#Ht FORMS
MESSAGE "Accessing Employee Query Application..."
#Ht INGRES "personnel"
#Ht ADDFORM EMPFORM-ID
#Ht DISPLAY #empform QUERY

INITIALIZE
ACTIVATE MENUITEM "Reset"

#o
CLEAR FIELD ALL
#o)

ACTIVATE MENUITEM "Query"
#oo

* Verify validity of data
#it VALIDATE

PERFORM BUILD-QUERY THROUGH ENDBUILD-QUERY.
PERFORM EXEC-QUERY THROUGH ENDEXEC-QUERY.

}
ACTIVATE MENUITEM "LastQuery"
{
PERFORM EXEC-QUERY THROUGH ENDEXEC-QUERY.
}
#i# ACTIVATE MENUITEM "End", FRSKEY3
{
#i# BREAKDISPLAY
##

}
#i# FINALIZE

#i# ENDFORMS
EXIT
STOP RUN.

* %

* Paragraph: BUILD-QUERY
*

* Build a query from the values in the "name and "idno"

* fields in "empform."
* %

BUILD-QUERY.

#i# GETFORM #empform (

#t ENAME = name, NAME_OP = GETOPER(name),
#Ht EIDNO = idno, ID_OP = GETOPER(idno)
)

* Fill in the where clause
IF NAME_OP = © AND ID OP = O THEN
MOVE "1 = 1" TO WHERE-CLAUSE
ELSE IF NAME_OP NOT = ©@ AND ID OP NOT = © THEN

* Query on both fields

3-72 Embedded QUEL Companion Guide

Sample Applications

MOVE EIDNO TO DISP_IDNO

STRING "e.name " DELIMITED BY SIZE,

OPER(NAME_OP) DELIMITED BY " ",

"""" DELIMITED BY SIZE,

ENAME DELIMITED BY SIZE,

"""" DELIMITED BY SIZE,

" and e.idno " DELIMITED BY SIZE,

OPER(ID_OP) DELIMITED BY " ",

DISP_IDNO DELIMITED BY SIZE INTO WHERE-CLAUSE

ELSE IF NAME_OP NOT = @ THEN

* Query on the ’'name’ field

ELSE

STRING "e.name " DELIMITED BY SIZE,

OPER(NAME_OP) DELIMITED BY " ",

"m"" DELIMITED BY SIZE,

ENAME DELIMITED BY SIZE,

"m"" DELIMITED BY SIZE INTO WHERE-CLAUSE

* Query on the ’idno’ field

ENDBUILD-QUERY.

* %

END-IF.

MOVE EIDNO TO DISP_IDNO

STRING "e.idno " DELIMITED BY SIZE,

OPER(ID_OP) DELIMITED BY " ",
DISP_IDNO DELIMITED BY SIZE INTO WHERE-CLAUSE

* Paragraph: EXEC-QUERY

EXEC-QUERY.

#it

Given a query buffer defining a WHERE clause, issue a
RETRIEVE to allow the runtime user to browse the employee
found with the given qualification.

RANGE OF e IS employee

RETRIEVE (EIDNO = e.idno, ENAME
EHIRED = e.hired, ESALARY
WHERE WHERE-CLAUSE

{

e.name, EAGE = e.age,
e.salary)

* Put values on to form and display them

PUTFORM #empform (

idno = EIDNO, name = ENAME, age = EAGE,
hired = EHIRED, salary = ESALARY)

ACTIVATE MENUITEM "Next", FRSKEY4

Chapter 3: Embedded QUEL for COBOL 3-73

Sample Applications

* Do nothing, and continue with the RETRIEVE loop. The last
* one will drop out.

}
ACTIVATE MENUITEM "Save", FRSKEY8
{

* Save screen data in log file

#i#

PRINTSCREEN (FILE = "query.log")

* Drop through to next employee

}
ACTIVATE MENUITEM "End", FRSKEY3
{

* Terminate the RETRIEVE loop

##

##

##

##

##

##

#i#

##

ENDRETRIEVE

}
INQUIRE_EQUEL (ROWS = ROWCOUNT)
IF ROWS = @ THEN

MESSAGE "No rows found for this query."

ELSE

CLEAR FIELD ALL

MESSAGE "No more rows. Reset for next query."
END-IF.
SLEEP 2

ENDEXEC-QUERY. M

3-74 Embedded QUEL Companion Guide

Sample Applications

UNIX and VMS—The Table Editor Table Field Application

This EQUEL/FORMS application uses a table field to edit the Person table in the
Personnel database. It allows the user to update a person’s values, remove the
person, or add new persons. Various table field utilities are provided with the
application to demonstrate their use and their interaction with an Ingres
database.

The objects used in this application are:

Object Description
personnel The program’s database environment.
person A table in the database, with three columns:
name (c20)
age (i2)
number (i4). Number is unique.
personfrm The VIFRED form with a single table field.
persontbl A table field in the form, with two columns:
name (c20)
age (i4)

When initialized, the table field includes the hidden column
number (i4).

At the start of the application, a retrieve statement is issued to load the table
field with data from the Person table. Once the table field has been loaded, the
user can browse and edit the displayed values. Entries can be added, updated

or deleted. When finished, the values are unloaded from the table field, and, in
a multi-statement transaction, the user’s updates are transferred back into the
Person table.

For readability, all EQUEL reserved words are in uppercase.

The following create statement describes the format of the Person database
table:

CREATE person

#Ht (name = c20, /* Person name */
#Ht age =12, /* Age */
#Ht number = i4 /* Unique id number */

IDENTIFICATION DIVISION.
PROGRAM-ID. TABLE-EDITOR.

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

Chapter 3: Embedded QUEL for COBOL 3-75

Sample Applications

#t DECLARE
* Record corresponds to "person" table
#it 01 PERSON-VALUES.
#t 02 PNAME PIC X(20).
#it 02 P-AGE PIC S9(2) USAGE COMP.
#Ht 02 PNUMBER PIC S9(8) USAGE COMP.
#t 01 MAXID PIC S9(9) USAGE COMP.
* Table field row states
#it 01 STATE PIC S9 USAGE COMP.
* Empty or undefined row

88 ST-UNDEF VALUE ©.
* Appended by user

88 ST-NEW VALUE 1.
* Loaded by program - not updated

88 ST-UNCHANGED VALUE 2.
* Loaded by program - since changed

88 ST-CHANGED VALUE 3.
* Deleted by program

88 ST-DELETED VALUE 4.
* Table field entry information
#Ht 01 T-RECORD PIC S9(4) USAGE COMP.
#it 01 LASTROW PIC S9 USAGE COMP.
* Utility buffers
#Ht 01 MSGBUF PIC X(200).
#it 01 RESPBUF PIC X(20).
* Status variables
* Number of rows updated
#t 01 UPDATE -ROWS PIC S9(4) USAGE COMP.
* Update error from database
#t 01 UPDATE-ERROR PIC S9(2) USAGE COMP.
* Transaction aborted
#it 01 XACT-ABORTED PIC S9 USAGE COMP.
* Save changes to database?

01 SAVE -CHANGES PIC S9 USAGE COMP.

PROCEDURE DIVISION.
EXAMPLE SECTION.

XBEGIN.
* Start up Ingres and the FORMS system
#t INGRES "personnel"
FORMS
* Verify that the user can edit the "person" table
PROMPT NOECHO ("Password for table editor: ", RESPBUF)

IF RESPBUF NOT = "MASTER OF_ALL" THEN

#t MESSAGE "No permission for task. Exiting..."
ENDFORMS
EXIT
STOP RUN
END-IF.
#Ht MESSAGE "Initializing Person Form..."

3-76 Embedded QUEL Companion Guide

Sample Applications

##

##
##

##
#t

##

RANGE OF p IS person

FORMINIT personfrm

Initialize "persontbl" table field with a data set in FILL
mode so that the runtime user can append rows. To keep
track of events occurring to original rows that will

be loaded into the table field, hide

the unique person number.

INITTABLE personfrm persontbl FILL (number = integer)
PERFORM LOAD-TABLE THROUGH ENDLOAD-TABLE.

DISPLAY personfrm UPDATE
INITIALIZE

ACTIVATE MENUITEM "Top", FRSKEY5
{

Provide menu, as well as the system FRS key to scroll
to both extremes of the table field

SCROLL personfrm persontbl TO 1

}

ACTIVATE MENUITEM "Bottom", FRSKEY6
SCROLL personfrm persontbl TO END

}
ACTIVATE MENUITEM "Remove"

{
Remove the person in the row the user’s cursor is on.
Record this in the database later.
DELETEROW personfrm persontbl

}

ACTIVATE MENUITEM "Find", FRSKEY7
{

Scroll user to the requested table field entry. Prompt
the user for a name, and if one is typed in loop through
the data set searching for it.
PROMPT ("Person’s name : ", RESPBUF)
IF RESPBUF = SPACES THEN

RESUME FIELD persontbl
END-IF.

UNLOADTABLE personfrm persontbl

(PNAME = name, T-RECORD = _RECORD, STATE = _STATE)
{

Do not compare with deleted rows

IF PNAME = RESPBUF AND NOT ST-DELETED THEN

SCROLL personfrm persontbl TO T-RECORD
RESUME FIELD persontbl

END-IF.

Chapter 3: Embedded QUEL for COBOL 3-77

Sample Applications

* Fell out of loop without finding name
STRING "Person """ DELIMITED BY SIZE,
RESPBUF DELIMITED BY SIZE,
""" not found in table [HIT RETURN]"
DELIMITED BY SIZE
INTO MSGBUF.

#it PROMPT NOECHO (MSGBUF, RESPBUF)
#it }
#it ACTIVATE MENUITEM "Save", FRSKEY8
#t {
#it VALIDATE FIELD persontbl

MOVE 1 TO SAVE-CHANGES.
#t BREAKDISPLAY
#t }
#t ACTIVATE MENUITEM "Quit", FRSKEY2
#it

MOVE © TO SAVE-CHANGES.
#it BREAKDISPLAY
#Ht }
#t FINALIZE
#Ht MESSAGE "Exiting Person Application..."

IF SAVE-CHANGES = O THEN

#Ht ENDFORMS
#it EXIT

STOP RUN

END-IF.

* Exit person table editor and unload the table field. If any
* updates, deletions or additions were made, duplicate these
* changes in the source table. If the user added new people
* we must assign a unique person id before
* returning it to the table. To do this, increment the
* previously saved maximum id
*

number with each insert.

* Do all the updates in a transaction (for simplicity,
* this transaction does not restart on DEADLOCK error: 4700)
#Ht BEGIN TRANSACTION

MOVE © TO UPDATE-ERROR.

MOVE @ TO XACT-ABORTED.
#t UNLOADTABLE personfrm persontbl
#H (PNAME = name, P-AGE = age, PNUMBER = number,
#t STATE = _STATE)
#Ht {

IF ST-NEW THEN
* Appended by user. Insert with new unique id

ADD 1 TO MAXID

#H REPEAT APPEND TO person (name = @PNAME,
#t age = @P-AGE,
number = @MAXID)

ELSE IF ST-CHANGED THEN
* Updated by user. Reflect in table
REPEAT REPLACE person (name = @PNAME, age = @P-AGE)

3-78 Embedded QUEL Companion Guide

Sample Applications

WHERE person.number = @PNUMBER

ELSE IF ST-DELETED THEN

* Deleted by user, so delete from table. Note that

* only original rows are saved by the program, and

* not rows appended at runtime.

#it REPEAT DELETE FROM p WHERE p.number = @PNUMBER
END-IF.

* ELSE ST-UNDEFINED or ST-UNCHANGED - No updates

* Handle error conditions -

* If an error occurred, then abort the transaction.

* If no rows were updated then inform user, and prompt for

*

continuation.

INQUIRE_INGRES (UPDATE-ERROR = ERRORNO,
#t UPDATE-ROWS = ROWCOUNT)
IF UPDATE-ERROR NOT = @ THEN
* Error
INQUIRE_EQUEL (MSGBUF = ERRORTEXT)
#Ht ABORT
MOVE 1 TO XACT-ABORTED
#Ht ENDLOOP
ELSE IF UPDATE-ROWS = @ THEN
STRING "Person """, PNAME,

""" not updated. Abort all updates? "
DELIMITED BY SIZE
INTO MSGBUF

#t PROMPT (MSGBUF, RESPBUF)
IF RESPBUF = "Y" OR RESPBUF = "y" THEN
#t ABORT
MOVE 1 TO XACT-ABORTED
#t ENDLOOP
END-IF
END-IF.
#H)
IF XACT-ABORTED = @ THEN
* Commit the updates
#t END TRANSACTION
END-IF.

* Terminate the FORMS and Ingres
ENDFORMS
EXIT

IF UPDATE-ERROR NOT = @ THEN
DISPLAY "Your updates were aborted because of error:"
DISPLAY MSGBUF

END-IF.

STOP RUN.

* %

* Paragraph: LOAD-TABLE
*

* Load the table field from the "person" table. The columns
* name" and "age" will be displayed, and "number" will be
* hidden.

* %

LOAD-TABLE.

Chapter 3: Embedded QUEL for COBOL 3-79

Sample Applications

MESSAGE "Loading Person Information . . ."

* Fetch the maximum person id number for later use.
* NOTE: max() will do a sequential scan of the table.

RETRIEVE (MAXID = MAX(p.number))
* Fetch data, and load table field

RETRIEVE (PNAME = p.name, P-AGE = p.age, PNUMBER = p.number)

#H{

#t LOADTABLE personfrm persontbl

#Ht (name = PNAME, age = P-AGE, number = PNUMBER)
#Ho}

ENDLOAD-TABLE .
EXIT. M

VMS
The create statement describing the format of the Person database table

appears first:
#i# CREATE person

#t (name = 20, /* Person name */
#it age =12, /* Age */
##t number = i4) /* Unique 1id number */

IDENTIFICATION DIVISION.
PROGRAM-ID. TABLE-EDITOR.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
#i# DECLARE

* Record corresponds to "person" table

01 PERSON-VALUES.

02 PNAME PIC X(20).

02 P-AGE PIC S9(2) USAGE COMP.
02 PNUMBER PIC S9(8) USAGE COMP.
01 MAXID PIC S9(9) USAGE COMP.

* Table field row states

* Empty or undefined row

#t 01 ST-UNDEF PIC S9 USAGE COMP VALUE 0.
* Appended by user

#it 01 ST-NEW PIC S9 USAGE COMP VALUE 1.
* Loaded by program - not updated

#t 01 ST-UNCHANGED PIC S9 USAGE COMP VALUE 2.
* Loaded by program - since changed

#it 01 ST-CHANGED PIC S9 USAGE COMP VALUE 3.
* Deleted by program

#it 01 ST-DELETED PIC S9 USAGE COMP VALUE 4.
* Table field entry information

#it 01 STATE PIC S9 USAGE COMP.

#Ht 01 T-RECORD PIC S9(4) USAGE COMP.

#t 01 LASTROW PIC S9 USAGE COMP.

* Utility buffers

3-80 Embedded QUEL Companion Guide

Sample Applications

01 MSGBUF PIC X(200).
#i 01 RESPBUF PIC X(20).

* Status variables

* Number of rows updated

#Ht 01 UPDATE-ROWS PIC S9(4) USAGE COMP.
* Update error from database

#t 01 UPDATE-ERROR PIC S9(2) USAGE COMP.
* Transaction aborted

#Ht 01 XACT-ABORTED PIC S9 USAGE COMP.

* Save changes to database?

#t 01 SAVE -CHANGES PIC S9 USAGE COMP.

PROCEDURE DIVISION.

SBEGIN.

* Start up Ingres and the FORMS system

INGRES "personnel"

#H FORMS

* Verify that the user can edit the "person" table

#i# PROMPT NOECHO ("Password for table editor: ", RESPBUF)

IF RESPBUF NOT = "MASTER OF_ALL" THEN

#it MESSAGE "No permission for task. Exiting..."
#t ENDFORMS
#H EXIT
STOP RUN

END-IF.
#Ht MESSAGE "Initializing Person Form..."
#HHt RANGE OF p IS person
#Ht FORMINIT personfrm
* Initialize "persontbl" table field with a data set in FILL mode
* so that the runtime user can append rows. To keep track of
* events occurring to original rows that will be loaded
*

into the table field, hide the unique person number.
#it INITTABLE personfrm persontbl FILL (number = integer)

PERFORM LOAD-TABLE THROUGH ENDLOAD-TABLE.

#it DISPLAY personfrm UPDATE

INITIALIZE

ACTIVATE MENUITEM "Top", FRSKEY5
#Ht {

* Provide menu, as well as the system FRS key to scroll
* to both extremes of the table field

#t SCROLL personfrm persontbl TO 1

}

Chapter 3: Embedded QUEL for COBOL 3-81

Sample Applications

ACTIVATE MENUITEM "Bottom", FRSKEY6

{

SCROLL personfrm persontbl TO END
}

ACTIVATE MENUITEM "Remove"

{

* Remove the person in the row the user’s cursor is on.
* Record this in the database later.

#Ht DELETEROW personfrm persontbl
}

#Ht ACTIVATE MENUITEM "Find", FRSKEY7
#Ht {

* Scroll user to the requested table field entry. Prompt the
* user for a name, and if one 1is typed in loop through the
* data set searching for it.

#it PROMPT ("Person’s name : ", RESPBUF)
IF RESPBUF = "" THEN
#Ht RESUME FIELD persontbl
END-IF.
#Ht UNLOADTABLE personfrm persontbl
#Ht (PNAME = name, T-RECORD = _RECORD, STATE = _STATE)
#t {

* Do not compare with deleted rows

IF PNAME = RESPBUF AND STATE NOT = ST-DELETED THEN

#Ht SCROLL personfrm persontbl TO T-RECORD
RESUME FIELD persontbl

END-IF.
#it }

* Fell out of loop without finding name

STRING "Person """ DELIMITED BY SIZE,
RESPBUF DELIMITED BY SIZE,
""" not found in table
[HIT RETURN]" DELIMITED BY SIZE
INTO MSGBUF.

PROMPT NOECHO (MSGBUF, RESPBUF)
}
ACTIVATE MENUITEM "Save", FRSKEY8
{
VALIDATE FIELD persontbl
MOVE 1 TO SAVE-CHANGES.

BREAKDISPLAY
}
ACTIVATE MENUITEM "Quit", FRSKEY2
##

MOVE © TO SAVE-CHANGES.
BREAKDISPLAY
#t }
FINALIZE

3-82 Embedded QUEL Companion Guide

Sample Applications

EE R

* %

##

##
#i#

#i#

* X X X

#t

MESSAGE "Exiting Person Application..."

IF SAVE-CHANGES = @ THEN
ENDFORMS
EXIT
STOP RUN
END-IF.

Exit person table editor and unload the table field.

If any updates, deletions or additions were made, duplicate
these changes in the source table. If the user added new
people we must assign a unique person id before returning
it to the table. To do this, increment the previously

saved maximum id number with each insert.

Do all the updates in a transaction (for simplicity,
this transaction does not restart on DEADLOCK error: 4700)

BEGIN TRANSACTION

MOVE © TO UPDATE-ERROR.
MOVE ©@ TO XACT-ABORTED.

UNLOADTABLE personfrm persontbl

(PNAME = name, P-AGE = age, PNUMBER = number,
STATE = _STATE)

IF STATE = ST-NEW THEN
Appended by user. Insert with new unique id
ADD 1 TO MAXID

REPEAT APPEND TO person (name = @PNAME,
age = @P-AGE,
number = @MAXID)

ELSE IF STATE = ST-CHANGED THEN
Updated by user. Reflect in table

REPEAT REPLACE person (name = @PNAME, age = @P-AGE)
WHERE person.number = @PNUMBER

ELSE IF STATE = ST-DELETED THEN

Deleted by user, so delete from table. Note that only
orignal rows are saved by the program, and not rows
appended at runtime.

REPEAT DELETE FROM p WHERE p.number = @PNUMBER
END-IF
Else UNDEFINED or UNCHANGED - No updates

Handle error conditions -

If an error occurred, then abort the transaction.

If no rows were updated then inform user, and prompt
for continuation.

INQUIRE_INGRES (UPDATE-ERROR = ERRORNO, UPDATE-ROWS =
ROWCOUNT)

Chapter 3: Embedded QUEL for COBOL 3-83

Sample Applications

IF UPDATE-ERROR NOT = @ THEN

* Error
INQUIRE_EQUEL (MSGBUF = ERRORTEXT)
#Ht ABORT
MOVE 1 TO XACT-ABORTED
#Ht ENDLOOP

ELSE IF UPDATE-ROWS = @ THEN

STRING "Person """ PNAME
""" not updated. Abort all updates? "
DELIMITED BY SIZE
INTO MSGBUF

PROMPT (MSGBUF, RESPBUF)
IF RESPBUF = "Y" OR RESPBUF = "Y" THEN
#i# ABORT
MOVE 1 TO XACT-ABORTED
#it ENDLOOP
END-IF
END-TIF
#o)

IF XACT-ABORTED = © THEN
* Commit the updates
#H END TRANSACTION
END-IF.
* Terminate the FORMS and Ingres
ENDFORMS
EXIT
IF UPDATE-ERROR NOT = O THEN

DISPLAY "Your updates were aborted because of error:"
DISPLAY MSGBUF

END-IF.
STOP RUN.

* %

* Paragraph: LOAD-TABLE
*

* Load the table field from the "person" table. The columns
* "name" and "age" will be displayed, and "number" will be
* hidden.

* %

LOAD-TABLE.

#H MESSAGE "Loading Person Information . . ."

* Fetch the maximum person id number for later use.
* PERFORMANCE NOTE: max() will do a sequential scan of the table.

RETRIEVE (MAXID = MAX(p.number))

* Fetch data, and load table field

3-84 Embedded QUEL Companion Guide

Sample Applications

RETRIEVE (PNAME = p.name, P-AGE = p.age, PNUMBER = p.number)
{

LOADTABLE personfrm persontbl

#Ht (name = PNAME, age = P-AGE, number = PNUMBER)
}

ENDLOAD-TABLE. ™

UNIX and VMS—The Professor-Student Mixed Form Application

This EQUEL/FORMS application lets the user browse and update information
about graduate students who report to a specific professor. The program is
structured in a master/detail fashion, with the professor being the master
entry, and the students the detail entries. The application uses two forms—one
to contain general professor information and another for detailed student
information.

The application uses the following objects:

Object Description
personnel The program’s database environment.
professor A database table with two columns:

pname (c25)
pdept (c10).

See its create statement below for a full description.

student A database table with seven columns:

sname (c25)

sage (il)

sbdate (c25)

sgpa (f4)

sidno (il1)

scomment (text(200))
sadvisor (c25).

See the create statement below for a full description. The
sadvisor columnm is the join field with the pname column
in the Professor table.

masterfrm The main form has the pname and pdept fields that
correspond to the information in the Professor table, and
the studenttbl table field. The pdept field is display-only.
Masterfrm is a compiled form.

studenttbl A table field in masterfrm with two columns, sname and
sage. When initialized, it also has five more hidden columns
corresponding to information in the Student table.

Chapter 3: Embedded QUEL for COBOL 3-85

Sample Applications

Object Description

studentfrm The detail form, with seven fields, which correspond to
information in the Student table. Only the sgpa, scomment
and sadvisor fields are updatable. All other fields are
display-only. Studentfrm is a compiled form.

grad A global structure, whose members correspond in name
and type to the columns of the Student database table, the
studentfrm form and the studenttbl table field.

The program uses the masterfrm as the general-level master entry, in which
data can only be retrieved and browsed, and the studentfrm as the detailed
screen, in which specific student information can be updated.

The runtime user enters a name in the pname (professor name) field and then
selects the Students menu operation. The operation fills the displayed and
hidden columns of the studenttbl table field with detailed information of the
students reporting to the named professor. The user may then browse the
table field (in read mode), which displays only the names and ages of the
students. More information about a specific student may be requested by
selecting the Zoom menu operation. This operation displays the studentfrm
form. The fields of studentfrm are filled with values stored in the hidden
columns of studenttbl. The user may make changes to three fields (sgpa,
scomment, and sadvisor). If validated, these changes will be written back to
the database table (based on the unique student id), and to the table field’s
data set. This process can be repeated for different professor names.

For readability, all EQUEL reserved words are in uppercase.

The following two create statements describe the Professor and Student
database tables:

CREATE student /* Graduate student table */

#Ht (sname = c25, /* Name */

sage =11, /* Age */

#Ht sbdate = c25, /* Birth date */

sgpa = f4, /* Grade point average */
#Ht sidno = i4, /* Unique student number */
scomment = text(200), /* General comments */

#Ht sadvisor = c25) /* Advisor’s name */

CREATE professor /* Professor table */
(pname c25, /* Professor’s name */
#Ht pdept clo) /* Department */

IDENTIFICATION DIVISION.
PROGRAM-ID. STUDENT-ADMINISTRATOR.

ENVIRONMENT DIVISION.
DATA DIVISION.

WORKING-STORAGE SECTION.
DECLARE

3-86 Embedded QUEL Companion Guide

Sample Applications

#i#

#it

#it

##

Global grad student record maps to database table

01 GRAD.
02 SNAME PIC X(25).
02 SAGE PIC S9(4) USAGE COMP.
02 SBDATE PIC X(25).
02 SGPA PIC S9(3)V9(2) USAGE COMP.
02 SIDNO PIC S9(9) USAGE COMP.
02 SCOMMENT PIC X(200).
02 SADVISOR PIC X(25).
Professor info maps to database table
01 PROF.
02 PNAME PIC X(25).
02 PDEPT PIC X(10).
Row number of last row in student table field
01 LASTROW PIC S9(9) USAGE COMP.
Is user on a table field?
01 ISTABLE PIC S9 USAGE COMP.
Were changes made to data in student form?
01 CHANGED-DATA PIC S9 USAGE COMP.
Did user enter a valid advisor name?
01 VALID-ADVISOR PIC S9 USAGE COMP.
Studentfrm loaded?
01 LOADFORM PIC S9 USAGE COMP VALUE IS 0.
Local utility buffers
01 MSGBUF PIC X(100).
01 RESPBUF PIC X.
01 OLD-ADVISOR PIC X(25).

Note: Compiled forms are not yet accepted as EXTERNAL due
to restrictions noted in the chapter that

describes how to link the RTS with compiled forms.
Consequently the declarations of external form

objects and the corresponding ADDFORM statement

have been commented out and replaced by a CALL
"add_formname" statement.

01 masterfrm PIC S9(9) USAGE COMP-5 IS EXTERNAL.
01 studentfrm PIC S9(9) USAGE COMP-5 IS EXTERNAL.

Procedure Division: STUDENT-ADMINISTRATOR
Start up program, Ingres, and the FORMS system and

call Master driver.

PROCEDURE DIVISION.

EXAMPLE SECTION.

XBEGIN.

FORMS

MESSAGE "Initializing Student Administrator . . ."

INGRES "personnel"
RANGE OF p IS professor, s IS student

PERFORM MASTER THROUGH END-MASTER.

CLEAR SCREEN

Chapter 3: Embedded QUEL for COBOL 3-87

Sample Applications

* #H

* KK K X X ¥

ENDFORMS
EXIT
STOP RUN.

Paragraph: MASTER

Drive the application, by running "masterfrm", and
allowing the user to "zoom" into a selected student.

MASTER.

ADDFORM masterfrm
CALL "add_masterfrm".

Initialize "studenttbl" with a data set in READ mode.
Declare hidden columns for all the extra fields that
the program will display when more information is
requested about a student.

Columns "sname" and "sage" are displayed, all other
columns are hidden, to be used in the student
information form.

INITTABLE #masterfrm studenttbl READ
(#SBDATE = CHAR(25),
#SGPA = FLOAT,
#SIDNO = INTEGER,
#SCOMMENT = CHAR(200),
#SADVISOR = CHAR(20))

DISPLAY #masterfrm UPDATE
INITIALIZE

MESSAGE "Enter an Advisor name . . ."
SLEEP 2
}

ACTIVATE MENUITEM "Students", FIELD "pname"
{

Load the students of the specified professor
GETFORM (PNAME = #pname)

If no professor name is given then resume
IF PNAME = SPACES THEN
RESUME FIELD #pname
END-IF.

Verify the professor exists. Local error handling just
prints the message, and continues. We assume that each
professor has exactly one department.

MOVE SPACES TO PDEPT.

RETRIEVE (PDEPT = p.#pdept, PNAME = p.#pname)
WHERE p.#pname = PNAME

IF PDEPT = SPACES THEN
MOVE SPACES TO MSGBUF
STRING "No professor with name """
DELIMITED BY SIZE,
PNAME DELIMITED BY " ",
""" [RETURN]" DELIMITED BY SIZE
INTO MSGBUF

3-88 Embedded QUEL Companion Guide

Sample Applications

##

#i#

##

##

##

PROMPT NOECHO (MSGBUF, RESPBUF)
RESUME FIELD #pname
END-IF.

Fill the department field and load students
PUTFORM (#pdept = PDEPT, #pname = PNAME)

Refresh for query
REDISPLAY

PERFORM LOAD-STUDENTS THROUGH END-LOAD.
RESUME FIELD studenttbl

}

ACTIVATE MENUITEM "Zoom"
{

Confirm that user is on "studenttbl", and that the
table field is not empty. Collect data from the
row and zoom for browsing and updating.

INQUIRE_FRS FIELD #masterfrm (ISTABLE = table)

IF ISTABLE = © THEN
PROMPT NOECHO
("Select from the student table [RETURN]",
RESPBUF)
RESUME FIELD studenttbl
END-IF.

INQUIRE_FRS TABLE #masterfrm (LASTROW = lastrow)

IF LASTROW = © THEN
PROMPT NOECHO ("There are no students [RETURN]",
RESPBUF)
RESUME FIELD #pname
END-IF.

Collect all data on student into global record
GETROW #masterfrm studenttbl
(SNAME = #sname,

SAGE = #sage,
SBDATE = #sbdate,
SGPA = #sgpa,

SIDNO = #sidno,
SCOMMENT = #scomment,
SADVISOR = #sadvisor)

Display "studentfrm", and if any changes were made make
the updates to the local table field row. Only make
updates to the columns corresponding to writable fields
in "studentfrm". If the student changed advisors, then
delete this row from the display.

MOVE SADVISOR TO OLD-ADVISOR.

PERFORM STUDENT-INFO-CHANGED THROUGH END-STUDENT.

Chapter 3: Embedded QUEL for COBOL 3-89

Sample Applications

*

EE R R O

IF CHANGED-DATA = 1 THEN
IF OLD-ADVISOR NOT = SADVISOR THEN
DELETEROW #masterfrm studenttbl

ELSE
PUTROW #masterfrm studenttbl
(#sgpa = SGPA,
#scomment = SCOMMENT,
#sadvisor = SADVISOR)
END-IF

END-IF.

}

ACTIVATE MENUITEM "Quit", FRSKEY2
{ BREAKDISPLAY

;INALIZE

END-MASTER.
EXIT.

Paragraph: LOAD-STUDENTS

For the current professor name, this paragraph loads
into the "studenttbl" table field all the students
whose advisor is the professor with that name.

LOAD-STUDENTS.

MESSAGE "Retrieving Student Information . . ."
CLEAR FIELD studenttbl

RETRIEVE (SNAME = s.#sname,
SAGE = s.#sage,

SBDATE = s.#sbdate,

= s.#sgpa,

SIDNO = s.#sidno,
SCOMMENT = s.#scomment,
SADVISOR = s.#sadvisor)

WHERE s.#sadvisor = PNAME

LOADTABLE #masterfrm studenttbl
(#sname = SNAME,

#sage = SAGE,
#sbdate = SBDATE,
#sgpa = SGPA,

#sidno = SIDNO,
#scomment = SCOMMENT,
#sadvisor SADVISOR)

}

END-LOAD.
EXIT.

Paragraph: STUDENT-INFO-CHANGED

Allow the user to zoom into the details of a selected
student. Some of the data can be updated by the user.

If any updates were made, then reflect these back into
the database table. The paragraph records whether or not
changes were made via the CHANGED-DATA variable. **

3-90 Embedded QUEL Companion Guide

Sample Applications

#i#
* ##

##

##
#i#

#it

#t
##

STUDENT-INFO-CHANGED.
Control ADDFORM to only initialize once

IF LOADFORM = @ THEN
MESSAGE "Loading Student form . . ."
ADDFORM studentfrm
CALL "add_studentfrm"
MOVE 1 TO LOADFORM
END-IF.

DISPLAY #studentfrm FILL
INITIALIZE (#sname = SNAME,

#sage = SAGE,
#sbdate = SBDATE,
#sgpa = SGPA,

#sidno = SIDNO,
#scomment = SCOMMENT,
#sadvisor = SADVISOR)

ACTIVATE MENUITEM "Write", FRSKEY4
{

}

If changes were made then update the database table.
Only bother with the fields that are not read-only.

INQUIRE_FRS form (CHANGED-DATA = change)
IF CHANGED-DATA = O THEN
BREAKDISPLAY
END-IF.
VALIDATE
MESSAGE "Writing changes to database. . ."

GETFORM (SGPA = #sgpa,
SCOMMENT = #scomment,
SADVISOR = #sadvisor)

Enforce integrity of professor name.
MOVE © TO VALID-ADVISOR
RETRIEVE (VALID-ADVISOR = 1)

WHERE p.#pname = SADVISOR

IF VALID-ADVISOR = @ THEN
MESSAGE "Not a valid advisor name"
SLEEP 2
RESUME FIELD #sadvisor

ELSE
REPLACE s (#sgpa = SGPA, #scomment = SCOMMENT,
#sadvisor = SADVISOR)
WHERE s.#sidno = SIDNO
BREAKDISPLAY
END-IF.

ACTIVATE MENUITEM "End", FRSKEY3

{
Quit without submitting changes
MOVE © TO CHANGED-DATA.
BREAKDISPLAY

}

FINALIZE

Chapter 3: Embedded QUEL for COBOL

3-91

Sample Applications

END- STUDENT.
EXIT. X

VMS
The following two create statements describe the Professor and Student

database tables.

CREATE student /* Graduate student table */
#Ht (shame = ¢c25, /* Name */

sage = il, /* Age */

#Ht sbdate = ¢c25, /* Birth date */

sgpa = f4, /* Grade point average */
#Ht sidno = 1i4, /* Unique student number */
scomment = text(200), /* General comments */

#Ht sadvisor = c25) /* Advisor’s name */

#Ht CREATE professor /* Professor table */

(pname = c25, /* Professor’s name */

#Ht pdept = cl10) /* Department */

IDENTIFICATION DIVISION.
PROGRAM-ID. STUDENT-ADMINISTRATOR.

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

#t DECLARE

* Global grad student record maps to database table
#t 01 GRAD.

#Ht 02 SNAME PIC X(25).

#it 02 SAGE PIC S9(4) USAGE COMP.
#Ht 02 SBDATE PIC X(25).

#t 02 SGPA USAGE COMP-1.

#Ht 02 SIDNO PIC S9(9) USAGE COMP.
#t 02 SCOMMENT PIC X(200).

#Ht 02 SADVISOR PIC X(25).

* Professor info maps to database table

01 PROF.

#H 02 PNAME PIC X(25).

#t 02 PDEPT PIC X(10).

* Row number of last row in student table field

#Ht 01 LASTROW PIC S9(9) USAGE COMP.
* Is user on a table field?

#t 01 ISTABLE PIC S9 USAGE COMP.

* Were changes made to data in student form?

#Ht 01 CHANGED PIC S9 USAGE COMP.

* Did user enter a valid advisor name?

01 VALID-ADVISOR PIC S9 USAGE COMP.

* Studentfrm loaded?

#Ht 01 LOADFORM PIC S9 USAGE COMP VALUE IS 0.
* Local utility buffers

01 MSGBUF PIC X(100).

#Ht 01 RESPBUF PIC X.

#t 01 OLD-ADVISOR PIC X(25).

3-92 Embedded QUEL Companion Guide

Sample Applications

* Externally compiled forms
01 MASTERF PIC S9(9) USAGE COMP VALUE EXTERNAL Masterfrm.
01 STUDENTF PIC S9(9) USAGE COMP VALUE EXTERNAL Studentfrm.

* %

* Procedure Division: STUDENT-ADMINISTRATOR
*
* Start up program, Ingres, and the FORMS system and

* call Master driver.
* %

PROCEDURE DIVISION.

SBEGIN.
FORMS
MESSAGE "Initializing Student Administrator . . ."
INGRES "personnel"
#t RANGE OF p IS professor, s IS student
PERFORM MASTER THROUGH END-MASTER.
#t CLEAR SCREEN
#H ENDFORMS
#it EXIT

STOP RUN.

* %

* Paragraph: MASTER
*

* Drive the application, by running "masterfrm", and
* allowing the user to "zoom" into a selected student.
* %

MASTER.
#i# ADDFORM MASTERF

Initialize "studenttbl" with a data set in READ mode.

Declare hidden columns for all the extra fields that the
program will display when more information is requested about

a student. Columns "sname" and "sage" are displayed, all

other columns are hidden, to be used in the student information
form.

INITTABLE #masterfrm studenttbl READ

#Ht (#SBDATE = CHAR(25),

#SGPA = FLOAT,

#t #SIDNO = INTEGER,

#SCOMMENT = CHAR(200),

#t #SADVISOR = CHAR(20))

DISPLAY #masterfrm UPDATE

#t INITIALIZE

#H {

MESSAGE "Enter an Advisor name . . ."
SLEEP 2

#Ht }

#Ht ACTIVATE MENUITEM "Students", FIELD "pname"
{

* Load the students of the specified professor

GETFORM (PNAME = #pname)

Chapter 3: Embedded QUEL for COBOL 3-93

Sample Applications

* If no professor name is given then resume

IF PNAME = "" THEN
RESUME FIELD #pname
END-IF.

* Verify the professor exists. Local error handling just prints
* the message, and continues. We assume that each professor has
* exactly one department.

MOVE "" TO PDEPT.

RETRIEVE (PDEPT = p.#pdept, PNAME = p.#pname)
WHERE p.#pname = PNAME
IF PDEPT = "" THEN
MOVE "" TO MSGBUF
STRING "No professor with name """ DELIMITED BY SIZE,

PNAME DELIMITED BY " ",
""" [RETURN]" DELIMITED BY SIZE
INTO MSGBUF

PROMPT NOECHO (MSGBUF, RESPBUF)
CLEAR FIELD ALL
#it RESUME FIELD #pname

END-IF.

* Fill the department field and load students

PUTFORM (#pdept = PDEPT, #pname = PNAME)
* Refresh for query

REDISPLAY

PERFORM LOAD-STUDENTS THROUGH END-LOAD.

RESUME FIELD studenttbl
}

ACTIVATE MENUITEM "Zoom"
{

* Confirm that user is on "studenttbl", and that the table

* field is not empty. Collect data from the row and zoom
* for browsing and updating.

#t INQUIRE_FRS FIELD #masterfrm (ISTABLE = table)
IF ISTABLE = © THEN
#it PROMPT NOECHO
#H ("Select from the student table [RETURN]",
#it RESPBUF)
#t RESUME FIELD studenttbl
END-IF.
#Ht INQUIRE_FRS TABLE #masterfrm (LASTROW = lastrow)

IF LASTROW = © THEN

#i# PROMPT NOECHO ("There are no students [RETURN]",
#it RESPBUF)
#Ht RESUME FIELD #pname

3-94 Embedded QUEL Companion Guide

Sample Applications

END-IF.

* Collect all data on student into global record

GETROW #masterfrm studenttbl

#Ht (SNAME = #sname,
SAGE = #sage,

#Ht SBDATE = #sbdate,
SGPA = #sgpa,

#Ht SIDNO = #sidno,
SCOMMENT = #scomment,
#Ht SADVISOR = #sadvisor)

* Display "studentfrm", and if any changes were made make the

* updates to the local table field row. Only make updates to the
* columns corresponding to writable fields in "studentfrm". If

* the student changed advisors, then delete this row from

* the display.

MOVE SADVISOR TO OLD-ADVISOR.
PERFORM STUDENT-INFO-CHANGED THROUGH END-STUDENT.

IF CHANGED = 1 THEN
IF OLD-ADVISOR NOT = SADVISOR THEN

#Ht DELETEROW #masterfrm studenttbl
ELSE
#Ht PUTROW #masterfrm studenttbl
#it (#sgpa = SGPA,
#Ht #scomment = SCOMMENT,
#sadvisor = SADVISOR)
END-IF
END-IF.
#it }
#t ACTIVATE MENUITEM "Quit", FRSKEY2
#t {
#it BREAKDISPLAY
#Ht }
#it FINALIZE
END-MASTER.

* %

* Paragraph: LOAD-STUDENTS
*

* For the current professor name, this paragraph loads into the
* "studenttbl" table field all the students whose advisor is
* the professor with that name.

* %

LOAD-STUDENTS.

#Ht MESSAGE "Retrieving Student Information . . ."
#H CLEAR FIELD studenttbl

Chapter 3: Embedded QUEL for COBOL 3-95

Sample Applications

#t RETRIEVE (

#it SNAME = s.#sname,

SAGE = s.#sage,

#it SBDATE = s.#shdate,

SGPA = s.#sgpa,

#it SIDNO = s.#sidno,

#i# SCOMMENT = s.#scomment,

#it SADVISOR = s.#sadvisor)

WHERE s.#sadvisor = PNAME

#it {

#H LOADTABLE #masterfrm studenttbl

#it (#sname = SNAME,

#sage = SAGE,

#it #sbdate = SBDATE,

#sgpa = SGPA,

#Ht #sidno = SIDNO,

#i# #scomment = SCOMMENT,

#t #sadvisor = SADVISOR)

#t }

END-LOAD.

* %

* Paragraph: STUDENT-INFO-CHANGED

*

* Allow the user to zoom into the details of a selected
* student. Some of the data can be updated by the user.
* If any updates were made, then reflect these back into
* the database table. The paragraph records whether or not
* changes were made via the CHANGED variable.

* %

STUDENT-INFO-CHANGED.

* Control ADDFORM to only initialize once

##
#i#

IF LOADFORM = @ THEN
MESSAGE "Loading Student form . . ."
ADDFORM STUDENTF
MOVE 1 TO LOADFORM

END-IF.

DISPLAY #studentfrm FILL

INITIALIZE
(#sname = SNAME,
#sage = SAGE,
#sbdate = SBDATE,
#sgpa = SGPA,
#sidno = SIDNO,
#scomment = SCOMMENT,
#sadvisor = SADVISOR)

ACTIVATE MENUITEM "Write", FRSKEY4
{

* If changes were made then update the database table. Only
* bother with the fields that are not read-only.

#it

##

#it

INQUIRE_FRS form (CHANGED = change)

IF CHANGED = © THEN
BREAKDISPLAY
END-IF.

VALIDATE
MESSAGE "Writing changes to database. . ."

3-96

Embedded QUEL Companion Guide

Sample Applications

#Ht GETFORM

##t (SGPA = #sgpa,

#Ht SCOMMENT = #scomment,
##t SADVISOR = #sadvisor)

* Enforce integrity of professor name.

MOVE @ TO VALID-ADVISOR

#Ht RETRIEVE (VALID-ADVISOR = 1)
#it WHERE p.#pname = SADVISOR

IF VALID-ADVISOR = @ THEN
#Ht MESSAGE "Not a valid advisor name"
##t SLEEP 2
#Ht RESUME FIELD #sadvisor

ELSE
#t REPLACE s (#sgpa = SGPA, #scomment = SCOMMENT,
#sadvisor = SADVISOR)
#Ht WHERE s.#sidno = SIDNO
#it BREAKDISPLAY

END-IF.

#t }
#Ht ACTIVATE MENUITEM "End", FRSKEY3
#it {

* Quit without submitting changes

MOVE @ TO CHANGED.
BREAKDISPLAY

##
#i# FINALIZE

END-STUDENT. ™

Chapter 3: Embedded QUEL for COBOL 3-97

Chapter 4: Embedded QUEL for Foriran

This chapter describes the use of EQUEL with the Fortran programming
language.

EQUEL Statement Syntax for Fortran

Margin

Terminator

This section describes the language-specific ground rules for embedding QUEL
database and forms statements in a Fortran program. An EQUEL statement
has the following general syntax:

EQUEL_statement

For information on QUEL statements, see the QUEL Reference Guide. For
information on EQUEL/FORMS statements, see the Forms-based Application
Development Tools User Guide.

The following sections describe how to use the various syntactical elements of
EQUEL statements as implemented in Fortran.

There are no specified margins for EQUEL statements in Fortran. Always place
the two number signs (##) in the first two positions of a line. The rest of the
statement can begin anywhere else on the line. In the preprocessor, the
statement field follows the first tab.

An EQUEL/Fortran statement does not need a statement terminator. Although
the convention is to not use a statement terminator in EQUEL statements, the
preprocessor does allow a semicolon at the end of EQUEL statements. The
preprocessor also ignores it.

For example, it interprets the following two statements as the same:

sleep 1
and
sleep 1;

Chapter 4: Embedded QUEL for Fortran 4-1

EQUEL Statement Syntax for Fortran

Line Continuation

Comments

EQUEL statements that are made up of a few other statements, such as a
display loop, only allow a semicolon after the last statement. For example:
display empfrm

initialize

activate menuitem "Help"

o {

message "No help yet";
#Ht sleep 2;

#}

finalize;

When using a retrieve loop, place a semicolon after the retrieve statement
to disassociate the loop code inside the braces from the retrieve statement
itself. Variable declarations made visible to EQUEL follow the normal Fortran
declaration syntax. Therefore, do not use a statement terminator on variable
declarations.

There are no special line-continuation rules for EQUEL/Fortran. You can break
an EQUEL statement between words and continue it on any number of
subsequent lines. An exception to this rule is that you cannot continue a
statement between two words that are reserved when they appear together,
such as declare cursor. For a list of double keywords, see the QUEL
Reference Guide. Start each continuation line with ## characters. No
continuation indicator is necessary. You can put blank lines between
continuation lines. For example, the following retrieve statement is continued
over two lines:

retrieve (empnam = e.ename)
where e.eno = enum

As a result, the preprocessor output includes a Fortran continuation indicator
on any continued lines.

If you want to continue a character-string constant across two lines, end the
first line with a backslash character (\) and continue the string at the
beginning of the next line. In this case, do not place ## characters at the
beginning of the continuation lines.

For examples of string continuation, see String Literals in this chapter.

Two kinds of comments can appear in an EQUEL program: EQUEL comments
and host language comments. Use the /* and */ characters to delimit EQUEL
comments. These characters must appear on lines beginning with the ## sign.
For example:

/* Update name and salary*/
append to employee (ename = empnam, esal = esal*.l)

4-2 Embedded QUEL Companion Guide

EQUEL Statement Syntax for Fortran

VMS

String Literals

The preprocessor strips EQUEL comments out of the program that appear on
lines beginning with the ## sign. These comments do not appear in the output
file.

The capitol C delimits Fortran host language comments. These comments must
start on a separate line. For example:

message "No permission . . ."
C No user access

The preprocessor treats host language comments that appear on lines that do
not begin with the ## sign as host code and passes them through to the
output file unchanged. Therefore, if you want source code comments in the
preprocessor output, enter them as Fortran comments on lines that are not
EQUEL lines.

The following restrictions apply to any EQUEL or Fortran comments in an
EQUEL/Fortran program:

n If anything other than ## appears in the first two positions of a line of
EQUEL source, the precompiler treats the line as host code and ignores it.
The only exception to this is a string-continuation line. See String Literals
in this chapter.

n Comments cannot appear in string constants. If this occurs, the
preprocessor interprets the intended comment as part of the string
constant.

n In general, EQUEL comments can be put in EQUEL statements wherever a
space can legally occur. However, comments cannot appear between two
words that are reserved when they appear together, such as declare
cursor. See the list of EQUEL reserved words in the QUEL Reference
Guide.

In VMS, you can also use the ! character instead of C to delimit Fortran host
language comment which extends to the end of the line. It can appear on a
line beginning with the ## sign. For example:

message "No permission . . ." INo user access m

In Windows, you can also use the ! character instead of C or c to delimit
Fortran host language comment that extends to the end of the line. It can
appear on a line beginning with the ## sign. For example:

message "No permission . . ." INo user access m

You can use either double quotes or single quotes to delimit string literals in
EQUEL/Fortran. Be sure that you begin and end the string with the same
delimiter.

Chapter 4: Embedded QUEL for Fortran 4-3

Fortran Variables and Data Types

Whichever quote mark you use, you can embed it as part of the literal itself by
doubling it. For example:

append comments
#Ht (fieldl = "a double "" quote is in this string")

or

append comments
#Ht (fieldl = 'a single '' quote is 1in this string')

To continue an EQUEL statement to additional lines, use the backslash
character (\) at the end of the first line. Any leading spaces on the next line
are considered part of the string. Therefore, the continued string should start
in column 1, where a statement label would normally appear in non-EQUEL
lines. For example, the following are legal EQUEL statements:

message 'Please correct errors found in updating\
the database tables.'

append to employee (empnam = "Freddie \
Mac", empnum = 222)

Fortran Variables and Data Types

This section describes how to declare and use Fortran program variables in
EQUEL.

Variable and Type Declarations

This section describes how to declare variables to EQUEL. It provides a general
description of declaration sections and a detailed description of the declaration
syntax for all data types.

EQUEL Variable Declaration Procedures

Any Fortran language variable an EQUEL statement uses must be made known
to the preprocessor so that it can determine the type of the variable.
EQUEL/Fortran does not know the implicit typing conventions Fortran uses, so
you must explicitly declare all variables. The preprocessor uses the declaration
to set up type information for the Ingres runtime system.

Use two number signs (##) to begin a declaration of a variable in an
EQUEL/Fortran program. Begin the signs in the first column position of the
line. If the EQUEL statement does not use a variable, you do not need to use
number signs.

4-4

Embedded QUEL Companion Guide

Fortran Variables and Data Types

The Declare and Declare Forms Statements

Prior to any EQUEL declarations or statements in a program unit, you must
issue the following statement:

declare

This statement must follow all implicit statements in the unit. If there are no
implicit statements, the ## declare directive must be the first statement in
the unit. When your program unit includes EQUEL/FORMS statements, you
must use a slightly different variant of the ## declare directive:

declare forms

These statements make the preprocessor generate a Fortran include
statement that includes a file of declarations the Ingres runtime system needs.
You cannot link an EQUEL/Fortran program unless you include one of these
statements in every program unit that contains EQUEL statements.

The declare statements also served the purpose of scope delimiters in earlier
versions of EQUEL/Fortran. For examples of string continuation, see The Scope
of Variables in this chapter.

Reserved Words in Declarations

In declarations, all EQUEL keywords are reserved. Therefore, you cannot
declare types or variables with the same name as those keywords. Also, when
you use the following EQUEL/Fortran keywords in declarations, they are
reserved by the preprocessor and you cannot use them elsewhere, except in
quoted string constants:

byte double logical program structure
character external map real union
complex function parameter record

declare integer precision subroutine

The EQUEL preprocessor does not distinguish between uppercase and
lowercase in keywords. When it generates Fortran code, it converts any
uppercase letters in keywords to lowercase. This rule is true only for
keywords. The preprocessor does distinguish between case in program-defined
types and variable names.

Variable and type names must be legal Fortran identifiers that begin with an
alphabetic character.

Chapter 4: Embedded QUEL for Fortran 4-5

Fortran Variables and Data Types

Typed Data Declarations

VMS

The preprocessor recognizes numeric variables declared with the following
format:

data_type [*default_type_len]
var_name [*type_len] [(array_spec)]
{, var_name [*type_len] [(array_spec)]

The preprocessor recognizes character variables declared with the following
format:

data_type [*default_type_len[,]]
var_name [(array_spec)] [*type_len]
{, var_name [(array_spec)] [*type_len]}™

The preprocessor recognizes numeric variables declared with the following
format:

data_type [*default_type_len]
var_name [*type_len] [(array_spec)] [/init_clause/]
{, var_name [*type_len] [(array_spec)] [/init_clause/] }

The preprocessor recognizes character variables declared with the following
format:

data_type [*default_type_len[,]]
var_name [(array_spec)] [*type_len] [/init_clause/]
{, var_name [(array_spec)] [*type_len] [/init_clause/] }™®

The preprocessor recognizes numeric variables declared with the following
format:

data_type [*default_type_len]
var_name [*type_len] [(array_spec)] [/init_clause/]
{, var_name [*type_len] [(array_spec)] [/init_clause/] }

The preprocessor recognizes character variables declared with the following
format:

data_type [*default_type_len[,]]
var_name [(array_spec)] [*type_len] [/init_clause/]
{, var_name [(array_spec)] [*type_len] [/init_clause/] }™®

4-6

Embedded QUEL Companion Guide

Fortran Variables and Data Types

VMS

Syntax Notes:

n

For information on the allowable data_types, see Data Types in this
chapter.

The default_type_len specifies the size of the declared variable. To specify
size for a numeric type variable, use an integer literal of an acceptable
length for the particular data type. To specify size for a character type
variable, use an integer literal or a parenthesized expression, followed
optionally by a comma. The preprocessor does not interpret the length
field for variables of type character but merely passes that information to
the output file. Note the default type lengths in the following declarations:

C Declares "eage" a 2-byte integer

integer*2 eage
C Declares "stat" a 2-byte integer
logical*2 stat

C Declares "ename" a character string
character* (4+1en) ename

The type_len allows you to declare a variable with a length different from
default_type_len. Again, you can use a parenthesized expression only to
declare the length of character variable declarations. The type length for a
numeric variable must be an integer literal that represents an acceptable
numeric size. For example:

C Default-sized integer and 2-byte integer

integer length
integer*2 height
character*15 name, socsec*(numlen)

Some Fortran compilers do not permit the redeclaration of the length of a
character variable.

The variable names must be legal Fortran identifiers.

The array_spec must conform to Fortran syntax rules. The preprocessor
simply notes that the declared variable is an array, but does not parse the
array_spec clause.

Note that, if you specify both an array and a type length, the order of
those two clauses differs depending on whether the variable being declared
is of character or numeric type. Note the following examples of array
declarations:

character*16 enames(100), edepts(15)*10
! Array specification first

real*4 salestab(5,12), yeartotals*8(12)
! Type length first

The preprocessor allows you to initialize a variable or array in the
declaration statement using the init_clause. The preprocessor accepts, but
does not examine, any initial data. The Fortran compiler, however, later
detects any errors in the initial data. For example:

real*8 initcash /512.56/
character*4 baseyear /'1950'/

Chapter 4: Embedded QUEL for Fortran 4-7

Fortran Variables and Data Types

character*4 year /1950/
! Acceptable to preprocessor but not to compiler

Do not continue initial data over multiple lines. If an initialization value is
too long for the line, as could be the case with a string constant, use the
Fortran data statement instead. ™

Constant Declarations

To declare constants to EQUEL/Fortran, use the Fortran parameter statement
with the following syntax:

UNIX
- parameter (const_name = value {, const_name = value}) ™
VMS
parameter const_name = value {, const_name = value} ®
m parameter const_name = value {, const_name = value}
or

parameter(const_name = value {, const_name = value}) ¥

Syntax Notes:

n The data type of const_name derives its data type from the data type of
value. Do not put explicit data type declarations in parameter
statements. In addition, as with variable declarations, the preprocessor
does not assign a data type based on the first letter of const_name.

n The value can be a real, integer or character literal. It cannot be an
expression or a symbolic name.

The following example declarations illustrate the parameter statement:

C real constant

parameter (pi = 3.14159)

C integer and real

parameter (bigint = 2147483648, bgreal = 999999.99) m

VMS

parameter pi = 3.14159 ! real constant
parameter bigint = 2147483648, bgreal = 999999.99
! integer and real

parameter pi = 3.14159 ! real constant
parameter(bigint = 2147483648, bgreal = 999999.99)
! integer and real

4-8 Embedded QUEL Companion Guide

Fortran Variables and Data Types

Data Types

The EQUEL/Fortran preprocessor accepts the elementary Fortran data types
shown in the following table. The table maps these types to corresponding
Ingres types. For more information on type mapping between Ingres and
Fortran data, see Data Type Conversion in this chapter.

Fortran Data Type Ingres Types
integer integer
integer*N where N = 2 or 4 integer
logical integer
logical*N where N =1, 2 or 4 integer
byte integer
real float
real*N where N = 4 or 8 float
double precision float
character*N where N > 0 character
real*8 decimal

The Integer Data Type

The Fortran compiler allows the default size of integer variables to be either
two or four bytes in length, depending on whether the -i2 compiler flag
(UNIX), the noi4 qualifier (VMS), or the /integer_size:16 compiler option
(Windows) is set.

EQUEL/Fortran also supports this feature by means of the -i2 preprocessor
flag. This flag tells the preprocessor to treat the default size of integer
variables as two instead of the normal default size of four bytes. For more
information on type mapping between Ingres and Fortran data, see
Precompiling, Compiling, and Linking an EQUEL Program in this chapter.

You can explicitly override the default size when declaring the Fortran variable
to the preprocessor. To do so, you must specify a size indicator (*2 or *4)
following the integer keyword, as these examples illustrate:

integer*4 bigint
integer*2 smalli

The preprocessor then treats these variables as a four-byte integer and a two-
byte integer, regardless of the default setting.

Chapter 4: Embedded QUEL for Fortran 4-9

Fortran Variables and Data Types

VMS

The Real Data Type

The preprocessor treats the logical data type as an integer data type. A
logical variable has a default size of 4 bytes. To override this default size,
use a size indicator of 2 or 4. For example:

logical*2 log2

logical*4 logd
logical*1l logl m

The preprocessor treats byte and logical data types as integer data types.
A logical variable has a default size of either two or four bytes, according to
whether the -i2 flag has been set. You can override this default size by a size
indicator of 1, 2 or 4. For example:

logical logl*l, log2*2, loga*a M

The preprocessor treats byte and logical data types as an integer data type.
A logical variable has a default size of 4 bytes. To override this default size,
use a size indicator of 2 or 4. For example:

logical*2 log2

logical*4 logd
logical*l logl ™

The byte data type has a size of one byte. You cannot override this size.

You can use an integer or byte variable with any numeric-valued object to
assign or receive numeric data. For example, you can use such a variable to
set a field in a form or to select a column from a database table. This variable
can also specify simple nhumeric objects, such as table field row numbers. You
can use a logical variable to assign or receive integer data, although your
program must restrict its value to 1 and 0, which map respectively to the
Fortran logical values .TRUE. and .FALSE..

EQUEL/Fortran accepts real and double precision as legal real data types.
The preprocessor accepts both 4-byte and 8-byte real variables. It makes no
distinction between an 8-byte real variable and a double precision variable.
The default size of a real variable is 4 bytes. However, you can override this
size if you use a size indicator (*8) that follows the real keyword or the
variable’s name.

You can only use a real variable to assign or receive numeric data (both real,
decimal, and integer). You cannot use it to specify numeric objects, such as
table field row numbers.

4-10 Embedded QUEL Companion Guide

Fortran Variables and Data Types

VMS The preprocessor expects the internal format of real and double precision
variables to be the standard VAX format. For this reason, you should not
compile your program with the g_floating qualifier. ®
C 4-byte real variable
real salary
C 8-byte real variable
#Ht real*8 yrtoda
C 8-byte real variable

#Ht double precision saltot
real salary, yrtodate*8

Only use a real variable to assign or receive numeric data (both real and
integer). Do not use it to specify numeric objects, such as table field row
numbers.

The Character Data Type

Fortran variables of type character are compatible with all Ingres character
string objects. EQUEL/Fortran does not need to know the declared length of a
character string variable to use it at runtime. Therefore, it does not check the
validity of any expression or symbolic name that declares the length of the
string variable. You should ensure that your string variables are long enough
to accommodate any possible runtime values. For information on the
interaction between character string variables and Ingres data at runtime, see
Runtime Character Conversion in this chapter.

character*7 first

character*10 last

character*l init

character*(bufsiz) msgbuf

Structure and Record Declarations

EQUEL/Fortran supports the declaration and use of user-defined structure
variables. The syntax of a structure definition is:

structure [/structdef_name/] [field_namelist]
field _declaration
{field_declaration}

end structure

Syntax Notes:

n The structdef_name is optional only for a nested structure definition.

n The field_namelist is allowed only with a nested structure definition. Each
name in the field_namelist constitutes a field in the enclosing structure.

n The field_declaration can be a typed data declaration (see Typed Data
Declarations in this chapter), a nested structure declaration, a union
declaration, a record declaration, or a fill item.

Chapter 4: Embedded QUEL for Fortran 4-11

Fortran Variables and Data Types

The syntax of a union declaration is as follows:

union
map_declaration
map_declaration
{map_declaration}
end union

where map_declaration is:

map
field_declaration
{field_declaration?}
end map

n Only field_declarations that are referenced in EQUEL statements need to
be declared to EQUEL. The following example declares a Fortran structure
with a member “checked” that is not known to EQUEL.

structure /address/

integer number

character*20 street

character*10 town

integer*2 zip
logical checked

end structure
record /address/addr

To use a structure with EQUEL statements, you must both define the
structure and declare the structure’s record to EQUEL. The record
declaration has the following syntax:

record /structdef_name/ structurename {,[/structdef_name/]
structurename}

Syntax Note:
The structdef_name must be previously defined in a structure statement.

For information on the use of structure variables in EQUEL statements, see
Using a Structure Member in this chapter.

The following example includes a structure definition and a record declaration:

structure /name_map/
union

map

character*30 fullname
end map

map

character*10 firstnm
character*2 init

character*18 lastnm
end map

end union

end structure

4-12 Embedded QUEL Companion Guide

Fortran Variables and Data Types

record /name_map/ empname

The next example shows the definition of a structure containing an array of
nested structures:

structure /class_struct/

character*10 subject

integer*2 year

structure student(100)

C No structure definition name needed
character*12 name

byte grade

end structure

end structure

record /class_struct/ classrec

Indicator Variables

An indicator variable is a 2-byte integer variable. There are three ways to use
in an application:

n In a statement that retrieves data from Ingres, you can use an indicator
variable to determine if its associated host variable was assigned a null.

n In a statement that sets Ingres data, you can use an indicator variable to
assign a null to the database column, form field, or table field column.

n In a statement that retrieves character data from Ingres, you can use the
indicator variable as a check that the associated host variable was large
enough to hold the full length of the returned character string.

The following declaration illustrates how to declare a null indicator variable:

C Indicator variable
integer*2 ind

Assembling and Declaring External Compiled Forms - VMS

You can precompile your forms in the Visual Forms Editor (VIFRED). By doing
so, you save the time otherwise required at runtime to extract the form'’s
definition from the database forms catalogs. When you compile a form in
VIFRED, VIFRED creates a file in your directory describing the form in the VAX-
11 MACRO language. VIFRED prompts you for the name of the file in which to
write the MACRO description. After the file is created, you can use the
following VMS command to assemble it into a linkable object module:

macro filename

Chapter 4: Embedded QUEL for Fortfran 4-13

Fortran Variables and Data Types

This command produces an object file containing a global symbol with the
same name as your form. Before the EQUEL/FORMS statement addform can
refer to this global object, you must declare it to EQUEL with the following
syntax:

integer formname

Next, in order for the program to access the external form definition, you must
declare the formname as an external symbol:

external formname

This second declaration is not an EQUEL declaration and you should not
precede it by the ## mark. Its purpose is to inform the linker to associate the
global symbol in the compiled form file with the object of the addform
statement.

Syntax Notes:

n formname is the actual name of the form; it appears as the title of
the form in EQUEL/FORMS statements other than the addform statement.
It is also the name that VIFRED gives to the global object in the compiled
form file. In all EQUEL/FORMS statements other than the addform
statement that expect a form name, you must dereference formname with
so that it is interpreted as a name and not as an integer variable.

n The EXTERNAL statement associates the external form definition with the
integer object used by the addform statement.

The following example illustrates these points:

integer empfrm
external empfrm

addform empfrm ! The global object
display #empfrm ! The name of the form must be dereferenced
| because it is also the name of a variable

Compiling and Declaring External Compiled Forms - UNIX

You can precompile your forms in VIFRED. This saves the time otherwise
required at runtime to extract the form’s definition from the database forms
catalogs. When you compile a form in VIFRED, VIFRED creates a file in your
directory describing the form in C. VIFRED prompts you for the name of the
file with the description. After the file is created, you can use the following cc
command to compile it into linkable object code:

cc -c filename

This command produces an object file that contains a global symbol with the
same name as your form.

4-14

Embedded QUEL Companion Guide

Fortran Variables and Data Types

Before the EQUEL/FORMS statement addform can refer to this global object,
use the following syntax to declare it to EQUEL:

extern int *formname;

Next, for the program to access the external form definition, you must declare
the formname as an external symbol:

external formname

Because this second declaration is not an EQUEL declaration, do not precede it
with the ## mark. Its purpose is to inform the linker to associate the global
symbol in the compiled form file with the object of the addform statement.

Syntax Notes:

n formname is the actual name of the form and appears as the title of the
form in EQUEL/FORMS statements other than the addform statement. It
is also the name that VIFRED gives to the global object in the compiled
form file.

In all EQUEL/FORMS statements other than the addform statement that
expect a form name you must dereference formname with # so that it is
interpreted as a name and not as an integer variable.

n The EXTERNAL statement associates the external form definition with the
integer object used by the addform statement.

integer empfrm
external empfrm

C The global object

ADDFORM empfrm

C The name of the form must be dereferenced
C because it is also the name of a variable
DISPLAY #empfrm

Compiling and Declaring External Compiled Forms - Windows

You can precompile your forms in VIFRED. By doing so, you save the time
otherwise required at run time to extract the form’s definition from the
database forms catalogs. When you compile a form in VIFRED, VIFRED creates
a file in your directory describing the form in C. VIFRED prompts you for the
name of the file in which to write the description. After the file is created, you
can use the following Windows command to compile it into a linkable object
module:

cl -c filename

Chapter 4: Embedded QUEL for Fortran 4-15

Fortran Variables and Data Types

Concluding Example

This command produces an object file containing a global symbol with the
same name as your form. Before the EQUEL/FORMS statement addform can
refer to this global object, you must declare it to EQUEL with the following
syntax:

integer formname

Next, in order for the program to access the external form definition, you must
declare the formname as an external symbol:

external formname

This second declaration is not an EQUEL declaration and you should not
precede it by the ## mark. Its purpose is to inform the linker to associate the
global symbol in the compiled form file with the object of the addform
statement.

Syntax Notes:

n formname is the actual name of the form; it appears as the title of
the form in EQUEL/FORMS statements other than the addform statement.
It is also the name that VIFRED gives to the global object in the compiled
form file. In all EQUEL/FORMS statements other than the addform
statement that expect a form name, you must dereference formname with
so that it is interpreted as a name and not as an integer variable.

n The EXTERNAL statement associates the external form definition with the
integer object used by the addform statement.

The following example illustrates these points:

integer empfrm
external empfrm

addform empfrm ! The global object
display #empfrm ! The name of the form must be dereferenced
| because it is also the name of a variable

The following example contains some simple EQUEL/Fortran declarations:

declare

C Variables of each data type
#Ht byte dbyte

#t logical*4 log4d

#it logical logdef

#it integer*2 dint2

#Ht integer*4 dint4

#t integer intdef

#Ht real*4 dreal4

real*8 dreal8

#it real dreal

4-16 Embedded QUEL Companion Guide

Fortran Variables and Data Types

VMS

Constant
parameter (MAXVAL = 1000)

character*12 dbname
character*12 drmnam, tblnam, colnam

Compiled forms

integer empfrm, dptfrm

external empfrm, dptfrm m
declare

byte d_byte !Variables of each data type
logical*1l d_logl

logical*2 d_log?2

logical*4 d_log4

logical d_logdef

integer*2 d_int2

integer*4 d_int4

integer d_intdef

real*4 d_reald

real*8 d_real8

real d_realdef

double precision d_doub
parameter MAX_PERSONS = 1000 ! Constant

character*12 dbname/ 'personnel'/
character*12 formname, tablename, columnname

structure /person/ ! Structure with a union
byte age
integer flags
union
map
character*30 full_name
end map
map
character*12 firstname
character*18 lastname
end map
end union
end structure
! Record/array of records

record /person/ person, p_table(MAX_PERSONS)

integer empfrm, deptform ! Compiled forms
external empfrm, deptform ! Compiled forms

declare

byte d_byte !Variables of each data type
logical*l d_logl
logical*2 d_log2
logical*4 d_log4
logical d_logdef
integer*2 d_int2
integer*4 d_int4
integer d_intdef
real*4 d_reald
real*8 d_real8

Chapter 4: Embedded QUEL for Fortran 4-17

Fortran Variables and Data Types

real d_realdef
#it double precision d_doub

#it parameter MAX_PERSONS = 1000 ! Constant

#Ht character*12 dbname/ 'personnel'/

character*12 formname, tablename, columnname
structure /person/ ! Structure with a union
#H byte age

integer flags
#it union

map

#it character*30 full_name
end map

map

character*12 firstname
##H character*18 lastname
end map

#t end union
end structure
! Record/array of records

#Ht record /person/ person, p_table(MAX_PERSONS)

#Ht integer empfrm, deptform ! Compiled forms
external empfrm, deptform ! Compiled forms m

The Scope of Variables

Variable names must be unique in their scope. The EQUEL/Fortran
preprocessor understands scoping of variables if your program adheres to the
following rules:

n To declare a scope for a program or subprogram, use the ## signal on the
program, subroutine or function statement line and also on the line
where the matching end statement appears. EQUEL considers the scope of
variables declared in such a program or subprogram to be exactly that
program unit. The variables can be local variables, common variables or
subprogram dummy arguments (formal parameters).

n Be aware that without scoping information, the preprocessor considers the
declare and declare forms statements to signal the closing of the
previous scope and the opening of a new one. In other words, if your
program has not used the ## signal on a program, subroutine or
function statement, a declare statement begins a new scope. For a
discussion of the EQUEL/Fortran declare statement, see The Declare and
Declare Forms Statements in this chapter.

The following program fragments illustrate the scope of variables in an
EQUEL/Fortran program:

program emp
declare

C The following two declarations will be visible to the
C preprocessor until the end of program 'emp'.

4-18

Embedded QUEL Companion Guide

Fortran Variables and Data Types

Variable Usage

integer empid
real empsal
real raise

C EQUEL statements using 'empid', 'empsal' and 'raise’

call prcemp (empid)
call prcsal (empsal, raise)
end

subroutine prcemp (empid)
declare

C 'empid' must be redeclared to EQUEL because of new
C scope

integer empid
C EQUEL statements using 'empid'
end

subroutine prcsal (esal, raise)
declare

C Declare only those formal parameters to EQUEL that
C will be used in EQUEL statements.

real esal
C EQUEL statements using 'esal'

end

Fortran variables declared to EQUEL can substitute for most elements of
EQUEL statements that are not keywords. Of course, the variable and its data
type must make sense in the context of the element. The generic uses of host
language variables in EQUEL statements are discussed further in the QUEL
Reference Guide. The following discussion covers only the usage issues
particular to Fortran language variable types.

You must verify that the statement using the variable is in the scope of the
variable's declaration. For a discussion of variables in an EQUEL/Fortran
program, see The Scope of Variables in this chapter. As an example, the
following retrieve statement uses the variables “namvar” and “numvar” to
receive data, and the variable “idno” as an expression in the where clause:

retrieve (namvar = employee.empname,
numvar = employee.empnum) where
employee.empnum = idno

Chapter 4: Embedded QUEL for Fortran 4-19

Fortran Variables and Data Types

Simple Variables

Array Variables

The following syntax refers to a simple scalar-valued variable (integer,
floating-point, or character string) :

simplename

Syntax Notes:

n

If you use the variable to send values to Ingres, the variable can be any
scalar-valued variable.

If you use the variable to receive values from Ingres, the variable can only
be a scalar-valued variable.

The following example shows a message handling routine. It passes two
scalar-valued variables as parameters: buffer, which is a character string, and
secs, which is an integer variable.

subroutine PrtMsg(buffer, secs)
declare forms

character*(*) buffer

integer secs

message buffer
sleep secs

end

The following syntax refers to an array variable:

arrayname (subscripts)

Syntax Notes:

n

Subscript the variable because only scalar-valued elements (integers,
floating-point, and character strings) are legal EQUEL values.

The EQUEL preprocessor does not evaluate subscript values when the
array is declared and referenced. Consequently, even though the
preprocessor confirms that array subscripts have been used, it accepts
illegal subscript values. You must make sure that the subscript is legal. For
example, the preprocessor accepts both of the following references, even
though only the first is correct:

real salary(5)
C declaration

APPEND TO employee (esal = salary(l))
C Correct reference

APPEND TO employee (esal = salary(-1))
C Incorrect reference

4-20 Embedded QUEL Companion Guide

Fortran Variables and Data Types

n Do not subscript arrays of variable addresses that are used with param
target lists. For example:

character*200 target
integer*4 addr(10)

C Array of variable addresses
RETRIEVE (PARAM (target, addr))

For more information about parameterized target lists, see Dynamically Built
Param Statements in this chapter.

The following example uses the variable “i” as a subscript. However, the
variable does not need to be declared to EQUEL because array subscripts are
not parsed or evaluated.

character*8 frnams(3)
integer i

data frnams /'empfrm', 'dptfrm'. 'hlpfrm'/

do 106 i =1, 3
#Ht FORMINT frnams (i)
10 continue 1

VMS

character*8 formnames(3) / 'empfrm', 'deptform',
"helpform'/
integer i

do i=1,3
Forminit formnames(i)
end do

declare
#Ht character*8 formnames(3)/'empfrm', 'deptform', "helpform'/
declare forms
integer i
character*(*) active
do i=1,3
active = formname (i)
#Ht Forminit active
end do

Structure Variables - VMS only

You cannot use a structure variable as a single entity. Only elementary
structure members can communicate with Ingres data. This member must be
a scalar value (integer, floating-point, or character string).

Chapter 4: Embedded QUEL for Fortran 4-21

Fortran Variables and Data Types

Using a Structure Member

The syntax EQUEL uses to refer to a structure member is the same as in
Fortran:

structure.member{.member}

Syntax Notes:

n The structure member the above reference denotes must be a scalar value
(integer, floating-point or character string). There can be any combination
of arrays and structures, but the last object referenced must be a scalar
value. Thus, the following references are all legal in an EQUEL statement,
assuming they all translate to scalar values:

employee.sal

C Member of a structure
person(3) .name

C Member of an element of an array
structure.mem2.mem3.age

C Deeply nested member

n In general, the preprocessor supports unambiguous and fully
qualified structure member references.

