Ingres® 2006 Release 2

INGR=S

rrrrrrrrrrrr

This documentation and related computer software program (hereinafter referred to as the "Documentation") is for
the end user's informational purposes only and is subject to change or withdrawal by Ingres Corporation ("Ingres")
at any time.

This Documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of Ingres. This Documentation is proprietary information of Ingres and protected
by the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this Documentation for
their own internal use, provided that all Ingres copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. The user consents to Ingres obtaining injunctive relief precluding any unauthorized use of the
Documentation. Should the license terminate for any reason, it shall be the user's responsibility to return to Ingres
the reproduced copies or to certify to Ingres that same have been destroyed.

To the extent permitted by applicable law, INGRES PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IN NO EVENT WILL INGRES BE LIABLE TO THE
END USER OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USER OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF INGRES IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The use of any product referenced in this Documentation and this Documentation is governed by the end user's
applicable license agreement.

The manufacturer of this Documentation is Ingres Corporation.

For government users, the Documentation is delivered with "Restricted Rights" as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Copyright © 2007 Ingres Corporation. All Rights Reserved.

Ingres, OpenROAD, and EDBC are registered trademarks of Ingres Corporation. All other trademarks, trade names,
service marks, and logos referenced herein belong to their respective companies.

Contents

Chapter 1: Planning the Upgrade 11
LI =TS J o« =T L= =] -1 o 1 PP 11
L]0 Ta | =T L= NV 0T 12
(W] 0T =T [=Ta [o 4 =1 oo Yo [PP 12
(0] a] [eY=Te /A 2= To Y= T B 14 =1l 1Y PSS, 13
Upgrade Method and INgres ReIEASES. .. .ouuiiii ittt e e e e aneas 13
From Releases Prior t0 INGres 6.4 ...ttt ittt r e e st e st s e s e se e aneeaaneanens 13
L0 T T ST 14
From Releases Newer than INGres 6.4 ...t e e anees 14
From a 32-bit t0 @ 64-bit REICASE....ciuiii i e 15
To Member-Aligned Alpha OpenVMS (@XM VIMS) ctuutiutititiieiitierieeatranrneraesnesaesnesneeneeneaneaneans 15
Required Installations for Upgradingcvuviiiiiiiiiiii st e e e eaeas 16
Possible Hardware Setups for Upgrading ...cuoeiiiiiiii i re e s e e ne e neenaeans 17
HOW YOUu Perform the Upgrade ...t ettt e e e e e e e e aannaeas 18
How You Plan for AppliCation ISSUEBSciuiiiii ittt e e e e 19
The Test Plan for ApPliCationS .. .t a e e e e e s e e aeeaneaaneans 19
LT VA V2= B U] o Yo o PP 20
Chapter 2: Creating a New Ingres Development Environment 21
Platform-specific Examples iN ThisS GUIAE ...c.viiiiiiiiiii i i i e e e v e e e e seeaaeaaeas 21
How You Move an Existing Development Installation into the New Development Installation........... 21
Create a Development Installation of the New INgrescooiiiiiiiiiiii e 22
HOW YOU Prepare YouUr ApPPliCations ..ot e e e e e s e v e et e e e snerneaneanns 23
Reserved Keyword ConfliCES ... e e 23
Re-image ABF ApPliCatiONS. ... e 24
Report-Writer Syntax Change When Upgrading from INgres 6.4.......ccoviiiiiiiiiiiiiiiiiiiieannens 24
Report-Writer Runtime Parameter Errors (UNIX) couoiiiiiiiii i st re e e e 24
Use Of the ANSIDATE Data Ty P cuiuiiiiiiiiiiiiie ittt st e st r e st et s e s e e e e s e sneaness 25
How You Load Databases and Applications into the New Installationccooiiiiiiiiin e, 26
(O =TT U] = 26
N[0 XY T = o = =] <= 27
110XV = | = oo [PP 28
Move INgres Star Databases. .. .ciiviiiiiii i e 28
The system_maintained Column NamMeE ... e ea e eeas 29
(o] aa] o] 1 [SIAY o] o] [Tof=1 o o] 13 PP 29
[O A (o NI o =T o= I o TE) V= (= o PP 30
)Y 1= 0 g T = =T U o PP 30

Contents iii

System MonNItoring ShellSCriPES uuuuiei it e r e 31

Checkpoint Template Changes cu ittt e e e e e e en e aeeranens 32
Checkpoint and ROIfOrward Changesoiuiieiieiiiiiiii et e e e 32
Shared Library Search Path (UNIX) ..o s ie e raeeeeens 32
UNIX Kernel Parametars ... ittt e e e e e e s e e ra et e e e e e e e e aneees 34
L2511 34
PY] o] [ot=] u o] o I =11 w1 o T R TR 34
[T oY g = g ol I =T o [Vo P 34
System Administrator Procedure Testingoccviiiiiiiiiiii e 35
HOW YOU PractiCe the UpPgGrade ..o.ciuiiiiiiiiiiii ittt et et e e s e et e e e e e et e e e e e e e e annaeas 35
How You Prepare a Build for the Live Upgrade.........oeiiiiiiiii e e e e 35
Chapter 3: Upgrading Using Upgradedb 37
Ownership Assumptions for Running Upgradedbcooiiiiiiiii e 37
How You Upgrade Using the Upgradedb ULilityo e e e e e 38
(D =E=] o] LIt oY o o =1 P 38
Disable Remote CommMand SeIVerttt ettt e e e e aae e ae e annaneas 39
Shut Down Ingres and Back Up SYStemM ... i e e s 40
Clean the Database.oiui it 41
Record Database INformation ... e e 41
Checkpoint and Turn Off JOUMN@lING .. .o.eieiiie et s e e e e e aaaens 42
IS 18 Lo I Lo Y] I T | = PP 42
Preserve Site ModifiCations. . .uiii it e 42
(Optional) Delete Install Directory (UNIX)oueieieieieieiee e e s e e e s e e e e e eeeaenees 44
L 1= o | g o = PP 44
Create iMadb Databaseii it e e 45
Restore Site ModifiCationNs e 45
S o= o 1 g e | = PP 45
{0 a8 e | = Yo [=Ta | o B U L] Y PP 46
Review Ingres ConfigUration e e e e e e e 46
(Optional) Reapply Optimizer StatistiCs ...o.uiiie i e e e 46
Checkpoint the Database .oui it e et a e a e e e raae e 47
Install Upgraded AppPliCatIONSceiiie i et e e e e e e e e e e aranens 47
Chapter 4: Upgrading Using Unload/Reload 49
Variations of Unload/Reload ProCeAUIEiviiiiiiiiiiiiii e 49
How You Perform an Upgrade Using Unload/Reload........ccciuiiiiiiiniiiiiiii e e e e 50
(O =T =R U o] Lo = Ta I 1] = ot o oY PP 51
RUN UNIO@AAD 1. uitiii i 52
(@] aT=Tol g (o] gl @ o F=Yo] 1= W =T U FY = o= PP 52
(Optional) Checkpoint the Databaseccviiiiiiiiiiii i e 53

iv. Migration Guide

[T EF= | o] LT LT gl Y ol S 53

Disable RemMote ComMmMand SeIVer . .uuiie ittt ettt ettt e et e e e e e e e aaeaneas 53
Shut Down Ingres and Back Up Systemooiiiiiiiiiii s 54
UNlOad the Database ... ittt et 54
(Optional) Print Optimizer StatistiCs.vieiie i e 55
Record Database INformation ..o i e r e s s e e e e 55
Record Database PrivilEgesovviriiii i e e 56
Save Users, Groups, @nd ROIESiiuiiiiiii ittt 57
Destroy the Database......c.oiviiiiiii e 57
Clean iidbdb Databaseuuuiieiiiiii i e e e e 58
(DI ET=Y o] L= N o | TR o= o o U o 59
Preserve Site ModifiCalions. .. c.viiiii i e 59
(Optional) Delete Install Directory (UNIX) .oiiuiiiiiiiiiiii i i et re e v e re e re e e aeeeens 60
| 1= = L g o o= PP 60
Create iMadb Database ..uviieiiiiii i s r e et 61
Restore Site MOdifiCationS ..uiue ittt 62
Review Ingres Configuration e e e e e e e 62
Lo U o g T = V= PP 62
3= o T =P 63
Recreate Users, Groups, @nd ROIESieiiiiiiiii ittt et e e e e aeaneas 63
[T ol == 1o = oY= | of[o] 1= 64
Recreate the Database ...civii ittt 64
EXteNd the Database . ..ucuiiei it e 64
Recreate Database Privileges. ... e 65
[DYl o = 2 =] (o = T B ol 1] 66
Reload the Database ...ucuiiei i e 66
Upgrade Front-ENd Catalogscouuiuiiiiiiiiiiie ittt vt st sttt et e s e et s e e e s e aness 67
Reapply Optimizer StatistiCs .. it e e e et e aaaea 67
Checkpoint the Databaseciuiiieiii et e e e e e e e e aaaeas 67
Install Upgraded ApPliCAtIONScuieiii i et 68
Chapter 5: Troubleshooting Upgradedb 69
(O] g T=T gl WToTo g=Te [=Te | o 0 = /o 0] 1= 0 o 1= P 70
Chapter 6: Considerations for Alpha OpenVMS 71
L@ 7T 0 Y AR ST [1T =y o 1 T=T = 71
Considerations When Installing Ingres on OpenVMSot 71
1T YU o o = G PN 72
L0 I 1 S I PP 72
KNOWN TNStallation ISSUES ..uuiiiiiiie ittt ettt ettt ettt et e e et r e e e e et et e e e e eeanes 73
1Yol 41T 0 0 1= @ 1<) q 1 o e TR PP 73

Contents v

PaY] o] [Tt=] o) o W 2= 0 18 1] Vo 11 s A PP 74

Building Member_Aligned Against INgres 2.6 0r 2006.......cciuiiiiiiiiieiiie e reeeaeaees 74
Appendix A: Upgrading from Ingres 6.4 79
(@fe] a1 o [T =Y [o] a F-3 o] ol £ o T /=TT C TR PP 79

PaVoT o] Tor=Yullo] o I o = o T =1l o] o 1 P 79

SYSEEM Preparation ..o 83
Unload/Reload Procedure for Upgrading from 6.4ciiiiiiiiiiiiiii i it ie e ies e s e s neenanens 84

Unload/Reload UpGrade Ty PeS .. uuue e et iaeeeee e et e s e e s et st ee e s aee e e s r e e e anseanaereanenes 85

Front-end Catalogs and the Upgradefe Programcccoiiiiiiiiiiiiii e 85
How You Upgrade from Ingres 6.4 Using Unload/Reloadccooeiiiiiiiiiiiiiiiiii i nneeea e 86

(@] aT=Tol g (o] gl @0 F=Yo] 1= W =T U FY = o= PP 87

Record Database Privilegesouieiii i 88

Save Users, Groups, @nd ROIESuiiiiiii i e e e e e e et a e a et aa e aaeaaaens 89

Clean iidbdb Database.cuieieiiie i et aaas 90

Record Ingres Configuration ... 90

1] 10 Lo Lo Y] I g T | = PP PP 91

G 1o T 1 0T 91

SAVE INGres Se NG S .. vttt e 91

(O 1T T U o I g o =TT T PP 92

(@ =TT IV o g o Yo | o] o NPT 92

Restore Site ModifiCationsoieiii e 93

(@oTq] o 18] o <3 g T | /== PP 93

Recreate Users, Groups, @nd ROIESiiiiiiiiii ittt e e e aaeaneas 94

Recreate Database Privileges. ... e 95

[DYl o = 2 =] (o = T B ol 1] 95
Alternate Upgradeb ProCAUIEieieiie ittt et e e e e e s e e e e e e a e e e sneeenaeaeanes 96
How You Upgrade from Ingres 6.4 Using Upgradedb (Alternate).........ccooiiiiiiiiiiiiiiii i 97

(@191 L o] (o =T I D)1 o =Tt o] o VS 98

8T 0 o1 [= o [| o R P 99

Edit the Unloaddb OULPUL.civiii e e 100

Remove Non-table ObjJeCtS. . .ciiiiiii i 101

Checkpoint and Turn Off JOUIN@liNG .. .c.euiiieiii et e e e e e eaanes 102

SaAVE INGres SO NG S .. vt 103

[ol ==Y (I @ o) =Tl = PP 103

ReappPly StOrage StrUCTUIES. ...ttt e e e e e e s e e e e e e a e e e e neeenanes 103
Corresponding Parameter NamMESei it e et e et e e e e e eeanes 104

Parameters in 6.4 rundbms.opt File ... e 104

Locking and Logging System Parameters.couiiieiiii it 107

vi Migration Guide

Appendix B: Keywords 109

JLIE= 1o L= = 2P 109
Reserved SiNgle KEYWOIAS.ttt ettt et e e e e et et e e st et et e n s e e aneeanes 110
Reserved DoUbDIE KEYWOIAS ...ttt e e et r e a e e r e r e r e r e aeereennes 120
Other RESErved KEYWOIASc.uieieiiie ittt ettt e et e e e s e e e a e e e e e e e s e e ea e e sr et e enaneaaneenn 130
Appendix C: Features Introduced in Ingres 2.6 131
User-Visible Language ENNanCemMENTS ...iiuiiiiiiiiii i s st a e s s st s st e e s an e an e e an e raneaaneanns 131
ROW ProdUCing ProCEAUIESiieieii ittt et et e e e e e s e e e e e e a e e e e aeenenes 132
YU 3 Y I I T o o o o o P 132
New Aggregate FUNCHIONS ... e s e e s an e e s e e s aane e sanre e sanneeennees 132
Increased Maximum Size of Character Data TYPeS ..couiuiieiiie it e e 132
User-Visible DBA ENNanCemMENtS .. ettt st ean s s san e sane s s e s an e san e s anesanesaneaanesaneeannsaneanns 133
L8 1=1=] g o o I 0 L PP 133
A8 Lo 1) o T 1 o P 133
(@007 03 o | o U 1110 P 133
2= 1AV o Y= 1 [0 IR 61 o] o o o P 134
O T Tl) I N oV =T o [TR 134
XML IMpPort/EXPOrt ULHIEY «oueeeii et e e e ens 134
o101 g I N g =] V=] o PPN 134
IMIPOrt ASSIStaNt. e s 134
Automated Creation of Location Dir€CtOMESvueieiiiiiii i e ees 135
Remote Command Server Enhancementso 136
Microsoft Transaction Server SUPPOITttt e e e e e e e e aeeenas 136
(670 o o8 g/ /=] o} 0] | 5= T <P 136
Internal Performance EnNhanCements.viiiiiiiiiii 136
AGGregate SOt NOGES .. .o et et e e e et 136
(O00]g gl oTo] Xl o 11y o Yo r=T o 1= PP 136
Optimizer SUpPPOrt for Hash JOINS ..uiuiiiiii i i e ane e nes 137
Locking System Performance IMpProVemMENTS et ie et e e e e e e ee e rneees 137
LT Yo Tot= N =T S = I = 137
Miscellaneous Locking System ImMpProVemMENES .. .uuiii it i are e raneraneaanens 137
Logging System Performance ImMpProVEMENES.ciuiiie it e e e e e e eees 138
Buffer Manager Performance ImMproVemMeENTtS. ...t a e e 138
Operating System Integration ... s e e e 138
64-Bit Operating Sy s emMIS ... i 138
Operating System Thread Implementation 0N LiNUX.....c.oiuiiiiiiiiiii e 138
I g Lo gY@ S = oY o T=] Tl =] 0 1= o) = PR 139
ICE Development ENVIFONMENTue ittt e et s e e s e e e e e a e e n e neeenanes 139
(@15 =TGR =l o] o = g o= 0 1 =T 0 | =30 PP 139
Functions Supported by ODBC DIiVer .. uuiei ittt it it i e ae e e e e e e sarerareeaneaaneaanenn 139

Contents vii

Unavailable Features in the OD B C DriVer . ..uiuiiii it rie i tate e i e ateerraneeeannees 140

1] T = oY o =T Tel=T 0 a1 o =P 140
YU o] oY) ol o] gl U] 1o o L= P 141
New Character Sets to Support Euro Currency Symbolcciiiiiiiiiiii e 142
Appendix D: Features Introduced in Ingres 11 2.5 145
o]l =] g F= g Ue=T 0 V=T o) =P 145
(O] = 2o o ol =] g T=1 Tl =] 2 ¢ 1= o] o P 146
D]\ | Yo T ol = o1 F=1 Tl =T 0 g =T 0 Lt PP 147
Parallel SOrt TECHNIGUES .. .ovi et e e e e enes 147
ANSI/ISO Constraint ENNaNCEMENES tuiiiiiiiiiii ittt tsiiiastree s st trassasereessssasnsssseeessrsnsnnnnes 148
(=Y o [=T o LTS 0] o o o o PP 149
Dynamic Write Behind Threadscooiiiiiii it e e 150
Partitioned Transaction LOG File......ciiiiiiiiiii i e a e e aeneanes 150
Optimizer and Optimizedb ENNanCemMENTSieiie et e e e e e e neaeas 151
Read-only Database SUPPOIT ... 151
Example: Create a Read-only Databaseccviiiiiiiiii i e 152
NV @] I U Tt o = 1Y PR 152
Order BY/Group By EXPIESSION ...uuiueitiitiieiiiteaaeate et e e e et st s s e e s e sae s e st eaesaeaneenes 153
(07N i Y o] =11~ Lo o N 153
Parallel INAeX Cre@tionoeeieieiiie ittt e et e e e e e e ra et e e e e e n e e aaanenenaeaenn 153
) = I = O I = | g =T g Tt =T o 1= o | PP 154
Bit-WisSe Operator SUP PO . . it e et 154
Aggregate FUNCHIONS ... e 154
N TE=Tol=T =T T=To 18 L3 U Lot of [0} o 155
[=] ale [=Ta BB T Lo TR Y U] o] oo o P 155
(=Y o [N T TS U] o] o o] o P 155
=] o == =1 Lo o = PP 155
Row Locking for System Catalogs «..uueiieiiiiiiiii i e 156
(810 To F= X oL\ Fo o [N o Tl 4o Ve 156
Value Locking for Serializable Transaction with Equal Predicatecccocoiiiiiiiiiiinnn, 156
Query Optimization and Execution ENhancements ... e 156
LTSRS) = gl ==Y U = 157
INGres Net FEAtUNES . . vttt e e e e e e 157
L gL ST O == o = 158
Ingres ICE Security ENhanCemMENnts.o i et e e e 158
Ingres ICE Session Management Enhancements.... ..o 158
S e =T [T\ F=T =T 1< o a 1< o 158
Macro Language EXEENSIONS ...uiiuiiiiiiiii e 159
ViISUAI DBA FEATUINES ..ttt ettt ettt et et e et et et et s e et et e n e a et eanennens 159
ReEPlCator ENNanCEMENES .t e 159
(C1T o 1=T oy Tol ST o] [o= Tlo] gl T =T V= PP 159

viii Migration Guide

j{glel g o TY=Ta I 2X=T o] [of=1 o] gl o] o Lol 8 [=) o Lo 2 P 160
(@ oT=T VAN o B = o] s =Yg [0l g =T o | PP 160

Index 161

Contents ix

Chapter 1: Planning the Upgrade

This guide, when used with the other guides in the Ingres® documentation set,
will assist in the planning and execution of a successful upgrade of Ingres.

After the upgrade is complete and running successfully for a suitable period,
you can consider using the new features. The new features for the current
release are described in the Release Summary, while the new features for past
releases are described in appendixes in this Migration Guide.

This chapter describes how to plan for the upgrade, methods of upgrading,
considerations for specific Ingres releases, required installations and hardware
when upgrading, overall strategy for the upgrade, and application issues.

The Upgrade Plan

The key to a successful upgrade is to prepare a detailed plan. A detailed plan
can prevent problems when upgrading. The plan should include items such as
how long it will take to complete a backup and how to verify that the data is
complete and secure.

The plan should then be tested, preferably with a copy of the production
system data. Testing reveals areas that may cause problems during the
upgrade of the production system.

You should then implement the plan, but only after preliminary testing is
complete.

The best strategy for upgrading is to first implement any compatibility fixes in
the current environment. When the databases and applications are ready, test
them in that environment, practice the upgrade, and then perform the
upgrade.

Do not use any new features until the upgrade is successfully implemented.
Doing so keeps to a minimum the number of variables at each step.

Planning the Upgrade 11

Upgrade Types

Upgrade Types

There are two options for upgrading your production systems:
® The upgradedb utility
® The unload/reload method

You can mix the two upgrade types, upgrading some databases while
reloading others.

Upgradedb Method

The upgradedb utility allows for a fast, in-place upgrade path for an older
version Ingres database, with no additional disk space requirements. Because
upgradedb is faster, it is typically the recommended way of upgrading.

Preparing for a safe and reliable upgradedb, however, can take time,
especially when upgrading from Ingres 6.4.

Databases using the system-maintained logical key feature are best upgraded
using upgradedb. Tables that contain SYSTEM_MAINTAINED table_key or
object_key columns cannot be safely unloaded and reloaded without additional
work. The reload step generates all new logical key values. If there are other
tables referencing the logical key columns, the new values must somehow be
manually propagated to those other tables.

12 Migration Guide

Upgrade Method and Ingres Releases

Unload/Reload Method

The database unload/reload method ensures a clean start with a fresh
database. Depending on the kind of table data, additional disk space may be
needed to perform the unloading and reloading; the space could be as large as
three to five times the space of the database that is to be upgraded. For
example, compressed tables with wide char or varchar columns can expand
substantially when unloaded.

The unload/reload process takes longer than upgradedb, thus increasing the
downtime of the production system. However, it ensures a clean final
installation.

A database that has been running for years, perhaps surviving a number of
system crashes and hardware failures, may have suffered hidden damage that
can confuse the upgradedb utility. For example, a database that is used by a
small department or group of people may not be maintained as well as a
production database. Such a database may have work tables owned by a user
who no longer exists, or may be missing table data files. An unload/reload
upgrade may be a better choice for this database.

The typical unload/reload upgrade uses the original Ingres installation as a
base. The system databases iidbdb and imadb are upgraded in-place with
upgradedb, even if user databases are unloaded/reloaded. A variation of the
unload/reload method uses a brand new installation (perhaps even on a
different machine). When this is done, additional work is needed to transfer
iidbdb information (users, groups, roles, and database and installation
privileges) to the new installation.

Upgrade Method and Ingres Releases

The release of Ingres that you are upgrading from can affect the type of
upgrade you choose.

From Releases Prior to Ingres 6.4

If you are upgrading from a version of Ingres prior to release 6.4, you must
use an unload/reload upgrade. Furthermore, you must install Ingres into a
new, fresh installation; the original installation cannot be upgraded in-place.

Planning the Upgrade 13

Upgrade Method and Ingres Releases

From Ingres 6.4

If you are upgrading from Ingres 6.4, you can use either the upgradedb or the
unload/reload method.

Ingres 2006 provides an improved upgradedb utility that allows 6.4 databases
to be upgraded with minimal database preparation effort. You can follow the
standard upgradedb procedure described in the chapter “Upgrading Using
Upgradedb.”

Since most 6.4 databases are several years old, you may choose to use an
unload/reload upgrade. Keep in mind that an unload/reload upgrade takes
substantially more time and resources. If you choose the unload/reload
method, follow the procedures in Unload/Reload Procedure for Upgrading from
6.4 (see page 84).

Regardless of the method chosen, however, an upgrade from Ingres 6.4
requires more planning and preparation than upgrades from newer versions,
and you must follow the application and system preparation procedures
described in Considerations for Ingres 6.4 (see page 79).

An alternative upgradedb procedure that requires extensive preparation, but
will result in a successful upgrade under almost any circumstances, is
described in Alternate Upgradeb Procedure (see page 96).

From Releases Newer than Ingres 6.4

When upgrading from Openlngres 1.2 or 2.0, Ingres II 2.0 or 2.5, or Ingres
2.6, we recommend the upgradedb method. The upgrade is internally much
simpler than the upgrade from 6.4. In addition, there are fewer application-
level incompatibilities among newer versions.

An unload/reload upgrade is possible, but is slower and requires more disk
space than an upgradedb upgrade.

OpenlIngres 1.2: If you are starting with Openlngres 1.2, any tables having
long varchar, long binary, or long spatial data must be unloaded under 1.x and
reloaded into Ingres 2.6. The format of the blob extension tables has changed.
The remainder of the database can be upgraded with upgradedb; however, it
is probably simplest to use a full unload/reload upgrade with any databases
containing “long” datatypes.

14 Migration Guide

Upgrade Method and Ingres Releases

From a 32-bit to a 64-bit Release

You can upgrade your 32-bit Ingres database for use with 64-bit Ingres by
running the upgradedb utility. The 32-bit to 64-bit database conversion
process redefines views, rules, integrities, and QUEL permits. The data in user
tables is not affected by the 32-bit to 64-bit upgrade.

The upgradedb program does the following:
m Redefines the standard catalog views (iitables, iicolumns, and so on)

® Generates an SQL script to drop and redefine views, rules, integrities, and
QUEL permits

m Executes the SQL script

The generated SQL scripts, and the SQL output, can be found in the directory
$II_SYSTEM/ingres/files/upgradedb/UPGRADEUSER (where UPGRADEUSER is
the user who is running the upgradedb program). There will be files
DBNAME.i01 (SQL input) and DBNAME.o01 (SQL output). Depending on the
specifics of the database, there might also be files DBNAME.g01 (grant inputs)
and DBNAME.go01 (grant SQL output), and files DBNAME.r01 (referential
constraint input) and DBNAME.ro01 (referential constraint output).

