Ingres® 2006 Release 2

OpenAPI° User Guide

INGR=S’

rrrrrrrr 200

This documentation and related computer software program (hereinafter referred to as the "Documentation") is for
the end user's informational purposes only and is subject to change or withdrawal by Ingres Corporation ("Ingres")

at any time.

This Documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of Ingres. This Documentation is proprietary information of Ingres and protected
by the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this Documentation for
their own internal use, provided that all Ingres copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. The user consents to Ingres obtaining injunctive relief precluding any unauthorized use of the
Documentation. Should the license terminate for any reason, it shall be the user's responsibility to return to Ingres
the reproduced copies or to certify to Ingres that same have been destroyed.

To the extent permitted by applicable law, INGRES PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IN NO EVENT WILL INGRES BE LIABLE TO THE
END USER OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF INGRES IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The use of any product referenced in this Documentation and this Documentation is governed by the end user's
applicable license agreement.

The manufacturer of this Documentation is Ingres Corporation.

For government users, the Documentation is delivered with "Restricted Rights" as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Copyright © 2007 Ingres Corporation. All Rights Reserved.

Ingres, OpenROAD, and EDBC are registered trademarks of Ingres Corporation. All other trademarks, trade names,
service marks, and logos referenced herein belong to their respective companies.

Contents

Chapter 1: Introduction 7
8 Lo =] o o PPN 7
Contact Ingres TeChNICAl SUPPOIT .. . e e e e e e e st e e e anerrennenes 7
L L= L = O 0 1< oY A 2 8
Common Features of Application Programming Interfaces.......cooiviiiiiiiiiiiiiii e 8
Differences Between OpenAPI and Other Application Programming Interfaces..................ooovieee. 9
(@] 0T=T V2N 22 RN @] o o1 118] [or=1 [o [9
How OpenAPI Handles Backward Compatibilityccoveiiiiiiiiii i i e e e 10
OpenAPI CoNCEPLS @Nd PrOCESSES .. .uuiuiieiiiiiiiie ittt ettt s e sttt e et s e et e e e eenes 10
ParamME el BlOCKS. . vttt 11
How Callback and ClOSUIrE WoOrK ...o.uiueiiiiiii it e e s e e s e s e e e e ae e e eneanens 13
How Asynchronous ProCessing WOIKSueiuiieiiiiiiiii sttt st et e e e e s e eaeas 13
HOW SyNchronous ProCesSing WoOrKSui et i it ee e r e e e s e ae e ae e aneaneans 14
[= Lo 1 PP 14
How Connections are Established and Severed..........coooiiiiiiiiiiiii e 16
I =10 7= 1 o [0 17
HOW QUEIY StatemeEnts WOrK ..ot ittt r et r e r e raeeaeens 19
HOW Data IS REEMEVEA .. vttt st et e e s e e re e s e e ran e raneran e ran e rnnernneennens 21
HOW CUFSOIS WOTK 1 .vtiitiieiie sttt s e et st s e s e s e st s e s e st s e st st st s e s e s e s e s e e e e e s e e e ennenss 22
(D= L= o 1= TT I Y=Y L PP 24
T]} o 7= PP 27
Name Server Query Statement SynNtaX ...ocviiiii i s e 27
(OB L=t o VA =Y =T o g = =] = PP 28
How Unformatted Data is Handled.........ooeiiiiiiii i s e e e n e e n e e n e e neenneens 29
[0 F 1= 0T LY =] o o 30
[o] il 1= o |11 T PP 30
Chapter 2: OpenAPI Function Reference 33
LT =T 1 g ol ==Y 1= 0 =] o< = 33
How Memory is Managed for Data Input and OUEPUL.......ccviiiiiiiiiii i e 35
L@ o= o 1Y o A U T o P 36
IIapi_abort() Function—Abort @ ConneCtioNcviiiiiii i e ee e 36
IIapi_autocommit() Function—Enable or Disable Autocommit Transactions..............cccoevieinnen. 37
ITIapi_cancel() Function—Cancel an Outstanding Query Statementccooeviiiiiiiiiiiienienens 38
LU g ot o] IS U1 o1 0 1 =1 oY/ 39
IIapi_catchEvent() Function—Retrieve a Database Event.......cccoiiiiiiiiiiiiiiiccce 43
IIapi_close() Function—End a Query Statement or Database Event Retrievalcocvnen. 46

Contents iii

ITIapi_commit() Function—Commit @ TranSacCtionoiuiiiiiiiiiii i i i i i eeees 48

ITapi_connect() Function—Connect to a DBMS Server or Name Server......cvevievieiiiiiieiiennennen 49
ITIapi_convertData() Function—Convert Ingres Data Values to Compatible Types Using Default
T = oo T PP 52
IIapi_disconnect() Function—Close a Server CONNECHION ...viiii it ii i i i ea s 54
ITapi_formatData() Function—Convert Ingres Data Values to Compatible Types...........c.cevuenee. 55
ITapi_getColumns() Function—Return Columns from a Previously Invoked Query Statement or
Database Event Retrieval.....oo.oiiii i s 56
ITapi_getCopyMap() Function—Return the Data Format of Copy File and Database Table Involved
IN @ COPY StateMIENT oo e e e e e e e 58
ITapi_getDescriptor() Function—Communicate Format of Return Data with IIapi_getColumns(). 59
ITapi_getErrorInfo() Function—Return Additional Error or User-defined Information................. 60
ITapi_getEvent() Function—Wait for Database Events........cccvviiiiiiiiii e 62
ITapi_getQueryInfo() Function—Return Information about a Queryc.ccoviiiiiiiiiiiiiiie i, 63
ITapi_initialize() Function—Initialize OpenAPI to a Specified Input Version..........c.cccvevieiieinennn. 66
IIapi_modifyConnect Function—Send Connection Parameters to Server.......cccovviiiiiiiiiiiiinnnnns 68
ITapi_prepareCommit() Function—Begin Two-phase Commit of Transaction...............c.cccevvinnns 69
ITapi_putColumns() Function—Send Data to Server to Copy Data from File to Database Table .. 70
IIapi_putParms() Function—Send Query Statement Parameter Values to a Server................... 72
ITapi_query() Function—Begin Query Statement and Allocate Statement Handle..................... 74
IIapi_registerXID() Function—Reserve Unique ID for Two-phase Commit Transaction.............. 77
IIapi_releaseEnv() Function—Release Resources Associated with Environment Handle............. 78
IIapi_releaseXID() Function—Release Unique ID for Two-phase Commit Transaction 79
ITapi_rollback() Function—Roll back a transaction..........c.coiiiiiiiiiiiii e 80
IIapi_savePoint() Function—Mark Savepoint in a Transaction for Partial Rollback 81
ITapi_setConnectParam() Function—Assign Connection Parameter and Value to a Connection ... 82
IIapi_setDescriptor() Function—Send Information About Data Formatcccceviiiiiiiiinnnnns 90
ITapi_setEnvParam() Function—Assign an Environment Parameter and Value in Environment
[= 1 Lo 1 PP 91
ITapi_terminate() Function—Terminate OPenAPI ... i e 100
ITapi_wait() Function—Block Application Control Until Outstanding Operation Completes or User-
defined TIMEOUL EXPIFES ..uuuiieitiitie ettt et e e et et e s e s et e aeeeeeenes 101
Chapter 3: OpenAPI Data Types 103
OPENAPT GENEIIC Data TYPES 1ttt et e et e et e et e rereaes 103
(O oT=T o LN NI F= = TR NV 1T 104
IIAPI_DT_ID Data Type—Describe Data Type of Database Columns and Query Parameters 105
ITAPI_QUERYTYPE Data Type—Describe Type of Query Being Invoked..........cocooviiiiiiinininennn. 106
ITAPI_STATUS Data Type—Describe the Return Status of an OpenAPI Function...................... 107
OPENAPT Data S rUCTUNES Lottt i i ettt ettt e r e st aae e e e et e e s aan e e sateessaneeaanneenanns 107
ITAPI_COPYMAP Data Type—Provide Information on How to Execute the SQL Copy Statement.108
ITAPI_DATAVALUE Data Type—Provide Value for OpenAPI Data........cocoviviiiiiiiiiiiii e 110

iv. OpenAPI® User Guide

IIAPI_DESCRIPTOR Data Type—Provide Description for OpenAPI Data..........covviviiiiiiiniinnnnnn, 111

ITAPI_FDATADESCR Data Type—Describe Column Data in a Copy Filecccoviiiiiiiiiiiiinnnn. 112
ITAPI_II_DIS_TRAN_ID Data Type—Identify Distributed Ingres Transaction ID 114
ITAPI_II_TRAN_ID Data Type—Identify Local Ingres Transaction IDcovvviiiiiiiiniieiieinnne, 114
ITAPI_SVR_ERRINFO Data Type—Describe Additional Server Information Associated with Error
NS 7= o T 115
ITAPI_TRAN_ID Data Type—Identify an OpenAPI Transactioncccovviiiiiiiiiiiiiiinieeeae 116
IIAPI_XA_DIS_TRAN_ID Data Type—Identify a Distributed XA Transaction IDccceeuee. 117
ITAPI_XA_TRAN_ID Data Type—Identify an XA Transaction IDc.cocviiiiiiiiiiiiiiiiie e 118
Chapter 4: Accessing a DBMS Using SQL 119
Mapping Of SQL 0 O PN AP ... ittt e et et e e 119
T]I 0 = 126
(D T<T Yo g S IS] o=) =T 1= o | P 126
EXECULE StatemIent . e 126
Declare Statement, Open Cursor Statement ..o 127
CUrsor Delete Statement ..o et 127
Cursor Update Statement ... s 127
o Lol W | Y o o Tl <o [U] ol TP 128
L] 01T Lo T =T o == PP 128
Queries, Parameters, and Query Data Correlationccoiii i i 128
QUENIES @NA ParamEterS vttt ittt et et et a et e et et et et e et a e st et e e s e n e a s et e nennearannenes 129
QueEry Data Correlationo 130
Chapter 5: Accessing the Name Server 133
Mapping of Name Server Query Statements t0 OpenAPL ... e 133
Name Server Query Statement SYNEaXciiiiiiii i 134
T gL Y = V=T gl @ LU =T YV o = G 135
Create Login Statement—Create a Login Definitionoooiiiiiiiiiii e 135
Destroy Login Statement—Destroy a Login Definition.......c.ccoviiiiiiiiii e 136
Create Password Statement—Define an Installation Passwordccooviiiiiiiiiii, 136
Create Connection Statements—Create a Connection Data Definitioncooooviiiiiiiinnns 137
Destroy Connection Statement—Destroy a Data Definition.........c.cooiiiiiiiiiiiiiciiee 138
Show Connection Statement—Display Connection Data Definitions.........ccovviiiiiiiiiiie i, 140
Create Attribute Statement—Create an Attribute Data Definition..........ccoovviiiiiiiiiiiiiiic e 141
Destroy Attribute Statement—Destroy an Attribute Data Definitionccoviiiiiiiiiieiienenns 142
Display Attribute Statement—Display an Attribute Data Definition.........c.cocoiiiiiiiiiiiiiie e, 143
Show Server Statement—Display Servers in the Local Installationccoviiiiiiiiiiiiiinnn, 143
How to Use ~V Marker in the Name Server Query TeXt ..o e 144

Contents v

Chapter 6: Creating an Application with OpenAPI 145

How You Can Create an OpenAPI AppliCation......ouiuiiieiii e e e 145
L 1= T L= ol 1= 145
[o) o= V2 145
ENVIroNmMeENnt Variables ... e 145
= 0 0] o1 <3 o To 1= 146
How the Synchronous Sample Code WoOrKSiiiuiiiiiiiii i i s rae e aaeaaaeas 147
How the Asynchronous Sample Code WOrKS.ciuieieiiieiiie e e e e e e eaanes 149
Chapter 7: Using Repeat Queries with OpenAPI 153
=T 0L L= L@ LU =T =T 153
How the Repeat Query ProtoCol WOKKSoeinii e e 154
=] oL=T= Lo T =T oY 1 5 P 154
Compile-time and RUNEIME IDS ...ttt e r e a e an e ane e aneannes 155
L@ BT V=Y =T = o= o 155
How the ~V Mechanism WOIKSo.oiiiiiiiiii it e e e e eaes 156
Repeat QUENY Param el ers ittt 156
Example: Repeat query using the ~V marker. ..o 157
Appendix A: Error Handling 159
] o 50T 1= 159
SQLSTATE Values and DESCIIPLIONScuuiiieiieiie et s eaaeaeanenes 162
Appendix B: Data Types 167
BT [T B 2= L= B 1N o 1= N 167
(D 2= = I Y T I 1=t~ of g o oo o = 169
Index 175

vi OpenAPI® User Guide

Chapter 1: Infroduction

This guide provides programmers with the information necessary to use
Ingres® OpenAPI® to develop applications.

This chapter describes concepts and processes basic to OpenAPI.

Audience

This guide is designed for programmers who want to use OpenAPI to develop
applications. Some chapters assume you are already familiar with:

® Ingres components and SQL programming

® The C programming language

Contact Ingres Technical Support

For online technical assistance and a complete list of locations and phone
numbers, contact Ingres Technical Support at: http://ingres.com/support.

Introduction 7

What Is OpenAPI?

What Is OpenAPI?

Open Application Programming Interface (OpenAPI) is a set of C language
functions that enable you to create applications for accessing Ingres and non-
Ingres databases.

It provides you with an alternative to using embedded SQL, which requires a
preprocessor in addition to a C compiler. With OpenAPI, these C functions are
called directly with normal function call facilities.

OpenAPI simplifies the task of developing applications when multiple
interfaces, protocols, and environments are involved. It does this by providing
a single interface for accessing data. You can concentrate on what data you
want your application to access, rather than how it will access it.