Using Indicator Variables

The syntax for referring to an indicator variable is the same as for a simple
variable, except that an indicator variable is always associated with a host
variable:

host_variable:indicator_variable

Syntax Notes:

n The indicator variable can be a simple variable, an array element or
a structure member that yields a short integer. For example:
integer*2 indvar, indarr(5)

var_l:indvar
var_3:indarr(2)

Data Type Conversion

A Fortran variable declaration must be compatible with the Ingres value it
represents. Numeric Ingres values can be set by and retrieved into numeric
variables. Ingres character values can be set by and retrieved into character
variables.

4-22 Embedded QUEL Companion Guide

Fortran Variables and Data Types

Data type conversion occurs automatically for different numeric types, such as
from floating-point Ingres database column values into integer Fortran
variables, and for character strings, such as from varying-length Ingres
character fields into fixed-length Fortran character string buffers.

Ingres does not automatically convert between numeric and character types.
You must use one of the Ingres type conversion functions or a Fortran

conversion routine for this purpose.

The following table shows the specific type correspondences for each Ingres
data type.

Ingres and Fortran Data Type Compatibility

Ingres Type Fortran Type
cN character*N
text(N) character*N
char(N) character*N
varchar(N) character*N
il byte

i2 integer*2

i4 integer*4

f4 real*4

f8 real*8

date character*25
money real*8

Runtime Numeric Type Conversion

The Ingres runtime system provides automatic data type conversion between
numeric-type values in the database and the forms system and numeric
Fortran variables. It follows the standard type conversion rules. For example, if
you assign a real variable to an integer-valued field, the digits after the
decimal point of the variable’s value are truncated. Runtime errors are
generated for overflow on conversion when assigning Ingres numeric values to
Fortran variables.

Chapter 4: Embedded QUEL for Fortfran 4-23

Fortran Variables and Data Types

The default size of integers in EQUEL/Fortran is four bytes. You can change the
default size to two bytes by means of the -i2 preprocessor flag. If you use this
flag, you must compile the program with the -i2 flag for UNIX, the noi4
qualifier for VMS, or the /integer_size: 16 flag for Windows.

The Ingres money type is represented as an 8-byte real value, compatible
with a Fortran real*8.

Runtime Character Conversion

Automatic conversion occurs between Ingres character string values and
Fortran character variables. There are four string-valued Ingres objects that
can interact with character variables:

n Ingres names, such as form and column names
n Database columns of type ¢ or char
n Database columns of type text or varchar

n Form fields of type ¢

Several considerations apply when dealing with character string conversions,
both to and from Ingres.

The conversion of Fortran character string variables that represent Ingres
object names is simple: trailing blanks are truncated from the variables,
because the blanks make no sense in that context. For example, the string
literals “empfrm “ and “empfrm” refer to the same form, and “employees ” and
“employees” refer to the same database table.

The conversion of other Ingres objects is a bit more complicated. First, the
storage of character data in Ingres differs according to whether the medium of
storage is a database column of type c or char, a database column of type
text or varchar, or a character-type form field. Ingres pads columns of type c
and char with blanks to their declared length. Conversely, it does not add
blanks to the data in columns of type text or varchar or in form fields.

The Fortran convention is to blank-pad fixed-length character strings. For
example, the character string “abc” is stored in a Fortran character*5
variable as the string “abc ” followed by two blanks.

When character data is retrieved from a database column or form field into a
Fortran character variable and the variable is longer than the value being
retrieved, the variable is padded with blanks. If the variable is shorter than the
value being retrieved, the value is truncated. You should always ensure that
the variable is at least as long as the column or field, in order to avoid
truncation of data.

4-24

Embedded QUEL Companion Guide

Fortran Variables and Data Types

When inserting character data into an Ingres database column or form field
from a Fortran variable, note the following conventions:

n

When data is inserted from a Fortran variable into a database column of
type c or char and the column is longer than the variable, the column is
padded with blanks. If the column is shorter than the variable, the data is
truncated to the length of the column.

When data is inserted from a Fortran variable into a database column of
type text or varchar and the column is longer than the variable, no
padding of the column takes place. Furthermore, by default, all trailing
blanks in the data are truncated before the data is inserted into the text
or varchar column. For example, when a string “abc” stored in a Fortran
character*5 variable as “abc ” (refer to above) is inserted into the text
or varchar column, the two trailing blanks are removed and only the
string “abc” is stored in the database column. To retain such trailing
blanks, you can use the Ingres notrim function. It has the following
syntax:

notrim(charvar)

where charvar is a character variable. An example that demonstrates this
feature follows later. If the text or varchar column is shorter than the
variable, the data is truncated to the length of the column.

When data is inserted from a Fortran variable into a ¢ form field and the
field is longer than the variable, no padding of the field takes place. In
addition, all trailing blanks in the data are truncated before the data is
inserted into the field. If the field is shorter than the data (even after all
trailing blanks have been truncated), the data is truncated to the length of
the field.

When comparing character data in a Ingres database column with character
data in a Fortran variable, note the following convention:

n

When comparing data in ¢, character, or varchar database columns with
data in a character variable, all trailing blanks are ignored. Trailing blanks
are significant in text. Initial and embedded blanks are significant in
character, text, and varchar; they are ignored in c.

Caution! As just described, the conversion of character string data between
Ingres objects and Fortran variables often involves the trimming or padding of
trailing blanks, with resultant change to the data. If trailing blanks have
significance in your application, give careful consideration to the effect of any
data conversion.

The Ingres date data type is represented as a 25-byte character string.

Chapter 4: Embedded QUEL for Fortran 4-25

Dynamically Built Param Statements

The following program fragment demonstrates the notrim function and the
truncation rules explained above.

C Program to illustrate significance of trailing
C blanks in TEXT datatype
program txttype
declare
integer*2 row
character*7 data
C data will have 'abc' followed by 4 blanks
data = 'abc '
ingres testdb
C set up the table for testing
create texttype (#row = i2, #data = text(10))
C The first APPEND adds the string 'abc' (blanks
C truncated)
append to texttype (#row = 1, #data = data)

C The second APPEND adds the string 'abc ', with
C 4 trailing blanks

append to texttype (#row = 2, #data = NOTRIM(data))
The RETRIEVE will get the second row because the

NOTRIM function in the previous APPEND caused
trailing blanks to be inserted as data.

aXale]

retrieve (row = texttype.#row)

where length(texttype.#data) =7

print *, 'Row found = ', row
destroy texttype
#H exit

end

Dynamically Built Param Statements

EQUEL/Fortran supports a special kind of dynamically built statement called a
param statement. While the ability to supply names, expression values, and
even entire qualifications in the form of host variables, as described in the
QUEL Reference Guide, provides much dynamic flexibility, param statements
considerably extend this flexibility. Param statements determine at runtime,
not only the names, but also the number and data types of target-list
elements. This feature, for example, allows construction of a completely
general program that can operate on any table or form that you specify at
runtime.

4-26 Embedded QUEL Companion Guide

Dynamically Built Param Statements

A general restriction on param statements is that you cannot use param
target lists in repeat queries.

In EQUEL/Fortran, param versions are available for all statements in which:
n Assighments are made between host variables and database columns

n Assighments are made between host variables and form fields (or
tablefield columns)

Not only retrieve, append, and replace, but also many forms-related
statements such as getform, putform, initialize, loadtable, insertrow,
and several others, have param versions.

Consider, again, the reason that these special versions of statements are
needed. Non-param EQUEL statements, though relatively flexible in terms of
substituting variables for expression constants, database and form object
names, and entire where clauses, are nevertheless fixed at compile time in
the number and data type of the objects to or from which assignment is made
at runtime. Look at the following non-param retrieve statement, for

example:

character*100 chvar
integer intvar
real rvar

character*25 table
character*25 coll, col2, col3

C Assignments are made at runtime to all variables
C declared in the two lines immediately above,

C representing names of database objects. Then the
C following RETRIEVE statement gets

C data from the specified table and columns

#Ht retrieve (chvar = table.coll, intvar = table.col2,
##t rvar = table.col3)

In this example, the host variables, the table name and the names of all three
columns represent all components of the target list. What cannot vary in this
way of coding, however, is the fact that the retrieve statement gets values
from exactly three columns, and you must hard-code the data types of those
three columns into the program. Param statements allow you to transcend
those restrictions.

Syntax of Param Statements
These statements are called param statements because of the param
function in place of its target list. The param function has the following

syntax:

param (target_string, var_address_array)

Chapter 4: Embedded QUEL for Fortran 4-27

Dynamically Built Param Statements

VMS

Thus, for example, a param retrieve statement might look like this:

retrieve (param (target, varadr))
where gstr

The target_string is a formatted target list string that can be either a Fortran
character variable or a Fortran character constant. Normally it is a variable,
since the purpose of this feature is to allow statements to be built at runtime.
The var_address_array is an array of locations to which values are assigned at
runtime. The elements in this array then hold the addresses of variables of
appropriate types to receive or supply data for the table columns or form fields
with which the param statement interacts.

The target_string looks like a regular target list expression, except where a
Fortran variable intended to receive or supply data in an assignment would
normally appear. In place of these names, the target_string contains symbolic
type indicators representing the variables. For each of these type indicators
appearing in the target list, there must be an address recorded in the
corresponding element of the var_address_array, beginning with
var_address_array(1).

If your system does not include the loc built-in function to obtain addresses of
integer and real variables, you can use the IInum() function provided with
EQUEL. ™

You can use the %LOC built-in function to obtain addresses of integer and
real variables. @

The “loc” intrinsic function (or the “%loc” built-in function) is used to access
the address of variables. ®

To obtain the address of a character variable, you can use the IIstr()
function (UNIX), IIdesc() function (VMS), or IIdesc() function (Windows)
provided with EQUEL. Examples of these functions appear at the end of this
section.

At runtime, EQUEL processes the statement by associating the variable
addresses with the type indicators embedded in the target_string. Addresses
must have been previously placed in the cells of the array in a sequence
corresponding to the sequence of type indicators in the target_string, such
that the statement can find a list of the correct number of Fortran variables of
the correct type.

The variable-type indicators can be any of the following:

i2 two-byte integer (integer*2)

i4 four-byte integer (integer*4)

f4 four-byte floating-point number (real*4)

f8 eight-byte floating-point number
(real*8 or double precision)

c[N] character string

4-28 Embedded QUEL Companion Guide

Dynamically Built Param Statements

In the list above, the length specifier N is optional. The default length is the
size of the character variable.

In this context, the format indicator must always agree with the Fortran
variable that supplies or receives the data. This format does not necessarily
need to be the same as that of the column where the data is stored in the
database. Store data to be retrieved from, or inserted into, table columns of
type date in character arrays with a minimum length of 25 in your program.
Retrieve items of type money into program variables of type real*4 or
real*8.

When you reference ordinary character-string data in a param target list, use
the c type indicator with or without specifying the number of characters to be
assigned. The optional length specification has the following effect, depending
on the kind of statement in which the target list appears:

n In an input statement, such as append or putform, the length
specification, N, attached to a c type indicator, limits to N the number of
bytes actually assigned from the Fortran character variable to the
database or form object. The default is to assign as many bytes from the
Fortran variable as can be accommodated in the database or form object
after trimming trailing blanks.

n In an output statement, such as retrieve or getform, the length
specification limits to N the number of bytes of actual data assigned from
the database or form object to the Fortran character variable. In the
absence of the length specifier, EQUEL writes into the variable as much of
the data as the variable can hold. The Fortran character variable is always
padded with blanks, if the length of the data is shorter than that of the
variable.

The following examples show a param append statement:

program param
DECLARE

C Declare variables to be used for supplying data to
C the database

character*27 chvar
integer*4 intvar
real*8 rvar

C Declare variables for the PARAM target list, the array C
of variable addresses, and the database table to be
C used.

character*100 tlist
integer*4 varadr(3)
character*25 tblnam

C Now assign values to variables in order to set up
C the PARAM statements. In a real application, this

Chapter 4: Embedded QUEL for Fortran 4-29

Dynamically Built Param Statements

would be done during the process of interacting with
the user, as well as by obtaining information from
the system catalogs, or from the FRS, about the
number and data type of table columns. In this
example, the assignments are hard-coded.

alalaiake]

tblnam = 'employee'

The following target list is for use with the APPEND
statement. Note that the type indicators appear on the
right-hand side of the assignments. Column names
appear on the left-hand side.

eEaleKal

tlist = 'empname=%c, empnum=%i4, salary=%f8'

C The next three statements assign, to an array of
C integers, the addresses of variables which will
C supply data for the APPEND statement. Note the use of
C the EQUEL functions 'IInum and IIstr' to access the
C address of the variables.
varadr(l) = IIstr (chvar)
varadr(2) = IInum(intvar)
varadr(3) = IInum(rvar)

Next, values are assigned to the data variables
themselves. Again, in an actual application this
would likely be done by interacting with the user.

aEXale]

chvar = 'Jane Swygart'
intar = 332
rvar = 37500.00

ingres personnel
#i# append to tblnam (PARAM (tlist, varadr))
#H exit

end M

VMS

program param_example
declare

C Declare variables to be used for supplying data to
C the database

character*27 ch_var
integer*4 int_var
real*8 real_var

C Declare variables for the PARAM target list, the
C array of variable addresses, and the database table
C to be used.

character*100 targlist
integer*4 varaddr (3)
character*25 tablename

Now assign values to variables in order to set up
the PARAM statements. In a real application, this
would be done during the process of interacting with
the user, as well as by obtaining information from
the system catalogs, or from the FRS, about the
number and data type of table columns. In this
example, the assignments are hard-coded.

aEaleiakeiake]

4-30 Embedded QUEL Companion Guide

Dynamically Built Param Statements

tablename = 'employee'
C The following target list is for use with the APPEND
C statement. Note that the type indicators appear on
C the right-hand side of the assignments. Column names
C appear on the left-hand side.

targlist = 'empname=%c, empnum=%i4, salary=%f8'
C The next three statements assign, to an array of
C integers, the addresses of variables that will supply
C data for the APPEND statement.

C Note the use of the EQUEL function 'IIdesc' to access
C the address of the character variable.

varaddr (1) = IIdesc (ch_var)
varaddr (2) = %loc(int_var)
varaddr(3) = %loc(real_var)

C Next, values are assigned to the data variables
C themselves. Again, in an actual application this
C would likely be done by interacting with the user.

ch_var = 'Jane Swygart'
int_var = 332
real_var = 37500.00

1ingres personnel
append to tablename (PARAM (targlist, varaddr))

exit
end M

program param_example
declare

C Declare variables to be used for supplying data to
C the database

character*27 ch_var
integer*4 int_var
real*8 real_var

C Declare variables for the PARAM target list, the
C array of variable addresses, and the database table

C to be used.

character*100 targlist
integer*4 varaddr (4)
character*25 tablename

C Data types
integer*4 DATE, MONEY, CHAR, VARCHAR, INT, FLOAT, C, TEXT

parameter (DATE = 3,

1 MONEY = 5,
2 CHAR= 20,

3 VARCHAR = 21,

4 INT = 30,

5 FLOAT = 31,
6 c = 32,

7 TEXT= 37)

C Now assign values to variables in order to set up

Chapter 4: Embedded QUEL for Fortran 4-31

Dynamically Built Param Statements

the PARAM statements. In a real application, this
would be done during the process of interacting with
the user, as well as by obtaining information from
the system catalogs, or from the FRS, about the
number and data type of table columns. In this
example, the assignments are hard-coded.

eEaleEalakal

tablename = 'employee'

The following target list is for use with the APPEND
statement. Note that the type indicators appear on
the right-hand side of the assignments. Column names
appear on the left-hand side.

[aNalala)

targlist = 'empname=%c, empnum=%i4, salary=%f8'

The next three statements assign, to an array of
integers, the addresses of variables that will supply
data for the APPEND statement.

[aNaNe!

C Note the use of the EQUEL function 'IIdesc' to access

C the address of the character variable.

C The type and the length of the Fortran character variable

C needs to be supplied
varaddr (1) = IIdesc (ch_var, CHAR, LEN(ch_var))
varaddr(2) = %loc(int_var)

varaddr (3) = %loc(real_var)
Next, values are assigned to the data variables
themselves. Again, in an actual application this
would likely be done by interacting with the user.

aXale]

ch_var = 'Jane Swygart'
int_var = 332
real_var = 37500.00

1ingres personnel
append to tablename (PARAM (targlist, varaddr))
#H exit

end M

Practical Uses of Param Statements

Most applications do not need param statements, because programs are
usually intended for specific purposes and are based on databases whose
designs are known at the time the programs are coded. Param statements
are crucial mainly for generic programs. An example of such a program is QBF,
the Ingres user-interface program capable of operating on any database, and
any table, form, or joindef specified by the user.

4-32 Embedded QUEL Companion Guide

Dynamically Built Param Statements

It is difficult to illustrate practical examples of param statements because in
an actual application, you must code to determine the name, number and data
type of the objects to be manipulated in a param statement target list, in
addition to the coding required to obtain or operate on data values. For an
extended, practical example, see UNIX, VMS, Windows—An Interactive
Database Browser Using Param Statements in this chapter. The target string
and address array are customarily built from information obtained from
various sources: the user, the formdata and tabledata statements, and the
Ingres system catalogs. In an EQUEL/FORMS program, a typical scenario
prompts the user for the name of a form to operate on, and then uses the
formdata and tabledata statements to get name and type information about
the fields. Subsequently, the various param target lists and address arrays
the program needs would be built using this information. The examples here
illustrate only the syntax of the param statements themselves, as well as
simplified mechanics of setting up their component parts.

The example above, with a param append, is typical for an input statement,
where values are being supplied to the database or form from program
variables. Other input statements include replace, initialize, putform,
loadtable, putrow, and so forth.

Output statements are similar, except that the type indicators appear on the
left-hand side of the assignment statements in the param target list. In these
statements, program variables receive data from the database or the form.
Output statements include retrieve, getform, finalize, unloadtable,
getrow, and so forth. For the format of the param target lists for cursor
statements, see Param Versions of Cursor Statements in this chapter.

Indicator Variables in Param Statements

You can code param statements to accommodate data assigned to or from
nullable columns and form fields. The syntax is analogous to that previously
described, with the exception that, in the target string, type indicators are
needed in place of both the data variable and the indicator variable. Since
indicator variables are always 2-byte integers, you can use the i2 type
indicator for this purpose. A sample target list of a param retrieve statement,
including indicator variables, might look like this:

tlist = '"%c:%i2=e.empname, %f8:%i2=e.salary'’

The var_address_array corresponding to this target list needs four cells,
initialized in the following order:

a character-variable address

an address of an integer*2

an address of a real*8

an address of another integer*2

Chapter 4: Embedded QUEL for Fortfran 4-33

Dynamically Built Param Statements

When the retrieve statement executes, one or both of the short variables can
contain the value -1 if null data were present in that row of the table.

Using the Sort Clause in Param Retrieves

Unlike the non-param version of the retrieve statement, the param version
has no application-supplied names for result columns. The non-param
retrieve uses the same names as for the host variables used to receive the
data, but in a param retrieve these names are not present in the statement.
Only the type indicators are seen by the EQUEL runtime system when the
param retrieve is executed.

In order to meet the need for result column names in the statement, Ingres
generates internal names. If you want to include a sort clause in a param
retrieve, you must use the internally generated result column names as
arguments to the sort clause. These names are “ret_varl”, “ret_var2”, and so
forth, named sequentially for all the result columns represented by type
indicators in the target list. (Ignore null indicators in determining this
sequence.) For example, assume a target list as in the previous section:

tlist = '"%c:%i2=e.empname,%f8:%i2=e.salary’

If you want to retrieve and sort by the result column representing salary,
you must supply the internal name “ret_var2” to the sort clause:

retrieve (param(tlist,varadr))
sort by ret_var2:d

This sorts by the second result column, in descending order.

Param Versions of Cursor Statements

There are param versions for cursor versions of the retrieve and replace
statements. In the case of the cursor retrieve, the param target list is used in
the retrieve cursor statement, not in the declare cursor statement. The
non-param retrieve cursor target list is simply a comma-separated list of
Fortran variables corresponding to the result columns identified in the declare
cursor statement. Therefore, the target string in the param version is a
comma-separated list of type indicators, optionally with associated type
indicators for the null indicator variables.

When you code the declare cursor statement for use with the param version
of retrieve cursor, you should take advantage of the fact that the entire
target list in declare cursor can be replaced by a host character variable.
This, in effect, allows the whole retrieve statement in declare cursor to be
determined at runtime. Then, the components of the param retrieve cursor
can be built dynamically for the associated declare cursor statement.

4-34

Embedded QUEL Companion Guide

Dynamically Built Param Statements

The target string for a retrieve cursor statement might look something like
the following:

tlist = '"%C:%12,%f8:%12"

This target list is appropriate for a retrieve cursor where the associated
declare cursor retrieved two nullable columns, one character string and one
floating-point value.

The replace cursor statement also supports a param version. Its target list
looks the same as in the non-cursor version of replace.

The following is a somewhat expanded example, showing both the declare
cursor, retrieve cursor, and replace cursor:

program cursor
declare

C Declare variables to be used for supplying data
C to the database

character*25 chvar
integer intvar
#Ht real*8 rvar

integer*2 nulind

C Declare variables for the various target lists and
C the arrays of variable addresses

character*100 delist
character*100 rtlist
character*100 rplist

integer*4 rtvadr(10)
integer*4 rpvadr(5)
integer nomore, ingerr

character*10 newpay

0
0

nomore
ingerr

ingres 'personnel'

Assign values of target lists for DECLARE CURSOR,
RETRIEVE CURSOR, and REPLACE CURSOR. The second and
third of these have PARAM clauses. The first doesn't
need one, as it transfers no data. In the target
list for RETRIEVE CURSOR, a null indicator

is included for the floating-point value.

eEaleEalaNa

delist = 'employee.empname, employee.age,
employee.salary'

'%C, %14, %f8:%i2'

'salary=%f8"'

rtlist =
rplist =
C Assign pointer values to the address array for
C the RETRIEVE CURSOR statement.

rtvadr (1)
rtvadr(2)

IIstr(chvar)
IInum(intvar)

Chapter 4: Embedded QUEL for Fortran 4-35

Dynamically Built Param Statements

rtvadr(3)
rtvadr(4)

IInum(rvar)
ITnum(nulind)

declare cursor cursorl For Retrieve (delist)
#Ht For Direct Update of (salary)
open cursor cursorl
10 continue
if ((ingerr .eq. 0) .and. (nomore .eq. 0)) then
retrieve cursor cursorl (param(rtlist, rtvadr))

inquire ingres (ingerr = ERRORNO, nomore = ENDQUERY)

C If an Ingres error occurred, or if no more rows
C found for the cursor, break loop.

if ((ingerr .eq. 0) .and. (nomore .eq. 0)) then

C If salary for this record is null, print name and age,
C prompt the user to enter the salary, and replace the
C value in that row. If salary is not null, print name,
C age, and salary.

if (nulind .eq. -1) then
print *, chvar, intvar
write (*,50)

50 format (' Enter Salary: ',$)
accept 51, rvar
51 format (f8.2)

if (rvar .gt. 0) then
rpvadr(l) = IInum(rvar)
replace cursor cursorl (param
(rplist, rpvadr))

endif
else

print *, chvar, intvar, rvar
endif

else if (ingerr .eq. 1) then
print *, 'Error occurred, exiting ...'

else if (nomore .eq. 1) then
print *, 'No more rows'
endif
goto 10
close cursor cursorl

##H exit
end X

VMS

program param_cursor
declare

C Declare variables to be used for supplying data
C to the database

character*25 ch_var
integer int_var
real*8 real_var
integer*2 null_ind

4-36 Embedded QUEL Companion Guide

Dynamically Built Param Statements

C Declare variables for the various target lists and
C the arrays of variable addresses

character*100 decl_cursor_list
character*100 ret_cursor_list
character*100 repl_cursor_list

integer*4 ret_varaddr(10)
integer*4 repl_varaddr(5)
integer thatsall, ingerror

character*10 newsalary

thatsall
ingerror

0
0

ingres 'personnel'

Assign values of target lists for DECLARE CURSOR,
RETRIEVE CURSOR, and REPLACE CURSOR. The second and
third of these have PARAM clauses. The first doesn't
need one, as it transfers no data. In the target
list for RETRIEVE CURSOR, a null indicator is
included for the floating-point value.

aNalelalalal

decl_cursor_list

='employee.empname,employee.age,employee.salary'
ret_cursor_list = '%c, %i4, %f8:%i2'
repl_cursor_list = 'salary=%f8'

C Assign pointer values to the address array for
C the RETRIEVE CURSOR statement.

ret_varaddr(1l)
ret_varaddr(2)
ret_varaddr(3)
ret_varaddr(4)

IIdesc(ch_var)
%loc (int_var)
%loc(real_var)
%loc (null_ind)

declare cursor cursorl for retrieve
#i# (decl_cursor_list)
for direct update of (salary)

OPEN CURSOR cursorl

do while ((ingerror .eq. 0) .and. (thatsall .eq. 0))
retrieve cursor cursorl (Param(ret_cursor_list,
ret_varaddr))
inquire ingres (ingerror = ERRORNO,
thatsall = ENDQUERY)

C If an Ingres error occurred, or if no more rows
C found for the cursor, break loop.

if ((ingerror .eq. 0) .and. (thatsall .eq. 0)) then

C If salary for this record is null, print name and
C age, prompt the user to enter the salary, and

C replace the value in that row. If salary is not

C null, print name, age, and salary.

if (null_ind .eq. -1) then
print *, ch_var, int_var
write (*,50)

50 format (' Enter Salary: ',$)
accept 51, real_var
51 format (f8.2)

if (real_var .gt. 0) then

Chapter 4: Embedded QUEL for Fortran 4-37

Dynamically Built Param Statements

repl_varaddr(l) = %loc(real_var)
REPLACE CURSOR cursorl (PARAM
(repl_cursor_list, repl_varaddr))

endif
else

print *, ch_var, int_var, real_var

endif

else if (ingerror .eq. 1) then
print *, 'Error occurred, exiting ...'

else if (thatsall
print *, 'No more rows'

endif end do

.eq. 1) then

close cursor cursorl

#t exit
end M

program param_cursor

declare

C Declare variables to be used for supplying data

C to the database

character*25
integer

real*8

integer*2

ch_var
int_var
real_var
null_ind

C Declare variables for the various target lists and
C the arrays of variable addresses

character*100 decl_cursor_list
character*100 ret_cursor_list
character*100 repl_cursor_list

integer*4

integer*4

integer
character*10

thatsall
ingerror

ingres 'personnel'

eEaleEalaNa

ret_varaddr (10)
repl_varaddr(5)
thatsall, ingerror

newsalary

0
0

decl_cursor_list
ret_cursor_list = '%c, %i4, %f8:%i2'
repl_cursor_list

Assign values of target lists for DECLARE CURSOR,
RETRIEVE CURSOR, and REPLACE CURSOR. The second and
third of these have PARAM clauses. The first doesn''t
need one, as it transfers no data. In the target

list for RETRIEVE CURSOR, a null indicator is
included for the floating-point value.

='employee.empname,employee.age,employee.salary’

= 'salary=%f8'

C Assign pointer values to the address array for
C the RETRIEVE CURSOR statement.

ret_varaddr (1)
ret_varaddr(2)

IIdesc(ch_var, 20, LEN(ch_var))
%loc(int_var)

4-38

Embedded QUEL Companion Guide

Runtime Error Processing

ret_varaddr(3)
ret_varaddr (4)

= %loc(real_var)

= %loc(null_ind)

declare cursor cursorl for retrieve
(decl_cursor_list)

for direct update of (salary)

OPEN CURSOR cursorl

do while ((ingerror .eq. 0) .and. (thatsall .eq. 0))
retrieve cursor cursorl (Param(ret_cursor_list,
ret_varaddr))
inquire_ingres (ingerror = ERRORNO,
thatsall = ENDQUERY)

C If an Ingres error occurred, or if no more rows
C found for the cursor, break loop.

if ((ingerror .eq. 0) .and. (thatsall .eq. 0)) then

C If salary for this record is null, print name and
C age, prompt the user to enter the salary, and

C replace the value in that row. If salary is not

C null, print name, age, and salary.

50

51

##
#i#

#i

#it

if (null_ind .eq. -1) then
print *, ch_var, int_var
write (*,50)
format (' Enter Salary: ',$)
accept 51, real_var
format (f8.2)
if (real_var .gt. 0) then
repl_varaddr(l) = %loc(real_var)
REPLACE CURSOR cursorl (PARAM
(repl_cursor_list, repl_varaddr))
endif
else
print *, ch_var, int_var, real_var
endif

else if (ingerror .eq. 1) then
print *, 'Error occurred, exiting ...'

else if (thatsall .eq. 1) then
print *, 'No more rows'

endif
end do
close cursor cursorl

exit
end X

Runtime Error Processing

This section describes a user-defined EQUEL error handler.

Chapter 4: Embedded QUEL for Forfran

4-39

Runtime Error Processing

Programming for Error Message Output

By default, all Ingres and forms system errors are returned to the EQUEL
program, and default error messages are printed on the standard output
device. As discussed in the QUEL Reference Guide and the Forms-based
Application Development Tools User Guide, you can also detect the
occurrences of errors by means of the program using the inquire_ingres and
inquire_frs statements. (Use inquire_frs for checking errors after forms
statements. Use inquire_ingres for all other EQUEL statements.)

This section discusses an additional technique that enables your program not
only to detect the occurrences of errors, but also to suppress the printing of

default Ingres error messages if you choose. The inquire statements detect

errors but do not suppress the default messages.

This alternate technique entails creating an error-handling function in your
program, and passing its address to the Ingres runtime routines. This makes
Ingres automatically invoke your error handler whenever either an Ingres or a
forms-system error occurs. You must declare your program error handler as
follows:

integer function funcname (errorno)
integer errorno

end

You must pass this function to the EQUEL routine IIseterr() for runtime
bookkeeping using the Fortran statements:
external funcname

integer funcname
IIseterr (funcname);

This forces all runtime Ingres errors through your function, passing the Ingres
error number as an argument. If you choose to handle the error locally and
suppress Ingres error message printing the function should return 0;
otherwise the function should return the Ingres error number received.

Avoid issuing any EQUEL statements in a user-written error handler defined to
Ilseterr, except for informative messages, such as message, prompt, sleep
and clear screen, and messages that close down an application, such as
endforms and exit.

The example below demonstrates a typical use of an error function to warn
users of access to protected tables. It also passes through all other errors for
default treatment.

program errhnd
declare

external locerr
integer locerr

4-40 Embedded QUEL Companion Guide

Runtime Error Processing

ingres dbname
IIseterr(locerr)

#H exit
end

integer function locerr(errno)
parameter (TBLPRO = 5003)
integer errno

if (errno .eq. TBLPRO) then
print *, 'You are not authorized for this/ operation.'

locerr = 0
else
locerr = errno
endif
return
end

A more practical example would be a handler to catch deadlock errors. For
deadlock, a reasonable handling technique in most applications is to suppress
the normal error message and simply restart the transaction.

The following EQUEL program executes a Multi-Query Transaction and handles
Ingres errors, including restarting the transaction on deadlock.

This example uses a program-defined error handler, rather than the
inquire_ingres statement, to detect Ingres errors. This technique allows the
normal Ingres error message to be suppressed in the case of deadlock, and
the transaction to restart automatically without the user’s knowledge.

#i program mqterr
declare
parameter (NOERR = 0)
external errprc, tdone
integer errprc, ingerr
logical tdone
common /errors/ ingerr
#t ingres dbname
C Set up test data
#it create item (name=cl0, number=i4)
call IIseterr(errprc)
ingerr = NOERR
C The following do-while loop will iterate until the
C transaction completes or fails: it restarts the
C transaction on deadlock.

10 continue
if (.not. tdone()) then
goto 10
end

C The function 'tdone' contains the multi-query
C transaction. The transaction consists of an APPEND,
C a REPLACE and a DELETE of a single row.
logical function tdone
declare
external dlock
logical dlock
#Ht begin transaction

Chapter 4: Embedded QUEL for Fortran 4-41

Runtime Error Processing

append To item (name='Barbara', number=38)
if (dlock()) then
tdone = .false.
return
endif
#Ht replace item (number=39) where item.name='Barbara’
if (dlock()) then
tdone = .false.
return
endif
delete item where item.number=38
if (dlock()) then
tdone = .false.
return
endif
#Ht end transaction
destroy item

#t exit
tdone = .true.
end

C The following routine differentiates deadlock from
C other errors. If the Ingres error is deadlock,

C the DBMS will automatically

C ABORT an existing MQT. If the error is not deadlock,
C this routine aborts the transaction and the program.

#Ht logical function dlock
#H declare
parameter (EDLOCK = 4700)
parameter (NOERR = 0)
integer ingerr
common /errors/ ingerr

if (ingerr .gt. O) then
if (ingerr .eq. EDLOCK) then
ingerr = NOERR
dlock = .true.
return
else
print *, 'Aborting -- Error #', ingerr
abort
exit
stop
endif
endif

dlock = .false.
return
end

C The following is a user-defined error-handling routine.
C Returns O if the Ingres error is deadlock to

C prevent the runtime system from printing an error

C message.

integer function errprc (errno)
parameter (EDLOCK = 4700)
integer errno
integer ingerr
common /errors/ ingerr
ingerr = errno
if (errno .eq. EDLOCK) then
errprc = 0
else
errprc = errno

4-42 Embedded QUEL Companion Guide

Runtime Error Processing

VMS

##
#i#

##

C Set

##

C The

endif
return
end M

program mqterr

declare

parameter (ERR_NOERROR = 0)
external errproc, transdone
integer errproc, ingerr
logical transdone

common /errors/ ingerr

ingres dbname

up test data

create item (name=cl0, number=i4)
call IIseterr(errproc)

ingerr = ERR_NOERROR

following do-while loop will iterate until the

C transaction completes or fails: it restarts the
C transaction on deadlock.

##

C The

do while (.not. transdone())
end do
end

function 'transdone' contains the multi-query

C transaction. The transaction consists of an APPEND,
C a REPLACE and a DELETE of a single row.

##
#it

#i#
##

#i

#i#

#i#
##
#i#
##

C The

logical function transdone
declare

external deadlock
logical deadlock

begin transaction
append to item (NAME='Barbara', number=38)
if (deadlock() .eq. .true.) then
transdone = .false.
return
endif

append To (number=39) WHERE item.name='Barbara'’
if (deadlock() .eq. .true.) then

transdone = .false.

return
endif

delete item Where item.number=38
if (deadlock() .eq. .true.) then
transdone = .false.
return
endif

end transaction
destory item

exit

transdone = .true.
end

following routine differentiates deadlock from

Chapter 4: Embedded QUEL for Fortfran 4-43

Runtime Error Processing

C other errors. If the Ingres error is deadlock,

C the DBMS will automatically ABORT an existing MQT.
C If the error is not deadlock, this routine aborts
C the transaction and the program.

#Ht logical function deadlock

declare
parameter (ERR_ DEADLOCK = 4700)
parameter (ERR_NOERROR = 0)
integer ingerr
common /errors/ ingerr

if (ingerr .gt. 0) then
if (ingerr .eq. ERR_DEADLOCK) then
ingerr = ERR_NOERROR
deadlock = .true.
return
else
print *, 'Aborting -- Error #', ingerr
abort
#it exit
stop
endif
endif

deadlock = .false.
return
end

C The following is a user-defined error-handling routine.
C Returns 0 if the Ingres error is deadlock to

C prevent the runtime system from printing an error

C message.

integer function errproc (errorno)
parameter (ERR_DEADLOCK = 4700)
integer errorno

integer ingerr

common /errors/ ingerr

ingerr = errorno

if (errorno .eq. ERR _DEADLOCK) then
errproc = 0

else
errproc = errorno

endif

return

end

#i# program mqterr

declare
parameter (ERR_NOERROR = 0)
external errproc, transdone
integer errproc, ingerr
logical transdone
common /errors/ ingerr

#Ht ingres dbname
C Set up test data
#Ht create item (name=cl0, number=i4)

call IIseterr(errproc)
ingerr = ERR_NOERROR

4-44 Embedded QUEL Companion Guide

Runtime Error Processing

C The following do-while loop will iterate until the
C transaction completes or fails: it restarts the
C transaction on deadlock.

do while (.not. transdone())
end do
end

C The function 'transdone' contains the multi-query
C transaction. The transaction consists of an APPEND,
C a REPLACE and a DELETE of a single row.

#Ht logical function transdone
declare

external deadlock
logical deadlock

#t begin transaction
append to item (NAME='Barbara', number=38)
if (deadlock() .eq. .true.) then
transdone = .false.
return
endif

#H append to item (number=39) WHERE item.name='Barbara
if (deadlock() .eq. .true.) then
transdone = .false.
return
endif

delete item Where item.number=38
if (deadlock() .eq. .true.) then
transdone = .false.
return
endif

#Ht end transaction
#Ht destroy item

exit
transdone = .true.
end

C The following routine differentiates deadlock from
C other errors. If the Ingres error is deadlock,

C the DBMS will automatically ABORT an existing MQT.
C If the error is not deadlock, this routine aborts

C the transaction and the program.

#it logical function deadlock
declare
parameter (ERR_ DEADLOCK
parameter (ERR_NOERROR =
integer ingerr
common /errors/ ingerr

= 4700)
0)

if (ingerr .gt. 0) then
if (ingerr .eq. ERR_DEADLOCK) then
ingerr = ERR_NOERROR

deadlock = .true.
return
else
print *, 'Aborting -- Error #', ingerr
#it abort
exit

Chapter 4: Embedded QUEL for Forfran

4-45

Precompiling, Compiling, and Linking an EQUEL Program

stop
endif
endif

deadlock = .false.
return
end

C The following is a user-defined error-handling routine.
C Returns 0 if the Ingres error is deadlock to

C prevent the runtime system from printing an error

C message.

integer function errproc (errorno)
parameter (ERR_DEADLOCK = 4700)
integer errorno

integer ingerr

common /errors/ ingerr

ingerr = errorno

if (errorno .eq. ERR_DEADLOCK) then
errproc = 0

else
errproc = errorno

endif

return

end M

Precompiling, Compiling, and Linking an EQUEL Program

This section describes the EQUEL preprocessor for Fortran and the steps
required to precompile, compile, and link an EQUEL program.

Generating an Executable Program

The following sections describe command line operations that you can use to
turn your EQUEL source code program into an executable program. These
commands preprocess, compile, and link your program.

4-46 Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

The EQUEL Preprocessor Command

Use the following command line to invoke the Fortran preprocessor:

eqf {flags} {filename}

where flags are as follows:

Flag

Description

-d

Adds debugging information to the runtime database error
messages EQUEL generates. The source file name, line
number, and the erroneous statement itself are printed
with the error message.

-f[filename]

Writes preprocessor output to the named file. If the -f flag
is specified without a filename, the output is sent to
standard output, one screen at a time. If the -f flag is
omitted, output is given the basename of the input file,
suffixed “.f” (UNIX) or “.for” (VMS and Windows).

Sets the default size of integers to N bytes. N is 2 or 4. The
default is 4. If 2 is used, the -12 flag (UNIX), the noi4
qualifier (VMS), or the /integer_size:16 flag (Windows)
must be used with the Fortran compiler.

Writes preprocessor error messages to the preprocessor’s
listing file, as well as to the terminal. The listing file
includes preprocessor error messages and your source text
in a file named filename.lis, where filename is the name of
the input file.

Like -1, but the generated Fortran code also appears in the
listing file.

-n. ext

Specifies the extension used for filenames in ## include
and ## include inline statements in the source code. If -n
is omitted, include filenames in the source code must be
given the extension “.gf".

-0. ext

Specifies the extension the preprocessor gives to both the
translated include statements in the main program and the
generated output files. If this flag is not provided, the
default extension is “.f"

If you use this flag in combination with the -o flag, then
the preprocessor generates the specified extension for the
translated include statements, but does not generate new
output files for the include statements.

-0

Directs the preprocessor not to generate output files for
include files.

Chapter 4: Embedded QUEL for Fortran 4-47

Precompiling, Compiling, and Linking an EQUEL Program

Flag

Description

This flag does not affect the translated include statements
in the main program. The preprocessor generates a default
extension for the translated include file statements unless
you use the -o0. ext flag.

Reads input from standard input and generate Fortran code
to standard output. This is useful for testing statements
you are not familiar with. If the -l option is specified with
this flag, the listing file is called “stdin.lis.” To terminate the
interactive session, type Ctrl D (UNIX) or Ctrl Z (VMS and
Windows).

-w

Prints warning messages.

Shows the available command line options for eqf.

The EQUEL/Fortran preprocessor assumes that input files are named with the
extension “.qf”. To override this default, specify the file extension of the input
file(s) on the command line. The output of the preprocessor is a file of
generated Fortran statements with the same name and the extension ™.f”
(UNIX) or “.for” (VMS and Windows).

If you enter the command without specifying any flags or a filename, a list of
available flags for the command is displayed.

The following table presents a range of the options available with eqf.

Eqf Command Examples

Command

Comment

eqf filel

Preprocesses “filel.gf” to “filel.for”

eqf -l file2.xf

Preprocesses “file2.xf” to “file2.for” and creates listing
“file2.lis”

eqf -s

Accept input from standard input and write generated
code to standard output

eqf -ffile4.out
file4

Preprocesses “file4.qf” to “file4.out”

eqf

Displays a list of available flags for this command.

4-48

Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

The Fortran Compiler

VMS

The preprocessor generates Fortran code. The generated code is in tab format,
in which each Fortran statement follows an initial tab. (For information on the
EQUEL format acceptable as input to the preprocessor, see EQUEL Statement
Syntax for Fortran in this chapter.)

You must use the f77 command to compile this code. You can use most of
the f77 command line options. If you use the -i2 flag to interpret integer
and logical declarations as 2-byte objects, you must have run the
EQUEL/Fortran preprocessor with the -i2 flag.

The following example preprocesses and compiles the file “test1”. The
EQUEL/Fortran preprocessor assumes the default file extension “.qf".

$ eqf testl
$ f77 testil.f X

You should use the VMS fortran command to compile this code. You can use
most of the fortran command line options. If you use the noi4 qualifier to
interpret integer and logical declarations as 2-byte objects, you must have
run the EQUEL/Fortran preprocessor with the =i2 flag. You must not use the
g_floating qualifier if floating-point values in the file are interacting with
Ingres floating-point objects. Note, too, that many of the statements that the
preprocessor generates are nonstandard extensions provided by VAX/VMS.
You should not attempt to compile with the nof77 qualifier, which requires
compatibility with Fortran-66.

The following example preprocesses and compiles the file “test1”. The
EQUEL/Fortran preprocessor assumes the default file extension “.qf".

$ eqf testl
$ fortran/list testl M

Use the Windows df command to compile this code. The following compile
options are required for Windows:

/name:as_is Treat uppercase and lowercase letters as
different.

/iface:nomixed_str_len_a Requests that the hidden lengths be placed in

rg sequential order at the end of the argument
list.

/iface:cref Names are not decorated, the caller cleans the

call stack and var args are supported.

If you use the /integer_size:16 qualifier to interpret integer and logical
declarations as 2-byte objects, you must have run the Fortran preprocessor
with the -i2 flag.

Chapter 4: Embedded QUEL for Fortran 4-49

Precompiling, Compiling, and Linking an EQUEL Program

The following example preprocesses and compiles the file “testl.” The
Embedded SQL preprocessor assumes the default extension:

esqlf testl
df /compile_only /name:as_is /iface:nomixed_str_len_arg /iface:cref testl - |

Note: Check the Readme file for any operating system specific information on
compiling and linking EQUEL/Fortran programs.

Linking an EQUEL Program - UNIX

EQUEL programs require procedures from several Ingres libraries. The libraries
required are listed below and must be included in your compile or link
command after all user modules. The libraries must be specified in the order
shown in the examples that follow.

Programs Without Embedded Forms

The following example demonstrates the link command of an EQUEL program
called “dbentry” that has been preprocessed and compiled:
f77 -o dbentry dbentry.o \

$II_SYSTEM/ingres/lib/1libingres.a \
-Im -1c

Note that both the math library and the C runtime library must be included.

Ingres shared libraries are available on some Unix platforms. To link with
these shared libraries replace “libingres.a” in your link command with:

-L $II_SYSTEM/ingres/lib -linterp.l -1frame.1l -1qg.1 \
-lcompat.1l

To verify if your release supports shared libraries check for the existence of
any of these four shared libraries in the $II_SYSTEM/ingres/lib directory. For
example:

1s -1 $II_SYSTEM/ingres/lib/1libg.1.*

Programs with Embedded Forms

If your program includes embedded forms, you must link your program with
some additional libraries. The following example demonstrates the link
command of an EQUEL program called “formentry” that includes forms
statements:

f77 -o formentry formentry.o \

$II_SYSTEM/ingres/lib/libingres.a \
-Im -1c

Note that both the math library and the C runtime library must be included.

4-50 Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

Compiling and Linking Precompiled Forms

The technique of declaring a precompiled form to the FRS is discussed in the
Embedded Forms Programming Guide. To use such a form in your program,
you must also follow the steps described here. In VIFRED, you can select a
menu item to compile a form. When you do this, VIFRED creates a file in your
directory describing the form in C. VIFRED lets you select the name for the
file. Once you have created the C file this way, you can compile it into linkable
object code with the cc command:

cc filename

The output of this command is a file with the extension “.0"”. You then link this
object file with your program by listing it in the link command, as in the
following example, which includes the compiled form “empform.o”:

f77 -o formentry formentry.o \

empform.o \

$II_SYSTEM/ingres/lib/1libingres.a \
-Im -1c

Linking an EQUEL Program - VMS

EQUEL programs require procedures from several VMS shared libraries in order
to run properly. After preprocessing and compiling an EQUEL program, you
can link it. Assuming the object file for your program is called “dbentry,” use
the following link command:

$ link dbentry.obj,-
ii_system:[ingres.files]equel.opt/opt

It is recommended that you do not explicitly link in the libraries referenced in
the EQUEL.OPT file. The members of these libraries change with different
releases of Ingres. Consequently, you can be required to change your link
command files in order to link your EQUEL programs.

Assembling and Linking Pre-Compiled Forms

The technique of declaring a pre-compiled form to the FRS is discussed in the
Embedded Forms Programming Guide. To use such a form in your program,
you must also follow the steps described here. In VIFRED, you can select a
menu item to compile a form. When you do this, VIFRED creates a file in your
directory describing the form in the VAX-11 MACRO language. VIFRED lets you
select the name for the file. Once you have created the MACRO file this way,
you can assemble it into linkable object code with the VMS command

macro filename

Chapter 4: Embedded QUEL for Fortran 4-51

Precompiling, Compiling, and Linking an EQUEL Program

The output of this command is a file with the extension “.obj”. You then link
this object file with your program (in this case named “formentry” by listing it
in the link command, as in the following example:

$ link formentry,-

empform.obj, -
ii_system:[ingres.files]equel.opt/opt

Linking an EQUEL Program without Shared Libraries

While the use of shared libraries in linking EQUEL programs is recommended
for optimal performance and ease-of-maintenance, non-shared versions of the
libraries have been included in case you require them. Non-shared libraries
required by EQUEL are listed in the equel.noshare options file. The options file
must be included in your link command after all user modules. Libraries must
be specified in the order given in the options file.

The following example demonstrates the link command of an EQUEL program
called “dbentry” that has been preprocessed and compiled:

$ link dbentry, -
ii_system:[ingres.files]equel.noshare/opt

Linking an EQUEL Program - Windows

To run properly, EQUEL programs require procedures from several Windows
libraries. After preprocessing and compiling an EQUEL program, you can link it.
Assuming the object file for your program is called “dbentry,” use the following
link command:

link /out:dbentry.exe, \

dbentry.obj,\
%II_SYSTEM%\ingres\lib\libingres.1lib

Assembling and Linking Pre-Compiled Forms

The technique of declaring a pre-compiled form to the FRS is discussed in the
Forms-based Application Development Tools User Guide. To use such a form in
your program, you must also follow the steps described here. Within VIFRED,
you can select a menu item to compile a form. When you do this, VIFRED
creates a file in your directory describing the form in the C language. VIFRED
lets you select the name for the file. Once you have created the C file this way,
you can compile it into linkable object code with the command

cl -c =MD filename

4-52

Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

The output of this command is a file with the extension “.obj”. You then link
this object file with your program (in this case named “formentry” by listing it
in the link command, as in the following example:

link /out:formentry.exe, \

empform.obj,\
%II_SYSTEM%\ingres\lib\libingres.1lib

Include File Processing

The EQUEL include statement provides a means to include external files in
your program’s source code. Its syntax is:

include filename

Filename is a quoted string constant specifying a file name, a system
environment variable (UNIX and Windows) or logical nhame (VMS) that points
to the file name. If no extension is given to the filename (or to the file name
pointed at by the environment variable (UNIX and Windows) or defined as
logical (VMS), the default Fortran input file extension *.gf” is assumed.

This statement is normally used to include variable declarations, although it is
not restricted to such use. For more details on the include statement, see the
QUEL Reference Guide.

The included file is preprocessed and an output file with the same name, but
with the default output extension “.fish generated. You can override this
default output extension with the -o.ext flag on the command line. The
reference in the original source file to the included file is translated in the
output file to the specified include output file. If you use the -o flag with no
extension, no output file is generated for the include file.

If you use both the -o.ext and the -o flags, then the preprocessor generates
the specified extension for the translated include statements in the program.
However, it does not generate new output files for the statements.

For example, assume that no overriding output extension was explicitly given
on the command line. The EQUEL statement:

include "employee.qf"

is preprocessed to the Fortran statement:

include 'employee.f'
and the file “employee.qf” is translated into the Fortran file “employee.f.”

As another example, assume that a source file called “inputfile” contains the
following include statement:

INCLUDE "MYDECLS";

Chapter 4: Embedded QUEL for Fortfran 4-53

Precompiling, Compiling, and Linking an EQUEL Program

VMS

The name "MYDECLS” can be defined as a system environment variable
pointing to the file “/dev/headers/myvars.qf” by means of the following
command at the system level:

setenv MYDECLS "/dev/headers/myvars"

Assume now that “inputfile” is preprocessed with the command:

esqlf -o.h inputfile

The command line specifies “.h” as the output file extension for include files.
As the file is preprocessed, the include statement shown earlier is translated
into the Fortran statement:

include '/dev/headers/myvars.h'

and the Fortran file “/dev/headers/myvars.h” is generated as output for the
original include file, “/dev/headers/myvars.qf”.

You can also specify include files with a relative path. For example, if you
preprocess the file “/dev/mysource/myfile.qf,” the EQUEL statement:

include "../headers/myvars.qf"

is preprocessed to the Fortran statement:

include '../headers/myvars.f'

and the Fortran file “/dev/headers/myvars.f” is generated as output for the
original include file, “/dev/headers/myvars.qf”. This statement is normally
used to include variable declarations, although it is not restricted to such use.
For more details on the include statement, see the QUEL Reference Guide. ®

If you specify a different extension with the -n flag of the eqf statement,
then you must also specify filename with that extension.

The included file is preprocessed and an output file with the same name but
with the default output extension “.for” is generated. You can override this
default output extension with the -o0.ext flag on the command line. The
reference in the original source file to the included file is translated in the
output file to the specified include output file. If you use the -0 flag without
an extension, no output file is generated for the include file. This is useful for
program libraries that are using VMS MMS or MAKE dependencies.

If you use both the -o0.ext and the -o flags, then the preprocessor generates
the specified extension for the translated include statements in the program
but does not generate new output files for the statements.

For example, assume that no overriding output extension was explicitly given
on the command line. The EQUEL statement:

include "employee.qf"

4-54 Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

is preprocessed to the Fortran statement:

include 'employee.for'
and the employee.df file is translated into the Fortran file “employee.for.”

As another example, assume that a source file called “inputfile” contains the
include statement shown below.

include "mydecls"

The name “"mydecls” is defined as a system logical name pointing to the file
“dral:[headers]myvars.qf” by means of the following command at the DCL
level:

$ define mydecls dral:[headers]myvars.qf

Assume now that “inputfile” is preprocessed with the command:

$ eqf -o0.h inputfile

The command line specifies “.h” as the output file extension for include files.
As the file is preprocessed, the include statement shown earlier is translated
into the Fortran statement:

include 'dral:[headers]lmyvars.h'

and the Fortran file “dral:[headers]myvars.h” is generated as output for the
original include file, “dral:[headers]myvars.qf.”

You can also specify include files with a relative path. For example, if you
preprocess the file “dral:[mysource]myfile.gf,” the EQUEL statement:

include "[-.headers]myvars.qf"

is preprocessed to the Fortran statement:

include '[-.headers]myvars.for'

and the Fortran file “dral:[headers]myvars.for” is generated as output for the
original include file, “dral:[headers]myvars.qf.” =

If you specify a different extension with the -n flag of the eqf statement,
then you must also specify filename with that extension.

The included file is preprocessed and an output file with the same name but
with the default output extension “.for” is generated. You can override this
default output extension with the -o0.ext flag on the command line. The
reference in the original source file to the included file is translated in the
output file to the specified include output file. If you use the -0 flag without
an extension, no output file is generated for the include file.

If you use both the -o0.ext and the -o flags, then the preprocessor generates
the specified extension for the translated include statements in the program
but does not generate new output files for the statements.

Chapter 4: Embedded QUEL for Fortran 4-55

Precompiling, Compiling, and Linking an EQUEL Program

For example, assume that no overriding output extension was explicitly given
on the command line. The EQUEL statement:

include "employee.qf"

is preprocessed to the Fortran statement:

include 'employee.for'
and the employee.df file is translated into the Fortran file “employee.for.”

As another example, assume that a source file called “inputfile” contains the
include statement shown below.

include "mydecls"

The name “mydecls” is defined as a system environment name pointing to the
file “c:\headers\myvars.qf” by means of the following command at the
command prompt:

set mydecls=c:\headers\myvars.qf

Assume now that “inputfile” is preprocessed with the command:
$ eqf -o.h inputfile

The command line specifies “.h"” as the output file extension for include files.
As the file is preprocessed, the include statement shown earlier is translated
into the Fortran statement:

include 'c:\headers\myvars.h'

and the Fortran file “c:\headers\myvars.h” is generated as output for the
original include file, “c:\headers\myvars.qf.”

You can also specify include files with a relative path. For example, if you
preprocess the file “c:\mysource\myfile.qgf,” the EQUEL statement:

include "..\headers\myvars.qf"

is preprocessed to the Fortran statement:

include '..\headers\myvars.for'

and the Fortran file “c:\headers\myvars.for” is generated as output for the
original include file, “c:\headers\myvars.qf.” ™

4-56

Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

Including Source Code with Labels

Some EQUEL statements generate labels (statement numbers). The statement
numbers 7000 through 12000 are reserved for the preprocessor. If you include
a file containing statements that generate labels, you must be careful to
include the file only once in a given Fortran scope. Otherwise, you may find
that the compiler later complains that the generated labels are defined more
than once in that scope.

The statements that generate labels are the retrieve statement and all the
EQUEL/FORMS block-type statements, such as display and unloadtable.

Coding Requirements for Writing EQUEL Programs

The following sections describe coding requirements for writing EQUEL
programs.

Comments Embedded in Fortran Output

Each EQUEL statement generates one comment and a few lines of Fortran
code. You may find that the preprocessor translates 50 lines of EQUEL into 200
lines of Fortran. This may result in confusion about line numbers when you
debug the original source code. To facilitate debugging, each group of Fortran
statements associated with a particular statement is preceded by a comment
corresponding to the original EQUEL source. (Only executable EQUEL
statements are preceded by a comment.) Each comment is one line long and
informs the reader of the file name, line number, and type of statement in the
original source file.

EQUEL Statements and Fortran If Blocks

Because each EQUEL statement may generate several Fortran statements, you
must use the block-style Fortran if statement to conditionally transfer control
to EQUEL statements. For example:

if (error .eq. .true.) then

message "Error on update"

sleep 2
end if

EQUEL also generates many nested constructs of do loops and if blocks
specifically for block-structured statements, such as display and
unloadtable. If you omit an end if from your Fortran source, the Fortran
compiler complains that there is a missing end statement, which you may
trace back to a preprocessor-generated if.

You can solve this problem by checking for matching if-end pairs in the
original EQUEL/Fortran source file.

Chapter 4: Embedded QUEL for Fortran 4-57

Preprocessor Error Messages

EQUEL Statements that Generate Labels

As mentioned, some EQUEL statements generate labels. These are the
retrieve statement and all the EQUEL/FORMS block-type statements. Each of
these statements reserves its own range of 200 labels in an overall range for
such statements of 7000 through 12000. Consequently, you cannot have more
than 200 of any single label-generating statement in the same program unit.
For example, 201 display statements in a single subroutine will cause a
compiler error indicating that a particular label has been used more than once.
You could, however, have 200 display statements and 200 unloadtable
statements without causing a problem.

An EQUEL Statement that Does Not Generate Code

The declare cursor statement does not generate any Fortran code. This
statement should not be coded as the only statement in Fortran constructs
that do not allow null statements.

EQUEL/Fortran Preprocessor Errors

To correct most errors, you may wish to run the EQUEL preprocessor with the
listing (-I) option on. The listing helps locate the source and reason for the
error.

For preprocessor error messages specific to the Fortran language, see the next
section.

Preprocessor Error Messages

E_E10001

The following is a list of error messages specific to the Fortran language.

Unsupported Fortran type ‘%0c’ used. Double assumed. Ingres does not
support the Fortran types complex and double complex

Explanation: There is no Ingres type corresponding to complex or double
complex, so the preprocessor does not map this declaration to an Ingres
type. The preprocessor will continue to generate code as if you had declared
the variable in question to be of type double precision.

If you want to store the two real (or double precision) components of a
complex (or double complex) variable then declare a pair of real (or double
precision) variables to the preprocessor, copy the components to them, and
then store the copies.

4-58 Embedded QUEL Companion Guide

Preprocessor Error Messages

E_E10002

E_E10003

E_ET10004

E_E10005

E_E10006

Fortran parameter can only be used with values. Type names, variable
names, and parameter names are not allowed.

Explanation: You have used the Fortran “parameter name = value”
statement, but “value” is not an integer constant, a floating constant, or a
string constant. You may have used the name of a Fortran data type, or a
variable (or parameter) name instead of one of the legal constant types. If
you do wish Ingres to know about this name then you must change the
“value” to be a constant.

Incorrect indirection on variable ‘%0c’. The variable is declared as an array
and is not subscripted, or is subscripted but is not declared as an array
(%1c,%2c).

Explanation: This error occurs when the value of a variable is incorrectly
expressed because of faulty indirection. For example, the name of an integer
array has been given instead of a single array element, or, in the case of
string variables, a single element of the string (that is, a character) has been
given instead of the name of the array. The preprocessor will continue to
generate code, but the program will not execute correctly if it is compiled and
run.

Last Fortran structure field referenced in '%0c’ is unknown.

Explanation: This error occurs when the preprocessor encounters an
unrecognized name in a structure reference. The preprocessor will continue to
generate code, but this statement will either cause a runtime error or produce
the wrong result if the resulting program is compiled and run.Check for
misspellings in field names and ensure that all of the structure fields have
been declared to the preprocessor.

Unclosed Fortran block - %0c unbalanced end(s).

Explanation: The preprocessor reached the end of the file still expecting one
or more closing end statements. Make sure that you have no ‘ends’ in an
unclosed character or string constant, or have not accidentally commented out
a closing end. Balance each subroutine, or function statement with a closing
end.

Unsupported definition of nested Fortran function "%0c’.

Explanation: EQUEL read the beginning of a subprogram (program,
subroutine, or function) while still in a previous subprogram definition.

Ensure that the end statement for a previous subprogram definition is not
missing.

Chapter 4: Embedded QUEL for Fortran 4-59

Sample Applications

E_E10007

E_E10008

E_E10009

E_E1000A

E_E1000C

No #+# declare before first EQUEL/Fortran statement '%0c’.

Explanation: You must issue a ## declare statement before any Ingres
statement. The generated code will probably not compile.

Reissue of #+# declare in Fortran program unit. The second declaration is
ignored.

Explanation: The declare statement should be issued exactly once in each
Fortran program unit. This error can also be caused by forgetting to ## the
program, subroutine, or function line (and the matching end). EQUEL will
ignore the extraneous declare statement.

No ## declare forms before forms statement '‘%0c’ in Fortran program unit.

Explanation: You must issue a ## declare forms statement before any
forms statement. The generated will probably not compile.

Undefined structure name %0c’ used in record declaration.

Explanation: You have declared a record variable using the name of a
structure that is unknown to the preprocessor.

The preprocessor will continue to generate code, but the resulting program will
not run properly. If you do not use this variable with an Ingres statement then
remove the record declaration. Otherwise ensure that the corresponding
structure declaration is made known to the preprocessor

Illegal length specified for Fortran numeric variable.
Explanation: Fortran integer variables may be 1, 2, or 4 bytes, and floating-

point variables may be either 4 or 8 bytes. Specifying any other value is
illegal.

Sample Applications

This section contains several sample applications for the UNIX, VMS, and
Windows environments.

UNIX and VMS—The Department-Employee Master/Detail Application

This application runs in a master/detail fashion, using two database tables
joined on a specific column. This typical example of a department and its
employees demonstrates how to process two tables as a master and a detail.

4-60 Embedded QUEL Companion Guide

Sample Applications

The program scans through all the departments in a database table to reduce
expenses. Department information is stored in program variables. Based on
certain criteria, the program updates department and employee records. The
conditions for updating the data are the following:

Departments:

n If a department has made less than $50,000 in sales, the department
is dissolved.

Employees:

n If an employee was hired since the start of 1985, the employee is
terminated.

n If the employee’s yearly salary is more than the minimum company wage
of $14,000 and the employee is not nearing retirement (over 58 years of
age), the employee takes a 5% pay cut.

n If the employee’s department is dissolved and the employee is not
terminated, the employee is moved into a state of limbo (the Toberesolved
database table, described below) to be resolved by a supervisor.

This program uses two cursors in a master/detail fashion. The first cursor is for
the Department table, and the second is for the Employee table. The create
statements used to create the tables are shown below. The cursors retrieve all
the information in their respective tables, some of which is updated. The
cursor for the Employee table also retrieves an integer date interval whose
value is positive if the employee was hired after January 1, 1985.

Each row that is scanned, both from the Department table and the Employee
table, is recorded into the system output file. This file serves as a log of the
session and as a simplified report of the updates.

Each section of code is commented for the purpose of the application and also
to clarify some of the uses of the EQUEL statements. The program illustrates
table creation, multi-query transactions, all cursor statements and direct
updates. For purposes of brevity, error handling on data manipulation
statements is simply to close down the application.

The application runs in the UNIX and VMS environments.

The following two create statements describe the Employee and Department
database tables:

create dept

#Ht (name =cl /* Department name */

#i#t totsales = money, /* Total sales */

#Ht employees = i2) /* Number of employees */
#H create employee

(name = C20, /* Employee name */

#Ht age =il, /* Employee age */

Chapter 4: Embedded QUEL for Fortran 4-61

Sample Applications

idno = i4, /* Unique employee id */
#it hired = date, /* Date of hire */
dept = clo, /* Employee department */
#Ht salary = money) /* Yearly salary */
C
C Procedure: MAIN

Purpose: Main body of the application. Initialize the
C database, process each department,
C and terminate the session.
C

program main

print *, 'Entering application to process expenses.
call InitDb()

call PrcDpt()

call EndDb()

print *, 'Successful completion of application.

end
C
C Procedure: InitDb
C Purpose: Initialize the database.
C Start up the database, and abort if an error.
C Before processing employees, create the table for
C employees who lose their department, 'toberesolved'.
C Initiate the multi-statement transaction.
C
#H subroutine InitDb()
#H declare
#i# integer*4 errnum
#t character*256 errtxt
external ErrEnd
integer*4 ErrEnd
#i# ingres personnel
print *, ' Creating "To_Be_Resolved" table.'
create toberesolved
#Ht (name = char(20),
#t age = smallint,
#Ht idno = integer,
#t hired = date,
#Ht dept = char(10),
salary = money)
#t inquire_ingres (errnum = errorno)
if (errnum .NE. 0) then
#t inquire_ingres (errtxt = ERRORTEXT)
print *, ' Fatal error on creation:
print *, errtxt
#H exit
call exit(-1)
endif
C
C Inform Ingres runtime system about error handler.
C All subsequent errors close down the application.
C

call IIserr(ErrEnd)

4-62 Embedded QUEL Companion Guide

Sample Applications

begin transaction
end
C
C Procedure: EndDb
C Purpose: Close off the multi-statement transaction and access
C to the database after successful completion of the
C application.
C
subroutine EndDb()
declare
#it end transaction
exit
end
C
C Procedure: PrcDpt
C Purpose: Scan through all the departments, processing each
C one. If the department has made less than
C $50,000 in sales, then the department is dissolved.
C For each department process all the employees
C (they may even be moved to another table).
C If an employee was terminated,
C then update the department'employee counter. No
C error checking is done for cursor updates.
C
#Ht subroutine PrcDpt()
declare
C Corresponds to the 'dept' table
character*12 dptnam
#Ht double precision dptsal
integer*2 dptemp
C Cursor loop control
#Ht integer*4 nmrows
C Minimum sales goal for department
#Ht parameter (SALMIN = 50000.00)
C Number of terminated employees
#it integer*2 emptrm
C Department deleted indicator
integer*2 deldpt
C Formatting value
character*21 dptfmt
emptrm = 0
nmrows = 0
#Ht range of d is dept
declare cursor deptcsr for
#Ht retrieve (d.name, d.totsales, d.employees)
#t for direct update of (name, employees)
open cursor deptcsr
100 continue
retrieve cursor deptcsr
#Ht (dptnam, dptsal, dptemp)
inquire_equel (nmrows = ENDQUERY)

if (nmrows .EQ. 0) then

Chapter 4: Embedded QUEL for Fortfran 4-63

Sample Applications

##

##

alalelalelalelakelaEkelakelaEkalakalaEaieakaEaKal

#it

#it

Did the department reach minimum sales?
if (dptsal .LT. SALMIN) then

delete cursor deptcsr

deldpt =1

dptfmt = ' -- DISSOLVED --'
else

deldpt = 0

dptfmt = ' '
endif

Log what we have just done

print 11, dptnam, dptsal, dptfmt 11

format (' Department: ', al4, ', Total Sales: ',
f12.3, a)

Now process each employee in the department
call PrcEmp(dptnam, deldpt, emptrm)

If some employees were terminated, record this fact
if (emptrm .GT. © .AND. deldpt .EQ. 0) then
replace cursor deptcsr
(employees = dptemp - emptrm)
endif

endif
if (nmrows .EQ. 0) goto 100

close cursor deptcsr
end

Procedure: PrcEmp

Purpose: Scan through all the employees for a particular
department. Based on given conditions the employee
may be terminated or given a salary reduction.
1. If an employee was hired since 1985 then the

employee is terminated.
2. If the employee's yearly salary is more than

the minimum company wage of $14,000 and the
employee is not close to Retirement (over 58
years of age), then the employee takes a 5%
salary reduction.

3. If the employee's department is dissolved and
the employee is not terminated, then the
employee is moved into the
'toberesolved' table.

Parameters:
dptnam - Name of current department.
deldpt - Is current department being dissolved?
emptrm - Set locally to record how many

employees were terminated for the
current department.

subroutine PrcEmp(dptnam, deldpt, emptrm)
character*12 dptnam

integer*2 deldpt

Number of terminated employees
integer*2 emptrm
declare

4-64 Embedded QUEL Companion Guide

Sample Applications

C Corresponds to 'employee' table

#Ht character*20 empnam

integer*2 empage

#Ht integer*4 empid

character*25 emphir

real*4 emppay

#Ht integer*4 emp85

C Cursor loop control

#Ht integer*4 nmrows

C Minimum employee salary

#Ht parameter (MINPAY = 14000.00)

C Age of employees near to retirement
#Ht parameter (NEAR65 = 58)

C Percentage of current salary to receive
#Ht parameter (SALRED = 0.95)

C Formatting values

character*14 title
character*25 desc

nmrows = 0
C
C Note the use of the Ingres function to find out who was
C hired since 1985.
C
#Ht range of e is employee
#H declare cursor empcsr for
#Ht retrieve (e.name, e.age, e.idno, e.hired, e.salary, res =
#H int4(interval('days', e.hired - date('01-jan-1985'))))
where e.dept = dptnam
#H for direct update of (name, salary)
open cursor empcsr
emptrm = 0
10 continue
#i# retrieve cursor empcsr (empnam, empage, empid,
#HHt emphir, emppay, emp85)
inquire_equel (nmrows = ENDQUERY)
if (nmrows .EQ. ©) then
if (emp85 .GT. O) then
#Ht delete cursor empcsr
title = 'Terminated:'
desc = 'Reason: Hired since 1985.'
emptrm = emptrm + 1
else
C Reduce salary if not near retirement
if (emppay .GT. MINPAY) then
if (empage .LT. NEAR65) the
#H replace cursor empcsr
#t (salary = salary * SALRED)
title = 'Reduction: '
desc = 'Reason: Salary.'
C Do not reduce salary
else
title = 'No Changes:'
desc = 'Reason: Retiring.'

Chapter 4: Embedded QUEL for Fortran 4-65

Sample Applications

endif
C Make no changes in salary
else
title = 'No Changes:'
desc = 'Reason: Salary.'
endif
C Was employee's department dissolved ?
if (deldpt .NE. 0) then
append to toberesolved (e.all)
#Ht where e.idno = empid
delete cursor empcsr
endif
endif
C Log the employee's information
print 12, title, empid, empnam, empage, emppay,
& desc
12 format (' ', a, ' ', i6, ', ', a, ', ', i2, ', ', f8.2,
&)
endif

if (nmrows .EQ. 0) goto 10

H*
+*

close cursor empcsr

+*

end

Procedure: ErrEnd

Purpose: If an error occurs during the execution of an EQUEL
statement, this error handler is called. Errors are
printed and the current database session is terminated.
Any open transactions are implicitly closed.

Parameters:
ingerr - Integer containing Ingres error number.

FOoOOoOoOoon0o0n0oO#

H*

integer function ErrEnd(ingerr)
integer*4 ingerr

declare
character*256 errtxt

inquire_ingres (errtxt = errortext)
print *, ' Closing down because of database error:
print *, errtxt

abort
exit
call exit(-1)
ErrEnd = 0
end

VMS
The following two create statements describe the Employee and Department

database tables:

create dept

#Ht (name = cl2, /* Department name */

totsales = money, /* Total sales */

#Ht employees = i2) /* Number of employees */

create employee

4-66 Embedded QUEL Companion Guide

Sample Applications

##

#i#

#i#

(name = ¢20, /* Employee name */
age =il, /* Employee age */
idno = i4, /* Unique employee id */
hired = date, /* Date of hire */
dept = clo, /* Employee department */
salary = money) /* Yearly salary */

Procedure: MAIN
Purpose: Main body of the application. Initialize the

database, process each department, and terminate
the session.

program main

print *, 'Entering application to process expenses.
call Init_Db()

call Process_Depts()

call End_Db()

print *, 'Successful completion of application.'
end

Procedure: 1Init_Db
Purpose: Initialize the database.

Start up the database, and abort if an error.
Before processing employees, create the table for
employees who lose their department,
'toberesolved'. Initiate the multi-statement
transaction.

subroutine Init_Db()
declare

integer*4 err_no
character*256 err_text

external Close_Down
integer*4 Close_Down

ingres personnel

print *, ' Creating "To_Be_Resolved" table.'
create toberesolved

(name = 20,

age = smallint,
idno = integer,
hired = date,
dept = cl0,
salary = money)

inquire_ingres (err_no = errorno)
if (err_no .NE. @) then
inquire_ingres (err_text = errortext)

print *, ' Fatal error on creation:'
print *, err_text
exit

call exit(-1)
endif

Inform Ingres runtime system about error handler.
All subsequent errors close down the application.

Chapter 4: Embedded QUEL for Fortran 4-67

Sample Applications

##

##

#i#
##

##

##

##

call IIseterr(Close_Down)

begin transaction
end
Procedure: End_Db
Purpose: Close off the multi-statement transaction and
access to the database after successful completion
of the application.
subroutine End_Db()
declare
end transaction
exit
end
Procedure: Process_Depts
Purpose: Scan through all the departments, processing each
one. If the department has made less than $50,000
in sales, then the department is dissolved. For
each department process all the employees (they may
even be moved to another table).If an employee was
terminated, then update the department's employee
counter. No error checking is done for cursor
updates.
subroutine Process_Depts()
declare
structure /department/ !Corresponds to the 'dept' table
character*12 name
double precision totsales
integer*2 employees
end structure
record /department/ dpt
integer*4 no_rows ! Cursor loop control
parameter MIN_DEPT_SALES = 50000.00 ! Min department sales
integer*2 emps_term ! Employees terminated
integer*2 deleted_dept ! Was the dept deleted?
character*21 dept_format ! Formatting value
emps_term = 0
no_rows = 0
range of d is dept
declare cursor deptcsr for
retrieve (d.name, d.totsales, d.employees)
for direct update of (name, employees)
open cursor deptcsr
do while (no_rows .EQ. 0)
retrieve cursor deptcsr
(dpt.name, dpt.totsales, dpt.employees)
inquire_equel (no_rows = endquery)

if (no_rows .EQ. 0) then

4-68

Embedded QUEL Companion Guide

Sample Applications

! Did the department reach minimum sales?
if (dpt.totsales .LT. MIN_DEPT_SALES) then

#H delete cursor deptcsr

11

##
#it

#it

#t

deleted_dept =1

dept_format = ' -- DISSOLVED --'
else

deleted_dept = 0

dept_format = ' '
endif

! Log what we have just done
! Log what we have just done
print 11, dpt.name, dpt.totsales, dept_format
format
(' Department: ', al4, ', Total Sales: ', fl2.3, a)

! Now process each employee in the department
call Process_Employees(dpt.name, deleted_dept,
1 emps_term)

! If some employees were terminated, record this fact
if (emps_term .GT. @ .AND.
1 deleted_dept .EQ. .FALSE.) then
replace cursor deptcsr
(employees = dpt.employees - emps_term)
endif

endif
end do

close cursor deptcsr
end

Procedure: Process_Employees
Purpose: Scan through all the employees for a particular
department. Based on given conditions the employee
may be terminated, or given a salary reduction.
1. If an employee was hired since 1985 then the
employee is terminated.
2. If the employee's yearly salary is more than
the minimum company wage of $14,000 and the
employee is not close to retirement (over 58
years of age), then the employee takes a 5%
salary reduction.
3. If the employee's department is dissolved and
the employee is not terminated, then the
employee is moved into the 'toberesolved' table.