If your database contains an object that cannot be redefined, the upgradedb
may fail to redefine all objects. You can use the SQL script and output in
$II_SYSTEM/ingres/files/upgradedb to determine the point of failure. If
necessary, contact customer support for assistance.

To Member-Aligned Alpha OpenVMS (axm.vms)

If you are using OpenVMS on Alpha hardware, and are upgrading to the
member-aligned version of Ingres (axm.vms) from a non-member-aligned
version (axp.vms), you must use unload/reload. Upgradedb is not available
due to shifts in table data positions caused by the new alignment. For
instructions, see the chapter “Considerations for Alpha OpenVMS.”

Planning the Upgrade 15

Required Installations for Upgrading

Required Installations for Upgrading

For a safe and orderly upgrade, at least four Ingres installations are needed:
m QOriginal version production installation

®m QOriginal version development installation

m Installation for testing the upgrade

® New version development installation for preparing and testing

applications

If possible, keep the installations away from the production machine. You may
temporarily need additional hardware to accommodate the required
installations during the upgrade.

16 Migration Guide

Required Installations for Upgrading

Possible Hardware Setups for Upgrading
Possible hardware setups are from one to four machines.

A four-machine setup can be used, with each installation on its own machine.
More commonly, however, the two development installations share a machine.
Because there is usually some traffic between these two installations during
preparation, sharing a machine is convenient.

Note: If you are using Windows, you need a separate machine for each
installation. Versions prior to Ingres 2.6 do not support multiple installations
on one Windows machine.

A three-machine setup is the recommended minimum, as follows:

® Development (both old and new versions)

m Test

® Production

A two-machine setup is possible, as follows:
m Development (possibly including a test installation)

® Production

The two-machine setup is not recommended because the test installation
shares a machine with development, so it will not mimic your production
installation as closely. In addition, the more installations on a machine, the
more chance for error.

A single machine setup is possible, but not recommended, since you may
accidentally work in the wrong installation and damage production.

Note: There is no remote installation procedure for Ingres. The machine must
have local media support (CD-ROM or tape); otherwise, you will have to copy
the distribution files from wherever the CD-ROM or tape drive is situated.

Planning the Upgrade 17

How You Perform the Upgrade

How You Perform the Upgrade

Note: Back up all data before starting.

The overall strategy for upgrading is as follows:

1.

Copy databases and applications.

Copy the databases to be upgraded into the new version development
installation, and make a copy of all associated applications.

It is important that your original version development installation remain;
if the upgrade is unpredictably delayed, you will still have your original
environment in which to fix mission-critical applications, if necessary.

Change databases and applications.

Make any changes needed to the database definition or the application
source code so that they function with the new version.

If you are upgrading from a recent version (for example, from Ingres II
2.0 to Ingres 2.6), few or no changes are necessary. If you are upgrading
from Ingres 6.4, this step can be lengthy.

All compatibility changes will be reflected back into the original version
development installation. Thus, if the upgrade is delayed for some reason,
no work will be lost.

Test applications.

Test your critical applications in the new-version development
environment.

Fix any problems or performance issues before your production upgrade.
The fix will nearly always be compatible with your original version as well,
and therefore can be reflected back into your standard development
environment

Practice the upgrade.

Practice the upgrade using the test installation. Ideally, the test
installation should be a duplicate of production. Repeat the trial upgrade
as often as necessary to achieve a trouble-free upgrade.

Note: While practicing the upgrade, stop application development. You
want the live upgrade to run exactly like the practice one, without
involving new and untested factors.

Upgrade to the production system.

18 Migration Guide

How You Plan for Application Issues

How You Plan for Application Issues

To ensure your applications can be tested in the new installation, do the
following:

m Before starting the upgrade, take an application and database inventory.
You must have the complete and current source code for all applications. If
the source code does not match what users are running, problems can
result.

® Make sure that each application can be rebuilt from the source code
because you will eventually recompile your applications under the new
version.

m If an application cannot be rebuilt, test the original executable under
Ingres as soon as possible. If the application has no upward compatibility
issues (for example, reserved words), it may be possible to run the old
application against an Ingres installation and database. Otherwise, you will
have to recreate the application or do without it.

® Try to synchronize the test and live Ingres upgrades with an appropriate
time in the application life cycle.

If application development is underway, plan how to coordinate new
development with Ingres compatibility. Upgrades from newer versions
(Openlngres 1.2 or newer) may be able to move quickly enough to avoid
the issue. Preparing an upgrade from Ingres 6.4 can take long enough to
rule out a full stop in development.

One site, for example, addressed the timing issue by synchronizing Ingres
compatibility with a code release. Then, the development installation was
converted to Ingres, while an Ingres 6.4 “bug fix” installation was
maintained on a different machine.

The Test Plan for Applications

You must test your applications with the new version of Ingres before
performing a production upgrade. The cost of testing every function in every
application can be prohibitive, but fortunately, such testing is rarely necessary.
A proper test plan can reduce testing time to a week or two.

A successful test plan uses the following process:

1. Rank the importance of each function in each application.

2. Test only the most important functions of each application.

3. Fix problems found after the upgrade as quickly as possible.

Planning the Upgrade 19

How You Plan for Application Issues

Categories of Application Functions

When determining the importance of an application function, ask “"How long
can we live without this function?” One successful testing approach divides
application functions into three categories, as follows:

Functions that are business critical, and must be operational immediately
after the upgrade. No delay is permitted. Examples may include customer
order entry, shipping, and production order release functions.

Functions in this category must be tested thoroughly.

Functions that are important, but the business can survive their loss for a
few hours after the upgrade. Examples may include most inquiries and
accounting functions, and high-visibility management reports, especially if
management is made aware of the possibility of a one-time delay.

Functions in this category should be tested as time and resources permit.

Functions that can be broken for a day or two without serious impact.
Examples may include reports, analysis functions, and end-of-period
routines.

Functions in this category can typically be spot checked.

Application Debugging After the Upgrade

If you properly execute your test plan, all critical functions will work after the
upgrade. Less critical functions, however, may contain bugs. Be prepared to
fix these bugs for a period after the upgrade. (Two weeks is usually long
enough.) During this time, avoid scheduling new feature development. Have
streamlined change control procedures ready, so that fixes can be installed
quickly if a problem occurs.

Binary Level Support

Ingres 2006 provides support for applications built against previous versions of
Ingres, back to and including Ingres 6.4.

You can run applications built with any version of Openlngres 1.x or Ingres II
2.Xx, accessing an Ingres 2006 server, without rebuilding the application.

Applications built against Ingres 6.4 expect to access an older version of the
Ingres message files. You can run applications built with Ingres 6.4 against an
Ingres 2006 server, as long as either the application is running across Ingres
Net, or Ingres 2006 was installed with the 6.4 message files. However, in all
cases, we recommend that you rebuild all applications with Ingres 2006.

20 Migration Guide

Chapter 2: Creating a New Ingres
Development Environment

This chapter describes how to move your existing development installation into
a new Ingres development installation, where you can test your databases and
applications and make any necessary changes to ensure that they work
correctly.

The goal is to test thoroughly in the new development environment so that
you can confidently perform the upgrade to the production system. The
upgrade to the production system is described in subsequent chapters.

Note: If you are migrating from Ingres 6.4, read Considerations for Ingres 6.4
(see page 79) before performing the tasks in this chapter.

Platform-specific Examples in This Guide

While most of the examples used in this guide are specific to UNIX, the
concepts described also apply to the Windows environment. For information on
upgrading in the VMS environment, see the appendix “Considerations for
Alpha OpenVMS.”

How You Move an Existing Development Installation into the
New Development Installation

Note: Back up all data before starting.

The overall process for moving your existing development installation into a
new Ingres development installation is as follows:

Create a development installation of the new Ingres.

Prepare your applications.

Load databases and applications into the new installation.

Prepare your system.

Test applications and procedures.

AL

Practice the upgrade.

Creating a New Ingres Development Environment 21

Create a Development Installation of the New Ingres

Create a Development Installation of the New Ingres

To install Ingres on the development machine, following these steps.

Note: The following procedure assumes that the development computer will
support both the original and new version Ingres installations.

UNIX:

1.

Create a new Ingres directory in a location with sufficient disk space. In
this example, the directory is called /ing2006/ingres.

Execute the following commands:
mkdir /ing2006/ingres
chmod 755 /ing2006/ingre

Set the environment to the original and new development installations. To
do this, create two scripts. In this example, the scripts are named “setold”
and “setnew.”

Here are example scripts for the C shell. You may need to adjust them for
your specific installation.

For example, the PATH settings may be different, and LD_LIBRARY_PATH
may be named LIBPATH or SHLIB_PATH, depending on the platform. In
this example, the “old” installation is an Ingres 6.4 installation.

setold:

setenv II_SYSTEM /ing64

set path=(. /usr/local/bin /bin /usr/ucb /usr/sbin /usr/openwin/bin
$II_SYSTEM/ingres/bin $II_SYSTEM/Ingres/utility /usr/ccs/bin)

set inst="ingprenvl II_INSTALLATION®

setenv LD_LIBRARY_PATH /usr/lib:/usr/openwin/1lib

set prompt="whoami'. uname -n""[$inst]% "

echo "Switching to original Ingres 6.4 [$inst] installation"

setnew:

setenv II_SYSTEM /ing2006

set path=(. /usr/local/bin /bin /usr/ucb /usr/sbin /usr/openwin/bin
$II_SYSTEM/ingres/bin $II_SYSTEM/ingres/utility /usr/ccs/bin)

set inst="ingprenv II_INSTALLATION®

setenv LD_LIBRARY_PATH /usr/lib:/usr/openwin/lib:$II_SYSTEM/ingres/1lib
set prompt="whoami'. uname -n""[$inst]% "

echo "Switching to new 2006 [$inst] installation"

If required, define aliases in the C shell or shell functions in the Bourne or
Korn shell to invoke the setold and setnew scripts.

For example:

alias setold source ~ingres/setold
alias setnew source ~ingres/setnew

22 Migration Guide

How You Prepare Your Applications

4. Use the “setnew” alias to switch to the new Ingres environment, and
change directory to $II_SYSTEM/ingres.

5. Follow the installation instructions to install Ingres.

Note: Do not use the same data, checkpoint, journal, dump, or log
directories as the original installation; the directories can, however, be on
the same disks. @

How You Prepare Your Applications

When moving a copy of applications and databases to the new Ingres
installation, you must do the following:

m Check for new reserved words.
m Re-image ABF applications if upgrading to Ingres 2006.
® Check for Report-Writer syntax change, if upgrading from Ingres 6.4.

m Examine procedures that use DATE column definitions if you are using the
ANSIDATE data type, if upgrading to Ingres 2006 Release 2.

Reserved Keyword Conflicts

A database cannot be built on an Ingres installation until reserved keyword
conflicts are corrected.

Check for and fix reserved word conflicts. Also, check for reserved word
conflicts in application code, specifically in dynamically created tables and
views.

The additional reserved keywords in Ingres are mostly to support additions to
SQL. If words like level, key, or comment are used as column names, you
must change them.

The SQL parser recognizes most reserved keywords from context, and usually
resolves keyword conflicts without error, so you may not have to change
reserved words used as names. If time permits, however, we recommend that
you avoid SQL reserved words.

For a complete list of reserved words, see the appendix “Keywords.”

Creating a New Ingres Development Environment 23

How You Prepare Your Applications

Re-image ABF Applications

In Ingres 2006, the data descriptor used throughout the Ingres system
changed because of the introduction of the column-level collation specification
feature. This data descriptor is also compiled into imaged Applications-By-
Forms (ABF) applications.

After upgrading, all ABF applications should be re-imaged. Delete the contents
of the ABF object directory, $ING_ABFDIR/database-name/app-name, and
then re-image.

Report-Writer Syntax Change When Upgrading from Ingres 6.4

When upgrading from 6.4, to support new Report-Writer syntax, a space is
required after all dot-commands. For example, “".NL3"” must be changed to
“.NL 3".

UNIX: To fix such occurrences automatically, you can use the following “sed”
commands:

sed -e 's/\([<space><tab>]\.[a-zA-Z][a-zA-Z]1*\)\([0-9]1\)/\1 \2/' foo.rw | \

sed -e 's/™\(\.[a-zA-Z][a-ZA-Z]*\)\([0-9]1\)/\1 \2/' >newfoo.rw M

Compare the old and new files (foo.rw and newfoo.rw) to ensure that only the
expected changes occurred. For example, you want to avoid an unwanted “fix”
to a literal string.

An alternative to altering Report-Writer files is to sreport them into a
database, then copyrep the reports back out.

Report-Writer Runtime Parameter Errors (UNIX)

If string parameters that contain quotes are passed to Report-Writer, runtime
errors may occur. These errors may be caused by a change to the UNIX
command parameter control file utexe.def.

If such an error occurs, you can change the command parameter back to the
Ingres 6.4 utexe.def settings (see page 25). After saving the changed file,
retest and see whether the error still occurs.

This problem only occurs with application systems developed under Ingres 6.4.
However, you may need to check for the problem even if you are upgrading
from a more recent version. Generally, the utexe.def file is replaced with every
release of Ingres. Therefore, even if you have resolved this issue during a
prior upgrade, you will have to check for it again each time you upgrade.

24 Migration Guide

How You Prepare Your Applications

Change Command Parameter Back to Ingres 6.4 utexe.def Settings

To change the command parameter back to the Ingres 6.4 utexe.def settings:
1. Edit $II_SYSTEM/ingres/files/utexe.def.

2. Search for the string "(%S)".

3. Change the string to: param '(%S)".

4

Save the file.

Use of the ANSIDATE Data Type

As of Ingres 2006 Release 2, the ANSI date and time data types DATE, TIME,
TIMESTAMP, and INTERVAL are supported. In previous releases, Ingres
supported one date data type that could store dates, times, intervals, and time
stamps. The previous date type is renamed to INGRESDATE.

The configuration parameter date_type_alias controls whether the keyword
DATE used for column data type refers to INGRESDATE or ANSIDATE data
type. If this parameter is not set then the DATE keyword cannot be used in
SQL statements.

When migrating from an earlier version of Ingres, the existing date data in the
database is not affected. The data is still a valid INGRESDATE data type.

If you use the new date format (ANSIDATE), existing scripts and database
procedures with the old DATE column definitions may need to be changed.

Note: When installing or upgrading Ingres using a non interactive install and
no value for II_DATE_TYPE_ALIAS is provided in the response file, the value
defaults to INGRESDATE.

Creating a New Ingres Development Environment 25

How You Load Databases and Applications into the New Installation

How You Load Databases and Applications into the New

Installation

Create Users

After you create a development installation of the new Ingres and prepare
your applications, you are ready to move your databases into the new
development environment.

This process consists of the following steps:

1.

2
3
4,
5

Creating users

Moving databases

Moving catalogs

Moving Ingres Star databases

Compiling applications in the new environment

After your new Ingres development installation is running, create any
necessary Ingres users there. You may not need every user that exists in your
current development environment. At a minimum, you must create any DBA
(database owner) users.

26 Migration Guide

How You Load Databases and Applications into the New Installation

Move Databases

Note: Before performing this task, you should have already created
procedures for switching between the original version and new version
development environments, as described in Create a Development Installation
of the New Ingres (see page 22).

To move a database from the original development environment to your new
Ingres environment, use a simplified unload/reload procedure, as follows:

1. Setold and cd to a directory with enough space to hold the data; allow for
the Ingres System catalogs.

Create a directory for each database that is to be exported.
Cd to the directory for the database that is to be exported.
Execute unloaddb against the original-version database to be unloaded.

Execute unload.ing to export the front-end catalogs and data.

o v kA w N

Edit the unload scripts as follows:

From Ingres 6.4: Edit the cp_ingre.in file and remove the lines:
\include /ing64/ingres/files/iiud.scr

\include /ing64/ingres/files/iiud64.scr

Directory paths may be different.

From Ingres 1.2: Edit the copy.in file and remove the lines:
\include /ingl2/ingres/files/iiud.scr

\include /ingl2/ingres/files/iiud65.scr

Directory paths may be different.

7. Fix the system_maintained column name (see page 29) if necessary.
8. Setnew to the Ingres installation.

9. Create the database there, without any front-end catalogs, as follows:
createdb databasename -f nofeclients

10. If the Ingres database name is not the same as the original database
name, then edit the reload.ing script.

11. Execute reload.ing for that database.

Note: Capture the output of the reload script (see page 28) in case errors
occur.

12. Review the output of the reload for any reserved word conflicts. Correct
any problems in the original-version environment and try again.

Creating a New Ingres Development Environment 27

How You Load Databases and Applications into the New Installation

Capture Output of Reload Script (UNIX)

Move Catalogs

On UNIX, to capture the output of the reload script to a file, use “tee,” as
follows:

reload.ing |& tee /temp/reload.log

At this point, the front-end catalogs in the Ingres database are in the original-
version format. To put them into new-version format, run:

upgradefe <databasename> INGRES

The above command assumes that you want the catalogs and data to be
copied from the original development database to Ingres. If the data is not
wanted, you can edit the scripts so that unloaddb does not copy certain tables.

Move Ingres Star Databases

For Ingres Star databases, unloaddb the CDB (the coordinator database,
which usually starts with ii). This process unloads any locally stored tables that
do not exist in other local databases.

Then unloaddb on the DDB (the distributed database, usually accessed by
ddbname/star). This process unloads registrations and distributed view
definitions.

28 Migration Guide

How You Load Databases and Applications into the New Installation

The system_maintained Column Name

Databases created in releases prior to Ingres II 2.5 that contain the
Metaschema module of system catalogs require an additional task when
upgrading to Ingres II 2.5 using unload/reload.

These databases contain an extended system catalog ii_atttype with a column
named system_maintained. As of Ingres II 2.5, system_maintained is a
reserved word. Because of the keyword restriction, loading such a database
into version 2.5 will fail. Release 2.6 and higher have a context sensitive
keyword recognizer, and does not have the problem.

In Ingres II 2.5, the name of the system_maintained column is changed to
sys_maintained. For the reload to work with 2.5, you must edit the original
copy.in script to use the new column name. While you can also make this
change using a utility such as sed, beware of inadvertently changing other
uses of the system_maintained keyword.

Databases created with Openlngres 1.x, Ingres version 6.4, and older do not
usually contain the ij_atttype catalog. If you unload/reload a 6.4 database
containing ii_atttype, you have to manually edit the file cp_ingre.in and fix
system_maintained to sys_maintained.

Compile Applications

After you have successfully imported your databases into the Ingres
development environment, you must compile your applications in that
environment.

In most cases, you will want to make a copy of the application source code
and libraries. Make sure that any compile scripts, linker command files, and
the like point to the Ingres development installation, not the original
development installation.

When you can successfully compile your applications with Ingres, you are
ready to start testing.

Note: If you are upgrading from Ingres 6.4, check for the additional
application issues under Considerations for Ingres 6.4 (see page 79).

Creating a New Ingres Development Environment 29

How You Prepare Your System

How You Prepare Your System

System Backup

Some upgrade tasks involve system or Ingres administration. Coordinate these
changes with the system administrator.

The system administrator should back up the Ingres system and make sure
the system can be restored from the backup.

In addition, changes may be required to the following:

m System monitoring shellscripts

® Your customized checkpoint template files

m Shared library search path

UNIX kernel parameters

When upgrading, it is important to have a system backup. If something goes
wrong, you will be able to restore from the backup.

Make sure that the system administrator knows how to take a complete
system backup and how to restore that backup. Do a trial backup and verify
that the backup is readable. This is especially important with tapes: failing
tape drives can appear to write tapes without error, but the tapes may not be
readable.

The system administrator should ensure that proper backup procedures are
being followed. Backups taken as part of an upgrade should be removed from
any backup media recycling, and kept in a secure location for a long time.

30 Migration Guide

How You Prepare Your System

System Monitoring Shellscripts

Production systems may have tools to provide the system administrator with
early warning of Ingres problems. If these tools have been developed in-
house, they must be reviewed for compatibility with your new Ingres release.

Check for these items:

® Are there still IO slaves on the UNIX platform? OS-thread architectures
such as Windows and Sun Solaris do not use IO slaves.

® Does the tool parse iimonitor, logstat, or lockstat output? The detailed
wording and positioning of logstat and lockstat output can change from
release to release. Consider using IMA instead.

m If you are upgrading from Ingres 6.4, the log files II_RCP.LOG and
II_ACP.LOG are renamed to iircp.log and iiacp.log.

m If your tool parses Ingres 6.4 parameters, you will have to change it.
Ingres parameters are held in the files config.dat and protect.dat.

®m If you are using a commercial monitoring tool, contact the vendor to see if
an upgrade is needed to support Ingres.

If your Ingres monitoring tool uses the Ingres Monitoring Architecture (IMA), it
is likely to continue to function with new Ingres versions. IMA is the
recommended data source for any Ingres monitoring tool.

Creating a New Ingres Development Environment 31

How You Prepare Your System

Checkpoint Template Changes

The Ingres checkpoint template file, cktmpl.def, may change from release to
release. If you have customized your checkpoint template file, you must
review and verify your changes with the new Ingres version.

If you are upgrading from Ingres 6.4, or from Openlngres 1.2, you must redo
your template changes. The cktmpl.def file format has been expanded since
Ingres 6.4 and is therefore not compatible. The Openlngres 1.2 template file
format is similar to the current one, but additional entries are required. Your
old checkpoint template can serve as a guide.

For more information on the format of the checkpoint template file, see the
Database Administrator Guide.

Tip: If your checkpoint template was customized to do multiple location
checkpoints in parallel, you may be able to remove this customization entirely.
Ingres supports parallel checkpoint and rollforwarddb processing directly.

If you are upgrading from an Ingres II release, compare your revised
checkpoint template against the one installed with your new Ingres version.
You may be able to use your customized template as is, but first check for new
or changed entries in the new version.

The Ingres development installation can be used to develop and test the new
cktmpl.def.

Checkpoint and Rollforward Changes

Typically, checkpoints and journals are not compatible from one version to the
next. After an installation is upgraded, you must assume that all old
checkpoints and journal files are no longer usable with the new version of
Ingres.

Rollforwarddb no longer supports a -b option. (In Ingres 6.4, the —b option
gave a starting time for applying journals.) Rollforwarddb no longer supports
the -noblobs option because it makes the table physically inconsistent and
unusable.

Shared Library Search Path (UNIX)

On many UNIX platforms, Ingres uses shared libraries. Since there is no
default installation directory for Ingres, it is necessary to tell applications and
tools where Ingres is installed so that the shared libraries can be found.

32 Migration Guide

How You Prepare Your System

Define Shared Library Search Path (UNIX)

To define the Ingres installation shared library search path, use one of the
following methods:

For all users who access any Ingres programs or applications, set the
library environment variable (for example, LIBPATH, LD_LIBRARY_PATH,
or SHLIB_PATH) to include the Ingres library directory,
$II_SYSTEM/ingres/lib.

Failure to set the library variable will result in an error message:

1d.so.1: /ing20/20/ingres/bin/tm: fatal:
libframe.l.so: open failed: No such file or directory

You can arrange for this setting ahead of time, while you are still running
Ingres 6.4. The 6.4 binaries do not use LD_LIBRARY_PATH.

The exact name of the environment variable depends on your flavor of
UNIX. Most UNIX environments use LD_LIBRARY_PATH; HP-UX uses
SHLIB_PATH; AIX versions 3 and 4 use LIBPATH. See the Id(1) or Id.so(1)
man page in your operating system documentation.

Link the Ingres library files to a standard UNIX library directory, such as
Jusr/lib.

For example:
ln -s /ing20/ingres/1lib/1libframe.1l.so /usr/1ib
and repeat for each .so file in the Ingres lib subdirectory.

This approach does not require application wrappers or user environment
changes. The disadvantage is that you have to link (or copy) each Ingres
library individually, and check the validity of these links after a subsequent
upgrade.

Creating a New Ingres Development Environment 33

Testing

UNIX Kernel Parameters

Testing

Review the UNIX kernel parameter settings, particularly the maximum shared
memory size.

If upgrading from Ingres 6.4, you may have to increase the size of a shared
memory segment because Ingres builds a larger shared memory segment for
locking and logging than did Ingres 6.4.

A 100 MB shared memory segment will accommodate most migrated
installations. Each platform has its own way of modifying the shared memory
limits; discuss this with the system administrator or read the platform-specific
information in the Readme file.

If upgrading from a more recent version of Ingres, you probably do not have
to change the kernel parameters. It is prudent to configure your new Ingres

development installation similar to the production installation, to make sure

that no kernel changes are needed.

In your new installation, you should test your applications, query performance,
and system administrator procedures.

Application Testing

As changes are made to the application for Ingres compatibility, bring the
changes over to the development Ingres installation and test your applications
according to your test plan.

When testing, use data that is as close to live data as possible. Performance-
critical functions should be tested against production data volumes.

Performance Testing

Include performance testing in your test plan. Changes to the query optimizer
can cause queries to perform differently from your original Ingres version.

Typically, queries are faster, but in some cases, may be slower. This is likely
when a query has been tuned to work well with a peculiarity of the old-version
query optimizer. If you notice performance problems, use the set gep
command or the QEP display of Visual DBA. For more information on the use
of query plans and optimizer statistics, see the Database Administrator Guide.