OpenAPI provides an asynchronous method of writing applications. All
OpenAPI operations are asynchronous in that a function call returns control to
the application before its tasks are completed. When the tasks are completed,
the function signals completion by invoking a callback function specified by the
application. Thus, you can write an application as fully asynchronous, event-
driven code. Alternatively, you can write synchronous code by using an
OpenAPI feature that enables an application to wait for each OpenAPI function
to complete its tasks.

Common Features of Application Programming Interfaces

OpenAPI is an application programming interface, similar to Microsoft Windows
ODBC and the X/Open Company SQL Call Level Interface. Application
programming interfaces share the following features:

m A standard set of function calls for accessing a database

This makes an application programming interface ideally suited for a
client/server environment, in which the target database may not be known
when the application is built.

® No requirements for host variables or other embedded SQL concepts

Application developers who are familiar with function calls find an
application programming interface straightforward to use.

® Preprocessor independence

SQL statements are sent to a DBMS Server as input parameters in a
function call. Query results are returned to the application as output
parameters from the function call.

8 OpenAPI® User Guide

What Is OpenAPI?

Differences Between OpenAPI and Other Application Programming Interfaces

OpenAPI provides comparable functionality to Microsoft Windows ODBC and
the X/Open Company SQL Call Level Interface. However, there are a few
important differences, such as:

OpenAPI supports the complete function set of Ingres SQL, including FIPS
127-2 and SQL-92 Entry Level.

ODBC and SQL Call Level Interface support only X/Open SQL—an X/Open
standard based on the ANSI SQL. This difference enables applications
written with OpenAPI to access Ingres databases more efficiently.

OpenAPI is tailored to the C programming language.

OpenAPI uses a callback-driven method for asynchronous programming,
whereas ODBC uses a polling method.

SQL Call Level Interface does not provide asynchronous programming.

OpenAPlI Communication

The set of C functions in OpenAPI enable an application to connect to a DBMS
Server, execute SQL statements, and retrieve results. It provides support for
all Ingres SQL statements. OpenAPI also lets an application connect to the
Name Server and execute Name Server query statements.

OpenAPI is an interface that currently resides on top of the Ingres
client/server protocol, called the General Communications Architecture (GCA).
By using the GCA protocol, OpenAPI can communicate with the following:

Ingres servers
Ingres Star

Ingres Enterprise Access products that provide access to multiple Ingres
databases and non-Ingres databases

Introduction 9

How OpenAPI Handles Backward Compatibility

Relationship of OpenAPI to Basic Ingres Architecture

Visual
DBA Ingres Tools Customrized
Application
Terminal Programs
Monitors
OpenAPI
GCA
Name Communications DBMS Enterprise
Server Server Server Access
Remote Ingres Local Ingres Non-Ingres
database database database

How OpenAPI Handles Backward Compatibility

OpenAPI handles backward compatibility through OpenAPI support levels.
More information:

ITapi_initialize() Function—Initialize OpenAPI to a Specified Input Version (see
page 66)

ITapi_connect() Function—Connect to a DBMS Server or Name Server (see
page 49)

OpenAPI Concepts and Processes

This section introduces the concepts that you should be familiar with before
using OpenAPI. It also discusses how OpenAPI functions are used to establish
connections and perform server operations.

10 OpenAPI® User Guide

OpenAPI Concepts and Processes

Parameter Blocks

The parameter block is a C structure that is used for passing information back
and forth between an application and OpenAPI. All OpenAPI functions require a
parameter block.

The application creates the parameter block and passes it as an argument to
the OpenAPI function.

Each parameter block contains input and output parameters:

Input parameters

Contain information sent by the application and needed by OpenAPI to
carry out the request.

Output parameters

Are returned from OpenAPI to the application and contain the results
needed by the application for status reporting or for making subsequent
function calls. Output parameters can be immediate output or delayed
output:

Immediate output parameters

Contain meaningful values as soon as the OpenAPI function returns.
Delayed output parameters

Contain no meaningful values until all tasks associated with the

OpenAPI function are completed.

Most parameter blocks have a common substructure containing generic
parameters. The generic parameters are used to handle asynchronous
processing and to communicate the return status of the function.

Intfroduction 11

OpenAPI Concepts and Processes

Example—parameter block

The following parameter block is allocated before the OpenAPI function
IIapi_query() is invoked:

typedef struct _IIAPI_QUERYPARM

Generic Parameters (containing input and output parameters):

ITAPI_GENPARM qy_genParm;

Input Parameters:

II_PTR qy_connHandle;
ITAPI_QUERYTYPE qy_queryType;
IT_CHAR *qy_queryText;
IT_BOOL qy_parameters;

Input and Immediate Output Parameters:

II_PTR qy_tranHandle;

Immediate Output Parameters:

II_PTR qy_stmtHandle;

} ITAPI_QUERYPARM;

The resources associated with the parameter block must not be freed until the
OpenAPI function completes.

More information:

Generic Parameters (see page 33)

12 OpenAPI® User Guide

OpenAPI Concepts and Processes

How Callback and Closure Work

When all tasks associated with an OpenAPI function are completed, OpenAPI
notifies the application by means of a callback function. When the callback
function is invoked, OpenAPI sends return status and other information to the
application in the delayed output parameters. This “other” information is
needed by the application to make subsequent function calls.

Closure is the means for an application to pass any information it wishes to the
callback function.

The application creates the closure parameter and passes it as an input
parameter to the parameter block. OpenAPI does not care about the contents
of the closure parameter; it simply passes it to the callback function when the
function completes.

An asynchronous OpenAPI function always requests a callback function to
notify the application when the OpenAPI function tasks are completed. If the
application does not provide a callback function, OpenAPI assumes that the
application is polling for the function completion.

How Asynchronous Processing Works

A client/server operation normally involves a request and a response. The
client issues the request to a server to start a database operation; in
response, the server reports success or failure to the client and returns any
relevant data.

When an application submits a request to a remote database, several seconds
may elapse before the application receives a response. Under traditional
synchronous processing, the application cannot perform any functions while it
is waiting for the response. However, under asynchronous processing, the
application can issue a request and then perform functions that do not require
knowledge about the response. For example, it can update a window in
OpenROAD or update a log file. This enables the application to maximize
efficiency during the period between a request and response.

When the application completes its non-database operations, it returns control
to OpenAPI, using the Ilapi_wait() function to complete the database request.

More information:

How Synchronous Processing Works (see page 14)

Introduction 13

OpenAPI Concepts and Processes

How Synchronous Processing Works

OpenAPI provides a function for synchronous processing when it is needed.
The Ilapi_wait() function takes control away from the application and gives it
to OpenAPI until an outstanding database operation completes or until a user-
defined timeout expires. This is useful when the application does not have any
functions to perform while the response is being generated; it simply calls
ITapi_wait() and waits for the response information before proceeding to the
next task.

More information:

How Asynchronous Processing Works (see page 13)

Handles

The handles to these storage areas for OpenAPI object information are
returned to the application. The application then uses them in subsequent calls
to OpenAPI functions to identify the objects.

An API function may allocate a handle even if the requested action fails (for
example, a connect request may fail with an invalid password and still return a
connection handle). In these cases, the associated OpenAPI function that
releases the handle must still be called to release the resources associated
with the handle and the failed request.

14 OpenAPI® User Guide

OpenAPI Concepts and Processes

Types of Handles

There are several main types of handles:
Environment Handle

Identifies storage for information about user configuration settings. An
application requests an environment handle with the Ilapi_initialize()
function by setting the in_version parameter to IIAPI_VERSION_2 (or
higher). The application can then make various user configuration settings
using the IIapi_setEnvParam() function.

The environment handle configuration settings are used when formatting
data using the IIapi_formatData() function. The settings are also inherited
by connections opened in the context of the environment by providing the
environment handle as an input parameter to the Ilapi_connect() or
IIapi_setConnectParam() functions. Environment handle resources are
released with the Ilapi_releaseEnv() function.

Connection handle

Identifies storage for information about a specific connection to a
database. An application requests a connection handle with the
IIapi_connect() or the Ilapi_setConnectParam() functions. The application
then specifies the handle whenever it issues requests within the context of
the connection. When the application no longer needs the connection, it
releases the handle with the Ilapi_disconnect() function.

Transaction handle

Identifies storage for information about a specific transaction. An
application requests a transaction handle with the IIapi_query() or the
IIapi_autoCommit() function. The application then specifies the handle
whenever it issues requests within the context of the transaction. When
the application needs to end the transaction, it releases the handle with
the Ilapi_commit(), IIapi_rollback(), or Ilapi_autoCommit() functions.

Statement handle

Identifies storage for information about a specific query statement. An
application requests a statement handle with the IIapi_query() function.
The application then specifies the handle whenever it issues requests
within the context of the statement. When the application no longer needs
the statement handle, it releases it with the Ilapi_close() function.

Event handle

Identifies storage for information about a specific database event retrieval.
An application requests an event handle with the Ilapi_catchEvent()
function. The application then specifies this handle whenever it issues
requests within the context of the database event registration. When the
application no longer needs the event handle, it releases it with the
IIapi_close() function.

Intfroduction 15

OpenAPI Concepts and Processes

How Connections are Established and Severed

Before an application can request data from a database, it must establish a
dialog, or connection, with a data source—either a relational DBMS Server or
the Name Server. It does this by using the IIapi_connect() function. The
connection handle is the identifier of this connection.

If the application needs to establish connection characteristics, it does so by
using IIapi_setConnectParam() prior to Ilapi_connect().

All activity between the application and the server must be within the context
of a connection. Normally, the application controls the duration of the
connection. When an application no longer needs to communicate with a
server, it severs the connection by using the IIapi_disconnect() function. In
some error conditions, however, the server severs the connection
(IIapi_disconnect() must still be called to release the OpenAPI resources
associated with the connection). II api_abort() can also be used to release the
resources associated with a connection, but is only intended for use in
recovering from error conditions.

16 OpenAPI® User Guide

OpenAPI Concepts and Processes

Transactions

A transaction is one or more query statements that make up a logical unit of
work. This unit of work is either executed in its entirety, or it is totally or
partially rolled back.

With OpenAPI, three types of transactions can occur. They are:
Multi-statement transaction

This type of transaction only affects a single database through a single
connection. A transaction is started by Ilapi_query() when the
gy_tranHandle parameter is NULL. The transaction is committed using
ITapi_commit() or rolled back using IIapi_rollback().

Distributed transaction

This type of transaction uses the two-phase commit mechanism to ensure
that committal of a distributed transaction occurs in all participating
databases through multiple connections.

Distributed transactions are identified by a transaction ID handle returned
by Ilapi_registerXID(). This handle is used to start transactions on each
participating connection by being passed as the qy_tranHandle value when
calling Ilapi_query(). The transaction ends by calling
ITapi_prepareCommit() for each connection followed by Ilapi_commit() or
ITapi_rollback(). The transaction ID handle is freed by calling
ITapi_releaseXID().

Autocommit transaction

This type of transaction causes each individual query to be automatically
committed when complete. If a cursor is opened, the commit occurs when
the cursor is closed.

Autocommit transactions are started by Ilapi_autoCommit() using the
connection handle as input. An autocommit transaction ends by calling
ITapi_autoCommit() with the autocommit transaction handle as input.

More information:

How Transactions Work (see page 18)

Introduction 17

OpenAPI Concepts and Processes

How Transactions Work

The following sections detail how an application begins and ends a transaction,
how distributed transactions are used, and how savepoints are used.

How an Application Begins a Transaction

An application specifies the beginning of a new transaction by calling
IIapi_query() with a input parameter qy_tranHandle. If the parameter is a
NULL pointer or is a transaction ID handle created by IIapi_registerXID(), a
new transaction is begun and a transaction handle is allocated and returned in
gqy_tranHandle. If the qy_tranHandle input value is a transaction handle
returned by a previous call to Ilapi_query(), the query is performed as part of
the already-opened transaction. If the qy_tranHandle input value is an
autocommit transaction handle returned by Ilapi_autoCommit(), the query is
executed and the results are immediately committed by the server.

How an Application Ends a Transaction

At the end of a transaction, the application calls IIapi_commit() or
ITapi_rollback() before starting another transaction within the connection.
ITapi_commit() ends the transaction by committing all SQL statements upon
completion, thereby guaranteeing that changes to the database are
permanent. IIapi_rollback() ends the transaction by aborting all query
statements being executed within the transaction unless a savepoint handle is
specified.

How Distributed Transactions are Used

If the transaction is distributed, IIapi_prepareCommit() must be called for
each connection participating in the transaction prior to calling Ilapi_commit()
or Ilapi_rollback(). For distributed transactions, the resources allocated by
ITapi_registerXID() are freed by calling Ilapi_releaseXID() once the
transaction has been fully committed or rolled back.

How Savepoints are Used

In a multi-statement transaction, savepoints can be defined using the
ITapi_savePoint() function. IIapi_savePoint() allocates a savepoint handle to
identify each savepoint, which can be used to perform a partial rollback when
calling Ilapi_rollback(). If a savepoint is specified with Ilapi_rollback(), only
the query statements executed following the savepoint are aborted and the
transaction remains active. When a transaction is committed or fully rolled
back, all associated savepoint handles are automatically released.

The underlying GCA protocol accepts only one transaction at a time within a
connection. Once a transaction is started, the application must use the same
transaction within that connection for all query statements until the
transaction is committed or rolled back.

18 OpenAPI® User Guide

OpenAPI Concepts and Processes

How Query Statements Work

An application invokes query statements by calling the Ilapi_query() function
and providing the statement type and statement text in input parameters.
Normally, the application obtains the results of the query by calling the
ITapi_getQueryInfo() function and closes the statement by calling the
ITapi_close() function.