Parameters:

dept_name - Name of current department.

deleted_dept - Is current department being
dissolved?

emps_term - Set locally to record how many
employees were terminated for
the current department.

subroutine Process_Employees(dept_name, deleted_dept,

1 emps_term)
character*12 dept_name
integer*2 deleted dept
integer*2 emps_term

Chapter 4: Embedded QUEL for Fortran 4-69

Sample Applications

declare
structure /employee/ !Corresponds to 'employee' table
#it character*20 name
#t integer*2 age
#Ht integer*4 idno
character*25 hired
real*4 salary
##t integer*4 hired_since_85
##H end structure
record /employee/ emp
integer*4 no_rows ! Cursor loop control
#it parameter MIN_EMP_SALARY = 14000.00
! Minimum employee salary
parameter NEARLY_RETIRED = 58
parameter SALARY_REDUC = 0.95
character*14 title ! Formatting values
character*25 description
no_rows = 0
!
! Note the use of the Ingres function to find
! out who was hired since 1985.
|
#Ht range of e is employee
#H declare cursor empcsr for
#Ht retrieve (e.name, e.age, e.idno, e.hired, e.salary,
#H res = int4(interval('days', e.hired -
#it date('01-jan-1985"))))
#H where e.dept = dept_name
#Ht for direct update of (name, salary)
open cursor empcsr
emps_term = 0 ! Record how many
do while (no_rows .EQ. 0)
#Ht retrieve cursor empcsr (emp.name, emp.age, emp.idno,
#Ht emp.hired, emp.salary, emp.hired_since_ 85)
#i# inquire_equel (no_rows = endquery)
if (no_rows .EQ. 0) then
if (emp.hired_since_85 .GT. 0) then
#Ht delete cursor empcsr
title = 'Terminated:'
description = 'Reason: Hired since 1985."
emps_term = emps_term + 1
else
! Reduce salary if not nearly retired
if (emp.salary .GT. MIN_EMP_SALARY) then
if (emp.age .LT. NEARLY_RETIRED) then
#Ht replace cursor empcsr
#t (salary = salary * SALARY_REDUC)
title = 'Reduction: '
description = 'Reason: Salary.'

else

4-70

Embedded QUEL Companion Guide

Sample Applications

#i#
##

##

12

##

##

#it

##
#it

#i#

#i#

##

! Do not reduce salary

title = 'No Changes:'

description = 'Reason: Retiring.'
endif

else ! Leave employee alone

title = 'No Changes:'
description = 'Reason: Salary.'
endif

! Was employee's department dissolved ?
if (deleted_dept .NE. 0) then
append to toberesolved (e.all)
where e.idno = emp.idno

delete cursor empcsr
endif
endif

! Log the employee's information
print 12, title, emp.idno, emp.name, emp.age,

emp.salary,
1 description
format (' ', a, ' ', i6, ', ', a, ', ', i2, ', ',
1 8.2, ';', 1" "' a)
endif
end do

close cursor empcsr

end

Procedure: Close_Down

Purpose: If an error occurs during the execution of an
EQUEL statement, this error handler is called.
Errors are printed and the current database session
is terminated.
Any open transactions are implicitly closed.

Parameters:
ingerr - Integer containing Ingres error
number .
integer function Close_Down(ingerr)

integer*4 ingerr

declare
character*256 err_text

inquire_ingres (err_text = errortext)
print *, ' Closing down because of database error:
print *, err_text

abort
exit
call exit(-1)

Close Down = 0
end

Chapter 4: Embedded QUEL for Fortran 4-71

Sample Applications

UNIX and VMS—The Employee Query Interactive Forms Application
This EQUEL/FORMS application uses a form in query mode to view a subset of
the Employee table in the Personnel database. An Ingres query qualification is

built at runtime using values entered in fields of the form “empform.”

The objects used in this application are:

Object Description

personnel The program’s database environment.

employee A table in the database, with six columns:
name (c20)
age (i1)
idno (i4)
hired (date)
dept (c10)
salary (money)

empform A VIFRED form with fields corresponding in hame and type
to the columns in the Employee database table. The Name
and Idno fields are used to build the query and are the only
updatable fields. "Empform” is a compiled form.

A display statement drives the application. This statement allows the runtime
user to enter values in the two fields that build the query. The Build_Query
and Exec_Query procedures make up the core of the query that is run as a
result. Note the way the values of the query operators determine the logic that
builds the where clause in Build_Query. The retrieve statement encloses a
submenu block that allows the user to step through the results of the query.

The retrieved values are not updated, but any employee screen can be saved
in a log file using the printscreen statement in the save menu item.

UNIX The following create statement describes the format of the Employee
database table:

create employee

(name = c20, /* Employee name */
#H age =il, /* Employee age */
#Ht idno = i4, /* Unique employee id */
#t hired = date, /* Date of hire */
#Ht dept = cleo, /* Employee department */
#t salary = money) /* Annual salary */

C
C Procedure: MAIN

C Purpose: Entry point into Employee Query application.
C

#

program main

declare forms

4-72 Embedded QUEL Companion Guide

Sample Applications

eEalekal

##

##

##

Compiled form
external empfrm
integer*4 empfrm
For WHERE clause qualification
character*100 WhereC

Initialize global WHERE clause qualification buffer to
be an Ingres default qualification that is always true
WhereC = '1=1"

forms

message 'Accessing Employee Query Application . . .'
ingres personnel

range of e is employee

addform empfrm

display 'empfrm' query

initialize

activate menuitem 'Reset'’

{
clear field all
}
activate menuitem 'Query'
{
Verify validity of data

validate

call BldQry (WhereC)

call ExcQry(WhereC)
}
activate menuitem 'LastQuery'
{

call ExcQry(WhereC)

}

activate menuitem 'End', frskey3

breakdisplay
}

finalize

clear screen
endforms
exit

end

Procedure: BldQry

Purpose: Build a query from the values in the
'name' and 'idno' fields in 'empfrm.'

Parameters: WhereC (character string variable to
hold WHERE)

subroutine B1dQry (WhereC)

declare forms

character*(*) WhereC
Employee name

Chapter 4: Embedded QUEL for Forfran

4-73

Sample Applications

character*21 Ename

C Employee identification number
integer*4 Eidno

C Query operators

integer*4 nameop, idop

C Query operator table maps integer values to string query
operators character*2 oprtab(6)

data oprtab/'=', '!=', '<',[!> <= '>='/
getform empfrm
(Ename = name, nameop = getoper (name),
Eidno = idno, idop = getoper(idno))

C Fill in the WHERE clause

if ((nameop .EQ. ©) .AND. (idop .EQ. 0)) then
WhereC = '1=1"'
else
C User entered a query

WhereC v

if ((nameop .NE. ©) .AND. (idop .NE. 0)) then
C Query on both fields
write (UNIT=WhereC, FMT=100) oprtab(nameop),

& Ename, oprtab(idop), Eidno

100 format ('e.name', A2, '"', A21, '" and e.idno',
& A2, 16)

else if (nameop .NE. 0) then

C

C Query on the 'name' field. Trailing blanks (A21) not

C significant because 'name' is type 'C'

C write (UNIT=WhereC, FMT=110) oprtab(nameop),
& Ename

110 format ('e.name', A2, '"', A21, '"')

else
C Query on the 'idno' field
write (UNIT=WhereC, FMT=120) oprtab(idop),

& Eidno
120 format ('e.idno', A2, 16)
endif

endif
end
C
C Procedure: ExcQry
C Purpose: Given a query buffer defining a WHERE clause,
C issue a RETRIEVE to allow the runtime
C user to browse the employee
C found with the given qualification.
C Parameters: WhereC
C - Contains WHERE clause qualification.
C
#t subroutine ExcQry (WhereC)

declare forms

#i character*(*) WhereC
C Matches Employee table
C Employee Name

4-74 Embedded QUEL Companion Guide

Sample Applications

character*21 Ename

C Employee Age

integer*2 Eage

C Employee Identification Number

integer*4 Eidno

C Employee Hire Date

character*26 Ehired

C Employee Department

character*11 Edept

C Employee Salary

real*4 Epay

C Flag, were any rows found ?

integer*4 rows

retrieve (Ename = e.name, Eage = e.age, Eidno = e.idno,
#Ht Ehired = e.hired, Edept = e.dept, Epay = e.salary)
#t where WhereC

#t {

C Put values on to form and display them

#t putform empfrm

(name = Ename, age = Eage, idno = Eidno, hired = Ehired,
dept = Edept, salary = Epay)

redisplay
submenu
#it activate menuitem 'Next', frskey4

#it {

C

C Do nothing, and continue with the RETRIEVE loop. The
C last one will drop out.

C

#H }

activate menuitem 'Save', frskey8

#t {

C Save screen data in log file

#Ht printscreen (file = 'query.log')
C Drop through to next employee

#t }

#Ht activate menuitem 'End', frskey3

#H {

C Terminate the RETRIEVE 1loop

##t endretrieve

#t }

#H }

#i# inquire_equel (rows = ROWCOUNT)
if (rows .EQ. 0) then

#Ht message 'No rows found for this query'
else

#H clear field all

message 'No more rows. Reset for next query'
endif

#i# sleep 2
end M

VMS
The following create statement describes the format of the Employee

database table:

create employee
(name = 20, /* Employee name */
#Ht age =11, /* Employee age */

Chapter 4: Embedded QUEL for Fortran 4-75

Sample Applications

##

idno = i4, /* Unique employee id */
hired = date, /* Date of hire */

dept = clo, /* Employee department */
salary = money) /* Annual salary */

Procedure: MAIN
Purpose: Entry point into Employee Query application.

program main

declare forms

external empfrm ! Compiled form
integer*4 empfrm
character*100 WhereC ! For WHERE clause qualification

|
Initialize global WHERE clause qualification buffer to

;
! be an Ingres default qualification that is
! always true

!

WhereC = '1=1"'

forms

message 'Accessing Employee Query Application . . .'
ingres personnel

range of e is employee

addform empfrm

display 'empfrm' query
initialize

activate menuitem 'Reset’

{
clear field all
}
activate menuitem 'Query’
{
! Verify validity of data
validate
call BldQry(WhereC)
call ExcQry(WhereC)
}
activate menuitem 'LastQuery'
{
call ExcQry(WhereC)
}
activate menuitem 'End', frskey3
{
breakdisplay
}
finalize

clear screen
endforms
exit

end

Procedure: B1dQry

4-76 Embedded QUEL Companion Guide

Sample Applications

##

##

100

110

120

##

Purpose: Build a query from the values in the
'name' and 'idno' fields in 'empfrm.'

Parameters: WhereC (character string variable to
hold WHERE)

subroutine B1dQry (WhereC)

declare forms

character*(*) WhereC

character*21 Ename ! Employee name
integer*4 Eidno ! Employee identification number
integer*4 nameop, idop ! Query operators

! Query operator table maps integer values to string query
! operators

character*2 oprtab(6)

data oprtab/'=", 'I="', '<',| '>') <=t '>='/

getform empfrm
(Ename = name, nameop = getoper (name),
Eidno = idno, idop = getoper(idno))

! Fill in the WHERE clause

if ((nameop .EQ. ©) .AND. (idop .EQ. 0)) then
WhereC = '1=1"

else
! User entered a query
WhereC = ' '
if ((nameop .NE. 0) .AND. (idop .NE. 0)) then
! Query on both fields
write (UNIT=WhereC, FMT=100) oprtab(nameop),
1 Ename, oprtab(idop), Eidno
format ('e.name', A2, '"', A21, '" and e.idno',
1 A2, 16)

else if (nameop .NE. 0) then
|

! Query on the 'name' field. Trailing blanks
I (A21) not significant because 'name' is type
[
write (UNIT=WhereC, FMT=110) oprtab(nameop),
1 Ename
format ('e.name', A2, '"', A21, '"')

else
! Query on the 'idno' field
write (UNIT=WhereC, FMT=120) oprtab(idop),
1 Eidno
format ('e.idno', A2, 16)

endif
endif

end

Procedure: ExcQry

Purpose: Given a query buffer defining a WHERE clause,
issue a RETRIEVE to allow the runtime user to
browse the employee found with the given
qualification.

Parameters: WhereC

Chapter 4: Embedded QUEL for Fortran 4-77

Sample Applications

##

##

##

##

##
#i#

#i#

#i#

#it

#i

#it

#i#

#i#

- Contains WHERE clause qualification.
subroutine ExcQry(WhereC)

declare forms
character*(*) WhereC
character*21 Ename
integer*2 Eage
integer*4 Eidno
character*26 Ehired
character*11l Edept
real*4 Epay
integer*4 rows

Matches Employee table
Employee Name

Employee Age

Employee Identification Number
Employee Hire Date

Employee Department

Employee Salary

Flag, were any rows found ?

retrieve (Ename = e.name, Eage = e.age, Eidno = e.idno,
Ehired = e.hired, Edept = e.dept, Epay = e.salary)
where WhereC

! Put values on to form and display them

putform empfrm
(name = Ename, age = Eage, idno = Eidno, hired =
Ehired, dept = Edept, salary = Epay)

redisplay

submenu

activate menuitem 'Next', frskey4

{

|
! Do nothing, and continue with the RETRIEVE
! loop. The last one will drop out.

!

}

activate menuitem 'Save', frskey8
{
! Save screen data in log file
printscreen (file = 'query.log')
! Drop through to next employee
}

activate menuitem 'End', frskey3

{
! Terminate the RETRIEVE loop

endretrieve

}

inquire_equel (rows = ROWCOUNT)
if (rows .EQ. 0) then
message 'No rows found for this query'

else
clear field all
message 'No more rows. Reset for next query'
endif
sleep 2
end ™

4-78

Embedded QUEL Companion Guide

Sample Applications

UNIX and VMS—The Table Editor Table Field Application

This EQUEL/FORMS application uses a table field to edit the Person table in the
Personnel database. It allows the user to update a person’s values, remove the
person, or add new persons. Various table field utilities are provided with the
application to demonstrate their use and their interaction with an Ingres
database.

The application uses the following objects:

Object Description
personnel The program’s database environment.
person A table in the database with three columns:
name (c20)
age (i2)
number (i4)
personfrm The VIFRED form with a single table field.
persontbl A table field in the form with two columns:
name (c20)
age (i4)

When initialized, the table field includes the hidden number
(i4) column.

At the beginning of the application, a retrieve statement is issued to load the
table field with data from the Person table. After loading the table field, you
can browse and edit the displayed values. You can add, update, or delete
entries. When finished, the values are unloaded from the table field, and, in a
multi-statement transaction, your updates are transferred back into the Person
table.

The application runs in the UNIX and VMS environments.

The following create statement describes the format of the Person database
table:

create person

#it (name = c20 /* Person name */

age =12, /* Age */

#Ht number = i4) /* Unique id number */

C
C Procedure: MAIN

C Purpose: Entry point into Table Editor program.
C

#

program main

C Table field row states

Chapter 4: Embedded QUEL for Fortran 4-79

Sample Applications

C Empty or undefine row
parameter (stUDEF=0)

C Appended by user
parameter (stNEW=1)

C Loaded by program - not updated
parameter (stUCHG=2)

C Loaded by program - since changed
parameter (stCHG=3)

C Deleted by program

parameter (stDEL=4)

declare forms
C Table field entry information

C State of date set entry
integer*4 state

C Record number

integer*4 row

C Last row in table field

integer*4 lstrow

C Utility buffers

C Message buffer
character*256 msgbuf
C Response buffer

character*20 rspbuf

C Status variables

C Update error from database

integer*4 upderr

C Number of rows updated

integer*4 updrow

C Transaction aborted
logical xactq

C Save changes for quit

logical savchg

C The following variables correspond to the 'person' table

C Full name

character*20 pname

C Age of person

integer*4 page

C Unique person number
integer*4 pnum

C Max person id

integer*4 maxid

C Start up Ingres and the FORMS system
INGRES 'personnel’

forms
C Verify that the user can edit the 'person' table
prompt noecho ('Password for table editor: ', rspbuf)

if (rspbuf .NE. 'MASTER OF ALL') then

#Ht message 'No permission for task. Exiting . !
#H endforms
exit
call exit(-1)
endif

message 'Initializing Person Form .
range of p IS person

forminit person

4-80 Embedded QUEL Companion Guide

Sample Applications

FTOOONOO

Initialize 'persontbl' table field with a data set in FILL
mode so that the runtime user can append rows. To keep track
of events occurring to original rows that will be loaded into
the table field, hide the unique person number.

inittable person persontbl fill (number = integer)
call LdTab(pers)

display person update
initialize

activate menuitem 'Top', frskey5

{
Provide menu, as well as the system FRS key to scroll
to both extremes of the table field.
scroll person persontbl TO 1
}
activate menuitem 'Bottom', frskey6
{
scroll person persontbl to end /* Forward */
}

activate menuitem 'Remove'’

{

Remove the person in the row the user's cursor 1is on.
If there are no persons, exit operation with message.
Note that this check cannot really happen as there is
always an UNDEFINED row in FILL mode.

inquire_frs table person (lstrow = lastrow(persontbl))

if (lstrow .EQ. 0) then
message 'Nobody to Remove'
sleep 2
resume field persontbl
endif

deleterow person persontbl /* Record later */

}

activate menuitem 'Find', frskey7

{

Scroll user to the requested table field entry.
Prompt the user for a name, and if one is typed in
loop through the data set searching for it.

prompt ('Enter name of person: ', rspbuf)
if (rspbuf .EQ. ' ') then

resume field persontbl
endif

unloadtable person persontbl
(pname = name, row = _RECORD, state = _STATE)

Do not compare with deleted rows
if ((pname .EQ. rspbuf) .AND.
(state .NE. stDEL)) then
scroll person persontbl to row
resume field persontbl
endif

Chapter 4: Embedded QUEL for Forfran

4-81

Sample Applications

##

#i#
##

##

##

##

##

##

##

##

##

FTOOOOOnOoonnnn

}

Fell out of loop without finding name
msgbuf = 'Person "' // rspbuf //
'" not found in table [HIT RETURN]'
prompt noecho (msgbuf, rspbuf)

activate menuitem 'Save', frskey8

{
validate field persontbl
savchg = .TRUE.
breakdisplay

}

activate menuitem 'Quit', frskey2

{
savchg = .FALSE.
breakdisplay

}

finalize

if (.NOT. savchg) then
endforms
exit
call exit(l)

endif

Exit person table editor and unload the table field. If any
updates, deletions or additions were made, duplicate these
changes in the source table. If the user added new people we
must assign a unique person id before returning it to the
table. To do this, increment the previously saved maximum

id number with each insert.

Do all the updates in a transaction (for simplicity,
this transaction does not restart on DEADLOCK error: 4700)

begin transaction

upderr = 0
xactq = .FALSE.

message 'Exiting Person Application . . .';

unloadtable person persontbl
(pname = name, page = age,
pnum = number, state = _STATE)
{
if (state .EQ. stNEW) then
Appended by user. Insert with new unique id
maxid = maxid + 1
repeat append to person (name = @pname,
age = @page,
number = @maxid)
else if (state .EQ. stCHG) then
Updated by user. Reflect in table
repeat replace p (name = @pname, age = @page)
where p.number = @pnum
else if (state .EQ. stDEL) then

Deleted by user, so delete from table. Note that
only original rows are saved by the program, and
not rows appended at runtime.

4-82

Embedded QUEL Companion Guide

Sample Applications

##

FTOOOOOn

#

#it

##

##

#i#

:ﬂ:ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

+*

H*

OFOHFOO
+*

repeat delete from p where p.number = @pnum
else

state .EQ. UNCHANGED or UNDEFINED - No updates
endif

Handle error conditions -

If an error occurred, then ABORT the transaction.
If no rows were updated then inform user, and
prompt for continuation.

inquire_ingres (upderr = ERRORNO, updrow = ROWCOUNT)

if (upderr .GT. 0) then
inquire_equel (msgbuf = errortext)
abort
xactq = .true.
endloop
else if (updrow .EQ. ©) then
msgbuf = 'Person "' // pname //
'"" not updated. Abort all updates?
prompt (msgbuf, rspbuf)
if ((rspbuf(l1:1) .EQ. 'Y') .OR.
(rspbuf(l:1) .EQ. 'y")) then
abort
xactq = .TRUE.
endloop
endif
endif

} /* end of UNLOADTABLE loop */

if (.NOT. xactq) then
end transaction /* Commit the updates */
endif

endforms /* Terminate the FORMS and Ingres */
exit

if (upderr .NE. 0) then
print *, 'Your updates were aborted because of error:
print *, msgbuf

endif

end of main

end

Subroutine: LdTab
Purpose: Load the table field from the 'person' table.

The columns 'name' and 'age' will be displayed,

and 'number' will be hidden.
Parameters:
None
Returns:
Nothing

subroutine LdTab(pers)
Set up error handling for loading procedure
declare forms

The following variables correspond to the 'person' table
Full name
character*20 pname
Age of person
integer*4 page
Unique person number

Chapter 4: Embedded QUEL for Fortfran 4-83

Sample Applications

integer*4 pnum
C Max person id number
integer*4 maxid

message 'Loading Person Information .

C
C Fetch the maximum person id number for later use

C PERFORMANCE NOTE: max() will do sequential scan of table
C

#

retrieve (maxid = max(p.number))

C Fetch data, and load table field
retrieve (pname = p.name, page = p.age,

pnum = p.number)
#Ho{
loadtable person persontbl
(name = pname, age = page,
number = pnum)
o}
end W
VMS . .
The following create statement describes the format of the Person database
table:
create person
#it (name = 20, /* Person name */
age =12, /* Age */
#Ht number = i4) /* Unique id number */

Procedure: MAIN
Purpose: Entry point into Table Editor program.

program main

! Table field row states
parameter (stUNDEF=0)
parameter (stNEW=1)
parameter (stUNCHANGED=2) Loaded by program - not updated
parameter (stCHANGE=3) Loaded by program - since changed
parameter (stDELETE=4) ! Deleted by program

Empty or undefined row

|
! Appended by user
|
!

declare forms
! Table field entry information

integer*4 state ! State of data set entry
integer*4 row ! Record number
integer*4 lastrow I Last row in table field

I Utility buffers
character*256 msgbuf Message buffer
character*20 respbuf ! Response buffer

! Status variables
integer*4 update_error
integer*4 update_rows
logical xact_aborted
logical save_changes

Update error from database
Number of rows updated
Transaction aborted

Save changes or Quit

! structure person corresponds to 'person' table
structure /person/

character*20 pname ! Full name

#HHt integer*4 page ! Age of person

##t integer*4 pnumber ! Unique person number
#HHt integer*4 maxid ! Max person id number

4-84 Embedded QUEL Companion Guide

Sample Applications

##

##

##

#i#

##

##

##

##

##

##

##
#i#

#i#

end structure
record /person/ pers

! Start up Ingres and the FORMS system
ingres 'personnel'

forms

! Verify that the user can edit the 'person' table
prompt noecho ('Password for table editor: ', respbuf)

if (respbuf .NE. 'MASTER OF_ALL') then
message 'No permission for task. Exiting .
endforms
exit
call exit(-1)
endif

message 'Initializing Person Form .
range of p is person

forminit personfrm

!

I Initialize 'persontbl' table field with a data set in

! FILL mode so that the runtime user can append rows.

I To keep track of events occurring to original rows that
! will be loaded into the table field, hide the unique
! person number.
|
inittable personfrm persontbl fill (number = integer)

call Load_Table(pers)

display personfrm update
initialize

activate menuitem 'Top', frskey5

{
!
! Provide menu, as well as the system FRS key to scroll
! to both extremes of the table field.
!
scroll personfrm persontbl to 1
}
activate menuitem 'Bottom', frskey6
{
scroll personfrm persontbl to end /* Forward */
}

activate menuitem 'Remove'’

{

!
! Remove the person in the row the user's cursor is on.
! If there are no persons, exit operation with message.
! Note that this check cannot really happen as there is
! always an UNDEFINED row in FILL mode.

|

5

nquire_frs table personfrm (lastrow = lastrow(persontbl))

if (lastrow .EQ. 0) then
message 'Nobody to Remove'
sleep 2
resume field persontbl

Chapter 4: Embedded QUEL for Fortran 4-85

Sample Applications

endif
deleterow personfrm persontbl /* Record later */
#H o}
activate menuitem 'Find', frskey7
#H{
|
! Scroll user to the requested table field entry.
! Prompt the user for a name, and if one is typed in
! loop through the data set searching for it.
|
#Ht prompt ('Enter name of person: ', respbuf)
if (respbuf .EQ. ' ') then
#Ht resume field persontbl
endif
unloadtable personfrm persontbl
#t (pers.pname = name, row = _RECORD, state = _STATE)
#t
I Do not compare with deleted rows
if ((pers.pname .EQ. respbuf) .AND.
1 (state .NE. stDELETE)) then
Scroll personfrm persontbl to row
#Ht resume field persontbl
endif
#Ht }
! Fell out of loop without finding name
msgbuf = 'Person "' // respbuf //
1 '"" not found in table [HIT RETURN]'
#Ht prompt noecho (msgbuf, respbuf)
#Ht }
#i# activate menuitem 'Save', frskey8
#t {
validate field persontbl
save_changes = .TRUE.
#Ht breakdisplay
#it }
#Ht activate menuitem 'Quit', frskey2
#H {
save_changes = .FALSE.
#Ht breakdisplay
#t }
#Ht finalize
if (save_changes .NE. .TRUE.) then
#t endforms
#H exit
call exit(1)
endif

!
! Exit person table editor and unload the table field. If any
! updates, deletions or additions were made, duplicate these

! changes in the source table. If the user added new people we
! must assign a unique person id before returning it to

! the table. To do this, increment the previously saved

! maximum id number with each insert.

|

!

|

!

Do all the updates in a transaction (for simplicity,
this transaction does not restart on DEADLOCK error: 4700)

begin transaction

4-86 Embedded QUEL Companion Guide

Sample Applications

#it

##
#i#

##

#i#

#i#

#i

##

##

##

#it

##
#it

0
.FALSE.

update_error
xact_aborted

message 'Exiting Person Application . . .';

unloadtable personfrm persontbl
(pers.pname = name, pers.page
pers.pnumber = number, state

age,
_STATE)

if (state .EQ. stNEW) then
! Appended by user. Insert with new unique id
pers.maxid = pers.maxid + 1
repeat append to person (name = @pers.pname,
age = @pers.page,
number = @pers.maxid)
else if (state .EQ. stCHANGE) then
! Updated by user. Reflect in table
repeat replace p (name = @pers.pname, age = @pers.page)
where p.number = @pers.pnumber
else if (state .EQ. stDELETE) then

!
! Deleted by user, so delete from table. Note that only
! original rows are saved by the program, and not rows
! appended at runtime.

!

repeat delete from p where p.number = @pers.pnumber
else
! state .EQ. UNCHANGED or UNDEFINED - No updates
endif

|
! Handle error conditions -
! If an error occurred, then ABORT the transaction.
! If no rows were updated then inform user, and
! prompt for continuation.
|
inquire_ingres (update_error = ERRORNO,
update_rows = ROWCOUNT)

if (update_error .GT. 0) then ! Error
inquire_equel (msgbuf = ERRORTEXT)
abort
xact_aborted = .TRUE.
endloop

else if (update_rows .EQ. 0) then
msgbuf = 'Person "' // pers.pname //

1 '" not updated. Abort all updates?

prompt (msgbuf, respbuf)

if ((respbuf(l:1) .EQ. 'Y') .OR.
1 (respbuf(1:1) .EQ. 'y')) then
abort
xact_aborted = .TRUE.
endloop
endif
endif
} /* end of UNLOADTABLE loop */
if (xact_aborted .EQ. .FALSE.) then
end transaction /* Commit the updates */
endif
endforms /* Terminate the FORMS and Ingres */
exit

Chapter 4: Embedded QUEL for Fortran 4-87

Sample Applications

if (update_error .NE. 0) then
print *, 'Your updates were aborted because of error: '
print *, msgbuf
endif
end ! Main Program

Subroutine: Load_Table

Purpose: Load the table field from the 'person' table. The
columns 'name' and 'age' will be displayed, and
"number' will be hidden.

Parameters:
None

Returns:
Nothing

subroutine Load_Table(pers)
! Set up error handling for loading procedure
declare forms

! structure person corresponds to 'person' table
structure /person/

character*20 pname ! Full name

#Ht integer*4 page ! Age of person

#H integer*4 pnumber ! Unique person number
#Ht integer*4 maxid ! Max person id number

end structure
record /person/ pers

message 'Loading Person Information . . .'
|

! Fetch the maximum person id number for later use
! PERFORMANCE NOTE: max() will do sequential scan of table
!

retrieve (pers.maxid = max(p.number))

! Fetch data, and load table field
retrieve (pers.pname = p.name, pers.page = p.age,

#Ht pers.pnumber = p.number)

#it {

loadtable personfrm persontbl

(name = pers.pname, age = pers.page,
##t number = pers.pnumber)

#it }

#4 end W

4-88 Embedded QUEL Companion Guide

Sample Applications

UNIX and VMS—The Professor-Student Mixed Form Application

This EQUEL/FORMS application lets the user browse and update information
about graduate students who report to a specific professor. The program is
structured in a master/detail fashion, with the professor being the master
entry, and the students the detail entries. The application uses two forms—one
to contain general professor information and another for detailed student
information.

The application uses the following objects:

Object Description
personnel The program’s database environment.
professor A database table with two columns:

pname (c25)
pdept (c10)

See its create statement below for a full description.

student A database table with seven columns:

sname (c25)

sage (il1)

sbdate (¢25)

sgpa (f4)

sidno (il1)

scomment (text(200))
sadvisor (c25)

See the create statement below for a full description. The
sadvisor column is the join field with the pname column in
the Professor table.

masterfrm The main form has fields pname and pdept, which
correspond to the information in the Professor table and the
Studenttbl table field. The pdept field is display-only.
“Masterfrm” is a compiled form.

studenttbl A table field in “masterfrm” with two columns, “sname” and
“sage.” When initialized, it also has five more hidden
columns corresponding to information in the Student table.

studentfrm The detail form, with seven fields, which correspond to
information in the Student table. Only the Sgpa,
Scomment, and Sadvisor fields are updatable. “Studentfrm”
is a compiled form.

grad A global structure, whose members correspond in name
and type to the columns of the Student database table, the
“studentfrm” form and the Studenttbl table field.

Chapter 4: Embedded QUEL for Fortran 4-89

Sample Applications

The program uses the “"masterfrm” as the general-level master entry, in which
the user can only retrieve and browse data, and the “studentfrm” as the
detailed screen, in which the user can update specific student information.

The user enters a name in the pname (professor name) field and then selects
the Students menu operation. The operation fills the displayed and hidden
columns of the studenttbl table field with detailed information about the
students of the named professor. The user may then browse the table field (in
read mode), which displays only the names and ages of the students. To
request more information about a specific student, the user can select the
Zoom menu operation. This operation displays the form “studentfrm.” The
fields of “studentfrm” are filled with values stored in the hidden columns of
studenttbl. The user can make changes to three fields (sgpa, scomment and
sadvisor). If validated, these changes are written back to the database table
(based on the unique student ID), and to the table field’s data set. The user
can repeat this process for different professor names.

The application runs on UNIX and VMS.

UNIX . .
- The following two create statements describe the Professor and Student
database tables:
create student /* Graduate student table */
#it (sname = c25, /* Name */
sage =11, /* Age */
#it sbdate = c25, /* Birth date */
sgpa = f4, /* Grade point average */
#Ht sidno = i4, /* Unique student number */
scomment = text(200), /* General comments */
#it sadvisor = c25) /* Advisor's name */
create professor /* Professor table */
(pname = c25, /* Professor's name */
#Ht pdept = cl0) /* Department */
C
C Procedure: MAIN
C Purpose: Start up program and call Master driver.
C
program main

C Start up Ingres and the FORMS system
declare forms

forms
message 'Initializing Student Administrator . . .'

INGRES personnel
range of p IS professor, s IS student

call Master()

clear screen
endforms

#H exit

#H# end

4-90 Embedded QUEL Companion Guide

Sample Applications

aEaleoaleoEaEeNa

#i#

##

**
**

OO0 n

Procedure: Master

Purpose: Drive the application, by running 'mstfrm', and
allowing the user to 'zoom' into a
selected student.

Parameters:
None - Uses the global student 'grad' record.

subroutine Master ()
declare forms

Declare function
logical StdChg

grad student record maps to database table

Student's name
character*25 Sname

Student's age
integer*2 Sage

Student's birthday
character*25 Shdate

Student's grade point average
real*4 Sgpa

Student's unique id number
integer*4 Sidno

General comment field
character*200 Scomm

Student's advisor
character*25 Sadv

Professor info maps to database table
Professor's name

character*25 Pname
Professor's department
character*10 Pdept

Useful forms system information
Last row in table field

integer*4 1strow
Is it a table field ?
integer*4 istab

Local utility buffers

Message buffer
character*100 msgbuf

Response buffer
character*256 rspbuf

0ld advisor before ZOOM
character*25 oldadv

Externally compiled master form
external mstfrm
integer*4 mstfrm

addform mstfrm

Initialize 'studenttbl' with a data set in READ mode.
Declare hidden columns for all the extra fields that
the program will display when more information is
requested about a student. Columns 'sname' and 'sage'
are displayed, all other columns are hidden, to be
used in the student information form.

inittable #mstfrm studenttbl read

Chapter 4: Embedded QUEL for Forfran

4-91

Sample Applications

(#sbdate = c25,
#Ht #sgpa = f4,
#i# #sidno = 1i4,
#Ht #scomment = text(200),
#sadvisor = c20)

display #mstfrm update

initialize
#it {
message 'Enter an Advisor name . . .'
#Ht sleep 2
#t }
activate menuitem 'Students', field 'pname’
#t {
C Load the students of the specified professor
Pname = " '
#i# getform (Pname = #pname)
C If no professor name is given then resume
if (Pname .EQ. ' ') then
resume field #pname
endif
C
C Verify that the professor exists. Local error
C handling just prints the message, and continues.
C We assume that each professor has exactly one
C department.
C
Pdept = " '
#H retrieve (Pdept = p.#pdept)
where p.#pname = Pname

if (Pdept .EQ. ' ') then

msgbuf = 'No professor with name "' // Pname //

& ""[RETURN]"'
#Ht prompt noecho (msgbuf, rspbuf)
#it clear field all
resume field #pname

endif

C Fill the department field and load students
#Ht putform (#pdept = Pdept)
#t redisplay /* Refresh for query */

call LdStd (Pname)

resume field studenttbl

)} /* 'Students' */

activate menuitem 'Zoom'

#{

C

C Confirm that user is on 'studenttbl', and that
C the table field is not empty. Collect data from
C the row and zoom for browsing and updating.

C

inquire_frs field #mstfrm (istab = table)

if (istab .EQ. 0) then

prompt noecho
#Ht ('Select from the student table [RETURN]', rspbuf)
resume field studenttbl

4-92 Embedded QUEL Companion Guide

Sample Applications

##

#i#
##

aNaleolaleolaEala]

aEeleokelskealaEkale]

##

##

&

endif
inquire_frs table #mstfrm (lstrow = lastrow)

if (lstrow .EQ. 0) then
prompt noecho ('There are no students [RETURN]', rspbuf)
resume field #pname

endif

Collect all data on student into global record
getrow #mstfrm studenttbl

(Sname = #sname,
Sage = #sage,
Shdate = #sbdate,
Sgpa = #sgpa,
Sidno = #sidno,
Scomm = #scomment,
Sadv = #sadvisor)

Display 'stdfrm', and if any changes were made
make the updates to the local table field row.
Only make updates to the columns corresponding to

writable fields in 'stdfrm'. If the student
changed advisors, then delete this row from the
display.

oldadv = Sadv
if (StdChg (Sname, Sage, Sbdate, Sgpa, Sidno, Scomm,
Sadv)) then
if (oldadv .NE. Sadv) then
deleterow #mstfrm studenttbl
else
putrow #mstfrm studenttbl
(#sgpa = Sgpa,
<x:c3>#scomment = Scomm,
#sadvisor = Sadv)
endif
endif

} /* '"Zoom' */
activate menuitem 'Quit', frskey2

breakdisplay
} /* 'Quit' */

finalize
end
Procedure: LdStd
Purpose: Given an advisor name, load into the 'studenttbl'
table field all the students who report to the
professor with that name.
Parameters:
advisor - User specified professor name.
Uses the global student record.
subroutine LdStd(advisor)

declare forms

character*(*) advisor

Chapter 4: Embedded QUEL for Forfran

4-93

Sample Applications

C grad student record maps to database table

C Student's name

character*25 Sname

C Student's age

integer*2 Sage

C Student's birthday

character*25 Shdate

C Student's grade point average
real*4 Sgpa

C Student's unique id number
integer*4 Sidno

C General comment field

character*200 Scomm

C Student's advisor

character*25 Sadv

Clear previous contents of table field. Load the table
field from the database table based on the advisor name.
Columns 'sname' and 'sage' will be displayed, and all

message 'Retrieving Student Information .

C
C
C
C
C others will be hidden.
C
#
clear field studenttbl

retrieve

#H (Sname = s.#sname,

#Ht Sage = s.#sage,

#H Sbdate = s.#sbdate,

#Ht Sgpa = s.#sgpa,

#H Sidno = s.#sidno,

#t Scomm = s.#scomment,

#H Sadv = s.#sadvisor)

#t where s.sadvisor = advisor

#H{

#t loadtable #mstfrm studenttbl

(#sname = Sname,

#HHt #sage = Sage,

#Ht #sbdate = Sbdate,

#Ht #sgpa = Sgpa,

#sidno = Sidno,

#it #scomment = Scomm,

##t #sadvisor = Sadv)

#Ho}

end

C

C Procedure: StdChg

C Purpose: Allow the user to zoom into the details of a

C selected student. Some of the data can be updated
C by the user. If any updates were made, then

C reflect these back into the database table.

C The procedure returns TRUE if any changes were made.
C Parameters:

C None - Uses with data in the global 'grad'

C Returns:

C TRUE/FALSE - Changes were made to the database.
C Sets the global 'grad' record with the new data.
C

Tlogical function StdChg(Sname, Sage, Sbdate, Sgpa, Sidno,

#HH& Scomm, Sadv)
declare forms

C grad student record maps to database table

4-94

Embedded QUEL Companion Guide

Sample Applications

##
##

Student's name
character*25 Sname

Student's age
integer*2 Sage

Student's birthday
character*25 Shdate

Student's grade point average
real*4 Sgpa

Student's unique id number
integer*4 Sidno

General comment field
character*200 Scomm

Student's advisor
character*25 Sadv

Changes made to date in form

integer*4 chnged
Valid advisor name ?
integer*4 vldadv

Compiled form
external stdfrm
integer*4 stdfrm

Control ADDFORM to only initialize once
integer*4 ldform
data ldform/0/

if (ldform .EQ. 0) then
message 'Loading Student form . . .'
addform stdfrm
ldform = 1

endif

display #Stdfrm fill
initialize

(#sname = Sname,
#sage = Sage,
#sbdate = Sbdate,
#sgpa = Sgpa,
#sidno = Sidno,
#scomment = Scomm,
#sadvisor = Sadv)

activate menuitem 'Write'

{

If changes were made then update the database
table. Only bother with the fields that are not
read-only.

inquire_frs form (chnged = change)

if (chnged .EQ. 1) then
validate

message 'Writing changes to database.

getform
(Sgpa = #sgpa,
Scomm = #scomment,
Sadv = #sadvisor)

Enforce integrity of professor name
vlidadv = 0
retrieve (vldadv = 1)

where p.pname = Sadv

Chapter 4: Embedded QUEL for Forfran

4-95

Sample Applications

if (vldadv .EQ. 0) then

message 'Not a valid advi
#Ht sleep 2
resume field sadvisor
else
replace s (#sgpa = Sgpa,
#it scomment = Scol
sadvisor = Sad
#it where s.#sidno = Sidno
breakdisplay
endif
endif
#it }
/* "Write' */
activate menuitem 'End', frskey3
#t {
C Quit without submitting chan
chnged = 0
breakdisplay
#it }
/* 'Quit' */
finalize

if (chnged .EQ. 1) then
StdChg = .TRUE.
else
StdChg = .FALSE.
endif

return

#Ht end M

VMS

sor name'

mm,
v)

ges

The following two create statements describe the professor and student

database tables:

#it Ccreate student /*
#Hi# (sname = ¢25, /*
#Ht sage =il, /*
sbdate = c25, /*
#Ht sgpa = f4, /*
sidno = i4, /*
#it scomment = text(200), /*
sadvisor = c25) /*
create professor /*
#Ht (pname = c25, /*
pdept = ¢l10) /*
!
! Procedure: MAIN
! Purpose: Start up program and
!
program main

! Start up Ingres and the FORMS
#t declare forms
#t forms
#it message 'Initializing Student Ad

Graduate student table */
Name */

Age */

Birth date */

Grade point average */
Unique student number */
General comments */
Advisor's name */

Professor table */
Professor's name */
Department */

call Master driver.

system

ministrator .

4-96 Embedded QUEL Companion Guide

Sample Applications

##

##
##

#i#

#i#

ingres personnel
range of p IS professor, s IS student

call Master()
clear screen
endforms
exit

end

Procedure: Master

Purpose: Drive the application, by running 'masterfrm',
and allowing the user to 'zoom' into a
selected student.

Parameters:
None - Uses the global student 'grad' record.

subroutine Master ()
declare forms
logical Student_Info_Changed ! function

! grad student record maps to database table
structure /grad_student/

character*25 shame
integer*2 sage
character*25 sbdate
real*4 sgpa
integer*4 sidno
character*200 scomment
character*25 sadvisor

end structure
record /grad_student/ grad

! Professor info maps to database table
structure /professor/
character*25 pname
character*10 pdept
end structure
record /professor/ prof

! Useful forms system information
integer*4 lastrow ! Lastrow in table field
integer*4 istable ! Is a table field?

! Local utility buffers

character*100 msgbuf ! Message buffer
character*256 respbuf ! Response buffer
character*25 old_advisor ! 0ld advisor before ZOOM

! Externally compiled master form
external masterfrm
integer*4 masterfrm

addform masterfrm

Initialize 'studenttbl' with a data set in READ mode.
Declare hidden columns for all the extra fields that
the program will display when more information is
requested about a student. Columns 'sname' and 'sage'’
are displayed, all other columns are hidden, to be

]
|
]
|
]
|
! used in the student information form.
|

Chapter 4: Embedded QUEL for Fortran 4-97

Sample Applications

#it inittable #masterfrm studenttbl read

(sbdate = ¢25,

#Ht sgpa = float,

sidno = integer,

#it scomment = c200,

sadvisor = c20)

display #masterfrm update

initialize

#it {

message 'Enter an Advisor name . '
#Ht sleep 2

#Ht }

activate menuitem 'Students', field 'pname’
#t

! Load the students of the specified professor
#t getform (prof.pname = pname)

! If no professor name is given then resume
if (prof.pname .EQ. ' ') then

#Ht resume field pname
endif

|

! Verify that the professor exists. Local error

! handling just prints the message, and continues.
! We assume that each professor has exactly one

! department.
|
prof.pdept = ' '
retrieve (prof.pdept = p.pdept)
where p.pname = prof.pname
if (prof.pdept .EQ. ' ') then
msgbuf = 'No professor with name "' // prof.pname //
1 ""[RETURN] "
prompt noecho (msgbuf, respbuf)
#it clear field all
##t resume field pname
endif
! Fill the department field and load students
#Ht putform (pdept = prof.pdept)
#t redisplay /* Refresh for query */

call Load_Students(prof.pname)

#H resume field studenttbl

#Ht } /* 'Students' */
#H activate menuitem 'Zoom'

#it {

! Confirm that user is on 'studenttbl', and that
! the table field is not empty. Collect data from
! the row and zoom for browsing and updating.
!

inquire_frs field #masterfrm (istable = table)

if (istable .EQ. 0) then

4-98 Embedded QUEL Companion Guide

Sample Applications

##

##

#i#

#i#
##

##

##

##

prompt noecho
('Select from the student table [RETURN]', respbuf)
resume field studenttbl
endif

inquire_frs table #masterfrm (lastrow = lastrow)

if (lastrow .EQ. 0) then

prompt noecho ('There are no students [RETURN]', respbuf)
resume field pname

endif

! Collect all data on student into global record
getrow #masterfrm studenttbl

(grad.sname = sname,
grad.sage = sage,
grad.sbdate = shdate,
grad.sgpa = sgpa,
grad.sidno = sidno,
grad.scomment = scomment,
grad.sadvisor = sadvisor)

Display 'studentfrm', and if any changes were made
make the updates to the local table field row.
Only make updates to the columns corresponding to
writable fields in 'studentfrm'. If the student
changed advisors, then delete this row from the
display.

old_advisor = grad.sadvisor
if (Student_Info_Changed(grad) .EQ. .TRUE.) then
if (old_advisor .NE. grad.sadvisor) then
deleterow #masterfrm studenttbl
else
putrow #masterfrm studenttbl
(sgpa = grad.sgpa,
scomment = grad.scomment,
sadvisor = grad.sadvisor)

endif
endif
} /* 'Zoom' */
activate menuitem 'Quit', frskey2
{

breakdisplay

} /* 'Quit' */
finalize
end ! Master

Procedure: Load_Students
Purpose: Given an advisor name, load into the 'studenttbl'

table field all the students who report to the
professor with that name.

Parameters:

advisor - User specified professor name.
Uses the global student record.

subroutine Load_Students(advisor)

declare forms

Chapter 4: Embedded QUEL for Fortran 4-99

Sample Applications

#it

#t

#it

character*(*) advisor

! grad student record maps to database table
structure /grad_student/

character*25 sname
integer*2 sage
character*25 sbdate
real*4 sgpa
integer*4 sidno
character*200 scomment
character*25 sadvisor

end structure
record /grad_student/ grad

|
! Clear previous contents of table field. Load the table

! field from the database table based on the advisor name.
! Columns 'sname' and 'sage' will be displayed, and all

! others will be hidden.

|

message 'Retrieving Student Information .

clear field studenttbl

retrieve
(grad.sname = s.sname,
grad.sage = s.sage,
grad.sbdate = s.sbdate,
grad.sgpa = s.sgpa,
grad.sidno = s.sidno,
grad.scomment = s.scomment,
grad.sadvisor = s.sadvisor)
where s.sadvisor = advisor

loadtable #masterfrm studenttbl
(sname = grad.sname,
sage = grad.sage,
sbdate = grad.sbdate,
sgpa = grad.sgpa,
sidno = grad.sidno,
scomment = grad.scomment,
sadvisor = grad.sadvisor)

}

end Load_Students

Procedure: Student_Info_Changed
Purpose: Allow the user to zoom into the details of a

selected student. Some of the data can be updated
by the user. If any updates were made, then reflect
these back into the database

table. The procedure returns TRUE if

any changes were made.

Returns:

Parameters:
None - Uses with data in the global 'grad' record.
TRUE/FALSE - Changes were made to the database.
Sets the global 'grad' record with the new data.
logical function Student_Info_Changed(grad)

declare forms
! grad student record maps to database table
structure /grad_student/

character*25 sname

4-100 Embedded QUEL Companion Guide

Sample Applications

integer*2 sage
character*25 sbdate
real*4 sgpa
integer*4 sidno
character*200 scomment
character*25 sadvisor

end structure

record /grad_student/ grad

integer*4 changed ! Changes made to data in form
integer*4 valid_advisor ! Valid advisor name ?

external studentfrm
integer*4 studentfrm ! Compiled form

! Control ADDFORM to only initialize once
integer*4 loadform
data loadform/0/

if (loadform .EQ. 0) then
message 'Loading Student form .
addform studentfrm
loadform = 1

endif

display #studentfrm fill
initialize

(sname = grad.sname,
sage = grad.sage,
sbdate = grad.sbdate,
sgpa = grad.sgpa,
sidno = grad.sidno,
scomment = grad.scomment,
sadvisor = grad.sadvisor)

activate menuitem 'Write'

{

!

I If changes were made then update the database
I table. Only bother with the fields that are not
! read-only.
!

.

nquire_frs form (changed = change)

if (changed .EQ. 1) then
validate
message 'Writing changes to database. !
getform
(grad.sgpa = sgpa,
grad.scomment = scomment,
grad.sadvisor = sadvisor)

! Enforce integrity of professor name
valid_advisor = 0
retrieve (valid_advisor = 1)

where p.pname = grad.sadvisor

if (valid_advisor .EQ. 0) then
message 'Not a valid advisor name'
sleep 2
resume field sadvisor
else
replace s (sgpa = grad.sgpa,
scomment = grad.scomment,
sadvisor grad.sadvisor)

Chapter 4: Embedded QUEL for Fortran 4-101

Sample Applications

where s.sidno = grad.sidno
#Ht breakdisplay
endif
endif

#t } /* 'Write' */
activate menuitem 'End', frskey3
#it {

! Quit without submitting changes

changed = 0
breakdisplay
#it } /* 'Quit' */

#Ht finalize

if (changed .EQ. 1) then
Student_Info_Changed = .TRUE.
else
Student_Info_Changed = .FALSE.
endif

return
end

UNIX, VMS, Windows—An Interactive Database Browser Using Param Statements

This application lets the user browse and update data in any table in any
database. You should already have used VIFRED to create a default form
based on the database table to be browsed. VIFRED builds a form whose fields
have the same names and data types as the columns of the database table
specified.

The program prompts the user for the name of the database, the table, and
the form. In the Get_Form_Data procedure, it uses the formdata statement
to find out the name, data type and length of each field on the form. It uses
this information to dynamically build the elements for the param versions of
the retrieve, append, putform and getform statements. These elements
include the param target string, which describes the data to be processed,
and the array of variable addresses, which informs the statement where to get
or put the data. The type information the formdata statement collects
includes the option of making a field nullable. If a field is nullable, the program
builds a target string that specifies the use of a null indicator, and it sets the
corresponding element of the array of variable addresses to point to a null
indicator variable.

After the components of the param clause are built, the program displays the
form. If the user selects the Browse menu item, the program uses a param
version of the retrieve statement to obtain the data. For each row, the
putform and redisplay statements exhibit this data to the user. A submenu
allows the user to get the next row or to stop browsing. When the user selects
the Insert menu item, the program uses the param versions of the getform
and append statements to add a new row to the database.

The application runs in the UNIX, VMS, and Windows environments.

4-102 Embedded QUEL Companion Guide

Sample Applications

elalelakeiake]

H*
+*

H*

**

ﬁ#ﬁ%ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ#

OO0 *
+*

alaleolaleolalalakala]

##

##

Procedure: main

Purpose: Start up program and Ingres, prompting user
for names of form and table. Call Get_Form_Data() to
obtain profile of form. Then allow user to
interactively browse the database table and/or
APPEND new data.

program main

declare forms
Global declarations

Target string buffers for use in PARAM clauses of GETFORM,
PUTFORM, APPEND and RETRIEVE statements. Note that the APPEND
and PUTFORM statements have the same target string syntax.
Therefore in this application, because the form used
corresponds exactly to the database table, these two statements
can use the same target string, 'putlst'.

For APPEND and PUTFORM statements
character*1000 putlst

For GETFORM statement
character*1000 getlst

For RETRIEVE statement

character*1000 rtnlst

integer MAXCOL, BUFSIZ

DB maximum number of columns
parameter (MAXCOL = 127)

Size of 'pool' of char strings
parameter (BUFSIZ = 3000)

An array of addresses of program data for use in the PARAM
clauses. This array will be initialized by the program to
point to variables and null indicators.

Addresses of vars and inds
integer*4 varadr (MAXCOL*2)

Variables for holding data of type integer, float and
character string. Note that to economize on memory usage,
character data is managed as segments on one large array,
'chvars'. Numeric variables and indicators are managed as an
array of structures. The addresses of these data areas

are assigned to the 'varadr' array, according to the type of
the field/database column.

Pool for character data
character*(BUFSIZ) chvars

For integer data
integer*4 intv (MAXCOL)
For floating-point data
double precision fltv(MAXCOL)
For null indicators
integer*2 indv (MAXCOL)

character*25 dbname, frmnam, tabnam
Catch database and forms errors
integer*4 ingerr

Chapter 4: Embedded QUEL for Fortran 4-103

Sample Applications

C Catch error on database APPENDs
#Ht integer*4 numchg
C Browse flag
logical getnxt
C Logical function (see below)
logical GetFrm
putlst = ' '
etlst = ' '
rtnlst = ' '
chvars = ' '
forms
prompt ('Database name: ', dbname)
C '-E' flag tells Ingres not to quit on
C start-up errors
ingres '-E' dbname
#t inquire_ingres (ingerr = ERRORNO)
f (ingerr .GT. 0) then
#Ht message 'Could not start Ingres. Exiting.'
endforms
#t exit
call exit
endif
C Prompt for table and form names
prompt ('Table name: ', tabnam)
#it range of t IS tabnam
#Ht inquire_ingres (ingerr = ERRORNO)
if (ingerr .GT. @) then
#Ht message 'Non-existent table. Exiting.'
#H endforms
#t exit
call exit
endif
prompt ('Form name: ', frmnam)
#it forminit frmnam
C All forms errors are reported through INQUIRE_FRS
#Ht inquire_frs FRS (ingerr = ERRORNO)
if (ingerr .GT. O) then
#it message 'Could not access form. Exiting.'
#Ht endforms
#t exit
call exit
endif
C
C Get profile of form. Construct target lists and access
C variables for use in queries to browse and update data.
C if (.NOT. GetFrm (frmnam, putlst, getlst, rtnlst, varadr,
& chvars, intv, fltv, indv)) then
#t message 'Could not profile form. Exiting.'
#H endforms
#t exit
call exit
endif
C
C Display form and interact with user, allowing browsing and
C appending of new data.
C
display frmnam fill

4-104 Embedded QUEL Companion Guide

Sample Applications

##
#i#

#i#

##

#it

##

##

##

initialize
activate menuitem 'Browse'’

{

Retrieve data and display first row on form, allowing user
to browse through successive rows. If data types from table
are not consistent with data descriptions obtained from
user’s form, a retrieval error will occur. Inform user of
this or other errors.

Sort on first column. Note the use of 'ret_varN' to indicate
the column name to sort on.

retrieve (param(rtnlst, varadr))
sort by ret_varl
{ getnxt = .FALSE.
putform frmnam (param(putlst, varadr))

inquire_frs frs (ingerr = ERRORNO)

if (ingerr .GT. 0) then
message 'Could not put data into form'
endretrieve

endif

Display data before prompting user with submenu
redisplay
submenu
activate menuitem 'Next', frskey4d
{
message 'Next row'
getnxt = .TRUE.
}
activate menuitem 'End', frskey3

{

endretrieve
}
} /* End of RETRIEVE Loop */

inquire_ingres (ingerr = ERRORNO)
if (ingerr .GT. @) then
message 'Could not retrieve data from database'
else if (getnxt) then
Retrieve loop ended because of no more rows
message 'No more rows'
endif

sleep 2

Clear fields filled in submenu operations
clear field all
}

activate menuitem 'Insert'

{

getform frmnam (param(getlst, varadr))
inquire_frs frs (ingerr = ERRORNO)
if (ingerr .GT. @) then
clear field all
resume
endif

append to tabnam (param(putlst, varadr))
inquire_ingres (ingerr = ERRORNO, numchg = ROWCOUNT)

if ((ingerr .GT. ©) .OR. (numchg .EQ. 0)) then
message 'No rows appended because of error.'

Chapter 4: Embedded QUEL for Fortran 4-105

Sample Applications

else
#Ht message 'One row inserted’
endif
#Ht sleep 2
#t }
activate menuitem 'Clear’
#it {
clear field all
#it }
#Ht activate menuitem 'End', frskey3
#t {
#Ht breakdisplay
#Ht }
finalize
#t endforms
exit
end
C
C Procedure: GetFrm
C Purpose: Get the name and data type of each field of a form
C using the FORMDATA loop. From this information, build
C the target strings and array of variable addresses
C for use in the PARAM target list of database an
C and forms statements. For example, assume the
C form has the following fields:
C
C Field name Type Nullable?
i —_——— mmmmma -
C name character No
C age integer Yes
C salary money Yes
C
C Based on this form, this procedure will construct the
C following target string for the PARAM clause of a
C PUTFORM statement:
C
C 'name = %c, age = %i4:%i2, salary = %f8:i2'
C
C Note that the target strings for other statements have
C differing syntax, depending on whether the
C field/columnname or the user variable is the target of
C the statement.
C
C The other element of the PARAM clause, the 'varadr'
C array, would be constructed by this procedure as
C follows:
C
C varadr(l) = pointer into 'chvars' array
C varadr(2) = address of intv(1l)
C varadr(3) = address of indv(1)
C varadr(4) = address of fltv(2)
C varadr(5) = address of indv(2)
C
C
#Ht logical function GetFrm (frmnam, putlst, getlst, rtnlst,
#H & varadr, chvars, intv, fltv, indv)
#t declare forms
#i# character*(*) frmnam
C For APPEND and PUTFORM statements
character*(*) putlst

4-106 Embedded QUEL Companion Guide

Sample Applications

C For GETFORM statement

#Ht character*(*) getlst

C For RETRIEVE statement

#Ht character*(*) rtnlst

C DB maximum number of columns
integer*4 MAXCOL
parameter (MAXCOL = 127)

C Addresses of vars and inds

integer*4 varadr (MAXCOL*2)
C Pool for character data

character*(*) chvars

C For integer data
integer*4 intv(*)
C For floating-point data
double precision fltv(*)
C For null indicators
integer*2 indv (*)
integer*4 ingerr
C Data type of field
integer*4 fldtyp
C Name of field
#H character*25 fldnam
C Length of field name
integer*4 fldlen
C Size of (character) field
integer*4 fldsiz
C Is field a table field?
integer*4 istbl
C Index into variable address array
integer*4 numadr
C Current field number
integer*4 fldcnt
C Return status
logical rtnsts
C Length of character buffer
integer*4 chvlen
C following 4 variables tell where to assign next character
C Index into putlst
integer*4 putcnt
C Index into getlst
integer*4 getcnt
C Index into rtnlst
integer*4 rtncnt
C Index into character pool
integer*4 chrptr
C Data types of fields on form
integer*2 DATE, MONEY, CHAR, VARCHAR, INT, FLOAT, C, TEXT
parameter (DATE = 3,
& MONEY = 5,
& CHAR = 20,
& VARCHAR = 21,
& INT = 30,
& FLOAT = 31,
& C = 32,
& TEXT = 37)
rtnsts = .TRUE.
numadr = 1

Chapter 4: Embedded QUEL for Fortran 4-107

Sample Applications

putcnt
getcnt
rtncnt
chrptr
fldcnt

m n mnwmnn
PR PP

chvlen = len(chvars)

formdata frmnam

#Ht {

C Get data information and name of each field

#Ht inquire_frs field '' (fldtyp = DATATYPE, fldnam = NAME,
#t fldsiz = LENGTH, istbl = TABLE)

C Return on errors

#Ht inquire_frs frs (ingerr = ERRORNO)

if (ingerr .GT. O) then
rtnsts = .FALSE.

#t enddata
endif
C
C This application does not process table fields. However,
C the TABLEDATA statement is available to profile table
C fields.
C if (istbl .EQ. 1) then
#H message 'Table field in form'
#Ht sleep 2
rtnsts = .FALSE.
enddata
endif
C More fields than allowable columns in database?
if (fldcnt .GT. MAXCOL) then
message 'Number of fields exceeds allowable
database columns'
#i# sleep 2
rtnsts = .FALSE.
#Ht enddata
endif
C Separate target list items with commas
if (fldcnt .GT. 1) then
putlst(putcnt:) = ",
putcnt = putcnt + 1
getlst(getcnt:) = ',
getcnt = getent + 1
rtnlst(rtncnt:) = ',
rtncnt = rtnent + 1
endif
C Calculate the length of fldnam without trailing spaces
fldlen = len(fldnam)
1000 continue
if ((fldlen .GT. 1) .AND.
(fldnam(fldlen:fldlen) .EQ. ' ')) then
fldlen = fldlen - 1
goto 1000
end if
C Field/column name is the target in
C PUTFORM/APPEND statements

putlst(putcnt:) = fldnam
putcnt = putcnt + fldlen

4-108 Embedded QUEL Companion Guide

Sample Applications

alaleolalolalalakala]

aalaiake]

#it

#t

#it

R0 R0 Qo Qo

Enter data type information in target list. Point
array of addresses into relevant data pool.

Note that bytesting the absolute

value of the data type value, the

program defers the question of nullable data to a
later segment of the code, where it is handled in
common for all types. (Recall that a negative data
type indicates a nullable field.)

if

else if

else if

(abs(fldtyp) .EQ. INT) then
putlst(putcnt:) = '=%i4’
putcnt = putcnt + 4

getlst(getcnt:) = '%i4’
getcnt = getent + 3

rtnlst(rtncnt:) = '%i4’'
rtncnt = rtnent + 3

varadr (numadr) = IInum(intv(fldcnt))
numadr = numadr + 1

((abs(fldtyp) .EQ. FLOAT) .OR.
(abs(fldtyp) .EQ. MONEY)) then

putlst(putcnt:) = '=%f8'
putcnt = putcnt + 4

getlst(getent:) = '%f8'
getcnt = getent + 3

rtnlst(rtncnt:) = '%f8'
rtncnt = rtnent + 3

varadr (numadr) = IInum(fltv(fldcnt))
numadr = numadr + 1

((abs(fldtyp) .EQ. C) .OR.
(abs(fldtyp) .EQ. CHAR) .0R
(abs(fldtyp) .EQ. TEXT) .OR.
(abs(fldtyp) .EQ. VARCHAR) .OR.
(abs(fldtyp) .EQ. DATE)) then
putlst(putcnt:) = '=%c'

putcnt = putcnt + 3

getlst(getcnt:) = "%’

getcnt = getent + 2
rtnlst(rtncnt:) = '%c'
rtncnt = rtncnt + 2

Assign a segment of character buffer as space for
data associated with this field. If assignment
would cause overflow, give error and return.

if ((chrptr + fldsiz) .GT. (chvlen)) then
message 'Character data fields will
cause overflow'
sleep 2
rtnsts = .FALSE.
enddata
endif

Chapter 4: Embedded QUEL for Fortran 4-109

Sample Applications

varadr (numadr) =
IIstr(chvars(chrptr:chrptr+fldsiz-1))

numadr = numadr + 1

chrptr = chrptr + fldsiz

else
message 'Field has unknown data type'
rtnsts = .FALSE.
#H enddata
endif

If field 1is nullable, complete target lists and
address assignments to allow for null data.

aEaleKal

if (fldtyp .LT. @) then

putlst(putcnt:) = ":%i2'
putcnt = putcnt 4

+

getlst(getcnt:) = ':%i2'
getcnt = getcnt 4

+

rtnlst(rtncnt:) = ':%i2"'
rtncnt = rtnent 4

+

varadr (numadr) = IInum(indv(fldcnt))
numadr = numadr + 1

endif

C Ready for next field
fldcnt = fldent + 1

C Field/column name is the object in
C GETFORM/RETRIEVE statements

1
fldnam
fldlen

getlst(getcnt:) ="
getcnt = getent
getlst(getcnt:)

getcnt = getent

+ 1+ n

rtnlst(rtncnt:) '=t.'
rtncnt = rtnent
rtnlst(rtncnt:)
rtncnt = rtnent

fldnam
fldlen

+ 0+

#i } /* End of FORMDATA loop */

GetFrm = rtnsts
return
end

VMS

Procedure: main

Purpose: Start up program and Ingres, prompting user
for names of form and table. Call Get_Form_Data() to
obtain profile of form. Then allow user to
interactively browse the database table
and/or APPEND new data.

#it program main

4-110

Embedded QUEL Companion Guide

Sample Applications

#i#

##
##

##

##

declare forms
Global declarations

Target string buffers for use in PARAM clauses of GETFORM,
PUTFORM, APPEND and RETRIEVE statements. Note that the APPEND
and PUTFORM statements have the same target string syntax.
Therefore in this application, because the form used
corresponds exactly to the database table, these two s
statements can use the same target string, 'put_target list'.

character*1000 put_target_ list

For APPEND and PUTFORM statements
character*1000 get target_list ! For GETFORM statement
character*1000 ret_target_list ! For RETRIEVE statement

integer maxcols, charbufsize
parameter (maxcols = 127) ! DB maximum number of columns
parameter (charbufsize = 3000)

Size of 'pool' of char strings

An array of addresses of program data for use in the PARAM
clauses. This array will be initialized by the program to
point to variables and null indicators.

integer*4 var_addresses (MAXCOLS*2)
Addresses of vars and inds

Variables for holding data of type integer, float and
character string. Note that to economize on memory usage,
character data is managed as segments on one large array,
'char_vars'. Numeric variables and indicators are managed as
an array of structures. The addresses of these data areas
are assigned to the 'var_addresses' array, according to the
type of the field/database column.

character* (CHARBUFSIZE) char_vars ! Pool for character data

structure /n_vars/

integer*4 intv ! For integer data
double precision fltv ! For floating-point data
integer*2 indv ! For null indicators

end structure
record /n_vars/ vars(MAXCOLS)

character*25 dbname, formname, tabname

integer*4 ing_error ! Catch database and forms errors
integer*4 num_updates ! Catch error on database APPENDs
logical want_next ! Browse flag

logical Get_Form Data ! Logical function (see below)

put_target_list ="'
get_target_list = ' '
ret_target_list = ' '
char_vars = ' '

forms

prompt ('Database name: ', dbname)

! "-E' flag tells Ingres not to quit on start-up errors

Chapter 4: Embedded QUEL for Fortran 4-111

Sample Applications

ingres '-E' dbname
#Ht inquire_ingres (ing_error = ERRORNO)

if (ing_error .GT. @) then
#Ht message 'Could not start Ingres. Exiting.'
endforms
#it exit

call exit

endif

! Prompt for table and form names
prompt ('Table name: ', tabname)
#Ht range of t IS tabname
inquire_ingres (ing_error = ERRORNO)

if (ing_error .GT. @) then
message 'Non-existent table. Exiting.'
#t endforms
exit

call exit

endif
prompt ('Form name: ', formname)
#it forminit formname

I All forms errors are reported through INQUIRE_FRS

#it inquire_frs frs (ing_error = ERRORNO)
if (ing_error .GT. @) then
#H message 'Could not access form. Exiting.'
#it endforms
#H exit
call exit
endif

Get profile of form. Construct target lists and access
variables for use in queries to browse and update data.

|
|
!
! if (.NOT. Get_Form_Data (formname, put_target list,

1 get_target_list, ret_target_list, var_addresses,
2 char_vars, vars)) then
#Ht message 'Could not profile form. Exiting.'
endforms
#it exit
call exit
endif

!

! Display form and interact with user, allowing browsing
! and appending of new data.

|

#t display formname fill

initialize
activate menuitem 'Browse'’
#Ht {

|
! Retrieve data and display first row on form, allowing
! user to browse through successive rows. If data types
! from table are not consistent with data descriptions
! obtained from user's form, a retrieval error will

! occur. Inform user of this or other errors.

I Sort on first column. Note the use of 'ret_varN' to

! indicate the column name to sort on.

|

retrieve (param(ret_target_list, var_addresses))
#it sort by ret_varl
{

4-112 Embedded QUEL Companion Guide

Sample Applications

#i

#i#

#i#
##

##

##

##
#i#

##
#i#

#i#

#i#

}

want_next = .FALSE.
putform formname (param(put_target list, var_addresses))

inquire_frs frs (ing_error = errorno)

if (ing_error .GT. @) then
message 'Could not put data into form'
endretrieve

endif

! Display data before prompting user with submenu
redisplay
submenu
activate menuitem 'Next', frskey4d
{
message 'Next row'
want_next = .TRUE.
}
activate menuitem 'End', frskey3

{

endretrieve
}
} /* End of RETRIEVE Loop */

inquire_ingres (ing_error = errorno)
if (ing_error .GT. @) then
message 'Could not retrieve data from database'

else if (want_next) then
! Retrieve loop ended because of no more rows
message 'No more rows'

endif

sleep 2

! Clear fields filled in submenu operations
clear field all

activate menuitem 'Insert'

{

}

getform formname (param(get_target_list, var_addresses))
inquire_frs frs (ing_error = errorno)
if (ing_error .GT. O) then
clear field all
resume
endif

append to tabname (param(put_target_list,
var_addresses))

inquire_ingres (ing_error = errorno,
num_updates = rowcount)
if ((ing_error .GT. 0) .OR. (num_updates .EQ. 0)) then
message 'No rows appended because of error.'
else
message 'One row inserted'
endif
sleep 2

activate menuitem 'Clear’

{
}

clear field all

Chapter 4: Embedded QUEL for Fortran 4-113

Sample Applications

##
#i#

activate menuitem 'End', frskey3

}

breakdisplay

finalize
endforms

exit
end

Procedure: Get_Form_Data

Purpose:

Get the name and data type of each field of a form
using the FORMDATA loop. From this information,
build the target strings and array of variable
addresses for use in the PARAM target list of
database and forms statements.

For example, assume the form has the

following fields:

Field name Type Nullable?
name character No
age integer Yes
salary money Yes

Based on this form, this procedure will construct
the following target string for the PARAM clause
of a PUTFORM statement:

'name = %c, age = %i4:%i2, salary = %f8:i2'

Note that the target strings for other statements
have differing syntax, depending on whether the
field/column name or the user variable is the
target of the statement.

The other element of the PARAM clause, the
'var_addresses' array, would be constructed by this
procedure as follows:

var_addresses (1) =

pointer into 'char_vars' array
var_addresses(2) = address of vars(l).intv
var_addresses(3) address of vars(l).indv
var_addresses(4) address of vars(2).fltv
var_addresses(5) address of vars(2).indv

logical function Get_Form_Data (formname,
put_target_list, get_target_list, ret_target_list,
var_addresses, char_vars, vars)

declare forms
character*(*) formname

character*(*) put_target list

! For APPEND and PUTFORM statements
character*(*) get_target_list ! For GETFORM statement
character*(*) ret_target_list ! For RETRIEVE statement

integer*4 maxcols
parameter (maxcols = 127)
DB maximum number of columns

4-114 Embedded QUEL Companion Guide

Sample Applications

integer*4 var_addresses (MAXCOLS*2)
! Addresses of vars and inds
character*(*) char_vars ! Pool for character data

structure /n_vars/

integer*4 1intv ! For integer data
double precision fltv ! For floating-point data
integer*2 indv ! For null indicators

end structure
record /n_vars/ vars(MAXCOLS)

integer*4 ing_error
#Ht integer*4 fld_type ! Data type of field
character*25 fld_name ! Name of field
integer*4 fld_name_len ! Length of field name
integer*4 fld_length ! Length of (character) field
#t integer*4 is_table ! Is field a table field?
character*15 loc_target ! Temporary target description
integer*4 addr_cnt ! Index into variable address array
integer*4 fld_cnt ! Current field number
logical ret_stat ! Return status
integer*4 char_vars_len ! Length of character buffer
I following 4 variables tell where to assign next
! character
integer*4 put_cnt ! Index into put_target list
integer*4 get_cnt ! Index into get_ target_list
integer*4 ret_cnt ! Index into ret_target list
integer*4 char_ptr ! Index into character pool

! Data types of fields on form
integer*2 date, money, char, varchar, int, float, c, text

parameter (date =3,
1 money =5,
2 char = 20,
3 varchar =21,
4 int = 30,
5 float = 31,
6 C = 32,
7 text =37)
ret_stat = .TRUE.
addr_cnt =1
put_cnt =1
get_cnt =1
ret_cnt =1
char_ptr =1
fld_cnt =1
char_vars_len = len(char_vars)
#t formdata formname
#Ht
! Get data information and name of each field
#Ht inquire_frs field '' (fld_type = datatype, fld_name = name,
#t fld_length = length, is_table = table)
! Return on errors
#it inquire_frs frs (ing_error = errorno)
if (ing_error .gt. O) then
ret_stat = .false.
enddata
endif

|
! This application does not process table fields.

Chapter 4: Embedded QUEL for Fortran 4-115

Sample Applications

! However, the TABLEDATA statement is available to
! profile table fields.
|

if (is_table .EQ. 1) then

message 'Table field in form'
#Ht sleep 2
ret_stat = .FALSE.
#i# enddata
endif

! More fields than allowable columns in database?
if (fld_cnt .GT. MAXCOLS) then

message
#Ht '"Number of fields exceeds allowable database
columns'
#Ht sleep 2
ret_stat = .FALSE.
enddata
endif

! Separate target list items with commas

if (fld_cnt .GT. 1) then
put_target_list(put_cnt:) = ','
put_cnt = put_cnt + 1

get_target list(get_cnt:) ',
get _cnt = get_cnt + 1

ret_target_list(ret_cnt:) = ','
ret_cnt = ret_cnt + 1
endif

! Calculate the length of fld_name without trailing
! spaces
fld_name_len = len(fld_name)
do while ((fld_name_len .GT. 1) .AND.
1 (fld_name(fld_name_len:fld_name_len) .EQ. ' '))
fld_name_len = fld_name_len - 1
end do

! Field/column name is the target in PUTFORM/APPEND
! statements

put_target_list(put_cnt:) = fld_name

put_cnt = put_cnt + fld_name_len

|
! Enter data type information in target list. Point
! array of addresses into relevant data pool. Note that
! by testing the absolute value of the data type value,
! the program defers the question of nullable data to a
! later segment of the code, where it is handled in
! common for all types. (Recall that a negative data
! type indicates a nullable field.)
|
if (abs(fld_type) .EQ. INT) then
put_target list(put_cnt:) = '=%i4'
put_cnt = put_cnt + 4

get_target_list(get_cnt:) = '%i4'
get_cnt = get_cnt + 3

'%i4'

ret_target_list(ret_cnt:)
ret_cnt = ret_cnt + 3

var_addresses(addr_cnt) = %loc(vars(fld_cnt).intv)
addr_cnt = addr_cnt + 1

4-116 Embedded QUEL Companion Guide

Sample Applications

B WN

##
#i#

#i#

##

##

else if ((abs(fld_type) .eq. float) .or.
(abs(fld_type) .eq. money)) then

put_target_list(put_cnt:) = '=%f8'
put_cnt = put_cnt + 4

get_target list(get_cnt:) '%f8'

get_cnt = get_cnt + 3

ret_target list(ret_cnt:) = '%f8'
ret_cnt = ret_cnt + 3

var_addresses(addr_cnt) = %loc(vars(fld_cnt).fltv)
addr_cnt = addr_cnt + 1

else if ((abs(fld_type) .eq. C) .or.
(abs(fld_type) .eq. char) .or.
(abs(fld_type) .eq. text) .or.
(abs(fld_type) .eq. varchar) .or.
(abs(fld_type) .eq. date)) then
put_target list(put_cnt:) = '"=%c'

put_cnt = put_cnt + 3

get_target list(get_cnt:) = '%c'
get_cnt = get_cnt + 2

ret_target_list(ret_cnt:) = '"%c'
ret_cnt = ret_cnt + 2

!
! Assign a segment of character buffer as space for

! data associated with this field. If assignment would
! cause overflow, give error and return.