34 Migration Guide

How You Practice the Upgrade

System Administrator Procedure Testing

You should test your system administration procedures.

Test the Ingres installation when it is busy by pulling the power plug or issuing
a system command to crash the servers. Make sure that recovery occurs
correctly.

Do at least one rollforwarddb of the most important databases and make sure
it works in your environment.

How You Practice the Upgrade

You should run a trial upgrade as early as possible in the conversion cycle.
Ideally, you should run trial upgrades more than once, so an isolated
environment is desirable.

Follow this process:

1.
2.
3.

Run a trial upgrade.
Take notes on what went wrong or what should be done differently.
Continue running trial upgrades until no more problems are encountered.

Note: Perform at least one of the trial upgrades on a full live data set so
that you have an indication of how long the upgrade will take. This is
particularly important when doing an unload/reload upgrade. In contrast,
upgradedb type upgrades are largely insensitive to the amount of data in
the database.

Give the annotated upgrade procedure to someone who can verify the
upgrade plan.

How You Prepare a Build for the Live Upgrade

You should use a new build for the live upgrade.

As the date for the live upgrade approaches, follow this process:

1.
2.

Freeze all changes.

Delete all application objects and images from the development Ingres
installation.

Re-image everything.
Use this refreshed copy for, at least, a critical functions test.

Use this build for the live upgrade.

Creating a New Ingres Development Environment 35

Chapter 3: Upgrading Using Upgradedb

This chapter describes how to use the upgradedb utility to upgrade from any
version of Ingres.

Note: If you have difficulties upgrading from Ingres 6.4 with the upgradedb
procedure in this chapter, you can use the Alternate Upgradedb Procedure in
the appendix “Upgrading from Ingres 6.4.”

Ownership Assumptions for Running Upgradedb

The upgradedb procedure assumes that you can become any user who owns
objects in any database (using login or UNIX “su”). If this is not feasible, you
can run as the installation owner, and use the -u{user} flag to pretend to be
that user any time you have to run an Ingres command.

Upgrading Using Upgradedb 37

How You Upgrade Using the Upgradedb Utility

How You Upgrade Using the Upgradedb Utility

Upgrading using upgradedb transforms your database in-place from the
original version to the new, without requiring an unload and reload.

To upgrade using upgradedb, use the following process.

Note: In this process, the notation [Each DB] means: “For each database,
not including the iidbdb (master database), become the DBA for that database
and perform this step.” Do not include the iidbdb or Ingres Star distributed
databases unless instructed. If using Ingres Star, remember to include the
coordinator database in the list of databases.

O ® N O A LN =

N T e
N o o1 A W N O

Disable user access.

Disable Remote Command Server.

Shut down Ingres and back up system.

[Each DB including the iidbdb] Clean the database.

[Each DB] Record database information.

[Each DB including the iidbdb] Checkpoint and turn off journaling.
Shut down Ingres.

Preserve site modifications.

(Optional) Delete install directory (UNIX).

. Install Ingres.

. Create imadb database.

. Restore site modifications.

. Start Ingres.

. Run upgradedb utility.

. Review Ingres configuration.

. (Optional) [Each DB] Reapply optimizer statistics.

. [Each DB including the iidbdb] Checkpoint the database.
18.

Install upgraded applications.

For details on each step, see the following sections.

Disable User Access

During the upgrade, the production system is not available for use. Make sure
that users are not able to access the databases until the upgrade is complete.

38 Migration Guide

How You Upgrade Using the Upgradedb Utility

Disable Remote Command Server

The Remote Command Server component of Visual DBA must be disabled for
the duration of the upgrade. The Remote Command Server uses the iidbdb
database as a communications mechanism in versions of Ingres prior to 2.6,
so it will interfere with upgrading.

Note: If you are upgrading from early versions of Openlngres 1.x, and you do
not see an entry in CBF for the Remote Command Server, skip this step.

To disable the Remote Command Server

1. Run Configuration-By-Forms.

2. Locate the row for the Remote Command Server.

3. Note the startup count and record this value for later.

4

Use the EditCount function to set the startup count to zero.

Upgrading Using Upgradedb 39

How You Upgrade Using the Upgradedb Utility

Shut Down Ingres and Back Up System

You should perform a clean shutdown of Ingres, clearing all transactions from
the transaction log, and then back up your system.

To perform a clean shutdown of Ingres

1.

2
3.
4

Shut down Ingres.
Restart Ingres.
Shut down Ingres again.

Check the recovery process log (iircp.log) for the message “"RCP Shutdown
completed normally.”

To back up your system

1.
2.

Use a command appropriate to the platform to perform the backup.

Back up all Ingres directories, including data, checkpoint, journal, dump
areas, and the $II_SYSTEM/ingres directory containing Ingres files and
executables.

Back up the application directories

Note: Watch for symbolic links and cross-mounts; make sure real data is
saved and not a symbolic link.

Include the root file system in the backup if Ingres is typically started up
at boot time. Alternatively, print a copy of any Ingres boot time startup
and shutdown scripts.

Perform the backup twice to ensure that you have an extra copy of your
backup. This step ensures maximum safety.

Check the backup media to ensure that the backup can be read. If your
backup medium is tape, use new tapes, and clean the tape drive before
the backup.

Restart Ingres.

40 Migration Guide

How You Upgrade Using the Upgradedb Utility

Clean the Database

To ensure the integrity of the system catalogs, issue the following commands:
sysmod dbname

verifydb -mreport -sdbname dbname -odbms_catalog

The verifydb command may issue the following messages; you can ignore
them.

S_DU1611_NO_PROTECTS iirelation indicates that there are protections for table
(owner), but none are defined.

S_DU@305_CLEAR_PRTUPS Recommended action is to clear protection information from
iirelation, and S_DU1619 NO_VIEW iirelation indicates that there is a view
defined for table (owner), but none exists.

S_DUG30C_CLEAR_VBASE Recommended action is to clear view base specification from
iirelation.

You can also ignore the “patch warning” message that warns of the loss of
user tables in “runinteractive” mode. This mode will not be used.

If verifydb issues warnings or errors other than those in Step 1, review the
messages with Ingres Technical Support before upgrading that database,
because there may be damage to the system catalog.

Record Database Information

For each database, you will need to know information such as whether the
database was journaled, where the database resides, and in what order the
data locations were configured.
To record database information
1. Run infodb against each database. Issue the following command:
infodb dbname >infodb.out
Save the output for later.
2. Record whether the database is public or private.

To find out, use the catalogdb command. Select Databases, and then enter
the database name. The screen that appears has an Access field that
indicates whether the database is public or private.

Upgrading Using Upgradedb 41

How You Upgrade Using the Upgradedb Utility

Checkpoint and Turn Off Journaling

For each database, including the iidbdb, checkpoint each database and turn off
journaling. Then save the configuration file.
To checkpoint and turn off journaling

1. Checkpoint each database, using the ckpdb command with —j option to
turn off journaling. (The upgradedb process turns off journaling, so it is
best to do that now.) If upgradedb fails, you can use this checkpoint to
recover and try again.

Issue the following command:
ckpdb -d -j dbname

2. Save the configuration file stored in the dump area after each checkpoint.
The configuration file is small. Issue the following command:

cp $II_DUMP/ingres/dmp/default/dbname/aaaaaaaa.cnf {somewhere secure}

Shut Down Ingres

Shut down Ingres with the ingstop command.

Preserve Site Modifications

Files distributed as part of Ingres that you have customized will be lost during
the upgrade. Any custom files you have added to the $II_SYSTEM directory
tree will remain.

You must copy your customized files to a safe place. Do not copy them to /tmp
or anywhere in $II_SYSTEM/ingres directory.

If local collation sequence files have been customized, save the original
collation definition files and the compiled files that reside in
$II_SYSTEM/ingres/files/collation.

Commonly Customized Files

The following files are typically customized:
m Termcap files in $II_SYSTEM/ingres/files
m Keyboard map files in $II_SYSTEM/ingres/files

®m |ocal collation sequence files

42 Migration Guide

How You Upgrade Using the Upgradedb Utility

Preserve Necessary Files

If you cannot identify all your customized files, you can ensure that you
preserve the necessary files by performing the following procedure. This
procedure copies more files than necessary, but you can delete the copy after
Ingres has been running live for a period.
To preserve necessary files
1. Delete all *.log files from $II_SYSTEM/ingres/files
2. Copy to a safe place the entire contents of the following directories:

n all .opt files

m $II_SYSTEM/ingres/bin

m $II_SYSTEM/ingres/files

m $II_SYSTEM/ingres/rep

m $II_SYSTEM_ingres/files/rep

m $II_SYSTEM/ingres/files/dayfile

m $II_ingres/files/startup

m $II_SYSEM/ingres/files/startsql

m $II_SYSTEM/ingres/utility
Note: Do not delete the copy immediately when the upgrade completes,
because you may discover weeks later that you need the old version of a file

(for example, a Vision template or keyboard map) from the original
$II_SYSTEM/ingres directory.

UNIX: On UNIX, to copy these files, use commands similar to the following:
cd $II_SYSTEM/ingres

tar cf - bin files rep utility | (cd /someplace/safe;tar xf -) - |
Visual DBA Configurations

When upgrading, Visual DBA configuration files (.vdbacfg) are not upwardly
compatible and must be recreated.

Note: Instead of using configuration files, you can use the vdba command
with command line flags to start Visual DBA with, for example, certain
windows open on given nodes. For details on the vdba command, see the
Command Reference Guide.

Upgrading Using Upgradedb 43

How You Upgrade Using the Upgradedb Utility

(Optional) Delete Install Directory (UNIX)

Install Ingres

Note: This step is optional but recommended.

The Ingres installation procedure on UNIX starts by extracting the install
subdirectory from the Ingres distribution.

You should delete the old contents of that directory first, as follows:
cd $II_SYSTEM/ingres

rm -rf install

To install Ingres, see the Ingres installation instructions for your platform.

During the installation process, the DBMS Server setup asks whether all
databases are to be upgraded; answer No. The installation procedure
automatically upgrades the iidbdb. If the upgrade of iidbdb fails, see the
chapter “Troubleshooting Upgradedb.” It is better to complete the Ingres
setup, and then use the upgradedb command to upgrade the user databases.

If you are upgrading from 6.4, and the 6.4 installation has Ingres Star
databases, you must respond No to this prompt. At this point in the 6.4
upgrade, the Star Server is not yet set up.

After the iidbdb is upgraded, the DBMS Server setup attempts to upgrade
imadb and install Remote Command Server objects into imadb. Some versions
of upgradedb neglect to create imadb first, and you will get “Database does
not exist: imadb” errors. These will be corrected in the next step.

How You Upgrade to Older Versions That Require a Patch

Newer versions of Ingres distribute service packs. You can install service packs
without having to install a base release of Ingres first.

UNIX: If you are upgrading to an older Ingres version that requires an overlay
patch instead of a service pack, follow this procedure:

1. Run ingbuild. When asked whether you want to set up all the Ingres
components, respond No. Exit ingbuild.

2. Install the Ingres patch.
3. Run ingbuild again. Select Current, then SetupAll.

4. Follow the prompts to complete the Ingres setup.

Setup now uses the fixed version. ®

44 Migration Guide

How You Upgrade Using the Upgradedb Utility

Create imadb Database

Note: Perform this step only if you received “Database does not exist: imadb”
messages during the DBMS setup phase of your Ingres install. This should only
occur if you are upgrading from OpenlIngres 1.x to Ingres 2.6 or older.

To create the imadb database, as the installation owner, execute these
commands:

UNIX:

ingstart

cd $II_SYSTEM/ingres/vdba

createdb '-u$ingres' imadb -f nofeclients
sql '-u$ingres' imadb <makimau.sql
rmcmdgen

ingstop 2

Windows:

ingstart

cd %II_SYSTEM%\ingres\vdba

createdb -u$ingres imadb -f nofeclients
sql -u$ingres imadb <makiman.sql
rmcmdgen

ingstop 2

As the makimau or makiman SQL scripts run, you see a series of messages
such as “E_USOAC1 'some-name' does not exist or is not owned by you.”
These are normal and can be ignored.

Restore Site Modifications

Refer to the save directory that was created in the step Preserve Site
Modifications, and review any site-specific files that were overwritten by the
upgrade.

Carry Forward Checkpoint Template Modifications

Start Ingres

If the checkpoint template file cktmpl.def has been modified, the modifications
may need to be carried forward into Ingres. Your original cktmpl.def should
not be used directly, because entries can be added or revised in new versions
of Ingres. Compare your customized cktmpl.def with the newly installed file,
and make necessary changes in the new cktmpl.def. For information about the
checkpoint template, see the Database Administrator Guide.

Run ingstart to start Ingres.

Upgrading Using Upgradedb 45

How You Upgrade Using the Upgradedb Utility

Run Upgradedb Utility

Run the upgradedb utility to upgrade databases. You can upgrade databases
one at a time or all at the same time. Log the upgradedb output to a file.

To upgrade one at a time:

upgradedb dbname

To upgrade all at the same time:

upgradedb -all
Example of logging upgradedb output to a file:
upgradedb -all |& tee upgradedb.log

If errors occur, see the chapter “"Troubleshooting Upgradedb.” Correct the
errors and rerun the upgradedb utility.

Review Ingres Configuration

The upgrade preserves your original Ingres installation parameters. You should
review the configuration because some parameters may change from version
to version. For information on parameters that changed, check the Readme for
your new version of Ingres.

Review your parameter settings by running Configuration-By-Forms or Visual
Configurator. Especially pay attention to major items such as startup counts
and DBMS cache settings.

Note: If you disabled the Remote Command Server in an earlier step of the
upgradedb process, use EditCount to restore its startup count to the original
value.

(Optional) Reapply Optimizer Statistics

Note: This step is required only if upgrading from Openlngres 1.x or Ingres
6.4. Ingres computes additional metrics that those releases did not have.

To take advantage of the new metrics, regenerate the optimizer statistics
using the procedures of your application system.

46 Migration Guide

How You Upgrade Using the Upgradedb Utility

Checkpoint the Database

Checkpoints and journals from your original Ingres version will not work with
the newer version, so do not omit or delay this step.

Checkpoint each database, including the iidbdb. If the database was journaled
previously, use the +j flag to turn on journaling.

To know which databases were journaled, see the infodb output from the step
Record Database Information.

The iidbdb should always be journaled, regardless of whether it was journaled
in the original installation.

Install Upgraded Applications

To perform the last step of the upgrade procedure:
1. Install the Ingres versions of the applications.
2. Restore user logins

3. Resume normal operation.

Upgrading Using Upgradedb 47

Chapter 4: Upgrading Using
Unload/Reload

This chapter describes how to use the unload/reload procedure to upgrade
from a post-6.4 version of Ingres.

The unload/reload upgrade avoids the upgradedb program (except for iidbdb),
in favor of unloading the original Ingres databases to flat files, recreating the
databases under Ingres, and then reloading the databases. This approach has
the advantage of starting with clean databases, but requires more time and
disk space than does the upgradedb method.

Note: Databases using the system-maintained logical key feature are best
upgraded using upgradedb. Tables that contain SYSTEM_MAINTAINED
table_key or object_key columns cannot be safely unloaded and reloaded
without additional work. The reload step generates all new logical key values.
If other tables reference the logical key columns, the new values must be
manually propagated to those tables.

Variations of Unload/Reload Procedure

The unload/reload procedure has two variations:

= The in-place upgrade, which replaces the original installation with the
new Ingres installation. The master database (iidbdb) is upgraded with
upgradedb, even though other databases are unloaded and reloaded.
Because the iidbdb remains, all your locations, users, groups, and roles
still exist in the new installation.

= The clean install upgrade, which leaves the original installation alone.
Ingres is installed into a completely new installation. (The new installation
may even be on a different machine.) When performing a clean install
upgrade, you must take extra steps to recreate locations and move users,
groups, and roles from the original installation to the new one.

Upgrading Using Unload/Reload 49

How You Perform an Upgrade Using Unload/Reload

How You Perform an Upgrade Using Unload/Reload

A database unload/reload ensures a clean start with a fresh database.

To perform an upgrade using unload/reload, use the following process.

Note: In this process, the notation [Each DB] means: “For each database,
not including the iidbdb (master database), become the DBA for that
database, cd to the unload directory for the database created in Step 1, and
perform this step.” If using Ingres Star, include the coordinator database in
the list of databases. Steps that apply to a particular upgrade type only (that
is, in-place upgrade or clean install upgrade) are marked accordingly.

1.

O ® N O U A W N

N N N N N B B B 2 R B R R
A W N »H O O 0O N OO U1 b W N = O

[Each DB including iidbdb] Create unload directory.

[Each DB] Run unloaddb.

[Each DB] Check for obsolete users.

(Optional) [Each DB Including iidbdb] Checkpoint the database.
Disable user access.

Disable Remote Command Server.

Shut down Ingres and back up system.

[Each DB] Unload the database.

(Optional) [Each DB] Print optimizer statistics.

. [Each DB] Record database information.
. Record database privileges.

. Save users, groups, and roles.

. [Each DB] Destroy the database.

. Clean iidbdb database.

. Shut down ingres.

. Disable Ingres startup.

. Preserve site modifications.

. (Optional) Delete install directory (UNIX).
. Install Ingres.

. Create imadb database.

. Restore site modifications.

. Review Ingres configuration.

. Set up Ingres Net.

. Start Ingres.

50 Migration Guide

How You Perform an Upgrade Using Unload/Reload

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

Recreate users, groups, and roles.
Recreate locations.

[Each DB] Recreate the database.
[Each DB] Extend the database.
Recreate database privileges.

[Each DB] Fix FE reload script.

[Each DB] Reload the database.

[Each DB] Upgrade front-end catalogs.
[Each DB] Reapply optimizer statistics.
[Each DB] Checkpoint the database.

Install upgraded applications.

For details on these steps, see the following sections.

Create Unload Directory

You should create a directory to hold scripts and data from the unloaded
database.

Note: This directory requires a large amount of disk space. As an estimate,
the unloaded data is about the same size as the Ingres database; however,
compressed data can expand to take up much more space than the Ingres

database.

To create a directory, issue the following commands for each database:

UNIX:

mkdir /someplace/ dbname

chmod 777 /someplace/ dbname ™

Windows:

mkdir d:\someplace\dbname ™

Upgrading Using Unload/Reload 51

How You Perform an Upgrade Using Unload/Reload

Run Unloaddb

Run unloaddb against each database. The unloaddb command does not unload
the database; it simply creates scripts.

For Ingres Star databases, unload the CDB in the same way as for a local
database. For a DDB, use unloaddb/star.

For a regular DB or CDB, issue this command:

unloaddb dbname

For an Ingres Star DDB, issue this command:

unloaddb ddbname/star

If doing a clean-install upgrade to a different machine that has a newer
architecture, binary data may not be compatible between the two machines. If
this is the case, use the unloaddb —c option, which causes an ASCII instead of
binary unload.

Check for Obsolete Users

Old databases may have objects created by users who no longer exist. Check
for obsolete users for each database.
To check for obsolete users:

1. Examine the scripts created by unloaddb in the step Run Unloaddb of the
upgrade procedure.

Each script contains set session authorization SQL statements for each
user who owns a database object.

2. Search for the set session authorization statements, and make sure
that all users listed are valid.

3. Delete all the lines from the unwanted set session authorization
statement up to the next one, if obsolete users are found.

4. Go into the database and clean out these unwanted objects.

52 Migration Guide

How You Perform an Upgrade Using Unload/Reload

(Optional) Checkpoint the Database

Note: This step is optional. You can omit this step if you can rely on the
system backup to be taken in the later step Shut Down Ingres and Back Up
System.

Follow these steps:

1. Checkpoint each database, including the iidbdb

2. Copy the checkpoint files to a permanent medium such as tape. Use fresh
tape.

3. Verify that the tape can be read.

Disable User Access

During the upgrade, the production system is not available for use. Make sure
that users are not able to access the databases until the upgrade is complete.

Disable Remote Command Server

The Remote Command Server component of Visual DBA must be disabled for
the duration of the upgrade. The Remote Command Server uses the iidbdb
database as a communications mechanism in versions of Ingres prior to 2.6,
so it will interfere with upgrading.

Note: If you are upgrading from early versions of Openlngres 1.x, and you do
not see an entry in CBF for the Remote Command Server, skip this step.

To disable the Remote Command Server

1. Run Configuration-By-Forms.

2. Locate the row for the Remote Command Server.

3. Note the startup count and record this value for later.

4. Use the EditCount function to set the startup count to zero.

Upgrading Using Unload/Reload 53

How You Perform an Upgrade Using Unload/Reload

Shut Down Ingres and Back Up System

Unload the Database

You should perform a clean shutdown of Ingres, clearing all transactions from
the transaction log, and then back up your system.

To perform a clean shutdown of Ingres

1.

2
3.
4

Shut down Ingres.
Restart Ingres.
Shut down Ingres again.

Check the recovery process log (iircp.log) for the message “"RCP Shutdown
completed normally.”

To back up your system

1.
2.

Use a command appropriate to the platform to perform the backup.

Back up all Ingres directories, including data, checkpoint, journal, dump
areas, and the $II_SYSTEM/ingres directory containing Ingres files and
executables.

Back up the application directories

Note: Watch for symbolic links and cross-mounts; make sure real data is
saved and not a symbolic link.

Include the root file system in the backup if Ingres is typically started up
at boot time. Alternatively, print a copy of any Ingres boot time startup
and shutdown scripts.

Perform the backup twice to ensure that you have an extra copy of your
backup. This step ensures maximum safety.

Check the backup media to ensure that the backup can be read. If your
backup medium is tape, use new tapes, and clean the tape drive before
the backup.

Restart Ingres.

For each database, run the unload.ing script created by the unloaddb
command. The database is unloaded into your unload directory.

54 Migration Guide

How You Perform an Upgrade Using Unload/Reload

(Optional) Print Optimizer Statistics
Note: This step applies only to a clean-install upgrade.

Print optimizer statistics for each database. If your upgrade plan allows
enough downtime to run a full optimizedb against your databases, you can
omit this step. If your plan does not allow enough downtime, perform this step
as a shortcut.

Note: Using this shortcut may result in some of the new Ingres metrics not
being available; query performance may suffer until a full optimizedb can be
completed.

If you are upgrading from Openlngres 1.x, you should regenerate new
statistics instead of saving the old ones, if possible.

To print the existing optimizer statistics, run statdump with the -o flag to a file
for each database, as follows:

statdump -o dbname.stats dbname

Record Database Information

For each database, you will need to know information such as whether the
database was journaled, where the database resides, and in what order the
data locations were configured.
To record database information
1. Run infodb against each database. Issue the following command:
infodb dbname >infodb.out
Save the output for later.
2. Record whether the database is public or private.

To find out, use the catalogdb command. Select Databases, and then enter
the database name. The screen that appears has an Access field that
indicates whether the database is public or private.

Upgrading Using Unload/Reload 55

How You Perform an Upgrade Using Unload/Reload

Record Database Privileges

To record database privileges

1.

As the installation owner, change directories to the unload directory for
iidbdb created in Step 1 of the upgrade procedure.

Run the following SQL to save user database privileges:

sql iidbdb

\script dbprivs.out

select *

from iidbprivileges

where database_name <> ''

order by database_name,grantee_name
\go

\script

\quit

The file dbprivs.out is created for future reference.

56 Migration Guide

How You Perform an Upgrade Using Unload/Reload

Save Users, Groups, and Roles
Note: This step is required only for a clean-install upgrade.

To save users, groups,and roles

1. As the installation owner, change directory to the iidbdb unload directory
created in Step 1 of the upgrade procedure.

2. Run the following SQL to save users, groups, and roles:

sql iidbdb

copy iiusergroup (
groupid=cOcomma, groupmem=cOnl

) into 'groups.out'

\go

copy iirole(
roleid=cOnl
) into 'roles.out’
\go

create table role_tmp as
select role_name,grantee_name
from iirolegrant
where admin_option <> 'Y'
\go
copy role_tmp(

role_name = cOcomma,

grantee_name = cOnl
) into 'rolegrants.out';
drop role_tmp;
\go

\quit

3. Run accessdb, and select Users, then SqlScript.

A file called users.sql is written that will recreate all users, as they are
currently defined.
Destroy the Database
Note: This step is required only for an in-place upgrade.

Destroy each database using the destroydb command.

Upgrading Using Unload/Reload 57

How You Perform an Upgrade Using Unload/Reload

Clean iidbdb Database

Note: This step is required only for an in-place upgrade.
To clean the iidbdb database

As the installation owner, run the following steps against the master database
iidbdb:

Note: It is assumed that there are no objects created by users in the iidbdb.
sysmod 1iidbdb

verifydb -mrun -sdbname iidbdb -opurge

verifydb -mrun -sdbname iidbdb -odbms

ckpdb -j iidbdb

The verifydb command may issue the following messages, which you can
ignore:

S_DU1611_NO_PROTECTS iirelation indicates that there are protections for table
(owner), but none are defined.

S_DU@305_CLEAR_PRTUPS Recommended action is to clear protection information from
iirelation, and S_DU1619 NO_VIEW iirelation indicates that there is a view
defined for table (owner), but none exists.

S_DUG30C_CLEAR_VBASE Recommended action is to clear view base specification from
iirelation.

You can also ignore the “patch warning” message that warns of the loss of
user tables in “runinteractive” mode. This mode will not be used.