Note: Most of the information in this guide pertains to connecting to and
operating on a DBMS, but you can work with the Name Server also. The term
server is used generically, and query statement is used generically for either
an SQL statement or Name Server query statement.

Data exchange between the application and a server requires two sets of
information: data descriptors and data values. Query parameters are passed in
calls to the Ilapi_setDescriptor() and Ilapi_putParms() functions. Result data
returned by query statements is retrieved by calls to the Ilapi_getDescriptor()
and Ilapi_getColumns() functions.

Typical Flow of Operations for SQL and Name Server Query Statement Processing

llapi_query ()

A 4

llapi_setDescriptor()

A

llapi_putParms|)

A

N llapi_getQueryinfo()

A\ 4

llapi_close()

Depending on the query operation, the application may call additional OpenAPI
functions. For statements that return data (the SQL select statement, Name
Server show statement, database procedures with BYREF, INOUT, or OUT
parameters, and row-returning database procedure), and for the SQL copy
statement, the order in which an application invokes OpenAPI functions is
shown in the figure that follows.

Introduction 19

OpenAPI Concepts and Processes

Order of Invoking OpenAPI Functions

The left side of the diagram shows the sequence of functions for statements
that return data. The right side shows the sequence of functions for copying
data from a database table to the program (copy into) and copying data from
the program into a database table (copy from).

select Statement copy Statement
llapi_query() llapi_query()
v v
llapi_setDescriptor() llapi_setDescriptor()
Y v
llapi_putParms() llapi_putParms()
v A 4
> llapi_getDescriptor() llapi_getCopyMap() <
T T
(copy into) (copy from)
v
|_> llapi_getColumns() r llapi_getColumns() llapi_putColumns() ‘—‘
A \4 A 4
llapi_getQueryinfo() llapi_getQueryinfo()
Y v
liapi_close() liapi_close()

How Query Statements are Cancelled

An application can cancel a query statement started with IIapi_query() before
the statement is fully executed. To cancel a query statement, the application
issues IIapi_cancel(), specifying the statement handle returned by
ITapi_query(). IIapi_cancel() can be called anytime after Ilapi_query() has
returned with a status of “success.” If the query has already been completed,
an error is returned to the application stating so.

20 OpenAPI® User Guide

OpenAPI Concepts and Processes

How Data is Retrieved

The following SQL statements are used to retrieve data from a DBMS Server:
singleton select

Retrieves one row from the database. Used when only one result row for
the select statement is desirable. If the singleton select tries to retrieve
more than one row, an error occurs. This type of select does not use a
cursor.

The application issues the following singleton select statement with

ITapi_query():
IIAPI_QT_SELECT_SINGLETON

select loop

Retrieves an unlimited number of result rows. Used when the number of
rows in the result set is unknown.

This style of select statement is useful for applications that need to read
data to load program data sets or to generate reports. This type of select
does not use a cursor.

The application issues the following select loop statement with
ITapi_query():
IIAPI_QT_SELECT
open cursor
Opens a cursor to retrieve rows. Used when it is desirable to use a cursor.

Updateable cursors retrieve one row at a time, permitting updates or
deletion of the row addressed by the cursor. Read-only cursors may
retrieve more rows at a time, similar to select loops, but permit database
operations between retrieval operations.

The application issues the following open cursor statement with
ITapi_query():
IIAPI_QT_OPEN

Regardless of the statement used for retrieving data, the application calls
ITapi_getDescriptor() after calling IIapi_query() to obtain information about
the format of the data being returned from the server. It then calls
ITapi_getColumns() one or more times to retrieve the data. If no long varchar
or long byte data types exist in the result set, and it is not an updateable
cursor, multiple rows can be returned for each call. IIapi_getColumns() returns
the “no more data” status once all rows have been returned. When all
available data has been retrieved, the application calls IIapi_close() to end the
process.

Intfroduction 21

OpenAPI Concepts and Processes

How Cursors Work

Cursors enable an application to process, one at a time, the result rows
returned by a select statement. The following SQL statements are used in
processing data with a cursor:

update (cursor)
Updates the current row.
delete (cursor)

Deletes the current row.

If a cursor is opened as updateable (the default), the application can update or
delete the row referenced by the cursor. If the cursor is opened as read-only,
the application can read the data but cannot update or delete it.

When an application calls IIapi_query() to open a cursor, it provides the name
of the cursor as a parameter in subsequent calls to IIapi_setDescriptor() and
ITapi_putParms(). Cursor name is the character string, unique within the
application, that represents the cursor.

When the application calls IIapi_query() to update or delete data with a
cursor, it provides the cursor ID as a parameter in subsequent calls to
ITapi_setDescriptor() and Ilapi_putParms(). Cursor ID is the statement handle
returned by Ilapi_query() when the cursor is opened.

22 OpenAPI® User Guide

OpenAPI Concepts and Processes

Order of Function Calls Used to Manipulate Data with a Cursor

llapi_query(open)

llapi_setDescriptor()

llapi_putParms()

!

llapi_getDescriptor()

»

v
llapi_getColumns()
[
(Update) (Readonly) (Delete)
llapi_query (update cursor) llapi_query (delete cursor)
llapi_setDescriptor() llapi_setDescriptor()
llapi_putParms() llapi_putParms()

v v
llapi_getQueryInfo(stmt handle llapi_getQueryinfo(stmt handle
of update cursor) of delete cursor)

A v
llapi_close(stmt handle of llapi_close(stmt handle of
update cursor) delete cursor)
A
llapi_getQueryinfo
(stmt handle of open)
v

llapi_close(stmt handle of
open)

Intfroduction 23

OpenAPI Concepts and Processes

To use a cursor, the application:
1. Opens the cursor with IIapi_query().

2. Provides cursor name and parameter descriptions and values with
IIapi_setDescriptor() and Ilapi_putParms().

3. Requests a description of the data being returned from the server with
ITapi_getDescriptor().

The application may call IIapi_getQueryInfo() to obtain the status of the
open cursor request.

4. Requests the data with calls to IIapi_getColumns() until the function
returns with a status of “no more data.”

The application may call Ilapi_getQueryInfo() after each call to
ITapi_getColumns() to obtain the status of the fetch request.

If the application is deleting or updating information with a cursor, it
specifies the cursor delete or update statement for the row where the
cursor is positioned. The statement handle returned from the open
statement should be used as a cursor ID value for the delete or update
statement.

5. Closes the SQL statement and releases the statement handle with
IIapi_close(). This automatically closes the cursor.

Database Events

A database event is a notification to an application that a specific condition has
occurred.

An application processes database events with the following SQL statements:
register dbevent

Registers to receive event notifications. After register dbevent is executed,
the application retrieves events with IIapi_catchEvent().

remove dbevent

Removes an event for which an application has previously registered.

24 OpenAPI® User Guide

OpenAPI Concepts and Processes

Order in which OpenAPI Creates, Retrieves, and Deletes Database Events

llapi_query(register dbevent)

\ 4

llapi_catchEvent()

A

!

Event Callback

llapi_cancel()

A 4

llapi_getDescriptor()

< llapi_getColumns()

v

llapi_close()

A 4

llapi_query(remove dbevent)

Intfroduction 25

OpenAPI Concepts and Processes

How Database Events are Processed

The application calls IIapi_getQueryInfo() and Ilapi_close() after each call to
IIapi_query(), shown in the illustration. Additional SQL statements are used to
create, drop, and raise database events.

Note: For a description and usage of these statements, see the SQL Reference
Guide.

ITapi_catchEvent() registers a callback function to be called when a database
event notification is received. Ilapi_catchEvent() operates similarly to the
embedded SQL statement SET_SQL(DBEVENTHANDLER = dbevent_handler).
IIapi_catchEvent() cannot be used in synchronous mode; it is inherently
asynchronous.

For each call to IIapi_catchEvent(), only one database event notification will be
returned. To receive multiple database events, Ilapi_catchEvent() must be
called every time OpenAPI returns a database event notification to the
application. Rather than closing and repeatedly re-allocating event handles, an
event handle passed to the application callback function can be re-activated by
providing it as input to Ilapi_catchEvent().

The server can send database event notifications with other query results.
When OpenAPI receives a database event notification, OpenAPI processes the
event and calls the the application callback function for any event handles
matching the database event.

Database event notifications can also be sent by the server between client
queries. OpenAPI provides a function, Ilapi_getEvent(), which can be used to
check for database events between queries or if the application desires only to
wait for database event notification without performing other database
operations.

ITapi_getEvent() waits for a database event notification to be sent by the
server on a particular connection. No other request may be made on the
connection until Ilapi_getEvent() completes. A timeout value can be specified
when calling Ilapi_getEvent() so that the application can poll for database
event notifications. IIapi_getEvent() operates similarly to the embedded SQL
statement GET DBEVENT.

ITapi_getEvent() does not return database event notifications directly. To
receive database events, the application must still issue an Ilapi_catchEvent()
request prior to calling Ilapi_getEvent(). When received by Ilapi_getEvent(),
OpenAPI processes a database event notification and calls the application
callback function for any event handles matching the database event.

26 OpenAPI® User Guide

OpenAPI Concepts and Processes

SQL Syntax

Matching criteria specified when calling Ilapi_catchEvent() permits an
application to filter database events by hame and owner. Database event
notifications are compared to all active event handles and may result in
callbacks for none, some, or all handles depending on the filtering information.

Since it is possible for a database event notification to be received but not
matched to any active event handle, an additional callback function can be
registered on the environment handle using Ilapi_setEnvParm(). This callback
function is called for each database event notification that fails to match an
active event handle. An event handle is not passed to the callback function,
but the output information available from Ilapi_catchEvent() is passed to the
callback function as a structure parameter.

In general, OpenAPI supports SQL syntax identical to that supported by
embedded SQL and the Ingres terminal monitors. OpenAPI does not support
some embedded SQL statements and supports some SQL statements through
OpenAPI functions rather than through an SQL statement. OpenAPI does not
support any of the Ingres forms or 4GL statements.

More information:

Mapping of SQL to OpenAPI (see page 119)
SQL Syntax (see page 126)

Name Server Query Statement Syntax

OpenAPI provides several types of statements that allow you to access and
operate on the Name Server. The create, destroy, and show statements allow
you to create, destroy, or show Name Server entities such as login,
connection, or attribute definitions.

More information:

Mapping of Name Server Query Statements to OpenAPI (see page 133)

Intfroduction 27

OpenAPI Concepts and Processes

Query Parameters

OpenAPI does not support host variables, as does embedded SQL. There are
several mechanisms by which an application can handle queries for which the
parameter values are not known until runtime.

First, the application can use C library string formatting routines, such as
sprintf(), to build the SQL query text at runtime. Parameter values are
formatted as literals in the query text prior to query execution.

Second, the application can use dynamic SQL and provide the parameter
values as parameters to the query when the statement is executed or a cursor
is opened. (Dynamic SQL is not supported by the Name Server.)

A third method, which uses parameter markers but does not require the
statement to be prepared, is also available. This method is the same
mechanism used by embedded SQL to handle host variables. It is also the only
method that handles runtime parameter values for repeat queries. Since this
mechanism is usually hidden to applications, it is not described further here.

Note: Parameter strings in queries should be sent as varchar type, rather than
chars type, due to the pattern matching method used by the DBMS Server.

More information:

Query Parameters (see page 155)

28 OpenAPI® User Guide

OpenAPI Concepts and Processes

How Unformatted Data is Handled

Long varchar and long byte data types are binary large objects (sometimes
called BLOBs) that can store up to 2 GB of data. Since it is often impossible to
allocate a storage buffer of this size, special handling is required to segment
the unformatted data across the OpenAPI interface. This is done with the
ITapi_getColumns(), IIapi_putColumns(), and Ilapi_putParms() functions.

Each of these functions contain three common parameters:

parmCount or columnCount

Contain the number of parameters being sent or columns being retrieved
in an SQL statement.

parmData or columnData
Contain the buffers of data being sent or retrieved.
moreSegments

Indicates if there are more data segments to be sent or retrieved for a
column of long varchar or long byte data type.

Data passes between the application and OpenAPI in a row. Normally, all data
in a row or all parameters in an SQL statement are passed with one call to
ITapi_getColumns(), IIapi_putColumns(), or IIapi_putParms(). If one of the
columns is a long varchar or long byte, however, each segment of the long
varchar or long byte must be passed with a single call to the above functions.
The moreSegments parameter (which is set to TRUE or FALSE) indicates
whether the long varchar or long byte data is completely retrieved or sent.
After it is retrieved or sent, the rest of the data, up to the next long varchar or
long byte, is passed with one function call.

Example—passing unformatted data

An application calls IIapi_getColumns() to retrieve a row of ten columns in a
table. The fifth column is a long varchar data type spanning multiple
segments. To retrieve the data, the application does the following:

1. Requests the first four columns with a call to IIapi_getColumns().

2. Requests one segment of the long varchar column with a call to
ITapi_getColumns().

3. Continues calling IIapi_getColumns() until all segments of the long varchar
are retrieved (gc_moreSegments is FALSE).

4. Requests the remaining five columns with a call to IIapi_getColumns().

The same logic is used when an application is sending data to a server with
ITapi_putParms() or Ilapi_putColumns().

Introduction 29

OpenAPI Concepts and Processes

Data Conversion

Error Handling

Most Ingres data types have a corresponding C language data type. Data
values passed between the application and a server use the C language data
formats. For data types that do not have corresponding C language data
types—namely money, decimal, and date—OpenAPI provides two functions,
ITapi_convertData() and Ilapi_formatData(), which convert these values to a
native C language format. The introduction of new data types is controlled by
an OpenAPI level negotiated by the IIapi_connect() function.

More information:
Ingres Data Types (see page 167)
Data Type Descriptions (see page 169)

ITapi_initialize() Function (see page 66)
ITapi_connect() Function (see page 49)

This section describes how the application checks for errors.