!

if ((char_ptr + fld_length) .gt.

1 (char_vars_len)) then
message 'Character data fields will cause overflow'
sleep 2

ret_stat = .FALSE.

enddata

endif

var_addresses(addr_cnt) =

1 TIIdesc(char_vars(char_ptr:char_ptr+fld_length-1))
addr_cnt = addr_cnt + 1

char_ptr = char_ptr + fld_length

else
message 'Field has unknown data type'
ret_stat = .false.
enddata

endif
|

! If field is nullable, complete target lists and
! address assignments to allow for null data.
|

if (fld_type .LT. ©) then

put_target_list(put_cnt:) = ":%i2'
put_cnt = put_cnt + 4
get_target list(get cnt:) = ':%i2'

Chapter 4: Embedded QUEL for Fortran

Sample Applications

#it

##

#it

#i#

#it

#it
##

get_cnt = get_cnt + 4

ret_target_list(ret_cnt:) = ':%i2'
ret_cnt = ret_cnt + 4

var_addresses(addr_cnt) = %loc(vars(fld_cnt).indv)
addr_cnt = addr_cnt + 1

endif

! Ready for next field
fld_cnt = fld_cnt + 1

! Field/column name is the object in
! getform/retrieve statements

get_target list(get_cnt:) = '='
get_cnt = get_cnt + 1

get_target list(get_cnt:) = fld_name
get_cnt = get_cnt + fld_name_len

ret_target_list(ret_cnt:) '=t.
ret_cnt = ret_cnt + 3
ret_target_list(ret_cnt:) = fld_name
ret_cnt = ret_cnt + fld_name_len

} /* End of FORMDATA loop */
Get_Form_Data = ret_stat

return

end

Procedure: main

Purpose: Start up program and Ingres, prompting user
for names of form and table. Call Get_Form Data() to
obtain profile of form. Then allow user to
interactively browse the database table
and/or APPEND new data.

program main
declare forms
Global declarations

Target string buffers for use in PARAM clauses of GETFORM,
PUTFORM, APPEND and RETRIEVE statements. Note that the APPEND
and PUTFORM statements have the same target string syntax.
Therefore in this application, because the form used
corresponds exactly to the database table, these two s
statements can use the same target string, 'put_target list'.

character*1000 put_target_list

For APPEND and PUTFORM statements
character*1000 get_target_list ! For GETFORM statement
character*1000 ret_target_list ! For RETRIEVE statement

integer MAXCOLS, CHARBUFSIZE
parameter (MAXCOLS = 127) ! DB maximum number of columns
parameter (CHARBUFSIZE = 3000)

4-118 Embedded QUEL Companion Guide

Sample Applications

##

##

#i#

#i#

##

#it

#i

#it

##

Size of 'pool' of char strings

An array of addresses of program data for use in the PARAM
clauses. This array will be initialized by the program to
point to variables and null indicators.

integer*4 var_addresses (MAXCOLS*2)
Addresses of vars and inds

Variables for holding data of type integer, float and
character string. Note that to economize on memory usage,
character data is managed as segments on one large array,
‘char_vars'. Numeric variables and indicators are managed as
an array of structures. The addresses of these data areas
are assigned to the 'var_addresses' array, according to the
type of the field/database column.

character* (CHARBUFSIZE) char_vars ! Pool for character data

structure /n_vars/

integer*4 intv ! For integer data
double precision fltv I For floating point data
integer*2 indv ! For null indicators

end structure
record /n_vars/ vars(MAXCOLS)

character*25 dbname, formname, tabname

integer*4 ing_error ! Catch database and forms errors
integer*4 num_updates ! Catch error on database APPENDs
logical want_next ! Browse flag

logical Get_Form Data ! Logical function (see below)

put_target list = ' '
get_target_list Y
ret_target_list '
char_vars = ' '

forms

prompt ('Database name: ', dbname)
! '-E' flag tells Ingres not to quit on start-up errors
ingres '-E' dbname
inquire_ingres (ing_error = ERRORNO)
if (ing_error .GT. ©@) then
message 'Could not start Ingres. Exiting.'
endforms
exit
call exit
endif

! Prompt for table and form names
prompt ('Table name: ', tabname)
range of t IS tabname
inquire_ingres (ing_error = ERRORNO)
if (ing_error .GT. @) then
message 'Non-existent table. Exiting.'
endforms
exit
call exit
endif

prompt ('Form name: ', formname)

Chapter 4: Embedded QUEL for Fortran 4-119

Sample Applications

forminit formname

! All forms errors are reported through INQUIRE_FRS

#it inquire_frs frs (ing_error = ERRORNO)
if (ing_error .GT. @) then
#Ht message 'Could not access form. Exiting.'
endforms
#it exit
call exit
endif

!

! Get profile of form. Construct target lists and access
! variables for use in queries to browse and update data.
if (.NOT. Get_Form_Data (formname, put_target list,

1 get _target list, ret_target list, var_addresses,
2 char_vars, vars)) then
message 'Could not profile form. Exiting.'
#it endforms
exit
call exit
endif

|
! Display form and interact with user, allowing browsing
|

and appending of new data.
|

#it display formname fill

#Ht initialize
activate menuitem 'Browse'’
#Ht {

|
! Retrieve data and display first row on form, allowing
! user to browse through successive rows. If data types
! from table are not consistent with data descriptions
! obtained from user's form, a retrieval error will

I occur. Inform user of this or other errors.

! Sort on first column. Note the use of 'ret_varN' to

! indicate the column name to sort on.

|

#i# retrieve (param(ret_target_list, var_addresses))
sort by ret_varl
#H {
want_next = .FALSE.

#Ht putform formname (param(put_target_list, var_addresses))
#i inquire_frs frs (ing_error = errorno)

if (ing_error .GT. 0) then
#H message 'Could not put data into form'
#t endretrieve

endif

! Display data before prompting user with submenu
#t redisplay
#i# submenu
activate menuitem 'Next', frskey4
#Ht {
message 'Next row'

want_next = .TRUE.

}
#t activate menuitem 'End', frskey3
{
#it endretrieve
}

4-120 Embedded QUEL Companion Guide

Sample Applications

#t } /* End of RETRIEVE Loop */
inquire_ingres (ing_error = errorno)
if (ing_error .GT. @) then
message 'Could not retrieve data from database'’
else if (want_next) then
! Retrieve loop ended because of no more rows
message 'No more rows'
endif
#Ht sleep 2
! Clear fields filled in submenu operations
clear field all
#t }
#t activate menuitem 'Insert'’
#t {
getform formname (param(get_target_list, var_addresses))
#it inquire_frs frs (ing_error = errorno)
if (ing_error .GT. @) then
#t clear field all
#H resume
endif
append to tabname (param(put_target_list,
#it var_addresses))
#H inquire_ingres (ing_error = errorno,
num_updates = rowcount)
if ((ing_error .GT. O) .OR. (num_updates .EQ. ©0)) then
message 'No rows appended because of error.'
else
#Ht message 'One row inserted'
endif
#HHt sleep 2
#Ht }
activate menuitem 'Clear’
#it {
##t clear field all
#it }
#t activate menuitem 'End', frskey3
#Ht
#t breakdisplay
#Ht }
#H finalize
#t endforms
#Ht exit
end
Procedure: Get_Form_Data
Purpose: Get the name and data type of each field of a form

using the FORMDATA loop. From this information,
build the target strings and array of variable
addresses for use in the PARAM target list of
database and forms statements.

For example, assume the form has the

following fields:

Chapter 4: Embedded QUEL for Fortran 4-121

Sample Applications

Field name Type Nullable?
name character No
age integer Yes
salary money Yes

Based on this form, this procedure will construct
the following target string for the PARAM clause
of a PUTFORM statement:

'name = %c, age = %i4:%i2, salary = %f8:i2'

Note that the target strings for other statements
have differing syntax, depending on whether the
field/column name or the user variable is the
target of the statement.

The other element of the PARAM clause, the
'var_addresses' array, would be constructed by this
procedure as follows:

var_addresses(1l) =

pointer into 'char_vars' array
var_addresses(2) = address of vars(l).intv
var_addresses(3) address of vars(l).indv
var_addresses(4) address of vars(2).fltv
var_addresses(5) address of vars(2).indv

#H logical function Get_Form Data (formname,
1 put_target list, get target list, ret_target list,
2 var_addresses, char_vars, vars)

declare forms

character*(*) formname

character*(*) put_target list

! For APPEND and PUTFORM statements
character*(*) get_target list ! For GETFORM statement
character*(*) ret_target_list ! For RETRIEVE statement

integer*4 MAXCOLS
parameter (MAXCOLS = 127)
! DB maximum number of columns

integer*4 var_addresses (MAXCOLS*2)
! Addresses of vars and inds
character*(*) char_vars ! Pool for character data

structure /n_vars/

integer*4 intv ! For integer data
double precision fltv ! For floating point data
integer*2 indv ! For null indicators

end structure
record /n_vars/ vars(MAXCOLS)

integer*4 ing_error

#Ht integer*4 fld_type ! Data type of field

#t character*25 fld_name ! Name of field
integer*4 fld_name_len ! Length of field name

integer*4 fld_length ! Length of (character) field

#t integer*4 is_table ! Is field a table field?
character*15 loc_target ! Temporary target description
integer*4 addr_cnt ! Index into variable address array
integer*4 fld_cnt ! Current field number

4-122 Embedded QUEL Companion Guide

Sample Applications

logical ret_stat ! Return status

integer*4 char_vars_len ! Length of character buffer
! following 4 variables tell where to assign next

! character

integer*4 put_cnt ! Index into put_target list
integer*4 get_cnt ! Index into get_target list
integer*4 ret_cnt ! Index into ret_target list
integer*4 char_ptr ! Index into character pool

! Data types of fields on form
integer*2 date, money, char, varchar, int, float, c, text

parameter (date =3,
1 money =5,
2 char = 20,
3 varchar =21,
4 int = 30,
5 float = 31,
6 C = 32,
7 text =37)

ret_stat = .TRUE.

addr_cnt =1

put_cnt =1

get_cnt =1

ret_cnt =1

char_ptr =1

fld_cnt =1

char_vars_len = LEN(char_vars)

#H formdata formname

! Get data information and name of each field

#Ht inquire_frs field '' (fld_type = datatype, fld_name = name,
#Ht fld_length = length, is_table = table)
! Return on errors
#it inquire_frs frs (ing_error = errorno)
if (ing_error .gt. 0) then
ret_stat = .false.
#Ht enddata
endif

!
! This application does not process table fields.

! However, the TABLEDATA statement is available to
! profile table fields.

!

if (is_table .EQ. 1) then

#t message 'Table field in form'
#it sleep 2
ret_stat = .FALSE.
#Ht enddata
endif

I More fields than allowable columns in database?
if (fld_cnt .GT. MAXCOLS) then

message
'"Number of fields exceeds allowable database columns'
#t sleep 2
ret_stat = .FALSE.
enddata
endif

| Separate target list items with commas
if (fld_cnt .GT. 1) then

Chapter 4: Embedded QUEL for Fortran 4-123

Sample Applications

put_target_list(put_cnt:) = ','
put_cnt = put_cnt + 1

get_target_list(get_cnt:) ',
get_cnt = get_cnt + 1

ret_target_list(ret_cnt:) = ','
ret_cnt = ret_cnt + 1
endif

! Calculate the length of fld_name without trailing
! spaces
fld_name_len = LEN(fld_name)
do while ((fld_name_len .GT. 1) .AND.
1 (fld_name(fld_name_len:fld_name_len) .EQ. ' "))
fld_name_len = fld_name_len - 1
end do

! Field/column name is the target in PUTFORM/APPEND
! statements

put_target list(put_cnt:) = fld_name

put_cnt = put_cnt + fld_name_len

|
! Enter data type information in target list. Point
! array of addresses into relevant data pool. Note that
! by testing the absolute value of the data type value,
! the program defers the question of nullable data to a
! later segment of the code, where it is handled in
I common for all types. (Recall that a negative data
! type indicates a nullable field.)
|
if (abs(fld_type) .EQ. INT) then
put_target list(put_cnt:) = '=%i4’
put_cnt = put_cnt + 4

get_target_list(get_cnt:) = '%i4’
get_cnt = get_cnt + 3

ret_target_list(ret_cnt:) '%i4'

ret_cnt = ret_cnt + 3

var_addresses(addr_cnt) = %loc(vars(fld_cnt).intv)
addr_cnt = addr_cnt + 1

else if ((abs(fld_type) .eq. float) .or.
1 (abs(fld_type) .eq. money)) then

put_target_list(put_cnt:) = '=%f8'
put_cnt = put_cnt + 4

get target_list(get cnt:) = '%f8'
get_cnt = get_cnt + 3

ret_target_list(ret_cnt:) = "%f8'
ret_cnt = ret_cnt + 3

var_addresses(addr_cnt) = %loc(vars(fld_cnt).fltv)
addr_cnt = addr_cnt + 1

else if ((abs(fld_type) .eq. C) .or.
1 (abs(fld_type) .eq. char) .or.
2 (abs(fld_type) .eq. text) .or.
3 (abs(fld_type) .eq. varchar) .or.
4 (abs(fld_type) .eq. date)) then

4-124 Embedded QUEL Companion Guide

Sample Applications

##
##

##

##

##

put_target_list(put_cnt:) = '=%c'
put_cnt = put_cnt + 3

get_target_list(get_cnt:) "%c’

get_cnt = get_cnt + 2

ret_target_list(ret_cnt:) = '%c'
ret_cnt = ret_cnt + 2

Assign a segment of character buffer as space for
data associated with this field. If assignment would
cause overflow, give error and return.

if ((char_ptr + fld_length) .gt.

1 (char_vars_len)) then
message 'Character data fields will cause overflow'
sleep 2

ret_stat = .FALSE.
enddata
endif

var_addresses(addr_cnt) =

1 TIldesc(char_vars(char_ptr:char_ptr+fld_length-1))
addr_cnt = addr_cnt + 1
char_ptr = char_ptr + fld_length

else
message 'Field has unknown data type'
ret_stat = .false.
enddata

endif
|

I If field is nullable, complete target lists and
! address assignments to allow for null data.
|

if (fld_type .LT. ©) then

put_target_list(put_cnt:) = ":%i2'
put_cnt = put_cnt + 4
get_target list(get cnt:) = ':%i2'
get_cnt = get_cnt + 4
ret_target_list(ret_cnt:) = ':%i2'

ret_cnt = ret_cnt + 4

var_addresses(addr_cnt) = %loc(vars(fld_cnt).indv)
addr_cnt = addr_cnt + 1

endif

! Ready for next field
fld_cnt = fld_cnt + 1

! Field/column name is the object in
! getform/retrieve statements

get_target_list(get_cnt:) =
get_cnt = get_cnt + 1
get_target_list(get_cnt:) = fld_name
get_cnt = get_cnt + fld_name_len

ret_target_ list(ret_cnt:) = '=t.'

Chapter 4: Embedded QUEL for Fortran 4-125

Sample Applications

ret_cnt = ret_cnt + 3
ret_target_list(ret_cnt:) = fld_name
ret_cnt = ret_cnt + fld_name_len

} /* End of FORMDATA loop */
Get_Form_Data = ret_stat
return

end

4-126 Embedded QUEL Companion Guide

Chapter 5: Embedded QUEL for Ada

This chapter describes the use of EQUEL with the Ada programming language.

EQUEL Statement Syntax for Ada

Margin

Terminator

This section describes the language-specific ground rules for embedding QUEL
database and forms statements in an Ada program. An EQUEL statement has
the following general syntax:

EQUEL_statement

For information on QUEL statements, see the QUEL Reference Guide. For
information on EQUEL/FORMS statements, see the Forms-based Application
Development Tools User Guide.

The following sections describe how to use the various syntactical elements of
EQUEL statements as implemented in Ada.

There are no specified margins for EQUEL statements in Ada. Always place the
two number signs (##) in the first two positions of the line. The rest of the
statement can begin anywhere else on the line.

No statement terminator is required for EQUEL/Ada statements. It is
conventional not to use a statement terminator in EQUEL statements, although
the Ada statement terminator, the semicolon (;), is allowed at the end of
EQUEL statements. The preprocessor ignores it.

For example, the following two statements are equivalent:
sleep 1

and
sleep 1;

The terminating semicolon may be convenient when entering code directly
from the terminal using the -s flag. For information on using the -s flag to test
the syntax of a particular EQUEL statement, see Precompiling, Compiling and
Linking an EQUEL Program in this chapter.

Chapter 5: Embedded QUEL for Ada 5-1

EQUEL Statement Syntax for Ada

Line Continuation

Comments

EQUEL statements that are made up of a few other statements, such as a
display loop, only allow a semicolon after the last statement. For example:

display empform --No semicolon here

initialize --No semicolon here

activate menuitem "Help" --No semicolon here

{

message "No help yet"; --Semicolon allowed

#Ht sleep 2; --Semicolon allowed

#H)

finalize; --Semicolon allowed on last statement

Variable declarations made visible to EQUEL observe the normal Ada
declaration syntax. Thus, variable declarations must be terminated in the
normal way for Ada, with a semicolon.

There are no special line-continuation rules for EQUEL/Ada. EQUEL statements
can be broken between words and continued on any number of subsequent
lines. An exception to this rule is that you cannot continue a statement
between two words that are reserved when they appear together, such as
declare cursor. See the QUEL Reference Guide for a list of double keywords.
Each continuation line must be started with ## characters. Blank lines are
permitted between continuation lines.

If you want to continue a character-string constant across two lines, end the
first line with a backslash character (\), and continue the string at the
beginning of the next line. In this case, do not place ## characters at the
beginning of the continuation lines.

For examples of string continuation, see String Literals in this chapter.

Two kinds of comments can appear in an EQUEL program, EQUEL comments
and host language comments. EQUEL comments are delimited by two hyphens
(- -), and continue till the end of the line, or by /* and */, and can continue
over multiple lines.

Both styles of comments appear on lines beginning with the ## sign. Whereas
the preprocessor passes Ada comments through as part of its output, it strips
EQUEL comments and does not pass them through. Thus, source code
comments that you desire in the preprocessor output should be entered as
Ada comments, on lines other than EQUEL lines.

The following restrictions apply to any comments in an EQUEL/Ada program,
whether intended as EQUEL comments or Ada comments:

5-2 Embedded QUEL Companion Guide

EQUEL Statement Syntax for Ada

If anything other than ## appears in the first two positions of a line of
EQUEL source, the precompiler treats the line as host code and ignores it.
The only exception to this is a string-continuation line (see String Literals
in this chapter).

Comments cannot appear in string constants. In this context, the intended
comment will be interpreted as part of the string constant.

In general, EQUEL comments are allowed in EQUEL statements wherever a
space may legally occur. However, no comments can appear between two
words that are reserved when they appear together, such as declare
cursor. Please refer to the list of EQUEL reserved words in the QUEL
Reference Guide.

The following additional restrictions apply only to Ada comments:

n

Ada comments cannot appear between component lines of EQUEL block-
type statements. These include retrieve, initialize, activate,
unloadtable, formdata, and tabledata, all of which have optional
accompanying blocks delimited by open and close braces. Ada comment
lines must not appear between the statement and its block-opening
delimiter.

For example:

retrieve (ename = employee.name)
--Illegal to put a host comment here!

#H
--A host comment 1is perfectly legal here
put ("Employee name: "& ename);

#t)

Ada comments cannot appear between the components of compound
statements, in particular the display statement. It is illegal for an Ada
comment to appear between any two adjacent components of the display
statement, including display itself and its accompanying initialize,
activate, and finalize statements.

For example:

display empform

--Illegal to put a host comment here!

initialize (empname = "Fred McMullen")
--Host comment illegal here!

activate menuitem "Clear"

{

--Host comment here is fine
#Ht clear field all

#t)

--Host comment illegal here!
activate menuitem "End"
{

breakdisplay

#t)

--Host comment illegal here!
finalize

The QUEL Reference Guide specifies these restrictions on a statement-by-
statement basis.

Chapter 5: Embedded QUEL for Ada 5-3

EQUEL Statement Syntax for Ada

String Literals

n On the other hand, EQUEL comments are legal in the locations described in
the previous paragraph, as well as wherever a host comment is legal. For
example:

retrieve (ename = employee.name)
##--This is an EQUEL comment, legal in this
##--1location and it can span multiple lines
#H {

put ("Employee name: "& ename);
)

You double quotes to delimite string literals in EQUEL/Ada.

To embed the double quote in a string literal, you should use two double
quotes, as in:

message "A quote "" 1in a string"

The Ada single quote character delimiter is also accepted by the preprocessor
and is converted to a double quote.

To embed the backslash character, precede it with another backslash.

When continuing an EQUEL statement to another line in the middle of a string
literal, use a backslash (\) immediately prior to the end of the first line. In
this case, the backslash and the following newline character are ignored by the
preprocessor, so that the following line can continue both the string and any
further components of the EQUEL statement. Any leading spaces on the next
line are considered part of the string. For example, the following is a legal
EQUEL statement:

message "Please correct errors found in updating \
the database tables."

Note that you cannot use the Ada concatenation operator (&) to continue
string literals on the next line.

5-4 Embedded QUEL Companion Guide

Ada Variables and Data Types

Block Delimiters

EQUEL block delimiters mark the beginning and end of the embedded block-
structured statements. The retrieve loop and the forms statements display,
unloadtable, submenu, formdata, and tabledata are examples of block-
structured statements. The block delimiters to such statements can be braces,
{ and }, or the keywords begin and end. For example:

display empform
activate menuitem "Help"

#H{
Help_File("empform");
#Ht)
activate menuitem "Quit"
begin
#t breakdisplay
end

Ada Variables and Data Types

This section describes how to declare and use Ada program variables in
EQUEL.

Variable and Type Declarations

The following sections describe Ada variable and type declarations.

EQUEL Variable Declarations Procedures

EQUEL statements use Ada variables to transfer data from a database or a
form into the program and conversely. You must declare Ada variables to
EQUEL before using them in EQUEL statements. Ada variables are declared to
EQUEL by preceding the declaration with the ## mark. The declaration must
be in a syntactically correct position for the Ada language.

In general, each declared object can be referred to in the scope of the
enclosing compilation unit. An object name cannot be redeclared in the same
compilation unit scope. For details on the scope of types and variables, see
Compilation Units and the Scope of Variables in this chapter.

Chapter 5: Embedded QUEL for Ada 5-5

Ada Variables and Data Types

The With Equel and With Equel_Forms Statements

Along with your declarations, and prior to any executable EQUEL statements or
Ada compilation units in your file, you must issue the following Ada with
statement:

with equel;

If the compilation unit uses EQUEL/FORMS statements, you should instead
issue the statement:

with equel_forms;

The above statements instruct the preprocessor to generate code to call Ingres
runtime libraries. Both statements generate Ada with and use statements to
make all the generated calls acceptable to the Ada compiler by including their
package specifications. Note that both statements must terminate with a
semicolon, as required by Ada.

The EQUEL and EQUEL_FORMS package specifications should already be in
your Ada program library. (For the appropriate procedures, see Entering
EQUEL Package Specifications in this chapter.) Both packages assume that the
types integer, float, string, and address have not been redefined by any
other packages or type declarations included in your file.

Reserved Words in Declarations and Program Units

All EQUEL keywords are reserved. You cannot declare variables with the same
names as EQUEL keywords. You can only use them in quoted string literals.
These words are:

access declare new record type
array delta others renames when
body digits package return use
case function private separate

constant limited procedure subtype

Data Types and Constants

The EQUEL/Ada preprocessor accepts certain data types and constants from
the Ada STANDARD and SYSTEM packages. The table below maps the types to
their corresponding Ingres type categories. For information on the exact type
mapping, see Data Type Conversion in this chapter.

5-6

Embedded QUEL Companion Guide

Ada Variables and Data Types

Ada Data Types and Corresponding Ingres Types

Ada Type Ingres Type
short_short_integer integer
short_integer integer
integer integer
natural integer
positive integer
boolean integer
float float
long_float float
f_float float
d_float float
character character
string character

None of the types listed above should be redefined by your program. If they
are redefined, your program may not compile and will not work correctly at

runtime.

The table below maps the Ada constants to their corresponding Ingres type

categories.

Ada Constants and Corresponding Ingres Types

Ada Constant

Ingres Type

max_int integer
min_int integer
true integer
false integer

Note that, if the type or constant is derived from the SYSTEM package, the
program unit must specify that the SYSTEM package should be included—
EQUEL does not do so itself. You cannot refer to a SYSTEM object by using the
package name as a prefix, because EQUEL does not allow this type of
qualification. The types f_float and d_float and the constants max_int and
min_int are derived from the SYSTEM package.

Chapter 5: Embedded QUEL for Ada 5-7

Ada Variables and Data Types

The Integer Data Type

The Float Data Type

All integer types and their derivatives are accepted by the preprocessor. Even
though some integer types do have Ada constraints, such as the types natural
and positive, EQUEL does not check these constraints, either during
preprocessing or at runtime. An integer constant is treated as an EQUEL
constant value and cannot be the target of a Ingres assignment.

The type boolean is handled as a special type of integer. In Ada, the
boolean type is defined as an enumerated type with enumerated literals false
and true. EQUEL treats the boolean type as an enumerated type and
generates the correct code in order to use this type to interact with a Ingres
integer. Enumerated types are described in more detail later.

There are four floating-point types that are accepted by the preprocessor. The
types float and f_float are the 4-byte floating-point types. The types
long_float and d_float are the 8-byte floating-point types. Long_float
requires some extra definitions or default Ada pragmas to be able to interact
with Ingres floating-point types. Note that the preprocessor does not accept
long_long_float and h_float data types.

The Long Float Storage Format

Ingres requires that the storage representation for long floating-point variables
be d_float, because the EQUEL runtime system uses that format for floating-
point conversions. If your EQUEL program has long_float variables that
interact with the EQUEL runtime system, you must make sure they are stored
in the d_float format. Floating-point values of types g_float and h_float are
stored in different formats and sizes. The default Ada format is g_float;
consequently, you must convert your long floating-point variables to type
d_float. You can use three methods to ensure that the Ada compiler always
uses the d_float format.

The first method is to issue the following Ada pragma before every compilation
unit that declares long_float variables:

pragma long_float(d_float);
##.dblz long_float;
Note that the pragma statement is not an EQUEL statement, but an Ada

statement that directs the compiler to use a different storage format for
long_float variables.

5-8 Embedded QUEL Companion Guide

Ada Variables and Data Types

The second method is a more general instance of the first. If you are certain
that all long_float variables in your Ada program library will use the d_float
format, including those not interacting with Ingres, then you can install the
pragma into the program library by issuing the following ACS command:

$ acs set pragma/long_float=d_float

This system-level command is equivalent to issuing the Ada pragma
statement for each file that uses long_float variables.

The third method is to use the type d_float instead of the type long_float.
This has the advantage of allowing you to mix both d_float and g_float
storage formats in the same compilation unit. Of course, all EQUEL floating-
point variables must be of the d_float type and format. For example:

d_dbl: d_float;
g dbl: g float; -- Unknown to EQUEL

One side effect of all the above conversions is that some default system
package instantiations for the type long_float become invalid, because they
are set up under the g_float format. For example, the package
LONG_FLOAT_TEXT_IO, which is used to write long floating-point values to
text files, must be reinstantiated. Assuming that you have issued the following
ACS command on your program library:

$ acs set pragma/long float=d_float

you must reinstantiate the LONG_FLOAT_TEXT_IO package before you can use
it. A typical file might contain the following two lines, which serve to enter
your own copy of LONG_FLOAT_TEXT_IO into your library:

with text_io;

package long_float_text_io is new
text_io.float_io(long_float);

A later statement, such as:

with long_float_text_io; use long_float_text_io;

will pick up your new copy of the package, which is defined using the d_float
internal storage format.

The Character and Siring Data Types

Both the character and string data types are compatible with Ingres string
objects. By default, the string data type is an array of characters.

The character data type does have some restrictions. Because it must be
compatible with Ingres string objects, you can use only a one-dimensional
array of characters. Therefore, you cannot use a single character or a
multidimensional array of characters. Note that you can use a
multidimensional array of strings.

Chapter 5: Embedded QUEL for Ada 5-9

Ada Variables and Data Types

For example, the following four declarations are legal:

subtype Alphabet is Character range 'a'..'z';
type word_5 is array(l..5) of Character;

-- l-dimensional array
word_6: String(l..6); -- Default string type
word_arr: array(l..5) of String(l..6);

-- Array of strings

However, the declarations below are illegal, because they violate the EQUEL
restrictions for the character type. Although the declarations may not
generate EQUEL errors, the references will not be accepted by the Ada
compiler when used with EQUEL statements. For example:

letter: Character; -- 1 character

word_arr: array(l..5) of word_5;
-- 2-dimensional array of char

Both could be declared instead with the less restrictive string type:

letter: array(l..1l) of Character;-- or equivalently...
letter: String(l..1);
word_arr: array(l..5) of String(l..6); -- Array of strings

Variable and Number Declaration Syntax

The following sections describe the syntax for variable and number
declarations.

Simple Variable Declarations

An EQUEL/Ada variable declaration has the following syntax:

identifier {, identifier} :
[constant]
[array (dimensions) of]
type_name
[type_constraint]
[:= initial_value];

Syntax Notes:

1. The identifier must be a legal Ada identifier beginning with an alphabetic
character.

2. If the constant clause is specified, the declaration must include an explicit

initialization.
3. If the constant clause is specified, the declared variables cannot be
targets of Ingres assignments.

5-10

Embedded QUEL Companion Guide

Ada Variables and Data Types

Type Constraints

The Range Constraint

The dimensions of an array specification are not parsed by the EQUEL
preprocessor. Consequently, unconstrained array bounds and
multidimensional array bounds will be accepted by the preprocessor.
However, an illegal dimension (such as a non-numeric expression) will also
be accepted but will cause Ada compiler errors. For example, both of the
following declarations are accepted, even though only the first is legal
Ada:

square: array (1..10, 1..10) of Integer;
bad_array: array ("dimensions") of Float;

The type_name must be either an EQUEL/Ada type (see Data Types and
Constants) or a type name already declared to EQUEL.

The legal type_constraints are described in the next section.

The initial_value is not parsed by the preprocessor. Consequently,

any initial value is accepted, even if it may later cause a Ada compiler
error. For example, both of the following initializations are accepted, even
though only the first is legal Ada:

rowcount: Integer := 1;

msgbuf: String(l..100) := 2;
-- Incompatible value

You must not use a single quote in an initial value to specify an Ada attribute.
EQUEL will treat it as the beginning of a string literal and will generate an
error. For example, the following declaration will generate an error:

. Integer := Integer ‘first

rows, records:Integer range 0..500 := 0;

was_error: Boolean;

min_sal: constant Float := 15000.00;

msgbuf: String(1..100) := (1..100 = ' ');

operators: constant array(l..6) of String(l..2)
R G e e S T I

Type constraints can optionally follow the type name in an Ada object
declaration. In general, they do not provide EQUEL with runtime type
information, so they are not fully processed. The following two constraints
describe the syntax and restrictions of EQUEL type constraints.

The syntax of the range constraint is:

range /ower_bound .. upper_bound

In a variable declaration, its syntax is:

identifier: type_name range lower_bound .. upper_bound;

Chapter 5: Embedded QUEL for Ada 5-11

Ada Variables and Data Types

Syntax Notes:

1.

Even if a range constraint is not allowed by Ada, it will be accepted by
EQUEL. For example, both of the following range constraints are accepted,
although the second is illegal in Ada because the string type is not a
discrete scalar type:

digit: Integer range 0..9;

chars: String range 'a'..'z"';

The two bounds, lower_bound and upper_bound, must be integer

literals, floating-point literals, character literals, or identifiers. Other
expressions are not accepted.

The bounds are not checked for compatibility with the type_name or with
each other. For example, the following three range constraints are
accepted, even though only the first is legal Ada:

byte: Integer range -128..127;

word: Integer range 1.0..30000.0;

-- Incompatible with type name
long: Integer range 1..'z'; -- Incompatible with each other

The Discriminant and Index Constraints

The discriminant and index constraints have the following syntax:

(discriminant_or_index_constraint)

In a variable declaration the syntax is:

identifier: type_name (discriminant_or_index_constraint);

Syntax Notes:

1.

Even if a constraint is not allowed by Ada, it will be accepted by EQUEL.
For example, both of the following constraints are accepted, even though
the second is illegal in Ada because the integer type does not have a
discriminant:

who: String(l..20);-- Legal index constraint
nat: Integer(0); -- Illegal context for discriminant

The contents of the constraint contained in the parentheses are not
processed. Consequently, any constraint will be accepted, even if not
allowed by Ada. For example, the following declaration will be accepted by
EQUEL but will generate a later Ada compiler error because of the illegal
index constraint:

password: String(secret word);

Note that the above type constraints are not discussed in detail after this
section, and their rules and restrictions are considered part of the EQUEL/Ada
declaration syntax.

5-12

Embedded QUEL Companion Guide

Ada Variables and Data Types

Formal Parameter Declarations
An EQUEL/Ada formal parameter declaration has the following syntax:

identifier {, identifier} :
[in | out | in out]
type_name
[:= default_value]

[;]
In a subprogram declaration, its syntax is:

procedure name (parameter_declaration {; parameter_declaration})
is

or

function name (parameter_declaration {; parameter_declaration})
return type _name is

Syntax Notes:

1. If the in mode alone is specified, the declared parameters are considered
constants and cannot be targets of Ingres assignments.

2. If no mode is specified, the default in mode is used and the declared
parameters are considered constants.

3. The type_name must be either an EQUEL/Ada type or a type name already
declared to EQUEL.

4. The default_value is not parsed by the preprocessor. Consequently,
any default value is accepted, even if it may cause a later Ada compiler
error. For example, both of the following parameter defaults are accepted,
even though only the first is legal in Ada:
procedure Load_Table

#it (clear_it: in Boolean :
is_error: out Boolean :

TRUE;
"FALSE") is

You must not use a single quote in a default value to specify an Ada
attribute. EQUEL will treat it as the beginning of a string literal and will
generate an error.

5. The semicolon is required with all parameter declarations except the last.

6. The scope of the parameters is the subprogram in which they are declared.
For detailed scope information, see Compilation Units and the Scope of
Variables in this chapter.

Chapter 5: Embedded QUEL for Ada 5-13

Ada Variables and Data Types

Number Declarations

Renaming Variables

An EQUEL/Ada number declaration has the following syntax:

identifier {, identifier} :
constant:= /nitial_value;

Syntax Notes:

1.

A number declaration is only allowed for integer numbers. You

cannot declare a floating-point number declaration using this format. If
you do, EQUEL will treat it as an integer number declaration, causing later
compiler errors. For example, the following two number declarations are
treated as integer number declarations, even though the second is a float
number declaration:

max_employees: constant := 50000;
min_salary: constant := 13500.0; --Treated as INTEGER

To declare a constant float declaration, you must use the constant
variable syntax. For example, the second declaration above should be
declared as:

min_salary: constant Float := 13500.0; -- Treated as FLOAT
The declared numbers cannot be the targets of Ingres assignments.

The initial_value is not parsed by the preprocessor. Consequently, any
initial value is accepted, even if it may later cause an Ada compiler error.
For example, both of the following initializations are accepted, even though
only the first is a legal Ada humber declaration:

no_rows: constant := 0;
bad_num: constant := 123 + "456";

You must not use a single quote in an initial value to specify an Ada attribute.
EQUEL will treat it as the beginning of a string literal and will generate an
error.

The syntax for renaming variables is:

identifier: type_name renames declared_object;

Syntax Notes:

1.

The type_name must be a predeclared type, and the declared_object
must be a known EQUEL variable or constant.

The declared_object must be compatible with the type name in base
type, array dimensions and size.

5-14 Embedded QUEL Companion Guide

Ada Variables and Data Types

Type Declaration Syntax

Type Definition

Subtype Definition

If the declared object is a record component, any subscripts used to
qualify the component are ignored. For example, both of the following
rename statements will be accepted even though one of them must be
wrong, depending on whether “emprec” is an array:

eagel: Integer renames emprec(2).age;
eage2: Integer renames emprec.age;

EQUEL/Ada supports a subset of Ada type declarations. In a declaration, the
EQUEL preprocessor only notes semantic information relevant to the use of the
variable in EQUEL statements at runtime. Other semantic information is
ignored by the preprocessor. Refer to the syntax notes in this section and its
subsections for details.

An EQUEL/Ada full type declaration has the following syntax:

type identifier [discriminant_part] is type_definition;

Syntax Notes:

1.

The discriminant_part has the syntax:
(discriminant_specifications)

and is not processed by EQUEL. As with variable declarations, a
discriminant specification will always be accepted by EQUEL, even if not
allowed by Ada. For example, the following declaration will be accepted by
EQUEL but will later generate an Ada compiler error, because the
discriminant type is not a discrete type and the discriminant part is not
allowed in a non-record declaration:

type shapes(name: String := "BOX")
#Ht is array(l..10) of String(l..3);

From this point on, discriminant parts are not included in the syntax
descriptions or notes.

The legal type_definitions allowed in type declarations are described
below.

An EQUEL/Ada subtype declaration has the following syntax:

subtype identifier is type_name [type_constraint];

Chapter 5: Embedded QUEL for Ada 5-15

Ada Variables and Data Types

Syntax Note:

The type_constraint has the same rules as the type constraint of a variable
declaration. The range, discriminant, and index constraints are all allowed and
are not processed against the type_name being used. For more details about
these constraints, refer to the section above on variable type constraints. The
floating-point constraint and the digits clause, which are allowed in subtype
declarations, are discussed later.

Integer Type Definitions

The syntax of an EQUEL/Ada integer type definition is:

range /ower_bound .. upper_bound
In the context of a type declaration, the syntax is:

type identifier is range lower_bound .. upper_bound;
In the context of a subtype declaration, the syntax is:

subtype identifier is integer_type name
range /ower_bound .. upper_bound;

Syntax Notes:

1. In an integer type declaration (not a subtype declaration), the range
constraint of an integer type definition is processed by EQUEL to evaluate
storage size information. Both lower_bound and upper_bound must be
integer literals. Based on the specified range and the actual values of the
bounds, EQUEL treats the type as a byte-size, a word-size, or a longword-
size integer. For example:

type Table_Num 1is range 1..200;

2. In an integer subtype declaration, the range constraint is
treated as a variable range constraint and is not processed. Consequently,
the same rules that apply to range constraints for variable declarations
apply to integer range constraints for integer subtype declarations. The
base type and storage size information is determined from the
integer_type_name used. For example:
subtype Ingres_Il is Integer range -128..127;
subtype Ingres_I2 is Integer range -32768..32767;

subtype Table_Low is Table_Num range 1..10;
subtype Null_Ind 1is Short_Integer range -1..0; -- Null Indicator

5-16

Embedded QUEL Companion Guide

Ada Variables and Data Types

Floating-point Type Definitions

The syntax of an EQUEL/Ada floating-point type definition is:

digits digit_specification [range_constraint]

In the context of a type declaration the syntax is:

type identifier is digits digit_specification [range_constraint];

The syntax of a floating-point subtype declaration is:

subtype identifier is floating_type name
[digits digit_specification]
[range_constraint];

Syntax Notes:

1.

The value of digit_specification must be an integer literal. Based on

the value of the specification, EQUEL will determine whether to treat a
variable of that type as a 4-byte float or an 8-byte float. The rules in the
following table are applicable.

Digit Range Type
l1<=d<=6 4-byte floating-point type
7<=d<=16 8-byte floating-point type

Note that if the digits specified are out of range, the type is unusable.
Recall that EQUEL does not accept either the long_long_float or the
h_float type. For detailed information on the internal storage format for
8-byte floating-point variables, see The Long Float Storage Format in this
chapter.

The range_constraint for floating-point types and subtypes is treated

as a variable range constraint and is not processed. Although EQUEL will
allow any range constraint, you should not specify a range constraint that
will alter the size needed to store the declared type. EQUEL obtains its
type information from the digits clause, and altering this type information
by a range clause, which may require more precision, will result in runtime
errors.

The digits clause in a subtype declaration does not have any effect
on the EQUEL type information. This information is obtained from
floating_type_name. For example:

type Emp_Salary is digits 8 range
0.00..500000.00;

subtype Directors_Sal is Emp_Salary
100500.00. .500000.00;
subtype Raise_Percent is Float range 1.05..1.20;

Chapter 5: Embedded QUEL for Ada 5-17

Ada Variables and Data Types

Enumerated Type Definitions

The syntax of an EQUEL/Ada enumerated type definition is:
(enumerated._literal {, enumerated._literal})

In the context of a type declaration, the syntax is:
type identifier is (enumerated_literal {, enumerated._literal});

In the context of a subtype declaration, the syntax is:
subtype identifier is enumerated_type_name [range_constraint];

Syntax Notes:

1. There can be at most 1,000 enumerated literals in an enumerated
type declaration. The preprocessor treats all literals and variables declared
with this type as integers. Enumerated literals are treated as though they
were declared with the constant clause, and therefore they cannot be the
targets of Ingres assignments. When an enumerated literal is used with
embedded statements, only the ordinal position of the value in relation to
the original enumerated list is relevant. When assigning from an
enumerated variable or literal, the preprocessor generates:

enumerated_type_name'pos(enumerated_literal)

When assigning from or into an enumerated variable, the preprocessor passes
the object by address and assumes that the value being assigned from or into
the variable will not raise a runtime constraint error.

2. An enumerated literal can be an identifier or a character literal.
EQUEL does not store or process enumerated literals that are character
literals.

3. Enumerated literal identifiers must be unique in their scope. EQUEL does
not allow the overloading of variables or constants.

4. The range_constraint for enumerated subtypes is treated as a variable
range constraint and is not processed. The type information is determined
from enumerated_type_name. For example:

type Table_Field_States is
(UNDEFINED, NEWROW, UNCHANGED, CHANGED, DELETED);
subtype Updated_States is Table_Field_States

range CHANGED..DELETED;
tbstate: Table_Field_States := UNDEFINED;

5. EQUEL accepts the predefined enumeration type name boolean that
contains the two literals FALSE and TRUE.

5-18

Embedded QUEL Companion Guide

Ada Variables and Data Types

6. You can use a representation clause for enumerated types. When you do
so, however, you should not reference any enumerated literals of that type
in the embedded statements. Enumerated literals are interpreted into their
integer relative position (pos) and representation clauses invalidate the
effect of the pos attribute that the preprocessor generates. The
representation clauses should not be preceded by the ## mark.

7. Enumerated variables and literals can only be used to assign to or from
Ingres. These objects cannot be used to specify simple numeric objects,
such as table field row numbers or sleep statement seconds.

Array Type Definitions
The syntax of an EQUEL/Ada array type definition is:
array (dimensions) of type _name;
In the context of a type declaration, the syntax is:

type identifier is array (dimensions) of
type_name [type_constraint];

Syntax Notes:

1. The dimensions of an array specification are not parsed by the EQUEL
preprocessor. Consequently, unconstrained array bounds and
multidimensional array bounds will be accepted by the preprocessor.
However, an illegal dimension (such as a nhon-numeric expression) will also
be accepted but will later cause Ada compiler errors. For example, both of
the following type declarations are accepted, even though only the first is
legal in Ada:

type Square is array(l..10, 1..10) of Integer;
type What is array("dimensions") of Float;

Because the preprocessor does not store the array dimensions, it only
checks to determine that when the array variable is used, it is followed by
a subscript in parentheses.

2. The type_constraint for array types is treated as a variable type constraint
and is not processed. The type information is determined from type _name.

3. Any array built from the base type character (not string) must be exactly
one-dimensional. EQUEL will treat the whole array as though it were
declared as type string. If more dimensions are declared for a variable of
type character, EQUEL will still treat it as a one-dimensional array.

4. The type string is the only array type.

Chapter 5: Embedded QUEL for Ada 5-19

Ada Variables and Data Types

Record Type Definitions
The syntax of an EQUEL/Ada record type definition is:

record
record_component {record_component}
end record;

where record_component is:
component_declaration; | variant_part; | null;
where component_declaration is:

identifier {, identifier} :
type_name [type_constraint] [:= initial_value]

In the context of a type declaration, the syntax of a record type definition is:

type identifier is
record
record_component { record_component}
end record;

Syntax Notes:

1. In a component_declaration, all clauses have the same rules and
restrictions as they do in a regular type declaration. For example, as in
regular declarations, the preprocessor does not check initial values for
correctness.

2. The variant_part accepts the Ada syntax for variant records: if specified, it
must be the last component of the record. The variant discriminant name,
choice names, and choice ranges are all accepted. There is no syntactic or
semantic checking on those variant objects. EQUEL uses only the final
component names of the variant part and not any of the variant object
names.

You can specify the null record.

4. A record_component can also be Ada host code. Consequently, you can
include components that will not be used by EQUEL (and with types
unknown to EQUEL), by not marking the line with a ## mark. Also, if
some variant_part syntaxes are not accepted by EQUEL, you do not have
to mark those lines, as EQUEL does not store the variant information. For
example:

type Address_Rec is

record

#i#t street: String(l..30);
#Ht town: String(l..10);
zip: Positive;

end record;

5-20 Embedded QUEL Companion Guide

Ada Variables and Data Types

type Employee_Rec is

record
#i#t name: String(1..20);
#it age: Short_Short_Integer;

#i# salary: Float := 0.0;

##H address: Address_Rec;

-- The following two components are unknown to EQUEL
scale: Long_Long_Float;
checked: Boolean := FALSE;

end record;

Incomplete Type Declarations and Access Types

The incomplete type declaration should be used with an access type. The
syntax for an incomplete type declaration is:

type identifier [discriminant_part];

Syntax Notes:

1. As with other type declarations, the discriminant_part is ignored.

2. You must fully define an incomplete type before using any object declared
with it.

The syntax for an access type declaration is:

type identifier is access type_name [type_constraint];

Syntax Notes:

1. The type_name must be a predeclared type, whether it is a full type
declaration or an incomplete type declaration.

2. The type_constraint has the same rules as other type declarations.

The following is an example of the incomplete type declaration:

type Employee_Rec; -- Incomplete declaration
type Employee is access
Employee_Rec;-- Access to above

type Employee Rec is -- Real definition
record

#i# name: String(1..20);

#it age: Short_Short_Integer;

salary: Float := 0.0;

#Ht link: Employee;

end record;

Derived Types
The syntax for a derived type is:

type identifier is new type_name [type_constraint];

Chapter 5: Embedded QUEL for Ada 5-21

Ada Variables and Data Types

Private Types

Syntax Notes:

1. The type_name must be a predeclared type, whether it is a full type
declaration or an incomplete type declaration.

2. EQUEL assigns the type being declared the same properties as the
type_name specified. The preprocessor will make sure that any variables
of a derived type are cast into the original base type when used with the
runtime routines.

3. The type_constraint has the same rules as other type declarations.

The following example illustrates the use of the derived type:
type Dbase_Integer 1is new Integer;

The syntax for a private type is:
type identifier is [limited] private;
Syntax Note:

This type declaration is treated as an incomplete type declaration. You must
fully define a private type before using any object declared with it.

Representation Clauses

With one exception, you must not use the representation clause for any types
or objects you have declared to EQUEL and intend to use with the EQUEL
runtime system. Any such clause will cause runtime errors. These clauses
include the Ada statement:

for type or_attribute use expression;
and the Ada pragma:
pragma pack(type_name);

The exception is that you can use a representation clause to specify internal
values for enumerated literals. When you do so, however, you should not
reference any enumerated literals of the modified enumerated type in
embedded statements. The representation clause invalidates the effect of the
pos attributes that the preprocessor generates. If the application context is
one that requires the assignment from the enumerated type, then you should
deposit the literal into a variable of the same enumerated type and assign that
variable to Ingres. In all cases, do not precede the representation clause with
the ## mark.

5-22 Embedded QUEL Companion Guide

Ada Variables and Data Types

For example:

type Opcode is (OPADD, OPSUB, OPMUL);
for Opcode use (OPADD => 1, OPSUB => 2,
OPMU, =>4);

opcode_var ;= OPSUB;
append to codes (opcode = opcode_var);

Indicator Variables

An indicator variable is a 2-byte integer variable. There are three possible
ways to use these in an application:

n In a statement that retrieves data from Ingres, you can use an indicator
variable to determine if its associated host variable was assigned a null.

n In a statement that sets data to Ingres, you can use an indicator variable
to assign a null to the database column, form field, or table field column.

n In a statement that retrieves character data from Ingres, you can use the
indicator variable as a check that the associated host variable is large
enough to hold the full length of the returned character string.

To declare an indicator variable you should use the short_integer data type.
The following example declares two indicator variables:

ind: Short_Integer; -- Indicator variable
ind_arr: array(l..10) of Short_Integer; -- Indicator array

Note that a variable declared with any derivative of the short_integer data
type will be accepted as an indicator variable.

Assembling and Declaring External Compiled Forms

You can pre-compile your forms in the Visual Forms Editor (VIFRED). This
saves the time otherwise required at runtime to extract the form’s definition
from the database forms catalogs. When you compile a form in VIFRED,
VIFRED creates a file in your directory describing the form in the VAX-11
MACRO language. VIFRED prompts you for the name of the file with the
MACRO description. After the file is created the file, use the following VMS
command to assemble it into a linkable object module:

macro filename

This command produces an object file containing a global symbol with the
same name as your form. Before the EQUEL/FORMS statement addform can
refer to this global object, it must be declared in an EQUEL declaration section.
The Ada compiler requires that the declaration be in a package and that the
objects be imported with the import_object pragma.

Chapter 5: Embedded QUEL for Ada 5-23

Ada Variables and Data Types

The syntax for a compiled form package is:

package compiled_forms_package is
formname: Integer;

pragma import_object(formname);
end compiled_forms_package;

You must then issue the Ada with and use statements on the compiled form
package before every compilation unit that refers to the form:

with compiled_forms_package; use compiled_forms_package;

Syntax Notes:

1. The formname is the actual name of the form. VIFRED gives this name to
the address of the external object. The formname is also used as the title
of the form in other EQUEL/FORMS statements. In all statements that use
formname as the form title you must dereference the name with a # sign.

2. The import_object pragma associates the object with the external
form definition. In order to use this pragma, the package must be issued
in the outermost scope of the file.

The next example shows a typical form declaration and illustrates the
difference between using the form’s object definition and the form’s name.

package Compiled_Forms is
empform: Integer;

pragma import_object(empform);
end Compiled_Forms;

with Compiled_Forms; use Compiled_Forms;

addform empform; -- The imported object
display #empform; -- The name of the form

Concluding Example

The following example demonstrates some simple EQUEL/Ada declarations:

package Compiled_Forms is
empform, deptform: Integer; -- Compiled forms

pragma import_object(empform);

pragma import_object(deptform);

end Compiled_Forms;

with Compiled_Forms; use Compiled_Forms;
package Concluding_Example is

MAX_PERSONS: constant := 1000;

dbname: String(l..9) := "personnel";
formname, tablename, columnname: String(l..12);

5-24 Embedded QUEL Companion Guide

Ada Variables and Data Types

salary: Float;

type DATATYPES_REC is -- Structure of all types
d_byte: Short_Short_Integer;

d_word: Short_Integer;

d_long: Integer;

d_single: Float;

d_double: Long_Float;

d_string: String(l..20);

end record;

d_rec: DATATYPES_REC;

-- Record with a discriminant

record PERSONTYPE_REC (married: in Boolean) is
age: Short_Short_Integer;

flags: Integer;

case married:

#t when TRUE =>

spouse_name: String(l..30);
#it when FALSE =>

dog_name: String(l..12);

end case;

end record;

person: PERSONTYPE_REC(TRUE);

person_store: array(l..MAX PERSONS) of PERSONTYPE_REC(FALSE);

ind_var: Short_Integer := -1; -- Indicator Variable

end Concluding_Examples;

Compilation Units and the Scope of Variables

Type names and variable names are local to the closest enclosing Ada
compilation unit. EQUEL/Ada compilation units include procedures, functions,
package bodies and declaration blocks, all of which can be declared to EQUEL.
The objects visible in the scopes include objects that are visible in the parent
scope, formal parameters (if applicable) and local declarations. You cannot use
the dotted notation to refer to hidden or ambiguous objects by prefixing the
object with a subprogram or package name.

As in Ada, once the preprocessor has exited the scope, the variables are no
longer visible and cannot be referenced. The Ada package specification is an
exception to this visibility rule, because all the package specification contents
are visible outside of the package.

The Package Specification
The syntax for an EQUEL/Ada package specification is:
package package_name is

[declarations]
end [package_name];

Chapter 5: Embedded QUEL for Ada 5-25

Ada Variables and Data Types

Syntax Notes:

1. Package _names on the package and end statements are not processed
and are not compared for equivalence, as required by Ada.

2. You cannot qualify objects in the package specification with any package
names.

3. Variables declared in package specifications are global to the parent scope
of the specification. This is true even for objects declared in the private
section.

When EQUEL reads a package specification, no matter whether it is declared in
the same file or included by means of the EQUEL include statement, the
contents of the package become visible immediately afterwards. EQUEL
behaves as though there were the implicit Ada statements:

with package_name; use package_name;

The use of the EQUEL include statement actually generates the Ada with and
use clauses, using the file name as the package name. The preprocessor
generates these statements and assumes global visibility of package
specification contents, because it does not read Ada library units. This
restriction indicates that two package specifications declared at the same
scope level cannot declare two objects with the same name. Note that when a
package specification is nested in another compilation unit or package
specification, it does not create a new scope level. The following example will
generate an error because of the redeclaration of the object “ptr”:

package Stack is

stack_max: constant := 50;

ptr: Integer range 1..stack_max;

stack_arr: array(l..stack_max) of Integer;
end Stack;

package Employees is

ename_arr: array(l..1000) of String(l..20);
ptr: Integer range 1..1000;

end Employees;

If a package specification declares several types and variables that will be
used with various subprograms and package bodies, you should put the
specification in a file by itself and use the EQUEL include statement. The
include statement will re-read the original text file and behave as though you
had issued the appropriate Ada with and use clauses. For more information
on the EQUEL include statement, see Include File Processing in this chapter.

If you do not use the EQUEL include statement, you must explicitly issue the
Ada with and use clauses. The following example declares two variables
inside a package specification. In a single file are two procedures, which must
both be preceded by the with and use clauses:

package Vars is

varl: Integer;

var2: String(l..3);

end Vars37
with Vars; use Vars; -- Explicit Ada visibility clauses

5-26

Embedded QUEL Companion Guide

Ada Variables and Data Types

The Package Body

The Procedure

procedure Read Vars 1is
begin -- EQUEL Statements that retrieve varl and var2
end Read_Vars;

with Vars; use Vars; -- Explicit Ada visibility clauses

procedure Write_Vars is
begin -- EQUEL Statements that append varl and var2
end Write_ Vars;

The syntax for an EQUEL/Ada package body is:

package body package name is
[declarations]

[begin
statements]

end [package_name]l;

Syntax Notes:

1. Package_names on the package body and end statements are not
processed and are not compared for equivalence, as required by Ada.

2. You cannot qualify objects in the package specification with any package
names.

3. Variables declared in a package body are visible to the package body and
to any nested blocks.

4. If the package body requires knowledge of the package specification, you
must make the specification known to EQUEL. This can be done either by
including the specification’s file by means of the EQUEL include
statement, or by including the text of the specification in the EQUEL source
file. EQUEL does not assume knowledge of the package specification with
the same name as the body.

5. EQUEL does not process separate compilation units and,
consequently, does not allow the Ada separate clause.

The syntax for an EQUEL/Ada procedure is:

procedure proc_name [(formal_parameters)] is
[declarations]

begin
statements

end [proc_name];

Chapter 5: Embedded QUEL for Ada 5-27

Ada Variables and Data Types

Syntax Notes:

1.

The Function

Proc_names on the procedure and end statements are not processed
and are not compared for equivalence, as required by Ada.

Formal parameters and variables declared in a procedure are visible to the
procedure and to any nested blocks.

Formal parameters and their syntax are described in the section on
variable declarations.

The syntax for an EQUEL/Ada function is:

function func_name [(formal_parameters)] return result_type is
[declarations]

begin
statements

end [func_name];

Syntax Notes:

1.

The Declaration Block

Func_names on the function and end statements are not processed and
are not compared for equivalence, as required by Ada.

EQUEL need not know the result_type, because EQUEL does not allow the
use of functions in place of variables in executable statements.

Formal parameters and variables declared in a function are visible to the
function and to any nested blocks.

Formal parameters and their syntax are described in the section on
variable declarations.

The syntax for an EQUEL/Ada declaration block is:

declare

declarations
begin

statements
end [block_name];

Syntax Notes:

1.

Block_name is not processed and is not compared for equivalence against
any block labels (if used).

Variables declared in a declaration block are visible to the declaration block
and to any nested blocks.

5-28 Embedded QUEL Companion Guide

Ada Variables and Data Types

Variable and Type Scope

As mentioned above, variables and types are visible in the block in which they
are declared, unless they are declared in a package specification, in which case
they are globally visible. Variables can be redeclared only in a nested scope,
such as in a declaration block or a nested procedure. Variables cannot be
redeclared in the same scope. For example, the following two enumerated
type declarations in the same scope will cause a redeclaration of the
overloaded literal "UNDEFINED":

type Question is (SIMPLE, DIFFICULT, UNDEFINED);
type Answer is (WRONG, RIGHT, SORT_OF, UNDEFINED);

Note that you can declare record components with the same name but
different record types. The following example declares two records, each of
which has the components “firstname” and “lastname”:

type Child is

record

#i# firstname: String(l..15);
#Ht lastname: String(l..20);
age: Integer;

end record;
type Some_Childs is array(l..10) of Child;

type Mother is

record

#Ht firstname: String(l..15);

lastname: String(1..20);

#Ht num_child: Integer range 1..10;
children: Some_Childs;

end record;

The following example shows several different declarations of the variable
“var,” illustrating how the same object can be redeclared in nested and parallel
scopes, each time referring to a different type:

with equel;

procedure Proc_A(var: type_l) is

-- Will be used even when this particular "var" is hidden

proc_a_var: type_1 renames var;

procedure Proc_B is
var: type_2;
begin

-- Var is of type_2
end Proc_B;

function Func_C(var: type_3) return Integer is
begin

-- Var is of type 3

-- Note that you cannot refer to Proc_A.var

-- but you can refer to proc_a_var of type_1.
end Func_C;

begin
-- Var is of type_ 1

Chapter 5: Embedded QUEL for Ada 5-29

Ada Variables and Data Types

##

##

##

##

declare

var: type_4;

begin

-- Var 1is of type_4;
end;

Var is of type_1

end Proc_A;

Special care should be taken when using variables with a declare cursor
statement. The variables used in such a statement must also be valid in the
scope of the open statement for that same cursor. The preprocessor actually
generates the code for the declare at the point that the open is issued, and
at that time, evaluates any associated variables. For example, in the following
program fragment, even though the variable “number” is valid to the
preprocessor at the point of the declare cursor statement, it is not a valid
variable name for the Ada compiler at the point that the open is issued.

#i#

##
#i#
##

#i#
##
#i#

#it

#i#

package Bad_Cursor is
--This example contains an error

procedure Init_Csr is
number: Integer;
begin

Cursor declaration includes reference to "number"
declare cursor cl for
retrieve (employee.name, employee.age)
where employee.num = number

end Init_Csr;

procedure Process Csr is

ename: String(l..15);

eage: Integer;

begin

-- Opening the cursor evaluates invalid "number"
open cursor cl

retrieve cursor cl (ename, eage)

end Process_Csr;

end Bad_Cursor;

5-30

Embedded QUEL Companion Guide

Ada Variables and Data Types

Variable Usage

Simple Variables

Ada variables declared to EQUEL can substitute for most elements of EQUEL
statements that are not keywords. Of course, the variable and its data type
must make sense in the context of the element. To use an Ada variable in an
EQUEL statement, just use its name. To refer to an element, such as a
database column, with the same name as a variable, dereference the element
by using the EQUEL dereferencing indicator (#). As an example of variable
usage, the following retrieve statement uses the variables “namevar” and
“numvar” to receive data, and the variable “idnovar” as an expression in the
where clause:

retrieve (namevar = e.name, numvar = e.num)
where e.idno = idnovar;

When referencing a variable, you cannot use an Ada attribute, because the
attribute is introduced by a single quote. EQUEL will treat this single quote as
the beginning of a string literal and will generate a syntax error.

When referencing a variable, you also cannot use the dotted notation to refer
to hidden or ambiguous objects by prefixing the object with a subprogram or
package name, even if the package is explicitly declared. EQUEL will generate
a syntax error on the qualifying dot.

If, in retrieving from Ingres into a program variable, no value is returned for
some reason (for example, no rows qualified in a query), the variable will
contain an undefined value.

Various rules and restrictions apply to the use of Ada variables in EQUEL
statements. The sections below describe the usage syntax of different
categories of variables and provide examples of such use.

A simple scalar-valued variable (integer, floating-point or character string) is
referred to by the syntax:

simplename

Syntax Notes:

1. If the variable is used to send data to Ingres, it can be any scalar-valued
variable, constant or enumerated literal.

2. 1If the variable is used to receive data from Ingres, it cannot be a variable
declared with the constant clause, a formal parameter that does not
specify the outmode, a number declaration, or an enumerated literal.

3. A string variable (a 1-dimensional array of characters) is referenced as a
simple variable.

Chapter 5: Embedded QUEL for Ada 5-31

Ada Variables and Data Types

The following program fragment demonstrates a typical message-handling
routine that uses two scalar-valued variables, “buffer” and “seconds”:

procedure Msg (buffer: String; seconds: Integer) is

begin

message buffer

sleep seconds
end Msg;

A special case of a scalar type is the enumerated type. The preprocessor treats
all enumerated literals and any variables declared with an enumerated type as
integers. When an enumerated literal is used in an EQUEL statement, only the
ordinal position of the value in relation to the original enumerated list is
relevant. When assigning from an enumerated literal, the preprocessor
generates the following:

enumerated_type_name'pos(enumerated_literal)

When assigning from or into an enumerated variable, the preprocessor passes
the object by address and assumes that the value being assigned from or into
the variable will not raise a runtime constraint error. In order to relax the
restriction imposed by the preprocessor on enumerated literal assignments (of
enumerated types that have included representation clauses to modify their
values), you should assign the literal to a variable of the same enumerated
type before using it in an embedded statement. For example, the following
enumerated type declares the states of a table field row, and the variable of
that type will always receive one of those values:

type Table_Field_States is

(UNDEFINED, NEWROW, UNCHANGED, CHANGED, DELETED);

tbstate: Table_Field_States := UNDEFINED;
ename: String(l..20);

getrow empform employee
(ename = name, tbstate = _state);
case tbstate is

when UNDEFINED =>

end case;

Another example retrieves the value TRUE (an enumerated literal of type
boolean) into a variable when a database qualification is successful:

found: Boolean;
qual: String(1..100);

retrieve (found = TRUE) where qual;

if (not found) then

end if;

5-32

Embedded QUEL Companion Guide

Ada Variables and Data Types

Array Variables

An array variable is referred to by the syntax:

arrayname(subscript{,subscript})

Syntax Notes:

1.

Record Components

The variable must be subscripted, because only scalar-valued
elements (integers, floating-point, and character strings) are legal EQUEL
values.

When the array is declared, the array bounds specification is not parsed by
the EQUEL preprocessor. Consequently, illegal bounds values will be
accepted. Also, when an array is referenced, the subscript is not parsed,
allowing illegal subscripts to be used. The preprocessor only confirms that
an array subscript is used for an array variable. You must make sure that
the subscript is legal and that the correct number of indices is used.

A character string variable is not an array and cannot be subscripted
in order to reference a single character or a slice of the string. For
example, if the following variable were declared:

abc: String(l..3) := "abc";

you could not reference

abc (1)

to access the character “a.” To perform such a task, you should declare
the variable as an array of three one-character long strings. For example:
abc: array(l..3) of String(l..1) := ("a","b","c");

Note that variables of the Ada character type can only be declared as a
one-dimensional array. When a variable of that type is used, it must not

be subscripted. In the following example, the loop variable “i” is used as a
subscript and need not be declared to EQUEL, as it is not parsed.

formnames: array(l..3) of String(l..8);

for i in 1..3 loop
forminit formnames(i)
end loop;

The syntax EQUEL uses to refer to a record component is the same as in Ada:

record.component{.component}

Chapter 5: Embedded QUEL for Ada 5-33

Ada Variables and Data Types

Syntax Notes:

1.

The last record component denoted by the above reference must be a
scalar value (integer, floating-point or character string). There can be any
combination of arrays and records, but the last object referenced must be
a scalar value. Thus, the following references are all legal:

-- Assume correct declarations for "employee",
-- "person" and other records.

employee.sal -- Component of a record

person(3).name -- Component of an element of an
array

recl.meml.mem2.age -- Deeply nested component

All record components must be fully qualified when referenced. You can
shorten the qualification by using the Ada renames clause in another
declaration to rename some components or nested records.

The following example uses the array of records “emprec” to load values into
the tablefield “emptable” in form “empform.”

##

type Employee Rec is
record

ename: String(l..20);
eage: Short_Integer;
eidno: Integer;
ehired: String(l..25);
edept: String(l..10);
esalary: Float;

end record;

emprec: array(l..100) of Employee_Rec;

for i in 1..100 loop
loadtable empform emptable

#Ht (name = emprec(i).ename, age = emprec(i).eage,
idno = emprec(i).eidno,

#Ht hired = emprec(i).ehired,

dept = emprec(i).edept,

salary = emprec(i).esalary)

end loop;

If you want to shorten the reference to the record, you can use the renames
clause to rename a particular member of the “emprec” array, as in the
following example:

for i in 1..100 loop

declare

er: Employee_Rec renames emprec(i);

begin

#H loadtable empform emptable

(name = er.ename, age = er.eage,

#it idno = er.eidno, hired = er.ehired,
dept = er.edept, salary = er.esalary)
end;

end loop;

5-34

Embedded QUEL Companion Guide

Ada Variables and Data Types

Access Variables

An access variable must qualify another object by means of the dot operator,
using the same syntax as a record component:

access.reference

Syntax Notes:

1.

By the time an access variable is referenced, the type to which it is
pointing must be fully defined. This is true even for access types that were
declared to point at incomplete types.

The final object denoted by the above reference must be a scalar
value (integer, floating-point or character string). There can be any
combination of arrays, records or access variables, but the last object
referenced must be a scalar value.

If an access variable is pointing at a scalar-valued type, then the
qualification must include the Ada .all clause to refer to the scalar value. If
used, the .all clause must be the last component in the qualification. For
example:

type Access_Integer is access Integer;
ai: Access_Integer;

ai := new Integer'(2);
sleep ai.all

In the following example, an access type to an employee record is used to load
a linked list of values into the Employee database table:

type Employee_Rec;
type Emp_Link is access Employee Rec;
type Employee_Rec is

record

#Ht ename: String(l..20);
eage: Short_Integer;
#Ht eidno: Integer;

enext: Emp_Link;

end record;

elist: Emp_Link;

while (elist /= null) loop

#i
##
#i

repeat append to employee
(name = @elist.ename, age = @elist.eage,
idno = @elist.eidno)

elist := elist.enext;
end loop;

Using Indicator Variables

The syntax for referring to an indicator variable is the same as for a simple
variable, except that an indicator variable is always associated with a host
variable:

host_variable:indicator_variable

Chapter 5: Embedded QUEL for Ada 5-35

Ada Variables and Data Types

Syntax Note:

The indicator variable can be a simple variable, an array element or a record
component that yields a 2-byte integer (short_integer). For example:
ind: Short_Integer; -- Indicator variable
ind_arr: array(l..10) of Short_Integer; -- Indicator
-- array
var_l:ind_var
var_2:ind_arr(2)

Data Type Conversion

An Ada variable declaration must be compatible with the Ingres value it
represents. Numeric Ingres values can be set by and retrieved into numeric
variables, and Ingres character values can be set by and retrieved into
character string variables.

Data type conversion occurs automatically for different numeric types, such as
from floating-point Ingres database column values into integer Ada variables,
and for character strings, such as from varying-length Ingres character fields
into fixed-length Ada character string buffers.

Ingres does not automatically convert between numeric and character types.
You must use the Ingres type conversion operators, the Ingres ascii function,
or an Ada conversion procedure for this purpose.

The following table shows the default type compatibility for each Ingres data

type. Note that some Ada types do not match exactly and, consequently, may
go through some runtime conversion.

Ingres TYPES and Corresponding Ada Data Types

Ingres Type Ada Type

c(N), char(N) string(1..N)

c(N), char(N) array(1..N) of character
text(N), varchar(N) string(1..N)

text(N), varchar(N) array(1..N) of character
i1, integerl short_short_integer

i2, integer2 short_integer

i4, integer4 integer

f4, float4 float

f4 , float4 f_float

5-36 Embedded QUEL Companion Guide

Ada Variables and Data Types

Ingres Type Ada Type

f8, float8 long_float
f8, float8 d_float

date string(1..25)
money long_float

Runtime Numeric Type Conversion

The Ingres runtime system provides automatic data type conversion between
numeric-type values in the database and forms system and numeric Ada
variables. The standard type conversion rules (according to standard VAX
rules) are followed. For example, if you assign a float variable to an integer-
valued field, the digits after the decimal point of the variable’s value are
truncated. Runtime errors are generated for overflow on conversion.

The Ingres money type is represented as long_float, an 8-byte floating-point
value.

Runtime Character Type Conversion

Automatic conversion occurs between Ingres character string values and Ada
character string variables. There are four string-valued Ingres objects that can
interact with character string variables. They are Ingres names, such as form
and column names, database columns of type ¢, char, text or varchar, and
form fields of type character. Several considerations apply when dealing with
character string conversions, both to and from Ingres.

The conversion of Ada character string variables used to represent Ingres
names is simple: trailing blanks are truncated from the variables, because the
blanks make no sense in that context. For example, the string literals
“empform” and “empform” refer to the same form.

The conversion of other Ingres objects is a little more complicated. First, the
storage of character data in Ingres differs according to whether the medium of
storage is a database column of type c or character, a database column of
type text or varchar, or a character form field. Ingres pads columns of type
c or character with blanks to their declared length. Conversely, it does not
add blanks to the data in columns of type text or varchar or in form fields.

Second, EQUEL assumes that the convention is to blank-pad fixed-length
character strings. Character string variables not blank-padded may be storing
ASCII nulls or data left over from a previous assignment. For example, the
character string “abc” may be stored in an Ada string(1..5) variable as the
string “abc ” followed by two blanks.

Chapter 5: Embedded QUEL for Ada 5-37

Ada Variables and Data Types

When character data is retrieved from a Ingres database column or form field
into an Ada character string variable and the variable is longer than the value
being retrieved, the variable is padded with blanks. If the variable is shorter
than the value being retrieved, the value is truncated. You should always
ensure that the variable is at least as long as the column or field, in order to
avoid truncation of data.

When inserting character data into an Ada Ingres database column or form
field from an Ada variable, note the following conventions:

n When data is inserted from an Ada variable into a database column of type
c or character and the column is longer than the variable, the column is
padded with blanks. If the column is shorter than the variable, the data is
truncated to the length of the column.

n When data is inserted from an Ada variable into a database column of type
text and the column is longer than the variable, no padding of the column
takes place. Furthermore, by default, all trailing blanks in the data are
truncated before the data is inserted into the text or varchar column. For
example, when a string “abc” stored in an Ada string(1..5) variable as
“abc " (refer to above) is inserted into the text or varchar column, the
two trailing blanks are removed and only the string “abc” is stored in the
database column. To retain such trailing blanks, you can use the EQUEL
notrim function. It has the following syntax:

notrim(stringvar)

where stringvar is a character string variable. An example demonstrating
this feature follows later. When used with repeat queries, the notrim
syntax is:

@notrim(stringvar)

If the text or varchar column is shorter than the variable, the data is
truncated to the length of the column.

n When data is inserted from an ADA variable into a character form field
and the field is longer than the variable, no padding of the field takes
place. In addition, all trailing blanks in the data are truncated before the
data is inserted into the field. If the field is shorter than the data (even
after all trailing blanks have been truncated), the data is truncated to the
length of the field.

When comparing character data in an Ingres database column with
character data in an ADA variable, note the following convention:

n When comparing data in ¢, character, or varchar database columns with
data in a character variable, all trailing blanks are ignored. Trailing blanks
are significant in text. Initial and embedded blanks are significant in
character, text, and varchar; they are ignored in c.

5-38

Embedded QUEL Companion Guide

Dynamically Built Param Statements

As described above, the conversion of character string data between Ingres
objects and ADA variables often involves the trimming or padding of trailing
blanks, with resultant change to the data. If trailing blanks have significance in
your application, give careful consideration to the effect of any data
conversion. For information on the significance of blanks when comparing with
various Ingres character types, see the QUEL Reference Guide.

The Ingres date data type is represented as a 25-byte character string.

The program fragment in the following example demonstrates the notrim
function and the truncation rules explained above.

-- Assume that a table called "textchar" has been created with
-- the following CREATE statement:

-- CREATE textchar
-- (row = integer4,
-- data text(10)) -- Note the text data type

#i# with EQUEL;

row: Integer;
#Ht data: String(l..7) := (1..7 => "' ");

data(l..3) := "abc "; -- Holds "abc" followed by 4 blanks

-- The following APPEND adds the string "abc" (blanks truncated)
#Ht APPEND TO textchar (#row = 1, #data = data)

-- This statement adds the string "abc ", with 4 trailing
-- blanks left intact by using the NOTRIM function.

#Ht APPEND TO textchar (#row = 2, #data = notrim(data))
-- This RETRIEVE will retrieve row #2, because the NOTRIM
-- function left trailing blanks in the "data" variable
-- in the last APPEND statement.