58 Migration Guide

How You Perform an Upgrade Using Unload/Reload

Disable Ingres Startup

If Ingres starts automatically when the machine boots up, turn auto-starting
off until the upgrade is complete.

To disable Ingres startup and put operating system changes into effect
1. Follow the procedures for your platform:

UNIX: On most UNIX platforms, a file in a system startup directory
performs Ingres startup and shutdown; place an “exit 0” at the top of this
file. The system administrator may need to perform this step if it requires
root privilege. (The system startup directory depends on your platform—
/etc/init.d, or /sbin/init.d, or a similar name).

Windows: If Ingres is run as a system service, set the service to start
manually instead of automatically.

2. Make sure that the operating system is correctly configured for your new
version of Ingres, as described in How You Prepare Your System (see
page 30).

3. Reboot, if necessary, to put the operating system parameter changes into
effect.

Note: This step is recommended even if you are doing a clean installation
upgrade. By leaving the old installation shut down, you eliminate the chance
that someone will connect to it by mistake later.

Preserve Site Modifications

Files distributed as part of Ingres that you have customized will be lost during
the upgrade. Any custom files you have added to the $II_SYSTEM directory
tree will remain.

You must copy your customized files to a safe place. Do not copy them to /tmp
or anywhere in $II_SYSTEM/ingres directory.

If local collation sequence files have been customized, save the original
collation definition files and the compiled files that reside in
$II_SYSTEM/ingres/files/collation.

Upgrading Using Unload/Reload 59

How You Perform an Upgrade Using Unload/Reload

Visual DBA Configurations

When upgrading, Visual DBA configuration files (.vdbacfg) are not upwardly
compatible and must be recreated.

Note: Instead of using configuration files, you can use the vdba command
with command line flags to start Visual DBA with, for example, certain
windows open on given nodes. For details on the vdba command, see the
Command Reference Guide.

(Optional) Delete Install Directory (UNIX)

Install Ingres

Note: This step is optional but recommended.

The Ingres installation procedure on UNIX starts by extracting the install
subdirectory from the Ingres distribution.

You should delete the old contents of that directory first, as follows:
cd $II_SYSTEM/ingres

rm -rf install

Note: This step is required only for an in-place upgrade on UNIX.

To install Ingres, see the Ingres installation instructions for your platform.

In-place upgrades only: During the installation process, the DBMS Server
setup asks whether all databases are to be upgraded; answer No. The install
procedure automatically upgrades the iidbdb. If the upgrade of iidbdb fails, see
the appendix “Troubleshooting Upgradedb.”

After the iidbdb is upgraded, the DBMS Server setup attempts to upgrade
imadb and install Remote Command Server objects into imadb. Some versions
of upgradedb neglect to create imadb first, and you will get “Database does
not exist: imadb” errors. These will be corrected in the next step.

60 Migration Guide

How You Perform an Upgrade Using Unload/Reload

How You Upgrade to Older Versions That Require a Patch

Newer versions of Ingres distribute service packs. You can install service packs
without having to install a base release of Ingres first.

UNIX: If you are upgrading to an older Ingres version that requires an overlay
patch instead of a service pack, follow this procedure:

1. Run ingbuild. When asked whether you want to set up all the Ingres
components, respond No. Exit ingbuild.

2. Install the Ingres patch.
3. Run ingbuild again. Select Current, then SetupAll.

4. Follow the prompts to complete the Ingres setup.

Setup now uses the fixed version. ™

Create imadb Database

Note: Perform this step only if you received “Database does not exist: imadb”
messages during the DBMS setup phase of your Ingres install. This should only
occur if you are upgrading from OpenlIngres 1.x to Ingres 2.6 or older.

To create the imadb database, as the installation owner, execute these
commands:

UNIX:

ingstart

cd $II_SYSTEM/ingres/vdba

createdb '-u$ingres' imadb -f nofeclients
sql '-u$ingres' imadb <makimau.sql
rmcmdgen

ingstop 2

Windows:

ingstart

cd %II_SYSTEM%\ingres\vdba

createdb -u$ingres imadb -f nofeclients
sql -u$ingres imadb <makiman.sql
rmcmdgen

ingstop 2

As the makimau or makiman SQL scripts run, you see a series of messages
such as “E_USOAC1 'some-name' does not exist or is not owned by you.”
These are normal and can be ignored.

Upgrading Using Unload/Reload 61

How You Perform an Upgrade Using Unload/Reload

Restore Site Modifications

Restore any site-specific files that you copied in the step Preserve Site
Modifications.

If the checkpoint template file cktmpl.def has been modified, the modifications
may need to be carried forward into Ingres. The cktmpl.def from Ingres 6.4
cannot be used with Ingres, as the file format has changed. This means that
you must recreate the changes using the Ingres 6.4 cktmpl.def as a guide.
See the Ingres 6.4 Database Administrator's Guide.

If the archiver exit script acpexit was changed in Ingres 6.4, you must make
the changes to the Ingres template (acpexit.def), and then move that file to
$II_SYSTEM/ingres/files/acpexit.

Review Ingres Configuration

Set Up Ingres Net

If you are doing a clean install, you need to change the default Ingres
configuration to match your site requirements.

If you are doing an in-place upgrade, the upgrade process preserves your
original Ingres installation parameters. You should review the configuration
because some parameters may change from version to version. For
information on parameters that changed, check the Readme for your new
version of Ingres.

Review your parameter settings by running Configuration-By-Forms or
Configuration Manager. Especially pay attention to major items such as startup
counts and DBMS cache settings. If you are doing a clean install, you can use
your original Ingres installation configuration as a guide.

Note: If you disabled the Remote Command Server in the step Disable
Remote Command Server, use EditCount to restore its startup count to the
original value.

Create the vnode definitions for the remote installations by using netutil. If
using shadow passwords on UNIX, you must run mkvalidpw. For details, see
the Connectivity Guide.

If there are NFS client-only installations that have not been set up, run
ingmknfs to set them up.

62 Migration Guide

How You Perform an Upgrade Using Unload/Reload

Start Ingres

Run ingstart to start Ingres.

Recreate Users, Groups, and Roles

Note: This step is required only for a clean-installation upgrade.

To recreate users, groups, and roles:

1.

As the installation owner, change directory to your iidbdb unloaddb
directory where you stored the files from the step Save Users, Groups, and
Roles of this upgrade procedure

Run this SQL to recreate users and groups:

sql '-u$ingres' iidbdb

copy iiusergroup(groupid=c@comma,groupmem=cOnl)

from 'groups.out'

\go

commit

\go

\read users.sql

commit

\go

\quit

Windows: Omit the quotes from the sql command line. =

The file users.sql may try to recreate some users that already exist in the
installation, such as the installation owner and root user. This will cause

“E_US18B6 The user 'name' already exists” errors. You can ignore these
errors.

If your original installation had roles defined, recreate them with the ADD
ROLE SQL statement. Use the file roles.out as a guide.

Roles cannot be reliably bulk-loaded from the original installation, so you
must recreate them by hand. After you recreate each role, issue the
following SQL statement:

grant rolename to user; commit

The most common user here is public. You can use the file rolegrants.out
to determine what role grants are needed.

Upgrading Using Unload/Reload 63

How You Perform an Upgrade Using Unload/Reload

Recreate Locations

Note: This step is required only for a clean-install upgrade.

To recreate locations:

1. Refer to each infodb output saved in the step Record Database
Information of this upgrade procedure.

2. Create any location that is not a default installation location (ii_database,
ii_checkpoint, ii_journal, or ii_dump). For more information about creating
locations, see the Database Administrator Guide.

Recreate the Database

Before creating each database, refer to the infodb output saved in the step
Record Database Information of this upgrade procedure. Look at the location
names for ROOT, JOURNAL, CHECKPOINT, and DUMP. If these are not
ii_database, ii_journal, ii_checkpoint, or ii_dump, you must specify the
location to createdb with the -d, -j, -c, or -b flags, respectively.

Also, refer to the database access information recorded in that step. If the
database access was “private,” you must use the -p flag for createdb.

If all the database locations are the default, and the database is public, you
can omit the flags on the createdb command line.

Recreate each user database, omitting the front-end catalogs. (The front-end
catalogs will be created as part of the reload.) Use the following command:

createdb dbname flags -f nofeclients

Note: For an Ingres Star database, run createdb/star for the DDB. Do not run
createdb for the CDB.

Extend the Database

To extend each database:

1. Refer to the infodb output saved in the step Record Database Information
of this upgrade procedure.

2. If the database was extended to data locations other than the default
location, run accessdb as the installation owner and extend the newly-
created databases to the same locations. The locations will already exist; it
is only necessary to extend the databases to use them.

If you prefer a non-interactive command line utility, you can use the
extenddb utility instead of accessdb.

64 Migration Guide

How You Perform an Upgrade Using Unload/Reload

Recreate Database Privileges

To recreate database privileges:

1.
2.

5.

As the installation owner, change to the iidbdb unloaddb directory.

Refer to the file dbprivs.out created in the step Record Database
Privileges.

Each row in the dbprivs.out file describes one or more database privileges
given to the user grantee-name. AY or N in a privilege column indicates
the specific privilege. (A U in a column means “Unchanged.”)

Start an iidbdb Terminal Monitor session:

sql iidbdb

For each row, issue the statement:

grant privilege on database database-name to grantee-name;commit

If the privilege column is N, grant noprivilege instead of privilege.

When finished, use \quit to exit the iidbdb session.

The structure of the iidbpriv catalog did not change between Openlngres 1.x
and Ingres 2.6, so it is possible to copy the original contents of the catalog
directly. However, we do not recommend this because the catalog may change
in future releases.

If you have defined many privileges, or recreated many users, groups, or
roles, you should run sysmod on the iidbdb, which will accelerate query
processing. Issue the sysmod command, as follows:

sysmod iidbdb

Upgrading Using Unload/Reload 65

How You Perform an Upgrade Using Unload/Reload

Fix FE Reload Script

Because the new database was not created with front-end catalogs, it is not
necessary to drop them.

To fix the front-end reload script, for each database:

1. Open the file copy.in.

2. Delete the following lines:

\include/ingl2/ingres/files/iiud.scr
\include/ingl2/ingres/files/iiud65.scr

Note: The directory path may differ.
3. Check for the ij_atttype catalog definition:

create table ii_atttype (
...about 23 lines. ..

system_maintained char (1) not null
4. Change the name system_maintained to sys_maintained.

Not all databases contain the ji_atttype catalog, so it is okay if you do not
find the definition.

5. Save the modified copy.in file.

Reload the Database

To reload the database:
1. Run reload.ing for each database.

UNIX: Redirect the reload to a log file so that it can be checked for errors.
Using the C shell:

reload.ing |& tee reload.log

Note: If using Ingres Star, reload the CDB and all “real” local databases
before reloading the DDBs. =

2. After the reload is complete, verify that the table ii_id has only one row.
Type isql <database>, and select * from ii_id.

3. If more than one row is returned, delete the row with the lowest object_id.

66 Migration Guide

How You Perform an Upgrade Using Unload/Reload

Upgrade Front-End Catalogs

To upgrade the front-end catalogs to the new Ingres level, run upgradefe on
each database.

Issue the following command:

upgradefe dbname INGRES

Type the word INGRES in uppercase.

Reapply Optimizer Statistics

Reapply optimization statistics for each database. You can do this by either:
m Regenerating statistics from scratch.

If there is sufficient time, we recommend that you regenerate the
optimizer statistics using the procedures of your application system.

m Using the statistics printed from the original installation in the step Print
Optimizer Statistics earlier in this upgrade procedure.

If time is short, and if you printed the original statistics, you can read
them back in with the -i option to optimizedb:

optimizedb dbname -i dbname.stats

Checkpoint the Database

Checkpoints and journals from your original Ingres version will not work with
the newer version, so do not omit or delay this step.

Checkpoint each database, including the iidbdb. If the database was journaled
previously, use the +j flag to turn on journaling.

To know which databases were journaled, see the infodb output from the step
Record Database Information.

The iidbdb should always be journaled, regardless of whether it was journaled
in the original installation.

Upgrading Using Unload/Reload 67

How You Perform an Upgrade Using Unload/Reload

Install Upgraded Applications

To perform the last step of the upgrade procedure:
1. Install the Ingres versions of the applications.
2. Restore user logins

3. Resume normal operation.

68 Migration Guide

Chapter 5: Troubleshooting Upgradedb

This chapter describes how to troubleshoot problems you may encounter when
using the upgradedb utility.

The best way to avoid problems with the upgradedb utility is to upgrade to the
most recent service pack of Ingres, and to follow the upgrade steps carefully.

Note: If you are upgrading to Ingres II versions 2.0 or 2.5, make sure you
install the latest patch available for your platform before performing the
upgradedb step.

The upgradedb utility starts to process, and then hangs with no error
indication.

This condition is probably caused by the Remote Command Server
interfering with the upgradedb process, which is likely if you are upgrading
to Ingres II 2.0 instead of Ingres 2006. Use the rmcmdstp command to
stop the Remote Command Server.

You can use Configuration-By-Forms or Visual Configurator to turn off the
Remote Command Server until the upgrade is finished: select Remote
Command Server and use EditCount to set the startup count to zero.

The following message occurs: “Product name has been made
uninstallable by an incompatible dictionary upgrade.”

This message is caused by extra or incorrect rows in the front-end catalog
ii_client_dep_mod. The rows may have been created by very old versions
of Ingres. You can ignore this message.

The following message occurs shortly after the upgradedb utility
starts processing a database: “"E_SC0206 An internal error prevents
further processing of this query.”

This message is seen when upgradedb -all is used, and the database
data ROQT location is not the same as others processed in the same
upgradedb run. The errlog.log shows the message
“"E_DM9004_BAD_FILE_OPEN” referencing a filename: aaaaaaaa.cnf,
shortly before the E_SC0206 message.

This message has occasionally been seen in various versions of upgradedb.
Simply rerun upgradedb for the one failed database, and continue the
upgrade.

Troubleshooting Upgradedb 69

Other Upgradedb Problems

Difficulties arise after upgradedb announces “"Reloading query tree
objects.”

The database may be usable but lack one or more views, permits, or other
objects. Refer to the generated SQL script and output files in the directory
$1I_SYSTEM/ingres/files/UPGRADEUSER/ (where UPGRADEUSER is the
user who is running upgradedb, typically “ingres”). You may be able to
resolve the problem by inspecting the output files. You can complete the
upgrade by re-running the input script files through the Terminal Monitor.
For assistance, contact Ingres Technical Support.

Other Upgradedb Problems

If something else goes wrong with the upgradedb utility, contact Ingres
Technical Support for help.

For problems with a single database, customer support can assist you in
restoring the database data files from your system backup and resetting the
database information in iidbdb so that you can retry upgradedb. In the worst
case, it may be necessary to restore the entire installation from your system
backup, fix the database problem, and redo the upgrade.

70 Migration Guide

Chapter 6: Considerations for Alpha
OpenVMS

This chapter describes the steps required for upgrading Ingres on the Alpha
OpenVMS platform from Ingres II 2.0 to Ingres 2.6/0401 or Ingres 2006
(axm.vms/100).

Use this chapter together with the appropriate edition of the Ingres Installation
Guide or Getting Started guide and the Readme file.

OpenVMS Requirements

For the minimum process requirements for an Ingres system administrator,
see the appendix "System Requirements for OpenVMS” in the Installation
Guide. Also see the Readme file.

Considerations When Installing Ingres on OpenVMS

For full instructions on installing Ingres on OpenVMS, see the Installation
Guide. The installation process has not changed significantly from Ingres II
2.0.

Ingres uses the VMSINSTAL procedure to install and configure its software.
Using VMS, it is possible to create the new Ingres system administrator
account, extract the software required, and configure Ingres. However,
depending on how the installation progresses, some issues may develop.

You can install Ingres either directly from the CD-ROM or from a working area
on the target system. If the files are transferred to the target node through
FTP, they must be moved across in binary mode.

Considerations for Aloha OpenVMS 71

Considerations When Installing Ingres on OpenVMS

Mount the CD

Run VMSINSTAL

If the machine has a CD-ROM drive, you can use the following command to
mount the CD:

$ MOUNT /OVERRIDE=IDENTIFICATION /MEDIA_FORMAT=CDROM -
/UNDEFINED_FAT=(FIXED:CR:32256) <CD Device>

To access the readme use the following:

$ MOUNT /OVERRIDE=IDENTIFICATION /MEDIA_FORMAT=CDROM -
/UNDEFINED_FAT=STREAM:32767 CD_Device

To run the installer, issue the following command from any privileged account
that is defined as holding the privileges needed to run Ingres:

@sys$update:vmsinstal * distribution_medium

By default, the SYS$ROOT area is used by VMSINSTAL to unpack the savesets
in preparation for installing Ingres. If there is insufficient space available, then
VMSINSTAL will fail. To specify an alternate working directory, you can use the
awd parameter, as follows:

@sys$update:vmsinstal * <distribution_medium> options awd=device: [dir]
To log the installation process specify the option L when calling VMSINSTAL:

@sys$update:vmsinstal * <distribution_medium> options L

72 Migration Guide

Schema Checking

Known Installation Issues

Note: For more information about these issues, check the technical
documents available at the Ingres Technical Support web site.

Creating the Ingres System Administrator account from within VMSINSTAL
does not assign the correct process quotas to the account. (For the correct
qguotas, see the Installation Guide.) The workaround is to create the account
before the VMSINSTAL process is started with the correct privileges and
process quotas.

II_WORK is not picked up, if pre-defined in the local symbol table, when an
Express installation is performed. The user must enter the correct information
when prompted.

If Ingres is installed from a non-Ingres System Administrator account, imadb
is created as the process owner for VMSINSTAL rather than the installation
owner configured earlier. When Ingres is started, the RMCMD process will hang
because it is running as a user that is unable to connect to the RMCMD
catalogs in imadb. The workaround is to install Ingres as the intended Ingres
System Administrator.

Schema Checking

Ingres reserves a number of new keywords, mostly for support of SQL
additions. If names such as substring, first, or cache are used as column
names, you must change the database schema. For a list of Ingres reserved
words, see the appendix “Keywords” and the SQL Reference Guide.

If you are concerned that some column names in your database may conflict
with reserved words, you can take a copy of the schema from the current
installation and load it into an Ingres database. You should extend these
checks to the applications to verify that tables and views created at runtime
are not affected by the new keywords. Conflicts found in the schema and
applications must be removed before moving to Ingres.

Considerations for Alpha OpenVMS 73

Application Rebuilding

Application Rebuilding

In addition to migrating data, you must rebuild all applications that connect
locally to an existing Ingres installation.

The following compilers have been tested and are known to work with Ingres
for OpenVMS.

HP Ada

HP BASIC

HP C

HP COBOL

HP C++

HP Pascal

HP Fortran

Note: For the latest information, see the Readme.

Building Member_Aligned Against Ingres 2.6 or 2006

Note: This section applies only to migrating from releases prior to Ingres II
2.0/0011 (axm.vms/00).

With the move to a member_aligned version of Ingres, some applications must
be rebuilt. You must rebuild applications that connect directly to an installation
located on the same node, or through Ingres Net on the client node.

Building Vision and Application-By-Forms applications member_aligned is the
default behavior, with no further changes being required from the developer.

C /MEMBER_ALIGNED
Pascal /ALIGN=ALPHA_AXP
COBOL /ALIGNMENT=PADDING
Fortran /ALIGNMENT=ALL

74 Migration Guide

Application Rebuilding

If an application cannot be built using Alpha member alignment, it is possible
to rebuild it with the Ingres components naturally aligned. The steps needed
for C and COBOL applications are described in the following sections.

These changes require modification to the Ingres supplied files only and not
the application code. Even by performing the steps listed here, you still must
recompile all parts of the application that interface with Ingres or that use any
structures declared in the Ingres header files.

By default, user applications are built using the same compiler options used to
build the Ingres libraries and applications. If these options are not used,
proceed carefully.

The introduction of the member_aligned version of Ingres occurred when
alignment-related memory issues were encountered in Ingres II 2.0/9808
(axp.vms/00). If any applications are built using un-aligned structures with the
communicating interface to Ingres, data corruption is likely to occur.

Considerations for Alpha OpenVMS 75

Application Rebuilding

Modifications Required For C Applications

To build C applications byte-aligned with Ingres, a number of files require
modification. Any modifications made may need to be re-applied following the
installation of an Ingres patch.

The first files to modify are the C header files supplied in the following
directories:

II_SYSTEM: [INGRES.DEMO.API.ASC]
IT_SYSTEM: [INGRES.DEMO.UDADTS]

II_SYSTEM: [INGRES.FILES]

At this time, the only header files that contain Ingres structure definitions
need modification, these are:

II_SYSTEM:
II_SYSTEM:
II_SYSTEM:
II_SYSTEM:
II_SYSTEM:
II_SYSTEM:
II_SYSTEM:
II_SYSTEM:
II_SYSTEM:
II_SYSTEM:
II_SYSTEM:
II_SYSTEM:
II_SYSTEM:

[INGRES.
[INGRES.
[INGRES.
[INGRES.
[INGRES.
[INGRES.
[INGRES.
[INGRES.
[INGRES.
[INGRES.
[INGRES.
[INGRES.
[INGRES.

DEMO.API.ASC]ASC.H
DEMO. UDADTS]UDT.H
FILES]ABFURTS.H,
FILES]EQSQLCA.H,
FILESTEQSQLDA.H,
FILES]FRAME2.H,
FILES]FRAME60O.H,
FILES]FRAME61.H,
FILES]IIADD.H,
FILES]IIAPI.H,
FILES]OSLHDR.H,
FILES]RAAT.H,
FILES]SPATIAL.H

On the first line in each of the above files add:
#pragma member_alignment save

#pragma member_alignment

On the last line in each of the above files add:

#pragma member_alignment restore

Note: The "#" of the #pragma instruction must be the first character on the
line.

The purpose of these pragmas is to direct the compiler to naturally align the
elements of the defined structures, then to restore the alignment strategy
used before the header file was included.

76 Migration Guide

Application Rebuilding

One further change is required to allow Application-By-Forms and Vision
applications to successfully build with unaligned code. In
II_SYSTEM:[INGRES.FILES]DCC.COM, replace the line

$ cc/standard=vaxc/float=ieee_float/nooptimize/nolist
with:

$ cc/NOMEMBER_ALIGNMENT/GRANULARITY=BYTE -
/standard=vaxc/float=ieee_float/nooptimize/nolist

Modifications Required For COBOL Applications

To achieve the same result for embedded COBOL applications, the following
statements must be added to these files:

II_SYSTEM: [INGRES.FILES]EQSQLCA.COB, II SYSTEM: [INGRES.FILES]ESQLDA.COB
On the first line of the above files, add:
*DC SET ALIGNMENT

On the last line of the above files, add:

*DC END-SET ALIGNMENT

The II_SYSTEM:[INGRES.FILES]JUTCOM.DEF file requires the removal of the
qualifier "/alignment=padding" from the COBOL compile statements.

Considerations for Alopha OpenVMS 77

Appendix A: Upgrading from Ingres 6.4

This appendix describes special considerations when upgrading from Ingres
6.4.

Regardless of the upgrade method you are using, you should perform the
tasks described in Considerations for Ingres 6.4 (see page 79).

If you are using the unload/reload method to upgrade from Ingres 6.4, follow
the instructions in How You Upgrade from Ingres 6.4 Using Unload/Reload (see
page 86).

If you are using the upgradedb method to upgrade from Ingres 6.4, you can
follow the procedure in the chapter “Upgrading Using Upgradedb.” If you have
difficulties with that procedure in your testing, you can use the process
described in Alternate Upgradeb Procedure (see page 96).

This appendix also lists Ingres 6.4 parameters and their corresponding names
in newer releases.

Considerations for Ingres 6.4

There are additional considerations when loading Ingres 6.4 databases and
applications into the new development installation. These considerations
include application preparation and system preparation.

Application Preparation

After successfully creating databases and applications in the new Ingres
development installation, you should check for the following additional
application issues.

m Semantics change in the UPDATE...FROM statement
m Decimal constant semantics change

® Greater sensitivity to BYREF errors

® Journaling on by default

m Greater sensitivity to arithmetic errors

® 4GL TABLE_KEY type conversions

m User-defined data type changes

Upgrading from Ingres 6.4 79

Considerations for Ingres 6.4

UPDATE . .. FROM Semantics Change

In Ingres 6.4/05 and earlier, the “ambiguous replace” test allowed an update
using the UPDATE...FROM statement if each target row was being updated with
an unambiguous value. Ingres 6.4/06 and higher releases test for multiple
FROM rows and generate an ambiguous replace error message even if all the
FROM rows generate the same replacement value.

For example, Ingres 6.4/05 and earlier allowed the following update:

UPDATE table_1
FROM table_2
SET column_3 = 3;

even though there is no WHERE qualification joining the tables, since the
replacement value was non-ambiguous. In later releases, an “ambiguous
replace” error message displays.

The recommended approach for this semantics change is to review all
applications for ambiguous updates and change them to use EXISTS or IN,
instead of a join. If this is not feasible, the original UPDATE . . . FROM handling
can be restored by setting the DBMS parameter “ambig_replace_64compat” to
ON in Configuration-By-Forms.

80 Migration Guide

Considerations for Ingres 6.4

Decimal Constant Semantics Change

With the introduction of the DECIMAL data type, fixed-point literals such as 1.0
are now considered DECIMAL, rather than FLOAT.