How Status Checking Works

An application checks for OpenAPI function errors when the function has
completed its tasks, as indicated by the completion flag, gp_completed, in the
generic parameter block.

When the function successfully or unsuccessfully completes its tasks, the
completion flag is set to TRUE and the callback function is invoked if the
callback address is provided in the parameter block. The value of the generic
parameter gp_status indicates the success or failure of the function.

A failed task may have additional error information attached to it. To find out if
such information exists, an application examines the value of the generic
parameter gp_errorHandle. If the handle is non-NULL, the application calls
IIapi_getErrorinfo() to retrieve the additional error information.

More information:

IIapi_getErrorIinfo() Function (see page 60)

30 OpenAPI® User Guide

OpenAPI Concepts and Processes

How OpenAPI Error Codes are Generated

When an OpenAPI function detects an error, an error code and text describing
the error are generated. This information is available through
ITapi_getErrorIinfo() and the error handle returned in the generic parameters
of the function parameter block. When Ilapi_getErrorIinfo() returns with
ge_serverInfoAvail set to FALSE, the error information generated by the
OpenAPI and ge_errorCode is set to a particular value.

More information:

Error Codes (see page 159)
SQLSTATE Values and Descriptions (see page 162)

Intfroduction 31

Chapter 2: OpenAPI Function Reference

This chapter provides details about each OpenAPI function. It begins with a
description of the generic parameters that are common to each OpenAPI
function. It then lists the output parameters for which the OpenAPI allocates
and manages memory. It also describes each OpenAPI function and provides
its syntax and a description of its parameters.

Note: For a description of non-standard C data types used in OpenAPI
parameter blocks, see OpenAPI Data Types (see page 103).

Generic Parameters

Each OpenAPI function parameter block has a common substructure. This
substructure contains generic parameters for handling asynchronous
processing and for communicating the return status of the OpenAPI function.

The substructure is the first element in most parameter blocks:

typedef struct _IIAPI_GENPARM
{
IT VOID (II_FAR II CALLBACK *gp callback)
(II_PTR closure, II_PTR parmBlock);
IT_PTR gp_closure;
IT_BOOL gp_completed;
IIAPI_STATUS gp_status;
PTR gp_errorHandle;
} IIAPI_GENPARM;

The generic parameters are as follows:
gp_callback
Type: input

The address of the application function to be invoked when the OpenAPI
function completes its tasks, or NULL. If this parameter is NULL, the
application can poll for completion by examining gp_completed; otherwise,
it must be an address to the callback with the following syntax:

IT_EXTERN II_VOID II_FAR II_CALLBACK callback (II_PTR closure, II_PTR
parmBlock) ;

gp_closure
Type: input

The value of the input argument to the function addressed by gp_callback.
OpenAPI does not interpret the value of this parameter, but simply passes
it to the callback function unchanged. The application uses this parameter
to pass any information it wishes to the callback.

OpenAPI Function Reference 33

Generic Parameters

gp_completed

Type: immediate and delayed output

The indication that the task has been completed and the callback function
has been invoked. If so, this parameter is TRUE; otherwise, it is FALSE.

gp_status

Type: delayed output

The status of the OpenAPI function upon its completion.

The following value is returned if the function completes without an error:
ITAPI_ST_SUCCESS

The following values indicate that a message (including which type of
message) was returned by the server; the message information is
available through gp_errorHandle:

IIAPI_ST MESSAGE
IIAPI_ST WARNING
IIAPI_ST_ERROR

The following value is returned when a function that normally returns
information has nothing to return:

IIAPI_ST_NO_DATA

The following value is returned for general failures, which will have
additional information available through gp_errorHandle:

ITIAPI_ST_FAILURE

The following values are returned when the OpenAPI is unable to provide
additional information because of the error:

IIAPI_ST NOT_INITIALIZED
IIAPI_ST INVALID_ HANDLE
IIAPI_ST OUT_OF MEMORY

gp_errorHandle

Type: delayed output

Additional information associated with the completion of the OpenAPI
function. If non-NULL, this parameter will be a handle that can be passed
to Ilapi_getErrorInfo(). If NULL, no additional information is available.

34 OpenAPI® User Guide

How Memory is Managed for Data Input and Output

How Memory is Managed for Data Input and Output

An application allocates memory for each OpenAPI function argument and its
input parameters. The application also allocates memory for the output
parameters, with the exception of the parameters listed in the following table.
These parameters are allocated by OpenAPI:

Parameter Function
ce_eventDB IIapi_catchEvent()
ce_eventName IIapi_catchEvent()
ce_eventOwner IIapi_catchEvent()
ce_eventTime.dv_value ITapi_catchEvent()
cp_fileName ITapi_getCopyMap()
cp_logName IIapi_getCopyMap()
cp_dbmsDescr IIapi_getCopyMap()
cp_fileDescr IIapi_getCopyMap()
gd_descriptor IIapi_getDescriptor()
ge_message ITapi_getErrorInfo()
svr_parmDescr ITapi_getErrorInfo()
svr_parmValue ITapi_getErrorInfo()

The output parameters allocated by OpenAPI are maintained until the
application calls Ilapi_close() with the statement handle associated with these
parameters. To retain the information after Ilapi_close() is invoked, the
application copies the parameters into its own buffers.

OpenAPI Function Reference 35

OpenAPI Functions

OpenAPI Functions

This section describes each OpenAPI function and provides its syntax.

llapi_abort() Function—Abort a Connection

The IIapi_abort() function closes a connection opened with IIapi_connect()
and frees all the resources associated with the connection handle.

Any transaction associated with the connection is aborted, and the transaction
handle freed, as are all associated statements and database event handles.

While this function can be used to clean up quickly when a problem is detected
on a connection, applications are encouraged to continue calling IIapi_close(),
ITIapi_commit() or IIapi_rollback(), and Ilapi_disconnect() to cleanly shut
down server connections.

This function has the following syntax:
IT_VOID IIapi_abort (IIAPI_ABORTPARM *abortParm);

typedef struct _IIAPI_ABORTPARM
{
ITAPI_GENPARM ab_genParm;

IT_PTR ab_connHandle;
} IIAPI_ABORTPARM;

This function has the following parameters:
ab_genParm

Type: input and delayed output

Specifies the generic parameters.

For a description, see Generic Parameters (see page 33).
ab_connHandle

Type: input

Specifies the connection handle to be disconnected immediately. All
resources associated with this connection are also freed.

36 OpenAPI® User Guide

OpenAPI Functions

llapi_autocommit() Function—Enable or Disable Autocommit Transactions

The Ilapi_autocommit() function provides an interface for the front-end
application to manage the autocommit state in a server. It controls the
autocommit state of the server through an autocommit transaction handle. An
autocommit transaction handle is required to access the Name Server through
OpenAPI.

This function is called with a NULL transaction handle to enable the
autocommit state in a server. For a DBMS connection, this is equivalent to the
SQL statement 'SET AUTOCOMMIT ON'. An autocommit transaction handle is
returned to be used in place of a regular transaction handle in Ilapi_query().
Query statements executed in the context of an autocommit transaction are
automatically committed when they complete execution.

When called with an existing autocommit transaction handle, this function
disables the autocommit state in the server. This is equivalent to the SQL
statement 'SET AUTOCOMMIT OFF'. The autocommit transaction handle is
freed and can not be referenced further by the application.

When you set autocommit on, a commit occurs automatically after every
statement except prepare and describe. If autocommit is on and you open a
cursor, the DBMS does not issue a commit until the close cursor statement is
executed because cursors are logically a single statement.

This function has the following syntax:
IT VOID IIapi_autocommit(IIAPI_AUTOPARM *autoParm);

typedef struct _IIAPI_AUTOPARM

{
IIAPI_GENPARM ac_genParm;
IT_PTR ac_connHandle;
ITI_PTR ac_tranHandle;
} ITIAPI_AUTOPARM;

This function has the following parameters:
ac_genParm

Type: input and delayed output

Specifies the generic parameters.

For a description, see Generic Parameters (see page 33).
ac_connHandle

Type: input

Specifies the connection handle identifying the connection associated with
the autocommit transaction. Set to NULL when disabling an existing
autocommit transaction.

OpenAPI Function Reference 37

OpenAPI Functions

ac_tranHandle
Type: input and immediate output

Specifies the transaction handle to be used while autocommit is enabled.
Set to NULL when enabling an autocommit transaction.

llapi_cancel() Function—Cancel an Outstanding Query Statement

The Ilapi_cancel() function causes a query statement started with
ITapi_query() or an event retrieval started with Ilapi_catchEvent() to complete
its operations.

When IIapi_cancel() completes successfully, the query may not yet be
canceled; it simply means that the server has received the cancellation
request. Each canceled query receives a callback.

This function is different from IIapi_close(), which is used to end a query. The
ITapi_close() function waits for the completion of the query, whereas
ITapi_cancel() attempts to end it before it is completed.

Statement handle output from IIapi_query() and event handle output from
ITapi_catchEvent() is available when the function returns, so queries can be
canceled at anytime thereafter.

The following are possible results of the IIapi_cancel() function and their
corresponding actions:

® Completes with status IIAPI_ST_SUCCESS-Cancel request has been issued
but the server has not yet canceled the query. There is an outstanding
OpenAPI request that will complete with status IIAPI_ST_FAILURE and
error code E_AP0009_QUERY_CANCELLED, after which the statement
handle can be closed using Ilapi_close().

® Completes with status IIAPI_ST_WARNING-IIapi_cancel() has already
been called for the statement handle and this call has been ignored;
otherwise, same as IIAPI_ST_SUCCESS status above.

m Completes with status IIAPI_ST_FAILURE and error code
E_APO009_QUERY_CANCELLED-The query has been canceled and
statement handle can be closed using Ilapi_close().

m Completes with status IIAPI_ST_FAILURE and error code
E_APOO08_QUERY_DONE-Query has completed processing and cannot be
canceled. Statement handle can be closed using Ilapi_close().

m Completes with status IIAPI_ST_FAILURE and error code
E_APO006_INVALID_SEQUENCE-Statement handle is in the process of
being closed and no further actions are permitted.

38 OpenAPI® User Guide

OpenAPI Functions

This function has the following syntax:
IT_VOID IIapi_cancel (IIAPI_CANCELPARM *cancelParm);

typedef struct _IIAPI_CANCELPARM
{
ITAPI_GENPARM cn_genParm;

IT_PTR cn_stmtHandle;
} IIAPI_CANCELPARM;

This function has the following parameters:
cn_genParm

Type: input and delayed output

Specifies the generic parameters.

For a description, see Generic Parameters (see page 33).
cn_stmtHandle

Type: input

Specifies the statement or event handle identifying the query to be
canceled.

Function Summary
The following is a summary of the OpenAPI functions, grouped by tasks.

OpenAPl Management
ITapi_initialize()
Initializes OpenAPI.
ITapi_setEnvParam()
Assigns an environment parameter and value in the environment handle.
IIapi_releaseEnv()
Releases resources associated with an environment handle.
IIapi_terminate()

Terminates OpenAPI.

OpenAPI Function Reference 39

OpenAPI Functions

Session Management
IIapi_abort()
Closes a server connection forcibly and frees the connection handle.
IIapi_connect()
Connects to a server and allocates a connection handle.
IIapi_disconnect()

Closes a server connection, after doing an orderly shutdown, and frees the
connection handle.

IIapi_modifyConnect()
Sends connection parameters to the server.
IIapi_setConnectParam()

Assigns a connection parameter and value to a connection.

40 OpenAPI® User Guide

OpenAPI Functions

Query Processing

IIapi_query()

Begins a query statement and allocates a statement handle, and can also
allocate a transaction ID handle.

IIapi_setDescriptor()

Sends information about the format of data being sent to the server for
subsequent Ilapi_putParms() or IIapi_putColumns() calls.

IIapi_putParms()
Sends data values for query statement parameters.
ITapi_getCopyMap

Returns the data format of the copy file and database table involved in a
copy statement.

IIapi_putColumns()

Sends data to be copied from a file to a database table.
ITapi_getDescriptor()

Returns the format of the data for subsequent IIapi_getColumns() call.
ITapi_getColumns()

Returns the results of a query.
ITapi_getQueryInfo()

Returns information about a query.
Iiapi_getErrorInfo()

Returns additional error or user-defined information.
IIapi_cancel()

Cancels an outstanding query.
IIapi_close()

Ends a query statement and frees the statement handle.

OpenAPI Function Reference 41

OpenAPI Functions

Transaction Operations

ITapi_registerXID()

Reserves a unique ID for a two-phase commit transaction.
IIapi_savePoint()

Marks a savepoint for a partial rollback.
IIapi_prepareCommit()

Begins a two-phase commit for a transaction.
IIapi_autocommit()

Enables or disables an autocommit transaction.
IIapi_commit()

Commits a transaction and frees the transaction ID handle.
IIapi_rollback()

Rolls back a transaction and frees the transaction ID handle.
IIapi_releaseXID()

Releases a unique ID for a two-phase commit transaction.

Miscellaneous
ITapi_catchEvent()
Retrieves a database event and allocates a statement handle.
ITapi_getEvent()
Provides interface for applications to wait for database events to occur.
Ilapi_convertData()

Converts Ingres data values to a compatible type, using Ingres installation
and user configuration settings.

Ilapi_formatData()

Converts Ingres data values to a compatible type, using OpenAPI
environment handle settings.

ITapi_wait()

Blocks control from the application until an outstanding operation
completes, or until a user-defined time-out period expires.

42 OpenAPI® User Guide

OpenAPI Functions

llapi_catchEvent() Function—Retrieve a Database Event

The Ilapi_catchEvent() function retrieves a database event previously
registered by an application. The application first registers for a database
event using IIapi_query() to invoke the register dbevent statement. It then
captures each occurrence of the event and retrieves its data by calling
ITapi_catchEvent().