RETRIEVE (row = textchar.#row)
#it WHERE length (textchar.#data) =7

put ("Row found = ");
put (row);

Dynamically Built Param Statements

The param feature dynamically builds EQUEL statements. EQUEL/Ada does
not currently support param versions of statements. Param statements are
supported in EQUEL/C and EQUEL/Fortran.

Chapter 5: Embedded QUEL for Ada 5-39

Runtime Error Processing

Runtime Error Processing

This section describes a user-defined EQUEL error handler.

Programming for Error Message Output

By default, all Ingres and forms system errors are returned to the EQUEL
program, and default error messages are printed on the standard output
device. As discussed in the QUEL Reference Guide, you can also detect the
occurrences of errors by means of the program using the inquire_ingres and
inquire_frs statements. (Use the latter for checking errors after forms
statements. Use inquire_ingres for all other EQUEL statements.)

This chapter discusses an additional technique that enables your program not
only to detect the occurrences of errors, but also to suppress the printing of
default Ingres error messages if you choose. The inquire statements detect
errors but do not suppress the default messages.

This alternate technique entails creating an error-handling function in your
program and passing its address to the Ingres runtime routines. Then Ingres
will automatically invoke your error handler whenever a Ingres or a forms-
system error occurs.

To trap Ingres errors locally, you must define an Ada error function and pass it
to the EQUEL runtime routines for custom error management. The program
error handler must be declared as an ADA function that can be exported.
Because the Ada pragma export_function is used, the whole function must
be in a package declared at the outermost scope.

The following format should be used to declare and define the function:

package Error_Trap is
function Error_Proc(err: Integer) return Integer;
pragma export_function(Error_Proc);

end Error_Trap;

package body Error_Trap is

function Error_Proc(err: Integer) return Integer is
begin

end Error_Proc;

end Error_Trap;

This function must be passed to the EQUEL procedure IIseterr for runtime
bookkeeping, using the Ada statement:

IIseterr(Error_Proc'Address);

The procedure IIseterr is declared externally for you by EQUEL.

5-40 Embedded QUEL Companion Guide

Precompiling, Compiling and Linking an EQUEL Program

This forces all runtime Ingres errors through your function, passing the Ingres
error number as an argument. If you choose to handle the error locally and
suppress Ingres error message printing the function should return 0;
otherwise the function should return the Ingres error number received.

Avoid issuing any EQUEL statements in a user-written error handler defined to
IIseterr, except for informative messages, such as message, prompt, sleep
and clear screen, and messages that close down an application, such as
endforms and exit.

The example below demonstrates a typical use of an error function to warn
users of access to protected tables. This example passes through all other
errors for default treatment.

package Error_Trap is
function Error_Proc(ingerr: Integer) return Integer;
pragma export_function(Error_Proc);

end Error_Trap;

with text_io; use text_io;

package body Error_Trap is
function Error_Proc(ingerr: Integer) return Integer is
-- Error number for protected tables
TBLPROT: constant := 5003;
begin
if (ingerr = TBLPROT) then
put_line("No authorization for operation.");
return ©; -- Suppress Ingres
-- printing message
else
return ingerr; -- Ingres will print message
end if;
end Error_Proc;
end Error_Trap;

-- In main procedure body issue the following statement
IIseterr(Error_Proc'Address);

Precompiling, Compiling and Linking an EQUEL Program

This section describes the EQUEL preprocessor for Ada, and the steps required
to precompile, compile, and link an EQUEL program.

Generating an Executable Program

Once you have written your EQUEL program, it must be preprocessed to
convert the EQUEL statements into Ada code. This section describes the use of
the EQUEL preprocessor. Additionally, it describes how to compile and link the
resulting code.

Chapter 5: Embedded QUEL for Ada 5-41

Precompiling, Compiling and Linking an EQUEL Program

The EQUEL Preprocessor Command

The Ada preprocessor is invoked by the following command line:

eqa {flags} {filename}

where flags are

Flag

Description

-d

Adds debugging information to the runtime database error
messages generated by EQUEL. The source file name, line
number, and the erroneous statement itself are printed
along with the error message.

-f[filename]

Writes preprocessor output to the named file. If the -f flag
is specified without a filename, the output is sent to
standard output, one screen at a time. If the -f flag is
omitted, output is given the basename of the input file,
suffixed “.ada”.

Writes preprocessor error messages to the preprocessor’s
listing file, as well as to the terminal. The listing file
includes preprocessor error messages and your source
text in a file named filename.lis, where filename is the
name of the input file.

Like -1, but the generated Ada code also appears in the
listing file.

-n. ext

Specifies the extension used for filenames in ## include
and ## include inline statements in the source code. If =-n
is omitted, include filenames in the source code must be
given the extension “.qa”.

Reads input from standard input and generates Ada code
to standard output. This is useful for testing statements
you are not familiar with. If the -l option is specified with
this flag, the listing file is called “stdin.lis.” To terminate
the interactive session, type Ctrl Z.

Prints warning messages.

Shows what command line options are available for eqa.

The EQUEL/Ada preprocessor assumes that input files are named with the
extension “.ga”. This default can be overridden by specifying the file extension
of the input file(s) on the command line. The output of the preprocessor is a
file of generated Ada statements with the same name and the extension

“.ada”.

5-42

Embedded QUEL Companion Guide

Precompiling, Compiling and Linking an EQUEL Program

If you enter the command without specifying any flags or a filename, Ingres
displays a list of flags available for the command.

The following table presents the options available with eqa.

Eqa Command Examples

Command Comment

eqa filel Preprocesses “filel.ga” to “filel.ada”

eqa -l file2.xa Preprocesses “file2.xa” to “file3.ada” and creates listing
“file3.lis”

eqa -s Accepts input from standard input and writes generated
code to standard output

eqa -ffile4.out Preprocesses “file4.qa” to “file4.out”

file4

eqa Displays a list of flags available for this command.

The ACS Environment and the Ada Compiler

The EQUEL/Ada preprocessor generates Ada code that you compile into your
program library. You should use the VMS ada command to compile this code
into your Ada program library.

The following sections describe the Ada program library and EQUEL programs.

Note: Check the Readme file for any operating system specific information on
compiling and linking EQUEL/Ada programs.

Entering EQUEL Package Specifications

Once you have set up an Ada program library, you must add two EQUEL units
to your library. The units are package specifications that describe to the Ada
compiler all the calls that the preprocessor generates. The source for both
these units is in the file:

ii_system:[ingres.files]eqdef.ada

Once you have defined your current program library by means of the acs set
library command, you should enter the two units into your program library by
issuing the following commands:

$ copy ii_system:[ingres.files]leqdef.ada []

$ ada eqdef.ada
$ delete eqdef.ada

Chapter 5: Embedded QUEL for Ada 5-43

Precompiling, Compiling and Linking an EQUEL Program

The last step is not needed if you intend to compile the closure of a particular
program from the source files at a later date. However, you should not modify
the file if it is left in your directory.

The two EQUEL units need only be entered once into your program library. Of
course, if a new release of EQUEL/Ada includes modifications to the file
“eqdef.ada,” the file should be copied and recompiled.

By issuing the following command, you will find the two new unit names
“EQUEL"” and “EQUEL_FORMS" in the library.

$ acs dir equel*

Defining Long Floating-point Storage

The storage representation format of long floating-point variables must be
d_float. (For information, see Ada Variables and Data Types in this chapter.)
This is because the EQUEL runtime system uses that format for floating-point
conversions. If your EQUEL program has long_float variables that interact
with the EQUEL runtime system, you must make sure they are stored in the
d_float format. The default Ada format is g_float. A convenient way to
control the format of all long float variables is to issue the acs set pragma
program command. For example, by issuing the following command you
redefine the program library characteristics for long_float from the default to
d_float:

$ acs set pragma/long float=d_float

A second remedy to this particular problem is to issue the statement:
pragma long_float(d_float)

in the source file of each compilation unit that uses floating-point variables.
You may also explicitly declare the EQUEL variables with type d_float, as
defined in package SYSTEM.

The following example is a typical command file that sets up a new Ada
program library with the EQUEL package specifications and the d_float
numerical format. The name of the new program library is passed in as a
parameter:

acs create library [.'pl']

acs set library [.'pl']

acs set pragma/long_float=d_float

copy ii_system:[ingres.files]eqdef.ada []
ada eqdef.ada

delete eqdef.ada.

exit

A A A A A A

5-44

Embedded QUEL Companion Guide

Precompiling, Compiling and Linking an EQUEL Program

The Ada Compiler

Once you have entered the EQUEL packages into the Ada program library, you
can compile the Ada file generated by the preprocessor. The following example
preprocesses and compiles the file “test1.” Note that both the EQUEL/Ada
preprocessor and the Ada compiler assume the default extensions:

$ eqga testl
$ ada/list testl

Linking an EQUEL Program

EQUEL programs require procedures from several VMS shared libraries in order
to run properly. Once you have preprocessed and compiled an EQUEL
program, you can link it. Assuming your program unit is called “dbentry,” use
the following link command:

$ acs link dbentry,-
ii_system:[ingres.files]equel/opt

It is recommended that you do not explicitly link in the libraries referenced in
the EQUEL.OPT file. The members of these libraries change with different
releases of Ingres. Consequently, you may be required to change your link
command files in order to link your EQUEL programs.

Assembling and Linking Pre-Compiled Forms

The technique of declaring a pre-compiled form to the FRS is discussed in the
QUEL Reference Guide. To use such a form in your program, you must also
follow the steps described here.

In VIFRED, you can select a menu item to compile a form. When you do this,
VIFRED creates a file in your directory describing the form in the VAX-11
MACRO language. VIFRED lets you select the name for the file. Once you have
created the MACRO file this way, you can assemble it into linkable object code
with the VMS command

macro filename

The output of this command is a file with the extension “.obj”. You then link
this object file with your program (in this case named “formentry”) by listing it
in the link command, as in the following example:

$ acs link formentry,-

empform.obj, -
ii_system:[ingres.files]equel/opt

Chapter 5: Embedded QUEL for Ada 5-45

Precompiling, Compiling and Linking an EQUEL Program

Linking an EQUEL Program without Shared Libraries

While the use of shared libraries in linking EQUEL programs is recommended
for optimal performance and ease of maintenance, non-shared versions of the
libraries have been included in case you require them. Non-shared libraries
required by EQUEL are listed in the equel.noshare options file. The options file
must be included in your link command after all user modules. The libraries
must be specified in the order given in the options file.

The following example demonstrates the link command of an EQUEL program
unit called “dbentry” that has been preprocessed and compiled:

$ acs link dbentry,-
ii_system:[ingres.files]equel.noshare/opt

Include File Processing

The EQUEL/Ada include statement provides a means to include external
packages and source files into your program’s source code. The syntax of the
statement is:

include filename
where filename is a quoted string constant specifying a file name or a logical

name that points to the file name. If the file is in the local directory, it can also
be specified without the surrounding quotes.

Including and Processing EQUEL/Ada Package Specifications

The above variant of the include statement can be used only to include
package specifications. The preprocessor reads the specified file, processing all
variables declared in the package, and generates the Ada with and use
clauses using the last component of the file name (excluding the file
extension) as the package name. If the last component of the file name has a
trailing underscore, as is the standard in VAX/VMS Ada package specification
files, then that trailing underscore is removed in the generated context
clauses. The preprocessor does not generate an output file because it is
assumed that the package specification has already been compiled.

The following example demonstrates this variant of the include statement.
Assume that the specification of package “employee” is in file “employee_.qga”
and that a procedure “empentry” is in file “empentry.qa”:

Contents of “employee_.qa":

package employee is

ename: String(1..20);
eage: Integer;

esalary: Float;

end employee;

5-46

Embedded QUEL Companion Guide

Precompiling, Compiling and Linking an EQUEL Program

Contents of “empentry.qa”:

include "[joe.ada.empfiles]employee_ .ga"

procedure empentry is
begin

-- Statements using variables in package "employee"
end empentry;

The EQUEL/Ada preprocessor modifies the include line to the Ada with and
use clauses by extracting the last component of the file name:

with employee;
use employee;

The above two clauses appear in the output file "empentry.ada.” The
preprocessor does not generate an output file for “employee_.qa,” and the
package “employee” must have already been compiled in order to compile the
“empentry.ada” file.

Assuming that the files "employee_.ga"” and “empentry.qa” appear as shown
above, the following sequence of VMS commands should be executed in order
to compile “empentry.ada”:

$ ega employee_.qga

$ eqga empentry.ga

$ ada employee_.ada

$ ada empentry.ada

You must still follow the Ada rules specifying the order of compilation. The
EQUEL preprocessor does not affect these compilation rules.

Including EQUEL/Ada Source Code

In order to include source code into your EQUEL/Ada file, you should issue the
EQUEL include statement with the inline option. Its syntax is as follows:

include inline filename
where filename has the same rules as mentioned earlier.

With this variant of include, the included text is preprocessed into the parent
output file. For example, if you have a file called "messages.qa” that contains
the text:

message buffervar
sleep 2

and you are preprocessing the file called “retrieve.ga”, then the following
include statement is legal in “retrieve.qa”:

retrieve (buffervar = e.name)

#

include inline "messages.qa";
##

Chapter 5: Embedded QUEL for Ada 5-47

Precompiling, Compiling and Linking an EQUEL Program

The file “messages.qa” is preprocessed into the output file “retrieve.ada.” For
more information on the inline option see the QUEL Reference Guide.

Coding Requirements for Writing EQUEL Programs

The following sections describe coding requirements for writing EQUEL
programs.

Comments Embedded in Ada Output

Each EQUEL statement generates one comment and a few lines of ADA code.
You may find that the preprocessor translates 50 lines of EQUEL into 200 lines
of Ada. This may result in confusion about line humbers when you are
debugging the original source code. To facilitate debugging, each group of Ada
statements associated with a particular statement is preceded by a comment
corresponding to the original EQUEL source. (Note that only executable EQUEL
statements are preceded by a comment.) Each comment is one line long and
informs the reader of the file name, line number, and type of statement in the
original source file.

Ada Blocks Generated by EQUEL

EQUEL statements that are associated with a block of code delimited by the
braces { and }, or begin and end, are called block-structured statements. All
the EQUEL block-structured statements generate Ada blocks. If there is no
code contained in the block, EQUEL may need to generate the Ada null
statement, depending on the type of Ada block generated. Consequently, if
you do want an empty block, do not place just an Ada comment inside it
(without the ## to delimit the comment), because the preprocessor would
consider the comment to be Ada host code and would treat the block as a
block containing Ada code.

For example, to disable the scrolling down of a table field, you might
mistakenly code the following activate block:
activate scrolldown employee -- this example contains
-- an error
#H

-- Disable scrolling of table field
#Ht

The Ada comment in the block is considered Ada host code, and therefore, the
null statement is not generated. This would later cause an Ada compiler
syntax error. To resolve this situation, you must either let EQUEL know that
the statement is only a comment, so that it will generate the null statement,
or else code the null statement explicitly. The above example should be
written as:

5-48

Embedded QUEL Companion Guide

Precompiling, Compiling and Linking an EQUEL Program

activate scrolldown employee

##

-- Disable scrolling of table field

##

or

activate scrolldown employee

##
-- Disable scrolling of table field
null;

##

An EQUEL Statement that Does Not Generate Code

The declare cursor statement does not generate any Ada code. This
statement should not be coded as the only statement in Ada constructs that
does not allow null statements. For example, coding a declare cursor
statement as the only statement in an Ada if statement not bounded by left
and right braces would cause compiler errors:

if (using_database)

declare cursor empcsr for retrieve (employee.ename)
else

put-1line("You have not accessed the database");
end if;

The code generated by the preprocessor would be:

if (using_database)
else

put_line("You have not accessed the database");
end if;

which is an illegal use of the Ada if-then-else statement.

EQUEL/Ada Preprocessor Errors

To correct most errors, you may wish to run the EQUEL preprocessor with the
listing (-1) option on. The listing will be sufficient for locating the source and
reason for the error.

For preprocessor error messages specific to the Ada language, see the next
section.

Chapter 5: Embedded QUEL for Ada 5-49

Preprocessor Error Messages

Preprocessor Error Messages

E_E60001

E_E40002

E_E60003

E_E40004

E_E60005

E_E60006

E_E60007

The following is a list of error messages specific to the Ada language.
“The ADA variable '%0c’ is an array and must be subscripted.”

Explanation: A variable declared as an array must be subscripted when
referenced. The preprocessor does not confirm that you use the correct
number of subscripts. A variable declared as a 1-dimensional array of
characters, must not be subscripted as it refers to a character string.

“The ADA variable '%0c’ is not an array and must not be subscripted.”

Explanation: A variable not declared as an array cannot be subscripted. You
cannot subscript string variables in order to refer to a single character or a
slice of a string (substring).

“The ADA identifier '%0c’ is not a declared type.”

Explanation: The identifier was used as an Ada type name in an object or
type declaration. This identifier has not yet been declared to the preprocessor
and is not a preprocessor-predefined type name.

“The ADA CHARACTER variable "%0c’ must be a 1-dimensional array.”

Explanation: Variables of type CHARACTER can only be declared as 1-
dimensional arrays. You cannot use a single character or a multidimensional
array of characters as an Ingres string. Note that you can use a
multidimensional array of type STRING.

“The ADA DIGITS clause ‘%0c’ is out of the range 1..16.”

Explanation: Embedded Ada supports D_FLOAT floating-point variables.
Consequently, all DIGITS specifications must be in the specified range.

“Statement '%0c’ is embedded in INCLUDE file package specification.”

Explanation: Preprocessor INCLUDE files may only be used for Ada package
specifications. The preprocessor generates an Ada WITH clause for the
package. No executable statements may be included in the file because the
code generated will not be accepted by the Ada compiler in a package
specification.

“Too many names (%0c) in ADA identifier list. Maximum is %1c.”

Explanation: Ada identifier lists cannot have too many names in the comma-
separated name list. The name specified in the error message caused the
overflow, and the remainder of the list is ignored. Rewrite the declaration so
that there are fewer names in the list.

5-50 Embedded QUEL Companion Guide

Preprocessor Error Messages

E_E60008

E_E60009

E_E6000A

E_E4000B

E_E6000C

E_E6000D

E_E4O00E

E_E6OOOF

“The ADA identifier list has come up short.”

Explanation: The stack used to store comma-separated names in Ada
declarations has been corrupted. Try rearranging the list of names in the
declaration.

“The ADA CONSTANT declaration of "%0c” must be initialized.”

Explanation: CONSTANT declarations must include an initialization clause.
“The ADA identifier '%0c’ is either a constant or an enumerated literal.”
Explanation: The named identifier was used to retrieve data from Ingres. A
constant, an enumerated literal and a formal parameter with the IN mode are
all considered illegal for the purpose of retrieval.

“The ADA variable %0c’ with ".ALL’ clause is illegal.”

Explanation: The ADA .ALL clause, as specified with access objects, can be
used only if the variable is an access object pointing at a single scalar-valued
type. If the type is not scalar valued, or if the access object is pointing at a
record or array, then the use of .ALL is illegal.

“The ADA variable "%0c’ with ".ALL’ clause is not a scalar type.”
Explanation: The Ada .ALL clause, as specified with access objects, can be
used only if the variable is an access object pointing at a single scalar-valued
type. If the type is not scalar valued, or if the access object is pointing at a
record or array, then the use of .ALL is illegal.

“Last component in ADA record qualification "%0c’ is illegal.”

Explanation: The last component referenced in a record qualification is not a
member of the record. If this component was supposed to be declared as a
record, the following components will cause preprocessor syntax errors.

“In ADA RENAMES statement, '%0c’ must be a constant or a variable.”
Explanation: The target object of a RENAMES statement must be a constant
or a variable, and the item being declared is used a synonym for the target
object.

“In ADA RENAMES statement, object is incompatible with type.”
Explanation: The type of the target object in the RENAMES statement must

be compatible in base type, size and array dimensions with the type name
specified in the declaration.

Chapter 5: Embedded QUEL for Ada 5-51

Preprocessor Error Messages

E_E40010

E_E600T1

E_E60012

E_E60013

E_E40014

E_E60015

E_E60016

"Only one name may be declared in an Ada RENAMES statement.”
Explanation: One object can rename only one other object.

“Unclosed ADA block. There are %0c block(s) left open.”

Explanation: If a file is terminated early or the END statement closing an Ada
compilation unit is missing, this error will occur. If syntax errors were issued
while parsing the compilation unit header, correct those errors first.

“The ADA variable '%0c’ has not been declared.”

Explanation: The named identifier was used where a variable must be used
to set or retrieve Ingres data. The variable has not yet been declared.

“The ADA type %0c is not supported.”

Explanation: Some Ada types are not supported because they are not
compatible with the Ingres runtime system.

“The ADA variable "%0c’ is a record, not a scalar value.”

Explanation: The named variable qualification refers to a record. It was used
where a variable must be used to set or retrieve Ingres data. This error may
also cause syntax errors on record component references.

“You must issue a ‘## WITH %0c’ before statement "%1c’.”

Explanation: If your compilation unit includes forms statements you must
issue the WITH EQUEL_FORMS clause. Otherwise you must issue the WITH
EQUEL clause.

“The ADA statement %0c is not supported.”

Explanation: Statements that modify the internal representation of variables
that interact with Ingres are not supported.

5-52 Embedded QUEL Companion Guide

Sample Applications

Sample Applications

This section contains sample applications.

The Department-Employee Master/Detail Application

This application uses two database tables joined on a specific column. This
typical example of a department and its employees demonstrates how to
process two tables as a master and a detail.

The program scans through all the departments in a database table, in order
to reduce expenses. Department information is stored in program variables.
Based on certain criteria, the program updates department and employee
records. The conditions for updating the data are the following:

Departments:

n If a department has made less than $50,000 in sales, the department is
dissolved.

Employees:

n If an employee was hired since the start of 1985, the employee is
terminated.

n If the employee’s yearly salary is more than the minimum company wage
of $14,000 and the employee is not nearing retirement (over 58 years of
age), the employee takes a 5% pay cut.

n If the employee’s department is dissolved and the employee is not
terminated, the employee is moved into a state of limbo (the
“toberesolved” database table, described below) to be resolved by a
supervisor.

This program uses two cursors in a master/detail fashion. The first cursor is for
the Department table, and the second is for the Employee table. The create
statements used to create the tables are shown below. The cursors retrieve all
the information in their respective tables, some of which is updated. The
cursor for the Employee table also retrieves an integer date interval whose
value is positive if the employee was hired after January 1, 1985.

Each row that is scanned, both from the Department table and the Employee
table, is recorded into the system output file. This file serves as a log of the
session and as a simplified report of the updates that were made.

Each section of code is commented for the purpose of the application and also
to clarify some of the uses of the EQUEL statements. The program illustrates
table creation, multi-query transactions, all cursor statements and direct
updates. For purposes of brevity, error handling on data manipulation
statements is simply to close down the application.

Chapter 5: Embedded QUEL for Ada 5-53

Sample Applications

The following two create statements describe the Employee and Department
database tables:

create dept

#Ht (name = cl2, -- Department name

#i# totsales = money, -- Total sales

#Ht employees = i2) -- Number of employees
create employee

(name = ¢20, -- Employee name

#Ht age =11, -- Employee age

idno = 14, -- Unique employee id
#it hired = date, -- Date of hire

dept = clo, -- Employee department
salary = money) -- Yearly salary

-- Package: Long Float_Text_ IO

-- Purpose: Create text I/0 package for LONG_FLOAT so as not to
-- conflict with the default G_FLOAT format. This

-- example assumes that the ACS SET PRAGMA command has
-- been issued for LONG_FLOAT.

with text_io;
package long_ float_text_io is new text_io.float_io(long_float);

-- Package: Trap_Error

-- Procedure: Close_Down

-- Purpose: To trap Ingres runtime error messages. This

-- package defines the procedure Close Down which is
-- called when a Ingres error is returned. The

-- procedure Close_Down is

-- passed to the runtime system via IIseterr.

-- When Close_Down is called, the error is printed
-- and the database session is terminated. Any open
-- transactions and cursors are implicitly closed.
-- Parameters:

-- ingerr - Integer containing Ingres

-- error number.

with text_io; use text_io;
with EQUEL;

package Trap_Error is
function Close _Down(ingerr: Integer) return Integer;

pragma export_function(Close_Down) ;
ingres_error: Exception;

end Trap_Error;

package body Trap_Error is

#t function Close Down(ingerr: Integer) return Integer is
#it error_text: String(1l..200);

#t begin

#i# inquire_ingres (error_text = errortext)

exit

put_line("Closing down because of database error:");
put_line(error_text);
raise ingres_error;
return ingerr;
#it end Close_Down;

#it end Trap_Error;

5-54 Embedded QUEL Companion Guide

Sample Applications

-- I/0 utilities

with text_io; use text_io;

with integer_text_io; use integer_text_io;

with short_integer_text_io; use short_integer_text_io;

with short_short_integer_text_io; use short_short_integer_text_io;
with float_text_io; use float_text_io;

with long_float_text_io; use long_float_text_io;

with trap_error; use trap_error;

with EQUEL;

-- Procedure: Process_Expenses -- MAIN

-- Purpose: Main body of the application. Initialize the

-- database, process each department, and terminate
-- the session.

-- Parameters:
-- None
procedure Process_Expenses is
-- Function: Init_Db
-- Purpose: Initialize the database.
-- Connect to the database, and abort on
-- error. Before processing departments
-- and employees create the table for
-- employees who lose their department,
-- "toberesolved".
-- Initiate the multi-statement
-- transaction.
-- Parameters:
-- None
-- Returns:
-- TRUE is initialized, FALSE if error.
#i# function Init_Db return Boolean is
#i# create_err: Integer;
#i# begin
ingres personnel
put_line("Creating ""To_Be Resolved"" table.");
##t create toberesolved
#it (name = char(20),
#Ht age = integerl,
#t idno = integer4,
#Ht hired = date,
#t dept = char(10),
#i salary = money)

-- Was the create successful ?
#t inquire_ingres (create_err = errorno)
if (create_err > 0) then
put_line("Fatal error on table creation.");
return FALSE;

else
-- Inform Ingres runtime system
-- about the errorhandler. All errors
-- from here on close down the
-- application.
IIseterr(Close_Down'Address);
begin transaction
return TRUE;
end if;
end Init_Db;

Chapter 5: Embedded QUEL for Ada 5-55

Sample Applications

begin

-- Procedure: End_Db

-- Purpose: Commit the multi-statement transaction
-- and access to the database.

-- Parameters:

-- None

procedure End_Db is

begin
end transaction
exit

end _Db;

-- Procedure: Process_Employees

-- Purpose: Scan through all the employees for a
-- particular department. Based on given

-- conditions the employee may be or take a
-- salary reduction.

-- 1. If an employee was hired since

-- 1985 then the employee 1is terminated.
-- 2. If the employee's yearly salary is

-- more than the minimum company wage of
-- $14,000 and the employee is not close
-- to retirement (over 58 years of age),
-- then the employee takes a 5% salary
-- reduction.

-- 3. If the employee's department is

-- dissolved and the employee is not

-- terminated, then the employee is

-- moved into the "toberesolved" table.

-- Parameters:

-- dept_name - Name of current department.

-- deleted_dept - Is department dissolved?

-- emps_term - Set locally to record how many

-- employees were terminated
-- for the current department.

procedure Process_Employees

(dept_name: in String;
deleted_dept: in Boolean;
emps_term: in out Integer) is

salary_reduc: constant float = 0.95;
min_emp_salary: constant float := 14000.00;
nearly_retired: constant Short_Short_Integer := 58;

-- Emp_Rec corresponds to the "employee" table
type Emp_Rec is

record
name: String(1..20);
age: Short_Short_Integer;
idno: Integer;
hired: String(l..25);
salary: Float;
hired_since_85: Integer;
end record;
emp: Emp_Rec;
NO_rows: Integer; -- Cursor control
title: String(1..12); -- Formatting values

descript: String(l..25);

5-56 Embedded QUEL Companion Guide

Sample Applications

##

##

#i#

#i#

#it

#t

-- Note the use of the Ingres function to find out
-- who was hired since 1985.

range of e is employee

declare cursor empcsr for

retrieve (e.name,
int4(interval("days",

res =

e.age, e.idno, e.hired, e.salary,

e.hired-date("01-jan-1985"))))

where e.dept

= dept_name

for direct update of (name, salary)

no_rows := 0;
emps_term :=

0; -- Record how many

open cursor empcsr

while (no_rows

0) loop

retrieve cursor empcsr (emp.name, emp.age, emp.idno,

emp.hired, emp.salary,
emp.hired_since_85)

inquire_equel (no_rows = endquery)

if (no_rows =

Q) then

-- Terminate if new employee
if (emp.hired_since_85 > 0) then

delete cursor empcsr

title := "Terminated: ";
descript := "Reason: Hired since 1985.";
emps_term := emps_term + 1;

-- Reduce salary if large and not nearly retired
elsif (emp.salary > MIN_EMP_SALARY) then

if (emp.age < NEARLY_RETIRED) then

replace cursor empcsr
(salary =
salary * SALARY_REDUC)
title := "Reduction: ";
descript :=
"Reason: Salary. ";

-- Do not reduce salary
title := "No Changes: ";

descript := "Reason: Retiring. ";

-- Leave employee as is - low salary

title = "No Changes: ";
descript = "Reason: Salary. ";

else
end if;
else
end if;

-- Was employee's department dissolved ?
if (deleted dept) then
append to toberesolved (e.all)

where e.idno = emp.idno

delete cursor empcsr

end if;

Chapter 5: Embedded QUEL for Ada 5-57

Sample Applications

end

end loo
close ¢

end Process_

Procedure:
Purpose:

Parameters:

procedure Pr

-- Log the employee's information
put(" " & title & " ");
put(emp.idno, 6);

put(", & emp.name & ", ");
put(emp.age, 3);

put(", ");

put(emp.salary, 8, 2, 0);
put_line(" ; " & descript);

if; -- If a row was retrieved
p; -- Continue with cursor loop
ursor empcsr
Employees;

Process_Depts

Scan through all the departments, processing
each one. If the department has made less
than $50,000 in sales, then the department
is dissolved.

For each department process all the
employees (they may even be moved to another
database table).

If an employee was terminated, then update
the department's employee counter.

None

ocess_Depts is

MIN_TOT_SALES: constant := 50000.00;

typ

dpt

emps_t
delete
dept_f
no_row

begin
range

decla

re

fo
Nno_rows
emps_term
open curs

while (no
ret

ing
if

Dept_Rec corresponds to the "dept" table
e Dept_Rec is
record
name: String(l..12);
totsales: Long_Float;
employees: Short_Integer;

end record;
. Dept_Rec;
erm: Integer := 0; -- Employees terminated
d_dept: Boolean; -- Was the dept deleted?
ormat: String(l..20); -- Formatting value
S: Integer; -- Cursor control
of d is dept

re cursor deptcsr for

trieve (d.name, d.totsales, d.employees)

r direct update of (name, employees)

= 0;

= 0;

or deptcsr

_rows = 0) loop

rieve cursor deptcsr (dpt.name,
dpt.totsales,
dpt.employees)

uire_equel (no_rows = endquery)

(no_rows = 0) then

5-58 Embedded QUEL Companion Guide

Sample Applications

##

##
#it

-- Did the department reach minimum sales?
if (dpt.totsales < MIN_TOT_SALES) then
delete cursor deptcsr

deleted_dept := TRUE;

dept_format := " -- DISSOLVED --";
else

deleted_dept := FALSE;

dept_format := (1..20 => "' ');
end if;

-- Log what we have just done
put ("Department: " & dpt.name &
", Total Sales: ");
put(dpt.totsales, 12, 3, 0);
put_line(dept_format);

-- Now process each employee in the department

Process_Employees (dpt.name,
deleted_dept,
emps_term) ;

-- If employees were terminated, record it

if (emps_term > @ and not deleted_dept) then

replace cursor deptcsr

(employees = employees - emps_term)

end if;

-- If a row was retrieved

end if;
end loop;
close cursor deptcsr
end Process_Depts;

begin -- MAIN program

put_line("Entering application to process expenses.

if (Init_Db) then
Process_Depts;
End_Db;

end if;

-- Continue with cursor loop

)

put_line("Completion of application.");

exception

when ingres_error => -- Raised by Close_Down

put_line("Contact your database administrator.

end Process_Expenses;

)

Chapter 5: Embedded QUEL for Ada 5-59

Sample Applications

The Employee Query Interactive Forms Application
This EQUEL/FORMS application uses a form in query mode to view a subset of
the Employee table in the Personnel database. An Ingres query qualification is

built at runtime using values entered in fields of the form “empform.”

The objects used in this application are:

Object Description

personnel The program’s database environment.

employee A table in the database, with six columns:

name (c20)

age (i1)

idno (i4)

hired (date)
dept (c10)
salary (money).

empform A VIFRED form with fields corresponding in name and
type to the columns in the Employee database table. The
name and idno fields are used to build the query and are
the only updatable fields. "Empform” is a compiled form.

The application is driven by a display statement that allows the runtime user
to enter values in the two fields that will build the query. The Build_Query and
Exec_Query procedures make up the core of the query that is run as a result.
Note the way the values of the query operators determine the logic used to
build the where clause in Build_Query. The retrieve statement encloses a
submenu block that allows the user to step through the results of the query.

No updates are performed on the values retrieved, but any particular
employee screen may be saved in a log file through the printscreen
statement.

The following create statement describes the format of the Employee
database table:

create employee

#i# (name = 20, -- Employee name
age =11, -- Employee age
#Ht idno = i4, -- Unique employee id
#t hired = date, -- Date of hire
#Ht dept = cleo, -- Employee department
salary = money) -- Annual salary

#t package Compiled_Empform is
#it empform: Integer;

pragma import_object(empform);
#i# end Compiled_Empform;

5-60 Embedded QUEL Companion Guide

Sample Applications

#i#

#i#

##
#i#

##

##
##

with Compiled_Empform; use Compiled_Empform;
with Text_Io; use Text_Io;

with Integer_Text_Io; use Integer_Text_Io;
with equel_forms;

procedure Employee_ Query 1is

-- Initialize global WHERE clause qualification buffer to
-- be an Ingres default qualification that is

-- always true.

where_clause: String(l..100) :=

(1,

'=', '1l', others => "' ");

-- Procedure: Build_Query
-- Purpose: Build an Ingres query from the values in the "name" and

"idno" fields in "empform".

-- Parameters:

None

procedure Build_Query 1is

begin

ename: String(l..20);
eidno: Integer;

-- Query operator table that maps integer values to
-- string query operators.
operators: array(l..6) of String(l..2) :=

B T R L D

-- Operators corresponding to the two fields,
-- that index into the "operators" table.
opername, operidno: Integer;

getform #empform
(ename = name, opername
eidno = idno, operidno

getoper (name),
getoper (idno))

-- Fill in the WHERE clause
where_clause := (1..100 => ' ");
if (opername = 0 and operidno = 0) then

-- Default qualification
where_clause(l..3) := "1=1";

elsif (opername = @ and operidno /= 0) then

-- Query on the "idno" field
where_clause(1l..8) :=
"e.idno" & operators(operidno);
put (where_clause(9..100), eidno);
elsif (opername /= 0 and operidno = 0) then

-- Query on the "name" field
where_clause(1l..30) :=
"e.name" & operators(opername) &
Wi g ename & "M

else -- (opername /= 0 and operidno /= 0)

-- Query on both fields
where_clause(l..43) :=
"e.name" & operators(opername) &
winn g ename & """ and " &
"e.idno" & operators(operidno);
put (where_clause(44..100), eidno);

Chapter 5: Embedded QUEL for Ada 5-61

Sample Applications

end if;
#it end Build_Query;

-- Procedure: Exec_Query

-- Purpose: Given a query buffer, defining a WHER

-- clause issue a RETRIEVE to allow the

-- runtime use to

-- browse the employees found with the given
-- qualification.

-- Parameters:

-- None

procedure Exec_Query is

ename: String(l..20); -- Employee data
eage: Short_Integer;
eidno: Integer;
#t ehired: String(l..25);
edept: String(1l..10);
esalary: Float;
rows: Boolean := FALSE; -- Were rows found
#it begin
-- Issue query using WHERE clause
#H retrieve (
ename = e.name, eage = e.age,
#H eidno = e.idno, ehired = e.hired,
edept = e.dept, esalary = e.salary)
#it where where_clause
#t {
rows := TRUE;
-- Put values up and display them
#Ht putform #empform (
name = ename, age = eage,
#it idno = eidno, hired = ehired,
#Ht dept = edept, salary = esalary)
#Ht redisplay
submenu
#i# activate menuitem "next", frskey4
#it {

-- Do nothing, and continue with the
-- RETRIEVE loop. The last one will

-- drop out.
null;
#Ht }
#t activate menuitem "Save", frskey8
#Ht {
-- Save screen data in log file
#Ht printscreen (file = "query.log")

5-62 Embedded QUEL Companion Guide

Sample Applications

#i#

#i#

##

##

##
##

##

##

##

##
#it

#i

#it

#it

-- Drop through to next employee
}
activate menuitem "End", frskey3
{
-- Terminate the RETRIEVE loop
endretrieve
}
}
if (not rows) then
message "No rows found for this query"
else
clear field all
message "Reset for next query"
end if;

sleep 2

end Exec_Query;
begin

forms

message "Accessing Employee Query Application . . ."
ingres personnel

range of e is employee

addform empform

display #empform query
initialize

activate menuitem "Reset"

{
}

clear field all

activate menuitem "Query"

{
-- Verify validity of data
validate

Build_Query;
Exec_Query;

}

activate menuitem "LastQuery"

{
}

Exec_Query;

activate menuitem "End"

breakdisplay
}

finalize

clear screen

endforms
exit

end Employee_Query;

Chapter 5: Embedded QUEL for Ada 5-63

Sample Applications

The Table Editor Table Field Application

This EQUEL/FORMS application uses a table field to edit the Person table in the
Personnel database. It allows the user to update a person’s values, remove the
person, or add new persons. Various table field utilities are provided with the
application to demonstrate their use and their interaction with an Ingres
database.

The objects used in this application are:

Object Description
personnel The program’s database environment.
person A table in the database, with three columns:
name (c20)
age (i2)
number (i4)

Number is unique.

personfrm The VIFRED form with a single table field.
persontbl A table field in the form, with two columns:
name (c20)
age (i4).

When initialized, the table field includes the hidden
number (i4) column.

At the start of the application, a retrieve statement is issued to load the table
field with data from the Person table. Once the table field has been loaded, the
user can browse and edit the displayed values. Entries can be added, updated

or deleted. When finished, the values are unloaded from the table field, and, in
a multi-statement transaction, the user’s updates are transferred back into the
Person table.

The following create statement describes the format of the Person database

table:

create person

#it (name = c20, -- Person name

age = i2, -- Age

#Ht number = i4) -- Unique id number

#it with equel_forms;
#it procedure Table_Edit is

-- Person information corresponds to "person" table

pname: String(1..20); -- Full name

page: Short_Integer; -- Age

pnumber: Integer; -- Unique person number

#Ht pmaxid: Integer; -- Maximum person id number

5-64 Embedded QUEL Companion Guide

Sample Applications

-- Table field row states
ROW_UNDEF : constant :
ROW_NEW: constant
ROW_UNCHANGE : constant

0;-- Empty or undefined row
1;-- Appended by user

- Loaded by program - not updated
3;

-- Loaded by program and updated
ROW_DELETE: constant := 4;-- Deleted by program

ROW_CHANGE : constant

-- Table field entry information

#Ht state, -- State of data set row (see above)
recnum, -- Record number
#Ht lastrow: Integer; -- Last row in table field

-- Utility buffers

search: String(1..20); -- Name to find in search loop

#t msgbhuf: String(l..80); -- Message buffer

password: String(l..13); -- Password buffer

#t respbuf: String(l..1); -- Response buffer
-- Error handling variables for database updates

upd_err, -- Updates error

upd_rows: Integer; -- Number of rows updated
upd_commit: Boolean; -- Commit updates

save_changes: Boolean; -- Save changes or quit

#it begin

-- Start up Ingres and the FORMS system
-- We assume no Ingres errors will happen during
-- screen updating

ingres "personnel"
#t forms
-- Verify that the user can edit the "person" table
#i# prompt noecho ("Password for table editor: ", password)
if (password /= "MASTER_OF_ALL") then
#Ht message "No permission for task. Exiting . "
#it endforms
exit
return;
end if;
#i# message "Initializing Person Form . "
#t forminit personfrm

-- Initialize "persontbl" table field with a data set
-- in FILL mode so that the runtime user can append

-- rows. To keep track of events occurring to original
-- rows that will be loaded into the table field, hide
-- the unique person number.

#t inittable personfrm persontbl FILL (number = integer4)
-- Load the information from the "person" table into
-- the person variables. Also save away the maximum
-- person id number.

message "Loading Person Information . . ."

range of p is person

Chapter 5: Embedded QUEL for Ada 5-65

Sample Applications

#it

#t

}

-- Fetch data into person record, and load table field
retrieve (pname = p.name, page = p.age,
pnumber = p.number)
{
loadtable personfrm persontbl
(name = pname, age = page, number = pnumber)

}

-- Fetch the maximum person id number for later use.
-- Performance note: max() will do sequential scan of
-- table.

retrieve (pmaxid = max(p.number))

-- Display the form and allow runtime editing
display personfrm update
initialize

-- Provide a menu, as well as the system FRS key to
-- scroll to both extremes of the table field. Note
-- that a comment between

-- DISPLAY loop components MUST be marked with a ##.

activate menuitem "Top", frskey5

{

scroll personfrm persontbl TO 1 -- Backward
}
activate menuitem "Bottom", frskey6
{

scroll personfrm persontbl to end -- Forward
}

activate menuitem "Remove"

{
-- Remove the person in the row the user's cursor
-- is on. If there are no persons, exit operation
-- with message. Note that this check cannot
-- really happen as there is always at least one
-- UNDEFINED row in FILL mode.

inquire_frs table personfrm
(lastrow = lastrow(persontbl))
if (lastrow = 0) then
message "Nobody to Remove"
sleep 2
resume field persontbl
end if;

deleterow personfrm persontbl
-- Recorded for later

activate menuitem "Find", frskey7

{

-- Scroll user to the requested table field

-- entry. Prompt the user for a name, and if one
-- is typed in loop through the data set

-- searching for it.

search := (1..20 = ' ");
prompt ("Person's name : ", search)
if (search(l) = " ') then
resume field persontbl
end if;

5-66 Embedded QUEL Companion Guide

Sample Applications

#i#
##

##

##
##

##

##

#it

##

#it

##

##

##

##

unloadtable personfrm persontbl
(pname = name, recnum = _record,
state = _state)

-- Do not compare with deleted rows
if (state /= row_delete and pname = search)
then
scroll personfrm persontbl to recnum
resume field persontbl
end if;

}

-- Fell out of loop without finding name.
-- Issue error.
msgbuf := (1..80 = ' ');
msgbuf(l..62) := "Person '" & search &

"' not found in table [HIT RETURN] ";
prompt noecho (msgbuf, respbuf)

}

activate menuitem "Save", frskey8

{
validate field persontbl
save_changes := TRUE;
breakdisplay

}

activate menuitem "Quit", frskey2

{
save_changes := FALSE;
breakdisplay

}

finalize

if (save_changes) then

-- Exit person table editor and unload the table

-- field.If any updates, deletions or additions were
-- made, duplicate these changes in the source

-- table. If the user added new people we must

-- assign a unique person

-- id before returning it to the database table. To
-- do this, we increment the previously saved

-- maximum id number with each APPEND.

message "Exiting Person Application .
-- Do all the updates in a multi-statement

-- transaction. For simplicity, this transaction does
-- not restart on deadlock.

begin transaction
upd_commit := TRUE;

-- Handle errors in the UNLOADTABLE loop, as we
-- want to cleanly exit the loop, after cleaning up
-- the transaction.
unloadtable personfrm persontbl
(pname = name, page = age,
pnumber = number, state = _state)

case (state) is

when row_new =>

Chapter 5: Embedded QUEL for Ada 5-67

Sample Applications

##

#i#

#it

##
#i#

##

#it

-- Filled by user. Insert with new unique id
pmaxid := pmaxid + 1;
repeat append to person
(name = @pname,
age = @page,
number = @pmaxid);

when row_change =>

-- Updated by user. Reflect in table
repeat replace p
(name = @pname, age = @page)
where p.number = @pnumber

when row_delete =>

-- Deleted by user, so delete from table.
-- Note that only original rows are saved
-- by the program, and not rows appended
-- at runtime.

repeat delete p where p.number = @pnumber

when others =>
-- Else UNDEFINED or UNCHANGED
-- No updates required.
null;
end case;
-- Handle error conditions -
-- If an error occurred, then abort the
-- transaction. If a no rows were updated then
-- inform user, and prompt for continuation.
inquire_equel (upd_err = errorno, upd_rows = rowcount)

if (upd_err > 0) then -- Abort on error

upd_commit := FALSE;
message "Aborting updates . . ."

abort
endloop

elsif (upd_rows = Q) then -- May want to stop
msgbuf := (1..80 = ' ");

msgbuf(l..62) :=
"Person '" & pname &
"' not updated. Abort all updates? ";
prompt noecho (msgbuf, respbuf)
if (respbuf = "Y" or respbuf = "y") then
upd_commit := FALSE;
abort
endloop
end if;
end if;
}
if (upd_commit) then

end transaction -- Commit the updates
end if;

end if; -- If saving changes

5-68 Embedded QUEL Companion Guide

Sample Applications

endforms -- Terminate the FORMS and Ingres
exit

end Table_Edit;

The Professor-Student Mixed Form Application

This EQUEL/FORMS application lets the user browse and update information
about graduate students who report to a specific professor. The program is
structured in a master/detail fashion, with the professor being the master
entry, and the students the detail entries. The application uses two forms—one
to contain general professor information and another for detailed student
information.

The objects used in this application are:

Object Description
personnel The program’s database environment.
professor A database table with two columns:

pname (c25)
pdept (c10)

See its create statement below for a full description.

student A database table with seven columns:

sname (c25)

sage (il1)

sbdate (c25)

sgpa (f4)

sidno (i4)

scomment (text(200))
sadvisor (c25)

See the create statement below for a full description.
The sadvisor column is the join field with the pname
column in the Professor table.

masterfrm The main form has the pname and pdept fields, which
correspond to the information in the Professor table, and
studenttbl table field. The pdept field is display-only.
“Masterfrm” is a compiled form.

studenttbl A table field in “masterfrm” with two columns, sname
and sage. When initialized, it also has five more hidden
columns corresponding to information in the Student
table.

Chapter 5: Embedded QUEL for Ada 5-69

Sample Applications

Object Description

studentfrm The detail form, with seven fields, which correspond to
information in the Student table. Only the sgpa,
scomment and sadvisor fields are updatable. All other
fields are display-only. “Studentfrm” is a compiled form.

grad A global structure, whose members correspond in name
and type to the columns of the Student database table,
the “studentfrm” form and the studenttbl table field.

The program uses the “"masterfrm” as the general-level master entry, in which
data can only be retrieved and browsed, and the “studentfrm” as the detailed
screen, in which specific student information can be updated.

The runtime user enters a name in the pname (professor name) field and then
selects the Students menu operation. The operation fills the displayed and
hidden columns of the table field “studenttbl” with detailed information of the
students reporting to the named professor.

The user may then browse the table field (in read mode), which displays only
the names and ages of the students. More information about a specific student
may be requested by selecting the Zoom menu operation. This operation
displays the form “studentfrm.” The fields of “studentfrm” are filled with values
stored in the hidden columns of “studenttbl.”

The user may make changes to three fields (sgpa, scomment and sadvisor). If
validated, these changes will be written back to the database table (based on
the unique student id), and to the table field’s data set. This process can be
repeated for different professor names.

The following two create statements describe the Professor and Student
database tables:

create student -- Graduate student table
#it (sname = c25, -- Name
sage = 1il, -- Age
#it sbdate = c25, -- Birth date
sgpa = f4, -- Grade point average
#Ht sidno = i4, -- Unique student number
#i# scomment = text(200), -- General comments
#it sadvisor = c25) -- Advisor’s name
#Ht create professor -- Professor table
(pname = c25, -- Professor’s name
#Ht pdept = c10) -- Department

-- Master and student compiled forms (imported objects)
package Compiled_Forms is
#Ht masterfrm, studentfrm: Integer;

pragma import_object(masterfrm);
pragma import_object(studentfrm);
end Compiled_Forms;

5-70 Embedded QUEL Companion Guide

Sample Applications

with Compiled_Forms; use Compiled_Forms;
with Text_Io; use Text_Io;

with Integer_Text_Io; use Integer_Text_Io;
with equel_forms;

-- Procedure: Prof_Student
-- Purpose: Main body of "Professor Student"
-- Master-Detail application.

procedure Prof_Student is

-- Graduate student record maps to "student" database table

type Student_Rec is

record
sname: String(1l..25);
sage: Short_Short_Integer;
sbdate: String(1l..25);
sgpa: Float;
sidno: Integer;

scomment: String(l..200);
sadvisor: String(l..25);
end record;
grad: Student_Rec;

-- Professor record maps to "professor" database table
type Prof_Rec is
record
pname: String(l..25);
pdept: String(l..10);
end record;
prof: Prof_Rec;

-- Useful forms runtime information

lastrow, -- Lastrow in table field
istable: Integer; -- Is a table field?

-- Utility buffers

msgbuf: String(l..100); -- Message buffer

respbuf: String(l..1); -- Response buffer

oldadv: String(l..25); -- 0ld advisor name before Zoom

-- Function: Student_Info_Changed

-- Purpose: Allow the user to zoom into the details of
-- a selected student. Some of the data can be
-- updated by the user. If any updates were
-- made, then reflect these back into the

-- database table.The procedure returns TRUE if
-- any changes were made.

-- Parameters:

-- None

-- Returns:

-- TRUE/FALSE - Changes were made to the

-- database. Sets the global "grad" record

-- with the new data.

function Student_Info_Changed return Boolean is
changed: Integer; -- Changes made to the form?

valid_advisor: Integer; -- Is advisor a professor?
begin

Chapter 5: Embedded QUEL for Ada 5-71

Sample Applications

##

##

#it

-- Display the detailed student information
display #studentfrm update
initialize

(sname = grad.sname,

sage = grad.sage,

sbdate = grad.sbdate,

sgpa = grad.sgpa,

sidno = grad.sidno,

scomment = grad.scomment,

sadvisor = grad.sadvisor)

activate menuitem "Write"

{

-- If changes were made then update the
-- database table. Only bother with the
-- fields that are not read-only.

inquire_frs form (changed = change)

if (changed = 1) then
validate
message "Writing to database.

getform
(grad.sgpa = sgpa,
grad.scomment = scomment,
grad.sadvisor = sadvisor)

-- Enforce integrity of name
retrieve (valid_advisor =

count (p.pname

where p.pname = grad.sadvisor))

if (valid_advisor = 0) then
message "Not a valid name"
sleep 2
resume field sadvisor

end if;

replace s
(sgpa = grad.sgpa,
scomment = grad.scomment,
sadvisor = grad.sadvisor)
where s.sidno = grad.sidno
end if;
breakdisplay
} -- "Write"

activate menuitem "End", frskey3

{
-- End without submitting changes
changed := 0;
breakdisplay

} -- "End"

finalize

return (changed = 1);
end Student_Info_Changed;
begin

-- Start up Ingres and the FORMS system
forms

5-72 Embedded QUEL Companion Guide

Sample Applications

##

#i#

#i#
##

#i#

##
#i

#i#

#it

#t

message "Initializing Student Administrator .
ingres personnel

range of p is professor, s is student

addform masterfrm
addform studentfrm

-- Initialize "studenttbl" with a data set in READ

-- mode. Declare hidden columns for all the extra

-- fields that the program will display when more

-- information is requested about a student. Columns

-- "sname" and "sage" are displayed, all other columns

-- are hidden, to be used in the student information form.

inittable #masterfrm studenttbl read
(sbdate = char(25),
sgpa = float4,
sidno = integer4,
scomment = char(200),
sadvisor char (20))

-- Drive the application, by running "masterfrm", and
-- allowing the user to "zoom" into a selected

-- student.

display #masterfrm update

initialize

{
message "Enter an Advisor name . . ."
sleep 2

}

activate menuitem "Students", field "pname"

{
-- Load the students of the specified professor
getform (prof.pname = pname)

-- If no professor name is given then resume

if (prof.pname(l) =’ ’) then
resume field pname
end if;

-- Verify that the professor exists. If not

-- print a message, and continue. We assume

-- that each professor has exactly one department.

prof.pdept := (1..10 =~ ’);

retrieve (prof.pdept = p.pdept)
where p.pname = prof.pname

-- If no professor report error
if (prof.pdept(l) =’ ’) then
msgbuf := (1..100 => ~ ’);
msgbuf(1..59) :=
"No professor with name " &
prof.pname & "’ [RETURN]";
prompt noecho (msgbuf, respbuf)
clear field all
resume field pname
end if;

-- Fill the department field and load students
message "Retrieving Student Information . .

Chapter 5: Embedded QUEL for Ada 5-73

Sample Applications

putform (pdept = prof.pdept)
clear field studenttbl
redisplay -- Refresh for query

-- With the advisor name, load into the

-- "studenttbl" table field all the graduate

-- students who report to the professor with that name.
-- Columns "sname" and "sage" will be displayed,

-- and all other columns will be hidden.

retrieve

(grad.sname = s.sname,

grad.sage = s.sage,

grad.sbdate = s.sbhdate,

grad.sgpa = s.sgpa,

#Ht grad.sidno = s.sidno,

grad.scomment = s.scomment,

#t grad.sadvisor = s.sadvisor)

where s.sadvisor = prof.pname

#it {

loadtable #masterfrm studenttbl
(sname = grad.sname,

sage = grad.sage,

sbdate = grad.sbdate,
#H sgpa = grad.sgpa,

#Ht sidno = grad.sidno,

#H scomment = grad.scomment,
#Ht sadvisor = grad.sadvisor)
#Ht }

#H resume field studenttbl

#t } -- "Students"

#t activate menuitem "Zoom"

#Ht {

-- Confirm that user is on "studenttbl", and that
-- the table field is not empty. Collect data
-- from the row and zoom for browsing and updating.

#it inquire_frs field #masterfrm (istable = table)
if (istable = 0) then

prompt noecho

##t ("Select from the student table [return]",

#it respbuf)

#Ht resume field studenttbl
end if;

#t inquire_frs table #masterfrm (lastrow = lastrow)
if (lastrow = 0) then

prompt noecho

#H ("There are no students [return]",

#t respbuf)

#Ht resume field pname
end if;
-- Collect all data on student into graduate
-- record

getrow #masterfrm studenttbl

#Ht (grad.sname = sname,

grad.sage = sage,

#Ht grad.sbdate = shdate,

grad.sgpa = sgpa,

#Ht grad.sidno = sidno,

grad.scomment = scomment,

#Ht grad.sadvisor = sadvisor)

5-74 Embedded QUEL Companion Guide

Sample Applications

oldadv := grad.sadvisor;

-- Display "studentfrm", and if any changes were

-- made make the updates to the local table field

-- row. Only make updates to the columns

-- corresponding to

-- writable fields in "studentfrm". If the student

-- changed advisors then delete this row from display.

if (Student_Info_Changed) then
if (grad.sadvisor /= oldadv) then

deleterow #masterfrm studenttbl
else

putrow #masterfrm studenttbl

(sgpa = grad.sgpa,

scomment = grad.scomment,

sadvisor = grad.sadvisor)
end if;

end if;

#t } - "Zoom"

activate menuitem "Quit", frskey2

#t {

#H breakdisplay

#it } -- "Quit"

#it finalize

clear screen

#H endforms

#t exit

end Prof_Student;

Chapter 5: Embedded QUEL for Ada 5-75

Chapter 6: Embedded QUEL for BASIC

This chapter describes the use of EQUEL with the BASIC programming
language.

Note: EQUEL/BASIC is supported in the VMS operating environment only.

EQUEL Statement Syntax for BASIC

This section describes the language-specific ground rules for embedding QUEL
database and forms statements in a BASIC program. An EQUEL statement has
the following general syntax:

EQUEL_statement

For information on QUEL statements, see the QUEL Reference Guide. For
information on EQUEL/FORMS statements, see the Forms-based Application
Development Tools User Guide.

The following sections describe how to use the various syntactical elements of
EQUEL statements as implemented in BASIC.

BASIC Line Numbers and the EQUEL Mark

The BASIC line number, while not required, can occur at the beginning of most
EQUEL statements before the EQUEL mark, ##. For example:

100 ## destroy emp

The BASIC line number, if present, must be the first item on the line. It can be
preceded only by spaces or tabs. The EQUEL ## mark must be the next item
on the line after the optional line number and can be preceded by spaces or
tabs. Any lines not marked by ## are treated as BASIC host code and are not
preprocessed. Comments on lines not beginning with the ## mark are
considered BASIC host code.

In most instances the preprocessor outputs any BASIC line numbers that
precede an EQUEL statement. However, in a few cases the preprocessor
ignores a BASIC line number and does not include it in the generated code.
For example, line numbers occurring before EQUEL statements that produce
no BASIC code are ignored by the preprocessor. Line numbers preceding
EQUEL block statements, such as ## { and ## }, are also ignored. Line
numbers should not occur on those lines containing a continued EQUEL string
literal.

Chapter 6: Embedded QUEL for BASIC 6-1

EQUEL Statement Syntax for BASIC

Terminator

The preprocessor never generates line numbers of its own. Thus, if you prefix
an EQUEL statement with a line number and that statement is translated by
the preprocessor into several BASIC statements, the line number will appear
before the first BASIC statement only. Subsequent BASIC statements will be
unnumbered.

Note that the BASIC language does require a line number on the first line of a
program or subprogram. The EQUEL preprocessor does not verify that these
line numbers exist.

No statement terminator is required for EQUEL/BASIC statements. It is
conventional not to use a statement terminator in EQUEL statements, although
the semicolon is allowed at the end of EQUEL statements. The preprocessor
ignores it. For example, the following two statements are equivalent:

sleep 1

and
sleep 1;

The terminating semicolon may be convenient when entering code directly
from the terminal using the -s flag. For information on using the -s flag to test
the syntax of a particular EQUEL statement, see Precompiling, Compiling and
Linking an EQUEL Program in this chapter.

EQUEL statements that are made up of a few other statements, such as a
display loop, only allow a semicolon after the last statement. For example:

display empform ! no semicolon here

initialize ! no semicolon here

activate menuitem "help" ! no semicolon here

#H{

#Ht message "No help yet"; ! semicolon allowed

#it sleep 2; ! semicolon allowed

#H)

finalize; ! Semicolon allowed on last statement

Variable declarations made visible to EQUEL observe the normal BASIC
declaration syntax. Thus, variable declarations should not be terminated with a
semicolon.

62 Embedded QUEL Companion Guide

EQUEL Statement Syntax for BASIC

Line Continuation

There are no special line-continuation rules for EQUEL/BASIC. EQUEL
statements can be broken between words and continued on any number of
subsequent lines. An exception to this rule is that you cannot continue a
statement between two words that are reserved when they appear together,
such as declare cursor. For a list of double keywords, see the QUEL
Reference Guide. Each continuation line must be started with ## characters.
Blank lines are permitted between continuation lines. The BASIC line
continuation symbol (&), cannot be used with EQUEL lines.

If you want to continue a character-string constant across two lines, end the
first line with a backslash character (\), and continue the string at the
beginning of the next line. In this case, do not place ## characters at the
beginning of the continuation lines.

For examples of string continuation, see String Literals in this chapter.

The BASIC code generated by the EQUEL preprocessor will follow the BASIC
rules for continuing statements. Host code should, of course, follow the BASIC
rules for line continuation. For example:

message

#HHt "This is a message"

print &
"This is a message"

Comments

You can include a comment field or line in an EQUEL statement by typing the
exclamation point (!) at the beginning of the comment field. The following
example shows the use of a comment field on the same line as an EQUEL
statement.

open cursor emp ! Process employees

The next example shows the use of a comment field embedded in an EQUEL
statement:
retrieve (namevar=e.ename)

! confirm that "eno" was chosen
where e.eno = currentval

In both cases, the preprocessor ignores the comment field. Note that a
comment field terminates with the new line. A comment field cannot be
continued over multiple lines.

A comment line can appear anywhere in an EQUEL program that a blank line is
allowed, with the following exceptions:

n In string constants. Such a comment would be interpreted as part of the
string constant.

Chapter 6: Embedded QUEL for BASIC 6-3

EQUEL Statement Syntax for BASIC

Between two words that are reserved when they appear together, such as
declare cursor. See the list of reserved words in the QUEL Reference
Guide.

In parts of statements that are dynamically defined. For example, a
comment in a string variable specifying a form name is interpreted as part
of the form name.

The following restrictions apply to BASIC comments that are not in lines
beginning with ##:

n

BASIC comments cannot appear between component lines of EQUEL block-
type statements. These include retrieve, initialize, activate,
unloadtable, formdata, and tabledata, all of which at least optionally
have accompanying blocks delimited by open and close braces. BASIC
comment lines must not appear between the statement and its block-
opening delimiter.

For example:

retrieve (ename = employee.name)
! IT1llegal to put a host comment here!

{
I A host comment is perfectly legal here
print "Employee name";ename

)

BASIC comments cannot appear between the components of compound
statements, in particular the display statement. It is illegal for a BASIC
comment to appear between any two adjacent components of the display
statement, including display itself and its accompanying initialize,
activate, and finalize statements.

For example:

display empform

! illegal to put a host comment here!
initialize (empname = "frisco mcmullen")

! host comment illegal here!
activate menuitem "clear"

{

! host comment here is fine
#Ht clear field all
#H)}

! host comment illegal here!
activate menuitem "end"
{
breakdisplay
#t)

! host comment illegal here!
finalize

The QUEL Reference Guide specifies these restrictions on a statement-by-
statement basis.

When the QUEL comment is delimited by /* and */ or appears on lines that
begin with ##, it can be considered a valid EQUEL/BASIC comment and can
span multiple lines.

64

Embedded QUEL Companion Guide

BASIC Variables and Data Types

String Literals

You can use either double quotes or single quotes to delimit string literals in
EQUEL/BASIC, as long as the same delimiter is used at the beginning and the
end of any one string literal.

To embed a double quote with a string literal, use single quotes as the string

delimiter. Single quotes cannot be embedded in a string literal. If you want to
embed single quotes in a character string, assign the string to a variable and

use the variable in the EQUEL statement.

When continuing an EQUEL statement to another line in the middle of a string
literal, use a backslash immediately prior to the end of the first line. In this
case, the backslash and the following newline character are ignored by the
preprocessor, so that the following line can continue both the string and any
further components of the EQUEL statement. Any leading spaces on the next
line are considered part of the string. For example, the following are legal
EQUEL statements:

message 'Please correct errors found in updating \
the database tables.’

append to employee (empname = "Freddie \
Mac", empnum = 222)

Integer Literals

You can use the optional trailing percent sign (%) with EQUEL integer literals.
The preprocessor always adds the percent sign to the integer literals that it
generates.

BASIC Variables and Data Types

This section describes how to declare and use BASIC program variables in
EQUEL.

Chapter 6: Embedded QUEL for BASIC 6-5

BASIC Variables and Data Types

Variable and Type Declarations

The following sections describe variable and type declarations.

EQUEL Variable Declarations Procedures

EQUEL statements use BASIC variables to transfer data from a database or a
form into the program and conversely. You must declare BASIC variables to
EQUEL before using them in EQUEL statements. The preprocessor does not
allow implicit variable declarations. For this reason, the “"%"” and “$" suffixes
cannot be used with variable names. BASIC variables are declared to EQUEL
by preceding the declaration with the ## mark. The declaration must be in a
position syntactically correct for the BASIC language.

In general, EQUEL variables can be referred to in the program or subprogram
in which they are declared. The scope of variables is discussed in detail in a
later section.

The Declare Ingres Statement

Prior to any EQUEL declarations or statements in your main program, you
must issue the following statement:

declare ingres

This statement causes the preprocessor to generate code to include a file of
declarations needed by EQUEL at runtime. You will not be able to successfully
link an EQUEL program without this statement. The statement also serves to
terminate the scope of variables declared earlier in the file. Therefore, any
variables declared before the declare ingres statement will not be visible to
the preprocessor. For this reason, it is an error to issue two declare ingres
statements in a single program module.

You should not issue the declare ingres statement in subroutines and
functions declared to EQUEL. After processing a sub or function statement,
the preprocessor automatically generates the declare ingres statement and
terminates the scope of previous subprograms. If you do issue the declare
ingres statement in a subroutine or function known to EQUEL, the
preprocessor will generate a warning and ignore the statement. On the other
hand, if you do not define a subprogram to EQUEL (perhaps because it lists
formal parameters of a type unavailable to EQUEL variables), you must
specifically issue the declare ingres statement before any EQUEL declarations
or statements in that subprogram.

Because a def function is local to the program or subprogram that defines it,
the declare ingres statement is neither needed nor automatically generated
for it. The def function inherits its program module’s variables and definitions.

6-6

Embedded QUEL Companion Guide

BASIC Variables and Data Types

Reserved Words in Declarations

All EQUEL keywords are reserved: therefore, you cannot declare variables with
the same names as EQUEL keywords. You can only use them in quoted string
literals. These words are:

byte case com common constant
decimal declare def dim dimension
double dynamic external fnend function
functionend group integer long map

real record single string sub
subend variant word

The EQUEL preprocessor does not distinguish between uppercase and
lowercase in keywords. In generating BASIC code, it converts any uppercase
letters in keywords to lowercase.

Data Types
EQUEL/BASIC accepts elementary BASIC data types in variable declarations

and maps them to their corresponding Ingres types as shown in the following
table.

BASIC Data Types and Corresponding Ingres Type

BASIC Type Ingres Type
string character
integer integer

long integer
word integer

byte integer

real float

single float

double float

EQUEL accepts the BASIC record type in variable declarations, providing the
record has already been declared to EQUEL.

Chapter 6: Embedded QUEL for BASIC 6-7

BASIC Variables and Data Types

The String Data Type

The Integer Data Type

The following data types are illegal and will cause declaration errors:

gfloat
hfloat

Neither the preprocessor nor the runtime support routines support gfloat or
hfloat floating-point arithmetic. You should not compile the BASIC source
code with the command line qualifiers gfloat or hfloat if you intend to pass
those floating-point values to or from Ingres objects.

EQUEL accepts both fixed-length and dynamic string declarations. Strings can
be declared to EQUEL using any of the declarations listed later. Note that you
can indicate string length only for non-dynamic strings; that is, for string
declarations appearing in common, map or record declarations. For
example,

common (globals) string ename = 30

is acceptable, but

declare string bad_str_var = 30 ! length is illegal
will generate an error.

The reference to an uninitialized BASIC dynamic string variable in an
embedded statement that assigns the value of that string to Ingres results in a
runtime error because an uninitialized dynamic string points at a zero address.
This restriction does not apply to the retrieval of data into an uninitialized
dynamic string variable."

All BASIC integer data type sizes are accepted by the preprocessor. It is
important that the preprocessor knows about integer size, because it
generates code to load data in and out of program variables. EQUEL assumes
that integer size is four bytes by default. However, you may inform EQUEL of a
non-default integer size by using the -i flag on the preprocessor command
line. (For more information, see Precompiling, Compiling and Linking an EQUEL
Program in this chapter.)

For example, the preprocessor command:

$ egb -i2 myfile.qgb

causes the preprocessor to treat all variables of type integer as two-byte
quantities. If you use the -i flag, be sure to inform the BASIC compiler of the
integer size, either by means of an option to the basic command or, in the
program, by means of the BASIC options statement.

6-8 Embedded QUEL Companion Guide

BASIC Variables and Data Types

You can explicitly override the default or the preprocessor =i size by using the
BASIC subtype words byte, word or long in the variable declaration, as these
examples illustrate:

declare byte one_byte int

common (globals) word two_byte int
external long four_byte_int

These declarations create EQUEL integer variables of one, two, and four
bytes, respectively, regardless of the default setting.

An integer variable can be used with any numeric-valued object to assign or
receive numeric data. For example, such a variable can be used to set a field
in a form or to retrieve a column from a database table.

The Real Data Type

As with the integer data type, EQUEL must know the size of real data to
manipulate variables of type real. Two sizes of real data are acceptable to
EQUEL: four-byte variables (the default) and eight-byte variables. Again, you
can change the default size with a flag on the preprocessor command line—in
this case, the -r flag. For example:

$ eqb -r8 myfile.qgb

instructs EQUEL to treat all real variables as eight-byte quantities. You can
explicitly override the default or the -r size by using the BASIC subtype words
single or double in a variable declaration. For example, the following two
declarations

declare single four_byte real
map (myarea) double eight_byte_real

create EQUEL real variables of four and eight bytes, respectively, regardless of
the default setting.

A real variable can be used in EQUEL statements to assign or receive numeric
data (both real and integer) to and from database columns, form fields and
table field columns. It cannot be used to specify numeric objects, such as table
field row numbers.

The Record Data Type

You can declare EQUEL variables with type record if you have already defined
the record to EQUEL. Later sections discuss the syntax of EQUEL record
definitions. You can also declare formal parameters of type record to
subprograms. In that case, the EQUEL record definition must follow the EQUEL
subprogram statement. Later sections discuss record type formal parameters.

Chapter 6: Embedded QUEL for BASIC 6-9

BASIC Variables and Data Types

Variable and Constant D

eclaration Syntax

EQUEL/BASIC variables and constants can be declared in a variety of ways
when those statements are made known to EQUEL with the ## mark. The

fol

The Declare Statement

lowing sections describe these declaration statements and their syntax.

The declare statement for an EQUEL/BASIC variable has the following syntax:

declare type identifier [(dimensions)] {, [type] identifier [(dimensions)]}

The declare statement for an EQUEL/BASIC constant has the syntax:

declare type constant identifier = literal {, identifier = literal’}

Syntax Notes:

1.

4.

If the word constant is specified, the declared constants cannot be
targets of Ingres retrievals.

The type must be a BASIC type acceptable to EQUEL or, in the case of
variables only, a record type already defined to EQUEL. Note that the type
is mandatory for EQUEL declarations, because EQUEL has no notion of a
default type. The type need only be specified once when declaring a list of
variables of the same type.

The dimensions of an array specification are not parsed by the EQUEL
preprocessor. Consequently, the preprocessor does not check bounds.
Note also that an illegal dimension, such as a non-numeric value, will be
accepted by the preprocessor, but will later cause BASIC compiler errors.

You cannot use the declare statement to declare def functions to EQUEL.

The following example illustrates the use of the declare statement:

##
#i
##
#i#

declare integer enum, eage, string ename
declare single constant minsal = 12496.62
declare real esal(100)

declare word null_ind ! Null indicator

The Dimension Statement

The dimension statement can be used to declare arrays to EQUEL. Its syntax
is:

dimension | dim type identifier(dimensions) {, [type] identifier

(dimensions)}

6-10 Embedded QUEL C

ompanion Guide

BASIC Variables and Data Types

Syntax Notes:

1. The type must be a BASIC type acceptable to EQUEL or a record
already defined to EQUEL. Note that the type is mandatory for EQUEL
declarations, because EQUEL has no notion of a default type. The type
need only be specified once when declaring a list of variables of the same
type.

2. The dimensions of an array specification are not parsed by the
EQUEL preprocessor. Consequently, the preprocessor does not check
bounds. Note also that an illegal dimension, such as a non-numeric value,
will be accepted by the preprocessor, but will later cause BASIC compiler
errors. Furthermore, EQUEL does not distinguish between executable and
declarative dimension statements. If you have used the dimension
statement to declare an executable array to EQUEL, using the EQUEL ##
mark with subsequent executable dimension statements of the same array
will cause a redeclaration error.

The following example illustrates the use of the dimension statement:

dim string employee_names(100,20) ! declarative DIM statement
dimension long emp_id(100,2,2)
dimension double expenses(numdepts) ! executable DIM statement

Static Storage Variable Declarations

EQUEL supports the BASIC common and map variable declarations. The
syntax for a common variable declaration is as follows:

common | com [(com_name)]
type identifier [(dimensions)] [= str_length]
{, [type] identifier [(dimensions)] [= str_length]}

The syntax for a map variable declaration is as follows:

map | map dynamic (map_name)
type identifier [(dimensions)] [= str_length]
{, [type] identifier [(dimensions)] [= str_length]}

Syntax Notes:

1. The type must be a BASIC type acceptable to EQUEL or a record
type already defined to EQUEL. Note that the type is mandatory for EQUEL
declarations, because EQUEL has no notion of a default type. The type
need only be specified once when declaring a list of variables of the same
type.

2. The dimensions of an array specification are not parsed by the
EQUEL preprocessor. Consequently, the preprocessor does not check
bounds. Note also that an illegal dimension, such as a non-numeric value,
will be accepted by the preprocessor, but will later cause BASIC compiler
errors.

Chapter é6: Embedded QUEL for BASIC 6-11

BASIC Variables and Data Types

3. The string length, if present, must be a simple integer literal.

4. The com_name or map_name clause is not parsed by the EQUEL
preprocessor. Consequently, the preprocessor will accept common and
map areas of the same name in a single program module. It will also
accept a map dynamic statement whose com_name has not appeared in
another map statement. Either of these situations will later cause BASIC
compiler errors.

The following example uses common and map variable declarations:

common (globals) string address = 30, integer zip
map (ebuf) byte eage, string ename = 20, single
emp_num

common (globals) integer empid (200)

The External Statement

Parameter Variables

You can inform EQUEL of variables and constants declared in an external
module. The syntax for a variable is as follows:

external type identifier {, identifier}
The syntax for a constant is as follows:
external type constant identifier {, identifier}

Syntax Notes:
1. EQUEL applies the same restrictions on type as VMS BASIC.

2. You cannot declare external functions or subroutines to EQUEL. EQUEL
understands only function and subroutine definitions.