Typically, this does not matter, as Ingres does appropriate type conversions.
However, it is important when doing a CREATE TABLE . . . AS SELECT with a
constant in the SELECT result list.

For example:

CREATE TABLE table_1
AS SELECT column_1, column_2, column_3=1.0
FROM table 2;

In Ingres 6.4, the column_3 is created as FLOATS; in Ingres it is created as a
DECIMAL(2,1) column. This may result in overflow in an application.

The recommended approach is to examine uses of fixed-point constant usage
in applications and change them to floating point constants, or add an explicit
FLOATS type conversion.

A less thorough but easier alternative is to set the environment variable
II_NUMERIC_LITERAL to FLOAT, as follows:

setenv II_NUMERIC_LITERAL FLOAT

Ingres then interprets fixed-point constants as floats rather than decimals. If
you decide to use II_NUMERIC_LITERAL, it will be necessary for every user of
the applications to set II_NUMERIC_LITERAL in their environment.

Greater Sensitivity to BYREF Errors

Ingres 6.4 4GL programs are insensitive to length and type errors when
returning BYREF values to a calling program. Ingres is more sensitive to return
values that are too long or the wrong type. In some cases, this can result in
programs aborting and segmentation violations. The cure is to ensure that the
called and calling routines return values of compatible length and type.

An as interim fix, an environment variable can be set to cause the 4GL runtime
system to pass parameters the way 6.4 did: all integers forced to 4-byte, all
floats forced to 8-byte. Character string passing is not affected. The
environment variable setting is:

setenv II_PARAM_PASSING FORCEMAX

Upgrading from Ingres 6.4 81

Considerations for Ingres 6.4

Journaling On by Default

In Ingres 6.4, if a database was journaled, a newly-created table would not be
journaled unless WITH JOURNALING was explicitly stated.

In Ingres, journaling is on by default. This means that if an application creates
temporary tables, those tables will be journaled; this may consume more
system resource, resulting in Ingres applications running more slowly than
expected.

You can turn default journaling off by changing the Configuration-By-Forms
parameter “default_journaling.” Alternative options are to issue a SET
NOJOURNALING statement at the beginning of an application, create
temporary tables WITH NOJOURNALING, or use session tables.

Greater Sensitivity to Arithmetic Errors

Ingres 6.4 ignores a number of arithmetic error conditions (such as floating
point overflow and divide-by-zero). Ingres correctly reports arithmetic errors
on all platforms. If an application generates arithmetic exceptions when tested
with Ingres, it is probable that the application had problems in Ingres 6.4 that
were not reported. The application must be corrected.

4GL TABLE_KEY Type Conversions

Conversion of 4GL VARCHAR variables to the TABLE_KEY type gives length
errors. Avoid this by converting to char first:

TABLE_KEY (CHAR(varcharVariable))

Some 6.4 releases of 4GL had problems with variables of type TABLE_KEY. If
you were doing type conversions to avoid the use of TABLE_KEY variables,
consider removing the conversion altogether and using the TABLE_KEY type
directly.

User-Defined Data Type Changes

If you are using Object Management Extension to declare user-defined data
types in the server, be aware of some changes in calling sequences. For
details, see the Object Management Extension User Guide.

82 Migration Guide

Considerations for Ingres 6.4

Application Preparation Summary

Many of the changes required for Ingres are backward compatible with Ingres
6.4. Make application changes in the Ingres 6.4 installation, and bring them
forward to the Ingres installation for testing. In this way, you do not have to
freeze application development while preparing for Ingres.

At this stage, resist the temptation to make Ingres-specific application
changes. While an outer join or a session temp table may enhance
performance, there is plenty of time to add performance enhancements after
the upgrade.

System Preparation

Take the following steps to prepare your system:

® Change customized start and stop shell scripts to reflect new commands
®m Change shell scripts that use ingprenvl environment variable

®m Carry forward any changes to archiver exit script

® Change transaction log parameter settings
Ingres Startup and Shutdown

Ingres uses new commands for startup and shutdown: ingstart and ingstop
instead of iistartup and iishutdown. If you have customized shell scripts that
start and stop Ingres, you must change them. Verify the changes in the
development Ingres installation and have the revised scripts ready for the
production environment at time of upgrade.

If you are running multiple DBMS servers with Ingres 6.4, you should be able
to simplify your startup and shutdown procedures. Ingres supports multiple
DBMS servers directly from the Ingres configuration.

ingprenv Replaces ingprenvi

In Ingres, the ingprenv command replaces the Ingres 6.4 ingprenvl
command, which displayed one Ingres environmental variable. Shell scripts
that use ingprenvl must be changed.

It is possible to recreate ingprenvl as follows:

echo 'exec $II_SYSTEM/ingres/bin/ingprenv $*' >/usr/local/bin/ingprenvl
chmod +x /usr/local/bin/ingprenvl

Upgrading from Ingres 6.4 83

Unload/Reload Procedure for Upgrading from 6.4

Archiver Exit Shellscript

Transaction Log Size

Ingres has a sample Archiver exit script, acpexit.def. If the Ingres 6.4 acpexit
script was customized, you must carry over these changes to the Ingres
installation.

For information about the acpexit script, see the System Administrator Guide.

Generally, Ingres uses less transaction log file space than Ingres 6.4. A few
operations may use more (for example, MODIFY TO MERGE). To allow for its
improved logging algorithms, Ingres reserves transaction log space that it may
not actually write.

The force-abort limit cannot be set as close to log-full as was possible in
Ingres 6.4.

If your Ingres 6.4 transaction log was barely large enough, it may be advisable
to increase the size before or during the upgrade.

Unload/Reload Procedure for Upgrading from 6.4

The unload/reload upgrade avoids the upgradedb program (except for iidbdb),
in favor of unloading the Ingres 6.4 databases to flat files, recreating the
databases under Ingres, and then reloading the databases. This approach has
the advantage of starting with clean databases, but requires more time and
disk space than does the upgradedb method.

Note: Databases using the system-maintained logical key feature are best
upgraded using upgradedb. Tables that contain SYSTEM_MAINTAINED
table_key or object_key columns cannot be safely unloaded and reloaded
without additional work. The reload step generates all new logical key values.
If other tables reference the logical key columns, the new values must be
manually propagated to those tables.

84 Migration Guide

Unload/Reload Procedure for Upgrading from 6.4

Unload/Reload Upgrade Types

You must choose one of the following variations of the unload/reload
procedure:

®m In-place upgrade, which replaces the 6.4 installation with the new Ingres
installation. The master database (iidbdb) is upgraded with upgradedb,
even though other databases are unloaded and reloaded. Because the
iidbdb remains, all your locations, users, groups, and roles still exist in the
new installation.

®m (Clean install upgrade, which leaves the 6.4 installation alone. Ingres is
installed into a completely new installation. (The new installation may even
be on a different machine.) When performing a clean install upgrade, you
must take extra steps to recreate locations and move users, groups, and
roles from the 6.4 installation to the new one.

Front-end Catalogs and the Upgradefe Program

The hardest part of the unload/reload upgrade is dealing with the front-end
catalogs. These catalogs are unloaded in Ingres 6.4 format, and cannot be
loaded into an Ingres database. To circumvent this problem, the Ingres
database is created without front-end catalogs. The catalogs are then loaded
in the Ingres 6.4 format and upgraded using the upgradefe program.

Upgrading from Ingres 6.4 85

How You Upgrade from Ingres 6.4 Using Unload/Reload

How You Upgrade from Ingres 6.4 Using Unload/Reload

To upgrade from Ingres 6.4 using the unload/reload procedure, follow this
process.

Note: In this procedure, the notation [Each DB] means: “For each database,
not including the iidbdb, become the DBA for that database, cd to the unload
directory for the database created in Step 1, and perform this step.” If using
Ingres Star, include the coordinator database in the list of databases. Steps
that apply to a particular upgrade type only (that is, in-place upgrade or clean
install upgrade) are marked accordingly.

A W N B~

© ® N o U

[Each DB including iidbdb] Create Unload Directory (see page 51).
[Each DB] Run Unloaddb (see page 52).
[Each DB] Check for Obsolete Users (see page 87).

[Each DB including iidbdb] (Optional) Checkpoint the Database (see
page 53).

Disable User Access (see page 38).

Shut Down Ingres and Back Up System (see page 40).

[Each DB] Unload the Database (see page 54).

[Each DB] (Optional) Print Optimizer Statistics (see page 55).
[Each DB] Record Database Information (see page 41).

. Record Database Privileges (see page 88).

. Save Users, Groups, and Roles (see page 89).
. [Each DB] Destroy the Database (see page 57).
. Clean iidbdb Database (see page 90).

. Record Ingres Configuration (see page 90).

. Shut Down Ingres (see page 91).

. Disable Ingres Startup (see page 59).

. Preserve Site Modifications (see page 42).

. Fix Logins (see page 91).

. Save Ingres Settings (see page 91).

. Clean Up Ingres 6.4 (see page 92).

. Create Work Location (see page 92).

. Install Ingres (see page 60).

. Create imadb Database (see page 45).

. Restore Site Modifications (see page 62).

86 Migration Guide

How You Upgrade from Ingres 6.4 Using Unload/Reload

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

Configure Ingres (see page 93).

Set Up Ingres Net (see page 62).

Start Ingres (see page 45).

Recreate Users, Groups, and Roles (see page 94).
Recreate Locations (see page 64).

[Each DB] Recreate the Database (see page 64).
[Each DB] Extend the Database (see page 64).
Recreate Database Privileges (see page 95).

[Each DB] Fix FE Reload Script (see page 95).

[Each DB] Reload the Database (see page 66).

[Each DB] Upgrade Front-End Catalogs (see page 67).
[Each DB] Reapply Optimizer Statistics (see page 67).
[Each DB including iidbdb] Checkpoint the Database (see page 47).
Install Upgraded Applications (see page 47).

The sections that follow provide details on steps that differ from those
described previously in this guide.

Check for Obsolete Users

Old databases may have objects created by users who no longer exist. Check
for obsolete users for each database.

To check for obsolete users:

1.

au »~» W N

Examine the scripts created by unloaddb earlier in the upgrade procedure.
Each script contains one line for each user who owns a database object.
Make sure that all users listed are valid.

If obsolete users are found, delete the relevant lines from the scripts.
Delete the cp{user}.in and cp{user}.out files.

Go into the database and clean out these unwanted objects.

Upgrading from Ingres 6.4 87

How You Upgrade from Ingres 6.4 Using Unload/Reload

Record Database Privileges

To record database privileges

1. As the installation owner, change directories to the unload directory for
iidbdb created in Step 1 of this upgrade procedure.

2. Run the following SQL to save private database access lists and user
database privileges:

sql iidbdb

\script dbaccess.out
select dbname, usrname
from iidbaccess

order by dbname, usrname
\go

\script

\script dbprivs.out
select *

from iidbprivileges
where database_name <> ''
order by database_name,grantee_name
\go

\script

\quit

This procedure creates two files, dbaccess.out and dbprivs.out.

88 Migration Guide

How You Upgrade from Ingres 6.4 Using Unload/Reload

Save Users, Groups, and Roles

Note: This step is required only for a clean-install upgrade.

To save users, groups,and roles

1.

As the installation owner, change directory to the iidbdb unload directory
created in Step 1 of the upgrade procedure.

Run the following SQL to save users, groups, and roles:

sql iidbdb
create table unload_tmp as
select name,status,default_group
from iiuser
where name not in ('ingres','$ingres', 'root')
\go
copy unload_tmp (
name=c@comma, status=cOcomma,default_group=cOnl
) into 'users.out'
\go
drop unload_tmp;commit
\go

copy iiusergroup (
groupid=cOcomma, groupmem=cOnl

) into 'groups.out'

\go

copy iirole(
roleid=cOnl

) into 'roles.out'

\go

\quit

Upgrading from Ingres 6.4 89

How You Upgrade from Ingres 6.4 Using Unload/Reload

Clean iidbdb Database

Note: This step is required only for an in-place upgrade.

To clean the iidbdb database, become the installation owner and run the
following steps against the master database iidbdb.

Note: It is assumed that there are no objects created by users in the iidbdb.
statdump '-u$ingres' -zdl iidbdb

sysmod -s iidbdb

verifydb -mrun -sdbname iidbdb -opurge

verifydb -mrun -sdbname iidbdb -odbms

ckpdb -s -j iidbdb

The verifydb command may issue the following messages, which you can
ignore:

S_DU1611_NO_PROTECTS iirelation indicates that there are protections for table
(owner), but none are defined.

S_DU®305_CLEAR_PRTUPS Recommended action is to clear protection information from
iirelation, and S_DU1619 NO VIEW iirelation indicates that there is a view
defined for table (owner), but none exists.

S_DU@30C_CLEAR_VBASE Recommended action is to clear view base specification from
iirelation.

You can also ignore the “patch warning” message that warns of the loss of
user tables in “runinteractive” mode. This mode will not be used.

Record Ingres Configuration

To record Ingres configuration:
1. As the installation owner, execute the “showrcp” command.

2. Record the contents of the rundbms.opt file found in
$II_SYSTEM/ingres/files.

You will use this information later as a guide for configuring Ingres. The Ingres
installation procedure does not preserve the Version 6.4 parameter settings.
During installation, the ingres/files directory is deleted, so save the
information.

90 Migration Guide

How You Upgrade from Ingres 6.4 Using Unload/Reload

Shut Down Ingres

Fix Logins

Save Ingres Settings

Shut down Ingres with the iishutdown command.

To fix logins:

1. If necessary, make sure that the login for the installation owner sets
LD_LIBRARY_PATH or the platform equivalent.

2. Make sure that the login for the user does not use ingprenvl, or install
your ingprenv1l substitute, as described in ingprenv Replaces ingprenvl
(see page 83).

3. Check all your database owner (DBA) logins to ensure that they are
properly set up for Ingres, with LD_LIBRARY_PATH or equivalent, and no
use of ingprenvl.

4. Define LD_LIBRARY_PATH or equivalent for the installation owner user
session that you will use to install and upgrade Ingres.

5. If you are doing a clean-install upgrade on a different machine, make sure

that your login fixes are applied to the new machine, not to the old one.

Note: This step is required only for an in-place upgrade.

The upgrade runs more smoothly if the Ingres 6.4 executables, control files,
and environment variables are deleted. However, you do not want to lose your
installation ID and default locations. These are kept in a file named symbol.tbl.

Copy $II_SYSTEM/ingres/files/symbol.tbl to a safe area not in the Ingres
directory tree.

Upgrading from Ingres 6.4 91

How You Upgrade from Ingres 6.4 Using Unload/Reload

Clean Up Ingres 6.4

Note: This step is required only for an in-place upgrade.

To guarantee a clean environment for Ingres:

1. Invoke the following commands:
cd $II_SYSTEM/ingres
rm -rf bin files 1lib utility dbtmplt version.rel admin
mkdir files

2. Copy your saved symbol.tbl back into the $II_SYSTEM/ingres/files
directory.

Create Work Location

Note: This step is required only for an in-place upgrade.

The Ingres installation procedure asks for a location for temporary files and
sorting, and creates the directories if they do not exist. However, you should
create this location manually because some versions of the installation
procedure may not properly set the protections for the directories, which can
cause upgradedb to fail when upgrading the iidbdb database.

For information on placement of your default work location, see the Database
Administrator Guide.

As the installation owner, assume a work location called /mywork:

UNIX:

/mywork:

mkdir /mywork/ingres

mkdir /mywork/ingres/work

mkdir /mywork/ingres/work/default

mkdir /mywork/ingres/work/default/iidbdb

chmod 755 /mywork/ingres

chmod 700 /mywork/ingres/work

chmod 777 /mywork/ingres/work/default

chmod 777 /mywork/ingres/work/default/iidbdb - |

Windows:

md \mywork\ingres

md \mywork\ingres\work

md \mywork\ingres\work\default

md \mywork\ingres\work\default\1iidbdb P |

92 Migration Guide

How You Upgrade from Ingres 6.4 Using Unload/Reload

Restore Site Modifications

Configure Ingres

Restore any site-specific files that you copied in the step Preserve Site
Modifications.

If the checkpoint template file cktmpl.def has been modified, the modifications
may need to be carried forward into Ingres. The cktmpl.def from Ingres 6.4
cannot be used with Ingres, as the file format has changed. This means that
you must recreate the changes using the Ingres 6.4 cktmpl.def as a guide.
See the Ingres 6.4 Database Administrator's Guide.

If the archiver exit script acpexit was changed in Ingres 6.4, you must make
the changes to the Ingres template (acpexit.def), and then move that file to
$II_SYSTEM/ingres/files/acpexit.

Run Configuration-By-Forms (CBF) and initially configure the Ingres
installation. Use the rundbms.opt and showrcp information from Ingres 6.4 as
a guideline. For information about CBF and the various tuning parameters, see
the System Administrator Guide.

Information on the correlation between 6.4 and Ingres parameter names, is
described in Corresponding Parameter Names (see page 104).

Derived parameters are recalculated when values they depend on are
changed. If derived parameters are set, they can be “protected” against
change.

Ingres versions from 2.0 through 2.6 may calculate very large default lock and
resource limits parameters. Check the lock_limit and resource_limit settings,
and consider reducing these limits to the Ingres 6.4 settings.

On OS-thread platforms, do not turn on async_io; and do not declare the
II_NUM_SLAVES Ingres variable.

Ingres supports larger gef_sort_mem values than Ingres 6.4. Ingres may not
need as much gsf_memory as did Ingres 6.4. OS-thread platforms should not
reduce quantum_size, as it does not improve performance on those platforms.

Upgrading from Ingres 6.4 93

How You Upgrade from Ingres 6.4 Using Unload/Reload

Recreate Users, Groups, and Roles

Note: This step is required only for a clean-installation upgrade.

If your 6.4 installation has only a few Ingres users defined, you should use the
accessdb utility or the CREATE USER SQL statement to recreate those users in
the Ingres installation. As a guide, use the file users.out or refer to the 6.4
installation.

If you have many users, the following procedure recreates them in mass.

As the installation owner, change directory to your iidbdb unloaddb directory
where you stored the files from the step Save Users, Groups, and Roles.

Run this SQL:

sql '-u$ingres' iidbdb

copy iiuser(name=cOcomma,status=cOcomma,default_group=cOnl)
from 'users.out'

\go

update iiuser

set default_priv = status, user_priv = status,

flags_mask = case when default_group <> ' ' then 28 else 24 end
where user_priv = 0 and flags_mask = 0;
\go

copy iiusergroup(groupid=cO@comma,groupmem=cOnl)
from 'groups.out'

\go

commit

\go

\quit

Windows: Omit the quotes from the sql command line. @

Ingres has new user privileges that do not exist in 6.4. If you recreate users
using the above bulk load procedure, you should review the added users with
accessdb to make sure that all user privileges are set the way you want them.
In particular, review the definitions for any 6.4 “superusers.”

Ingres handles the “update system catalog” privilege differently than did 6.4.
You must explicitly grant this privilege to the Ingres user after you recreate it,
with a grant statement, as follows:

grant update_syscat on current installation to wser-name

If your 6.4 installation had roles defined, recreate them with the ADD ROLE
SQL statement. Use the file roles.out as a guide. Roles cannot be reliably bulk-
loaded from the 6.4 installation, so you must recreate them by hand. After you
recreate each role, issue the following SQL statement:

grant rolename to public; commit

This allows the role to be used in the same manner as in 6.4.

94 Migration Guide

How You Upgrade from Ingres 6.4 Using Unload/Reload

Recreate Database Privileges

To recreate database privileges:

1.
2.

7.

As the installation owner, change to the iidbdb unloaddb directory.

Refer to the file dbaccess.out created in the step Record Database
Privileges.

Start an iidbdb Terminal Monitor session:
sql iidbdb

For each database and user combination listed in dbaccess.out, issue the
statement:

grant access on database database-name to username; commit
Review the file dbprivs.out created in the step Record Database Privilege.

Each row describes one or more database privileges given to the user
grantee-name. A 'Y or N in a privilege column indicates the specific
privilege. (A U in a column means Unchanged.)

For each row, issue the statement
grant privilege on database database-name to grantee-name;commit
If the privilege column is N, grant noprivilege instead of privilege.

When finished, use \quit to exit the iidbdb session.

If you have defined many privileges, or recreated many users, groups, or
roles, you should run sysmod on the iidbdb, which will accelerate query
processing. Issue the sysmod command, as follows:

sysmod iidbdb

Fix FE Reload Script

Because the new database was not created with front-end catalogs, it is not
necessary to drop them.

To fix the front-end reload script, for each database:

1.
2.

Open the file cp_ingres.in.
Delete the following lines:

\include/ing64/ingres/files/iiud.scr
\include/ing64/ingres/files/iiud64.scr

Note: The directory path may differ.

Save the file.

Upgrading from Ingres 6.4 95

Alternate Upgradeb Procedure

Alternate Upgradeb Procedure

The upgradedb utility in Ingres 2006 is enhanced to allow 6.4 databases to be
upgraded using the standard procedure in the chapter “Upgrading Using
Upgradedb.” Due to the many enhancements made since Ingres 6.4, the
upgradedb utility performs an intricate task when upgrading a 6.4 database.

If you encounter upgradedb problems in your testing, or if you prefer a safer
(but more complex) procedure, use the alternate upgradedb procedure in this
section. This modified procedure is designed so that the upgradedb utility has
to perform as little work as possible, so that it will correctly handle the
upgrade tasks.

In the procedure, each database is prepared by dropping all objects that can
be recreated, that is, by dropping everything but the base tables. Each base
table must be checked to make sure it is valid and has no internal damage.
After the upgrade, the various database objects are recreated.

The procedure directs you to cut and paste the output of unloaddb to generate
SQL that recreates database objects and storage structures. If procedures
already exist to recreate database objects and storage structures, you can use
these instead. Make sure, however, that the procedures recreate all the
relevant objects. If users or applications dynamically create database objects,
it may be safer to cut and paste from unloaddb.

The alternate upgradedb procedure assumes that you can become any user
who owns objects in any database (using login or UNIX “su”). If this is not
feasible, you can run as the installation owner (default user ID is ingres), and
use the -u{user} flag to pretend to be that user whenever you must run an
Ingres command.

96 Migration Guide

How You Upgrade from Ingres 6.4 Using Upgradedb (Alternate)

How You Upgrade from Ingres 6.4 Using Upgradedb
(Alternate)

To upgrade from Ingres 6.4 using the alternate upgradedb procedure, follow
this process.

Note: In this procedure, the notation [Each DB] means: “For each database,
not including the iidbdb, become the DBA for that database, cd to the unload
directory for the database created in Step 1, and perform this step.” Do not
include the iidbdb or Ingres Star databases unless instructed. If using Ingres
Star, remember to include the coordinator database in the list of databases.

1. [Each DB including Ingres Star DDBs] Create Unload Directory (see
page 98).

2. [Each DB including Ingres Star DDBs] Run Unloaddb (see page 99).

Note: You can omit Steps 2 through 4 if procedures already exist to
recreate all database objects and storage structures. However, it will be
necessary to make the appropriate changes to the oi_prep.sh script-see
the step Remove Non-table Objects-for re-modifying all tables.

3. [Each DB including Ingres Star DDBs] Check for Obsolete Users (see
page 87).

4. [Each DB] Edit the Unloaddb Output (see page 100).

5. [Each DB including iidbdb] (Optional) Checkpoint the Database (see
page 53).

6. Disable User Access (see page 38).

7. Shut Down Ingres and Back Up System (see page 40).

8. [Each DB] (Optional) Print Optimizer Statistics (see page 55).
9. [Each DB] Remove Non-table Objects (see page 101).

10. [Each DB] Record Database Information (see page 41).

11. Clean iidbdb Database (see page 90).

12. [Each DB including iidbdb] Checkpoint and Turn Off Journaling (see
page 102).

13. Record Ingres Configuration (see page 90).
14. Shut Down Ingres (see page 91).

15. Disable Ingres Startup (see page 59).

16. Preserve Site Maodifications (see page 42)
17. Fix Logins (see page 91).

18. Save Ingres Settings (see page 103).

19. Clean Up Ingres 6.4 (see page 92).

Upgrading from Ingres 6.4 97

How You Upgrade from Ingres 6.4 Using Upgradedb (Alternate)

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

Create Work Location (see page 92).

Install Ingres (see page 60).

Create imadb Database (see page 45).

Restore Site Modifications (see page 62).

Start Ingres (see page 45).

Run Upgradedb Utility (see page 46).

Configure Ingres (see page 93).

Set Up Ingres Net (see page 62).

[Each DB] Recreate Objects (see page 103).

[Each DB] Reapply Storage Structures (see page 103).
[Each DB] Reapply Optimizer Statistics (see page 67).
[Each DB including iidbdb] Checkpoint the Database (see page 47).
Install Upgraded Applications (see page 47).

The sections that follow provide details on steps that differ from those
described previously in this guide.

Create Unload Directory

You must create a directory to hold scripts, but no data. Make the directory
writable by anyone. The disk space needed is a maximum of 1 MB per
directory.

To create a directory, issue the following commands for each database,
including the Ingres Star databases:

UNIX:

mkdir /someplacel dbname
chmod 777 /someplacel dbname ™

Windows:

mkdir d:\someplace\dbname ™

98 Migration Guide

How You Upgrade from Ingres 6.4 Using Upgradedb (Alternate)

Run Unloaddb

Note on Steps 2 through 4: You can omit Steps 2 through 4 if procedures
already exist to recreate all database objects and storage structures. However,
it will be necessary to make the appropriate changes to the oi_prep.sh script-
see the step Remove Non-table Objects-for re-modifying all tables.