ITapi_catchEvent() allows the application to specify the database event by the
event parameters. If ce_selectEventName and ce_selectEventOwner are
specified, one specific event is captured when the function completes. If only
ce_selectEventOwner is specified, any events owned by the specific owner are
captured. If only ce_selectEventName is specified, any events with the event
name are captured. If neither ce_selectEventName nor ce_selectEventOwner
are specified, all events are captured.

When IIapi_catchEvent() returns, it provides an event handle as immediate
output. This handle is used to retrieve additional event information, to cancel
the event retrieval, or to clean up after the event is retrieved.

Calling Ilapi_catchEvent() captures one occurrence of a database event. After
it has captured the event, the application can immediately issue another
ITapi_catchEvent() with the same event handle to capture the next occurrence.

ITapi_catchEvent() operates in a manner similar to the embedded SQL
statement set_sqgl(dbeventhandler=<dbevent_handler>). Ilapi_catchEvent()
does not result in any communication with the server. Since database event
notification is passed along with other SQL result information, the application
must continue with other database operations after calling IIapi_catchEvent()
to enable retrieval of database events.

ITapi_getEvent() can be used to receive database event notifications when the
application has no other database operations to perform. Ilapi_getEvent()
operates in a manner similar to the embedded SQL statement GET DBEVENT.
See Ilapi_getEvent() for further details.

If ITapi_catchEvent() completes with ce_eventInfoAvail set to TRUE, the
application should call IIapi_getDescriptor() and IIapi_getColumns() to access
additional event information.

If the application no longer wants to retrieve a pending database event, it calls
ITapi_cancel() to cancel the event retrieval. A canceled event retrieval
completes with a failure status. After an event is canceled, or an event
retrieval has completed, the application calls IIapi_close() to free the event
handle and associated internal resources.

OpenAPI Function Reference 43

OpenAPI Functions

If an event notification occurs for which there is no active matching event
handle, the database event is ignored. Ilapi_setEnvParam() permits a callback
function to be registered, which will be called for each database event that
fails to match to an active event handle and would otherwise be ignored. See
IIAPI_EP_EVENT_FUNC and related documentation in the description for
IIapi_setEnvParam().

This function has the following syntax:
IT_VOID IIapi_catchEvent (IIAPI_CATCHEVENTPARM *catchEventParm);

typedef struct _IIAPI_CATCHEVENTPARM

ITAPI_GENPARM ce_genParm;

IT_PTR ce_connHandle;
IT_CHAR *ce_selectEventName;
IT_CHAR *ce_selectEventOwner;
ITI_PTR ce_eventHandle;
IT_CHAR *ce_eventName
IT_CHAR *ce_eventOwner
IT_CHAR *ce_eventDB;
ITAPI_DATAVALUE ce_eventTime;

IT_BOOL ce_eventInfoAvail;

} IIAPI_CATCHEVENTPARM;

This function has the following parameters:
ce_genParm

Type: input and delayed output

Specifies the generic parameters.

Note: For a description, see Generic Parameters (see page 33).
ce_connHandle

Type: input

Specifies the connection handle, identifying the connection to the target
server, or the environment handle.

ce_selectEventName
Type: input

Specifies the name of the event to retrieve. This parameter is NULL if the
application wants to receive the next event indiscriminately; otherwise, it
is a NULL-terminated string containing the name of the event the
application is requesting.

ce_selectEventOwner
Type: input

Specifies the owner of the event to retrieve. This parameter is NULL if the
application requests events by any owner; otherwise, it is a
NULL-terminated string containing the name of the event owner.

44 OpenAPI® User Guide

OpenAPI Functions

ce_eventHandle
Type: input and immediate output

Specifies the event handle identifying the event retrieval. Set to NULL to
begin a new event retrieval. After receiving the requested event, the
application may call IIapi_catchEvent() with the same event handle to
receive the next event. The application should clean up resources when
event retrieval is no longer desired by calling IIapi_close() with this event
handle.

ce_eventName
Type: delayed output
Assigns the name of the event retrieved when the function completes.

The memory for this parameter is managed by the OpenAPI. For more
information, see How Memory is Managed for Data Input and Output (see
page 35).

ce_eventOwner
Type: delayed output

Assigns the owner name of the event retrieved when the function
completes.

The memory for this parameter is managed by OpenAPI. For more
information, see How Memory is Managed for Data Input and Output (see
page 35).

ce_eventDB
Type: delayed output

Indicates the server where the event occurred. This parameter contains a
NULL-terminated string containing the name of the server.

The memory for this parameter is managed by the OpenAPI. For more
information, see How Memory is Managed for Data Input and Output (see
page 35).

ce_eventTime
Type: delayed output

Indicates the time the event occurred, stored as an IIAPI_DTE_TYPE data
value.

The memory for this parameter is managed by the OpenAPI. For more
information, see How Memory is Managed for Data Input and Output (see
page 35).

ce_eventInfoAvail

Type: delayed output

OpenAPI Function Reference 45

OpenAPI Functions

Indicates whether the is additional information associated with the event.
The parameter is FALSE if there is no additional information associated
with the event; otherwise, the application should call
ITapi_getDescription() and IIapi_getColumns() with ce_eventHandle to
retrieve the additional event information.

llapi_close() Function—End a Query Statement or Database Event Retrieval

The Ilapi_close() function ends a query or database event retrieval started
with IIapi_query() or IIapi_catchEvent(). This function frees the event or
statement handle and closes any cursor associated with the statement handle.

An application calls Ilapi_close() to end a query that has finished all OpenAPI
function calls required by the query type. The application must call
ITapi_cancel() to interrupt a query with outstanding requests prior to calling
ITapi_close().

ITapi_close() invalidates any data returned by the Ilapi_catchEvent(),
ITapi_getCopyMap(), Ilapi_getDescriptor(), or Ilapi_getErrorInfo() functions
for the statement handle.

Note: For more information, see How Memory is Managed for Data Input and
Output (see page 35).

For each Ilapi_query() or Ilapi_catchEvent(with NULL ce_eventHandle), there
should be a corresponding IIapi_close().

The following are possible results of the Ilapi_close() function and their
corresponding actions:

m Completes with status IIAPI_ST_FAILURE and error code
E_APO006_INVALID_SEQUENCE-IIapi_close() has already been called for
the statement handle and this call is ignored.

m Completes with status IIAPI_ST_FAILURE and error code
E_AP0007_INCOMPLETE_QUERY-OpenAPI query processing of the
statement handle has not completed. Query must be canceled using
ITapi_cancel().

m Competes with status IIAPI_ST_FAILURE and error code
E_APOOOA_QUERY_INTERRUPTED-IIapi_cancel() has been called on the
statement handle but the server has not yet canceled the query. There is
an outstanding OpenAPI request that will complete with status
IIAPI_ST_FAILURE and error code E_AP0O009_QUERY_CANCELLED, after
which the statement handle can be closed using Ilapi_close().

46 OpenAPI® User Guide

OpenAPI Functions

This function has the following syntax:
IT_VOID IIapi_close (IIAPI_CLOSEPARM *closeParm);

typedef struct _IIAPI_CLOSEPARM
{
ITAPI_GENPARM cl_genParm;

IT_PTR cl_stmtHandle;
} IIAPI_CLOSEPARM;

This function has the following parameters:
cl_genParm
Type: input and delayed output

Specifies the generic parameters. For a description, see Generic
Parameters (see page 33).

cl_stmtHandle
Type: input

Specifies the statement or event handle identifying the query or event
retrieval for which resources should be freed.

OpenAPI Function Reference 47

OpenAPI Functions

llapi_commit() Function—Commit a Transaction

The Ilapi_commit() function commits a transaction that was started with
ITapi_query() or restarted by IIapi_connect(), and then frees the transaction
handle.

Before the transaction is committed, the application must call IIapi_close() to
free the statement handles within the transaction.

This function has the following syntax:
IT VOID IIapi_commit (IIAPI_COMMITPARM *commitParm);

typedef struct _IIAPI_COMMITPARM
{
IIAPI_GENPARM cm_genParm;

IT_PTR cm_tranHandle;
} IIAPI_COMMITPARM;

This function has the following parameters:
cm_genParm
Type: input and delayed output

Specifies the generic parameters. For a description, see Generic
Parameters (see page 33).

cm_tranHandle
Type: input

Specifies the transaction ID handle identifying the transaction to be
committed. The transaction ID handle is either from qy_tranHandle of
ITapi_query() or co_tranHandle of Ilapi_connect().

48 OpenAPI® User Guide

OpenAPI Functions

llapi_connect() Function—Connect to a DBMS Server or Name Server

The IIapi_connect() function establishes a connection to a DBMS Server or the
Name Server, based on the connection type, and allocates a connection
handle. When connecting to the Name Server an environment handle must be
provided as input.

This function returns the co_apilLevel output parameter, which specifies the
level of functionality provided by OpenAPI for the current connection. If the
output connection handle is not NULL after this function returns, even if an
error occurs, IIapi_disconnect() or IIapi_abort() must be called to release the
connection handle.

This function has the following syntax:
IT VOID IIapi_connect (IIAPI_CONNPARM *connParm);

typedef struct _IIAPI_CONNPARM
{

IIAPI_GENPARM co_genParm;

IT _CHAR *co_target;
IT_CHAR *co_username;
IT _CHAR *Cco_password;
II_LONG co_timeout;
IT_PTR co_connHandle;
II_PTR co_tranHandle
IT_LONG co_sizeAdvise;
II_LONG co_apilevel;
IT_LONG co_type;

} IIAPI_CONNPARM;

This function has the following parameters:
co_genParm
Type: input and delayed output

Specifies the generic parameters. For a description, see Generic
Parameters (see page 33).

co_target
Type: input

The name of the database. When connecting to a DBMS Server, this
parameter cannot be NULL. It contains a NULL-terminated string naming
the database to which the application will connect. When connecting to a
Name Server, NULL is used for the local installation and the vhode name is
used for a remote installation.

The syntax of the target name is:

[node_7id::]1dbnamel/svr_class]

OpenAPI Function Reference 49

OpenAPI Functions

co_username

Type: input

The name of the user connecting to the server. This parameter contains a
NULL-terminated string, which is the user name authorized to connect to
the server.

If this parameter is NULL, a default user name will be used and
co_password should also be NULL.

co_password

Type: input

A NULL-terminated string containing the password for the user specified in
co_username. If co_username is NULL, this parameter should be NULL as
well.

If connecting to the Name Server, this parameter is not required if the
current user has the NET_ADMIN privilege.

co_timeout

Type: input

Specifies the maximum time in milliseconds to wait for a connection to be
established. A value of -1 is used if a timeout is not desired.

Support for timeouts is platform-dependent. If timeouts are not supported,
all values are treated the same as -1.

co_connHandle

Type: input and immediate output
Input

Specifies a connection handle returned by Ilapi_setConnectParam(),
an environment handle returned by Ilapi_initialize(), or NULL.

Output

Specifies the connection handle identifying the connection for
subsequent OpenAPI function calls that invoke query statements and
transactions within the context of this connection.

co_tranHandle

Type: input and immediate output

Specifies a transaction ID handle that can be used to re-connect to a
distributed transaction, obtained from Ilapi_registerXID(), as input. This
parameter (input and output) is usually NULL. A transaction handle for the
distributed transaction is returned.

co_sizeAdvise

Type: delayed output

50 OpenAPI® User Guide

OpenAPI Functions

Specifies the advised buffer size for long varchar or long byte segment
sizes used within this connection.

co_apilLevel
Type: delayed output

Specifies the OpenAPI level of functionality supported by the server for the
connection. Valid values for this parameter are:

ITIAPI_LEVEL_O

Specifies level 0. All level 1 data types are supported except the
following:

ITAPI_DEC_TYPE
ITAPI_BYTE_TYPE
ITAPI_VBYTE_TYPE
ITAPI_LBYTE_TYPE
ITAPI_LVCH_TYPE

ITIAPI_LEVEL_1

Specifies level 1. All level 2 data types are supported except the
National Character Set data types:

ITAPI_NCHA_TYPE
ITAPI_NVCH_TYPE
ITAPI_LNVCH_TYPE

ITIAPI_LEVEL_2

Specifies level 2. (Requires initialization at IIAPI_VERSION_3.) All level
3 data types are supported except eight-byte integers (bigint):

ITAPI_INT_TYPE with length 8
ITIAPI_LEVEL_3

Specifies level 3. (Requires initialization at IIAPI_VERSION_4.) All level
4 data types are supported except ANSI date/time types:

ITAPI_DATE_TYPE
ITAPI_TIME_TYPE
ITAPI_TMWO_TYPE
ITAPI_TMTZ_TYPE
ITAPI_TS_TYPE
ITAPI_TSWO_TYPE
ITAPI_TSTZ_TYPE
ITAPI_INTYM_TYPE
ITAPI_INTDS_TYPE

ITIAPI_LEVEL_4

Specifies level 4. (Requires initialization at IIAPI_VERSION_5.) All data
types in this guide are supported.

OpenAPI Function Reference 51

OpenAPI Functions

co_type
Type: input
Specifies the connection type. Its value is one of the following:
IIAPI_CT_NS
Establishes a connection to the Name Server.
IIAPI_CT_SQL
Establishes a connection to a relational DBMS Server.

This parameter is ignored (IIAPI_CT_SQL assumed) if co_connHandle is
NULL or is a connection handle that was created with a NULL environment
handle.

llapi_convertData() Function—Convert Ingres Data Values to Compatible Types
Using Default Settings

The Ilapi_convertData() function converts data values between Ingres data
types. The data values are translated and formatted using default settings
selected by the user and specified at the operating system level prior to
running the application. IIapi_formatData() can be used to convert data using
settings selected by the application.

This function is intended to support Ingres data types that do not have a
corresponding C language data type.