The following example illustrates the use of the external statement:

external integer empform, infoform !Compiled forms
external single constant emp_minsal

Variables can be declared by listing them as formal parameters to a subroutine
or function definition, providing the sub, function, or def statement is
preceded by the EQUEL ## mark. The syntax for a function statement is:

function type identifier [pass_mech]
[(type identifier [(dimensions)] [= str_length] [pass_mech]
{, [type] identifier [(dimensions)] [= str_length]
[pass_mechl})]

6-12 Embedded QUEL Companion Guide

BASIC Variables and Data Types

The sub statement has the syntax:

sub identifier [pass_mech]
[(type identifier [(dimensions)] [= str_length] [pass_mech]
{, [type] identifier [(dimensions)] [= str_length]
[pass_mech]})]

The def statement has the syntax:

def type identifier
[(type identifier {, [type] identifier})]

Syntax Notes:

1. The type must be a BASIC type acceptable to EQUEL or a BASIC
record. Unlike the rules for other EQUEL variable declarations, you can
define the record to EQUEL after it appears in the parameter list. For

example:

sub process_info (emp_rec emp)
record emp_rec

e

end record emp_rec

2. The type is mandatory for EQUEL parameter declarations because EQUEL
has no notion of a default type. The type need only be specified once when
declaring a list of parameters of the same type.

3. The pass_mech (allowed on sub and function statements) may be by
desc or by ref. However, the preprocessor does not verify that the formal
parameter declaration is consistent with the passing mechanism. You
should follow the VMS BASIC rules for parameter passing mechanisms.

4. The dimensions of an array specification are not parsed by the EQUEL
preprocessor. Consequently, the preprocessor does not check bounds.
Note also that an illegal dimension, such as a non-numeric value, will be
accepted by the preprocessor, but will later cause BASIC compiler errors.

The following example illustrates the use of parameter variables:

def real newsal (integer grade, real oldsal, single percent)
function string get_addr by ref (string ename = 20, integer eno)
sub new_emps (integer deptno, string emplist (100) = 20 by ref)

Record Type Definitions
EQUEL accepts BASIC record definitions. The syntax of a record definition is:

record identifier
record_component
{record_component}
end record [identifier]

Chapter é6: Embedded QUEL for BASIC 6-13

BASIC Variables and Data Types

where record_component can be any of the following:

type identifier [(dimensions)] [= str_length]

{, [type] identifier [(dimensions)] [= str_length]}

group_clause

variant_clause

host_code

In turn, the syntax of a group_clause is:

group identifier [(dimensions)]

record_component
{record_component}
end group [identifier]

The syntax of a variant_clause is:

variant

case_clause
{case_clause}

end variant

where case_clause consists of:

case

record_component

Syntax Notes:

1.

The type must be a BASIC type acceptable to EQUEL or a record type
already defined to EQUEL. Note that the type is mandatory for EQUEL
declarations because EQUEL has no notion of a default type. The type need
only be specified once when declaring a list of variables of the same type.

The string length clause is allowed only for record components of
type string.

The host code record component allows you to declare components of
records without informing EQUEL of their existence. For instance, you may
want to declare fill items or components whose type is not allowed in an
EQUEL declaration. For example, the following record definition is
acceptable to EQUEL:

record dept_rec

#it double net_profit

gfloat gross_sales ! Not for use with EQUEL statements
end record

6-14

Embedded QUEL Companion Guide

BASIC Variables and Data Types

4. Record definitions must appear before declarations using that record type.
An exception occurs where a parameter to an EQUEL subroutine or
function is of the record type. In that case, you may define the record to
EQUEL after declaring it in the parameter list.

The following example illustrates the use of record type definitions:

record emp_history

#Ht string ename = 30

group prev_employers(10)
#Ht string comp_name = 30
real salary

#it integer num_years

end group prev_employers
end record emp_history

record emp_sports

string ename = 30

#it variant

case

#Ht group golf

##t integer handicap
#it string club_name
end group golf

case

group baseball

#t integer batting_avg
string team_name
end group baseball

case

#Ht group tennis

#it integer seed

#it string club_name
#H end group tennis

#it end variant

end record emp_hobbies

The Indicator Variable

An indicator variable is a 2-byte integer variable. There are three possible
ways to use these in an application:

n In a statement that retrieves data from Ingres, you can use an indicator
variable to determine if its associated host variable was assigned a null.

n In a statement that sets data to Ingres, you can use an indicator variable
to assign a null to the database column, form field, or table field column.

n In a statement that retrieves character data from Ingres, you can use the
indicator variable as a check that the associated host variable is large
enough to hold the full length of the returned character string.

An indicator variable can be declared using the integer word subtype, or, if
the =i2 preprocessor command line flag was used, can be declared as an
integer. The following example declares two indicator variables, one a single
variable and the other an array of indicators:

declare word ind, ind_arr(10)

Chapter é: Embedded QUEL for BASIC 6-15

BASIC Variables and Data Types

Assembling and Declaring External Compiled Forms

Concluding Example

You can pre-compile your forms in the Visual Forms Editor (VIFRED). This
saves time that would otherwise be required at runtime to extract the form’s
definition from the database forms catalogs. When you compile a form in
VIFRED, VIFRED creates a file in your directory describing the form in the VAX-
11 MACRO language. VIFRED prompts you for the name of the file with the
MACRO. After the file is created, you can use the following VMS command to
assemble it into a linkable object module:

macro filename

This command produces an object file containing a global symbol with the
same name as your form. Before the Embedded SQL/FORMS statement
addform can refer to this global object, you must declare it in an Embedded
SQL declaration section, using the following syntax:

external integer formname

Syntax Notes:

1. The formname is the actual name of the form. VIFRED gives this name to
the address of the global object. The formname is also used as the title of
the form in other EQUEL/FORMS statements. In all statements that use the
formname as an argument, except for addform, you must dereference
the name with the # sign.

2. The external statement associates the object with the external form
definition.

The example below shows a typical form declaration and illustrates the
difference between using the form’s object definition and the form’s name.

external integer empform
addform empform ! The global object
display #empform ! The name of the form

The following example demonstrates some simple EQUEL/BASIC declarations:

declare ingres

declare byte d_byte ! Variables of each data type
declare word d_integer2

declare long d_integer4d

declare integer d_integer_def

declare single d_reald

declare double d_real8

declare real d_real_def

declare decimal(6,2) d_decimal
declare string d_string
declare integer constant num_depts = 10 ! Constant

6-16 Embedded QUEL Companion Guide

BASIC Variables and Data Types

common(globs) real e_raise ! Static storage variables
map (ebuf) string ename = 20

dim string emp_names(100,30) ! Array declarations

declare integer dept_id(10)

common(globs) string e_address(40) = 30

record person ! Variant record

byte age

#t long flags

#it variant

case

#Ht group emp_list

#t string full_name = 30
end group

case

#Ht group emp_directory

string firstname = 12
#t string lastname = 8
end group

#it end variant

end record

declare person p_table(100) ! Array of records
external integer empform, deptform ! Compiled forms
dim word indicators(10) ! Array of null indicators

The Scope of Variables

Variable names must be unique in their scope. Variable names are local to the
program module in which they are declared.

The scope of a variable opens at its declaration. Generally, its scope remains
open until the end of the program module. For example, an EQUEL variable
declared in a main program will be visible to all subsequent EQUEL statements
until a BASIC end, sub, or function statement is processed by EQUEL.
(Remember that the preprocessor will process these statements only if they
are preceded by the EQUEL ## mark.) Similarly, an EQUEL variable declared
in a sub or function subprogram or a formal parameter to that subprogram
will be visible until the end sub or end function statement is processed by
EQUEL. Processing of another sub or function statement would also close the
scope of the subprogram.

Note that scoping rules for def functions differ somewhat for EQUEL and
BASIC. The scope of the formal parameters to an EQUEL def function remains
open until the end def statement is processed. The same is true of variables
declared in the def function. In other words, EQUEL treats such variables as
local variables. However, while BASIC also regards parameters as local to the
def function, it allows variables declared in the def function to have a global
scope. If you wish an EQUEL variable to have a scope that is global to the
program module as a whole, you must declare it in the program module, not in
a def function definition.

In order to ensure that EQUEL follows the same scoping conventions as those
followed by BASIC, you should observe these rules:

Chapter é6: Embedded QUEL for BASIC 6-17

BASIC Variables and Data Types

Always use the EQUEL ## mark on sub and function statements, even if
the parameters are not EQUEL variables. These statements cause EQUEL
to open a new scope, closing off all previous scopes.

Be aware that the ## declare ingres statement closes off previously
opened scopes and opens a new scope. Therefore, if you do issue this
statement, you should include it before any EQUEL declarations in your
main program.

If you declare a def function statement to EQUEL, you must also issue the
end def statement to EQUEL, so that it may close the local scope of def
variables and parameters.

Issue the end, end sub and end function statements to EQUEL in order
that the preprocessor may be fully aware of the scoping of EQUEL
variables. These statements must each appear on a line by themselves,
with no comments separating the keywords.

The following example illustrates the scope of variables in an EQUEL/BASIC
program.

10 ## declare ingres

20

#Ht common (glob) integer a, real b
declare single c, double d
declare double function xyz(single)
! Visible to EQUEL: a, b
! Visible to BASIC: a, b, ¢, d, xyz

def double xyz(single e)
declare byte f
declare string g
! Visible to EQUEL: a, b, e,
! Visible to BASIC: a, b

end def
! Visible to EQUEL: a, b
! Visible to BASIC: a, b
d = xyz(c)

call uvw(d)
end
! Visible to EQUEL: no variables
! Visible to BASIC: no variables
sub uvw(double p)
! No DECLARE Ingres statement needed in subprogram
#H common (glob) integer a, real b
declare byte q
! Visible to EQUEL: p, a, b, g
! Visible to BASIC: p, a, b, g

end sub
! Visible to EQUEL: no variables
! Visible to BASIC: no variables

6-18

Embedded QUEL Companion Guide

BASIC Variables and Data Types

Variable Usage

Special care should be taken when using variables in a declare cursor
statement. The variables used in such a statement must also be valid in the
scope of the open statement for that same cursor. The preprocessor actually
generates the code for the declare at the point that the open is issued, and,
at that time, evaluates any associated variables. For example, in the following
program fragment, even though the variable “number” is valid to the
preprocessor at the point of the declare cursor statement, it is not an
explicitly declared variable name for the BASIC compiler at the point that the
open is issued, possibly resulting in a runtime error. Because BASIC allows
implicit variable declarations (although EQUEL does not), the compiler itself
will not, however, generate an error message.

1 ## sub Init_Csr ! Example contains an error
#H declare integer number
! Cursor declaration includes reference to "number"
#it declare cursor cl for
retrieve (employee.name, employee.age)
where employee.num = number
end sub
2 ## sub Process_Csr
declare string ename
declare integer eage
! Opening the cursor evaluates invalid "number"
#Ht open cursor cl
retrieve cursor cl (ename, eage)
end sub

BASIC variables declared to EQUEL can substitute for most elements of EQUEL
statements that are not keywords. Of course, the variable and its data type
must make sense in the context of the element. To use a BASIC variable in an
EQUEL statement, just use its name. To refer to an element, such as a
database column, with the same name as a variable, dereference the element
with the EQUEL dereferencing indicator (#). As an example of variable usage,
the following retrieve statement uses the variables “namevar” and “numvar”
to receive data, and the variable “idnovar” as an expression in the where
clause:

retrieve (namevar = e.name, numvar = e.num)
where e.idno = idnovar;

You must verify that the statement using the variable is in the scope of the
variable’s declaration. Various rules and restrictions apply to the use of BASIC
variables in EQUEL statements. The sections below describe the usage syntax
of different categories of variables and provide examples of such use.

Chapter é6: Embedded QUEL for BASIC 6-19

BASIC Variables and Data Types

Simple Variables

Array Variables

A simple scalar-valued variable (integer, floating-point or character string) is
referred to by the syntax:

simplename

Syntax Notes:

1. If the variable is used to send data to Ingres, it can be a scalar-
valued variable or constant.

2. If the variable is used to receive data from Ingres, it cannot be a variable
declared as a constant.

3. The reference to an uninitialized BASIC dynamic string variable in an
embedded statement that assigns the value of that string to Ingres results
in a runtime error because an uninitialized dynamic string points at a zero
address. This restriction does not apply to the retrieval of data into an
uninitialized dynamic string variable.

The following program fragment demonstrates a typical message-handling
routine that uses two scalar-valued variables, “buffer” and “seconds”:

sub Msg (string buffer, integer seconds)

#Ht message buffer
sleep seconds
end sub

An array variable is referred to by the syntax:
arrayname(subscript{,subscript})

Syntax Notes:

1. The variable must be subscripted, because only scalar-valued
elements (integers, floating-point and character strings) are legal EQUEL
values.

2. When the array is declared, the array bounds specification is not parsed by
the EQUEL preprocessor. Consequently, illegal bounds values will be
accepted. Also, when an array is referenced, the subscript is not parsed,
allowing illegal subscripts to be used. The preprocessor only confirms that
an array subscript is used for an array variable. You must make sure that
the subscript is legal and that the correct number of indices are used.

620 Embedded QUEL Companion Guide

BASIC Variables and Data Types

Record Components

The syntax EQUEL uses to refer to a record component is the same as in
BASIC:

record::component{::component}

Syntax Notes:

1. The last record component denoted by the above reference must be a
scalar value (integer, floating-point or character string). There can be any
combination of arrays and records, but the last object referenced must be
a scalar value. Thus, all the following references are legal:

! Assume correct declarations for "employee", "person"

! and other records.
employee: :sal ! Component of a record
person(3)::pname ! Component of an element of an array
recl::meml::mem2::age ! Deeply nested component

2. All record components must be fully qualified when referenced. Elliptical
references, such as references that omit group names, are not allowed.

The example below uses the array of records “emprec” to load values into the
tablefield “emptable” in form “empform.”

record Employee_Rec

string ename = 20
#H word eage

integer eidno

#Ht string ehired = 25
string edept = 10
real esalary

end record

declare Employee_Rec emprec(100)
declare integer i

for i =1 to 100

loadtable empform emptable
#Ht (ename = emprec(i)::ename,
eage = emprec(i)::eage, eidno = emprec(i)::eidno,
#Ht ehired = emprec(i)::ehired,
edept = emprec(i)::edept,
#Ht esalary = emprec(i)::esalary)
next i

Using Indicator Variables
The syntax for referring to an indicator variable is the same as for a simple
variable, except that an indicator variable is always associated with a host

variable:

host_variable:indicator_variable

Chapter é6: Embedded QUEL for BASIC 6-21

BASIC Variables and Data Types

Syntax Note:

The indicator variable can be a simple variable, an array element or a record
member that yields a 2-byte integer (the word subtype). For example:
declare word ind_var, ind_arr(5)

var_l:ind_var
var_2:ind_arr(2)

Data Type Conversion

A BASIC variable declaration must be compatible with the Ingres value it
represents. Numeric Ingres values can be set by and retrieved into numeric
variables, and Ingres character values can be set by and retrieved into string
variables.

Data type conversion occurs automatically for different numeric types such as
from floating-point Ingres database column values into integer BASIC
variables, and for character strings, such as from varying-length Ingres
character fields into fixed-length BASIC string buffers.

Ingres does not automatically convert between numeric and character types.
You must use the Ingres type conversion operators, the Ingres ascii function,
or a BASIC conversion procedure for this purpose.

The following table shows the default type compatibility for each Ingres data
type. Note that some BASIC types do not match exactly and, consequently,
may go through some runtime conversion.

Ingres Data Types and Corresponding BASIC Types

Ingres Type BASIC Type

c(N), char(N) string (dynamic)

c(N), char(N) string (static with length clause of N)
text(N), varchar(N) string (dynamic)

text(N), varchar(N) string (static with length clause of N)
i1, integerl integer byte

i2, integer2 integer word

i4, integer4 integer long

f4, float4 real single

f8, float8 real double

date string (dynamic)

6-22

Embedded QUEL Companion Guide

BASIC Variables and Data Types

Ingres Type BASIC Type
date string (static with length clause of 25)
money real double

Runtime Numeric Type Conversion

The Ingres runtime system provides automatic data type conversion between
numeric-type values in the database and forms system and numeric BASIC
variables. The standard type conversion rules (according to standard VAX
rules) are followed. For example, if you assign a real variable to an integer-
valued field, the digits after the decimal point of the variable’s value are
truncated. Runtime errors are generated for overflow on conversion.

The Ingres money type is represented as real double, an 8-byte floating-
point value.

Runtime Character Type Conversion

Automatic conversion occurs between Ingres character string values, database
columns of type ¢, char, text or varchar, and form fields of type character.
Several considerations apply when dealing with string conversions, both to and
from Ingres.

The conversion of BASIC string variables used to represent Ingres names is
simple: trailing blanks are truncated from the variables because the blanks
make no sense in that context. For example, the string literals “empform ” and
“empform” refer to the same form.

The conversion of other Ingres objects is a bit more complicated. First, the
storage of character data in Ingres differs according to whether the medium of
storage is a database column of type c or character, a database column of
type text or varchar, or a character form field. Ingres pads columns of type
c or character with blanks to their declared length. Conversely, it does not
add blanks to the data in columns of type text or varchar, or in form fields.

Second, the BASIC convention is to blank-pad static character strings. For
example, the character string “abc” may be stored in a BASIC static string
variable of length 5 as the string “abc ” followed by two blanks.

Chapter é6: Embedded QUEL for BASIC 6-23

BASIC Variables and Data Types

When retrieving character data from an Ingres database column or form field
into a BASIC variable, take note of the following conventions:

n

When character data is retrieved from Ingres into a BASIC static string
variable and the variable is longer than the value being retrieved, the
variable is padded with blanks. If the variable is shorter than the value
being retrieved, the value is truncated. You should always ensure that the
variable is at least as long as the column or field, in order to avoid
truncation of data.

When character data is retrieved into a BASIC dynamic string variable, the
variable’s new length will exactly match the length of the data retrieved.
Ingres manipulates dynamic strings in exactly the same way as BASIC
does, creating and modifying storage requirements as necessary. For
example, when zero-length varchar data is retrieved into a BASIC
dynamic string variable, storage will not be created for the string.

When inserting character data into an Ingres database column or form field
from a BASIC variable, note the following conventions:

n

When data is inserted from a BASIC variable into a database column of
type c or character and the column is longer than the variable, the
column is padded with blanks. If the column is shorter than the variable,
the data is truncated to the length of the column.

When data is inserted from a BASIC variable into a database column of
type text or varchar and the column is longer than the variable, no
padding of the column takes place. Furthermore, by default, all trailing
blanks in the data are truncated before the data is inserted into the text
or varchar column. For example, when a string “abc” stored in a BASIC
static string variable of length 5 as “abc “ is inserted into the text
column, the two trailing blanks are removed and only the string “abc” is
stored in the database column. To retain such trailing blanks, you can use
the EQUEL notrim function. It has the following syntax with stringvar as a
character string variable.

notrim(stringvar)

When used with repeat queries, the notrim syntax is:

@notrim(stringvar)

If the text or varchar column is shorter than the variable, the data is
truncated to the length of the column.

n

When data is inserted from a BASIC variable into a character form

field and the field is longer than the variable, no padding of the field takes
place. In addition, all trailing blanks in the data are truncated before the
data is inserted into the field. If the field is shorter than the data (even
after all trailing blanks have been truncated), the data is truncated to the
length of the field.

6-24

Embedded QUEL Companion Guide

BASIC Variables and Data Types

You cannot use zero-length or uninitialized BASIC dynamic strings in
insert or update statements. This is because an uninitialized dynamic
string has no storage allocated for it and Ingres treats it as a non-existent
variable.

When comparing character data in an Ingres database column with character
data in a BASIC variable, note the following convention:

n When comparing data in ¢, character, or varchar database columns with
data in a character variable all trailing blanks are ignored. Trailing blanks
are significant in text. Initial and embedded blanks are significant in
character, text, and varchar; they are ignored in c.

Note: The conversion of character string data between Ingres objects and
BASIC variables often involves the trimming or padding of trailing blanks, with
resultant change to the data. If trailing blanks have significance in your
application, give careful consideration to the effect of any data conversion. The
QUEL Reference Guide has information on blanks when comparing with the
various Ingres character types.

The Ingres date data type is represented as a 25-byte string.

The example below uses the notrim function and the truncation rules
explained above.

11 ##

##

##

##

##

##
#i

sub Notrim_Test

!

!

!

!

! CREATE textchar

! (row = integer,
! data = text(10))
!

declare word row
common string sdata = 7
declare string ddata

" abc
*abc’

sdata
ddata

Assume a table called "textchar" has been
created with the following CREATE statement:

Note the text type

! Static string
I Dynamic string

! Holds "abc " with 4 blanks
! Holds "abc"

! This APPEND adds string "abc" (blanks truncated)

append to textchar (#row =

1, data = sdata)

! This APPEND adds string "abc" (never had blanks)

append to textchar (#row =

2, data = ddata)

! This APPEND adds string "abc ", with tailing
! blanks left intact by using the NOTRIM function.

append to textchar

(#row = 3, data = NOTRIM(sdata))

Chapter é6: Embedded QUEL for BASIC 6-25

Dynamically Built Param Statements

! This RETRIEVE retrieves rows #1 and #2, because
I trailing blanks were suppressed when those rows
| were inserted.

range of t IS textchar

retrieve (row = t.#row) WHERE LENGTH(t.data) = 3

#H{
print ’Row found =", row
#H o}
print ’--------- ’

! This RETRIEVE retrieves row #3, because the
I NOTRIM function left trailing blanks in the
| "sdata" variable
! in the last APPEND statement.
retrieve (row = t.#row) WHERE LENGTH(t.data) =7
{

#H

print ’Row found =", row
)
end sub

Dynamically Built Param Statements

The param feature dynamically builds EQUEL statements. EQUEL/BASIC does
not currently support param versions of statements. Param statements are
supported in EQUEL/C and EQUEL/Fortran.

Runtime Error Processing

This section describes a user-defined EQUEL error handler.

Programming for Error Message Output

By default, all Ingres and forms system errors are returned to the EQUEL
program, and default error messages are printed on the standard output
device. As discussed in the QUEL Reference Guide and the Forms-based
Application Development Tools User Guide, you can also detect the
occurrences of errors by means of the program using the inquire_ingres and
inquire_frs statements. (Use the latter for checking errors after forms
statements—see the examples in the Forms-based Application Development
Tools User Guide. Use inquire_ingres for all other EQUEL statements.)

This section discusses an additional technique that enables your program not
only to detect the occurrences of errors, but also to suppress the printing of

default Ingres error messages if you choose. The inquire statements detect

errors but do not suppress the default messages.

626 Embedded QUEL Companion Guide

Runtime Error Processing

This alternate technique entails creating an error-handling function in your
program and passing its address to the Ingres runtime routines. Then Ingres
will automatically invoke your error handler whenever an Ingres or a forms-
system error occurs. Your program error handler must be declared as follows:

function integer funcname (errno)

end function

This function must be passed to the EQUEL routine IIseterr() for runtime
bookkeeping using the statement:

call IIseterr(funcname)

This forces all runtime Ingres errors through your function, passing the error
number as an argument. If you choose to handle the error locally and
suppress Ingres error message printing, the function should return 0;
otherwise the function should return the Ingres error number received. The
error-handling function must return a long integer. If your default integer size
is less than 4 bytes, you must declare the function to be a long function.

Avoid issuing any EQUEL statements in a user-written error handler defined to
IIseterr, except for informative messages, such as message, prompt, sleep
and clear screen, and messages that close down an application, such as
endforms and exit.

The example below demonstrates a typical use of an error function to warn
users of access to protected tables. This example passes through all other
errors for default treatment.

1 ## declare ingres
external integer Err_Trap

1Ingres personnel

call IIseterr(Err_Trap)
#H exit

end

2 function integer Err_Trap(integer ingerr)

! Error number for protected tables
declare integer constant TBLPROT = 5003%

if (ingerr = TBLPROT) then
print ’You are not authorized for this operation’

Err_Trap = 0% ! Do not print messages
else
Err_Trap = ingerr ! Ingres will print error
end if

end function

Chapter é6: Embedded QUEL for BASIC 6-27

Precompiling, Compiling and Linking an EQUEL Program

Precompiling, Compiling and Linking an EQUEL Program
This section describes the EQUEL preprocessor for BASIC and the steps
required to precompile, compile, and link an EQUEL program.

Generating an Executable Program
Once you have written your EQUEL program, it must be preprocessed to
convert the EQUEL statements into BASIC code. These sections describe the

use of the EQUEL preprocessor. Additionally, it describes how to compile and
link the resulting code to obtain an executable file.

The EQUEL Preprocessor Command
The BASIC preprocessor is invoked by the following command line:
eqb {flags} {filename?}

where flags are

Flag Description

-d Adds debugging information to the runtime database error
messages generated by EQUEL. The source file name, line
number, and the erroneous statement itself are printed along
with the error message.

-f[filename] Writes preprocessor output to the named file. If the -f flag is
specified without a filename, the output is sent to standard
output, one screen at a time. If the -f flag is omitted, output is
given the basename of the input file, suffixed “.bas”.

-iN Sets the default size of integers to N bytes. N must be 1, 2, or
4. The default setting is 4.

-1 Writes preprocessor error messages to the preprocessor’s listing
file, as well as to the terminal. The listing file includes
preprocessor error messages and your source text in a file
named filename.lis, where filename is the name of the input file.

-lo Similar to -I, but the generated BASIC code also appears in the
listing file.
-n. ext Specifies the extension used for filenames in ## include and

#4# include inline statements in the source code. If -n is omitted,
include filenames in the source code must be given the
extension “.gb".

628 Embedded QUEL Companion Guide

Precompiling, Compiling and Linking an EQUEL Program

Flag

Description

-0

Directs the preprocessor not to generate output files for include
files.

This does not affect the translated include statements in the
main program. The preprocessor will generate a default
extension for the translated include file statements unless you
use the -o.ext flag.

-0.ext

Specifies the extension given by the preprocessor to both the
translated include statements in the main program and the
generated output files. If this flag is not provided, the default
extension is “.bas”.

If you use this flag in combination with the -o flag, then the
preprocessor generates the specified extension for the translated
include statements, but does not generate new output files for
the include statements.

Sets default size of reals to NV bytes. N must be 4 or 8. The
default setting is 4.

-S

Reads input from standard input and generates BASIC code to
standard output. This is useful for testing statements you are
not familiar with. If the -l option is specified with this flag, the
listing file is called “stdin.lis.” To terminate the interactive
session, type Ctrl Z.

-w

Prints warning messages.

-2

Shows what command line options are available for eqb.

The EQUEL/BASIC preprocessor assumes that input files are named with the
extension “.gb"”. This default can be overridden by specifying the file extension
of the input file(s) on the command line. The output of the preprocessor is a
file of generated BASIC statements with the same name and the extension

“.baS".

If you enter the command without specifying any flags or a filename, INGRES
displays a flags list for the command.

The following table presents the options available with eqb.

Chapter é6: Embedded QUEL for BASIC 6-29

Precompiling, Compiling and Linking an EQUEL Program

Eqb Command Examples

The BASIC Compiler

Command Comment

eqgb filel Preprocesses “filel.qb” to “filel.bas”

egb - file2.xb Preprocesses “file2.xb” to “file2.bas” and creates
listing “file2.lis"”

egb -s Accepts input from standard input and writes
generated code to standard output

eqgb -ffile3.out file3 Preprocesses “file3.gb” to “file3.out”

egb Displays a list of flags available for this command.

As mentioned above, the preprocessor generates BASIC code. You should use
the VMS basic command to compile this code. Most of the basic command line
options can be used. You should not use the g_float or h_float qualifiers if
floating-point values in the program are interacting with INGRES floating-point
objects. If you use the byte or word compiler qualifiers, you must run the
EQUEL preprocessor with the =il or =-i2 flag. Similarly, use of the BASIC
double qualifier requires that you have preprocessed your EQUEL file using
the -r8 flag. Note, too, that many of the statements that the EQUEL
preprocessor generates are BASIC language extensions provided by VAX/VMS.
Consequently, you should not attempt to compile with the ansi_standard
qualifier.

The following example preprocesses and compiles the file “testl.” Note that
both the EQUEL preprocessor and the BASIC compiler assume the default
extensions.

$ egb testl
$ basic/list testl

Note: Check the Readme file for any operating system specific information on
compiling and linking EQUEL/BASIC programs.

Linking an EQUEL Program

EQUEL programs require procedures from several VMS shared libraries in order
to run properly. Once you have preprocessed and compiled an EQUEL
program, you can link it. Assuming the object file for your program is called
“dbentry,” use the following link command:

$ link dbentry.obj,-
ii_system:[ingres.files]equel.opt/opt

6-30 Embedded QUEL Companion Guide

Precompiling, Compiling and Linking an EQUEL Program

It is recommended that you do not explicitly link in the libraries referenced in
the EQUEL.OPT file. The members of these libraries change with different
releases of INGRES. Consequently, you may be required to change your link
command files in order to link your EQUEL programs.

Assembling and Linking Pre-Compiled Forms

The technique of declaring a pre-compiled form to the FRS is discussed in the
QUEL Reference Guide. To use such a form in your program, you must also
follow the steps described here.

In VIFRED, you can select a menu item to compile a form. When you do this,
VIFRED creates a file in your directory describing the form in the VAX-11
MACRO language. VIFRED lets you select the name for the file. Once you have
created the MACRO file this way, you can assemble it into linkable object code
with the VMS command

macro filename

The output of this command is a file with the extension “.obj”. You then link
this object file with your program (in this case named “formentry”) by listing it
in the link command, as in the following example:

$ link formentry,-

empform.obj, -
ii_system:[ingres.files]equel.opt/opt

Linking an EQUEL Program without Shared Libraries

While the use of shared libraries in linking EQUEL programs is recommended
for optimal performance and ease-of-maintenance, non-shared versions of the
libraries have been included in case you require them. Non-shared libraries
required by EQUEL are listed in the esgl.noshare options file. The options file
must be included in your link command after all user modules. Libraries must
be specified in the order given in the options file.

The following example demonstrates the link command of an EQUEL program
called “dbentry” that has been preprocessed and compiled:

$ link dbentry, -
ii_system:[ingres.files]equel.noshare/opt

Include File Processing

The EQUEL include statement provides a means to include external files in
your program’s source code. Its syntax is:

include filename

Chapter é: Embedded QUEL for BASIC 6-31

Precompiling, Compiling and Linking an EQUEL Program

Filename is a quoted string constant specifying a file name, or a logical name
that points to the file name. You must use the default extension “.gb"™ on
names of include files unless you override this requirement by specifying a
different extension with the -n flag of the eqb command.

This statement is normally used to include variable declarations, although it is
not restricted to such use. For more details on the include statement, see the
QUEL Reference Guide.

The included file is preprocessed and an output file with the same name but
with the default output extension “.bas” is generated. You can override this
default output extension with the -o.ext flag on the command line. The
reference in the original source file to the included file is translated in the
output file to the specified include output file. If the -0 flag is used (with no
extension), no output file is generated for the include file. This is useful for
program libraries that are using VMS MMS dependencies.

If you use both the -o0.ext and the -o flags, then the preprocessor will
generate the specified extension for the translated include statements in the
program but will not generate new output files for the statements.

For example, assume that no overriding output extension was explicitly given
on the command line. The EQUEL statement:

include ’employee.gb’

is preprocessed to the BASIC statement:

% include "employee.bas"
and the file "employee.gb” is translated into the BASIC file “employee.bas.”

As another example, assume that a source file called “inputfile” contains the
following include statement:

include ’'mydecls’

The name “mydecls” is defined as a system logical name pointing to the file
“dral:[headers]myvars.qb” by means of the following command at the DCL
level:

$ define mydecls dral:[headers]myvars.qgb

Assume now that “inputfile” is preprocessed with the command:
$ egb -o.h inputfile

The command line specifies “.h"” as the output file extension for include files.
As the file is preprocessed, the include statement shown earlier is translated
into the BASIC statement:

% include "dral:[headers]lmyvars.h"

6-32

Embedded QUEL Companion Guide

Precompiling, Compiling and Linking an EQUEL Program

and the BASIC file “dral:[headers]myvars.h” is generated as output for the
original include file, “dral:[headers]myvars.gb.” See the QUEL Reference
Guide for including source code using the include inline statement.

You can also specify include files with a relative path. For example, if you
preprocess the file “dral:[mysource]myfile.qb,” the EQUEL statement:

include ’[-.headers]myvars.gb’

is preprocessed to the BASIC statement:

% include "[-.headers]myvars.bas"

and the BASIC file "dral:[headers]myvars.bas,” is generated as output for the
original include file, “dral:[headers]myvars.gb.”

Including Source Code with Labels

Some EQUEL statements generate labels in the output code. If you include a
file containing such statements, you must be careful to include the file only
once in a given BASIC scope. Otherwise, you may find that the compiler later
complains that the generated labels are defined more than once in that scope.

The statements that generate labels are the retrieve statement and all the
EQUEL/FORMS block-type statements, such as display and unloadtable.

Coding Requirements for Writing EQUEL Programs

The following sections describe coding requirements for writing EQUEL
programs.

Comments Embedded in BASIC Output

Each EQUEL statement generates one comment and a few lines of BASIC code.
You may find that the preprocessor translates 50 lines of EQUEL into 200 lines
of BASIC. This may result in confusion about line numbers when you are
debugging the original source code. To facilitate debugging, each group of
BASIC statements associated with a particular statement is preceded by a
comment corresponding to the original EQUEL source. (Note that only
executable EQUEL statements are preceded by a comment.) Each comment is
one line long and informs the reader of the file name, line number, and type of
statement in the original source file.

Chapter é: Embedded QUEL for BASIC 6-33

Preprocessor Error Messages

Embedding Statements Inside BASIC If Blocks

The preprocessor never generates line humbers as its own. Therefore, you can
enclose EQUEL statements in the then or else clauses of a BASIC if statement
without changing program control.

For example:
if (error = 1%) then

message "Error on update"
sleep 2
endif

An EQUEL Statement that Does Not Generate Code

The declare cursor statement does not generate any BASIC code. This
statement should not be coded as the only statement in BASIC constructs that
does not allow empty statements.

EQUEL/BASIC Preprocessor Errors

To correct most errors, you may wish to run the EQUEL preprocessor with the
listing (-I) option on. The listing will be sufficient for locating the source and
reason for the error.

For preprocessor error messages specific to the BASIC language, see the next
section.

Preprocessor Error Messages

E_E60001

E_E60002

The following is a list of error messages specific to the Ada language.
“The ADA variable '%0c’ is an array and must be subscripted.”

Explanation: A variable declared as an array must be subscripted when
referenced. The preprocessor does not confirm that you use the correct
number of subscripts. A variable declared as a 1-dimensional array of
characters, must not be subscripted as it refers to a character string.

“The ADA variable '%0c’ is not an array and must not be subscripted.”
Explanation: A variable not declared as an array cannot be subscripted. You

cannot subscript string variables in order to refer to a single character or a
slice of a string (substring).

6-34 Embedded QUEL Companion Guide

Preprocessor Error Messages

E_E60003

E_E40004

E_E60005

E_E60006

E_E60007

E_E60008

E_E60009

E_E6000A

“The ADA identifier ‘%0c’ is not a declared type.”

Explanation: The identifier was used as an Ada type name in an object or
type declaration. This identifier has not yet been declared to the preprocessor
and is not a preprocessor-predefined type name.

“The ADA CHARACTER variable "%0c’ must be a 1-dimensional array.”

Explanation: Variables of type CHARACTER can only be declared as 1-
dimensional arrays. You cannot use a single character or a multidimensional
array of characters as an Ingres string. Note that you can use a
multidimensional array of type STRING.

“The ADA DIGITS clause ‘%0c’ is out of the range 1..16.”

Explanation: Embedded Ada supports D_FLOAT floating point variables.
Consequently, all DIGITS specifications must be in the specified range.

“Statement '%0c’ is embedded in INCLUDE file package specification.”

Explanation: Preprocessor INCLUDE files may only be used for Ada package
specifications. The preprocessor generates an Ada WITH clause for the
package. No executable statements may be included in the file because the
code generated will not be accepted by the Ada compiler in a package
specification.

“Too many names (%0c) in ADA identifier list. Maximum is %1c.”
Explanation: Ada identifier lists cannot have too many names in the comma-
separated name list. The name specified in the error message caused the
overflow, and the remainder of the list is ignored. Rewrite the declaration so
that there are fewer names in the list.

“The ADA identifier list has come up short.”

Explanation: The stack used to store comma separated names in Ada
declarations has been corrupted. Try rearranging the list of names in the
declaration.

“The ADA CONSTANT declaration of ‘%0c’ must be initialized.”
Explanation: CONSTANT declarations must include an initialization clause.
“The ADA identifier "%0c’ is either a constant or an enumerated literal.”
Explanation: The named identifier was used to retrieve data from Ingres. A

constant, an enumerated literal and a formal parameter with the IN mode are
all considered illegal for the purpose of retrieval.

Chapter é: Embedded QUEL for BASIC 6-35

Preprocessor Error Messages

E_E4000B

E_E6000C

E_E6000D

E_E6O00E

E_E6OOOF

E_E40010

E_E600T1

E_E60012

“The ADA variable ‘%0c’ with ".ALL’ clause is illegal.”

Explanation: The ADA .ALL clause, as specified with access objects, can be
used only if the variable is an access object pointing at a single scalar-valued
type. If the type is not scalar valued, or if the access object is pointing at a
record or array, then the use of .ALL is illegal.

“The ADA variable "%0c’ with ".ALL’ clause is not a scalar type.”
Explanation: The Ada .ALL clause, as specified with access objects, can be
used only if the variable is an access object pointing at a single scalar-valued
type. If the type is not scalar valued, or if the access object is pointing at a
record or array, then the use of .ALL is illegal.

“Last component in ADA record qualification "%0c’ is illegal.”

Explanation: The last component referenced in a record qualification is not a
member of the record. If this component was supposed to be declared as a
record, the following components will cause preprocessor syntax errors.

“In ADA RENAMES statement, '%0c’ must be a constant or a variable.”
Explanation: The target object of a RENAMES statement must be a constant
or a variable, and the item being declared is used a synonym for the target
object.

“In ADA RENAMES statement, object is incompatible with type.”
Explanation: The type of the target object in the RENAMES statement must
be compatible in base type, size and array dimensions with the type name
specified in the declaration.

"Only one name may be declared in an Ada RENAMES statement.”
Explanation: One object can rename only one other object.

“Unclosed ADA block. There are %0c block(s) left open.”

Explanation: If a file is terminated early or the END statement closing an Ada
compilation unit is missing, this error will occur. If syntax errors were issued
while parsing the compilation unit header, correct those errors first.

“The ADA variable ‘%0c’ has not been declared.”

Explanation: The named identifier was used where a variable must be used
to set or retrieve Ingres data. The variable has not yet been declared.

6-36 Embedded QUEL Companion Guide

Sample Applications

E_E40013

E_E40014

E_E60015

E_E60016

“The ADA type %0c is not supported.”

Explanation: Some Ada types are not supported because they are not
compatible with the Ingres runtime system.

“The ADA variable "%0c’ is a record, not a scalar value.”

Explanation: The named variable qualification refers to a record. It was used
where a variable must be used to set or retrieve Ingres data. This error may
also cause syntax errors on record component references.

“You must issue a ‘## WITH %0c’ before statement "%1c’.”

Explanation: If your compilation unit includes forms statements you must
issue the WITH EQUEL_FORMS clause. Otherwise you must issue the WITH
EQUEL clause.

“The ADA statement %0c is not supported.”

Explanation: Statements that modify the internal representation of variables
that interact with Ingres are not supported.

Sample Applications

This section contains sample applications.

The Department-Employee Master/Detail Application

This application that uses two database tables joined on a specific column.
This typical example of a department and its employees demonstrates how to
process two tables as a master and a detail.

The program scans through all the departments in a database table, in order
to reduce expenses. Department information is stored in program variables.
Based on certain criteria, the program updates department and employee
records. The conditions for updating the data are the following:

Departments:

n If a department has made less than $50,000 in sales, the department is
dissolved.

Employees:

n If an employee was hired since the start of 1985, the employee is
terminated.

Chapter é: Embedded QUEL for BASIC 6-37

Sample Applications

n If the employee’s yearly salary is more than the minimum company wage
of $14,000 and the employee is not nearing retirement (over 58 years of
age), the employee takes a 5% pay cut.

n If the employee’s department is dissolved and the employee is not
terminated, the employee is moved into a state of limbo (the
“toberesolved” database table, described below) to be resolved by a
supervisor.

This program uses two cursors in a master/detail fashion. The first cursor is for
the Department table, and the second is for the Employee table. The create
statements used to create the tables are shown below. The cursors retrieve all
the information in their respective tables, some of which is updated. The
cursor for the Employee table also retrieves an integer date interval whose
value is positive if the employee was hired after January 1, 1985.

Each row that is scanned, both from the Department table and the Employee
table, is recorded into the system output file. This file serves as a log of the
session and as a simplified report of the updates that were made.

Each section of code is commented for the purpose of the application and also
to clarify some of the uses of the EQUEL statements. The program illustrates
table creation, multi-query transactions, all cursor statements and direct
updates. For purposes of brevity, error handling on data manipulation
statements is simply to close down the application.

The following two create statements describe the Employee and Department
database tables:

create dept

#Ht (name = cl2, ! Department name
#i#t totsales = money, I Total sales
#Ht employees = i2) ! Number of employees

create employee

(name = 20, ! Employee name

#Ht age =1il, ! Employee age

##t idno = 1i4, I Unique employee id
#it hired = date, ! Date of hire

dept = cl0, ! Employee department
salary = money) ! Yearly salary

10

!
! Program: Process_Expenses

I Purpose: Main entry of the application. Initialize the database,
! process each department, and terminate the session.

!

program Process_Expenses
external byte function Init_Db

print ’Entering application to process expenses.’
if (Init_db = 1) then
call Process_Depts
call End_Db
print ’Successful completion of application.’
end if

6-38 Embedded QUEL Companion Guide

Sample Applications

20

30

en
|
|
|
|
|
|
|
|
|
|
|

##

##

##

##

##

#i#

#it
##

##

d program ! Process_Expenses

Function: Init_Db

Purpose: 1Initialize the database. Start up the database,
and abort if an error. Before processing employees,
create the table for employees who lose their
department, "toberesolved". Initiate the
multi-statement transaction.

Returns:
0 - Failed to start application.
1 - Succeeded in starting application.
function byte Init_Db
declare integer ing_error
external integer Close_Down
ingres personnel
print ’Creating "To_Be Resolved" table.’
create toberesolved
(name = char(20),
age = smallint,
idno = integer,
hired = date,
dept = char(10),
salary = money)
inquire_ingres (ing_error = ERRORNO)
if (ing_error > 0) then
print ’Fatal error creating application table.’
Init Db = 0 ! Failed
else
begin transaction
|
I Inform Ingres runtime system about error handler
! All errors from here on close down the application.
!
call IIseterr(Close_Down)
Init Db =1 I Ok
end if
end function ! Init_Db
!
! Subroutine: End_Db
! Purpose: Close off the multi-statement transaction and access
! to the database after successful completion of the
! application.
!
sub End_Db
end transaction
exit
end sub ! End_Db

Chapter é: Embedded QUEL for BASIC 6-39

Sample Applications

! Subroutine: Process_Depts

! Purpose: Scan through all the departments, processing
! each one. If the department has made less

! than $50,000 in sales, then the department

! is dissolved.

! For each department process all the

! employees (they may even be moved to another
! database table).

! If an employee was terminated, then update

! the department’s employee counter.

|

40 ## sub Process_Depts

! Dept_Rec corresponds to the "dept" table
record Dept_Rec

string dname = 12
double totsales
##t word employees

end record
declare Dept_Rec dpt

declare integer no_rows

declare integer emps_term
declare byte deleted_dept
declare string dept_format
declare byte dept_err

Cursor loop control
Employees terminated
Was the dept deleted?
Formatting value

I Minimum sales of department
declare real constant MIN_DEPT_SALES = 50000.0
no_rows = 0
range of d is dept
declare cursor deptcsr for
retrieve (d.name, d.totsales, d.employees)
for direct update of (name, employees)

open cursor deptcsr

while (no_rows = 0)

retrieve cursor deptcsr
(dpt::dname, dpt::totsales, dpt::employees)
#t inquire_equel (no_rows = ENDQUERY)

if (no_rows = 0) then

! Did department reach minimum sales ?
if (dpt::totsales < MIN_DEPT_SALES) then

delete cursor deptcsr
deleted_dept =1
dept_format = ° -- DISSOLVED --~
else

deleted_dept = 0
dept_format = *’
end if

! Log what we have just done

print ’Department: ° + trm$(dpt::dname) + &
*, Total Sales: ’;

print using *$$### ##°, dpt::totsales;

print dept_format

I Now process each employee in the department

6-40 Embedded QUEL Companion Guide

Sample Applications

##

##

##

call

Process_Employees
(dpt::dname, deleted_dept, emps_term)

I If some employees were terminated,
! record this fact

if (

end
end if

next

emps_term > 0@ and deleted_dept = 0) then
replace cursor deptcsr

(employees = dpt::employees - emps_term)
if

I If a row was retrieved

! Continue with cursor loop

close cursor deptcsr

end sub

Subroutine
Purpose:

Parameters

sub Proc

! Emp_Re
record E
stri
byte
inte
stri
real
inte
end reco
declare

! Process_Depts

. Process_Employees

Scan through all the employees for a

particular department. Based on given

conditions the employee may be terminated, or
given a salary reduction.

1. If an employee was hired since 1985 then
the employee is terminated.

2. If the employee’s yearly salary is more
than the minimum company wage of $14,000
and the employee is not close to retirement
(over 58 years of age), then the employee
takes a 5% salary reduction.

3. If the employee’s department is dissolved
and the employee is not terminated, then
the employee is moved into the

"toberesolved" table.

dept_name - Name of current department.

deleted dept - Is department dissolved?

emps_term - Set locally to record how many
employees were terminated
for the current department.

ess_Employees(string dept_name,
byte deleted dept,
integer emps_term)

c corresponds to the "employee" table

mp_Rec

ng ename = 20
age

ger idno

ng hired = 25
salary

ger hired_since_85

rd

Emp_Rec erec

I Minimum employee salary

declare
declare
declare

real constant MIN_EMP_SALARY = 14000.00
byte constant NEARLY_RETIRED = 58
real constant SALARY_REDUC = 0.95

declare byte no_rows
declare string title
declare string description

! For cursor loop control
I Formatting values

Chapter é6: Embedded QUEL for BASIC 6—41

Sample Applications

no_rows = 0

emps_term = 0 ! Initialize how many

!
!Note the use of the Ingres function to find out who was hired

Isince 1985.

|
#Ht range of e is employee
declare cursor empcsr for
#Ht retrieve (e.name, e.age, e.idno, e.hired, e.salary,
res =

int4(interval("days", e.hired - date("@1-jan-1985"))))

where e.dept = dept_name
#Ht for direct update of (name, salary)

open cursor empcsr

while (no_rows = 0)

retrieve cursor empcsr
(erec::ename, erec::age, erec::idno,
#it erec::hired, erec::salary, erec::hired_since_85)

inquire_equel (no_rows = ENDQUERY)
if (no_rows = 0) then

I Terminate if new employee
if (erec::hired_since_85 > 0) then
delete cursor empcsr
title = "Terminated:
description = 'Reason: Since 85.°
emps_term = emps_term + 1

B

! Reduce salary if not nearly retired
else
if (erec::salary > MIN_EMP_SALARY) then

if (erec::age < NEARLY_RETIRED) then

replace cursor empcsr
#it (salary = salary * SALARY_REDUC)
title = ’Reduction: ’
description = ’'Reason: Salary.’
else

! Do not reduce salary
title = ’No Changes:

description = ’'Reason: Retiring.’
end if

! Else leave employee alone
else

title = ’No Changes:

description = ’'Reason: Salary.’
end if

end if

! Was employee’s department dissolved ?
if (deleted dept = 1) then

append to toberesolved (e.all)
#it where e.idno = erec::idno
delete cursor empcsr

end if

! Log the employee’s information
print >’ + title;

6-42 Embedded QUEL Companion Guide

Sample Applications

print str$(erec::idno);
print *, ’ + trm$(erec::ename) + ’, ’;

print str$(erec::age) + °, ’;
print using ’$$##H#H# . ##°, erec::salary;

print ’; ’ + description
end if ! If a row was retrieved
next ! Continue with cursor loop
close cursor empcsr
end sub ! Process_Employees

|
! Function: Close_Down

I Purpose: If an error occurs during the execution of an

! EQUEL statement this error handler is called.

! Errors are printed and the current database session
! is terminated. Any open transactions are implicitly
! closed.

! Parameters:

! ingerr - Integer containing Ingres error number.

|

60 ## function integer Close_Down (integer ingerr)

declare string err_text
#t inquire_ingres (err_text = ERRORTEXT)
#H exit

print ’Closing down because of database error:
print err_text
stop I Exit BASIC
Close_Down = ingerr
end function ! Close_Down

The Employee Query Interactive Forms Application
This EQUEL/FORMS application uses a form in query mode to view a subset of
the Employee table in the Personnel database. An Ingres query qualification is

built at runtime using values entered in fields of the form “empform.”

The objects used in this application are:

Object Description

personnel The program’s database environment.

employee A table in the database, with six columns:

name (c20)
age (i1)

idno (i4)

hired (date)
dept (c10)
salary (money)

Chapter 6: Embedded QUEL for BASIC 6-43

Sample Applications

Object Description

empform A VIFRED form with fields corresponding in hame and
type to the columns in the Employee database table. The
Name and Idno fields are used to build the query and are
the only updatable fields. “"Empform” is a compiled form.

The application is driven by a display statement that allows the runtime user
to enter values in the two fields that build the query. The Build_Query and
Exec_Query procedures make up the core of the query that is run as a result.
Note the way the values of the query operators determine the logic used to
build the where clause in Build_Query. The retrieve statement encloses a
submenu block that allows the user to step through the results of the query.

No updates are performed on the values retrieved, but any particular
employee screen may be saved in a log file through the printscreen
statement.

The following create statement describes the format of the Employee
database table:

create employee

(name = 20, ! Employee name

#H age =1il, ! Employee age

#Ht idno = 1i4, ! Unique employee id

#t hired = date, ! Date of hire

#Ht dept = clo, ! Employee department
salary = money) ! Annual salary

10 ## declare ingres
#Ht external integer empform

! Program: Employee_Query

! Initialize global WHERE clause qualification buffer

! to be an Ingres default qualification that is always true.
common(globs) string where_clause = 100

where_clause = ’1=1’

forms
message "Accessing Employee Query Application .
ingres personnel

range of e is employee

addform empform

display #empform query

initialize

#Ht activate menuitem "Reset"
{

clear field all
}

activate menuitem "Query"
#Ht

I Verify validity of data
validate

6-44 Embedded QUEL Companion Guide

Sample Applications

100

110

#i#

#i#
##

##

##

##

}

call Build_Query
call Exec_Query

activate menuitem "LastQuery"

{
}

call Exec_Query

activate menuitem "End", frskey3

{
}

fina

lize

breakdisplay

clear screen

endf
exit

end

orms

! main program

Procedure: Build_Query
Build an Ingres query from the values in the
"name" and "idno" fields in "empform".

Purpose:

Parameters

None

sub Build_Query

! Global WHERE clause qualification buffer
common(globs) string where_clause = 100

declare string ename, integer eidno

! Query operator table that maps integer values to
! string query operators.

dim string operators(6)

mat read operators

data

=g u, " uy ne=t o s="

| Operators corresponding to the two fields,
! that index into the "operators" table.
declare integer opername, operidno

getform #empform

(ename = name, opername
eidno = idno, operidno

getoper (name),
getoper (idno))

! Fill in the WHERE clause
if (opername = 0% and operidno = 0%) then

else

! Default qualification
where_clause = ’1=1’

if (opername = 0% and operidno <> 0%) then

else

! Query on the "idno" field
where_clause = ’e.idno’ + &
operators(operidno) + str$(eidno)

if (opername <> 0% and operidno = 0%) then

! Query on the "name" field
where_clause = ’e.name’ + &

Chapter 6: Embedded QUEL for BASIC 6-45

Sample Applications

operators(opername) + &
"W 4 ename + M

else ! (opername <> 0% and operidno <> 0%)

! Query on both fields

where_clause = ’e.name’ + &
operators(opername) + &
"’ + ename + " and &
+ ’e.idno’ + &

operators(operidno) + &
str$(eidno)

end if
end if
end if

end sub ! Build_Query

I Subroutine: Exec_Query

! Purpose: Given a query buffer, defining a WHERE clause
! issue a RETRIEVE to allow the runtime use to
! browse the employees found with the given

! qualification.

! Parameters:

! None

200 ## sub Exec_Query

! Global WHERE clause qualification buffer

#Ht common(globs) string where_clause = 100

declare string ename, ! Employee data
#H word eage,

#Ht integer eidno,

#i string ehired,

#Ht string edept,

#Ht real esalary

declare byte rows ! Were rows found
rows = 0%

! Issue query using WHERE clause

#i# retrieve (
ename = e.name, eage = e.age,
#it eidno = e.idno, ehired = e.hired,
edept = e.dept, esalary = e.salary)
#Ht where where_clause
{
rows = 1%
! Put values up and display them
#it putform #empform (
name = ename, age = eage,
#i idno = eidno, hired = ehired,
dept = edept, salary = esalary)
#Ht redisplay
#it submenu
activate menuitem "Next" , frskey4
#H {
! Do nothing, and continue with the
! RETRIEVE loop. The last one will
! drop out.
#Ht }
#it activate menuitem "Save" , frskey8

6-46 Embedded QUEL Companion Guide

Sample Applications

#t {
| Save screen data in log file
printscreen (file = "query.log")
! Drop through to next employee
#it }
activate menuitem "End" , frskey3
#it {
! Terminate the RETRIEVE loop
#it endretrieve
#Ht }
#it }
if (rows = 0%) then
#Ht message "No rows found for this query"
else
#it clear field all
message "No more rows. Reset for next query"
end if
#Ht sleep 2
end sub I Exec_Query

The Table Editor Table Field Application

This EQUEL/FORMS application uses a table field to edit the Person table in the
Personnel database. It allows the user to update a person’s values, remove the
person, or add new persons. Various table field utilities are provided with the
application to demonstrate their use and their interaction with an Ingres

database.

The objects used in this application are:

Object

Description

personnel

The program’s database environment.

person

A table in the database, with three columns:

name (c20)
age (i2)
number (i4)

Number is unique.

personfrm

The VIFRED form with a single table field.

persontbl

A table field in the form, with two columns: name (c20)
age (i4)

When initialized, the table field includes the hidden
number (i4) column.

Chapter é6: Embedded QUEL for BASIC 6-47

Sample Applications

At the start of the application, a retrieve statement is issued to load the table
field with data from the Person table. Once the table field has been loaded, the
user can browse and edit the displayed values. Entries can be added, updated
or deleted. When finished, the values are unloaded from the table field, and, in
a multi-query transaction, the user’s updates are transferred back into the
Person table.

The following create statement describes the format of the Person database

table:

10 ##

#i

#i#

##
##

##

##
#it

create person

(name = 20, ! Person name
age =12, I Age
number = 1i4) ! Unique id number

declare ingres

I Person information corresponds
declare string pname,

word p_age,

integer pnumber,

integer persmaxid

field row states

byte constant ROW_UNDEF = 0
byte constant ROW_NEW = 1
byte constant ROW_UNCHANGE=
byte constant ROW_CHANGE =

to "person" table

! Full name

I Age

! Unique person number

I Maximum person id number
! Table
declare
declare
declare
declare

Empty or undefined row
Appended by user

Prog loaded,not updated
Prog loaded and updated

2
3
4

declare byte constant ROW_DELETE Deleted by program

! Table field entry information

declare integer state, ! State of data set row
recnum, ! Record number
lastrow ! Last row in table field

! Utility buffers

declare string search, ! Name to find in loop
msgbuf, I Message buffer
password, ! Password buffer
respbuf ! Response buffer

! Error handling variables for database updates

declare integer upd_err, ! Updates error
upd_rows ! Number of rows updated

declare byte upd_commit ! Commit updates

declare byte save_changes ! (1 = true, 0 = false)

I Start up Ingre and the Ingre/Forms system

! We assume no Ingres errors will happen during screen updating.

ingres "personnel"

forms

Verify that the user can edit the "person" table
prompt noecho ("Password for table editor: ", password)
if (password <> "MASTER_OF_ALL") then
message "No permission for task. Exiting .
endforms
exit
goto endprog

end if

message "Initializing Person Form .
forminit personfrm

! Initialize "persontbl" table field with a data set in
! FILL mode so that the runtime user can append rows.

6-48

Embedded QUEL Companion Guide

Sample Applications

I To keep track of events occurring to original rows that will
! be loaded into the table field, hide the unique person number.

inittable personfrm persontbl fill (number = integer)
! Load the information from the "person" table into the
! person variables. Also save away the maximum person id number.

message "Loading Person Information . . ."
range of p is person

! Fetch data into person record, and load table field
retrieve (pname = p.name, p_age = p.age, pnumber = p.number)
{
loadtable personfrm persontbl
(name = pname, age = p_age, number = pnumber)
#H)

! Fetch the maximum person id number for later use.
! PERFORMANCE NOTE: max() will do a sequential scan of table.

retrieve (persmaxid = max(p.number))
! Display the form and allow runtime editing

display personfrm update
initialize

! Provide a menu, as well as the system FRS key to scroll
| to both extremes of the table field. Note that a comment
! between DISPLAY loop components MUST be marked with a ##.

activate menuitem "Top" ,frskey5

#H{

scroll personfrm persontbl TO 1 ! Backward
#H)

activate menuitem "Bottom" , frskey6

#H

scroll personfrm persontbl to end ! Forward
#H)

activate menuitem "Remove"

{
! Remove the person in the row the user’s cursor
! is on. If there are no persons, exit operation
! with message. Note that this check cannot

! really happen as there is always at least one
! UNDEFINED row in FILL mode.

inquire_frs table personfrm

(lastrow = lastrow(persontbl))
if (lastrow = 0%) then
message "Nobody to Remove"
#i sleep 2
#t resume field persontbl
end if
#Ht deleterow personfrm persontbl ! Recorded for later
#}
activate menuitem "Find" , frskey7
#H{

! Scroll user to the requested table field entry.
! Prompt the user for a name, and if one is typed
! in loop through the data set searching for it.

Chapter é: Embedded QUEL for BASIC 6-49

Sample Applications

##

##

prompt ("Name of person: ", search)
if (len(search) = 0%) then
resume field persontbl
end if
unloadtable personfrm persontbl
(pname = name, recnum = _record,
state = _state)
{
! Do not compare with deleted rows
if (state <> ROW_DELETE and pname = search) then
scroll personfrm persontbl to recnum
resume field persontbl
end if
}
! Fell out of loop without finding name. Issue error.
msgbuf = "Person "’ + search + &
"" not found in table [HIT RETURN] ’
prompt noecho (msgbuf, respbuf)
}
activate menuitem "Save", frskey8
{
validate field persontbl
save_changes = 1
breakdisplay
}
activate menuitem "Quit", frskey2
{
save_changes = 0
breakdisplay
}
finalize
if (save_changes = 0%) then
endforms
exit
goto endprog
end if
! Exit person table editor and unload the table field.
! If any updates, deletions or additions were made,
! duplicate these changes in the source table.
! If the user added new people we must assign a unique
! person id before returning it to the database table.
! To do this, we increment the previously saved
! maximum id number with each APPEND.
message "Exiting Person Application . . ."
! Do all the updates in a transaction (for simplicity,
! this transaction does not restart on DEADLOCK error: 4700)
begin transaction
upd_commit = 1%
! Handle errors in the UNLOADTABLE loop, as we want to
! cleanly exit the loop, after cleaning up the transaction.
unloadtable personfrm persontbl
(pname = name, p_age = age,
pnumber = number, state = _state)
{

select state

6-50 Embedded QUEL Companion Guide

Sample Applications

##

##

##

#i#

#i#

#it

##

#it

##

#i

##
#it

##

case = ROW_NEW

! Filled by user. Insert with new unique id

persmaxid = persmaxid + 1%
repeat append to person

(name = @pname,

age = @p_age,

number = @persmaxid) ;

case = ROW_CHANGE

I Updated by user. Reflect in table

repeat replace p

(name = @pname, age = @p_age)
where p.number = @pnumber

case = ROW_DELETE

|
!
!
I at runtime.

repeat delete p where p.number =

case else
! Else UNDEFINED or UNCHANGED
! No updates required.
end select

Handle error conditions -

Deleted by user, so delete from table.
Note that only original rows are saved
by the program, and not rows appended

@pnumber

|

! If an error occurred, then abort the transaction.
I If a no rows were updated then inform user, and
|
;

! prompt for continuation.

nquire_equel (upd_err = errorno, upd_rows = rowcount)

if (upd_err > 0%) then ! Abort on error
upd_commit = 0%
message "Aborting updates . . ."

if (respbuf = "Y" or respbuf = "y") then

abort
endloop
else
if (upd_rows = 0%) then ! May want to stop
msgbuf = ’Person "’ + pname + &
*" not updated. Abort all updates?’
prompt noecho (msgbuf, respbuf)
upd_commit = 0%
abort
endloop
end if
end if
end if

}

if (upd_commit) then
end transaction ! Commit the updates
end if

endforms ! Terminate the Forms and Ingres
exit

endprog:
end

Chapter é: Embedded QUEL for BASIC 6-51

Sample Applications

The Professor-Student Mixed Form Application

This EQUEL/FORMS application lets the user browse and update information
about graduate students who report to a specific professor. The program is
structured in a master/detail fashion, with the professor being the master
entry, and the students the detail entries. The application uses two forms—one
to contain general professor information and another for detailed student

information.

The objects used in this application are:

Object Description
personnel The program’s database environment.
professor A database table with two columns:
pname (c25)
pdept (c10)
See its create statement below for a full description.
student A database table with seven columns:
sname (c25)
sage (il1)
sbdate (c25)
sgpa (f4)
sidno (il1)
scomment (text(200))
advisor (c25)
See the create statement below for a full description. The
sadvisor column is the join field with the pname column in
the Professor table.
masterfrm The main form has the Pname and Pdept fields, which
correspond to the information in the Professor table, and
table field studenttbl. The Pdept field is display-only.
“Masterfrm” is a compiled form.
studenttbl A table field in “masterfrm” with the sname and sage
columns. When initialized, it also has five more hidden
columns corresponding to information in the Student
table.
studentfrm The detail form, with seven fields, which correspond to

information in the Student table. Only the Sgpa,
Scomment and Sadvisor fields are updatable. All other
fields are display-only. “Studentfrm” is a compiled form.

6-52

Embedded QUEL Companion Guide

Sample Applications

Object Description

grad A global structure, whose members correspond in name
and type to the columns of the Student database table,
the “studentfrm” form and the studenttbl table field.

The program uses the "masterfrm” as the general-level master entry, in which
data can only be retrieved and browsed, and the “studentfrm” as the detailed
screen, in which specific student information can be updated.

The runtime user enters a name in the Pname (professor name) field and then
selects the Students menu operation. The operation fills the displayed and
hidden columns of the Studenttbl table field with detailed information of the
students reporting to the named professor.

The user may then browse the table field (in read mode), which displays only
the names and ages of the students. More information about a specific student
may be requested by selecting the Zoom menu operation. This operation
displays the form “studentfrm.” The fields of “studentfrm” are filled with values
stored in the hidden columns of “studenttbl.”

The user can make changes to the Sgpa, Scomment and Sadvisor fields. If
validated, these changes are written back to the database table (based on the
unique student id), and to the table field’s data set. This process can be
repeated for different professor names.

The following two create statements describe the Professor and Student
database tables:

create student Graduate student table

|

(sname = c25, ! Name
#H sage = il, I Age
#Ht sbdate = c25, ! Birth date
#t sgpa = 4, ! Grade point average
#Ht sidno = i4, ! Unique student number
##H scomment = text(200), ! General comments
#Ht sadvisor = c25) ! Advisor’s name

Professor table
Professor’s name
Department

create professor
#t (pname = c25,
##t pdept = cl10)

10 ## declare ingres

! Master and student compiled forms (imported objects)
external integer masterfrm, studentfrm

! Program: Prof_Student
! Purpose: Main body of "Professor Student" Master-Detail application.

! Graduate student record maps to "student" database table
record Student_Rec

#H# string sname = 25
#i# byte sage

#it string sbdate = 15
#i# real sgpa

#it integer sidno

Chapter é: Embedded QUEL for BASIC 6-53

Sample Applications

#i# string scomment 200
#it string sadvisor
end record

declare Student_Rec grad

! Professor record maps to "professor" database table
record Prof_Rec

#t string pname
#t string pdept
end record

declare Prof_Rec prof

25
10

I Useful forms runtime information

declare integer lastrow, ! Lastrow in table field

#it istable ! Is a table field?

I Utility buffers

declare string msgbuf, ! Message buffer

#it respbuf, ! Response buffer

H# old_advisor ! 01d advisor before ZOOM

! Function: Student_Info_Changed

! Purpose: Allow the user to zoom into the details of a

! selected student. Some of the data can be

! updated by the user. If any updates were made,

! then reflect these back into the database table.
! The procedure returns 1 if any changes were made.
! Parameters:

! None

! Returns:

! 1/0 - Changes were made to the database.

! Sets the global "grad" record with the new data.
def integer Student_Info_Changed

declare integer changed, ! Changes made to the form?
i valid_advisor ! Valid advisor name?

! Display the detailed student information
display #studentfrm fill
initialize

#it (sname = grad::sname,

sage = grad::sage,

#it sbdate = grad::sbdate,

sgpa = grad::sgpa,

#it sidno = grad::sidno,

#i# scomment = grad::scomment,
#it sadvisor = grad::sadvisor)

activate menuitem "Write"
{

If changes were made then update the
! database table. Only bother with the
! fields that are not read-only.

inquire_frs form (changed = change)

if (changed = 1) then

validate

#i# message "Writing to database. . ."
#i# getform

#it (grad::sgpa = sgpa,

#i# grad: :scomment = scomment,

#it grad::sadvisor = sadvisor)

6-54 Embedded QUEL Companion Guide

Sample Applications

! Enforce integrity of professor name
valid_advisor = 0

#it retrieve
#H# (valid_advisor = 1)
#it where p.pname = grad::sadvisor

if (valid_advisor = 0) then

#t message "Not a valid advisor name"
#it sleep 2
H# resume field sadvisor
else
##H replace s
#it (sgpa = grad::sgpa,
##H comment = grad::scomment,
#it sadvisor = grad::sadvisor)
#t where s.sidno = grad::sidno
#it breakdisplay
end if
end if
) ! "Write"
activate menuitem "End" , frskey3
{
! Quit without submitting changes
changed = 0
##t breakdisplay
o} ! "Quit"

finalize
Student_Info_Changed = changed
end def ! Student_Info_Changed;

I Start up Ingres and the Forms system

forms

message "Initializing Student Administrator . "
ingres personnel

range of p is professor, s is student

addform masterfrm
addform studentfrm

! Initialize "studenttbl" with a data set in READ mode.
! Declare hidden columns for all the extra fields that
! the program will display when more information is

! requested about a student. Columns "sname" and "sage"
! are displayed, all other columns are hidden, to be

! used in the student information form.

inittable #masterfrm studenttbl read

H#Ht (sbdate = char(25),

#H# sgpa = float,

#it sidno = integer,

#t scomment = char(200),
H#Ht sadvisor = char(20))

! Drive the application, by running "masterfrm", and
! allowing the user to "zoom" into a selected student.
display #masterfrm update

initialize

##

#i# message "Enter an Advisor name . "
#H# sleep 2

)

Chapter é: Embedded QUEL for BASIC 6-55

Sample Applications

activate menuitem "Students", field "pname"

{
! Load the students of the specified professor
#it getform (prof::pname = pname)
! If no professor name is given then resume
if (len(edit$(prof::pname,8)) = 0) then
resume field pname
end if
! Verify that the professor exists. If not print
! print a message, and continue. We assume that
! each professor has exactly one department.
prof::pdept = space$(10)
#it retrieve (prof::pdept = p.pdept)
#H where p.pname = prof::pname
! If no professor report error
if (len(edit$(prof::pdept,8)) = 0) then
msgbuf = "No professor with name "’ &
+ trm$(prof::pname) + °" [RETURN]’
##t prompt noecho (msgbuf, respbuf)
#it clear field all
##t resume field pname
end if
! Fill the department field and load students
##t message "Retrieving Student Information . . ."
##t putform (pdept = prof::pdept)
#it clear field studenttbl
##t redisplay ! Refresh for query
! With the advisor name, load into the "studenttbl" table field all
! the graduate students who report to the professor with that name.
I Columns "sname" and "sage" will be displayed,
! and all other columns will be hidden.
#it retrieve
(grad::sname = s.sname,
#it grad::sage = s.sage,
grad::sbdate = s.sbhdate,
#it grad::sgpa = s.sgpa,
#H# grad::sidno = s.sidno,
#it grad: :scomment = s.scomment,
#H# grad::sadvisor = s.sadvisor)
#it where s.sadvisor = prof::pname
{
#it loadtable #masterfrm studenttbl
(sname = grad::sname,
#it sage = grad::sage,
#i# sbdate = grad::sbdate,
#it sgpa = grad::sgpa,
sidno = grad::sidno,
#it comment = grad::scomment,
advisor = grad::sadvisor)
}
#it resume field studenttbl

} ! "Students"

activate menuitem "Zoom"
#t {
! Confirm that user 1is on "studenttbl", and that

6-56 Embedded QUEL Companion Guide

Sample Applications

#it
#it
##
#it

#it

! the table field is not empty. Collect data from
! the row and zoom for browsing and updating.

inquire_frs field #masterfrm (istable = table)
if (istable = @) then
prompt noecho
("Select from the student table [RETURN]",
respbuf)
resume field studenttbl
end if

inquire_frs table #masterfrm (lastrow = lastrow)
if (lastrow = 0) then
prompt noecho
("There are no students [RETURN]",
respbuf)
resume field pname
end if

! Collect all data on student into graduate record
getrow #masterfrm studenttbl

(grad::sname = sname,

grad::sage = sage,

grad::sbdate = shdate,

grad::sgpa = sgpa,

grad::sidno = sidno,

grad: :scomment = scomment,

grad::sadvisor = sadvisor)

Display "studentfrm", and if any changes were made
make the updates to the local table field row.
Only make updates to the columns corresponding to
writable fields in "studentfrm". If the student
changed advisors, then delete this row from the
display.

old_advisor = grad::sadvisor
if (Student_Info_Changed = 1) then
if not (old_advisor = grad::sadvisor) then

deleterow #masterfrm studenttbl
else
putrow #masterfrm studenttbl
(sgpa = grad::sgpa,
scomment = grad::scomment,
sadvisor = grad::sadvisor)
end if
end if
} I "Zoom"
activate menuitem "Quit" , frskey2
{
breakdisplay
} I "Exit"
finalize
clear screen
endforms
exit
end I main

Chapter é6: Embedded QUEL for BASIC 6-57

Chapter 7: Embedded QUEL for Pascal

This chapter describes the use of EQUEL with the Pascal programming
language.

Note: EQUEL/Pascal is supported in the VMS operating environment only.

EQUEL Statement Syntax for Pascal

Margin

Terminator

This section describes the language-specific ground rules for embedding QUEL
database and forms statements in a Pascal program. An EQUEL statement has
the following general syntax:

EQUEL_statement

For information on QUEL statements, see the QUEL Reference Guide. For
information on EQUEL/FORMS statements, see the Forms-based Application
Development Tools User Guide.

The following sections describe how to use the various syntactical elements of
EQUEL statements as implemented in Pascal.

There are no specified margins for EQUEL statements in Pascal. Always place
the two number signs (##) in the first two positions of the line. The rest of
the statement can begin anywhere else on the line.

No statement terminator is required for EQUEL/Pascal statements. It is
conventional not to use a statement terminator in EQUEL statements, although
the Pascal statement terminator, the semicolon (\;), is allowed at the end of
EQUEL statements. The preprocessor ignores it.

For example, the following two statements are equivalent:

#Ht sleep 1
and
sleep 1;

Chapter 7: Embedded QUEL for Pascal 7-1

EQUEL Statement Syntax for Pascal

The terminating semicolon may be convenient when entering code directly
from the terminal using the -s flag. For information on using the -s flag to test
the syntax of a particular EQUEL statement, see Precompiling, Compiling, and
Linking an EQUEL Program in this chapter.

EQUEL statements that are made up of a few other statements, such as a
display loop, only allow a semicolon after the last statement. For example:

display empform { no semicolon here }

dinitialize { no semicolon here }

activate menuitem ’'Help’ { no semicolon here }

begin

message 'No help yet’; { semicolon allowed }

sleep 2; { semicolon allowed }

end

finalize; { Semicolon allowed on last statement }

Variable declarations made visible to EQUEL observe the normal Pascal
declaration syntax. Thus, variable declarations must be terminated in the
normal way for Pascal, with a semicolon.

Line Continuation

There are no special line-continuation rules for EQUEL/Pascal. EQUEL
statements can be broken between words and continued on any number of
subsequent lines. An exception to this rule is that you cannot continue a
statement between two words that are reserved when they appear together,
such as declare cursor. For a list of double keywords, see the QUEL
Reference Guide. Each continuation line must be started with ## characters.
Blank lines are permitted between continuation lines.

If you want to continue a character-string constant across two lines, end the
first line with a backslash character (\), and continue the string at the
beginning of the next line. In this case, do not place ## characters at the
beginning of the continuation lines.

For examples of string continuation, see String Literals in this chapter.

Comments

Two kinds of comments can appear in EQUEL programs, EQUEL comments and
host language comments. Host language comments are passed through by the
preprocessor. EQUEL comments are not. Therefore, source code comments
you want to retain in preprocessor output should be entered as host language
comments.

7-2 Embedded QUEL Companion Guide

EQUEL Statement Syntax for Pascal

EQUEL comments appear on lines with two number signs (##) as the first two
characters. Pascal comments are on lines without ##. In EQUEL/Pascal
programs, comments can be delimited by:

/* and */
{and }
(* and *)

The following restrictions apply to any comments in an EQUEL/Pascal program,
whether intended as EQUEL comments or Pascal comments:

n

If anything other than ## appears in the first two positions of a line of
EQUEL source, the precompiler treats the line as host code and ignores it.
The only exception to this is a string-continuation line. (For examples, see

String Literals in this chapter.)

Comments cannot appear in string constants. In this context, the intended
comment will be interpreted as part of the string constant.

In general, EQUEL comments are allowed in EQUEL statements wherever a
space may legally occur. However, no comments can appear between two
words that are reserved when they appear together, such as declare
cursor. See the list of EQUEL reserved words in the QUEL Reference
Guide.