Run unloaddb against each database. The unloaddb command does not unload
the database; it simply creates scripts. You can edit these scripts to produce a
collection of scripts that recreate various database objects and storage
structures.

For Ingres Star databases, unload the CDB in the same way as for a local
database. For a DDB, use unloaddb/star.

For a regular DB or CDB, issue this command:

unloaddb dbname

For an Ingres Star DDB, issue this command:

unloaddb ddbname/star

Upgrading from Ingres 6.4 99

How You Upgrade from Ingres 6.4 Using Upgradedb (Alternate)

Edit the Unloaddb Output

The unloaddb output must be modified for recreating just the database objects
and storage structures.

To edit the unloaddb output, manually edit each cp{user}.in file that unloaddb
created to extract the following statements:

®m Create rule statements into a file named {user}_rule.sql

®m Create procedure related statements into {user}_dbp.sql

m Create dbevent related statements into {user}_event.sql

® Modify statements into {user}_modify.sql

® Modify and create index statements into {user}_modindex.sql

= All other non-base-table related statements into {user}_grantview.sql.
This file will contain grants, QUEL permits, QUEL integrities, and view
definitions.

For UNIX, the extract_unloaddb.sh shellscript is available that extracts one
user's object definitions. The script is available on the Ingres Technical
Support web site.

Note: The $ingres user should not own any non-catalog objects, so do not
process the cp_ingre.in file that unloaddb creates.

As a result of this step, SQL scripts are created that can recreate any database
object or storage structure owned by any user in any database.

100 Migration Guide

How You Upgrade from Ingres 6.4 Using Upgradedb (Alternate)

Remove Non-table Objects

The purpose of removing non-table objects is to reduce the database to base
tables.

Some database objects such as procedures and views can be very
complicated, and some past versions of upgradedb did not always process
them successfully. Additionally, processing of some objects (grants in
particular) is slow and expensive. Dropping the grants and later recreating
them avoids any possible failure due to lack of transaction log space.

Note: Do not process Ingres Star distributed databases.

To remove non-table objects
1. Drop all non-table objects from the database including:
s Optimizer statistics
= Views
= Rules
m Database procedures
= Database events
m Secondary indexes
m Grants and QUEL permits
= QUEL integrities
2. Modify all tables to heap.

UNIX:

To perform this step automatically

1. Use the shell script oi_prep.sh. The script is available from Ingres
Technical Support.

Using the C shell, issue this command:
0i_prep.sh dbname |& tee oi_prep.log

If there are any dependent views, “drop” errors messages may be
reported on those views (oi_prep.sh does not drop views in reverse
dependency order); ignore the “drop” errors

2. Run verifydb checks against the database.

The verifydb -odbms command may output the following messages, which
you can ignore:

S_DU1611_NO_PROTECTS iirelation indicates that there are protections for
table (owner), but none are defined.

Upgrading from Ingres 6.4 101

How You Upgrade from Ingres 6.4 Using Upgradedb (Alternate)

S_DUO®305_CLEAR_PRTUPS Recommended action is to clear protection information
from iirelation, and S_DU1619 NO_VIEW ijirelation indicates that there is a
view defined for table (owner), but none exists.

S_DUG30C_CLEAR_VBASE Recommended action is to clear view base specification
from iirelation.

Also ignore the “patch warning” message that warns of the loss of user
tables in “runinteractive” mode. This mode will not be used.

If some databases produce a “verifydb failed” message and then abort,
run the Terminal Monitor with the update system catalogs flag, as follows:

sql +U dbname
SELECT * FROM jistatistics;\go

No rows should be returned. If there are rows, this is the probable cause
of the verifydb problem.

If there are rows, delete them, as follows:
DELETE FROM iistatistics;COMMIT;\go\quit
Rerun the verifydb command as shown at the end of the oi_prep.sh.

If error messages are returned from verifydb, correct the problems before
continuing. Contact Ingres Technical Support for help, if necessary. ®

Checkpoint and Turn Off Journaling

For each database, including the iidbdb, checkpoint each database and turn off
journaling. Then save the configuration file.

The upgradedb process turns off journaling, so it is best to turn if off now. If
upgradedb fails, you can use this checkpoint to recover and try again.

To checkpoint and turn off journaling

1.

Checkpoint each database, using the ckpdb command with -j option to
turn off journaling. Issue the following command:

ckpdb -d -j dbname

Note: For the iidbdb, use the ckpdb -s option. The iidbdb database does
not have an "unload" directory.

Save the configuration file stored in the dump area after each checkpoint.
The configuration file is small. Issue the following command:

cp $II_DUMP/ingres/dmp/default/dbname/aaaaaaaa.cnf {somewhere secure}

102 Migration Guide

How You Upgrade from Ingres 6.4 Using Upgradedb (Alternate)

Save Ingres Settings

Recreate Objects

Save your installation ID and default locations, which are kept in a file named
symbol.tbl. Copy $1I_SYSTEM/ingres/files/symbol.tbl to a safe area not in the
Ingres directory tree.

Using the scripts generated by the step Edit the Unloaddb Output, recreate the
views and other database objects.
Recreate objects in the following sequence:
1. Views, QUEL integrities, and grants:
sql -uuser dbname <user_grantview.sql
2. Dbevents:
sql -uuser dbname <user_event.sql
3. Database procedures:
sql -uuser dbname <user_dbsp.sql
4. Rules:
sql -uuser dbname <user_rule.sql

Remember to run all four scripts for each user who owns objects in each
database.

If your application system has its own scripts to recreate database objects,
you may use them instead of the unloaddb-generated scripts.

Reapply Storage Structures

For each user_modindex.sql script generated by the step Edit the Unloaddb
Output, reapply storage structures and indexes:

sql -uuser dbname <user_modindex.sql

If your application system has its own scripts to reapply storage structures and
create indexes, you may use them instead of the unloaddb-generated scripts.

Upgrading from Ingres 6.4 103

Corresponding Parameter Names

Corresponding Parameter Names

The configuration system in Ingres 6.4 differs from that of subsequent
releases, so you need to know how the Ingres 6.4 server parameters
correspond to the new Ingres parameters.

All corresponding Ingres parameters listed here are found in the DBMS Server

component. Ingres parameters that do not have any corresponding Ingres 6.4
parameters are not listed.

Parameters in 6.4 rundbms.opt File

The following table lists Ingres 6.4 parameters and their corresponding
parameter names in the new Ingres.

Note: Parameters of type Cache are repeated for each cache page size.

Ingres 6.4 Parameter Ingres Parameter Type

active_sessions active_limit Derived

cache_name cache_name

connected_sessions connect_limit

cpu_statistics cpu_statistics Derived

CuUrsors_per_session cursor_limit

database_count database_limit Derived

dblist database_list Databases

define define_address Derived

dmf.cache_size dmf_cache_size Cache,
Derived

dmf.count_read_ahead dmf_group_count Cache,
Derived

dmf.dbcache_size dmf_db_cache_size

dmf.flimit dmf_free_limit Cache,
Derived

dmf.memory dmf_memory Cache,
Derived

dmf.mlimit dmf_modify_limit Cache,
Derived

dmf.scanfactor dmf_scan_factor Cache

104 Migration Guide

Corresponding Parameter Names

Ingres 6.4 Parameter Ingres Parameter Type

dmf.size_read_ahead dmf_group_size Cache

dmf.tblcache_size dmf_tbl_cache_size

dmf.tcb_hash dmf_hash_size

dmf.wbend dmf_wb_end Cache,
Derived

dmf.wbstart dmf_wb_start Cache,
Derived

events event_limit

fast_commit fast_commit Derived

flatten query_flattening (ON)

image image_name

maximum_working_set unix_maximum_working_set

names name_service (ON)

noflatten query_flattening (OFF)

nonames name_service (OFF)

opf.active opf_active_limit Derived

opf.aggregate_flatten gflatten_aggregate (ON) Derived

opf.complete opf_complete (ON)

opf.cpufactor opf_cpu_factor

opf.exactkey opf_exact_key

opf.memory opf_memory Derived

opf.noaggregate_flatten gflatten_aggregate (ON) Derived

opf.nocomplete opf_complete (OFF)

opf.nonkey opf_non_key

opf.rangekey opf_range_key

opf.repeatfactor opf_repeat_factor

opf.sortmax opf_sort_max

opf.timeoutfactor opf_timeout_factor

priority unix_priority

psf.memory psf_memory Derived

gef.qep_size

gef_gep_mem

Upgrading from Ingres 6.4 105

Corresponding Parameter Names

Ingres 6.4 Parameter Ingres Parameter Type
gef.sort_size gef_sort_mem

gsf.pool_size gsf_memory Derived
quantum quantum_size

rdf.max_tbls rdf_max_tbls

rdf.memory rdf_memory Derived
rdf.tbl_cols rdf_tbl_cols

rdf.tbl_idxs rdf_tbl_idxs

rule_depth rule_depth

scf.row_estimate scf_rows

server_class server_class

session_accounting session_accounting

shared_cache cache_sharing (ON)

sole_cache cache_sharing (OFF)

sole_server sole_server Derived
stack_size stack_size

write_behind dmf_write_behind (see notes) Cache

106 Migration Guide

Corresponding Parameter Names

Notes on Specific DBMS Server Parameters

Note the following:

The 6.4 QEF sorting algorithm is unsuited to large gef_sort_mem settings.
All recent Ingres versions use a different sort that does not degrade with
large gef_sort_mem settings. The 6.4 standard setting is much smaller
than the Ingres default.

Recent Ingres versions typically require significantly less gsf_memory than
Ingres 6.4 does, perhaps as little as half. After upgrading, start with the
same gsf_memory setting as Ingres 6.4, but monitor QSF memory usage
with trace point QS501 and tune gsf_memory appropriately.

The quantum_size parameter in an internal threads (slaves) installation is
often set to a small number (50 to 100) to improve responsiveness.
Quantum_size has a different meaning in an OS threads installation, where
it should not be set to less than 300, or excessive polling of the session
communications channel will occur. A quantum_size of 1000 is usually
appropriate when OS threads are in use.

The 6.4 write_behind parameter is a thread count. Starting with 2.5, the
dmf_write_behind parameter is simply ON or OFF, and the server
dynamically allocates threads. Prior to Ingres II 2.5, the write_behind
parameter means the same as it did in 6.4.

A stack_size of 64 KB is typical with 6.4. Recent Ingres versions use more
stack, so the stack size should be set to 128 KB (or more, if sporadic
session failures occur).

6.4 VMS installations can have a few additional non-UNIX parameters,
which have the same or almost the same names in recent Ingres versions.

Locking and Logging System Parameters

These parameters are set with iistartup -init, or rcpconfig, in Ingres 6.4.

Ingres 6.4 Parameter Ingres Type
Parameter

Log buffers in memory buffer_count Log

Transactions in the logging system tx_limit Log, Derived

Databases in the logging system database_limit Log, Derived

Maximum C.P. interval for invoking the archiver_interval Log, Derived

archiver

Block size of the log file block_size Log

Log-full limit full_limit Log

Upgrading from Ingres 6.4 107

Corresponding Parameter Names

Ingres 6.4 Parameter Ingres Type
Parameter

Percentage of log for consistency point cp_interval Log, Derived
Force-abort limit force_abort_limit Log, Derived
Size of the lock hash table hash_size Lock, Derived
Size of the resource hash table resource_hash Lock, Derived
Maximum number of locks in the locking lock_limit Lock, Derived
system

Maximum number of lock lists list_limit Lock, Derived
Maximum number of locks per per_tx_limit Lock

transaction

Notes on Specific Logging and Locking Parameters

Note the following:

There is no 6.4 equivalent to the Ingres log_writer parameter. Although
the log_writer default is 1, it is usually advantageous to start your Ingres
installation with log_writer set to 4 or 5. If you are using dual logging,
double the setting.

The default rule for computing lock_limit (and the new parameter
resource_limit) tend to compute very high numbers-hundreds of
thousands, or more. You can allow more locks than you did in 6.4. As an
initial setting, a doubling of lock_limit is usually more than sufficient.

Ingres 2006 requires at least 35 log buffers. The install or upgrade will
raise the log buffer count to a minimum of 35.

Configurator may compute a different archiver_interval than you used in
6.4. Carry over the 6.4 setting.

108 Migration Guide

Appendix B: Keywords

Table Key

This appendix lists Ingres keywords and the contexts in which they are
reserved. You can use the lists in this appendix to avoid assigning object
names that conflict with reserved words.

Note: The keywords in these lists do not necessarily correspond to supported
Ingres features. Some words are reserved for future or internal use, and to
provide backward compatibility.

In the tables in this appendix, the column headings have the following
meanings:

Non 6.4

Keywords not included in Ingres 6.4 keyword reserved lists
ISQL (Interactive SQL)

Keywords reserved by the DBMS
ESQL (Embedded SQL)

Keywords reserved by the SQL preprocessors
IQUEL (Interactive QUEL)

Keywords reserved by the DBMS
EQUEL (Embedded QUEL)

Keywords reserved by the QUEL preprocessors
4GL

Keywords reserved in the context of SQL or QUEL in Ingres 4GL routines

Keywords 109

Reserved Single Keywords

Reserved Single Keywords

The following single keywords are reserved.

Note: The ESQL and EQUEL preprocessors also reserve forms statements.

Keyword

Non
6.4

ISQL

sQL
ESQL

4GL

IQUEL

QUEL
EQUEL 4GL

abort

activate

add

addform

after

all

alter

and

any

append

array

as

asc

asymmetric

at

authorization

avg

avgu

before

begin

between

breakdisplay

by

byref

110 Migration Guide

Reserved Single Keywords

SQL QUEL

Keyword Non ISQL ESQL 4GL IQUEL EQUEL 4GL

6.4
Ca” ES 3 3 £
callframe * * *
callproc * * * *
cascade * * *
case x X *x 3
cast * *
check * * *
clear * * * *
clearrow * * * *
close * * *
coalesce * *
collate * * *
column * * * *
command * *
comment * *
commit * * *
committed * * * *
connect *
constraint * * * *
continue * *
Copy X *x b3 LS b3 ES
copy_from * *
copy_into * *
COUnt kS £ b3 kS 3
countu * * *
create * * * * * *
current * *
current_user * * *
currval * * * *

Keywords 111

Reserved Single Keywords

SQL QUEL
Keyword Non ISQL ESQL 4GL IQUEL EQUEL 4GL
6.4
cursor * *
cycle * * * *

datahandler

dbms_passwor
d

declare

default

define

delete

deleterow

desc

describe

descriptor

destroy

direct

disconnect

display

distinct

distribute

do

down

drop

else

elseif

enable

end

end-exec

enddata

enddisplay

112 Migration Guide

Reserved Single Keywords

Keyword

Non
6.4

ISQL

SQL
ESQL

4GL

IQUEL

QUEL
EQUEL 4GL

endfor

endforms

endif

endloop

endrepeat

endretrieve

endselect

endwhile

escape

except

exclude

excluding

execute

exists

exit

fetch

field

finalize

first

for

foreign

formdata

forminit

forms

from

full

get

getform

getoper

Keywords 113

Reserved Single Keywords

Keyword

Non
6.4

ISQL

SQL
ESQL

4GL

QUEL
IQUEL EQUEL 4GL

getrow

global

goto

grant

granted

group

having

help

help_forms

help_frs

helpfile

identified

if

iimessage

iiprintf

iiprompt

iistatement

immediate

import

in

include

increment

index

indicator

ingres

initial_user

initialize

inittable

inquire_equel

114 Migration Guide

Reserved Single Keywords

Keyword

Non
6.4

ISQL

SQL
ESQL

4GL

IQUEL

QUEL
EQUEL 4GL

inquire_forms

inquire_frs

inquire_ingres

inquire_sql

insert

insertrow

integrity

intersect

into

is

isolation

join

key

leave

left

level

like

loadtable

local

max

maxvalue

menuitem

message

min

minvalue

mode

modify

module

move

Keywords 115

Reserved Single Keywords

Keyword

Non
6.4

ISQL

SQL
ESQL

4GL

QUEL
IQUEL EQUEL 4GL

natural

next

nextval

nocache

nocycle

noecho

nomaxvalue

nominvalue

noorder

not

notrim

null

nullif

of

on

only

open

option

or

order

out

outer

param

partition

permit

prepare

preserve

primary

print

116 Migration Guide

Reserved Single Keywords

Keyword

Non
6.4

ISQL

SQL
ESQL

4GL

IQUEL

QUEL
EQUEL 4GL

printscreen

privileges

procedure

prompt

public

purgetable

putform

putoper

putrow

qualification

raise

range

rawpct

read

redisplay

references

referencing

register

relocate

remove

rename

repeat

repeatable

repeated

replace

replicate

restart

restrict

result

Keywords 117

Reserved Single Keywords

Keyword

Non
6.4

ISQL

SQL
ESQL

4GL

IQUEL

QUEL
EQUEL 4GL

resume

retrieve

return

revoke

right

role

rollback

row

rows

run

save

savepoint

schema

screen

scroll

scrolldown

scrollup

section

select

serializable

session

session_user

set

set_4gl

set_equel

set_forms

set_frs

set_ingres

set_sql

118 Migration Guide

Reserved Single Keywords

SQL QUEL

Keyword Non ISQL ESQL 4GL IQUEL EQUEL 4GL

6.4
sleep * * * *
some * * *
sort * * *
sql *
start * * * *
stop *
submenu * *
substring * *
sum kS £ b3 kS 3
sumu * * *
symmetric * * *
system * * *
system_ * * * * *
maintained
system_user * * *
table * *
tabledata * *
temporary * * *
then * * * *
to * * * * E3
type * *
uncommitted * * * *
union * * *
Unique kS ES b3 kS b3 kS
unloadtable * * * *
Until kS £ b3 kS 3 £
Up * *
update * * * *
user * * *

Keywords 119

Reserved Double Keywords

Reserved Double Keywords

Keyword Non
6.4

ISQL

SQL

ESQL 4GL

IQUEL

QUEL
EQUEL 4GL

using

validate

validrow

values

view

when *

whenever

where

while

with

work

write *

The following double keywords are reserved.

Keyword

Non
6.4

ISQL

sSQL
ESQL

4GL

L

QUEL

IQUE EQUEL 4GL

add privileges

after field

alter default

alter group

alter location

alter profile

alter role

alter security_audit

alter_sequence

120 Migration Guide

Reserved Double Keywords

SQL QUEL
Keyword Non ISQL ESQL 4GL |IQUE EQUEL 4GL
6.4 L
alter table * * *
alter user * * * *
array of * *
base table structure *
before field * * *
begin declare * *
begin exclude * *
begin transaction * * * * * *
by group * *
by role * * *
by user * * *
call on * *
call procedure * *
class of * *
clear array * *
close cursor * * *
comment on * * * *
connect to * *
copy table * *
create dbevent * * *
create domain * *
create group * *
create integrity * * *
create link * *
create location * * * *
create permit * * *
create procedure * *
create profile * * * *
create role * * *

Keywords 121

Reserved Double Keywords

SQL QUEL

Keyword Non ISQL ESQL 4GL |IQUE EQUEL 4GL

6.4 L
create rule * * *
create security_alarm | * * * *
create sequence * * * *
create synonym * * * *
create user * * * *
create view * * *
Cross join * * * *
curr value * *
current installation * *
current value * * * *
define cursor *
declare cursor *
define integrity * * *
define link *
define location *
define permit * * *
define qry * * *
define query * *
define view * * *
delete cursor * *
describe form * *
destroy integrity * * *
destroy link *
destroy permit * * *
destroy table *
destroy view * *
direct connect * * * *
direct disconnect * * * *
direct execute * * *

122 Migration Guide

Reserved Double Keywords

SQL QUEL
Keyword Non ISQL ESQL 4GL |IQUE EQUEL 4GL
6.4 L
disable security_audit |* * * *
disconnect current * *
display submenu * * *
drop dbevent * * *
drop domain * *
drop group * *
drop integrity * * *
drop link * * *
drop location * * * *
drop permit * * *
drop privileges * *
drop procedure * *
drop profile * * * *
drop role * * *
drop rule * * *
drop security_alarm * * * *
drop sequence * * * *
drop synonym * * * *
drop user * * * *
drop view * * *
each row * *
each statement * *
enable security_audit |* * * *
end exclude * *
end transaction * * * * * *
exec sql * *
execute immediate * *
execute on * *
execute procedure * *

Keywords 123

Reserved Double Keywords

Keyword

Non
6.4

SQL

ISQL ESQL 4GL

QUEL

IQUE EQUEL 4GL
L

foreign key

for deferred

for direct

for readonly

for retrieve

for update

from group

from role

from user

full join

full outer

get attribute

get data

get dbevent

get global

global temporary

help all

help comment

help integrity

help permit

help table

help view

identified by

inner join

is null

isolation level

left join

left outer

modify table

124 Migration Guide

Reserved Double Keywords

SQL QUEL
Keyword Non ISQL ESQL 4GL |IQUE EQUEL 4GL
6.4 L
next value * * * *
no cache * * * *
no cycle * * * *

no maxvalue

no minvalue

no order

not like

not null

on commit

on current

on database

on dbevent

on location

on procedure

on sequence

only where

open cursor

order by

primary key

procedure returning

put data

raise dbevent

raise error

read only

read write

register dbevent

register table

register view

Keywords 125

Reserved Double Keywords

Keyword

Non
6.4

ISQL

SQL
ESQL

4GL

QUEL

IQUE EQUEL 4GL
L

remote
system_password

remote system_user

remove dbevent

remove table

remove view

replace cursor

result row

resume entry

resume menu

resume next

resume nextfield

resume previousfield

retrieve cursor

right join

right outer

run submenu

send userevent

session group

session role

session user

set aggregate

set attribute

set autocommit

set connection

set cpufactor

set date_format

set ddl_concurrency

set decimal

126 Migration Guide

Reserved Double Keywords

SQL QUEL
Keyword Non ISQL ESQL 4GL |IQUE EQUEL 4GL
6.4 L
set flatten * * *
set global * *
set hash * * *
set io_trace * * *

set jcpufactor

set joinop

set journaling

set lock_trace

set lockmode

set log_trace

set logdbevents

set logging

set maxconnect

set maxcost

set maxcpu

set maxidle

set maxio

set maxpage

set maxquery

set maxrow

set money_format

set money_prec

set noflatten

set nohash

set noio_trace

set nojoinop

set nojournaling

set nolock_trace

set nolog_trace

Keywords 127

Reserved Double Keywords

Keyword

Non
6.4

SQL
ISQL ESQL 4GL

QUEL

IQUE EQUEL 4GL
L

set nologdbevents

set nologging

set nomaxconnect

set nomaxcost

set nomaxcpu

set nomaxidle

set nomaxio

set nomaxpage

set nomaxquery

set nomaxrow

set noojflatten

set nooptimizeonly

set noparallel

set noprintdbevents

set noprintqgry

set noprintrules

set nogep

set norowlabel_visible

set norules

set nosql

set nostatistics

set notrace

set
nounicode_substitutio
n

set ojflatten

set optimizeonly

set parallel

set printdbevents

128 Migration Guide

Reserved Double Keywords

SQL QUEL

Keyword Non ISQL ESQL 4GL |IQUE EQUEL 4GL

6.4 L
set printgry * * *
set printrules * *
set qep * * *
set random_seed * * *
set result_structure * * *
set ret_into * * *
set role * *
set rowlabel_visible * *
set rules *
set session * * *
set sql * *
set statistics * * *
set trace * * *
set transaction * *
set * *
unicode_substitution
set update_rowcount |* * *
set work * *
system user * *
to group * *
to role * *
to user * * *
user authorization * *
with null *
with short_remark * *

Keywords 129

Other Reserved Keywords

Other Reserved Keywords

The following reserved keywords are only in the context of a WITH
PARTITION= clause.

automatic partition
hash range
list to

null values
on with

130 Migration Guide

Appendix C: Features Intfroduced in
Ingres 2.6

This appendix describes the new features of Ingres 2.6, including the
following:

m User-visible language enhancements

® Increased maximum size of character data types
m User-visible DBA enhancements

® Internal performance enhancements

® | ocking system performance improvements
® | ogging system performance improvements
m Buffer manager performance improvements
m QOperating system integration

® Ingres ICE enhancements

m ODBC enhancements

® JDBC enhancements

m Support for Unicode

® New character sets to support Euro currency symbol

User-Visible Language Enhancements

Enhancements have been made to the internal performance that concern row
producing procedures.

Features Infroduced in Ingres 2.6 131

Increased Maximum Size of Character Data Types

Row Producing Procedures

This enhancement to the Ingres database procedure language addresses the
ability of Ingres to read and return to the caller multiple rows from a select
statement.

With server-executed database procedures, the program logic of the procedure
is executed entirely in the server address space. Multiple SQL DML requests
are executed in a single invocation of the procedure, with only one interaction
with the client application. The ability to process and return multiple “rows” of
some composite data types with a single call to a server-resident database
procedure adds to the potential for improved performance of an application.

In a typical computing environment with applications executing on a variety of
computers throughout a network, this approach can significantly reduce the
footprint of the client application and the traffic across the network.