Conversions to and from IIAPI_CHA_TYPE are supported for the data types
IIAPI_DEC_TYPE, IIAPI_MNY_TYPE, IIAPI_DTE_TYPE, IIAPI_DATE_TYPE,
IIAPI_TIME_TYPE, IIAPI_TMWO_TYPE, IIAPI_TMTZ_TYPE, IIAPI_TS_TYPE,
IIAPI_TSWO_TYPE, IIAPI_TSTZ_TYPE, IIAPI_INTYM_TYPE, IIAPI_INTDS_TYPE.

In addition, the following conversions are supported:

Data Type Converted To
IIAPI_DEC_TYPE IIAPI_FLT_TYPE
IIAPI_FLT_TYPE IIAPI_DEC_TYPE
IIAPI_MNY_TYPE IIAPI_FLT_TYPE
IIAPI_FLT_TYPE IIAPI_MNY_TYPE

The source data value must not be NULL (that is, dv_null set to TRUE).

52 OpenAPI® User Guide

OpenAPI Functions

This function has the following syntax:
IT_VOID IIapi_convertData(IIAPI_CONVERTPARM *convertParm);

typedef struct _IIAPI_CONVERTPARM
{

ITAPI_DESCRIPTOR cv_srcDesc;
ITAPI_DATAVALUE cv_srcValue;
ITAPI_DESCRIPTOR cv_dstDesc;
IIAPI_DATAVALUE cv_dstValue;
ITAPI_STATUS cv_status;

} ITAPI_CONVERTPARM;

This function has the following parameters:
cv_srcDesc

Type: input

Specifies a description of the original data type.
cv_srcValue

Type: input

Specifies the original data value. This value must not be NULL.
cv_dstDesc

Type: input

Specifies the description of the desired result data type.
cv_dstValue

Type: output

Specifies the resulting data value. There must be enough memory
allocated to hold the resulting data value, as described by cv_dstDesc
(that is, dv_length must be equal or greater than ds_length).

cv_status
Type: output

Returns IIAPI_ST_SUCCESS if the conversion succeeded;
IIAPI_ST_FAILURE if there is an invalid parameter value, insufficient space
to hold the resulting data value, or the input data value could not be
converted to the requested type.

OpenAPI Function Reference 53

OpenAPI Functions

llapi_disconnect() Function—Close a Server Connection

The IIapi_disconnect() function closes the connection to the server opened
with IIapi_connect() and frees all resources associated with the connection
handle.

An application must close all outstanding statements and event retrievals, and
it must commit or roll back all outstanding transactions before calling
ITapi_disconnect().

This function has the following syntax:
IT VOID IIapi_disconnect (IIAPI_DISCONNPARM *disconnParm);

typedef struct _IIAPI_DISCONNPARM
{
IIAPI_GENPARM dc_genParm;

IT_PTR dc_connHandle;
} IIAPI_DISCONNPARM;

This function has the following parameters:
cd_genParm
Type: input and delayed output

Specifies the generic parameters. For a description, see Generic
Parameters (see page 33).

dc_connHandle
Type: input

Specifies the connection handle, identifying the connection to the target
server. All resources associated with this connection are also freed.

54 OpenAPI® User Guide

OpenAPI Functions

llapi_formatData() Function—Convert Ingres Data Values to Compatible Types

The Ilapi_formatData() function converts data values between Ingres data
types. The data values are translated and formatted using settings selected by
the application and specified on an environment handle using
ITapi_setEnvParam(). IIapi_convertData() can be used to convert data using
default settings selected by the user running the application.

For further details, see the description of Ilapi_convertData() (see page 52).

This function has the following syntax:
IT VOID IIapi_formatData(IIAPI_FORMATPARM *formatParm);

typedef struct _IIAPI_FORMATPARM
{

II_PTR fd_envHandle;
IIAPI_DESCRIPTOR fd_srcDesc;
ITAPI_DATAVALUE fd_srcValue;
IIAPI_DESCRIPTOR fd_dstDesc;
IIAPI_DATAVALUE fd_dstValue;
IIAPI_STATUS fd_status;

} IIAPI_FORMATPARM;

This function has the following parameters:
fd_envHandle
Type: input

Specifies the environment handle for which the data values to be
converted.

fd_srcDesc

Type: input

Specifies the description of the original data type.
fd_srcValue

Type: input

Specifies the original data value. The value must not be NULL.
fd_dstDesc

Type: input

Specifies the description of the desired result data type.
fd_dstValue

Type: output

Specifies the resulting data value. There must be enough memory
allocated to hold the resulting data value as described by fd_dstDesc (that
is, dv_length must be equal or greater than ds_length).

OpenAPI Function Reference 55

OpenAPI Functions

fd_status
Type: output

Returns IIAPI_ST_ SUCCESS if the conversion succeeded. Returns
IIAPI_ST_FAILURE if there is an invalid parameter value, insufficient space
to hold the resulting data value, or the input data value could not be
converted to the requested type.

llapi_getColumns() Function—Return Columns from a Previously Invoked Query
Statement or Database Event Retrieval

The IIapi_getColumns() function returns the results of a query statement or
database event retrieval created by Ilapi_query() or IIapi_catchEvent() to the
application. It retrieves into the application's buffers the requested number of
columns of data.

This function is always preceded with the Ilapi_getDescriptor() or
ITapi_getCopyMap() function, which describes the format and number of
columns to be returned to the application from the server.

ITapi_getColumns() can return multiple rows. If there are long varchar or long
byte data columns, Ilapi_getColumns() returns only one row at a time.

If one of the columns is a long varchar or long byte that requires more than
one segment to be returned, the application requests the segments
individually with single calls to Ilapi_getColumns(). For example, a row of ten
columns with a long varchar or long byte spanning multiple segments as the
fifth column is handled as follows. The application:

1. Requests four columns with a call to IIapi_getColumns().

2. Requests one segment of the long varchar or long byte column with a call
to Ilapi_getColumns().

3. Continues making requests until all segments are retrieved.

4. Requests five columns with a call to Ilapi_getColumns() to retrieve the
rest of the columns in the current row.

ITapi_getColumns() returns columns sequentially in the order that they appear
in the row, as described in IIapi_getCopyMap() and Ilapi_getDescriptor().
When IIAPI_ST_NO_DATA is returned, the application should free the
statement handle with the IIapi_close() function.

ITapi_getColumns() assumes the application has allocated sufficient storage
for each column. The buffer size of each column should be equal to the
ds_length parameter of its corresponding descriptor from Ilapi_getCopyMap()
or Ilapi_getDescriptor().

56 OpenAPI® User Guide

OpenAPI Functions

This function has the following syntax:
IT_VOID IIapi_getColumns (IIAPI_GETCOLPARM *getColParm);

typedef struct _IIAPI_GETCOLPARM

{
ITAPI_GENPARM gc_genParm;

IT_PTR gc_stmtHandle;
II_INT gc_rowCount;
IT_INT gc_columnCount;
ITAPI_DATAVALUE *gc_columnData;

IT_INT gc_rowsReturned
IT BOOL gc_moreSegments;

} IIAPI_GETCOLPARM;

This function has the following parameters:
gc_genParm
Type: input and delayed output

Specifies the generic parameters. For a description, see Generic
Parameters (see page 33).

gc_stmtHandle
Type: input

Specifies the statement handle identifying the query or event handle
identifying the database event.

gc_rowCount
Type: input

Specifies the number of rows to fetch. This parameter must be 1 if the
query contains any long varchar or long byte values.

gc_columnCount
Type: input

Specifies the number of columns to retrieve. This parameter must contain
a non-zero positive integer, and it cannot exceed the total humber of
columns in a row.

gc_columnData
Type: delayed output

Specifies an array of buffers. The number of buffers in this array must
equal gc_rowCount * gc_columnCount. The first gc_columnCount buffers
receive the columns from the first row. The second row follows
immediately after the first. Each buffer must have enough allocated
memory to store the value of a column in the order specified by the
descriptors returned from Ilapi_getDescriptor() or Ilapi_getCopyMap().

OpenAPI Function Reference 57

OpenAPI Functions

gc_rowsReturned

Type: delayed output

Specifies the number of rows actually returned in gc_columnData.
gc_moreSegments

Type: delayed output

Indicates whether there is more data to be retrieved for a column of a long
varchar or long byte data type. This parameter is set to TRUE if the data
type is long varchar or long byte and more data must be retrieved for the
current column; otherwise, the parameter is set to FALSE.

llapi_getCopyMap() Function—Return the Data Format of Copy File and
Database Table Involved in a Copy Statement

The Ilapi_getCopyMap() function returns a pointer to a copy map for data
being copied from a file to a database table or from a database table to a file.
The copy map describes the data in the file and in the database table.

ITapi_getCopyMap() output remains valid until the copy statement is closed
with IIapi_close().

This function has the following syntax:
IT VOID IIapi_getCopyMap (IIAPI_GETCOPYMAPPARM *getCopyMapParm);

typedef struct _IIAPI_GETCOPYMAPPARM
{
ITAPI_GENPARM gm_genParm;
IT_PTR gm_stmtHandle;

ITIAPI_COPYMAP gm_copyMap;
} IIAPI_GETCOPYMAPPARM;

This function has the following parameters:
gm_genParm
Type: input and delayed output

Specifies the generic parameters. For a description, see Generic
Parameters (see page 33).

gm_stmtHandle

Type: input

Specifies the statement handle identifying the copy statement.
gm_copyMap

Type: delayed output

Specifies the copy map returned from the server. The copy map contains
descriptions of the data in the file and in the database table.

58 OpenAPI® User Guide

OpenAPI Functions

llapi_getDescriptor() Function—Communicate Format of Return Data with
llapi_getColumns()

The Ilapi_getDescriptor() function retrieves information from the server about
the format of the data being returned to the application. This information
includes the number of columns in a row and the type, length, precision, and
scale of each column. The actual values are returned with a subsequent call to
ITapi_getColumns().

ITapi_getDescriptor() output remains valid until the query is ended with the
IIapi_close() function.

This function has the following syntax:
IT VOID IIapi_getDescriptor (IIAPI_GETDESCRPARM *getDescrParm);

typedef struct _IIAPI_GETDESCRPARM

{
IIAPI_GENPARM gd_genParm;
IT PTR gd_stmtHandle;
IT_LONG gd_descriptorCount;
IIAPI_DESCRIPTOR *gd_descriptor;

} IIAPI_GETDESCRPARM;

This function has the following parameters:
gd_genParm
Type: input and delayed output

Specifies the generic parameters. For a description, see Generic
Parameters (see page 33).

gd_stmtHandle
Type: input

Specifies the statement handle identifying the query or event handle
identifying the database event.

gd_descriptorCount
Type: delayed output

Specifies the number of columns being returned. This parameter is O if
there is no data that meets the criteria of the query.

gd_descriptor
Type: delayed output

Specifies an array of buffers. The number of buffers is equal to the
gd_descriptorCount value. Each buffer contains the description of a
column, including information about the data type, length, precision, and
scale.

OpenAPI Function Reference 59

OpenAPI Functions

The memory for this parameter is managed by OpenAPI. For more
information, see How Memory is Managed for Data Input and Output (see
page 35).

llapi_getErrorinfo() Function—Return Additional Error or User-defined Information

The Ilapi_getErrorInfo() function returns a set of error parameters or user-
defined information specified by an error handle. User-defined information
consists of messages declared in a database procedure. These messages are
returned during the execution of the database procedure.

Because the error handle can contain more than one set of error parameters,
the application should repeat Ilapi_getErrorInfo() until the status
ITAPI_ST_NO_DATA is returned by the ge_status parameter.

The output of IIapi_getErrorInfo() is valid until another operation is invoked
with the same handle.

This function has the following syntax:
IT VOID IIapi_getErrorInfo (IIAPI_GETEINFOPARM *getEInfoParm);

typedef struct _IIAPI_GETEINFOPARM
{

II_PTR ge_errorHandle;

IT_LONG ge_type;

II_CHAR ge_SQLSTATE[6];

IT_LONG ge_errorCode;

IT_CHAR *ge_message;

II_BOOL ge_serverInfoAvail;
IIAPI_SVR_ERRINFO *ge_serverInfo;

IIAPI_STATUS ge_status;
} ITAPI_GETEINFOPARM;

This function has the following parameters:
ge_errorHandle
Type: input
Indicates the error handle returned in the generic parameters.
ge_type
Type: immediate output
Indicates the type of message. Its value is one of the following:
= API_GE_ERROR
= API_GE_WARNING
s API_GE_MESSAGE

60 OpenAPI® User Guide

OpenAPI Functions

ge_SQLSTATE

Type: immediate output

Indicates the SQLSTATE value of the error.
ge_errorCode

Type: immediate output

Indicates the error code generated by the server.
ge_message

Type: immediate output

Provides the text of the message.

The OpenAPI manages the memory for this parameter. For more
information, see How Memory is Managed for Data Input and Output (see
page 35).

ge_serverInfoAvail
Type: immediate output

Indicates whether additional information will be made available. TRUE if
the server sent the message; FALSE if the message was generated by
OpenAPI. If TRUE, additional information is available in ge_serverInfo.

ge_serverInfo
Type: immediate output

Specifies additional information sent by the server. Only available if
ge_serverInfoAvail is TRUE.

ge_status
Type: immediate output

Indicates the status of the function upon its return. Its value is one of the
following:

s IIAPI_ST_SUCCESS
s IIAPI_ST_NO_DATA
s ITAPI_ST_NOT_INITIALIZED
s IIAPI_ST_INVALID_HANDLE

OpenAPI Function Reference 61

OpenAPI Functions

llapi_getEvent() Function—Wait for Database Events

The IIapi_getEvent() function provides an interface for applications to wait for
database events to occur. The IIapi_getEvent() function checks for database
events that are received, independent of other query results being returned by
the server. Database event information is retrieved using Ilapi_catchEvent(),
which should be called prior to calling IIapi_getEvent().