The following additional restrictions apply to Pascal comments, only:

n

Pascal comments cannot appear between component lines of EQUEL block-
type statements. These include retrieve, initialize, activate,
unloadtable, formdata, and tabledata, all of which have optional
accompanying blocks delimited by open and close braces. Pascal comment
lines must not appear between the statement and its block-opening
delimiter.

For example:

retrieve (ename = employee.name)
{ illegal to put a host comment here! }
begin
{ a host comment is perfectly legal here }
writeln (’employee name ’, ename);
end

Pascal comments cannot appear between the components of compound
statements, in particular the display statement. It is illegal for a Pascal
comment to appear between any two adjacent components of the display
statement, including display itself and its accompanying initialize,
activate, and finalize statements.

For example:

display empform
{ illegal to put a host comment here! }
initialize (empname = ’Frisco McMullen’)
/* host comment illegal here! }
activate menuitem ’clear’
begin

Chapter 7: Embedded QUEL for Pascal 7-3

EQUEL Statement Syntax for Pascal

String Literals

{ host comment here is fine }
#Ht clear field all
end

{ host comment illegal here! }
activate menuitem ’end’
begin
breakdisplay
end

{ host comment illegal here! }
finalize

The QUEL Reference Guide specifies these restrictions on a statement-by-
statement basis.

n On the other hand, EQUEL comments are legal in the locations described in
the previous paragraph, as well as wherever a host comment is legal. For
example:

retrieve (ename = employee.name)
{ this is an equel comment, legal in this location

and it can span multiple lines }
begin

writeln (’employee name ’, ename);
end

The EQUEL/Pascal comment can be either of the two standard Pascal
comments, delimited by (* and *) or { and }, or the QUEL comment, delimited
by /* and */. For example:

message 'No permission ...’ (* No user access *)

sleep 2 { Let the user read it }

message ’'See the DBA for help’
/* Only the DBA can help */

You cannot mix delimiters: a comment starting with /* must end with */ and
not with *) or }.

Other EQUEL language preprocessors use braces ({ and }) as EQUEL block
delimiters in statements such as retrieve and unloadtable. If you are
converting EQUEL statements from another language into Pascal, be sure to
change those block delimiters to the EQUEL/Pascal block delimiters, begin and
end, so that the preprocessor does not treat them as Pascal comment
delimiters.

You can use either double quotes or single quotes to delimit string literals in
EQUEL/Pascal, as long as the same delimiter is used at the beginning and the
end of any one string literal.

Whichever quote mark you use, you can embed that quote mark as part of the
literal itself by doubling it. For example:

append comments (fieldl = ’a single’’ quote’)

7-4 Embedded QUEL Companion Guide

Pascal Variables and Data Types

Block Delimiters

To include the backslash character as part of a string, precede it with another
backslash.

When continuing an EQUEL statement to another line in the middle of a string
literal, use a backslash immediately prior to the end of the first line. In this
case, the backslash and the following newline character are ignored by the
preprocessor, so that the following line can continue both the string and any
further components of the EQUEL statement. Any leading spaces on the next
line are considered part of the string. For example, the following are legal
EQUEL statements:
message ’'Please correct errors found in updating\

the database tables.’

append to employee (empname = "Freddie \
Mac", empnum = 222)

You cannot use the Pascal concatenation operator (+) to continue string
literals over lines. If the preprocessor needs to continue a string literal on the
next line, it will generate the correct Pascal code.

EQUEL block delimiters mark the beginning and end of the embedded block-
structured statements. The retrieve loop and the forms statements display,
unloadtable, submenu, formdata, and tabledata are examples of block-
structured statements. The block delimiters to such statements are the
keywords begin and end. For example:
retrieve (ename = emp.name)
begin

writeln(ename) ;
end

Other EQUEL languages use braces to delimit the blocks. The EQUEL/Pascal
preprocessor treats those delimiters as comment delimiters.

Pascal Variables and Data Types

This section describes how to declare and use Pascal program variables in
EQUEL.

Variable and Type Declarations

The following sections describe Pascal variable and type declarations in EQUEL.

Chapter 7: Embedded QUEL for Pascal 7-5

Pascal Variables and Data Types

Declaring the EQUEL Runtime Routines

The EQUEL generated runtime routines can be declared to the compiler in
either of two ways: with the EQUEL declare statement or with the Pascal
inherit attribute, which accesses an environment file containing the routines.
The runtime routines must be declared by one of these methods at the
program level prior to any EQUEL statements.

The Declare Statement

The Inherit Attribute

EQUEL/Pascal is delivered with a Pascal include file that contains external
procedure and function declarations for the EQUEL runtime library. The EQUEL
declare statement generates a Pascal %include statement for this file in
order to make these declarations visible to the Pascal compiler. This statement
must appear in the program’s declaration section.

program something;

var

#i#t row : integer;

#Ht name : packed array[l..20] of Char;
declare {Include EQUEL procedures}

begin

end.

EQUEL/Pascal also comes with a Pascal environment file that has the same
declarations in the compiled include file. By means of the VMS Pascal inherit
attribute, you can use this environment file instead of issuing a declare
statement. Compilation should be slightly faster with this technique. The
syntax for inheriting the EQUEL runtime routines is:

[inherit("EQUEL’)] program_heading;
[inherit("EQUEL’)] program test(input, output);

var
msg : varying[100] of Char;
begin
forms
msg := 'No DECLARE statement was issued’;
message msg
end.

For information on installing the environment file, see Precompiling, Compiling,

and Linking an EQUEL Program in this chapter.

7-6 Embedded QUEL Companion Guide

Pascal Variables and Data Types

Declaring Types and Variables to EQUEL

EQUEL statements use Pascal variables to transfer data from a database or a
form into the program and conversely. You must declare Pascal variables to
EQUEL before using them in EQUEL statements. Pascal variables are declared
to EQUEL by preceding the declaration with the ## mark. The declaration
must be in a position syntactically correct for the Pascal language. Similarly,
constants, types, and formal parameters used in EQUEL must be made known
to EQUEL by preceding their declarations with the ## mark.

In general, each declared object can be referred to in the scope of the
enclosing compilation unit. An object name cannot be redeclared in the same
compilation unit scope. For details on the scope of types and variables, see
Compilation Units and the Scope of Objects in this chapter.

Reserved Words in Declarations and Program Units

All EQUEL keywords are reserved; therefore, you cannot declare variables
with the same names as those keywords. In addition, the following Pascal
words, used in declarations and program units, are reserved and cannot be
used elsewhere, except in quoted string literals:

array case const declare do
extern external file fortran forward
function label module otherwise packed
procedure program record type var
varying

The word module cannot be used as an identifier in EQUEL/Pascal, although it
is allowed in Pascal. The EQUEL preprocessor does not distinguish between
uppercase and lower case in keywords.

Data Types and Constants

The EQUEL/Pascal preprocessor accepts the data types in the following table.
The types are mapped to their corresponding Ingres type categories. For exact
type mapping, see Data Type Conversion in this chapter.

Pascal Data Types and Corresponding Ingres Types

Pascal Type Ingres Type
boolean integer
integer integer

Chapter 7: Embedded QUEL for Pascal 7-7

Pascal Variables and Data Types

Pascal Constants and Corresponding Ingres Types

Pascal Type Ingres Type
unsigned integer

real float

single float

double float

char character
indicator indicator

Your program should not redefine any of the above types.

The following table maps the Pascal constants to their corresponding Ingres

type categories.

Pascal Constant

Ingres Type

maxint integer
true integer
false integer

The Integer Data Types

Pascal Integer Types

Several Pascal types are considered as integer types by the preprocessor as

shown in the following table.

Description Example
integer Integer
4-byte subrange of integer 1..127

2-byte subrange of integer

[word] 0..32767

1-byte subrange of integer

[byte] 0..63

enumeration

(red, blue, green)

boolean

Boolean

7-8 Embedded QUEL Companion Guide

Pascal Variables and Data Types

All integer types are accepted by the preprocessor. Even though some integer
types have Pascal constraints, such as the subranges and enumerations,
EQUEL does not check these constraints, either during preprocessing or at
runtime.

The type boolean is handled as a special type of integer. EQUEL treats the
boolean type as an enumerated type and generates the correct code in order
to use this type to interact with an Ingres integer. Enumerated types are
described in more detail later.

The Indicator Type

An indicator type is a 2-byte integer type. There are three possible ways to
use these in an application:

n In a statement that retrieves data from Ingres, you can use an indicator
type to determine if its associated host variable was assigned a null.

n In a statement that sets data to Ingres, you can use an indicator type to
assign a null to the database column, form field, or table field column.

n In a statement that retrieves character data from Ingres, you can use the
indicator type as a check that the associated host variable is large enough
to hold the full length of the returned character string.

EQUEL/Pascal predefines the 2-byte integer type indicator. As with other
types, you should not redefine the indicator type. This type definition is in the
file that is included when preprocessing the EQUEL declare or inherit
directives. The type declaration syntax is:

type
Indicator = [word] -32768..32767;

Because the type definition is in the referenced include file, you can only
declare variables of type indicator after you have issued declare or inherit.
This declaration does not preclude you from declaring indicator types of other
2-byte integer types.

The Floating-point Data Types

There are three floating-point types that are accepted by the preprocessor.
The types single and real are the 4-byte floating-point types. The type
double is the 8-byte floating-point type. Note that, although the preprocessor
accepts quadruple data type declarations, it does not accept references to
variables of type quadruple. (For more information on record types, see the
Record Type Definition in this chapter.)

Chapter 7: Embedded QUEL for Pascal 7-9

Pascal Variables and Data Types

The Double Storage Format

EQUEL requires that the storage representation for double variables be
d_float, because the EQUEL runtime system uses that format for floating-
point conversions. If your EQUEL program has double variables that interact
with the EQUEL runtime system, you must make sure they are stored in the
d_float format. Because the default Pascal format is d_float, your program
will automatically use the correct storage representation unless you use the
g_floating compiler option. Any module compiled with this option must not
use double variables or float literals to interact with Ingres. Float literals
are treated as double precision numbers by Ingres. Note that EQUEL
recognizes only single, and not double or quadruple, exponential notation
for real constants. Thus, any real constants passed to Ingres are always single
precision and are unaffected by the g_floating compiler option.

The Character Data Types

Three Pascal data types are compatible with Ingres string objects: char,
packed array of char, and varying of char. Note that literal string constants
are of type packed array of char. EQUEL allows only regular Pascal string
literals: sequences of printing characters enclosed in single quotes. The VMS
Pascal extensions of parenthesized string constructors and of nonprinting
characters represented by their ASCII values in parentheses are not allowed.

The char data type does have some restrictions. Because of the mechanism
used to pass string-valued arguments to the EQUEL runtime library, you
cannot use a member of a packed array of char or varying of char to
interact with Ingres. Also plain array of char (for example, not packed or
varying) is not compatible with Ingres string objects; an element of such an
array, however, is a char and as such is compatible.

For example, given the following legal declarations:

type

Alpha = ’a’..’z’; {1 character}

#i# Packed_6 = packed array[l..6] of Char;
{6-char string}

Vary_6 = varying[6] of Alpha; {6-char string}
#Ht Array_6 = array[l..6] of Char;

##t {1-dimensional array}

var

letter: Alpha; {1 character}

#it p_str_arr: array[l..5] of Packed_6;
{Array of strings}

#it chr_arr: array[l..6] of Char;

{1-dimensional array}

#it two_arr: array[l..5] of Array_6;

{2-dimensional array of char}

v_string : Vary_6; {String}

these usages are legal:

message letter {a char is a string}

7-10

Embedded QUEL Companion Guide

Pascal Variables and Data Types

Declaration Syntax

Attributes

message chr_arr[3] {a char is a string}
message two_arr[2][5] {a char is a string}
message v_string {a varying array is a string}
message p_str_arr[2] {a packed array is a string}

but these usages are illegal:

message chr_arr {an array of chars is not a string}
message v_string[2] {cannot index a varying array}
message p_str_arr[2][3] {Cannot index a packed array}

The following sections describe the declaration syntax.

In type definitions, EQUEL allows VMS Pascal attributes both at the beginning
of the definition and just before the type name. The only attributes the
preprocessor recognizes in type definitions are byte, word, and long. Any
optional storage unit constant “(n)” appearing with the attribute is ignored by
the preprocessor. The preprocessor also ignores all other attributes, although
it allows them.

The following example shows how to use the byte attribute in order to convert
a 4-byte integer subrange into a 1-byte variable.

#Ht var
v il : [byte] -128..127;

Note that Pascal requires that a size attribute be at least as large as the size of
its type. Therefore, the following declaration would be illegal, because 400 will
not fit into one byte:

var
v_il : [byte] 0..400;

EQUEL/Pascal does not allow explicit attribute size conflicts, as, for example:

type

il = [byte] -128..127;
var

#i#t v_i2 : [word] i1l;

In addition to appearing in type definitions, attributes can also precede a
compilation unit, where they are ignored by the preprocessor, with the
exception of the attribute “[inherit('EQUEL")]”, which has the same effect as an
EQUEL declare statement in the declaration section of the compilation unit.
The inherit attribute should appear alone, because the preprocessor discards
any attributes that appear with it. For more information using this attribute in
EQUEL, see The Inherit Attribute in this chapter.

Chapter 7: Embedded QUEL for Pascal 7-11

Pascal Variables and Data Types

Label Declarations

EQUEL/Pascal no longer requires the use of EQUEL label declarations, required
in earlier versions. As a better alternative, you should place the EQUEL ##
mark before the header of each EQUEL compilation unit (program, module,
procedure, or function) and the opening begin and closing end statements.
If you do not either use the label declaration or mark the compilation unit
header, you will get an error message if the preprocessor needs to generate
labels, and the resulting code will not compile. For more information on
compilation unit syntax, see Compilation Units and the Scope of Objects in this
chapter.

The Syntax of Label Declarations

Constant Declarations

Earlier versions of EQUEL/Pascal allowed the declaration of program-declared
labels without a terminating semicolon:

label
start, stop

EQUEL/Pascal still allows this syntax but generates a warning. You can avoid
the warning by terminating the label with a semicolon:

label
start, stop;

You need not use a semicolon if you do not declare any labels yourself:
label

The syntax for a constant declaration is:

const constant_name = constant_expr;
{constant_name = constant_expr;}

where a constant_expr is one of the following:

[+]-] constant_number
[+]-] constant_name
string_constant

Constants can be used to set Ingres values but cannot be assigned values
from Ingres.

Syntax Notes:

1. A constant_name must be a legal Pascal identifier beginning with an
alphabetic character or an underscore.

7-12 Embedded QUEL Companion Guide

Pascal Variables and Data Types

2. A constant_number can be either an integer or real number. It cannot be a
numeric expression.

3. EQUEL/Pascal recognizes only single, and not double or
quadruple, exponential notation for constants of type real.

4. The type of a constant_name is determined from the type of its
constant_expr.

5. If a constant_name used as a constant_expr is preceded by a '+’ or -,
it must be numeric.

6. EQUEL/Pascal does not support the declaration of arbitrary
constant expressions.

const

min_sal = 15000.00; {Real}
##t pi = 3.14159; {Real}
max_emps = +99; {Integer}
max_credit = 100000.00; {Real}
max_debt = -max_credit; {Real}

yes =y’ {Char}

Type Declarations
An EQUEL/Pascal type declaration has the following syntax:

type type_name = type_definition;
{type_name = type_definition;}

where type_definition is any in the following table.

Type Definitions

Syntax Category

type_name renaming

(enum_identifier {,enum_identifier}) enumeration

[+\-] constant .. [+|-]constant numeric or character subrange
Atype_name pointer

varying [upper_bound] of varying length string
char_type_name

[packed] array [dimensions] of array

type_definition

record field_list end record

file of type_definition file

set of type_definition set

Chapter 7: Embedded QUEL for Pascal 7-13

Pascal Variables and Data Types

Each of these type definitions is discussed in its own section below. All type
names must be legal Pascal identifiers beginning with an alphabetic character
or an underscore.

Renaming Type Definition

The declaration for the renaming of a type uses the following syntax:
type new_type_name = type_name;

Syntax Notes:

1. The type_name must be either an EQUEL/Pascal type or a type name
already declared to EQUEL such as integer or real.

2. The new_type_name cannot be integer, real, or char, or any other type
listed at the beginning of this section.

type
Naturallnt = Integer; {A "natural" sized integer}

Enumeration Type Definition

The declaration for an enumeration type definition has the following syntax:
type type_name = (enum_identifier {, enum_identifier});

Syntax Notes:

1. An enum_identifier must be a legal Pascal identifier beginning with an
alphabetic character or underscore.

2. The enum_identifiers are treated as 4-byte integer constant identifiers.

3. The type_name maps to a 1-byte integer if there are fewer than 257
enumerated identifiers. Otherwise, it maps to a 2-byte integer.

4. When an enumerated identifier is used as a value in an EQUEL statement,
only the ordinal position of the identifier in the original enumerated list is
important. In assigning a value to a variable of enumeration type, EQUEL
passes the variable by address and assumes that the value is a legal one
for the variable.

The following is an example of an enumeration type definition:

type
#it Table_Field_States =
(UNDEFINED, NEWROW, UNCHANGED, CHANGED, DELETED);

7-14

Embedded QUEL Companion Guide

Pascal Variables and Data Types

Subrange Type Definition

The syntax for declaring a subrange type definition is either:

or

type type_name

type type_name

Syntax Notes:

1.

Pointer Type Definition

[+|-linteger_const .. [+]|-]integer_const;

string_const .. string_const;

An integer_const may be either an integer literal or a named integer

constant.

A string_const must be either a string literal or the name of a string
constant. Although the preprocessor accepts any length string constant,
the compiler requires the constant to be a single character.

type

#Ht Alpha = ’a’ .. 'z’;

#i# Months =1 .. 12;

MinMax = -Value .. Value; {"Value" is an
#t integer constant}

#it Updated_States = CHANGED .. DELETED;

The declaration for a pointer type definition has the following syntax:

type pointer_name = ~type_name;

Syntax Note:

The type_name can be either a previously defined type or a type not yet
defined. If the type has not yet been defined, the pointer type definition is a
forward pointer definition. In that case, EQUEL requires that the type_name be
defined before a variable of type pointer_name is used in an EQUEL statement.

The following example illustrates the use of the pointer type definition:

type
EmpPtr =“EmpRecord;
{Forward pointer declaration}
EmpRecord = record
e_name : varying[40] of Char;
e_salary : Real;
e_id : Integer;
e_next : EmpPtr;
end;

var
empnode = EmpPtr;

retrieve (empnode” .e_ename = emp.name,

Chapter 7: Embedded QUEL for Pascal 7-15

Pascal Variables and Data Types

##
#i

empnode”.e_salary = emp.salary,
empnode”.e_id = emp.id)

Varying Length String Type Definition

Array Type Definition

The declaration for a varying length string type definition has the following
syntax:

type varying_type _name = varying [upper_bound] of

char_type_name;

Syntax Notes:

1.

The upper_bound of a varying length string specification is not parsed by
the EQUEL preprocessor. Consequently, an illegal upper bound (such as a
non-numeric expression) will be accepted by the preprocessor but will later
cause Pascal compiler errors. For example, both of the following type
declarations are accepted, even though only the first is legal in Pascal:

type
#Ht String20 = varying[20] of Char;
What = varying[’upperbound’] of Char;

EQUEL/Pascal treats a variable of type varying of char as a string, not an
array.

type

Pname = varying[100] of Char;
var

user_name : Pname;

append to person (name = user_name)

The declaration for an array type definition has the following syntax:

type type_name = [packed] array [dimensions] of type_definition;

Syntax Notes:

1.

The dimensions of an array specification are not parsed by the EQUEL
preprocessor. Consequently, an illegal dimension (such as a non-numeric
expression) will be accepted by the preprocessor but will later cause Pascal
compiler errors. For example, both of the following type declarations are
accepted, even though only the first is legal in Pascal:

type
Square = array[l..10, 1..10] of Integer;
#Ht What = array[’dimensions’] of Real;

The preprocessor only verifies that an array variable is followed by
brackets when used (except packed array of char—see below).

7-16

Embedded QUEL Companion Guide

Pascal Variables and Data Types

2. EQUEL/Pascal treats a variable of type packed array of char as a string,
not an array. Therefore, it is not followed by brackets when used.

3. Components of a packed array cannot be passed to the EQUEL runtime
routines. Therefore, you should not declare packed arrays to EQUEL,
except for packed arrays of char, which are passed as a whole (for
example, as character strings).

The following example illustrates the use of the array type definition:

type

#Ht Ssid = packed array [1..9] of Char;
var

#it user_ssid : Ssid;

append to person (ssno = user_ssid)

Record Type Definition
The declaration for a record type definition has the following syntax:

type record_type name =
record
field_list [;]
end;

where field_list is:

field_element {; field_element}

[case [tag_name :] type_name of
[case_element {; case_element}]
[otherwise (field_list)]]

where field_element is:

field_name {, field_name} : type_definition
and case_element is:

case_label {, case_label} : (field_list)

Syntax Notes:

1. All clauses of a record component have the same rules and restrictions as
they do in a regular type declaration. For example, as with regular
declarations, the preprocessor does not check dimensions for correctness.

2. In the case list, the case_labels may be numbers or names. The names
need not be known to EQUEL.

Chapter 7: Embedded QUEL for Pascal 7-17

Pascal Variables and Data Types

Pascal host code is not a legal EQUEL record component. Consequently,
all components of the record must be preceded by the ## mark. To
minimize the effect of this restriction, the types quadruple and set of are
allowed as legal types in an EQUEL record declaration. It is, however, an
error to use variables of those types in EQUEL statements.

Components of a packed record cannot be passed to the EQUEL runtime
routines. Therefore, you should not declare packed records to EQUEL.

The following example illustrates the use of a record type definition:

File Type Definition

AddressRec = record
street: packed array[l..30] of Char;
town: packed array[l..10] of Char;
zip: 1 .. 9999;

end;

EmployeeRec = record
name: packed array[l..20] of Char;
age: [byte] 0 .. 128;
salary: Real;
address: AddressRec;
checked: Boolean;
scale: Quadruple;
{Requires ##, but cannot be used by EQUEL}
end;

The declaration for a file type definition has the following syntax:

type type_name = file of type_definition;

Syntax Notes:

1.

A variable of type file can only be used with EQUEL through the file buffer.
A file buffer for a given type_definition is referenced in the same manner
as a pointer to the same type.

Components of a packed file cannot be passed to the EQUEL runtime
routines. Therefore, you should not declare packed files to EQUEL.

The following example illustrates the use of a file type definition:

##
#i
##

##

#i#
##

##

var
myfile : file of Integer;
begin
get (myfile);
append to emp (floor = myfile’);
retrieve (myfile”™ = emp.floor)
begin
put (myfile);
end;

7-18

Embedded QUEL Companion Guide

Pascal Variables and Data Types

Set Type Definition

Variable Declarations

The declaration for a set type definition has the following syntax:
type type_name = set of type_definition;

Syntax Note:

1. Although set definitions are accepted by the preprocessor, no set variables
can be used in EQUEL statements. As discussed in the section above on
record declarations, set declarations are accepted only because all record
components must be declared to EQUEL.

An EQUEL/Pascal variable declaration has the following syntax:

var var_name {, var_name} : type_definition [:= initial_value];
{var_name {, var_name} : type_definition [:=
initial_value];}

Syntax Notes:
1. See the previous section for information on the type_definition.

2. The initial_value is not parsed by the preprocessor. Consequently,
any initial value is accepted, even if it later causes a Pascal compiler error.
Furthermore, the preprocessor accepts an initial value with any variable
declaration, even where not allowed by the compiler. For example, both of
the following initializations are accepted, even though only the first is legal

in Pascal:

var

rowcount: Integer :=1;

msgbuf: packed array[l..100] of Char := 2;

The following is an example of a variable declaration:

var

rows, records: 0..500 := 0;

was_error: Boolean;

#i# msgbuf: varying[100] of Char := " ’;
#Ht operators: array[l..6] of packed array[l..2] :=
#Ht =, =) vk s 0 k=)
#Ht employees : array[l..100] of EmployeeRec;

emp_ptr : “EmployeeRec;

#it work_days : (MON, TUE, WED, THU, FRI);
day_name : varying[8] of Char;

#it random_ints file of Integer;

#Ht null_ind: Indicator;

Chapter 7: Embedded QUEL for Pascal 7-19

Pascal Variables and Data Types

Formal Parameter Declarations
Most VMS Pascal formal parameter declarations are acceptable to EQUEL.
Declared formal parameters are treated as local variables by EQUEL. Note that
host code is not allowed in an EQUEL formal parameter section; therefore, all
formal parameters to a procedure or function known to EQUEL must be
preceded by the ## mark.
An EQUEL/Pascal formal parameter declaration has the following syntax:
formal_param_section {; formal_param_section?
where formal_param_section is:
formal_var | formal_routine [:= [%Yomechanism] default_value]
A formal_var has the syntax:
[var | ®omechanism] identifier {, identifier} : typename_or_schema
where typename_or_schema is one of the following:
type_name
varying [upper_bound_identifier] of type_name
packed array [schema_dimensions] of typename_or_schema
array [schema_dimensions {; schema_dimensions}] of

typename_or_schema

where schema_dimensions is:

lower_bound_identifier .. upper_bound_identifier :
scalar_type_name

A formal_routine has the syntax:
[“omechanism)] routine_header
where routine_header is one of the following:
procedure proc_name ([formal_parameter_declaration])
function func_name ([formal_parameter_declaration]) :
return_type_name

In a subprogram declaration, the syntax of a formal parameter declaration is:

procedure proc_name (formal_parameter_declaration);

7-20 Embedded QUEL Companion Guide

Pascal Variables and Data Types

or:

function func_name (formal_parameter_declaration) :
return_type_name;

Syntax Notes:

1. The EQUEL preprocessor ignores the names of procedures and functions
used as formal parameters, but checks their formal parameters for
legality.

2. The default_value is not parsed by the preprocessor. Consequently, any
default value is accepted, even if it later causes a Pascal compiler error.
For example, both of the following parameter default values are accepted,
even though only the first is legal in Pascal:

procedure Load_Table

#it (clear_it: Boolean := TRUE;
#i# var is_error: Boolean := ’FALSE’);

3. Any mechanism specification is ignored.

4. The scope of the parameters is the procedure or function in which they are
declared. For detailed scope information, see Compilation Units and the
Scope of Objects in this chapter.

The following example contains formal parameter declarations:

function GetEquelError(buf:varying[ub] of Char)
. Boolean;

procedure HandleError(procedure errorHandle(err : Integer);
#i# var errNum : Integer);

function DoAppend(emp_id, floor : Integer;
name : varying[ub] of Char;
salary : Real) : Integer;

Assembling and Declaring External Compiled Forms

You can pre-compile your forms in the Visual Forms Editor (VIFRED). This
saves the time otherwise required at runtime to extract the form’s definition
from the database forms catalogs. When you compile a form in VIFRED,
VIFRED creates a file in your directory describing the form in the VAX-11
MACRO language. VIFRED prompts you for the name of the file with the
MACRO description. After the file is created, use the following command to
assemble it into a linkable object module with the VMS command:

macro filename

Chapter 7: Embedded QUEL for Pascal 7-21

Pascal Variables and Data Types

Concluding Example

This command produces an object file containing a global symbol with the
same name as your form. Before the EQUEL/FORMS statement addform can
refer to this global object, it must be declared in an EQUEL declaration section.
The Pascal compiler requires that this be an external declaration. The syntax
for a compiled form declaration is:

var
formname: [external] Integer;

Syntax Notes:

1. The formname is the actual name of the form. VIFRED gives this name to
the address of the external object. The formname is also used as the title
of the form in other EQUEL/FORMS statements. In all statements other
than addform that use formname as an argument you must differentiate
the name with a # sign.

2. The external attribute associates the object with the external form
definition.

The example below shows a typical form declaration and illustrates the
difference between using the form’s object definition and the form’s name.

var
empform: [external] Integer;
addform empform {the global object}

display #empform {the name of the form}

The following example demonstrates some simple EQUEL/Pascal declarations:
program Concluding_Example(input, output);

const

#Ht MAX_PERSONS = 1000;

type

#i# ShortShortInteger = [byte] -128 .. 127;

#Ht ShortInteger = [word] -32768 .. 32767;
{same as Indicator type}

#Ht String9 = packed array[l..9] of Char;

Stringl2 = packed array[l..12] of Char;

#Ht String20 = packed array[l..20] of Char;

String30 = packed array[l..30] of Char;

#Ht VarString = varying[40] of Char;

record Datatypes_Rec = {Structure of all types}

d_byte : ShortShortInteger;

#it d_word : Shortlnteger;

d_long : Integer;

#it d_single : Real;

d_double : Double;

#Ht d_string : String20;

end;

7-22 Embedded QUEL Companion Guide

Pascal Variables and Data Types

record Persontype_Rec = {Variant record}

#Ht age : ShortShortInteger;

flags : Integer;

case married : Boolean of

TRUE : (spouse_name : String30);

#Ht FALSE : (dog_name : Stringl2);

#i# end;

var

empform, deptform : [external] Integer; {Compiled forms}

dbname : String9;

formname, tablename, columnname : Stringl2;
salary : Real;

d_rec : Datatypes_Rec;

person : Persontype_Rec;

person_store : array[l..MAX_PERSONS]

of Persontype Rec;

person_null: array[l..10] of Indicator;

Dbegin
dbname := ’personnel’;
end. {Concluding_Example}

Compilation Units and the Scope of Objects

Following Pascal conventions, all objects in an EQUEL/Pascal program are local
to the scope in which they are declared and are visible in any nested scopes
unless hidden by an intermediate redeclaration.

Constant, label, type, and variable names are local to the closest enclosing
Pascal compilation unit. EQUEL/Pascal compilation units include programs,
modules, procedures, and functions. The objects visible in their scopes include
objects that are visible in the parent scope, formal parameters (if applicable),
and local declarations. As in Pascal, once the preprocessor has exited the
scope, the variables are no longer visible and cannot be referenced.

Note that compilation units that use EQUEL statements must be declared to
EQUEL. This is accomplished by preceding the unit’s header and its begin and
end statements with the ## mark.

EQUEL does not support Pascal inherited environments, except for the special
case of the EQUEL environment. For more information, see The Inherit
Attribute in this chapter.

Predeclared Identifiers

EQUEL predeclares all the standard Pascal types and constants, which are
listed in the section titled “"Data Types and Constants,” in a scope enclosing
the entire program. You should not redefine any of these identifiers because
the runtime library expects the standard definitions.

Chapter 7: Embedded QUEL for Pascal 7-23

Pascal Variables and Data Types

Compilation Unit Syntax

The following sections describe the compilation unit syntax.

The Program Unit
The syntax for an EQUEL/Pascal program definition is:

program program_name [(identifier {, identifier})];
[declarations]
begin
[statements]
end.

where declarations can include any of the following:

label /abel_declarations
const constant_declarations
type type_declarations

var variable_declarations
procedures

functions

host_code

For a detailed description of the various types of declarations, see Declaration
Syntax in this chapter.

Syntax Notes:

1. The program_name and the identifiers are not processed by EQUEL.

2. The various declaration sections can appear in any order and can be
repeated.

3. The label declaration section is allowed only for compatibility with earlier
versions of Ingres.

The Module Unit
The syntax for an EQUEL/Pascal module definition is:
module module_name [(identifier {, identifier})];
[declarations]
end.
where declarations are the same as those for program units (see above). For a

detailed description of the various types of declarations, see Declaration
Syntax in this chapter.

7-24 Embedded QUEL Companion Guide

Pascal Variables and Data Types

The Procedure

The Function

Syntax Notes:

1. The module_name and the identifiers are not processed by EQUEL.

2. The various declaration sections can appear in any order and can be

repeated.

module ExternalVars;

var

#i# CurFormName, CurFieldName, CurColName :
#Ht varying[12] of Char;

CurTableRow : Integer;

end.

The syntax for an EQUEL/Pascal procedure is:

procedure procedure_name [(formal_parameters)];
[declarations]

begin
[statements]

end;

Syntax Notes:

1. The procedure_name is not processed by EQUEL.

2. Formal parameters and variables declared in a procedure are visible to the

procedure and to any nested blocks.

3. For a description of formal parameters and their syntax, see Formal

Parameter Declarations in this chapter.

procedure AppendRow(name : varying[ub] of Char;
age : Integer;
#i# salary : Real);

begin

##t APPEND TO emp (#name = name, #age = age,
salary = salary)

end;

The syntax for an EQUEL/Pascal function is:

function function_name [(formal_parameters)] : return_type name

[declarations]
begin

[statements]
end;

Chapter 7: Embedded QUEL for Pascal

7-25

Pascal Variables and Data Types

The Scope of Objects

Syntax Notes:
1. The function_name is not processed by EQUEL.

2. Formal parameters and variables declared in a function are visible to the
function and to any nested blocks.

3. For a description of formal parameters and their syntax, see Formal
Parameter Declarations in this chapter.

4. EQUEL does not allow function calls to replace variables in executable
statements. Therefore, EQUEL need not know the return_type_name.

The following is an example of a function:

function WasError(errorBuf : varying[ub] of

#it Char) : Boolean;
const
#Ht EquelNoError = 0;
var
errNum : Integer;
begin
#it INQUIRE_EQUEL (errNum = error)
if errNum = EquelNoError then
begin
errorBuf =’ ’;
WasError := FALSE;
end else
begin

SetErrorBuf(errNum, errorBuf);
WasError := TRUE;
end;
end;

As mentioned above, constants, variables and types are visible in the block in

which they are declared. Objects can be redeclared only in a nested scope,
such as in a nested procedure, but not in the same scope.

Note that you can declare record components with the same name if they are
in different record types. The following example declares two records, each of

which has the components “firstname” and “lastname”:

type

#Ht Child = record

#i# firstname: varying[20] of Char;
#Ht lastname: varying[20] of Char;
age: Integer;

end;

Mother = record

#Ht firstname: varying[20] of Char;
#i# lastname: varying[20] of Char;
#it num_child: 1..10;

#i# children: array[l..10] of Child;
end;

7-26 Embedded QUEL Companion Guide

Pascal Variables and Data Types

The following example shows several different declarations of the variable
“a_var,” illustrating how the same name can be redeclared in nested and
parallel scopes, each time referring to a different type:

procedure Proc_A(a_var: type_1);

procedure Proc_B;
var
#it a_var: type_2;
begin

{A_var is of type_2}
#i# end;
#it function Func_C(a_var: type_3) : Integer;
begin

{Var is of type_3}
end;
begin

{A_var is of type_1}
end;

Special care should be taken when using variables with a declare cursor
statement. The scope of the variables used in such a statement must also be
valid in the scope of the open statement for that same cursor. The
preprocessor actually generates the code for the declare at the point that the
open is issued, and at that time, evaluates any associated variables.

For example, in the following program fragment, even though the variable
“number” is valid to the preprocessor at the point of the declare cursor
statement, it is not a valid variable name for the Pascal compiler at the point
that the open is issued.

procedure Init_Cursor; { Example contains an error }

var
number: Integer;
begin
{ Cursor declaration includes reference to "number" }
#it declare cursor cl for
retrieve (employee.name, employee.age)
#H where employee.num = number

end; { Init_Cursor }

procedure Process_Cursor;
var
ename: varying[l5] of char;
eage: Integer;
begin
{ Opening the cursor evaluates invalid "number" }
open cursor cl

retrieve cursor cl (ename, eage)

end; { Process_Cursor }

Chapter 7: Embedded QUEL for Pascal 7-27

Pascal Variables and Data Types

Variable Usage

Simple Variables

Pascal variables declared to EQUEL can substitute for most elements of EQUEL
statements that are not keywords. Of course, the variable and its data type
must make sense in the context of the element. To use a Pascal variable in an
EQUEL statement, just use its name. To refer to an element, such as a
database column, with the same name as a variable, dereference the element
by using the EQUEL dereferencing indicator (#). As an example of variable
usage, the following retrieve statement uses the variables "namevar” and
“numvar” to receive data, and the variable “idnovar” as an expression in the
where clause:

retrieve (namevar = e.name, numvar = e.num)
#Ht where e.idno = idnovar;

You should not use the Pascal type-cast operator (::) in EQUEL statements.
The preprocessor ignores it and does not change the type of the variable.

If, in retrieving from Ingres into a program variable, no value is returned for
some reason (for example, no rows qualified in a query), the variable will not
be modified.

Various rules and restrictions apply to the use of Pascal variables in EQUEL
statements. The sections below describe the usage syntax of different
categories of variables and provide examples of such use.

A simple scalar-valued variable (integer, floating-point or character string) is
referred to by the syntax:

simplename

Syntax Notes:

1. If the variable is used to send data to Ingres, it can be any scalar-valued
variable, constant or enumerated literal.

2. If the variable is used to receive data from Ingres, it cannot be a constant
or an enumerated literal.

3. Packed or varying arrays of characters (for example, character
strings) are referenced as simple variables.

The following program fragment demonstrates a typical message-handling
routine that uses two scalar-valued variables, “buffer” and “seconds”:

var
#t buffer : packed array[l..80] of Char;
#Ht seconds : Integer;

7-28 Embedded QUEL Companion Guide

Pascal Variables and Data Types

message buffer
sleep seconds

A special case of a scalar type is the enumerated type. As mentioned in the
section describing declarations, EQUEL treats all enumerated literals and any
variables declared with an enumerated type as integers. When used in an
EQUEL statement, only the ordinal position of the value in relation to the
original enumerated list is relevant. When assigning into an enumerated
variable, EQUEL will pass the object by address and assume that the value
being assigned into the variable will not raise a runtime error. For example,
the following enumerated type declares the states of a table field row, and the
variable of that type will always receive one of those values:

type

#it Table_Field_States =

#Ht (UNDEFINED, NEWROW, UNCHANGED, CHANGED, DELETED);
var

tbstate: Table_Field_States;

#Ht ename: varying[20] of Char;

tbstate := undefined;

#H getrow empform employee (ename = name,
tbstate = _state)
case tbstate of
undefined:
deleted:

end;

Another example retrieves the value TRUE (an enumerated literal of type
boolean) into a variable when a database qualification is successful:

var
found: Boolean;
#Ht qual: varying[100] of Char;
found := FALSE;
#Ht retrieve (found = TRUE) WHERE qual
if not found then
begin
end;

Array Variables
An array variable is referred to by the syntax:

arrayname[subscript{,subscript}] {[subscript{,subscript}]}

Chapter 7: Embedded QUEL for Pascal 7-29

Pascal Variables and Data Types

Record Components

Syntax Notes:

1.

The variable must be subscripted, because only scalar-valued
elements (integers, floating-point and character strings) are legal EQUEL
values.

When the array is declared, the array bounds specification is not parsed by
the EQUEL preprocessor. Consequently, illegal bounds values will be
accepted. Also, when an array is referenced, the subscript is not parsed,
allowing illegal subscripts to be used. The preprocessor only confirms that
an array subscript is used for an array variable. You must make sure that
the subscript is legal and that the correct number of indices is used.

An array of characters is not a string unless it is packed or varying.

A packed or varying array of characters is considered a simple variable,
not an array variable, in its usage. It therefore cannot be subscripted in
order to reference a single character. For example, assuming the following
variable declaration and subsequent assignment:

var
#Ht abc : packed array[l..3] of Char

éBé := ’abc’;
you could not reference
abc[1]
to access the character “a”. To perform such a task, you should declare

the variable as a plain (not packed or varying) array, as, for
example:

var
abc : array[l..3] of Char

The syntax EQUEL uses to refer to a record component is:

record_name{” | [subscript]}.component{” |

[subscript] }{.component{ " | [subscript]}}

that is, the name of the record, followed by any number of pointer dereference
operators or array subscripts, followed by one or more field names (with any
number of pointer dereference operators or array subscripts attached).

7-30 Embedded QUEL Companion Guide

Pascal Variables and Data Types

Syntax Notes:

1. The last record component denoted by the above reference must be a
scalar value (integer, floating-point or character string). There can be any
combination of arrays and records, but the last object referenced must be
a scalar value. Thus, the following references are all legal:

{Assume correct declarations for "employee",}
{ "person" and other records.}
employee.sal {Component of a record}

person[3].name {Component of an element of an array}
recl.meml.mem2.age {Deeply nested component}

2. All record components must be fully qualified when referenced. You can
shorten the qualification by using the Pascal with statement (see below).

3. Any array subscripts or pointer references referred to in the record
reference, and not at the very end of the reference, are not checked by
the preprocessor. Consequently, both of the following references are
accepted, even though one must be wrong, depending on whether
“person” is an array:

person[l].age
person.age

The following example uses the array of records “emprec” to load values into
the table field “emptable” in form “empform.”

type

EmployeeRec = record

#Ht ename: packed array[l..20] of Char;
#i# eage: [word] -32768 .. 32767;

#Ht eidno: Integer;

ehired: packed array[l..25] of Char;
#Ht edept: packed array[l..10] of Char;
esalary: Real;

##H end;

var

#Ht emprec: array[l..100] of EmployeeRec;
i: Integer;

for i := 1 to 100 do

begin
loadtable empform emptable
(name = emprec[i].ename, age = emprec[i].eage,
idno = emprec[i].eidno, hired = emprec[i].ehired,
dept = emprec[i].edept, salary = emprec[i].esalary)
end;

Chapter 7: Embedded QUEL for Pascal 7-31

Pascal Variables and Data Types

The With Statement

You can use the with statement to shorten a reference to a record. The syntax
of the with statement is:

with record_reference do
begin

statements
end [;]

where record_reference is
record_name{” | [subscript]}{.component{” | [subscript]}}

that is, the name of a record, followed by any number of pointer dereference
operators or array subscripts, followed by zero or more field nhames (with any
number of pointer dereference operators or array subscripts attached).

Following the rules of Pascal,

with rec_a, rec_b do
begin

e

end;

is exactly equivalent to
with rec_a do

begin

with rec_b do
#Ht begin

#t -

##H end;

end;

Syntax Notes:

1. The with statement, along with its begin and end clauses, must be
preceded by the EQUEL ## mark in order to be used with EQUEL
statements.

2. The record_reference must denote a record variable, not a scalar variable.

3. Note that the with statement opens the scope of the record so that the
member names can stand alone. This creates the possibility that a
member name could conflict with the name of an Ingres object. For
example, assume that there is an Ingres form called “rname”:

var

rec : record

#Ht rname : packed array[l..12] of char;
#i#t ri : integer;

#H end;
with rec do

begin
forminit rname

7-32 Embedded QUEL Companion Guide

Pascal Variables and Data Types

Pointer Variables

sleep ri;
end;

In the forminit statement, “rname” refers to “rec.rname,” not to the form
called “rname,” even though outside the scope of the with statement it
would unambiguously refer to the form. To refer to the form, you must
either dereference the name:

forminit #rname

or enclose it in quotes:

forminit ’rname’

The following example uses the array of records “emprec,” declared in
previous example , to load values into the emptable table field in form
“empform.”

for i :=1 to 100 do

begin
#i#t with emprec[i] do
#Ht begin
loadtable empform emptable
(name = ename, age = eage,
idno = eidno, hired = ehired,
#H dept = edept, salary = esalary)
#i# end;
end;

A pointer variable references an object in the same way as in Pascal—the
name of the pointer is followed by a caret ():

pointer_name”n

Any further referencing required to fully qualify an object, such as a member
of a pointed-to record, follows the usual Pascal syntax.

Syntax Notes:

1. The final object denoted by the pointer reference must be a scalar
value (integer, floating-point or character string). There can be any
combination of arrays, records or pointer variables, as long as the last
object referenced has a scalar value.

2. The pointer reference is also used with file type variables.

Chapter 7: Embedded QUEL for Pascal 7-33

Pascal Variables and Data Types

Indicator Variables

In the following example, a pointer to an employee record is used to load a
linked list of values into the Employee database table:

type

#Ht EmpLink = "“EmployeeRec;

EmployeeRec = record

#Ht ename: packed array [1..20] of Char;
eage: Integer;

#Ht eidno: Integer;

#i# enext: EmpLink;

##H end;

#i# elist: EmpLink;

while (elist <> nil) do

begin
repeat append to employee
(name = @elist”™.ename, age = @elist”".eage,
#Ht idno = @elist”™.eidno)
elist := elist”™.enext;
end;

The syntax for referring to an indicator variable is the same as for a simple
variable, except that an indicator variable is always associated with a host
variable:

host_variable:indicator_variable
Syntax Note:

The indicator variable can be a simple variable, an array element or a record
component that yields a 2-byte integer. The type indicator has already been
declared by the preprocessor. For example:

var
#it ind_var, ind_arr[5] : Indicator;

var_l:ind_var
var_2:ind_arr[2]

Data Type Conversion

A Pascal variable declaration must be compatible with the Ingres value it
represents. Numeric Ingres values can be set by and retrieved into numeric
variables, and Ingres character values can be set by and retrieved into
character string variables.

Data type conversion occurs automatically for different numeric types, such as
from floating-point Ingres database column values into integer Pascal
variables, and for character strings, such as from varying-length Ingres
character fields into fixed-length Pascal character string variables.

7-34 Embedded QUEL Companion Guide

Pascal Variables and Data Types

Ingres does not automatically convert between numeric and character types.
You must use the Ingres type conversion operators, the Ingres ascii function,
or a Pascal conversion procedure for this purpose.

The following table shows the default type compatibility for each Ingres data
type. Note that some Pascal types do not match exactly and, consequently,
may go through some runtime conversion.

Ingres and Pascal Data Type Compatibility

Ingres Type

Pascal Type

c(N), char(N)

packed array[1..N] of char

c(N), char(N)

varying[N] of char

text(N), varchar(N)

packed array[1..N] of char

text(N), varchar(N)

varying[N] of char

i1, integerl [byte] -128..127

i2, smallint [word] -32768..32767

i4, integer4 integer

f4, float4 real

f4, float4 single

f8, float8 double

date packed array[1..25] of char
money double

Runtime Numeric Type Conversion

The Ingres runtime system provides automatic data type conversion between
numeric-type values in the database and forms system and numeric Pascal
variables. The standard type conversion rules (according to standard VAX
rules) are followed. For example, if you assign a real variable to an integer-
valued field, the digits after the decimal point of the variable’s value are
truncated. Runtime errors are generated for overflow on conversion when
assigning Ingres numeric values into Pascal variables.

The Ingres money type is represented as an 8-byte floating-point value:

double.

Chapter 7: Embedded QUEL for Pascal 7-35

Pascal Variables and Data Types

Runtime Character Type Conversion

Automatic conversion occurs between Ingres character string values and
Pascal character string variables. There are four string-valued Ingres objects
that can interact with character string variables. They are Ingres names, such
as form and column names, database columns of type ¢, char, text or
varchar, and form fields of type character. Several considerations apply
when dealing with character string conversions, both to and from Ingres.

The conversion of Pascal character string variables used to represent Ingres
names is simple: trailing blanks are truncated from the variables, because the
blanks make no sense in that context. For example, the string literals
“empform” and “empform” refer to the same form.

The conversion of other Ingres objects is a bit more complicated. First, the
storage of character data in Ingres differs according to whether the medium of
storage is a database column of type c or character, a database column of
type text or varchar, or a character form field. Ingres pads columns of type
c or character with blanks to their declared length. Conversely, it does not
add blanks to the data in columns of type text or varchar, or in form fields.

Second, the storage of character data in Pascal differs according to whether
the character variable is of fixed or varying length. The Pascal convention is to
blank-pad fixed-length character strings, but not to pad varying-length
character strings. For example, the character string “abc” coming from an
Ingres object will be stored in a Pascal packed array[1..5] of char variable
as the string “abc ” followed by two blanks. However, the same string would
be stored in a varying[5] of char variable as “abc” without any trailing
blanks.

When retrieving character data from an Ingres database column or form field
into a Pascal variable, you should always ensure that the variable is at least as
long as the column or field, in order to avoid truncation of data.

Furthermore, take note of the following conventions:

n Data stored in a database column of type character is padded with blanks
to the length of the column. The variable receiving such data, be it of fixed
or varying length, will contain those blanks. Following Pascal rules, if a
fixed-length variable is longer than the database column, the data
retrieved into it is further padded with blanks to the length of the variable.
In the case of a varying-length variable, no further padding takes place. If
the variable is shorter than the database column, truncation of data
occurs.

n Data stored in a database column of type text or varchar is not padded
with blanks. If a fixed-length variable is longer than the data in the text or
varchar column, when retrieved, the data is padded with blanks to the
length of the variable. In the case of a varying-length variable, no padding
takes place. If the variable is shorter than the database column, truncation
of data occurs.

7-36

Embedded QUEL Companion Guide

Pascal Variables and Data Types

Data stored in a character form field contains no trailing blanks. If a
fixed-length variable is longer than the data in the field, when retrieved,
the data is padded with blanks to the length of the variable. In the case of
a varying-length variable, no padding takes place. If the variable is shorter
than the field, truncation of data occurs.

When inserting character data into an Ingres database column or form field
from a Pascal variable, note the following conventions:

n

When data is inserted from a Pascal variable into a database column of
type c or character and the column is longer than the variable, the
column is padded with blanks. If the column is shorter than the variable,
the data is truncated to the length of the column.

When data is inserted from a Pascal variable into a database column of
type text or varchar and the column is longer than the variable, no
padding of the column takes place. Furthermore, by default, all trailing
blanks in the data are truncated before the data is inserted into the text
column. For example, when a string “abc” stored in a Pascal packed
array[1..5] of char variable as “abc ”is inserted into the text or
varchar column, the two trailing blanks are removed and only the string
“abc” is stored in the database column. To retain such trailing blanks, you
can use the EQUEL notrim function. It has the following syntax:

notrim(stringvar)

where stringvar is a character string variable. An example demonstrating
this feature follows later. When used with repeat queries, the notrim
syntax is:

@notrim(stringvar)

If the text or varchar column is shorter than the variable, the data is
truncated to the length of the column.

When data is inserted from a Pascal variable into a character form field
and the field is longer than the variable, no padding of the field takes
place. In addition, all trailing blanks in the data are truncated before the
data is inserted into the field. If the field is shorter than the data (even
after all trailing blanks have been truncated), the data is truncated to the
length of the field.

When comparing character data in an Ingres database column with
character data in a Pascal variable, note the following convention:

When comparing data in ¢, character, or varchar database columns with
data in a character variable, all trailing blanks are ignored. Trailing blanks
are significant in text. Initial or embedded blanks are significant in
character, text, and varchar; they are ignored in c.

Chapter 7: Embedded QUEL for Pascal 7-37

Pascal Variables and Data Types

As described above, the conversion of character string data between Ingres
objects and Pascal variables often involves the trimming or padding of trailing
blanks, with resultant change to the data. If trailing blanks have significance in
your application, give careful consideration to the effect of any data
conversion. For information on the significance of blanks when comparing with
various Ingres character types, see the QUEL Reference Guide.

The Ingres date data type is represented as a 25-byte character string.

The program fragment in the following example demonstrates the notrim
function and the truncation rules explained above.

{
| Assume that a table called "textchar" has been created
| with the following CREATE statement:

|
| CREATE textchar

| (row = i4,

| data = text(10)) -- Note the text data type
}

var
row: Integer;
#Ht p_data: packed array[l..7] of Char;
v_data: varying[7] of Char;
p_data := ’abc ’; {Holds "abc "}
v_data := ’abc’; {Holds "abc"}

{The following APPEND adds the string "abc" (blanks truncated)}
append to textchar (#row = 1, #data = p_data)

{The following APPEND adds the string "abc" (never had blanks)}
append to textchar (#row = 2, #data = v_data)

{
| This statement adds the string "abc ", with 4 trailing
| blanks left intact by using the NOTRIM function.

}
append to textchar (#row = 3, #data = notrim(p_data))

{
| This RETRIEVE retrieves rows #1 and #2, because
| trailing blanks were suppressed when these rows were

| appended.
}
retrieve (row = textchar.#row)
#HHt where length (textchar.#data) = 3
Dbegin

writeln("row found = ’, row);
end;

{

| This RETRIEVE retrieves row #3, because the NOTRIM

| function left trailing blanks in the "data" variable
| in the last APPEND statement.

}

7-38

Embedded QUEL Companion Guide

Dynamically Built Param Statements

retrieve (row = textchar.#row)

#Ht where length (textchar.#data) =7
Dbegin

writeln('row found = ', row);
end;

Dynamically Built Param Statements

The param feature dynamically builds EQUEL statements. EQUEL/Pascal does
not currently support param versions of statements. Param statements are
supported in EQUEL/C and EQUEL/Fortran.

Runtime Error Processing

This section describes a user-defined EQUEL error handler.

Programming for Error Message Output

By default, all Ingres and forms system errors are returned to the EQUEL
program, and default error messages are printed on the standard output
device. As discussed in the QUEL Reference Guide, you can also detect the
occurrences of errors by means of the program using the inquire_ingres and
inquire_frs statements. Use the latter for checking errors after forms
statements. Use inquire_ingres for all other EQUEL statements.

This section discusses an additional technique that enables your program not
only to detect the occurrences of errors but also to suppress the printing of
default Ingres error messages if you choose. The inquire statements detect
errors but do not suppress the default messages.

This alternate technique entails creating an error-handling function in your
program and passing its address to the Ingres runtime routines. Then Ingres
will automatically invoke your error handler whenever an Ingres or a forms-
system error occurs. Your program error handler must be declared as follows:

[global] function funcname (ingerr:Integer):Integer;
begin

end;

This function must be passed to the EQUEL routine IIseterr() for runtime
bookkeeping using the statement:

IIseterr(%immed funcname);

Chapter 7: Embedded QUEL for Pascal 7-39

Precompiling, Compiling, and Linking an EQUEL Program

This forces all runtime Ingres errors through your function, passing the Ingres
error number as an argument. If you choose to handle the error locally and
suppress Ingres error message printing, the function should return 0;
otherwise the function should return the Ingres error number received.

Avoid issuing any EQUEL statements in a user-written error handler defined to
IIseterr, except for informative messages, such as message, prompt,
sleep, and clear screen, and messages that close down an application, such
as endforms and exit.

The following example demonstrates a typical use of an error function to warn
users of access to protected tables.

program ErrorHandling(input, output);

[global] function ErrorProc(ingerr: Integer) : Integer;
const
TBLPROT = 5003;

begin

if (ingerr = TBLPROT) then begin
writeln(’You are not authorized for this operation’);
ErrorProc := 0; { Suppress Ingres message }

end else begin

ErrorProc := ingerr; { Ingres will print message }
end;
end; { ErrorProc }
declare
begin
#t Ingres dbname

IIseterr(%immed ErrorProc);

end. { ErrorHandling}

Precompiling, Compiling, and Linking an EQUEL Program

This section describes the EQUEL preprocessor for Pascal and the steps
required to precompile, compile, and link an EQUEL program.

Generating an Executable Program

Once you have written your EQUEL program, it must be preprocessed to
convert the EQUEL statements into Pascal code. This section describes the use
of the EQUEL preprocessor. Additionally, it describes how to compile and link
the resulting code to obtain an executable file.

7-40 Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

The EQUEL Preprocessor Command

The Pascal preprocessor is invoked by the following command line:

eqp {flags} {filename?}

where flags are

Flag

Description

-d

Adds debugging information to the runtime database error
messages generated by EQUEL. The source file name, line
number, and the erroneous statement itself are printed with
the error message.

-f[filename]

Writes preprocessor output to the named file. If the -f flag is
specified without a filename, the output is sent to standard
output, one screen at a time. If the -f flag is omitted, output
is given the basename of the input file, suffixed “.pas”.

Writes preprocessor error messages to the preprocessor’s
listing file, as well as to the terminal. The listing file includes
preprocessor error messages and your source text in a file
named filename.lis, where filename is the name of the input
file.

Like =1, but the generated Pascal code also appears in the
listing file.

-n. ext

Specifies the extension used for filenames in ## include
and ## include inline statements in the source code. If -n is
omitted, include filenames in the source code must be given
the extension “.qp”.

-0

Directs the preprocessor not to generate output files for
include files.

This flag does not affect the translated include statements
in the main program. The preprocessor will generate a
default extension for the translated include files statements
unless you use the -o.ext flag.

-0. ext

Specifies the extension given by the preprocessor to both
the translated include statements in the main program and
the generated output files. If this flag is not provided, the
default extension is “.pas”.

If you use this flag in combination with the -o flag, then the
preprocessor generates the specified extension for the
translated include statements, but does not generate new
output files for the include statements.

Chapter 7: Embedded QUEL for Pascal 7-41

Precompiling, Compiling, and Linking an EQUEL Program

Flag Description

-S Reads input from standard input and generates Pascal code
to standard output. This is useful for testing statements you
are not familiar with. If the -l option is specified with this
flag, the listing file is called “stdin.lis”. Type Ctrl Z to
terminate the interactive session.

-w Prints warning messages.

-? Shows the available command line options for eqp.

The EQUEL/Pascal preprocessor assumes that input files are named with the
extension “.gqp”. This default can be overridden by specifying the file extension
of the input file(s) on the command line. The output of the preprocessor is a
file of generated Pascal statements with the same name and the extension

w "

.pas”.

If you enter the command without specifying any flags or a filename, Ingres
displays a list of flags available for the command.

The following table presents the options available with eqp.

Eqp Command Examples

The Pascal Compiler

Command Comment
eqp filel Preprocesses “filel.qp” to “filel.pas”
eqp -l file2.xp Preprocesses “file2.xp” to “file2.pas” and creates

listing “file2.lis"”

eqp -s Accepts input from standard input and writes
generated code to standard output

eqp -ffile4.out file4 Preprocesses “file4.qp” to “file4.out”

eqp Displays a list of flags available for this command.

As mentioned above, the preprocessor generates Pascal code. You should use
the VMS Pascal command to compile this code. Most of the Pascal command
line options can be used. You must not use the g_floating qualifier if real
variables in the file are interacting with Ingres floating-point objects. You
should also not use the old_version qualifier, because the preprocessor
generates code for Version 3. Note, too, that many of the statements that the
EQUEL/Pascal preprocessor generates are nonstandard extensions provided by
VAX/VMS. Consequently, you should not use the standard qualifier.

7-42 Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

The following example preprocesses and compiles the file “test1.” Note that
both the EQUEL/Pascal preprocessor and the Pascal compiler assume the
default extensions:

$ egp testl
$ Pascal/list testl

Installing the EQUEL/Pascal Environment File

As explained in The Inherit Attribute, EQUEL/Pascal programs can inherit the
EQUEL/Pascal declarations from an environment file, as an alternative to the
declare statement. If the program specifies this alternative, the preprocessor
will generate an “Inherit” attribute referencing this environment file. The file
is named “egenv.pen” and is located in the Ingres files directory, which, by
default, is “ii_system:[ingres.files]".

Before using the environment file, you should ensure that your System
Administrator has installed it, using the following sequence of operating
system commands:

$ set def ii_system:[ingres.files]

$ egp egenv

$ Pascal egenv

$ delete egenv.pas;*, egenv.obj;*

Note: Check the Readme file for any operating system specific information on
compiling and linking EQUEL/Pascal programs.

Linking an EQUEL Program

EQUEL programs require procedures from several VMS shared libraries in order
to run properly. Once you have preprocessed and compiled an EQUEL
program, you can link it. Assuming the object file for your program is called
“dbentry,” use the following link command:

$ link dbentry.obj,-
ii_system:[ingres.files]equel.opt/opt

It is recommended that you do not explicitly link in the libraries referenced in
the EQUEL.OPT file. The members of these libraries change with different
releases of Ingres. Consequently, you may be required to change your link
command files in order to link your EQUEL programs.

Assembling and Linking Pre-Compiled Forms

The technique of declaring a pre-compiled form to the FRS is discussed in the
QUEL Reference Guide. To use such a form in your program, you must also
follow the steps described here.

Chapter 7: Embedded QUEL for Pascal 7-43

Precompiling, Compiling, and Linking an EQUEL Program

In VIFRED, you can select a menu item to compile a form. When you do this,
VIFRED creates a file in your directory describing the form in the VAX-11
MACRO language. VIFRED lets you select the name for the file. Once you have
created the MACRO file this way, you can assemble it into linkable object code
with the VMS command

macro filename

The output of this command is a file with the extension “.obj”. You then link
this object file with your program (in this case named “formentry” by listing it
in the link command, as in the following example:

$ link formentry,-

empform.obj, -
ii_system:[ingres.files]equel.opt/opt

Linking an EQUEL Program without Shared Libraries

While the use of shared libraries in linking EQUEL programs is recommended
for optimal performance and ease-of-maintenance, non-shared versions of the
libraries have been included in case you require them. Non-shared libraries
required by EQUEL are listed in the equel.noshare options file. The options file
must be included in your link command after all user modules. Libraries must
be specified in the order given in the options file.

The following example demonstrates the link command of an EQUEL program
called “dbentry” that has been preprocessed and compiled:

$ link dbentry, -
ii_system:[ingres.files]equel.noshare/opt

Include File Processing

The EQUEL include statement provides a means to include external files in
your program’s source code. Its syntax is:

include filename

Filename is a quoted string constant specifying a file name, or a logical name
that points to the file name. You must use the default extension “.qp” on
names of include files, unless you override this requirement by specifying a
different extension with the -n flag of the eqp command.

This statement is normally used to include variable declarations, although it is
not restricted to such use. For more details on the include statement, see the
QUEL Reference Guide.

7-44

Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

The included file is preprocessed and an output file with the same name but
with the default output extension “.pas” is generated. You can override this
default output extension with the -o0.ext flag on the command line. The
reference in the original source file to the included file is translated in the
output file to the specified include output file. If the -0 flag is used with no
extension, no output file is generated for the include file. This is useful for
program libraries that are using VMS MMS dependencies.

If you use both the -0.ext and the -o flags, then the preprocessor will
generate the specified extension for the translated include statements in the
program but will not generate new output files for the statements.

For example, assume that no overriding output extension was explicitly given
on the command line. The EQUEL statement:

include ’employee.qgp’

is preprocessed to the Pascal statement:

% include ’'employee.pas’
and the file "employee.qp” is translated into the Pascal file "employee.pas”.

As another example, assume that a source file called “inputfile” contains the
following include statement:

include ’'mydecls’

The name “mydecls” is defined as a system logical name pointing to the file
“dral:[headers]myvars.qp” by means of the following command at the DCL
level:

$ define mydecls dral:[headers]myvars.qgp

Assume now that “inputfile” is preprocessed with the command:
$ egp -o.h inputfile

The command line specifies “.h"” as the output file extension for include files.
As the file is preprocessed, the include statement shown earlier is translated
into the Pascal statement:

% include ’dral:[headers]myvars.h’

and the Pascal file “dral:[headers]myvars.h” is generated as output for the
original include file, “dral:[headers]myvars.qp”.

For including source code using the include inline statement, see the QUEL
Reference Guide.

You can also specify include files with a relative path. For example, if you
preprocess the file “dral:[mysource]lmyfile.qp,” the EQUEL statement:

include ’[-.headers]myvars.qgp’

Chapter 7: Embedded QUEL for Pascal 7-45

Precompiling, Compiling, and Linking an EQUEL Program

is preprocessed to the Pascal statement:

%include ’[-.headers]myvars.pas’

and the Pascal file “dral:[headers]myvars.pas” is generated as output for the
original include file, “dral:[headers]myvars.qp.”

Including Source Code with Labels

Some EQUEL statements generate labels in the output code. If you include a
file containing such statements, you must be careful to include the file only
once in a given Pascal scope. Otherwise, you may find that the compiler later
issues Pascal warning or error messages to the effect that the generated labels
are multiply defined in that scope.

The statements that generate labels are the retrieve statement and all the
EQUEL/FORMS block-type statements, such as display and unloadtable.

Coding Requirements for Writing EQUEL Programs

The following sections describe coding requirements for writing EQUEL
programs.

Comments Embedded in Pascal Output

Each EQUEL statement generates one comment and a few lines of Pascal code.
You may find that the preprocessor translates 50 lines of EQUEL into 200 lines
of Pascal. This may result in confusion about line numbers when you are
debugging the original source code. To facilitate debugging, each group of
Pascal statements associated with a particular statement is preceded by a
comment corresponding to the original EQUEL source. (Note that only
executable EQUEL statements are preceded by a comment.) Each comment is
one line long and informs the reader of the file name, line number, and type of
statement in the original source file.

One consequence of the generated comment is that you cannot comment out
embedded statements by putting the opening comment delimiter on an earlier
line. You have to put the opening comment delimiter on the same line, before
the ## delimiter, to cause the preprocessor to treat the complete statement
as a Pascal comment.

The Pascal Semicolon and EQUEL Statements

With one exception, EQUEL statements embedded in Pascal host code do not
require a terminating semicolon. Pascal declarative statements must be
separated by a semicolon, as required in the Pascal language.

7-46 Embedded QUEL Companion Guide

Precompiling, Compiling, and Linking an EQUEL Program

The exception occurs when an EQUEL statement that allows but does not
include the optional with clause is followed immediately by a Pascal with
statement. When this occurs, the EQUEL statement must be terminated with a
semicolon. For example:

{Assume "emprec" has been declared as a

record variable}

create employee (name=c30, age=i4);

{Note the semicolon here}

with emprec do

begin

end;

If the EQUEL statement with the optional with clause is followed by another
EQUEL statement or by Pascal host code, then the semicolon is optional.

Pascal Blocks Generated by EQUEL

As mentioned above, the preprocessor may produce several Pascal
statements for a single EQUEL statement. However, all the Pascal statements
that the preprocessor generates for an EQUEL statement are surrounded by a
begin-end block. Thus, the statement:

if error then
deleterow form table 1

will produce legal Pascal code, even though the deleterow statement
generates more than one Pascal statement.

Note that multiple EQUEL statements will cause the preprocessor to generate
multiple begin-end blocks. Therefore, when placing multiple EQUEL
statements in a Pascal if statement, you must surround the whole group of
statements with a begin-end block, just as you would for multiple Pascal
statements in an if statement. For example:

if error then

begin
message ’Deleting because of error’
#Ht sleep 2
deleterow form table 1

end;

A semicolon always terminates the begin-end block that the preprocessor
generates for an EQUEL statement. Therefore, because Pascal does not permit
semicolons before the else clause of an if statement, you must surround any
single EQUEL statement that precedes an else clause with a begin-end block.
For example, the following if statement will cause a Pascal error:

if error then

#Ht message 'Error occurred’
{Preprocessor adds a semicolon here}
else
message 'No error occurred’

Chapter 7: Embedded QUEL for Pascal 7-47

Precompiling, Compiling, and Linking an EQUEL Program

By delimiting the then clause with begin-end, you eliminate the error:
if error then
begin

message 'Error occurred’

{Preprocessor still adds semicolon here...}
end

{...but that’s okay because there’s no semicolon here}
else

#Ht message 'No error occurred’

An EQUEL Statement that Does Not Generate Code

The declare cursor statement does not generate any Pascal code. This
statement should not be coded as the only statement in Pascal constructs that
does not allow null statements. For example, coding a declare cursor
statement as the only statement in a Pascal if statement not bounded by
begin and end would cause compiler errors:

if (using_database)

declare cursor empcsr for retrieve (employee.ename)
else

writeln(’You have not accessed the database.’);

The code generated by the preprocessor would be:

if (using_database)
else

writeln(’You have not accessed the database.’);

which is an illegal use of the Pascal else clause.

EQUEL/Pascal Preprocessor Errors

To correct most errors, you may wish to run the EQUEL preprocessor with the

listing (=I) option on. The listing will be sufficient for locating the source and
reason for the error.

For preprocessor error messages specific to the Pascal language, see the next
section.

7-48 Embedded QUEL Companion Guide

Preprocessor Error Messages

Preprocessor Error Messages

The following is a list of error messages specific to the Pascal language.
E_E20001 “Pascal attribute conflict in declaration of size for '%0c".”
Explanation: The program has specified conflicting size attributes for this

object. For example, the following declaration is erroneous because of the
attempt to extend the attribute size of the type ‘smaller’:

type
smaller = [byte] 1..100;
var
bigger : [word] smaller;
E_E20002 “Pascal subrange conflict. Upper and lower bounds are not the same type or

they are not an ordinal type.”

Explanation: Both bounds of a subrange declaration must be of the same
ordinal type (single character or integer). If the subrange bounds types are
different or if they are not ordinal types, the preprocessor will use the type of
the second bound and accept the usage of variables declared with this
subrange type. This will cause an error in later Pascal compilation.

E_E20003 “Mismatching statement at end of Pascal subprogram. Check balanced
subprogram headers and END pairs.”

Explanation: You may have an end statement that is not balanced by a
subprogram header (for example, PROGRAM, PROCEDURE, FUNCTION, or
MODULE). These subprogram delimiters provide scoping for Pascal variables
and labels generated by the preprocessor. If you had any syntax errors on the
subprogram header statement, then correct those errors and preprocess the
file again.

E_E20004 “No ## DECLARE before first EQUEL statement ‘%0c’.”

Explanation: You must issue the ## declare statement before the first
embedded statement. The preprocessor generates code that references
procedures and functions declared in a file included by the

declare statement. Without issuing the

declare statement, the Pascal compiler will not accept those references.

E_E20005 “Pascal character array '%0c’ must be PACKED or VARYING.”

Explanation: A string referenced in an embedded statement must be either a
packed array of char, a varying of char, or a single char. You have used a
non-packed array of char as an embedded string variable. Convert the
variable declaration to either packed or varying, or subscript the array to
reference only one element.

Chapter 7: Embedded QUEL for Pascal 7-49

Preprocessor Error Messages

E_E20006

E_E20007

E_E20008

E_E20009

E_2000A

E_E2000B

“Extraneous semicolon in Pascal declaration ignored.”

Explanation: Only one semicolon is allowed between components of a record
declaration. The preprocessor ignores the extra semicolons. You should delete
the extra semicolon in your source code.

“Pascal dimension of '%0c’ is %1c, but subscripted %?2c times.”

Explanation: You have not referenced the specified variable with the same
number of subscripts as the number of dimensions with which the variable was
declared. This error indicates that you have failed to subscript an array, or you
have subscripted a non-array. The preprocessor does not parse declaration
dimensions or subscript expressions.

“Incorrect indirection of Pascal variable '%0c’. Variable is declared with
indirection of %1c, but dereferenced (~) %2c time(s).”

Explanation: This error occurs when the address or value of a variable is
incorrectly expressed because of faulty indirection. For example, the name of
an integer pointer has been given instead of the variable that the pointer was
pointing at. Either redeclare the variable with the intended indirection (and
check any implicit indirection in the type), or change its use in the current
statement.

“Pascal Pass 2 failure on INCLUDE file. The maximum INCLUDE nesting
exceeded %0c.”

Explanation: The Pascal preprocessor must take a second pass in order to
declare implicitly generated labels. If the source file referenced embedded
INCLUDE files, then the second pass needs to generate labels into those files.
Consequently there is a maximum nesting limit of INCLUDE files. Try
reorganizing your files to create a flatter source file structure.

“No ## PROCEDURE for current scope but labels have been generated.”

Explanation: The Pascal preprocessor must take a second pass in order to
declare implicitly generated labels. If labels were implicitly generated then the
preprocessor needs to know where to declare them on the second pass. That
is why one must precede subprogram headers (PROGRAM, PROCEDURE,
FUNCTION and MODULE) with ##, or use the LABEL statement. If you did not
declare your subprogram header to the preprocessor, the generated labels will
be marked as undeclared by the Pascal compiler.

“Pascal Pass 2 open file failure. Cannot pass information from file "%0c’ to
"%1c’.”

7-50 Embedded QUEL Companion Guide

Preprocessor Error Messages

E_E2000C

E_E2000D

E_E2000E

E_E2000F

E_E20010

E_E20011

Explanation: The Pascal preprocessor must take a second pass in order to
declare implicitly generated labels. Because there is a temporary file involved,
and this file has a fixed name, you should avoid running the preprocessor
more than once in the same directory. This error may also occur if the
intermediate file disappeared, the system protections of the current directory
are too restrictive or have changed, or if the original input file was moved
between the first and second pass of the preprocessor.

“Pascal Pass 2 file inconsistency. Mismatching number of label markers in
"%0c".”

Explanation: The Pascal preprocessor must take a second pass in order to
declare implicitly generated labels. There was a difference between the
number of label declaration sections the preprocessor expected to generate
and the number of markers found in the intermediate file. This may be caused
by an embedded include statement that requires its own scope for label
generation. If there were nested include statements whose files required
labels, try to flatten them out into larger source files.

“Missing Pascal keyword '%0c’ in declaration.”

Explanation: You did not use the specified keyword, or you did not make the
word known to the preprocessor. If there are no other errors the preprocessor
will generate correct Pascal code.

“Illegal nesting of Pascal compilation units.”

Explanation: You cannot nest modules and programs in themselves or each
other. Make sure you have placed the ## mark before the end statement for
programs and modules.

rm

“Can not use indirection (~) on an undeclared Pascal variable "%0c’.

Explanation: You have used pointer indirection on a hame that was not
declared as a Pascal variable to the preprocessor. If this really is a variable
you should make its declaration known to the preprocessor.

“Can not subscript ([]) an undeclared Pascal variable "%0c".”

Explanation: You have used array subscription on a hame that was not
declared as a Pascal variable to the preprocessor. If this really is a variable
you should make its declaration known to the preprocessor.

“Can not subscript VARYING Pascal variable "%0c".”

Explanation: Elements of a varying-length character string array cannot be

passed to the runtime system. If you need to pass a single element then
declare the array as a plain array (not PACKED nor VARYING).

Chapter 7: Embedded QUEL for Pascal 7-51

Preprocessor Error Messages

E_E20012

E_E20013

E_E20014

E_E20015

E_E20016

E_E20017

E_E20018

“Scalar Pascal type required for conformant schema bounds type.”

Explanation: Pascal requires that bounds expressions of conformant arrays
be of a scalar type. You must choose a scalar type, such as a single character
or an integer.

“Pascal object '%0c’ is not a variable.”

Explanation: You have used the specified name as an embedded variable, but
you have not declared it to the preprocessor. This may also be a scope
problem. Make sure you have typed the name correctly, declared the variable
to the preprocessor and have used it in its scope.

“Too many comma separated names in declaration. Maximum number of
names is %0c.”

Explanation: The declaration of a comma-separated list of hames in a
declaration is too long. For example:

var
a, b, N : Integer;

Try breaking up the declaration into groups.

“EQUEL/Pascal does not support PARAM target lists.”

Explanation: If you need to use PARAM target lists, then you should write
this subprogram in another host language (such as C or Fortran) and link that
module with your Pascal program.