SUBSTRING Function

The ANSI compliant SUBSTRING function has been added to the SQL syntax.
The SUBSTRING function is often easier to use than combinations of LEFT and
SHIFT functions that Ingres traditionally supported. The syntax is:
substring(string-expr from start-column for length)

and the for length clause is optional.

New Aggregate Functions

Additional aggregate functions for statistical analysis have been added:
® The function corr computes a correlation coefficient
® Functions covar_samp and covar_pop compute covariance

m A collection of regr_xx functions generate regression analysis results

For details, see the SQL Reference Guide.

Increased Maximum Size of Character Data Types

Prior to Ingres 2.6, character data types were limited to a maximum size of
2000 bytes; this restriction was imposed when the maximum size of a row was
limited to 2 KB. This limit is increased to 32000 bytes, the maximum row size
supported in Ingres 2.6.

132 Migration Guide

User-Visible DBA Enhancements

User-Visible DBA Enhancements

Usermod Utility

Auditdb Utility

Copydb Utility

Enhancements have been made to internal performance that concern auditdb
utility, copydb utility, raw location support, and GatherWrite threads.

Ingres now includes a usermod utility that allows users to run the modify
commands on user tables. Like sysmod, which modifies system catalogs, this
utility is useful for maintaining user tables on a regular basis.

Running this utility regularly, or when the table has excess overflow pages,
improves performance of user applications.

Various enhancements to the auditdb utility required by Journal Analyzer are
included:

m Specification of fully qualified table names.

m Correct formatting of the output for -aborted_transaction when used with -
b and -e flags.

m Corrected -aborted_transaction flag, allowing auditdb to write correct
format for BT and ET records.

® Savepoint information in the auditdb output. This is achieved by printing
out the abortsave record, which contains the LSN of the aborted savepoint.

® The order of output for Isn low/high fields for the ASCII output of auditdb,
allowing the high Isn to be printed before low LSN.

® Two new auditdb options: -start_Isn=<LSN> -end_Isn=<LSN> for non -all
cases.

For the syntax of the auditdb command, see the Command Reference Guide.

The copydb utility is modified to include several options and flags that modify
the copy.in and copy.out scripts based on user requirements. The user can
specify the order in which the copy and modify statements are written to the
copy.in script, for example, whether to copy the data into the tables and then
run a modify statement or the other way around. Other examples include the
ability to remove hard-coded paths to the copy scripts, exclusion of location
names, and exclusion of user-specific permissions such as grant statements.

Features Infroduced in Ingres 2.6 133

User-Visible DBA Enhancements

Raw Location Support

Ingres 2.6 adds initial support for raw data locations on UNIX platforms. Raw
data locations provide dramatic performance improvements over cooked
locations. In this release, only one table may occupy any given raw location.
Many raw locations can exist on a single raw disk slice.

GatherWrite Threads

A new internal thread type, GatherWrite, is used by the Ingres buffer manager
during operations that require the flushing of multiple buffers from the cache
such as write behind, consistency points, and table purges. This feature is only
available on platforms that offer writev() support. Consult the appropriate
Readme file to determine whether this feature is supported on your platform.

This feature is enabled on a per-server basis using the gather_write parameter
in Configuration-By-Forms. The default setting is ON.

XML Import/Export Utility

Journal Analyzer

Import Assistant

XML is as a cross-platform, software- and hardware-independent tool for
transmitting information. The XML import/export utility imports and exports
XML data from Ingres tables to and from XML files. For the syntax of the XML
import/export utility, xmlimport, see the Command Reference Guide.

The Journal Analyzer is a powerful graphical tool that provides an interface to
the journal files. You can use the Journal Analyzer to recover data from the
journals and to apply journaled transactions to other databases, both local and
remote. For information on the Journal Analyzer utility, see the System
Administrator Guide.

The Import Assistant is a wizard that simplifies the task of importing data from
a standard file format to an Ingres database. For information on the Import
Assistant utility, see the online help.

134 Migration Guide

User-Visible DBA Enhancements

Automated Creation of Location Directories

Before Version 2.6, the Ingres DBA had to manually create the directories for
alternate locations as prescribed in the Database Administrator Guide. This
step had to be performed prior to creating a Location with ACCESSDB, or could
be deferred if Locations were created using EXEC SQL CREATE LOCATION
syntax. To circumvent directory permissions problems, ACCESSDB had to be
run by the Ingres user whenever Locations were created, altered, or extended.

This process is clarified and simplified in Ingres 2.6 with the following
changes:

® The Ingres server performs all manipulations of Location directories. This
resolves the permissions problems of earlier releases and allows any
ACCESSDB user with the "maintain_locations” privilege to create, alter, or
extend Locations.

® The server automatically creates Location directories when a
CREATE/ALTER LOCATION statement is executed, whether by ACCESSDB
or user-invoked SQL. Because only missing directories are created, the
DBA retains the ability to manually create as much, or all, of the Location
path as wanted before creating the Location.

Using the example from the section Create an Area in UNIX in the Database
Administrator Guide, the following directories will be verified or created
automatically during the execution of:

CREATE LOCATION new_loc WITH AREA='/otherplace/new_area', USAGE=(DATABASE)

Perms Directory

/otherplace

755 /otherplace/new_area

755 /otherplace/new_area/ingres

700 /otherplace/new_area/ingres/data

777 /otherplace/new_area/ingres/data/default
Notes:

®m Permissions are not changed for extant directories.

® The top-level directory “/otherplace” must exist and will not be created by
the server.

® Raw location directories (UNIX only) cannot be automatically created and
must be made with the MKRAWAREA utility, which must be run by “root.”
The Locations may be created prior to MKRAWAREA but a warning will be
issued noting that the utility must be run prior to their use.

Features Infroduced in Ingres 2.6 135

Internal Performance Enhancements

Remote Command Server Enhancements

Users commonly encounter problems running utilities that require exclusive
access to the iidbdb database because the Remote Command Server process
(rmcmd) keeps a session open on this database. To counter this problem,
rmcmd now attaches to imadb instead of iidbdb; imadb is a system database
that contains no historical data; it is rarely backed up and requires little or no
maintenance.

Microsoft Transaction Server Support

Support for tightly coupled XA threads and shared lock lists is now available to
support Microsoft Transaction Server, using the ODBC 3.5 driver.

Concurrent Rollback

The concurrent recovery of multiple transactions is now possible.

Internal Perfformance Enhancements

Enhancements have been made to the internal performance that concern
aggregate sort nodes, composite histograms, and optimizer support for hash
joins.

Aggregate Sort Nodes

Improvements to aggregate handling allows Ingres to better support data-
mining products such as CleverPath OLAP, which make extensive use of data
aggregation.

Previous versions required a sort before doing grouping and aggregation.
Ingres 2.6 now does grouping with hash bucketing instead of sorting. Hash
grouping is usually faster than sorting. Other internal refinements streamline
the calculation of common aggregates, reducing the amount of CPU time
needed.

Composite Histograms

The composite histograms enhancement allows the creation of composite or
multi-column histograms that model much more accurately the dependence of
the values of one column on another, and lead to far better selectivity
estimates and, ultimately, to better query plans.

136 Migration Guide

Locking System Performance Improvements

Optimizer Support for Hash Joins

Hash joins have been implemented in Ingres 2.6. A hash join is one in which a
hash table is built with the rows of one of the join sources by hashing on the
key columns of the join. The rows of the other join source are then read and
hashed into the table on their key columns. The hashing of the second set of
rows quickly identifies pairs of joining rows. This technique requires no index
structures on the join columns (as does KEY join), nor does it require sorting
on the join columns (as does merge join).

Locking System Performance Improvements

A number of improvements have been made to the locking system to eliminate
or minimize bottlenecks identified when running various performances tests.

Preallocated RSB/LKBs

Each resource RSB now has an embedded a lock block (LKB), removing the
need for a separate, contentious LKB allocation every time a new resource is
allocated.

An LLB stash of LKBs is also maintained, similar to the RSB stash.

When an RSB or LKB is freed, it is returned to the LLB’s stash; when the lock
list itself is freed, all stashed RSB/LKBs are returned to the free pool.

Miscellaneous Locking System Improvements
The following miscellaneous locking system improvements are included in
Ingres 2.6:

B The number of RSB waiters and converters are now maintained in the
RSB.

® The deadlock wait-for graph lock (lkd_dlock_lock) does not need to be
held if the RSB has neither waiters nor converters.

® The LKREQ built in the stack does not need to be copied to the LKB
indiscriminately.

® When a lock request is blocked, the blocker’s identity is now saved in the
LKREQ and formatted in SYS_ERR only when the request fails.

Features Introduced in Ingres 2.6 137

Logging System Performance Improvements

Logging System Performance Improvements

A number of improvements to the logging system eliminate or at least
minimize bottlenecks identified when running various performance tests.
These changes include elimination of contentious current_IlIb_mutex, faster log
forces through forcing only what needs forcing, and improved concurrency
potential (fast resume).

Buffer Manager Performance Improvements

A number of improvements have been made to the buffer manager to
eliminate or minimize bottlenecks identified when running various performance
tests. These include:

m Removal of stats for fixed priority pages. In Ingres 2.6, stats are tracked
by buffer page type for better analysis of the BM’s LRU algorithm.

®m Raising a buffer’s priority each time it is fixed; previously it was raised
only when newly fixed.

Operating System Integration

Enhancements have been made to the internal performance that concern 64-
bit operating systems and operating system thread implementation on Linux.

64-Bit Operating Systems

Now that Microsoft, Sun, HP, and Linux vendors have produced 64-bit versions
of their operating systems, we are providing a 64-bit build of Ingres on these
platforms. Every effort is made to exploit large memory and files in these 64-
bit environments.

Operating System Thread Implementation on Linux

Ingres 2.6 provides support for operating system threads in Linux
environments including Intel, Alpha, S/390, and IA64. Operating system
threads perform better in most circumstances than the internal Ingres
threading model.

138 Migration Guide

Ingres ICE Enhancements

Ingres ICE Enhancements

Ingres/ICE development environment and setup and configuration are
addressed in Ingres 2.6 through integration with an existing Web application
development environment.

ICE Development Environment

The ICE macro DTD can be used with an XML-aware editor to provide a
development environment for Ingres/ICE application development. A converter
has been added to take new macro syntax into the old macro syntax during
page registration.

ODBC Enhancements

The ODBC driver has been updated to Version 3.5.

Functions Supported by ODBC Driver
The Ingres ODBC driver supports all level one functions, as well as the
following level two functions:
® SQLExtendedFetch (through Microsoft Cursor Library only)
m SQLForeignKeys
® SQLMoreResults
® SQLNumParam
m SQLPrimaryKeys
® SQLProcedureColumns
® SQLProcedures

m SQLSetPos (through Microsoft Cursor Library only)

Features Infroduced in Ingres 2.6 139

JDBC Enhancements

Unavailable Features in the ODBC Driver
The Ingres ODBC driver does not provide the following features as of Release
2.6:
® Executing functions asynchronously
® Translation DLL
®m Support for Ingres SQL COPY TABLE command
m Support for Ingres SQL SAVEPOINT command

JDBC Enhancements

The following JDBC 2.0 extensions have been added to Ingres:
® Compatibility with GA release (protocol levels)

®m Execution in JDK 1.1 environment due to a new driver

m Batch processing

® javax—two-phase commit

®m javax—client connection pooling

m Updateable result sets

The following are new features:

m Support for Ingres intervals

m Coalescing statement IDs

m Utilization of VNODE passwords

® |ocal connections without passwords

m Support for procedure table parameters

®m Support for row producing procedure

140 Migration Guide

Support for Unicode

Support for Unicode

This release contains the first phase of Ingres support for Unicode; further
Unicode support will be added in future releases.

In this release, the DBMS supports three new data types:

® nchar

® nvarchar

® |ong nvarchar

These data types store character data using two bytes for each character.
Collation of these data types uses the standard collation algorithm as defined

by the Unicode organization, and the data types can be used in indexes and
database statistics.

The native two-byte (UCS2) format is supported and maintained through the
entire process, from the front-end application, through the DBMS, to the data
representation on disk.

The embedded SQL preprocessor for C and C++ supports declaration of
wchar_t variables, which are assumed to contain multi-byte Unicode character
strings.

OpenAPI version 3 was added to indicate support for these new data types.

VDBA also supports the new data types.

Support for the ODBC and JDBC drivers is present through their normal
Unicode interfaces.

These new data types are not supported in any of the character-based tools or
any of the terminal monitors.

This release does not support coercion between Unicode data types and non-
Unicode data types such as char and varchar.

Features Infroduced in Ingres 2.6 141

New Character Sets to Support Euro Currency Symbol

New Character Sets to Support Euro Currency Symbol

Two new character sets that contain the Euro currency sign (€, Unicode
U+20AC) are added: 1S885915 and WIN1252.

To set the money format to the Euro currency symbol you must issue the
following command:

ingsetenv II_MONEY_FORMAT L:€
Alternatively, you can set this value in the Ingres Visual Manager (IVM).
Windows:

WIN1252 corresponds to Windows code page 1252 Latin 1. This is the
common character set of most American and Western European Windows PCs,
and includes the Euro sign. Users wishing to use the Euro symbol in a Windows
GUI environment need to select the WIN1252 character set at installation
time. To set this code page in a Windows command prompt environment, you
must issue the following Windows command:

chcp 1252

The default font in a Windows command prompt does not provide support for
the Euro currency symbol. For a workaround, set the font to Lucida Console.
The Lucida Console font has moved the line drawing characters, used in Ingres
forms, into an area not accessible to Ingres binaries, so we have provided
rudimentary line drawing in the IBMPCD terminal entry. To set this terminal
type, you must either issue the following command:

ingsetenv TERM_INGRES IBMPCD

or set TERM_INGRES through IVM or specify this terminal type at install time.
|

UNIX:

1S885915 corresponds to the ISO 8859-15 Latin 9-character set that is almost
identical to the ISO 8859-1 Latin 1 set, except for eight characters; chief
among them is the Euro currency sign (€, Unicode U+20AC).

If you have an existing installation and would like to change the character set,
be aware that this is not typically supported because the new character set
could display existing characters in your databases incorrectly. However, since
the ISO 8859-15 only has eight characters that are different from ISO 8859-1,
if you can verify that none of the eight characters are already present in your
databases, you could safely change the set (by changing II_CHARSETxx).

142 Migration Guide

New Character Sets to Support Euro Currency Symbol

The following table details these differences and provides the corresponding
Unicode character names:

Hex ISO 8859-1 ISO 8859-15

A4 o | Currency symbol € | Euro sign

A6 i Broken bar S |Latin capital letter with caron
A8 Diaeresis S | Latin small letter with caron
B4 ! Acute accent Z |Latin capital letter Z with caron
B8 , | Cedilla Z |Latin small letter Z with caron
BC Ya | Vulgar fraction one quarter | |Latin capital ligature OE

BD 2 | Vulgar fraction one half E |Latin small ligature oe

BE 3% |Vulgar fraction three Y |Latin capital letter Y with

quarters

diaeresis

Differences Between ISO 8859-1 and ISO 8859-15 Character Sets ®

Features Infroduced in Ingres 2.6 143

Appendix D: Features Infroduced in
Ingres Il 2.5

This appendix describes the features and enhancements introduced in Ingres
IT 2.5, including:

® Sort enhancements

® ANSI/ISO constraint enhancements
® Large cache support

® Dynamic Write Behind threads

m Partitioned transaction log file

® Optimizedb enhancements

m Read-only database support

® New SQL functionality

m Extended date support

® Large file support

® large catalogs

® Row locking for system catalogs

® Update mode locking

® Query optimization enhancements
m Ingres Star features

m Ingres Net features

m Ingres ICE features

m Visual DBA features

m Replicator enhancements

® OpenAPI enhancements

Sort Enhancements

Changes were made to improve the performance of both the in-memory (QEF)
sort and disk (DMF) sort of Ingres II.

Features Infroduced in Ingres Il 2.5 145

Sort Enhancements

QEF Sort Enhancements

QEF was improved by fine-tuning the sort algorithm, resulting in fewer
comparisons between sort rows. The sort algorithm is a major consumer of
CPU time in a sort. QEF was also improved with a change that results in the
rows being partially sorted as they arrive in the sort.

This change introduces two distinct benefits:

® Duplicate rows are detected and discarded more quickly from duplicate
removal sorts (as required by “select distinct...”). This in turn increases
the number of rows that can be processed in memory for a duplicates
removal sort, avoiding more expensive disk sorts in many instances.

®m The first rows in the sort sequence can be returned before the remaining
rows are completely sorted. Tests show that the first sorted row is
available with as few as 20% of the overall comparisons required to
complete the sort. This means that browsing or scrolling applications see
the first set of rows in less time than before.

146 Migration Guide

Sort Enhancements

DMF Sort Enhancements

The first set of DMF sort enhancements also involve fine-tuning of the sort
algorithms, which should result in a 5 to 10 percent reduction in CPU time of
typical sorts. As with the QEF sort, duplicate rows are detected and discarded
sooner in duplicates removal sorts. This should result in smaller disk work files
and faster overall sort performance.

Prior to Release 2.5, the entire result of a DMF sort was spooled to an internal
temporary table before the sorted rows were returned to the caller. In Ingres
IT 2.5, the temporary table has been eliminated and the rows are returned
directly from the sort structures to the caller. This has the same effect as the
early return of sorted rows described above for the QEF sort. That is, the first
rows should be returned much sooner than they were in previous releases.

The final DMF sort enhancement is the introduction of a “parallel sort”
technique. Sorts that exceed a user-configurable threshold spawn additional
threads. The sort is split up and its rows delivered to the sub-threads for
sorting. The sorted subsets of the rows are then delivered back to the parent
thread executing the query, where they are merged to form a single sorted
stream of rows.

On multi-CPU machines, this results in a significant reduction in the elapsed
time required to sort (between 25 to 50 percent in testing). Even single CPU
machines benefit somewhat, because sort I/O and sort computation can be
overlapped. An added benefit to the parallel sort technique is that it is
encapsulated within the DMF sort. This sort is used for the execution of queries
with sorting requirements (such as for order by, group by, and distinct
requests, or for implementing certain join algorithms). However, it is also used
to sort rows for index creation or update in modify, create index, and copy
operations. All users of the DMF sort derive the performance benefit of the
parallel sort.

Parallel Sort Techniques
The “parallel sort” technique outlined in DMF Sort Enhancements (see

page 147) is used to sort rows for parallel index creation, greatly reducing the
time taken for index creation in multi-CPU environments.

Features Infroduced in Ingres Il 2.5 147

ANSI/ISO Constraint Enhancements

ANSI/ISO Constraint Enhancements

Ingres referential and unique/primary key constraints result in the creation of
indexes “under-the-covers” to improve the performance of the constraint
enforcement mechanisms. Prior to Release 2.5, these indexes were plain B-
tree indexes stored in the default location of the database. However, B-tree is
not always the best choice (for example, hash is better for many unique key
applications), and use of the default location can degrade performance if many
large indexes are created.

Ingres II 2.5 solves these and other problems by including a “with” clause for
constraint definition. The “with” clause allows the overriding of default index
options with anything normally coded in an index creation “with” clause. For
example, the index structure and location, as well as fillfactor and other index
options can be explicitly specified for each constraint. The “with” clause applies
to column and table constraints defined with both the create and alter table
statements. A unique/primary key constraint can be generated to use the base
table structure for its enforcement rather than a separate secondary index.

Ingres II 2.5 also introduces the ANSI/ISO notion of referential actions for the
definition of referential (foreign key) constraints. In releases prior to Ingres II
2.5, the attempt to delete a referenced row for which matching referencing
rows exist, or to update the primary key of a referenced row to some other
value while matching referencing rows still exist for the old value, was met
with an error and the request was aborted. Either operation had to be
preceded by a delete of the matching referencing rows or an update of the
foreign keys to some value that exists in another referenced row.

Ingres II 2.5 allows the definition of referential actions for each referential
constraint, which defines alternative actions to be taken in the circumstances
defined above. A separate action can be defined for both the delete case
(deletion of a referenced row with matching referencing rows) and the update
case (updating the key of a referenced row with matching referencing rows).
The options include cascade, in which case the delete or update is cascaded to
the matching referencing rows (so that the referencing rows are also deleted
or updated to the same value), and set null, in which case the foreign key of
the matching referencing rows is set to null. These actions permit a more
complete definition of the semantics of the referential relationship and allow
the application to execute more efficiently.

148 Migration Guide

Large Cache Support

Large Cache Support

In Ingres II 2.5, the total number of pages in all caches has been revised from
an un-enforced limit of 65536 to 2**32-1. Ingres II 2.5 supports a 4 GB
cache.

In previous releases, when those pages belonging to a specific table needed to
be located, the buffer manager sequentially searched every buffer in every
cache to find them. Even in installations with small caches, this was an
expensive operation, especially in those frequent instances in which there
were no table-pages in any cache. This operation occurred, for example, when
a table's TCB was about to be released, typically when all referencing
transactions had no immediate need to use the table. Delays caused by this
operation could show up in unexpected situations, such as the use of
statement level rules.

In Ingres II 2.5, a cross-cache table hash queue has been added to the buffer
manager to which pages are added as they are faulted in and removed when
they are tossed. Thus, when the need to know a table's pages arises, a hash
on the table's database ID and table ID is made and that list searched for
matching pages. This change results in a significant decrease in the number of
cache pages visited and is most dramatic in installations configured with very
large or multiple caches.

Features Infroduced in Ingres Il 2.5 149

Dynamic Write Behind Threads

Dynamic Write Behind Threads

In releases prior to Ingres II 2.5, a fixed number of Write Behind threads were
configured in each server in an installation and initiated when the server
started. These threads served all caches and were awakened when the number
of modified pages in any cache exceeded a predefined threshold. In a shared
cache environment, all Write Behind threads in all servers were simultaneously
activated when this threshold was reached. This led to a “thundering herd”
phenomenon in which n Write Behind threads concurrently pounded through
the caches, competing for modified pages to flush.

The optimum number of Write Behind threads is the minimum number
required to:

B Maintain the modified buffer count below the Write Behind start threshold

m Supply sufficient free pages to avoid synchronous writes.

The optimum number of Write Behind threads varies with the instantaneous
demand for free pages in a particular cache; it always begins at one when the
threshold is first breached and a Write Behind event signaled. In Ingres II 2.5,
if the single Write Behind thread is unable to keep up with the demand,
additional Write Behind threads are created until either equilibrium is achieved
or the upper limit on thread numbers is reached. If better than equilibrium is
achieved (more modified pages are being freed than are in demand), the
excess Write Behind threads terminate one-by-one, while the remaining
threads continue to monitor the free buffer demand to achieve the write-
behind end threshold.

Ingres II 2.5 introduces cache-specific Write Behind threads, resulting in
increased concurrency and eliminating the chance of free page starvation.

Partitioned Transaction Log File

The structure of the log file in Ingres II 2.5 is changed from a single file to 1-
16 logically striped files of equal size. Properly configured, partitioning in this
manner encourages better log performance by spreading disk contention
across multiple disks instead of concentrating it on a single device. Ingres
system administration is made simpler, as the transaction log file can be
expanded by adding another partition, instead of resizing an existing file or
partition. The full log file paths are now defined through Configuration
Manager or CBF rather than through the symbol table.

150 Migration Guide

Optimizer and Optimizedb Enhancements

Optimizer and Optimizedb Enhancements

A variety of enhancements have been made to optimizedb.

The flag -zIr causes optimizedb to retain the original repetition factor when
rebuilding an existing histogram. This is useful when a histogram (and its
repetition factor) is built once by reading the whole table, then updated later
using sampling (which can produce inaccurate repetition factors).

A minor bug was fixed to allow the “1” flag to request an exclusive lock on the
database during optimizedb processing (just as for other command line
utilities).

The current limit of 1000 parameters coded in a separate file using the -zf
parameter has been lifted. There is now no limit to the number of such
parameters.

An -o filename option (similar to that in statdump) has been added to
optimizedb. It creates a statdump-style output file, which can then be input
back to optimizedb with the -i filename option. But more importantly, it does
not update the catalog iistatistics and iihistogram tables. This allows a busy
shop to construct histograms at anytime, with no worry about update conflicts.
Then at a convenient later time, optimizedb can be run with the -i option to
add the histograms to the catalog.

In addition to the flag enhancements, an enhancement has been introduced to
allow more accurate histograms to be built on columns with significant skew in
their value sets. Specifically, a column with many distinct values, which would
generate an inexact histogram, now produces exact cells for values that occur
significantly more than the average. This permits much more accurate
estimates in the compilation of queries with restrictions on such columns, and,
therefore, better query plans.

The query compiler has been enhanced to compile more efficient strategies for
complex queries involving aggregate views and unions.

Read-only Database Support

Ingres II 2.5 provides the ability to distribute a read-only database on a CD-
ROM or other read-only media.

Features Infroduced in Ingres 11 2.5 151

New SQL Functionality

Example: Create a Read-only Database

For example, to create a read-only database called mydatabase on UNIX:

1.
2.

Log in as the installation owner.