An application prepares to process database events by registering with the
server (Ilapi_query()) and OpenAPI (Ilapi_catchEvent()) for specific events.
The application can then receive event notification while processing other
queries on the connection.

ITapi_getEvent() can be called to receive database events when the application
does not have any query processing to be performed on the desired
connection. No queries can be issued on the specified connection handle until
ITapi_getEvent() completes.

This function has the following syntax:
IT VOID IIapi_getEvent (IIAPI_GETEVENTPARM *getEventParm);

typedef struct _IIAPI_GETEVENTPARM
ITIAPI_GENPARM gv_genParm;
IT_PTR gv_connHandle;

II_LONG gv_timeout;
} IIAPI_GETEVENTPARM;

This function has the following parameters:
gv_genParm
Type: input and delayed output

Specifies the generic parameters. For a description, see Generic
Parameters (see page 33).

gv_connHandle
Type: input

Specifies the connection handle, identifying the connection to the target
server, or the environment handle.

gv_timeout
Type: input

Specifies the maximum time in milliseconds to wait for the database event
to be received. A value of -1 means to wait indefinitely. A value of 0 polls
for events without waiting.

Note: Support for timeouts is platform-dependent. If timeouts are not
supported, all values are treated the same as -1.

62 OpenAPI® User Guide

OpenAPI Functions

llapi_getQueryinfo() Function—Return Information about a Query

The Ilapi_getQueryInfo() function returns data associated with a query
statement. It is useful for applications that are updating the database to know
if the update was successful. The information includes the following:

Number of rows affected by a query

Read-only status of a cursor

Return status of a database procedure execution
ID created when a procedure is executed

ID created when a repeat query is defined

Table key result of an SQL insert or update query

Object key result of an SQL insert or update query

As a common practice, applications should call IIapi_getQueryInfo() after each
guery is completed to check if there are any additional errors or response data
reported by the server.

The output of IIapi_getQueryInfo() is valid until the query statement is ended
with the Ilapi_close() function.

This function has the following syntax:

IT VOID IIapi_getQueryInfo (IIAPI_GETQINFOPARM *getQInfoParm);

typedef struct _IIAPI_GETQINFOPARM

{

ITIAPI_GENPARM gq_genParm;

IT_PTR gq_stmtHandle;

II_ULONG gq_flags;

IT_ULONG gq_mask;

II_LONG gq_rowCount;

II_BOOL gq_readonly

II_LONG gq_procedureReturn;
IT_PTR gq_procedureHandle;
ITI_PTR gq_repeatQueryHandle;

IT _CHAR gq_tableKey [TBL_KEY_SZ1;
IT_CHAR gq_objectKey [OBJ_KEY_SZ];

} IIAPI_GETQINFOPARM;

This function has the following parameters:

gq_genParm

Type: input and delayed output

Specifies the generic parameters. For a description, see Generic
Parameters (see page 33).

gq_stmtHandle

Type: input

Specifies the statement handle identifying the query.

OpenAPI Function Reference 63

OpenAPI Functions

gq_flags

Type: delayed output

Provides status flags indicating result of the query. This parameter is 0 or
a mask of the following values:

ITAPI_GQF_FAIL
ITAPI_GQF_ALL_UPDATED
ITAPI_GQF_NULLS_REMOVED
ITAPI_GQF_UNKNOWN_REPEAT_QUERY
ITAPI_GQF_END_OF_DATA
ITAPI_GQF_CONTINUE
ITAPI_GQF_INVALID_STATEMENT
ITAPI_GQF_TRANSACTION_INACTIVE
ITAPI_GQF_OBIJECT_KEY
ITAPI_GQF_TABLE_KEY
ITAPI_GQF_NEW_EFFECTIVE_USER
ITAPI_GQF_FLUSH_QUERY_ID
ITAPI_GQF_ILLEGAL_XACT_STMT

gq_mask

Type: delayed output

Specifies the mask indicating the available response data. This parameter
is 0 or a mask of the following values:

ITAPI_GQ_ROW_COUNT
ITAPI_GQ_CURSOR
ITAPI_GQ_PROCEDURE_RET
ITAPI_GQ_PROCEDURE_ID
ITAPI_GQ_REPEAT_QUERY_ID
ITAPI_GQ_TABLE_KEY
ITAPI_GQ_OBIECT_KEY

This parameter is 0 if no response data is available.

gq_rowCount

Type: delayed output

Specifies the number of rows affected by the query. This parameter is
valid only if the IIAPI_GQ_ROW_COUNT mask is set in gq_mask;
otherwise, this parameter should be ignored.

gq_readonly

Type: delayed output

Indicates the type of cursor opened. Set to TRUE if the statement handle
represents a cursor opened for READONLY; otherwise, FALSE. This
information is available after IIapi_getDescriptor() or IIapi_getColumns()
completes successfully.

This parameter is valid only if the IIAPI_GQ_CURSOR mask is set in
gq_mask; otherwise, this parameter should be ignored.

64 OpenAPI® User Guide

OpenAPI Functions

gq_procedureReturn
Type: delayed output

Indicates the return status of an executed database procedure. This
parameter is valid only if the IIAPI_GQ_PROCEDURE_RET mask is set in
gq_mask; otherwise, this parameter should be ignored.

gq_procedureHandle
Type: delayed output

Specifies the procedure handle for a database procedure. This handle can
be used for subsequent executions of the procedure. It is used as a
parameter of a query when the query type is
ITAPI_QT_EXEC_PROCEDURE.

This parameter is valid only if the IIAPI_GQ_PROCEDURE_ID mask is set
in gg_mask; otherwise, this parameter should be ignored.

gq_repeatQueryHande
Type: delayed output

Specifies the repeat query handle for a repeat query. This handle is used
for a future invocation of a repeat query. It is used as a parameter of a
query when the query type is IIAPI_QT_EXEC_REPEAT_QUERY.

This parameter is valid only if the IIAPI_GQ_REPEAT_QUERY_ID mask is
set in gg_mask; otherwise, this parameter should be ignored.

gq_tableKey
Type: delayed output

Specifies the table key value. This parameter is valid only if the
ITAPI_GQ_TABLE_KEY mask is set in gq_mask; otherwise, this parameter
should be ignored.

gq_objectKey
Type: delayed output

Specifies the object key value. This parameter is valid only if the
ITAPI_GQ_OBJECT_KEY mask is set in gg_mask; otherwise, this parameter
should be ignored.

OpenAPI Function Reference 65

OpenAPI Functions

llapi_initialize() Function—lInitialize OpenAPI to a Specified Input Version

The Ilapi_initialize() function prepares OpenAPI for operation. This function
allocates an environment handle and returns it to the application.
ITapi_initialize() must be called before the application performs any memory
allocation and OpenAPI functions. When Ilapi_initialize() completes, the
application can begin issuing other OpenAPI functions. This function can be
called more than once, but each call requires a corresponding call to
ITapi_terminate().

The application specifies the OpenAPI interface version used by the application
when calling this function. For version IIAPI_VERSION_1, a single default
environment is used as the context for server connections (the returned
environment handle is set to NULL). For version IIAPI_VERSION_2 (and
higher), a new environment handle is allocated and returned to the
application. The application can select environment settings by providing the
environment handle as input to IIapi_setEnvParam(). The application can also
make connections utilizing the environment settings by providing the
environment handle as input to IIapi_setConnectParam() or IIapi_connect().
The environment handle must be released by calling Ilapi_releaseEnv().

This function has the following syntax:
II_VOID IIapi_initialize (IIAPI_INITPARM *initParm);

typedef struct _IIAPI_INITPARM
{

II_LONG in_timeout;
IT_LONG in_version;
IIAPI_STATUS in_status;
II_PTR in_envHandle;

} IIAPI_INITPARM;

This function has the following parameters:
in_timeout
Type: input

Specifies the maximum time in milliseconds to wait for OpenAPI
initialization to occur. A value of -1 is used if a timeout is not desired.

Support for timeouts is platform-dependent. If timeouts are not supported,
all values are treated the same as -1.

in_version
Type: input

The OpenAPI interface version being used by the application. Any version
of OpenAPI can operate correctly with applications coded and compiled for
previous versions of OpenAPI. Its value is one of the following:

IIAPI_VERSION_1

Specifies the initial version of OpenAPI.

66 OpenAPI® User Guide

OpenAPI Functions

ITIAPI_VERSION_2

Specifies a version that supports an environment handle, which
identifies storage for information about a specific environment setup.

IIAPI_VERSION_3
Indicates support for the National Character Set data types:
m IIAPI_NCHA_TYPE
m IIAPI_NVCH_TYPE
m IIAPI_LNVCH_TYPE
IIAPI_VERSION_4
Indicates support for eight-byte integers (bigint): IIAPI_INT_TYPE.
IIAPI_VERSION_5
Indicates support for ANSI date/time types:
m IIAPI_DATE_TYPE
m IIAPI_TIME_TYPE
= IIAPI_TMWO_TYPE
m IIAPI_TMTZ_TYPE
m IIAPI_TS_TYPE
m IIAPI_TSWO_TYPE
m IIAPI_TSTZ_TYPE
m IIAPI_INTYM_TYPE
m IIAPI_INTDS_TYPE
in_status
Type: output
The status of the function upon its return. Its value is one of the following:
m IIAPI_ST_SUCCESS
s IIAPI_ST_OUT_OF_MEMORY
m IIAPI_ST_FAILURE
in_envHandle
Type: output

Specifies the environment handle returned to the application for the
OpenAPI if the version being used by the application is IIAPI_VERSION_2.

The value is NULL if the OpenAPI version being used by the application is
ITAPI_VERSION_1.

OpenAPI Function Reference 67

OpenAPI Functions

llapi_modifyConnect Function—Send Connection Parameters to Server

The IIapi_modifyConnect() function sends the connection parameters,
assigned in prior calls to IIapi_setConnectParam(), to the server. Once sent,
parameters are cleared so as to not affect subsequent calls to
ITapi_modifyConnect(). This function can be called only when no transaction is
active on the specified connection.

Note: An Ingres DBMS Server accepts only IIAPI_CP_SHARED_SYS_UPDATE
once a connection is established.

This function has the following syntax:
IT VOID IIapi_modifyConnect (IIAPI_MODCONNPARM *modifyConnParm);

typdef struct _ITAPI_MODCONNPARM
{
IIAPI_GENPARM mc_genParm;

IT_PTR mc_connHandle;
} IIAPI_MODCONNPARM;

This function has the following parameters:
mc_genParm
Type: input and delayed output

Specifies the generic parameters. For a description, see Generic
Parameters (see page 33).

mc_connHandle
Type: input

Specifies the connection handle, identifying the connection to the target
server, or the environment handle.

68 OpenAPI® User Guide

OpenAPI Functions

llapi_prepareCommit() Function—Begin Two-phase Commit of Transaction

The Ilapi_prepareCommit() function prepares to commit a distributed
transaction started with Ilapi_query() or restarted by Ilapi_connect().

ITapi_prepareCommit() secures resources for a transaction in a two-phase
commit situation. When Ilapi_prepareCommit() completes successfully, the
server has allocated and secured all resources to commit the transaction. The
application can then call IIapi_commit() to commit the transaction or
ITapi_rollback() to abort the transaction.

Normally two-phase commits are desirable when multiple transactions are
being committed as a unit. Each transaction is secured for the commit with
ITapi_prepareCommit(). When all transactions have been secured, the
application calls IIapi_commit() to finish the two-phase commit process. If
some of the transactions cannot be secured, resulting in an unsuccessful
completion of IIapi_prepareCommit(), the application can call Ilapi_rollback()
on each transaction to abort it.

In order to create or restart a distributed transaction, the application calls
ITapi_registerXID() to register a unique global transaction ID. This global
transaction ID can be used for multiple transactions. The transaction ID handle
returned by Ilapi_registerXID() can then be provided as input to IIapi_query()
or Ilapi_connect() to create or restart a distributed transaction. The
application used the transaction handle returned by IIapi_query() or
ITapi_connect() as input to Ilapi_prepareCommit() to specify the distributed
transaction for which resources are to be secured.

ITapi_prepareCommit() rejects any transaction handle representing a non-
distributed or autocommit transaction.

This function has the following syntax:
ITI VOID IIapi_prepareCommit (IIAPI_PREPCMTPARM *prepCommitParm);

typedef struct _IIAPI_PREPCMTPARM
{
IIAPI_GENPARM pr_genParm;

IT_PTR pr_tranHandle;
} IIAPI_PREPCMTPARM;

This function has the following parameters:
pr_genParm
Type: input and delayed output

Specifies the generic parameters. For a description, see Generic
Parameters (see page 33).

OpenAPI Function Reference 69

OpenAPI Functions

pr_tranHandle
Type: input

Specifies the transaction handle identifying the transaction for the two-
phase commit. The value for this handle is from the qy_tranHandle
provided by Ilapi_query() or co_tranHandle parameter in Ilapi_connect().

llapi_putColumns() Function—Send Data to Server to Copy Data from File to
Database Table

The IIapi_putColumns() function takes the requested number of columns of
data from the application's buffers and copies it to a database table.

This function is preceded with the IIapi_getCopyMap() function, which
describes the format and number of columns to be copied.

ITapi_putColumns() processes columns sequentially in the order that they
appear in the row, as described in the Ilapi_getCopyMap() functions. The
application requests that a whole row be sent with one call to
ITapi_putColumns(), provided it does not contain any long varchar or long byte
columns. However, IIapi_putColumns() cannot span rows, so the application
cannot request a number greater than the number of columns in a row.