“Reissue of ## DECLARE statement. Second time is ignored.”

Explanation: The ## DECLARE statement should occur only once per module.
Placing the statement after an EQUEL statement will also cause this error.

“Missing semicolon (;) at end of Pascal LABEL declaration list.”

Explanation: Earlier versions of EQUEL/Pascal did not require the use of a
semicolon after the label statement. The preprocessor now requires the
terminating semicolon if you include a list of your own labels with the label
statement. If you do not include the semicolon, the preprocessor will generate
correct code, but you should still correct the error.

“Last Pascal record member referenced in '%0c’ is unknown.”
Explanation: The last record member referenced is not a member of the

current record. Make sure you have spelled the member name correctly, and
that it is a member of the specified record.

7-52 Embedded QUEL Companion Guide

Preprocessor Error Messages

E_E20019

E_E200TA

E_E2001B

E_E2001C

E_E2001D

E_E2001E

E_E2001F

E_E20020

“Unclosed Pascal block. There are %0c unbalanced subprogram headers.”

Explanation: The end of the file was reached with some program blocks left
open. Make sure you have an end statement for each subprogram header or
embedded LABEL statement.

“Pascal %0c '%1c’ is not yet defined. An INTEGER is assumed.”

Explanation: The specified TYPE or CONST name has not yet been declared.
Make sure that all types and constants are defined before use. Forward type
declarations (such as pointers to undefined types) are an exception.

“Underflow of comma separated name list in declaration.”

Explanation: The stack used to store comma-separated names in declarations
has been corrupted. Try rearranging the list of names in the declaration.

“Pascal variable '%0c’ is of unsupported type SET or QUADRUPLE.”

Explanation: You may declare variables of type set and quadruple, but you
may not use them in embedded statements. The declarations are only allowed
so that you can declare records with components of those types. If those
variables need to interact with INGRES, then declare the set variable as an
array of boolean, and the quadruple variable as a double.

“Adding an unknown name ‘'%0c’ in Pascal WITH statement.”

Explanation: The specified name is not known to the preprocessor when used
with an embedded with statement. Check its spelling and make sure it was
declared to the preprocessor in the correct scope.

“Overflow of Pascal WITH stack on variable ‘%0c’. Maximum depth is %1c.”
Explanation: You have nested embedded with blocks too deeply. Flatten
your record declarations, or use partially qualified names in place of the
deepest with statement.

“A Pascal WITH block is still open.”

Explanation: Every with block must be closed by an end statement. This
error indicates that the end of a routine has been encountered before a with
block inside the routine has been ended.

“Pascal WITH variable ‘%0c’ must be of type RECORD.”

Explanation: A with statement specified a variable that was not a record.

Check the name and verify that the scoping rules ensure that this use of the
specified name refers to a record variable.

Chapter 7: Embedded QUEL for Pascal 7-53

Sample Applications

E_E20021

E_E20022

“Underflow of Pascal WITH stack.”

Explanation: The stack used to manage a with record has been corrupted.
Try rearranging the nesting of with statements, or partially qualify some of
the more deeply nested record components.

“Pascal variable '%0c’ is a record, not a scalar value.”

Explanation: The named variable refers to a record. It was used where a
variable must be used to retrieve data from INGRES. This error may also
cause a syntax error on any subsequent record components that are
referenced.

Sample Applications

This section contains sample applications.

The Department-Employee Master/Detail Application

This application uses two database tables joined on a specific column. This
typical example of a department and its employees demonstrates how to
process two tables as a master and a detail.

The program scans through all the departments in a database table, in order
to reduce expenses. Department information is stored in program variables.
Based on certain criteria, the program updates department and employee
records. The conditions for updating the data are the following:

Departments:

n If a department has made less than $50,000 in sales, the department
is dissolved.

Employees:

n If an employee was hired since the start of 1985, the employee is
terminated.

n If the employee’s yearly salary is more than the minimum company wage
of $14,000 and the employee is not nearing retirement (over 58 years of
age), the employee takes a 5% pay cut.

n If the employee’s department is dissolved and the employee is not
terminated, the employee is moved into a state of limbo (the
“toberesolved” database table, described below) to be resolved by a
supervisor.

7-54 Embedded QUEL Companion Guide

Sample Applications

This program uses two cursors in a master/detail fashion. The first cursor is for
the Department table, and the second is for the Employee table. The create
statements used to create the tables are shown below. The cursors retrieve all
the information in their respective tables, some of which is updated. The
cursor for the Employee table also retrieves an integer date interval whose
value is positive if the employee was hired after January 1, 1985.

Each row that is scanned, both from the Department table and the Employee
table, is recorded into the system output file. This file serves as a log of the
session and as a simplified report of the updates that were made.

Each section of code is commented for the purpose of the application and also
to clarify some of the uses of the EQUEL statements. The program illustrates
table creation, multi-query transactions, all cursor statements and direct
updates. For purposes of brevity, error handling on data manipulation
statements is simply to close down the application.

The following two create statements describe the Employee and Department
database tables:

create dept

(name = cl2, { Department name }
totsales = money, { Total sales }

#Ht employees = 1i2) { Number of employees }
create employee

(name = 20, { Employee name }

#Ht age =1il, { Employee age }

idno = i4 { Unique employee id }
hired = date { Date of hire }

dept = cleo, { Employee department }
salary = money) { Yearly salary }

program Departments(input, output);

type

Stringl2 = varying[12] of Char;

#t String20 = varying[20] of Char;

String25 = varying[25] of Char;

#Ht Stringl32 = varying[132] of Char;

Short_Short_Integer = [Byte] -128 .. 127;

#t Short_Integer = [Word] -32768 .. 32767;

Long_Float = Double;

label

#Ht Exit_Program;

#t DECLARE

{

| Function: Close_Down

| Purpose: If an error occurs during the execution of an

| EQUEL statement this error handler is called.

| Errors are printed and the current database session is

| terminated. Any open transactions are implicitly closed.
| Parameters:

| ingerr - Integer containing Ingres error number.

}

Chapter 7: Embedded QUEL for Pascal 7-55

Sample Applications

##

##

[global] function Close_Down(ingerr: Integer): Integer;

var

err_text: varying [200] of char;

begin {Close_Down}

inquire_ingres (err_text = errortext)

exit

Writeln(’Closing down because of database error:’);
Writeln(err_text);

Close_Down := ingerr;

goto Exit_Program;

end; {Close_Down}

{
I
|
|
|
|
}

Procedure: Process_Expenses -- MAIN
Purpose: Main body of the application. Initialize

the database,
process each department, and terminate the session.

Parameters:

None

procedure Process_Expenses;

{
| Function: Init_Db

| Purpose: Initialize the database. Connect to the

| database, and abort on error. Before

| processing departments and employees create
| the table for employees who lose their

| department, "toberesolved". Initiate the

| multi-statement transaction.

| Parameters:

| None

| Returns:

| FALSE - Failed to start application.

| TRUE - Succeeded in starting application.

}

Function Init_Db : Boolean;
var
create_err: Integer;
begin {Init_Db}

Ingres personnel

{Create the table}
Writeln(’Creating "To_Be_Resolved" table.’);
create toberesolved
(name = c20,
age = smallint,
idno = integer,
hired = date,
dept = cl0,
salary = money)
inquire_ingres (create_err = ERRORNO)

7-56

Embedded QUEL Companion Guide

Sample Applications

##

##

if (create_err > 0) then begin

Writeln(’Fatal error creating application table.’);
Init_Db := FALSE;

end else begin
{
| Inform Ingres runtime system about error handler
| A1l errors from here on close down
| the application.

IIseterr(%immed Close_Down);
begin transaction

Init_Db := TRUE;

end; {If create error}

end; {Init_Db}

{
| Procedure: End_Db

| Purpose: Commit the multi-statement transaction and
| end access to the database after successful
| completion of the application.
| Parameters:
| None
}

Procedure End_Db;

begin {End_Db}
end transaction
exit

end; {End_Db}

| Procedure: Process_Employees

| Purpose: Scan through all the employees for a

| particular department. Based on given

| conditions the employee may be terminated,

| or take a salary reduction.

| 1. If an employee was hired since 1985 then
| the employee is terminated.

| 2. If the employees yearly salary is more

| than the minimum company wage of $14,000
| and the employee is not close

| to retirement

| (over 58 years of age), then the employee
| takes a 5% salary reduction .

| 3. If the employee’s department is dissolved
| and the employee is not terminated, then
| the employee is moved into the

| "toberesolved" table.

| Parameters:

| dept_name - Name of current department.

| deleted_dept - Is current department being
| dissolved?

| emps_term - Set locally to record how many
| employees were terminated

| for the current department.

}

Chapter 7: Embedded QUEL for Pascal

7=-57

Sample Applications

procedure Process_Employees (dept_name: Stringl2;
deleted_dept: Boolean;
var emps_term: Integer);
##H const
#t SALARY_REDUC = 0.95;
#it MIN_EMP_SALARY = 14000.00;
#Ht NEARLY_RETIRED = 58;
type
{Emp_Rec corresponds to the "employee" table}
##H Emp_Rec = record
#i# name: String20;
#it age: Short_Short_Integer;
#i# hired: String25;
#Ht idno: Integer;
salary: Real;
#t hired_since_85: Integer;
end; {record}
##H var
emp: Emp_Rec;
title: Stringl2; {Formatting values}
description: String25;
##H No_rows: Integer;
begin {Process_Employees}
| Note the use of the Ingres function to find out
| who was hired since 1985.
}
#Ht range of e IS employee
declare cursor empcsr FOR
#Ht retrieve (e.name, e.age, e.idno, e.hired, e.salary,
#Ht res = int4(interval(’days’,
#Ht e.hired-date(’01-jan-1985"))))
where e.dept = dept_name
for direct update of (name, salary)
no_rows := 0;
emps_term := 0; {Record how many}
open cursor empcsr
while (no_rows = 0) do begin
#Ht retrieve cursor empcsr (emp.name, emp.age, emp.idno,
#t emp.hired, emp.salary,
#Ht emp.hired_since_85)
#t inquire_equel (no_rows = endquery)
if (no_rows = 0) then begin
{Terminate new employees}
if (emp.hired_since_85 > @) then begin
delete cursor empcsr

title := ’'Terminated: ’;
description := ’Reason: Hired since 1985.°;
emps_term := emps_term + 1;

{Else reduce salary if large and not nearly retired}
end else if (emp.salary > MIN_EMP_SALARY) then begin

7-58

Embedded QUEL Companion Guide

Sample Applications

#i
##

##

##

#i#

#i#

if (emp.age < nearly_retired) then begin
replace cursor empcsr
(salary = salary * salary_reduc)
title := ’Reduction: ’;
description := ’Reason: Salary.’;
end else begin
{Do not reduce salary - nearly retired}
title := ’No Changes: ’;
description := ’Reason: Retiring.’;
end; {If retiring}

{Else leave employee alone - low salary}
end else begin
title := 'No Changes: ’;
description := ’Reason: Salary.’;
end;

{Was employee’s department dissolved?}
if (deleted_dept) then begin
append to toberesolved (e.all)
where e.idno = emp.idno
delete cursor empcsr
end;

{Log the employee’s information}

Write(’ ’, title, * ’, emp.idno:6, ’, ’);
Write(emp.name, ’, ’, emp.age:3, ', ’);
Writeln(emp.salary:8:2, * ; ', description);

end; {If a row was retrieved}
end; {Continue with cursor loop}
close cursor empcsr

end; {Process_Employees}

{
| Procedure: Process_Depts

| Purpose: Scan through all the departments, processing
| each one. If the department has made less

| than $50,000 in sales, then the department

| is dissolved.

| For each department process all the

| employees (they may even be moved to another

| database table).

| If an employee was terminated, then update

| the department’s employee counter.

| Parameters:

| None

}

Chapter 7: Embedded QUEL for Pascal 7-59

Sample Applications

Procedure Process_Depts;

const
MIN_TOT_SALES = 50000.00;

#H type
{Dept_Rec corresponds to the "dept" table}

##H Dept_Rec = record

#i# name: Stringl2;

##H totsales: Long_Float;

employees: Short_Integer;

##H end;

var

No_rows: Integer;

emps_term: Integer; {Employees terminated}
deleted_dept: Boolean; {Was the dept deleted?}
dept_format: String20; {Formatting value}

dpt: Dept_Rec;

begin {Process Depts}

#t range of d is dept

declare cursor deptcsr for

retrieve (d.name, d.totsales, d.employees)

for direct update of (name, employees)
no_rows := 0;
emps_term := 0;

#H open cursor deptcsr
while (no_rows = 0) do begin

retrieve cursor deptcsr (dpt.name,

#H dpt.totsales,

dpt.employees)

#H inquire_equel (no_rows = endquery)
if (no_rows = 0) then begin

{Did the department reach minimum sales?}
if (dpt.totsales < MIN_TOT_SALES) then begin
delete cursor deptcsr
deleted_dept := TRUE;
dept_format := ’ -- DISSOLVED --’;
end else begin
deleted_dept := False;
dept_format := " ’;
end; {If reached minimum sales}
{Log what we have just done}
Write(’Department: ’, dpt.name);
Write(’, Total Sales: ’, dpt.totsales:12:3);
Writeln(dept_format);
{Now process each employee in the department}
Process_Employees(dpt.name, deleted_dept, emps_term);
{If employees were terminated, record it}
if ((emps_term > 0) and (not deleted dept)) then

#Ht replace cursor deptcsr

(employees = employees - emps_term)
end; {If a row was retrieved}

end; {Continue with cursor loop}
#Ht close cursor deptcsr
end; {Process_Depts}

7-60

Embedded QUEL Companion Guide

Sample Applications

begin {Process_Expenses}
Writeln(’Entering application to process expenses.’);
if (Init_Db) then begin
Process_Depts;
End_Db;
Writeln(’Completion of application.’);

end;
#H# end; {Process_Expenses}
begin {main}

Process_Expenses;
Exit_Program:;
end. {main}

The Employee Query Interactive Forms Application
This EQUEL/FORMS application uses a form in query mode to view a subset of
the Employee table in the Personnel database. An Ingres query qualification is

built at runtime using values entered in fields of the form “empform.”

The objects used in this application are:

Object Description

personnel The program’s database environment.

employee A table in the database, with six columns:

name (c20)

age (i1)

idno (i4)

hired (date)
dept (c10)
salary (money).

empform A VIFRED form with fields corresponding in hame and
type to the columns in the Employee database table. The
Name and Idno fields are used to build the query and are
the only updatable fields. "Empform” is a compiled form.

The application is driven by a display statement that allows the runtime user
to enter values in the two fields that will build the query. The Build_Query and
Exec_Query procedures make up the core of the query that is run as a result.
Note the way the values of the query operators determine the logic used to
build the where clause in Build_Query. The retrieve statement encloses a
submenu block that allows the user to step through the results of the query.

No updates are performed on the retrieved values, but any particular
employee screen may be saved in a log file through the printscreen
statement.

Chapter 7: Embedded QUEL for Pascal 7-61

Sample Applications

The following create statement describes the format of the Employee
database table:

create employee

(name = ¢20, { Employee name }
##t age =1il, { Employee age }
#Ht idno = 1i4, { Unique employee id }
hired = date, { Date of hire }
#Ht dept = clo, { Employee department }
salary = money) { Annual salary }
program Employees;
type
String2 = packed array[l..2] of Char;
#Ht Stringl@® = packed array[l..10] of Char;
String20 = packed array[l..20] of Char;
#Ht String25 = packed array[l..25] of Char;
VStringl0® = varying[100] of Char;
Float = Real;
Short_Integer = [Word] -32768 .. 32767;
var
empform : [External] Integer;
declare
procedure Employee_Query;
var
{Global WHERE clause qualification buffer}
#H where_clause: VStringleQ;
{
| Procedure: Build_Query
| Purpose: Build an Ingres query from the values in the
| "name" and "idno" fields in "empform".
| Parameters:
| None
}
#Ht procedure Build_Query;
#i# type
#Ht opers = array[l..6] of String2;
var
#Ht ename: String20;
eidno: Integer;
{
| Query operator table that maps integer values to
| string query operators.
}
#Ht operators: opers;
{
| Operators corresponding to the two fields,
| that index into the "operators" table.
}
#H name_op, id_op: Integer;
begin {Build_Query}
operators := opers (’= ', 1=’ ’< 7, 0> 7 0k=T] 0>=T),
#i getform #empform
(ename = name, name_op = getoper (name),
#H eidno = idno, id_op = getoper(idno))

{Fill in the WHERE clause}
if ((name_op = 0) and (id_op = 0)) then
begin
where_clause := ’'1=1"; {Default qualification}
end else if ((name_op = 0) and (id_op <> 0)) then

7-62 Embedded QUEL Companion Guide

Sample Applications

##

##

##

begin
{Query on the "idno" field}
WriteV(where_clause,
’e.idno’, operators[id_op],
eidno) ;
end else if ((name_op <> 0) and (id_op = 0)) then
begin
{Query on the "name" field}
where_clause :=
’e.name’ + operators[name_op] +
"7+ ename + "7
end else { ((name_op <> 0) and (id_op <> 0)) }
begin
{Query on both fields}
WriteV(where_clause,
‘e.name’, operators[name_op],

", ename, '" and ’,
’e.idno’, operators[id_op],
eidno) ;

end;
end; {Build_Query}

{
| Procedure: Exec_Query

| Purpose: Given a query buffer, defining a WHERE clause

| issue a RETRIEVE to allow the runtime use to

| browse the employees found with the given qualification.
| Parameters:

| None

}

procedure Exec_Query;

var
ename: String20; {Employee data}
eage: Short_Integer;
eidno: Integer;
ehired: String25;
edept: StringlQ;
esalary: Float;
rows: Integer; {Were rows found}

begin {Exec_Query}
{Issue query using WHERE clause}
retrieve (
ename = e.name, eage = e.age,
eidno = e.idno, ehired = e.hired,
edept = e.dept, esalary = e.salary)
where where_clause
begin {retrieve}
{Put values up and display them}
putform #empform (
name = ename, age = eage,

idno = eidno, hired = ehired,
dept = edept, salary = esalary)
redisplay
submenu
activate menuitem ’Next’, frskey4
begin
{

| Do nothing, and continue with the
| retrieve loop. The last one will
| drop out.
}

end {Next}

activate menuitem ’Save’, frskey8

Chapter 7: Embedded QUEL for Pascal

7-63

Sample Applications

begin
{Save screen data in log file}
printscreen (file = ’query.log’)
{Drop through to next employee}
end {Save}
#i# activate menuitem ’End’, frskey3
#Ht begin
{Terminate the RETRIEVE loop}
#it endretrieve
end {End}
end {retrieve}
inquire_equel (rows = rowcount)
if (rows = 0) then
begin
#Ht message 'No rows found for this query’
end else
begin
clear field all
#t message 'No more rows. Reset for next query’
end;
#Ht sleep 2
end; {Exec_Query}
#H begin {Employee_Query}
#it forms
#H message 'Accessing Employee Query Application . ’
ingres personnel
#Ht range of e is employee
#Ht addform empform
#Ht display #empform query
initialize
activate menuitem ’Reset’
#HHt begin
#Ht clear field all
#Hi end {Reset}
#Ht activate menuitem ’Query’
#H begin
{Verify validity of data}
#Ht validate
Build_Query;
Exec_Query;
end {Query}
#t activate menuitem ’LastQuery’
#H begin
Exec_Query;
end {LastQuery}
#Ht activate menuitem ’End’
#t begin
#H breakdisplay
#Hi end {End}
finalize
#Ht clear screen
#t endforms
exit
end; {Employee_Query};
begin {main}

7-64 Embedded QUEL Companion Guide

Sample Applications

Employee_Query;
end. {main}

The Table Editor Table Field Application

This EQUEL/FORMS application uses a table field to edit the Person table in the
Personnel database. It allows the user to update a person’s values, remove the
person, or add new persons. Various table field utilities are provided with the
application to demonstrate their use and their interaction with an Ingres
database.

The objects used in this application are:

Object Description
personnel The program’s database environment.
person A table in the database, with three columns:
name (c20)
age (i2)

number (i4).

Number is unique.

personfrm The VIFRED form with a single table field.
persontbl A table field in the form, with two columns:
name (c20)
age (i4)

When initialized, the table field includes the hidden
number (i4) column.

At the start of the application, a retrieve statement is issued to load the table
field with data from the Person table. Once the table field has been loaded, the
user can browse and edit the displayed values. Entries can be added, updated

or deleted. When finished, the values are unloaded from the table field, and, in
a multi-statement transaction, the user’s updates are transferred back into the
Person table.

The following create statement describes the format of the Person database

table:

create person

(name = c20, { Person name }

#t age =12, { Age }

number = i4) { Unique id number }

program TableEdit(input, output);

type

#Ht Stringl3 = packed array[l..13] of Char;
String20 = packed array[l..20] of Char;
#Ht String80 = packed array[l..80] of Char;

Chapter 7: Embedded QUEL for Pascal 7-65

Sample Applications

##
#i

#i#

#i#

#i#

#i

#it

##

#i#

#it

#t

Short_Integer = [Word] -32768 .. 32767,
declare
procedure Table Edit;
label
exit_label;
type
{Table field row states}
RowStates = (
RowUndef, {Empty or undefined row}
RowNew, {Appended by user}
RowUnchange, {Loaded by program - not updated}
RowChange, {Loaded by program and updated}
RowDelete {Deleted by program}
);
var
{Person information corresponds to "person" table}
pname: String20; {Full name}
page: Short_Integer; {Age}
pnumber: Integer; {Unique person number}
pmaxid: Integer; {Maximum person id number}
{Table field entry information}
state: RowStates; {State of data set row (see above)}
recnum, {Record number}
lastrow: Integer; {Lastrow in table field}
{Utility buffers}
search: String20; {Name to find in search loop}
msgbuf: String80; {Message buffer}
password: Stringl3; {Password buffer}
respbuf: Char; {Response buffer}
{Error handling variables for database updates}
upd_err, {Updates error}
upd_rows: Integer; {Number of rows updated}
upd_commit: Boolean; {Commit updates}
save_changes: Boolean; {Save changes or Quit}
begin {Table_Edit}
{
| Start up Ingres and the Ingres/Forms system
| We assume no Ingres errors will happen during
| screen updating
}
ingres personnel
forms
{Verify that the user can edit the "person" table}
prompt noecho (’Password for table editor: ’, password)
if (password <> *MASTER_OF_ALL’) then
begin
message 'No permission for task. Exiting . ’
endforms
exit
goto exit_label;
end;
message 'Initializing Person Form . ’
forminit personfrm

{

7-66

Embedded QUEL Companion Guide

Sample Applications

##

#it

#t

| Initialize "persontbl" table field with a data set
| in FILL mode so that the runtime user can append

| rows. To keep track of events occurring to original
| rows that will be loaded into the table field, hide
| the unique person number.

}

inittable personfrm persontbl fill (number = integer)
{

| Load the information from the "person" table into the
| person variables. Also save away the maximum person
| id number.

}

message ’'Loading Person Information .
range of p IS person

{Fetch data into person record, and load table field}
retrieve (pname = p.name, page = p.age,
pnumber = p.number)
begin
loadtable personfrm persontbl
(name = pname, age = page, number = pnumber)
end {Retrieve}

{
| Fetch the maximum person id number for later use.

| Performance Note: max will do sequential scan of table.
}

retrieve (pmaxid = max(p.number))

{Display the form and allow runtime editing}

display personfrm update
initialize

{

| Provide a menu, as well as the system FRS key to scroll
| to both extremes of the table field. Note that a comment
| between DISPLAY loop components MUST be marked with a

}

activate menuitem ’Top’, frskey5

begin

scroll personfrm persontbl TO 1 {Backward}
end {Top}

activate menuitem ’Bottom’, frskey6
begin

scroll personfrm persontbl to end{Forward}
end {Bottom}

activate menuitem ’Remove’
begin

{

| Remove the person in the row the user’s cursor
| is on. If there are no persons, exit operation
| with message. Note that this check cannot

| really happen as there is always at least one
| UNDEFINED row in FILL mode.

}

inquire_frs table personfrm

(lastrow = lastrow(persontbl))
if (lastrow = 0) then
begin

Chapter 7: Embedded QUEL for Pascal

7-67

Sample Applications

##

##

#i#

##

##
#i#

##
##

##

##
#i#

#i#

#i#

#i#

##

#i

#it

#i#

#i#

message 'Nobody to Remove’

sleep 2

resume field persontbl
end;

deleterow personfrm persontbl {Recorded for later}
end {Remove}

activate menuitem ’Find’, frskey7

begin
{
| Scroll user to the requested table field entry.
| Prompt the user for a name, and if one is typed
| in loop through the data set searching for it.
}
search =’ 7;
prompt (’Person’’s name : ’, search)
if (search[l] =’ ’) then
resume field persontbl
unloadtable personfrm persontbl
(pname = name, recnum = _record,
state = _state)
begin

{Do not compare with deleted rows}
if ((state <> RowDelete) and (pname = search))

then

begin
scroll personfrm persontbl to recnum
resume field persontbl

end;

end; {Unloadtable}

{Fell out of loop without finding name. Issue error.}
msgbuf := ’'Person ’’’ + search +

*’’ not found in table. [HIT RETURN] ’;
prompt noecho (msgbuf, respbuf)

end {Find}

activate menuitem ’Save’, frskey8

begin
validate field persontbl
save_changes := TRUE;
breakdisplay

end {Save}

activate menuitem ’Quit’, frskey2

begin
save_changes := FALSE;
breakdisplay
end {Quit}
finalize

if (not save_changes) then {Quit application}

begin

endforms

exit

goto exit_label;
end;

Exit person table editor and unload the table field.
If any updates, deletions or additions were made,

duplicate these changes in the source table. If the
user added new people we must assign a unique person

{
|
|
|

7-68 Embedded QUEL Companion Guide

Sample Applications

#i#

##

#i#

| id before returning it to the database table. To do
| this, we increment the previously saved maximum id
| number with each APPEND.

}

message 'Exiting Person Application .

| Do all the updates in a multi-statement transaction

| (for simplicity, this transaction does not restart on
| deadlock error).

}

begin transaction

upd_commit := TRUE;

{
| Handle errors in the UNLOADTABLE loop, as we want to

| cleanly exit the loop, after cleaning up the transaction.

}

unloadtable personfrm persontbl
(pname = name, page = age,

pnumber = number, state = _state)
begin
case (state) of
RowNew:
begin
{
| Filled by user.
| Insert with new unique id
}
pmaxid := pmaxid + 1;
repeat append to person
(name = @pname,
age = @page,
number = @pmaxid);
end; {RowNew}
RowChange:
begin
{Updated by user. Reflect in table}
repeat replace p
(name = @pname, age = @page)
where p.number = @pnumber
end; {RowChange}
RowDelete:
begin
{
| Deleted by user, so delete from table.
| Note that only original rows are saved
| by the program, and not rows appended
| at runtime.
}
repeat delete p
where p.number = @pnumber
end; {RowDelete}
otherwise

begin

Else UNDEFINED or UNCHANGED
No updates required.

e e — o

end; {Otherwise}

Chapter 7: Embedded QUEL for Pascal

7-69

Sample Applications

end; {case}

Handle error conditions -

If an error occurred, then abort the transaction.
If a no rows were updated then inform user, and
prompt for continuation.

inquire_equel (upd_err = errorno, upd_rows = rowcount)

if (upd_err> 0) then {Abort on error}

begin
upd_commit := FALSE;
#Ht message 'Aborting updates . ’
abort
endloop
end else if (upd_rows = 0) then {May want to stop}
begin
msgbuf := ’Person ’’’ + pname +
’’’ not updated. Abort all updates? ’;
prompt noecho (msgbuf, respbuf)
if ((respbuf = ’Y’) or (respbuf = ’y’)) then
begin
upd_commit := FALSE;
#H abort
endloop
end;
end;
end; {unloadtable}
if (upd_commit) then
end transaction {Commit the updates}
endforms {Terminate the Forms and Ingres}
exit
exit_label:
end; {Table_ Edit}
begin {main}
Table_Edit;
end. {main}

7-70 Embedded QUEL Companion Guide

Sample Applications

The Professor-Student Mixed Form Application

This EQUEL/FORMS application lets the user browse and update information
about graduate students who report to a specific professor. The program is
structured in a master/detail fashion, with the professor being the master
entry, and the students the detail entries. The application uses two forms—one
to contain general professor information and another for detailed student

information.

The objects used in this application are:

Object

Description

personnel

The program’s database environment.

professor

A database table with two columns:

pname (c(25))
pdept (c(10))

See its create statement below for a full description.

student

A database table with seven columns:

sname (c(25))

sage (il1)

sbdate (¢(25))

sgpa (f4)

sidno (il1)

scomment (text(200))
sadvisor (c(25))

See the create statement below for a full description.
The sadvisor column is the join field with the pname
column in the Professor table.

masterfrm

The main form has the pname and pdept fields, which
correspond to the information in the Professor table, and
the studenttbl table field. The pdept field is display-only.
“Masterfrm” is a compiled form.

studenttbl

A table field in "masterfrm” with the sname and sage
columns. When initialized, it also has five hidden
columns corresponding to information in the Student
table.

studentfrm

The detail form, with seven fields, which correspond to
information in the Student table. Only the fields sgpa,

scomment, and sadvisor are updatable. All other fields
are display-only. “Studentfrm” is a compiled form.

Chapter 7: Embedded QUEL for Pascal 7-71

Sample Applications

Object Description

grad A global structure, whose members correspond in name
and type to the columns of the Student database table,
the “studentfrm” form and the studenttbl table field.

The program uses the "masterfrm” as the general-level master entry, in which
data can only be retrieved and browsed, and the “studentfrm” as the detailed
screen, in which specific student information can be updated.

The runtime user enters a name in the pname (professor name) field and then
selects the Students menu operation. The operation fills the displayed and
hidden columns or table field “studenttbl” with detailed information of the
students reporting to the named professor. The user can then browse the table
field (in read mode), which displays only the nhames and ages of the students.
More information about a specific student can be requested by selecting the
Zoom menu operation. This operation displays the form “studentfrm.” The
fields of “studentfrm” are filled with values stored in the hidden columns of
“studenttbl.” The user can make changes to three fields (sgpa, scomment, and
sadvisor). If validated, these changes will be written back to the database
table (based on the unique student id), and to the table field’s data set. This
process can be repeated for different professor names.

create student { Graduate Student table }

(sname = ¢c25, { Name }

sage =11, { Age }

sbdate = ¢25, { Birth date }

#t sgpa = f4, { Grade point average}
sidno = i4, { Unique student number }
scomment = text(200), { General comments }

sadvisor = ¢25) { Advisor’s name}

create professor {Professor table}

(pname = c25, ({Professor’s name}

#Ht pdept = cl1l0) {Department}

program University;

const
#t
#Ht shortstrlen = 10;
#i mediumstrlen = 25;
#it longstrlen = 100;
type
#Ht StrShort = packed array [1..SHORTSTRLEN] of Char;
#i StrMedium = packed array [1..MEDIUMSTRLEN] of Char;
#Ht StrLong = packed array [1..LONGSTRLEN] of Char;
NatTiny = [byte] 0..255; {A one-byte unsigned integer}
var
{Master and student compiled forms}
#Ht masterfrm,studentfrm: [external] Integer;
declare
#H{

| Procedure: Prof_Student

| Purpose: Main body of "Professor/Student"
| Master-Detail Application.

#)

7-72 Embedded QUEL Companion Guide

Sample Applications

procedure Prof_Student;

var

{Grad student record maps to "student" DB table}
Student_Rec = record

sname: StrMedium;

sage: NatTiny;

sbdate: StrMedium;

sgpa: Real;

sidno: Integer;

scomment: StrMedium;

sadvisor: StrMedium;
end;

{Professor record maps to "professor" DB table}
Prof_Rec = record

pname: StrMedium;

pdept: StrShort;

end;

grad: Student_Rec;
prof: Prof_Rec;
old_advisor: StrMedium; {Advisor before ZOOM}

{Useful forms runtime information}
lastrow, {Lastrow in table field}
istable: Integer; {Is a table field?}

{Utility buffers}

msgbuf: StrLong: {Message buffer}
respbuf: Char; {Response buffer}
{

| Function: Student_Infor_Changed

| Purpose: Allow the user to zoom into the details

| of a selected student. Some of the data can be

| updated by the user. If any updates were made,

| then reflect these back into the database table.

| The procedure returns TRUE if any changes were made.
| Parameters:

| None.
|

|

|

}

Returns:
TRUE/FALSE - Changes were made to the database.
Sets the global "grad" record with the new data.

function Student_Info_Changed : Boolean;
var
changed: Integer; {Changes made to the form?}
valid_advisor: Integer; {Is the advisor a professor?}
begin {Student_Info_Changed}

{Display the detailed student information}
display #studentfrm update

initialize (sname = grad.sname,
sage = grad.sage,
sbdate = grad.sbate,
sgpa = grad.sgpa,
sidno = grad.sidno,
scomment = grad.scomment,
sadvisor = grad.sadvisor)

Chapter 7: Embedded QUEL for Pascal

7-73

Sample Applications

##

#i#

#it

#it

#t

#it

Student_Info_Changed

activate menuitem ’Write’

begin
{

| If changes were made then update the
| database table. Only bother with the
| fields that are not read-only.

}

inquire_

frs form (changed = change)

if (changed = 1) then

begin

validate

getform (grad.sgpa = sgpa,
grad.scomment = scomment,
grad.sadvisor = sadvisor)

{
| Enforce referential integrity.

| If there aren’t any professors

| matching the advisor’s name then

| don’t change it -- user would never

| be able to access it again to fix it.
}

retrieve (valid_advisor =

count(p.

pname

where p.pname =
grad.sadvisor))

if (valid_advisor <= 0) then

begin
message 'Not a
sleep 2

valid professor’

resume field sadvisor

end else

begin
message
replace

where s.

"Writing to database...’
s(sgpa = grad.sgpa,
scomment = grad.scomment,
sadvisor = grad.sadvisor)
sidno = grad.sidno)

breakdisplay
end; {Valid advisor}

{Form was changed}

1=0;

breakdisplay

end; {Student_Info_Changed}

begin {Prof_Student}

ingres personnel

activate menuitem ’End’, frskey3

{Quit without submitting changes}

:= (changed =1);

{Start up Ingres and the Forms system}

message 'Initializing Student Administrator...’

7-74 Embedded QUEL Companion Guide

Sample Applications

#i#

#it

##

#t

#it

range of p IS professor, s is student

addform masterfrm
addform studentfrm

{
| Initialize "studenttbl" with a data set in READ mode.
| Declare hidden columns for all the extra fields that
| the program will display when more information is

| requested about a student. Columns "sname" and "sage"
| are displayed, all other columns are hidden, to be

| used in the student information form.

}

inittable #masterfrm studenttbl read

(sbdate = char(25),
sgpa = float4,
sidno = integer4,
scomment = char(200),
sadvisor = char(20))

{

| Drive the application, by running "masterfrm", and

| allowing the user to "zoom" into a selected student.
}

display #masterfrm update

initialize

begin
message 'Enter an Advisor name...’
sleep 2

end {Initialize}

activate menutiem ’Students’,field ’'pname’

begin
{Load the students of the specified professor}
getform (prof.pname = pname)

{If no professor name is given then resume}
if (prof.pname[l] = ' ’) then
resume field pname

| Verify that the professor exists. If not

| print a message, and continue. We assume that
| each professor has exactly one department.

}

prof.pdept :=" ’;
retrieve (prof.pdept = p.pdept)
where p.pname = prof.pname

{If no professor report error}

if (prof.pdetp[l] =’ ’) then
begin
msgbuf := 'No professor with name ’’’+
prof.pname + *’’ [RETURN];

prompt noecho (msgbuf, respbuf)
clear field all
resume field pname

end;

{Fill the department field and load students}
message ’'Retrieving Student Information...’

putform (pdept = prof.pdept)
clear field studenttbl

Chapter 7: Embedded QUEL for Pascal

7-75

Sample Applications

redisplay {Refresh for query}
#Ht {
#Ht | With the advisor name, load into the "studenttbl’
| table field all the graduate students who report
#Ht | to the professor with that name.
| Columns "sname" and "sage" will be displayed, and
#Ht | all other columns will be hidden.
#t }
#H retrieve (grad.sname = s.sname,
grad.sage = s.sage,
grad.sbdate = s.shdate,
grad.sgpa = s.sgpa,
#Ht grad.sidno = s.sidno,
grad.scomment = s.scomment,
#Ht grad.sadvisor = s.sadvisor)
where s.advisor = prof.pname
#t begin
loadtable #masterfrm studenttbl
(sname = grad.sname,
sage = grad.sage,
sbdate = grad.sbhdate,
sgpa = grad.sbhdate,
#Ht sidno = grad.sidno,
#H scomment = grad.scomment,
#Ht sadvisor = grad.sadvisor)
end {Retrieve}
#it resume field studenttbl
end {Students}
#H activate menuitem ’Zoom’
#Ht begin
#Ht {
#Ht | Confirm that user is on "studenttbl", and that
| the table field is not empty. Collect data from
#Ht | the row and zoom for browsing and updating.
#H }
#it inquire_frs field #masterfrm (istable =table)

if (istable = @) then

begin
#it prompt noecho
#it (’Select from the student table [RETURN]’,
##t respbuf)
#it resume field studenttbl

end;
inquire_frs table #masterfrm (lastrow = lastrow)

if (lastrow = 0) then

begin
prompt noecho
#H (’There are no students [RETURN]’,
#t respbuf)
#Ht resume field pname

end;
#Hi {Collect all data on student into graduate record}
#i# getrow #masterfrm studenttbl
(grad.sname = sname,
#Ht grad.sage = sage,
grad.sbdate = sbdate,
#Ht grad.sgpa = sgpa,
grad.sidno = sidno,
#Ht grad.scomment = scomment,
grad.sadvisor = sadvisor)
#it {

7-76 Embedded QUEL Companion Guide

Sample Applications

| Display "studentfrm", and if any changes were made
#Ht | make the updates to the local table field row.
| Only make updates to the columns corresponding to
#Ht | writable fields in "studentfrm".
| If the student changed advisors then delete this row
#Ht | from the current display -- it no longer belongs here.
#Ht }
old_advisor := grad.sadvisor;
if (Student_Infor_Changed) then
begin
if (grad.sadvisor <> old_advisor) then
begin
deleterow #masterfrm studenttbl
end else
begin
putrow #masterfrm studenttbl
(sgpa = grad.sgpa,
scomment = grad;scomment,
sadvisor = grad.sadvisor)
end;
end; {If student info changed}
#H# end {Zoom}
#Ht activate menuitem ’QUIT’, frskey2
i begin
#Ht breakdisplay
end {Quit}
#H finalize
#H clear screen
#t endforms
#H exit

end; {Prof_Student}

begin {University}
Prof_Student;
end. {University}

Chapter 7: Embedded QUEL for Pascal 7-77

Index

(number sign)
dereferencing, 4-16

.obj filename extension[obj], 2-53, 4-52, 4-53
.gf filename extension[qgf], 4-54, 4-55

A

Ada
character data, 5-9
comments, 5-2, 5-48
compilation units, 5-25
compiling, 5-43
data types, 5-5
declaration blocks, 5-28
display (statement), 5-3
equel (statement), 5-6
functions, 5-28
include (statement), 5-46
keywords, 5-6
margin considerations, 5-1
null indicators, 5-23, 5-35
numeric data types, 5-44
package bodies, 5-27
package specifications, 5-25, 5-46
preprocessor errors, 5-49, 5-50, 6-34
procedures, 5-27
program library, 5-43
source code generation, 5-43
statement syntax, 5-1
type definitions, 5-15
variables, 5-5

addform (statement), 2-19, 3-14, 3-16
all (clause), 5-35

alphanumeric data categories, 3-12

ampersand (&)
as line continuation indicator, 5-4, 6-3
reference operator, 2-10

ANSI format, generating output, 3-33

applications, sample
interactive forms, 2-66, 3-67, 4-72, 5-60,
6-43, 7-61
master/detail, 3-54
mixed form, 3-85
table field, 2-70, 3-75, 4-79, 5-64, 6-47,
7-65

array variables, 6-20

arrays
declarations, 2-11, 6-10
defining, 5-19
definitions, 7-16
variables, 2-25, 5-33, 7-29

asterisk (*)
pointer declaration and, 2-13

attributes
inherit, 7-43
Inherit, 7-6
type definition, 7-11

backslash (\)
string continuation character, 2-2, 3-2, 4-
2, 5-2, 5-4, 6-3, 6-5, 7-2
string literals, 2-4, 7-5

BASIC
comments, 6-3, 6-33
compiling, 6-30
data types, 6-6
display (statement), 6-4
if blocks, 6-34
include (statement), 6-31
line numbers, 6-1
null indicators, 6-15, 6-21

Index—1

preprocessor errors, 6-34
procedure declaration, 6-16
reserved words, 6-7

source code generation, 6-30
statement syntax, 6-1
variables, 6-6

begin/end (keywords), 7-5

blanks
padding, 3-26, 4-24, 5-37, 6-23, 7-36, 7-
38
trailing, 3-26, 4-24, 5-37, 6-23, 7-36, 7-38
truncation, 3-26, 4-24, 5-37, 6-23, 7-36

blocks (of program code)
begin-end, 7-47
cautions, 2-3, 3-3, 5-3, 6-4, 7-3
delimiters, 5-5, 5-48, 7-5
generating labels, 3-45, 4-58, 6-33, 7-46

Boolean
operators, 7-29
type, Ada, 5-32

braces ({ })
as comment indicator, 7-3
as section delimiter, 3-3, 5-5, 5-48
in type declarations, 2-16

byte (data type), 4-10

C

C (language)
comments, 2-2, 2-56
compiling, 2-48
data type conversions, 2-31
data type declarations, 2-6
display (statement), 2-3
error handling, 2-45
if blocks, 2-56
param statements, 2-37
preprocessing, 2-48
reserved words, 2-5
source code generation, 2-50
statement syntax, 2-1
variables, 2-5

C data type (Ingres), 3-25, 4-24

case conversion of keywords, 2-5, 3-8, 4-5, 6-
7

char (data type), 3-25, 4-24, 7-10

character data, 2-8, 3-25, 4-11, 4-24, 5-37, 6-
23, 7-36

comparing, 6-25, 7-37

converting, 6-23, 7-36

inserting, 5-38, 7-37

retrieving, 5-38, 6-24, 7-36

COBOL
comments, 3-2, 3-46
compiling, 3-36
data types, 3-5
function calls, 3-50
IF blocks, 3-46
IF-GOTO blocks, 3-49
PERFORM blocks, 3-46
preprocessor errors, 3-50
preprocessor invocation, 3-33
reserved words, 3-7
separator periods, 3-47
source code efficiency, 3-48
source code generation, 3-35
statement syntax, 3-1
tables, 3-20
variables, 3-5

COBOL (language) preprocessing, 3-32

comments, program, 2-2, 2-56, 3-2, 3-46, 4-
2, 4-57, 5-2, 5-48, 6-3, 6-33, 7-2, 7-46

common variable declarations, 6-11
compilation units, 7-12, 7-23

compiled forms
addform (statement), 3-14, 3-16
assembling, 2-19, 3-15, 4-13, 4-15
linking, 2-52, 3-36, 4-51, 4-52, 5-45, 6-
31, 7-43
VIFRED, 2-19, 3-14, 3-15, 4-13, 4-15

compiling EQUEL, 2-48, 3-32, 4-46

constants, 7-8
declarations, 6-10
declaring, 4-8, 7-12
string, 2-2, 5-2, 6-3, 7-2

conventions, syntax, 1-3, 7-24

conversion

Index—2 Embedded QUEL Companion Guide

automatic, 2-32, 3-22, 4-23, 5-36, 6-22,
7-34

language compatibility, 2-32, 3-22, 4-22,
5-36, 7-34

numeric data, 2-32, 3-10, 3-11, 4-23, 5-
37, 6-23, 7-35

string/character data, 2-32, 3-25, 4-24, 5-
37, 6-23, 7-36

cursor
declare cursor (statement), 3-48, 4-58, 5-
30, 5-49, 7-27, 7-48
param version, 2-43, 4-34

D

-d flag, 3-33, 4-47, 5-42, 6-28

data items
declaring, 3-6
elementary, 3-19
null indicator, 3-14, 3-22
record, 3-20

data names, 3-6

data types, 2-6, 5-6, 6-7, 6-22
access, 5-21
boolean, 5-32, 7-9, 7-29
byte, 4-10
c, 4-24
char, 4-24, 7-10
character, 2-8, 4-11, 5-9, 5-37, 7-36
date, 3-27
declarations, 4-6, 5-5, 6-6, 7-6
derived, 5-21
double precision, 4-10
enumerated, 5-18, 5-32, 7-14, 7-29
floating-point, 2-7, 5-17, 5-44, 6-8
incomplete, 5-21
integer, 2-7, 4-9, 5-8, 5-16, 6-8
logical, 4-10
money, 3-25
null indicator, 3-14, 3-22, 4-13, 5-23, 6-
15, 7-9
packed array of char, 7-10, 7-16
pointer, 3-9
private, 5-22
real, 4-10, 6-9

record, 5-20, 5-33, 6-9, 6-13, 6-21, 7-17,
7-30

set, 7-19

string, 5-9, 6-8, 7-16

text, 5-37, 6-23, 7-36

varchar, 2-17, 2-30, 2-35, 5-37, 6-23, 7-
36

varying of char, 7-10

databases
sample program for updating, 4-102

databases, sample program for updating, 2-81
dates data type, 3-27
deadlock, handling, 2-47, 3-30

debugging
error information, 2-49, 3-33, 4-47, 5-42,
6-28, 7-41
program comments, 2-56, 3-46, 4-57, 5-
48, 6-33, 7-46

declarations, 6-10, 6-12
constant, 4-8, 6-10, 7-12
data item, 3-5
data type, 2-5, 4-4, 5-5, 6-6, 7-6
declare cursor (statement), 3-48
dimension (statement), 6-10
label, 7-12
number, 5-14
parameters, 5-13, 7-20
pointer, 2-12
procedure, 2-5, 3-5, 4-4, 5-5, 6-6, 7-6
records, 3-12, 4-12
scope, 7-26
structure, 2-13
types, 7-13

declare (statement), 4-5, 4-18, 7-6

declare cursor (statement), 4-58, 5-30, 5-49,
6-19, 6-34, 7-27, 7-48

declare forms (statement), 4-5, 4-18
declare ingres (statement), 6-6, 6-18
def (statement), 6-6, 6-13, 6-17
define (statement), 2-8, 2-23
dimension (statement), 6-10

discriminant constraint, 5-12

Index-3

display (statement), 2-3, 5-3, 6-4, 7-3

dollar sign ($)
as variable name suffix, 6-6

double precision data type, 4-10

end (statement), 6-18

end function (statement), 6-18

end sub (statement), 6-18

enumerated data type, 5-18, 5-32, 7-14, 7-29
enumerated variables, 2-16, 2-29

eqga (command), 5-42

eqc (command), 2-49

eqcbl (command), 3-33

eqgf (command), 4-47

eqgp (command), 7-41

EQUEL
coding requirements, 2-56, 3-46, 4-57, 5-
48, 6-33, 7-46
comments, 2-2, 2-56, 3-2, 3-46, 4-57, 5-
2, 5-48, 6-3, 6-33, 7-2, 7-46
compilation units, 7-12
compiling, 2-48, 3-32, 3-33, 4-46, 4-47, 5-
42, 6-28, 7-40
create (statement), 7-47
data type conversion, 2-31
data type declarations, 2-6, 3-8
deadlock handling, 2-47, 3-30
declare (statement), 4-5
error handling, 2-45, 3-28, 4-40, 5-40, 6-
26, 7-39
functions, 7-25
if blocks, 6-34
include (statement), 2-53, 3-43, 4-53, 5-
26, 5-46, 6-31, 7-44
keywords, 2-5, 3-7, 4-5, 5-6, 6-7, 7-7
linking, 2-52, 3-36, 4-51, 4-52, 5-45, 6-30
margin considerations, 4-1, 7-1
param statements, 2-37
preprocessor errors, 2-57, 5-49, 6-34, 7-
48

preprocessor invocation, 2-49, 3-33, 4-47,
5-42, 6-28, 7-40

statement syntax, 2-1, 3-1, 4-1, 5-1, 6-1,
7-1

variables, 2-5, 3-5, 5-5, 7-6

errors
handling, 2-45
IIseterr, 3-29, 4-40, 5-40, 6-27, 7-39
runtime processing, 2-45, 3-28, 4-40, 5-
40, 6-26, 7-39

exclamation point (!)
as comment indicator, 6-3

-f flag, 2-49, 3-33, 4-47, 5-42, 6-28, 7-41

filename extensions
.ada, 5-42
.bas, 6-32
.C, 2-49, 2-54
.cob, 3-33
.for, 4-47
dib, 3-33, 3-34, 3-43
.0bj, 2-53, 3-36, 4-52, 4-53, 5-45, 6-31,
7-44
.pas, 7-41, 7-45
.qa, 5-42
.qb, 6-28, 6-32
.qc, 2-53, 2-54
.qcb, 3-33, 3-43
.gf, 4-47, 4-54, 4-55
.qp, 7-41, 7-44

FILLER data names, 3-6

floating-point, 5-17, 5-44, 7-9
data type, 2-7, 6-8

forminit (statement), 7-33

forms
example applications, 2-66, 3-67, 3-85, 4-
72, 5-60, 6-43, 7-61
interactive example applications, 5-60, 6-
43, 7-61

Fortran
comments, 4-57
compiling, 4-49

Index—4 Embedded QUEL Companion Guide

data types, 4-4

if blocks, 4-57

null indicators, 4-13
parameter (statement), 4-8
preprocessor errors, 4-58
record (statement), 4-12
reserved words, 4-5
retrieve (statement), 4-2
source code generation, 4-49
statement syntax, 4-1
variables, 4-4

Fortran (language) preprocessing, 4-46
FRS (Forms Runtime System), 3-39
function (statement), 6-12, 6-18

functions
calling, 3-50
EQUEL, 5-28, 7-25

inherit attribute, 7-6, 7-43

integer (data type), 2-7, 4-9, 5-8, 5-16, 6-8,
7-8

integers
enum (type declaration), 2-16
literals, 6-5
size and preprocessing, 6-8

keywords, EQUEL, 2-5, 3-7, 4-5, 5-6, 6-7, 7-5,
7-7

hyphen (-)
as comment delimiter, 5-2
in contrast to minus sign, 3-19

-i flag, 2-49, 4-47, 6-28

if blocks, 3-46, 4-57, 6-34
IF-GOTO blocks, 3-49
IF-THEN-ELSE (statement), 3-49
ITseterr, 3-29, 4-40, 6-27, 7-39

include (statement), 2-53, 3-43, 4-53, 5-26,
5-46, 6-31, 7-44

indexes
index constraint, 5-12

indicator types, syntax for, 7-9

indicator variables, 2-31, 3-14, 5-23, 6-15
character data retrieval, 3-14, 5-23, 6-15
EQUEL, 2-19
syntax, 3-22, 5-35, 6-21, 7-34

-l flag, 2-49, 3-33, 4-47, 5-42, 7-41

labels
declarations, 7-12
in output code, 2-55, 3-45, 4-57
program code, 6-33, 7-46

level number, 3-6

libraries
Ada, 5-43
calling, 5-6
linking, 2-52, 3-36, 3-37, 4-51, 4-52, 5-
45, 6-30, 7-43

lines
continuing, 2-2, 3-2, 4-2, 5-2, 6-3, 7-2
numbers, 6-1

linking
compiled forms, 2-52, 3-36, 3-40, 4-51, 4-
52, 5-45, 6-31, 7-43
programs, 2-52, 3-36, 4-51, 4-52, 5-45, 6-
30

literals
integer, 6-5
string, 2-4, 3-4, 4-3, 6-5, 7-4

-lo flag, 2-49, 3-33, 4-47, 5-42, 6-28, 7-41
logical data type, 4-10

long floating-point storage format, 5-8

Index-5

M

macro command (VMS), 2-52, 6-31
margins in program code, 3-1, 5-1, 7-1
master/detail applications, 3-54

minus sign (-)
constant names and, 7-13

money (data type), 3-25

N

nested structures, 4-13
notrim (function), 3-26, 4-25, 5-38, 6-24, 7-37

null indicators, 3-14, 3-22, 4-13, 4-33, 5-23,
5-35, 6-15, 6-21, 7-9, 7-34

null values, 2-17

number sign (#)
declarations and, 2-5, 2-8, 3-5, 3-18, 5-5,
7-7
dereferencing and, 4-14, 4-15, 5-31, 6-19,
7-28
EQUEL statements, 2-1, 2-2, 4-1
in compilation units, 7-12
in statements, 3-1, 5-1, 6-1, 6-3, 7-1, 7-2,
7-32
variables and, 2-22
numeric data type, 7-8
converting, 6-23, 7-35
declarations, 3-9, 3-10
loss of precision, 3-10, 3-11, 3-24

O

-o flag, 2-49, 3-33, 4-47, 6-29, 7-41
object code, 2-52, 5-45, 7-44
occurs (clause), 3-7

overflow on type conversion, 5-37, 6-23, 7-35

packed array of char data type, 7-10, 7-16
paragraphs, COBOL, 3-46

param statements, 2-37, 3-5, 3-28, 4-26, 5-
39, 6-26, 7-39
advantages, 2-37, 2-41, 4-26, 4-32
cursor versions, 2-43, 4-34
example, 2-40, 4-29, 4-35
indicator variables, 2-42
interactive database browser example, 2-
81, 4-102
null indicators, 4-33
sorting results, 2-42, 4-34
syntax, 2-38, 4-27

parameter
declaring, 5-13, 7-20
statement, 4-8

parentheses ()
as comment delimiter (with asterisk), 7-3

Pascal
Boolean operators, 7-29
character data, 7-10
comments, 7-2, 7-46
compilation units, 7-23
compiling, 7-6, 7-42
data types, 7-6
display (statement), 7-3
environment file, 7-43
include (statement), 7-44
modules, 7-24
null indicators, 7-9, 7-34
numeric data types, 7-8
preprocessor errors, 7-48
procedure declaration, 7-6
procedures, 7-25
reserved words, 7-7
source code, 7-42
statement syntax, 7-1
variables, 7-6

percent sign (%)
as integer literal indicator, 6-5
as variable name suffix, 6-6

PERFORM blocks, 3-46

period (.) statement separator, 3-2, 3-47

Index-6 Embedded QUEL Companion Guide

plus sign (+)
concatenation operator, 7-5
constant names and, 7-13

pointers
declarations, 2-12
POINTER data items, 3-9
pointer type definitions, 7-15
variables, 2-26

pound sign (#). See number sign (#)

preprocessor
compiling/linking, 4-49, 5-43, 6-30, 7-42
integer size, 4-9, 6-8
invoking, 3-33, 4-47, 5-42, 6-28, 7-40
line numbers, 6-2
source code format, 2-50, 3-35, 3-48

programs
object code, 2-53, 7-44
source code, 3-35, 4-49, 5-43, 6-30, 7-42

error processing, 3-28, 4-40, 5-40, 6-26,
7-39

-r flag, 6-29
range variables, 5-11, 7-15
real data type, 4-10, 6-9

record data type, 5-20, 5-33, 6-9, 6-13, 6-21,
7-17, 7-30

records
data items, 3-20
declaring, 3-12, 4-12

register variables, 2-10

renames (clause), 5-34

representation (clause), 5-22

reserved words, EQUEL, 2-5, 3-7, 4-5, 6-7, 7-7
retrieve (statement), 3-18, 4-2, 4-27, 4-57
retrieving character data, 5-38, 6-24, 7-36

runtime routines
declaring, 7-6
inheriting, 7-6

runtime system

-s flag, 2-49, 3-34, 4-48, 5-42, 6-29, 7-42

scalar-valued variables, 2-24, 3-21, 4-20, 5-
31, 6-21, 7-28

semicolon (;)
as statement separator, 7-46
as statement terminator, 2-1, 4-1, 5-1, 5-
6, 6-2, 7-1, 7-12, 7-47

set type variable, 7-19
set_ingres (statement), 3-29

slash (/)
as comment indicator (with asterisk), 5-2,
6-4, 7-3
comment indicator (with asterisk), 2-2, 4-2

sorting param retrieve results, 4-34

source code
label generation, 2-55, 3-45, 4-57, 6-33,
7-46
preprocessors, 2-50, 3-35, 3-48, 4-49, 5-
43, 6-30, 7-42

strings, 5-9, 6-8
constants, 2-2, 5-2, 6-3, 7-2
converting, 6-23, 7-36
literals, 2-4, 3-4, 4-3, 6-5, 7-4
varying length, 7-16

structure
members, 2-28, 4-22
nested, 4-13
struct (declaration), 2-15
variables, 2-28

sub (statement), 6-13, 6-18

syntax, 7-1
conventions, 1-3, 5-25, 7-24
data item declaration, 3-6
of param statements, 4-27

SYSTEM package, 5-7

Index—7

table fields
sample application, 2-70, 3-75, 4-79, 5-
64, 6-47, 7-65

tag structure, 2-13
text data type, 3-25, 4-24, 5-37, 7-36

truncation
blanks, 3-26, 4-24, 6-23, 7-36
data conversion, 2-32, 3-24, 4-23, 4-24,
5-37, 6-23, 7-35

type declarations, 5-21, 7-13
type definition, 5-15, 7-14
typedef (declaration), 2-11

underscore (_)
constant names and, 7-12
in type names, 7-14

union declaration, 4-12
UNIX icon, 1-3
use (clause), 5-26, 5-47

use-types, clauses, 3-7

\'

map, 6-11
pointer, 2-12

reserved words, 2-5, 3-7, 4-5, 5-6, 6-7, 7-

7
scope, 2-22, 3-18, 4-18, 5-25, 6-17, 7-26
section, 4-4, 5-5, 6-6, 7-7

syntax, 2-9, 4-2, 5-2, 5-10, 6-10, 7-19
types, 2-9

variables, 2-19
accessing, 5-35
array, 2-25, 4-20, 5-33, 6-20, 7-29
enumerated, 2-29
indicator, 2-31
null indicator, 3-14, 3-22, 4-13, 4-22, 5-
23, 5-35, 6-15, 6-21, 7-9, 7-34
number sign (#), 2-22
parameters, 6-12
pointer, 2-26, 5-35, 7-33
range, 5-11, 7-15
record, 6-21
register, 2-10
renaming, 5-14
scoping, 6-17, 7-26
simple, 2-24, 4-20, 5-31, 6-20, 7-28
structure, 2-28
varchar, 2-30, 2-35

varying of char data type, 7-10
VMS icon, 1-3

W

varchar data type, 2-17, 2-30, 2-35, 3-25, 5-

37, 6-23, 7-36

variable declarations
array, 2-11
common, 6-11

-w flag, 2-50, 3-34, 4-48, 5-42, 6-29, 7-42
Windows icon, 1-3

with (clause), 5-26, 5-47

with (statement), 7-32, 7-47

with equel (statement), 5-6

Index-8 Embedded QUEL Companion Guide

	Bookshelf
	Ingres Embedded QUEL Companion Guide
	Contents
	1: About This Guide
	Overview
	Purpose of This Manual
	Audience
	Contents
	Conventions
	Statements and Commands
	Terminology
	Syntax

	System Specific Text
	Related Manuals

	2: Embedded QUEL for C
	EQUEL Statement Syntax for C
	Margin
	Terminator
	Line Continuation
	Comments
	String Literals

	C Variables and Data Types
	Variable and Type Declarations
	EQUEL Variable Declaration Procedures
	Reserved Words in Declarations
	Data Types
	C Data Types and Corresponding Ingres Types
	The Integer Data Type
	The Floating-point Data Type
	The Character String Data Type
	##Define Declaration
	Variable Declarations Syntax
	Type Declarations Syntax
	Array Declarations Syntax
	Pointer Declarations Syntax
	Structure Declarations Syntax
	A Structure with a Tag and a Body
	A Structure with a Body and No Tag
	A Structure with a Tag and No Body
	Enumerated Integer Types
	The Varying Length String Type
	Indicator Variables
	Assembling and Declaring External Compiled Forms - VMS only
	Compiling and Declaring External Compiled Forms - UNIX only
	Concluding Example

	The Scope of Variables
	Variable Usage
	Simple Variables
	Array Variables
	Pointer Variables
	Structure Variables
	Using a Structure Member
	Using an Enumerated Variable (Enum)
	Using a Varying Length String Variable (Varchar)
	Using Indicator Variables

	Data Type Conversion
	Ingres and C Data Type Compatibility
	Runtime Numeric Conversion
	Runtime Character Conversion
	Using Varchar to Receive and Set Character Data

	Dynamically Built Param Statements
	Syntax of Param Statements
	Practical Uses of Param Statements
	Indicator Variables in Param Statements
	Using the Sort Clause in Param Retrieves
	Param Versions of Cursor Statements

	Runtime Error Processing
	Programming for Error Message Output

	Precompiling, Compiling, and Linking an EQUEL Program
	Generating an Executable Program
	The EQUEL Preprocessor Command
	Eqc Command Examples
	The C Compiler

	Linking an EQUEL Program--UNIX
	Programs without Embedded Forms
	Compiling and Linking Precompiled Forms

	Linking an EQUEL Program--VMS
	Assembling and Linking Pre-Compiled Forms
	Linking an EQUEL Program without Shared Libraries

	Include File Processing
	Including Source Code with Labels

	Coding Requirements for Writing EQUEL Programs
	Comments Embedded in C Output
	Embedding Statements Inside C If Blocks
	An EQUEL Statement that Does Not Generate Code

	EQUEL/C Preprocessor Errors

	Preprocessor Error Messages
	Sample Applications
	The Department-Employee Master/Detail Application
	The Employee Query Interactive Forms Application
	The Table Editor Table Field Application
	The Professor-Student Mixed Form Application
	An Interactive Database Browser Using Param Statements

	3: Embedded QUEL for COBOL
	EQUEL Statement Syntax for COBOL
	Margin
	Terminator
	Line Continuation
	Comments
	String Literals
	The Param Function

	COBOL Variables and Data Types
	Variable and Type Declarations
	EQUEL Variable Declaration Procedures
	The Declare Statement
	Data Item Declaration Syntax
	Reserved Words in Declarations

	Data Types
	The Numeric Data Category - UNIX
	Numeric Data Items with Usage COMP-5 - UNIX
	The Numeric Data Category - VMS
	The Numeric Edited Data Category
	The Alphabetic, Alphanumeric, and Alphanumeric Edited Categories
	Declaring Records
	Indicator Data Items
	Compiling and Declaring External Compiled Forms - UNIX
	Assembling and Declaring External Compiled Forms - VMS
	Concluding Examples

	The Scope of Variables
	Variable Usage
	Elementary Data Items
	COBOL Tables
	Record Data Items
	Using Indicator Data Items

	Data Type Conversion
	Ingres Types and Corresponding COBOL Data Types
	Decimal Type Conversion
	Runtime Numeric Type Conversion
	Numeric DISPLAY Items and Temporary Data Items
	Runtime Character Conversion

	Dynamically Built Param Statements
	Runtime Error Processing
	Programming for Error Message Output
	Set_ingres Constant Values

	Precompiling, Compiling, and Linking an EQUEL Program
	Generating an Executable Program
	The EQUEL Preprocessor Command
	Eqcbl Command Options

	Source Code Format
	Format Considerations--UNIX
	Format Considerations--VMS

	The COBOL Compiler--VMS
	Linking an EQUEL Program
	Assembling and Linking Precompiled Forms
	Linking an EQUEL Program without Shared Libraries

	Incorporating Ingres into the Micro Focus RTS--UNIX
	The COBOL Runtime System
	Building an Ingres RTS Without the Ingres FRS
	Building an RTS with the Ingres FRS
	Including External Compiled Forms in the RTS
	Procedure 1
	Procedure 2

	Include File Processing
	Including Source Code with Labels
	Coding Requirements for Writing EQUEL Programs
	Comments Embedded in COBOL Output
	Embedding Statements In IF and PERFORM Blocks
	COBOL Periods and EQUEL Statements
	An EQUEL Statement that Does Not Generate Code
	Efficient Code Generation
	COBOL Strings and EQUEL Strings
	COBOL IF-THEN-ELSE Blocks
	COBOL Function Calls

	EQUEL/COBOL Preprocessor Errors

	Preprocessor Error Messages
	Sample Applications
	UNIX and VMS--The Department-Employee Master/Detail Application
	UNIX and VMS--The Employee Query Interactive Forms Application
	UNIX and VMS--The Table Editor Table Field Application
	UNIX and VMS--The Professor-Student Mixed Form Application

	4: Embedded QUEL for Fortran
	EQUEL Statement Syntax for Fortran
	Margin
	Terminator
	Line Continuation
	Comments
	String Literals

	Fortran Variables and Data Types
	Variable and Type Declarations
	EQUEL Variable Declaration Procedures
	The Declare and Declare Forms Statements
	Reserved Words in Declarations
	Typed Data Declarations
	Constant Declarations
	Data Types
	The Integer Data Type
	The Real Data Type
	The Character Data Type
	Structure and Record Declarations
	Indicator Variables
	Assembling and Declaring External Compiled Forms - VMS
	Compiling and Declaring External Compiled Forms - UNIX

	Compiling and Declaring External Compiled Forms - Windows
	Concluding Example

	The Scope of Variables
	Variable Usage
	Simple Variables
	Array Variables
	Structure Variables - VMS only
	Using a Structure Member
	Using Indicator Variables

	Data Type Conversion
	Ingres and Fortran Data Type Compatibility
	Runtime Numeric Type Conversion
	Runtime Character Conversion

	Dynamically Built Param Statements
	Syntax of Param Statements
	Practical Uses of Param Statements
	Indicator Variables in Param Statements
	Using the Sort Clause in Param Retrieves
	Param Versions of Cursor Statements

	Runtime Error Processing
	Programming for Error Message Output

	Precompiling, Compiling, and Linking an EQUEL Program
	Generating an Executable Program
	The EQUEL Preprocessor Command
	Eqf Command Examples
	The Fortran Compiler

	Linking an EQUEL Program - UNIX
	Programs Without Embedded Forms
	Programs with Embedded Forms
	Compiling and Linking Precompiled Forms

	Linking an EQUEL Program - VMS
	Assembling and Linking Pre-Compiled Forms
	Linking an EQUEL Program without Shared Libraries

	Linking an EQUEL Program - Windows
	Include File Processing
	Including Source Code with Labels
	Coding Requirements for Writing EQUEL Programs
	Comments Embedded in Fortran Output
	EQUEL Statements and Fortran If Blocks
	EQUEL Statements that Generate Labels
	An EQUEL Statement that Does Not Generate Code

	EQUEL/Fortran Preprocessor Errors

	Preprocessor Error Messages
	Sample Applications
	UNIX and VMS--The Department-Employee Master/Detail Application
	UNIX and VMS--The Employee Query Interactive Forms Application
	UNIX and VMS--The Table Editor Table Field Application
	UNIX and VMS--The Professor-Student Mixed Form Application
	UNIX, VMS, Windows--An Interactive Database Browser Using Param Statements

	5: Embedded QUEL for Ada
	EQUEL Statement Syntax for Ada
	Margin
	Terminator
	Line Continuation
	Comments
	String Literals
	Block Delimiters

	Ada Variables and Data Types
	Variable and Type Declarations
	EQUEL Variable Declarations Procedures
	The With Equel and With Equel_Forms Statements
	Reserved Words in Declarations and Program Units
	Data Types and Constants
	Ada Data Types and Corresponding Ingres Types
	Ada Constants and Corresponding Ingres Types
	The Integer Data Type
	The Float Data Type
	The Long Float Storage Format
	The Character and String Data Types
	Variable and Number Declaration Syntax
	Simple Variable Declarations
	Type Constraints
	The Range Constraint
	The Discriminant and Index Constraints
	Formal Parameter Declarations
	Number Declarations
	Renaming Variables
	Type Declaration Syntax
	Type Definition
	Subtype Definition
	Integer Type Definitions
	Floating-point Type Definitions
	Enumerated Type Definitions
	Array Type Definitions
	Record Type Definitions
	Incomplete Type Declarations and Access Types
	Derived Types
	Private Types
	Representation Clauses
	Indicator Variables
	Assembling and Declaring External Compiled Forms
	Concluding Example

	Compilation Units and the Scope of Variables
	The Package Specification
	The Package Body
	The Procedure
	The Function
	The Declaration Block
	Variable and Type Scope

	Variable Usage
	Simple Variables
	Array Variables
	Record Components
	Access Variables
	Using Indicator Variables

	Data Type Conversion
	Ingres TYPES and Corresponding Ada Data Types
	Runtime Numeric Type Conversion
	Runtime Character Type Conversion

	Dynamically Built Param Statements
	Runtime Error Processing
	Programming for Error Message Output

	Precompiling, Compiling and Linking an EQUEL Program
	Generating an Executable Program
	The EQUEL Preprocessor Command
	Eqa Command Examples
	The ACS Environment and the Ada Compiler
	Entering EQUEL Package Specifications
	Defining Long Floating-point Storage
	The Ada Compiler
	Linking an EQUEL Program
	Assembling and Linking Pre-Compiled Forms
	Linking an EQUEL Program without Shared Libraries

	Include File Processing
	Including and Processing EQUEL/Ada Package Specifications
	Including EQUEL/Ada Source Code

	Coding Requirements for Writing EQUEL Programs
	Comments Embedded in Ada Output
	Ada Blocks Generated by EQUEL
	An EQUEL Statement that Does Not Generate Code

	EQUEL/Ada Preprocessor Errors

	Preprocessor Error Messages
	Sample Applications
	The Department-Employee Master/Detail Application
	The Employee Query Interactive Forms Application
	The Table Editor Table Field Application
	The Professor-Student Mixed Form Application

	6: Embedded QUEL for BASIC
	EQUEL Statement Syntax for BASIC
	BASIC Line Numbers and the EQUEL Mark
	Terminator
	Line Continuation
	Comments
	String Literals
	Integer Literals

	BASIC Variables and Data Types
	Variable and Type Declarations
	EQUEL Variable Declarations Procedures
	The Declare Ingres Statement
	Reserved Words in Declarations
	Data Types
	BASIC Data Types and Corresponding Ingres Type
	The String Data Type
	The Integer Data Type
	The Real Data Type
	The Record Data Type
	Variable and Constant Declaration Syntax
	The Declare Statement
	The Dimension Statement
	Static Storage Variable Declarations
	The External Statement
	Parameter Variables
	Record Type Definitions
	The Indicator Variable
	Assembling and Declaring External Compiled Forms
	Concluding Example

	The Scope of Variables
	Variable Usage
	Simple Variables
	Array Variables
	Record Components
	Using Indicator Variables

	Data Type Conversion
	Ingres Data Types and Corresponding BASIC Types
	Runtime Numeric Type Conversion
	Runtime Character Type Conversion

	Dynamically Built Param Statements
	Runtime Error Processing
	Programming for Error Message Output

	Precompiling, Compiling and Linking an EQUEL Program
	Generating an Executable Program
	The EQUEL Preprocessor Command
	Eqb Command Examples
	The BASIC Compiler
	Linking an EQUEL Program
	Assembling and Linking Pre-Compiled Forms
	Linking an EQUEL Program without Shared Libraries

	Include File Processing
	Including Source Code with Labels

	Coding Requirements for Writing EQUEL Programs
	Comments Embedded in BASIC Output
	Embedding Statements Inside BASIC If Blocks
	An EQUEL Statement that Does Not Generate Code

	EQUEL/BASIC Preprocessor Errors

	Preprocessor Error Messages
	Sample Applications
	The Department-Employee Master/Detail Application
	The Employee Query Interactive Forms Application
	The Table Editor Table Field Application
	The Professor-Student Mixed Form Application

	7: Embedded QUEL for Pascal
	EQUEL Statement Syntax for Pascal
	Margin
	Terminator
	Line Continuation
	Comments
	String Literals
	Block Delimiters

	Pascal Variables and Data Types
	Variable and Type Declarations
	Declaring the EQUEL Runtime Routines
	The Declare Statement
	The Inherit Attribute
	Declaring Types and Variables to EQUEL
	Reserved Words in Declarations and Program Units
	Data Types and Constants
	Pascal Data Types and Corresponding Ingres Types
	Pascal Constants and Corresponding Ingres Types
	The Integer Data Types
	Pascal Integer Types
	The Indicator Type
	The Floating-point Data Types
	The Double Storage Format
	The Character Data Types
	Declaration Syntax
	Attributes
	Label Declarations
	The Syntax of Label Declarations
	Constant Declarations
	Type Declarations
	Type Definitions
	Renaming Type Definition
	Enumeration Type Definition
	Subrange Type Definition
	Pointer Type Definition
	Varying Length String Type Definition
	Array Type Definition
	Record Type Definition
	File Type Definition
	Set Type Definition
	Variable Declarations
	Formal Parameter Declarations
	Assembling and Declaring External Compiled Forms
	Concluding Example

	Compilation Units and the Scope of Objects
	Predeclared Identifiers
	Compilation Unit Syntax
	The Program Unit
	The Module Unit
	The Procedure
	The Function
	The Scope of Objects

	Variable Usage
	Simple Variables
	Array Variables
	Record Components
	The With Statement
	Pointer Variables
	Indicator Variables

	Data Type Conversion
	Ingres and Pascal Data Type Compatibility
	Runtime Numeric Type Conversion
	Runtime Character Type Conversion

	Dynamically Built Param Statements
	Runtime Error Processing
	Programming for Error Message Output

	Precompiling, Compiling, and Linking an EQUEL Program
	Generating an Executable Program
	The EQUEL Preprocessor Command
	Eqp Command Examples
	The Pascal Compiler
	Installing the EQUEL/Pascal Environment File
	Linking an EQUEL Program
	Assembling and Linking Pre-Compiled Forms
	Linking an EQUEL Program without Shared Libraries

	Include File Processing
	Including Source Code with Labels

	Coding Requirements for Writing EQUEL Programs
	Comments Embedded in Pascal Output
	The Pascal Semicolon and EQUEL Statements
	Pascal Blocks Generated by EQUEL
	An EQUEL Statement that Does Not Generate Code

	EQUEL/Pascal Preprocessor Errors

	Preprocessor Error Messages
	Sample Applications
	The Department-Employee Master/Detail Application
	The Employee Query Interactive Forms Application
	The Table Editor Table Field Application
	The Professor-Student Mixed Form Application

	Index