Change location to the staging directory:

cd /stagingarea

Create directory and subdirectories:

mkdir ingres

mkdir ingres/data

mkdir ingres/data/default

Place appropriate permissions:

chmod 755 ingres

chmod 700 ingres/data

chmod 777 ingres/data/default

Change location to the database files:

cd /install/instl/ingres/data/default

Copy the database directory and its subdirectories to the new area:
cp -r mydatabase /stagingarea/ingres/data/default/

Copy the directory structure to the CD-ROM or other device:
cp -r ingres/data/default/mydatabase /cdrom

Create a new database location using the create location statement or
using the accessdb utility:

create location cdromloc with area=/cdrom, usage=(database);

Use the createdb command to access the read-only database in the
installation:

createdb -r cdromloc mydatabase

New SQL Functionality

New SQL operations have been added, bringing Ingres SQL closer to the SQL
standards. Enhancements have been made to the internal performance that
concern bit-wise operator support and miscellaneous functions.

152 Migration Guide

New SQL Functionality

Order By/Group By Expression

CASE Expression

The ORDER BY and GROUP BY statements now allow an expression instead of
being limited to column names. ORDER BY can also reference a column name
or expression that is not part of the select result list.

An ANSI SQL ‘92 compliant CASE expression has been added. The CASE
expression allows if-then-else testing anywhere that an expression is allowed.

There are two syntax forms. The most general CASE expression is:

case when boolean-expression then expression
when boolean-expression then expression

else otherwise-expression
end

Each boolean-expression is evaluated in turn, and if TRUE, the corresponding
then expression is the CASE result. If all the boolean-expressions are of the
form expr1l = expr2, a shorthand form can be used:

case exprl when expr2 then expression
when expr3 then expression

else otherwise-expression
end

Parallel Index Creation

A new variation of the CREATE INDEX statement allows the user to create
multiple secondary indexes with a single pass through the base table. After the
required base table columns are extracted, the indexes are created in parallel,
each one using an independent worker thread. For additional performance, any
necessary sorting is performed using the new parallel sort capability.

The new syntax is:

create index (index-spec), (index-spec), ...

where an index-spec looks similar to the original CREATE INDEX statement:

(index-name on base-table (column-list) with with-clause)

Features Infroduced in Ingres Il 2.5 153

New SQL Functionality

SELECT Enhancement

The SELECT statement now allows the first n clause in the result list. This
clause limits the result returned to the user to the first N rows.

Bit-wise Operator Support
The following functions have been added to Ingres II 2.5 to provide support
for bit-wise operations:
bit_add
Logical "add" of two byte operands
bit_and
Logical "and" of two byte operands
bit_not
Logical "not" of two byte operands
bit_or
Logical "or" of two byte operands
bit_xor
Logical "exclusive or" of two byte operands
For all of these bit functions, all operations proceed right to left. The shorter of

two operands is padded with hex zeroes on the left. The result is a byte field
equal in size to the longer operand.

Aggregate Functions

New aggregate functions have been added:
® stddev_samp

® stddev_pop

® var_samp

= var_pop

The _pop forms divide by group size, the _samp forms divide by group size
minus one.

154 Migration Guide

Extended Date Support

Miscellaneous Functions

The following miscellaneous functions have been added to Ingres II 2.5:
intextract
Extracts the number at the given location.
ii_ipaddr
Converts an IP address to a byte 4.
random, randomf
Generates random integer or float8 values
power, In
Are ANSI compliant synonyms for ** and log functions.
Several synonyms have been added to existing Ingres data types (such as

character long object and clob for long varchar and binary long object and blob
for long byte).

Extended Date Support

Ingres II 2.5 allows users to insert dates in the range 01-Jan-0001 to 31-Dec-
9999.

Large File Support

A major enhancement to Ingres II 2.5 on operating systems that support 64-
bit file systems is the ability to support file sizes greater than 2 GB. This
means that larger table, dump, work, journal, and checkpoint files can be
accommodated in a single location. It also removes the 2 GB limit on the size
of the transaction log file.

Large Catalogs

In this release, system catalogs can use pages larger than 2 KB. As a result,
the user does not have to configure a 2 KB cache size in the DBMS for system
catalogs.

Features Infroduced in Ingres Il 2.5 155

Row Locking for System Catalogs

Row Locking for System Catalogs

For improved concurrency, the Ingres II 2.5 DBMS automatically uses row
locking on system catalogs when catalogs are created using pages larger than
2 KB. This feature is keyed from the system default page size, which is
configurable through Configuration-By-Forms or Configuration Manager.
Createdb creates a database with system catalogs that have the default page
size. Running sysmod on an existing database, however, does not
automatically convert the system catalogs to use the default page size. The
user must use the “with page_size” keyword to achieve this.

Update Mode Locking

Prior to Ingres II 2.5, when the DBMS fetched a row for a cursor mode update,
it would acquire an exclusive lock. In serializable mode, this lock would be held
until the end of transaction, even when the row was not updated. In this
release, the Ingres DBMS acquires an update mode lock for the row that is a
candidate for update. If the row is actually updated, the update mode lock is
converted to logical exclusive lock; otherwise, it is converted down to shared
lock or released, depending on the current isolation level. Update mode locking
is now the default for cursor updates.

Value Locking for Serializable Transaction with Equal Predicate

Prior to Ingres II 2.5, the Ingres DBMS would hold a page lock on the leaf
pages on B-tree tables for a serializable update transaction, even when using
row locking. This was done to prevent other users from inserting a row in the
qualified range to be updated. In Ingres II 2.5, the DBMS uses a value locking
protocol for serializable transactions with an equal predicate, thereby allowing
better concurrency.

Query Optimization and Execution Enhancements

Ingres II 2.5 incorporates a variety of internal enhancements to the
compilation and execution of queries.

156 Migration Guide

Ingres Star Features

Ingres Star Features

In Ingres II 2.5 the Ingres Star Server now contains support for the 1Pcplus
commit protocol, which allows a single site that is not capable of supporting
two-phase commit protocols to participate in a multi-site update within Star.
This change allows a single database that is being accessed through an Ingres
Enterprise Access gateway that does not support the SQL prepare statement
to participate in a multi-site Star update.

Ingres Net Features

GCF has responsibility for authenticating and validating clients for Ingres
servers. Previously, security was built around operating system capabilities.
The following improvements have been made to Ingres security for Ingres II
2.5:

m Support for third-party security systems such as Kerberos

® Enhancements for data encryption and direct network server connections
® Improved existing security by addressing known problems

m Backward compatibility for existing applications

Support for third-party security systems requires dynamic configuration
capabilities since these systems are not a requirement for installation. In a
design emulating the emerging standard GSS-API, the Ingres II 2.5 GCF
security architecture is built around independent modules called mechanisms.
Standard default mechanisms are provided for basic Ingres security and
backward compatibility. Third-party security systems are supported through
additional mechanisms, which are dynamically loaded as needed.

GCF security mechanisms provide the following capabilities:

m User authentication and validation

m Password validation

® Trusted server authentication and validation

m Distributed (single sign-on) authentication and validation

® Data encryption

Management of GCF security has been enhanced with new configuration
parameters viewable through CBF and the Configuration Manager. Ingres II
2.5 also sees the addition of attributes to the Ingres/Net VNODE database, and

new IMA objects (many of which can be set at runtime) for enhanced IMA
support.

Features Infroduced in Ingres Il 2.5 157

Ingres ICE Features

Ingres ICE Features

New features added to the internal performance of Ingres/ICE concern
security, session management, storage management, and macro language
extensions.

Ingres ICE Security Enhancements

The security model for Ingres/ICE has been enhanced to provide additional
levels of control for access and for content. The model also assists in the
maintenance of large numbers of Internet users by defining profiles and roles.

Profiles enable Internet users to register themselves by automatically
transferring a predefined set of privileges to the user when the first login is
attempted.

Password authentication for intranets may be specified as OS for use with
domain servers and authentication servers.

Ingres ICE Session Management Enhancements

Ingres/ICE uses cookies to identify individual sessions. The session identifier
enables maintenance of session context between pages. Sessions have a
configurable inactivity timeout that when reached rolls back any uncommitted
transactions.

Storage Management

HTML Templates--Document content is made available through HTML template
files. In Ingres II 2.5, access to the template files is abstracted to prevent
exposure of queries and schema.

Document Cache Management--All files accessed within Ingres/ICE are subject
to cache management, which specifies when the file may be closed or
removed.

158 Migration Guide

Visual DBA Features

Macro Language Extensions

Macro language extensions in Ingres II 2.5 include:

User identification
State maintenance
Variables

Conditional statements

Variable testing using the IF or SWITCH macros to provide conditional flow
within template pages

Include statements

The FUNCTION macro, providing a mechanism for invoking C callable
shared libraries and dynamic link libraries

Visual DBA Features

Visual DBA features in Ingres II 2.5 include:

DOM windows—new design and features
SQL/test—new design and features

Star management

Full Replicator management

ICE management

Enterprise access

Miscellaneous new features

Replicator Enhancements

Enhancements have been made to the internal performance that concern the
generic Replicator Server and increased replicator concurrency.

Generic Replicator Server

Ingres II 2.5 introduces a generic Replicator Server that is functionally
identical to the custom repserver built by the user in previous releases. The
generic Replicator Server can automatically handle any table that is configured
by RepManager or Visual DBA without the need to compile or link a custom
executable.

Features Infroduced in Ingres Il 2.5 159

OpenAPlI Enhancements

Increased Replicator Concurrency

In previous releases, updates to the Replicator shadow, archive, and input
gueue tables performed by the DBMS as a result of a replicated user update
would use the same isolation level as the original update (serializable by
default). This isolation level is unnecessary, since the unique key value in the
base table must have already been locked for the update to take place. In this
release, the isolation level has been decreased to read committed, allowing for
improved concurrency of replicated updates.

OpenAPl Enhancements

Environment handles were added to OpenAPI. Environment handles allow
greater application control over configuration of the OpenAPI runtime
environment. OpenAPI version 2 was added to indicate support for
environment handles.

Extensions were made to the following OpenAPI functions to support
environment handles:
m Ilapi_initialize() to allocate environment handles

m [Iapi_connect() to open connections using environment settings

Three new environment handle associated functions were added:
m [Tapi_setEnvParam() for setting environment configuration parameters

m [Tapi_formatData() for converting data values relative to environment
settings

m JIapi_releaseEnv() to release environment handle resources

Also added is the function Ilapi_abort() to forcefully shut down connections
under error conditions.

160 Migration Guide

Index

4
4GL table_key type conversions e 82

6

64 bit file support e 155
64-bit operating systems ¢ 138

A

ABF applications, re-image « 24
aggregate sort nodes o 136
ANSI/ISO constraint e 148
ANSIDATE data type, use of e 25
application
issues ¢ 19
lifecycle o 19
planning e 23
preparation e 23
preparation if migrating from 6.4 79
rebuilding in Ingres on OpenVMS o 74
application upgrade « 47
archiver exit shellscript « 84
arithmetic errors, greater sensitivity to e 82
auditdb utility enhancements in 2.6 ¢ 133
automated creation of location directories e
135
AXM buildSee OpenVMS o 71

back up system e 40
binary level support ¢ 20
bit-wise operator support e 154
buffer manager
performance improvements ¢ 138
BYREF errors, greater sensitivity to e 81

C

character data types maximum size in 2.6 e
132
character sets for Euro currency symbol e 142
check for obsolete users ¢ 52, 87
checkpoint
template 32, 45
the database ¢ 42, 47, 53
clean iidbdb e 58, 90

compiling applications e 29
concurrency, Replicator e 160
concurrent rollback « 136
Configuration-By-Forms 62
configure Ingres o 93

conversions, 4GL table_key type ¢ 82
copydb utility enhancements ¢ 133
create unload directory e 51, 98
create work location e 92

D

data type changes, user-defined ¢ 82
database

destroying ¢ 57

extend ¢ 64

information, record e 41

moving e 27

recreate o 64

unload « 54
DBA enhancements in 2.6 133
decimal constant, semantics change 81
default locations, record « 91, 103
destroy database ¢ 57
destroydb command ¢ 57
disable Ingres startup ¢ 59
disable user access e 38
dmf sort e 147
dynamic write behind threads ¢ 150

E

edit unloaddb output e 100
enhancements

in Release 2.5 ¢ 145

in Release 2.6 » 131
errors, arithmetic 82
Euro currency symbol support e 142
extend database ¢ 64
extended date support e 155

F

FE reload script, fix « 66, 95
fix FE reload script e 66, 95
fix logins e 91

front-end catalogs « 67

Index 161

G

GatherWrite threads » 134
generic Replicator Server ¢ 159

H

hardware ¢ 16
histograms, composite e 136

ICE
development environment e 139
document cache management o 158
enhancements in 2.5 ¢ 158
enhancements in 2.6 ¢ 139
macro language extensions ¢ 159
security o 158
session management e 158
storage management ¢ 158
iidbdb, clean ¢ 58, 90
Import Assistant e 134
infodb utility e 41
ingprenv ¢ 83
record default locations » 91, 103
ingprenvl e 83
Ingres 6.4
alternate upgradedb procedure ¢ 96, 97
considerations for e 79
upgrading from using unload/reload e 84
Ingres Net See Net o 20
Ingres Star See Star e 28
install Ingres e 44, 60
installation
development ¢ 16
production e 16
testing the upgrade « 16
internal performance enhancements in 2.6 o
136

J

JDBC enhancements in 2.6 « 140
Journal Analyzer » 134
journaling on by default 82

K

keywords e 109
reserved o 23
single « 110

L

language enhancements in 2.6 ¢ 131
large cache support ¢ 149

large catalogs ¢ 155

locking system performance ¢ 137
logging system performance 138
logins, fix e 91

M

member_aligned version ¢ 74
Metaschema module « 29
Microsoft Transaction Server support e 136

N

Net o 20
enhancements in 2.5 ¢ 157
setup ¢ 62
netutil e« 62
new features
in Release 2.5 o 145
in Release 2.6 « 131

o

ODBC driver e 139
OpenVMS
building COBOL applications ¢ 77
building member_aligned against Ingres e
74
C applications, building ¢ 76
installation issues e 73
installing Ingres e 71
migrating from Ingres II 2.0 to AXM e 71
rebuilding applications ¢ 74
requirements e 71
schema checking ¢ 73
operating system integration in 2.6 e 138
optimizeddb ¢ 151
optimizer
reapply statistics o 67
support for hash joins e 137

P

parallel

sort techniques o 147
parameters, UNIX kernel ¢ 34
partitioned transaction log file ¢ 150
preallocated rsb/lkbs 137
preserve site modifications e 42

162 Migration Guide

print optimizer statistics e 55

Q

gef sort e 146
query optimization e 156

R

raw location support ¢ 134
read-only database support e 151
reapply optimizer statistics e 67
reapply storage structures e 103
record database informtion e 41
record default locations e 91, 103
record Ingres configuration e 90
recreate database ¢ 64
recreate objects e 103
reload database ¢ 66
reload upgrade « 49, 84
reload.ing ¢ 66
Remote Command Server ¢ 39, 136
remove non-table objects ¢ 101
Replicator enhancements
generic server ¢ 159
increased concurrency ¢ 160
Report-Writer
runtime parameter errors ¢ 24
syntax change ¢ 24
reserved words ¢ 73, 109
conflicts e 23, 27
restore site modifications e 45, 62
row
locking for system catalogs ¢ 156

producing procedures in 2.6 e 132

run unloaddb e 52, 99
S

scripts

fix FE reload ¢ 66, 95
search path, shared library ¢ 32
set up Net e 62
shared library search path e 32
shellscripts

archiver exit « 84

for system monitoring ¢ 31
showrcp command « 90
shut down Ingres e 40, 83
site modifications

preserve e 42

restore ¢ 45, 62

sort enhancements ¢ 145
SQL functionality e 152
bit-wise operator support e 154
Star
databases, moving e 28
features ¢ 157
features in 2.5 ¢ 157
start Ingres e 45
startup e 45, 83
disable ¢ 59
statdump command e 55
storage structures, reapply 103
syntax, Report-Writer o 24
system
backup ¢ 30, 40
practice upgrade ¢ 35
preparation ¢ 30
restore ¢ 30
testing « 34
system monitoring shellscripts o 31
system_maintained column name ¢ 29

T

testing « 29
thread implementation on Linux in 2.6 « 138
transaction

log size « 84

U

Unicode support 141
UNIX kernel parameters e 34
unload database « 54
unload directory, create e 51, 98
unload upgrade » 49, 84
unload/reload procedure ¢ 51, 84
when to use ¢ 13
unloaddb command e« 27, 28, 52, 54, 96, 99
output e 100
update mode locking e 156
UPDATE...FROM semantics change « 80
upgrade
applications ¢ 19
hardware issues o 16
planning ¢ 11
using unload/reload procedure e 49, 84
using upgradedb procedure ¢ 38
upgradedb procedure ¢ 37, 97
when to use o 12
upgradedb utility 46

Index 163

user access, disable « 38
user check ¢ 52, 87
usermod utility e 133

\'

value locking protocol e 156
Visual DBA e 159
VMSinstal, running e 72

w

work location, create ¢ 92
X
xml import/export utility e 134

164 Migration Guide

	Bookshelf
	Ingres Migration Guide
	Contents
	1: Planning the Upgrade
	The Upgrade Plan
	Upgrade Types
	Upgradedb Method
	Unload/Reload Method

	Upgrade Method and Ingres Releases
	From Releases Prior to Ingres 6.4
	From Ingres 6.4
	From Releases Newer than Ingres 6.4
	From a 32-bit to a 64-bit Release
	To Member-Aligned Alpha OpenVMS (axm.vms)

	Required Installations for Upgrading
	Possible Hardware Setups for Upgrading

	How You Perform the Upgrade
	How You Plan for Application Issues
	The Test Plan for Applications
	Categories of Application Functions
	Application Debugging After the Upgrade

	Binary Level Support

	2: Creating a New Ingres Development Environment
	Platform-specific Examples in This Guide
	How You Move an Existing Development Installation into the New Development Installation
	Create a Development Installation of the New Ingres
	How You Prepare Your Applications
	Reserved Keyword Conflicts
	Re-image ABF Applications
	Report-Writer Syntax Change When Upgrading from Ingres 6.4
	Report-Writer Runtime Parameter Errors (UNIX)
	Change Command Parameter Back to Ingres 6.4 utexe.def Settings

	Use of the ANSIDATE Data Type

	How You Load Databases and Applications into the New Installation
	Create Users
	Move Databases
	Capture Output of Reload Script (UNIX)

	Move Catalogs
	Move Ingres Star Databases
	The system_maintained Column Name
	Compile Applications

	How You Prepare Your System
	System Backup
	System Monitoring Shellscripts
	Checkpoint Template Changes
	Checkpoint and Rollforward Changes
	Shared Library Search Path (UNIX)
	Define Shared Library Search Path (UNIX)

	UNIX Kernel Parameters

	Testing
	Application Testing
	Performance Testing
	System Administrator Procedure Testing

	How You Practice the Upgrade
	How You Prepare a Build for the Live Upgrade

	3: Upgrading Using Upgradedb
	Ownership Assumptions for Running Upgradedb
	How You Upgrade Using the Upgradedb Utility
	Disable User Access
	Disable Remote Command Server
	Shut Down Ingres and Back Up System
	Clean the Database
	Record Database Information
	Checkpoint and Turn Off Journaling
	Shut Down Ingres
	Preserve Site Modifications
	Commonly Customized Files
	Preserve Necessary Files
	Visual DBA Configurations

	(Optional) Delete Install Directory (UNIX)
	Install Ingres
	How You Upgrade to Older Versions That Require a Patch

	Create imadb Database
	Restore Site Modifications
	Carry Forward Checkpoint Template Modifications

	Start Ingres
	Run Upgradedb Utility
	Review Ingres Configuration
	(Optional) Reapply Optimizer Statistics
	Checkpoint the Database
	Install Upgraded Applications

	4: Upgrading Using Unload/Reload
	Variations of Unload/Reload Procedure
	How You Perform an Upgrade Using Unload/Reload
	Create Unload Directory
	Run Unloaddb
	Check for Obsolete Users
	(Optional) Checkpoint the Database
	Disable User Access
	Disable Remote Command Server
	Shut Down Ingres and Back Up System
	Unload the Database
	(Optional) Print Optimizer Statistics
	Record Database Information
	Record Database Privileges
	Save Users, Groups, and Roles
	Destroy the Database
	Clean iidbdb Database
	Disable Ingres Startup
	Preserve Site Modifications
	Visual DBA Configurations

	(Optional) Delete Install Directory (UNIX)
	Install Ingres
	How You Upgrade to Older Versions That Require a Patch

	Create imadb Database
	Restore Site Modifications
	Review Ingres Configuration
	Set Up Ingres Net
	Start Ingres
	Recreate Users, Groups, and Roles
	Recreate Locations
	Recreate the Database
	Extend the Database
	Recreate Database Privileges
	Fix FE Reload Script
	Reload the Database
	Upgrade Front-End Catalogs
	Reapply Optimizer Statistics
	Checkpoint the Database
	Install Upgraded Applications

	5: Troubleshooting Upgradedb
	Other Upgradedb Problems

	6: Considerations for Alpha OpenVMS
	OpenVMS Requirements
	Considerations When Installing Ingres on OpenVMS
	Mount the CD
	Run VMSINSTAL
	Known Installation Issues

	Schema Checking
	Application Rebuilding
	Building Member_Aligned Against Ingres 2.6 or 2006
	Modifications Required For C Applications
	Modifications Required For COBOL Applications

	A: Upgrading from Ingres 6.4
	Considerations for Ingres 6.4
	Application Preparation
	UPDATE . . . FROM Semantics Change
	Decimal Constant Semantics Change
	Greater Sensitivity to BYREF Errors
	Journaling On by Default
	Greater Sensitivity to Arithmetic Errors
	4GL TABLE_KEY Type Conversions
	User-Defined Data Type Changes
	Application Preparation Summary

	System Preparation
	Ingres Startup and Shutdown
	ingprenv Replaces ingprenv1
	Archiver Exit Shellscript
	Transaction Log Size

	Unload/Reload Procedure for Upgrading from 6.4
	Unload/Reload Upgrade Types
	Front-end Catalogs and the Upgradefe Program

	How You Upgrade from Ingres 6.4 Using Unload/Reload
	Check for Obsolete Users
	Record Database Privileges
	Save Users, Groups, and Roles
	Clean iidbdb Database
	Record Ingres Configuration
	Shut Down Ingres
	Fix Logins
	Save Ingres Settings
	Clean Up Ingres 6.4
	Create Work Location
	Restore Site Modifications
	Configure Ingres
	Recreate Users, Groups, and Roles
	Recreate Database Privileges
	Fix FE Reload Script

	Alternate Upgradeb Procedure
	How You Upgrade from Ingres 6.4 Using Upgradedb (Alternate)
	Create Unload Directory
	Run Unloaddb
	Edit the Unloaddb Output
	Remove Non-table Objects
	Checkpoint and Turn Off Journaling
	Save Ingres Settings
	Recreate Objects
	Reapply Storage Structures

	Corresponding Parameter Names
	Parameters in 6.4 rundbms.opt File
	Notes on Specific DBMS Server Parameters

	Locking and Logging System Parameters
	Notes on Specific Logging and Locking Parameters

	B: Keywords
	Table Key
	Reserved Single Keywords
	Reserved Double Keywords
	Other Reserved Keywords

	C: Features Introduced in Ingres 2.6
	User-Visible Language Enhancements
	Row Producing Procedures
	SUBSTRING Function
	New Aggregate Functions

	Increased Maximum Size of Character Data Types
	User-Visible DBA Enhancements
	Usermod Utility
	Auditdb Utility
	Copydb Utility
	Raw Location Support
	GatherWrite Threads
	XML Import/Export Utility
	Journal Analyzer
	Import Assistant
	Automated Creation of Location Directories
	Remote Command Server Enhancements
	Microsoft Transaction Server Support
	Concurrent Rollback

	Internal Performance Enhancements
	Aggregate Sort Nodes
	Composite Histograms
	Optimizer Support for Hash Joins

	Locking System Performance Improvements
	Preallocated RSB/LKBs
	Miscellaneous Locking System Improvements

	Logging System Performance Improvements
	Buffer Manager Performance Improvements
	Operating System Integration
	64-Bit Operating Systems
	Operating System Thread Implementation on Linux

	Ingres ICE Enhancements
	ICE Development Environment

	ODBC Enhancements
	Functions Supported by ODBC Driver
	Unavailable Features in the ODBC Driver

	JDBC Enhancements
	Support for Unicode
	New Character Sets to Support Euro Currency Symbol

	D: Features Introduced in Ingres II 2.5
	Sort Enhancements
	QEF Sort Enhancements
	DMF Sort Enhancements
	Parallel Sort Techniques

	ANSI/ISO Constraint Enhancements
	Large Cache Support
	Dynamic Write Behind Threads
	Partitioned Transaction Log File
	Optimizer and Optimizedb Enhancements
	Read-only Database Support
	Example: Create a Read-only Database

	New SQL Functionality
	Order By/Group By Expression
	CASE Expression
	Parallel Index Creation
	SELECT Enhancement
	Bit-wise Operator Support
	Aggregate Functions
	Miscellaneous Functions

	Extended Date Support
	Large File Support
	Large Catalogs
	Row Locking for System Catalogs
	Update Mode Locking
	Value Locking for Serializable Transaction with Equal Predicate

	Query Optimization and Execution Enhancements
	Ingres Star Features
	Ingres Net Features
	Ingres ICE Features
	Ingres ICE Security Enhancements
	Ingres ICE Session Management Enhancements
	Storage Management
	Macro Language Extensions

	Visual DBA Features
	Replicator Enhancements
	Generic Replicator Server
	Increased Replicator Concurrency

	OpenAPI Enhancements

	Index