If one of the columns is a long varchar or long byte that requires more than

one segment to be sent, the application sends the columns individually with

single calls to IIapi_putColumns(). For example, a row of ten columns with a
long varchar or long byte spanning multiple segments as the fifth column is

handled as follows. The application:

1. Sends four columns with a call to IIapi_putColumns().

2. Sends one segment of the long varchar or long byte column with a call to
ITIapi_putColumns().

3. Continues sending individual segments until all are sent.

4. Sends five columns with a call to IIapi_putColumns() to send the rest of
the columns of the current row.

70 OpenAPI® User Guide

OpenAPI Functions

This function has the following syntax:
IT_VOID IIapi_putColumns (IIAPI_PUTCOLPARM *putColParm);

typedef struct _IIAPI_PUTCOLPARM

{
ITAPI_GENPARM pc_genParm;

IT_PTR pc_stmtHandle;

II_LONG pc_columnCount;
ITAPI_DATAVALUE *pc_columnData;
IT_BOOL pc_moreSegments;

} ITIAPI_PUTCOLPARM;

This function has the following parameters:
pc_genParm
Type: input and delayed output

Specifies the generic parameters. For a description, see Generic
Parameters (see page 33).

pc_stmtHandle

Type: input

Specifies the statement handle identifying the copy from statement.
pc_columnCount

Type: input

Specifies the number of columns the application is sending to the server.
pc_columnData

Type: input

Specifies an array of buffers containing the data to be sent to the server.
The number of buffers in this array must be equal to the value of
pc_columnCount.

pc_moreSegments
Type: input

Indicates whether there is more data to be sent for a column of a long
varchar or long byte data type. This parameter is set to TRUE if the data
type is long varchar or long byte and more data must be sent for the
current column; otherwise, the parameter is set to FALSE.

OpenAPI Function Reference 71

OpenAPI Functions

llapi_putParms() Function—Send Query Statement Parameter Values to a Server

The Ilapi_putParms() function allows the application to send parameter data
to a server at statement execution time.

This function is preceded with the IIapi_setDescriptor() function, which
describes the format and number of parameters to be sent to the server.

ITapi_putParms() processes parameters sequentially in the order they appear
in the query. The application sends all parameters with a single call to
ITapi_putParms(), provided the parameters do not contain any long varchar or
long byte data types. The total number of parameters provided for a query
must not be less than the number of parameters the query expects.

If one of the parameters is a long varchar or long byte that requires more than
one segment to be sent, the application sends the parameters individually with
single calls to IIapi_putColumns(). For example, a row of ten parameters with

a long varchar or long byte spanning multiple segments as the fifth parameter
is handled as follows. The application:

1. Sends four parameters with a call to IIapi_putParms().

2. Sends one segment of the long varchar or long byte parameter with a call
to Ilapi_putParms().

3. Continues sending individual segments until all are sent.

4. Sends five parameters with a call to IIapi_putParms() to send the rest of
the parameters in the current row.

This function has the following syntax:
IT VOID IIapi_putParms (IIAPI_PUTPARMPARM *putParmParm);

typedef struct _IIAPI_PUTPARMPARM
{

ITIAPI_GENPARM pp_genParm;
IT_PTR pp_stmtHandle;
II_LONG pp_parmCount;
ITAPI_DATAVALUE *pp_parmData;

IT BOOL pp_moreSegments;

} IIAPI_PUTPARMPARM;

This function has the following parameters:
pp_genParm
Type: input and delayed output

Specifies the generic parameters. For a description, see Generic
Parameters (see page 33).

pp_stmtHandle
Type: input
Specifies the statement handle identifying the query.

72 OpenAPI® User Guide

OpenAPI Functions

pp_parmCount

Type: input

Specifies the number of parameters associated with the query.
pp_parmData

Type: input

Specifies an array of buffers containing parameter data to be sent to the
server. The number of buffers in this array must be equal to the value of
pc_parmCount.

pp_moreSegments
Type: input

Indicates whether there is more data to be sent for the current parameter
of a long varchar or long byte data type. This parameter is set to TRUE if
the data type is long varchar or long byte and more data must be sent for
the current parameter; otherwise, it is set to FALSE.

OpenAPI Function Reference 73

OpenAPI Functions

llapi_query() Function—Begin Query Statement and Allocate Statement Handle

The Ilapi_query() function begins a query statement. IIapi_query() allocates a
statement handle. The statement handle must eventually be freed with the
ITapi_close() function.

An application enters parameters for the query statement with subsequent
calls to the Ilapi_setDescriptor() and Ilapi_putParms() functions. It can also
use the qy_queryText parameter of IIapi_query() to enter the syntax of the
query statement. The qy_queryText parameter should contain NULL if query
text is not required.

Note: For a list of SQL statements that can be invoked by Ilapi_query(), see
Accessing a DBMS Using SQL (see page 119).

When entering the syntax of SQL statements in the qy_queryText parameter,
see SQL Syntax (see page 126), and the SQL Reference Guide.

An application specifies the beginning of a transaction with the qy_tranHandle
input parameter. If this parameter is NULL or is a transaction ID handle
created by Ilapi_registerXID(), a new transaction is begun and a transaction
handle is allocated. Otherwise, this parameter must be an existing transaction
handle and the statement is executed as part of the current transaction.

A transaction handle allocated by this function must be released using
ITapi_commit() or Ilapi_rollback(). If a transaction handle is allocated for a
request which eventually fails, the transaction handle should be released using
ITapi_rollback().

Currently, the GCA protocol does not support multiple, concurrent non-cursor
statements in the same transaction, or multiple concurrent transactions on the
same connection.

This function has the following syntax:
IT VOID IIapi_query (IIAPI_QUERYPARM *queryParm);

typedef struct _IIAPI_QUERYPARM
{

ITIAPI_GENPARM qy_genParm;

IT_PTR gy_connHandle;
ITAPI_QUERY_TYPE qy_queryType;
II_BOOL qy_queryText;
IT_CHAR *qy_parameters;
IT_PTR qy_tranHandle;
ITI_PTR qy_stmtHandle;

} IIAPI_QUERYPARM;

74 OpenAPI® User Guide

OpenAPI Functions

This function has the following parameters:
qy_genParm
Type: input and delayed output

Specifies the generic parameters. For a description, see Generic
Parameters (see page 33).

qy_connHandle
Type: input

Specifies the connection handle, identifying the connection to the target
server.

qy_queryType
Type: input
Specifies the type of query statement.

Note: If connecting to a DBMS, see Accessing a DBMS Using SQL (see
page 119) for valid DBMS query type macros.

For a Name Server connection, this parameter must be IIAPI_QT_QUERY.
qy_queryText
Type: input

Specifies the syntax of the query statement, if syntax is required. The
query text should be a NULL-terminated string containing the query text
with zero or more parameter markers.

qy_parameters
Type: input

Indicates whether there are parameters to be sent with the query. TRUE if
the application intends to send parameters with the query using
IIapi_setDescriptor() and Ilapi_putParms(); FALSE if there are no
parameters to be sent with the query. OpenAPI requires some parameters
for certain query types.

Note: For more information, see Queries, Parameters, and Query Data
Correlation (see page 128).

If FALSE, the query is sent to the server for processing; otherwise,
OpenAPI waits for calls to IIapi_setDescriptor() and Ilapi_putParms()
before sending the query to the server.

OpenAPI Function Reference 75

OpenAPI Functions

qy_tranHandle
Type: input and immediate output

Indicates whether a new transaction should be started or whether an
existing transaction should be used. If the parameter is NULL or a
transaction ID handle created by Ilapi_registerXID(), a new transaction
should be started. If the parameter is a transaction handle previously
returned by another query, the existing transaction should be used.

For a Name Server connection, this parameter must be an autocommit
transaction handle returned by IIapi_autoCommit().

qy_stmtHandle
Type: immediate output

Specifies the statement handle identifying the query statement for future
OpenAPI function calls.

76 OpenAPI® User Guide

OpenAPI Functions

llapi_registerXID() Function—Reserve Unique ID for Two-phase Commit
Transaction

The Ilapi_registerXID() function reserves a unique ID to begin a two-phase
commit transaction with Ilapi_query() or to restart a previously-aborted two-
phase commit transaction with IIapi_connect(). An application must use
ITapi_registerXID() if a two-phase commit transaction is being used.

After this function is successfully completed, the output parameter
rg_tranIldHandle can be used as input for IIapi_connect() and Ilapi_query() to
specify a transaction. The transaction ID handle can be used on multiple
transactions; it does not uniquely identify one transaction.

The transaction ID handle returned by this function must be release using
ITapi_releaseXID().

This function has the following syntax:
VOID IIapi_registerXID (IIAPI_REGXIDPARM *regXIDParm) ;

typedef struct _IIAPI_REGXIDPARM
{
IIAPI_TRAN_ID rg_tranlD;
PTR rg_tranldHandle;

IIAPI_STATUS rg_status;
} ITAPI_REGXIDPARM;

This function has the following parameters:
rg_tranID
Type: input

Specifies the parameter identifying a unique transaction ID. This
parameter has the data type of IIAPI_TRAN_ID, which specifies a globally
unique Ingres transaction identification.

rg_tranIldHandle
Type: immediate output

Specifies the transaction ID handle identifying the transaction ID
registered with OpenAPI. This handle is used as input to Ilapi_query() and
IIapi_connect().

rg_status
Type: immediate output

Indicates the status of Ilapi_registerXID() upon completion. Its value can
be one of the following:

s IIAPI_ST_SUCCESS
s IIAPI_ST_FAILURE
s IIAPI_ST_OUT_OF_MEMORY

OpenAPI Function Reference 77

OpenAPI Functions

llapi_releaseEnv() Function—Release Resources Associated with Environment
Handle

The Ilapi_releaseEnv() function frees an environment handle and any
resources associated with the environment handle.

An application calls Ilapi_releaseEnv() to free an environment handle allocated
by Ilapi_initialize(). Any active server connections associated with the
environment handle are aborted and the respective connection handle is freed,
as are all associated transaction, statement, and database event handles.
While this function can be used to clean up quickly after a connection failure,
applications are encouraged to continue calling IIapi_close(), IIapi_commit()
or Ilapi_rollback() and Ilapi_disconnect() to cleanly shut down server
connections. A warning status is returned if a connection is aborted.

The application can continue to make OpenAPI function calls after calling this
function, but does so in the context of the default environment handle shared
by all IIAPI_VERSION_1 applications. The application must still call
ITIapi_terminate() to release global resources used by OpenAPI.

This function has the following syntax:
IT VOID IIapi_releaseEnv (IIAPI_RELENVPARM *relEnvParm);

typedef struct _IIAPI_RELENVPARM
{
IT_PTR re_envHandle:

IIAPI_STATUS re_status;
} IIAPI_RELENVPARM;

This function has the following parameters:
re_envHandle

Type: input

Specifies the environment handle for which resources should be freed.
re_status

Type: output

Specifies the status of the function upon its return. Its value is one of the
following:

s IIAPI_ST_SUCCESS

= IIAPI_ST_FAILURE

s ITAPI_ST_NOT_INITIALIZED
s ITAPI_ST_INVALID_HANDLE

78 OpenAPI® User Guide

OpenAPI Functions

llapi_releaseXID() Function—Release Unique ID for Two-phase Commit
Transaction

The Ilapi_releaseXID() function releases the transaction ID reserved by

ITapi_registerXID(). It also frees the resources associated with the transaction
ID handle.

This function has the following syntax:
II_VOID IIapi_releaseXID (IIAPI_RELXIDPARM *relXIDParm);

typedef struct _IIAPI_RELXIDPARM

{
IT_PTR ri_tranIdHandle;
ITAPI_STATUS rl_status;

} ITIAPI_RELXIDPARM;

This function has the following parameters:
rI_tranIdHandle
Type: input

Specifies the transaction ID handle identifying the unique transaction ID to
be released.

rl_status
Type: immediate output

Specifies the status of Ilapi_releaseXID() upon completion. Its value can
be one of the following:

s IIAPI_ST_SUCCESS

= IIAPI_ST_FAILURE

s IIAPI_ST_NOT_INITIALIZED
s ITAPI_ST_INVALID_HANDLE

OpenAPI Function Reference 79

OpenAPI Functions

llapi_rollback() Function—Roll back a transaction

The IIapi_rollback() function rolls back a transaction started with IIapi_query()
or restarted by IIapi_connect(). It also frees the transaction handle if the
rb_savePointHandle parameter is NULL. If the rb_savePointHandle parameter
is the savepoint handle returned by the Ilapi_savePoint() function, the
transaction is rolled back to the savepoint and the transaction handle remains
valid.

Before rolling back a transaction, the application must call IIapi_close() to
release all statement handles associated with the transaction.

This function has the following syntax:
II_VOID IIapi_rollback (IIAPI_ROLLBACKPARM *rollbackParm);

typedef struct _IIAPI_ROLLBACKPARM

{
IIAPI_GENPARM rb_genParm;
IT_PTR rb_tranHandle;

ITI_PTR rb_savePointHandle;
} IIAPI_ROLLBACKPARM;

This function has the following parameters:
rb_genParm
Type: input and delayed output

Specifies the generic parameters. For a description, see Generic
Parameters (see page 33).

rb_tranHandle
Type: input

Specifies the transaction handle identifying the transaction to be rolled
back. Its value is either from qy_tranHandle of IIapi_query() or
co_tranHandle parameter of IIapi_connect().

rb_savePointHandle
Type: input

Specifies an optional savepoint for the current rollback. This parameter
contains a handle of the savepoint, returned by the Ilapi_savePoint()
function. If there is no savepoint for the current rollback, this parameter is
NULL.

80 OpenAPI® User Guide

OpenAPI Functions

llapi_savePoint() Function—Mark Savepoint in a Transaction for Partial Rollback

The Ilapi_savePoint() function marks a savepoint in a transaction for a partial
rollback with the IIapi_rollback() function.

The sp_savePointHandle parameter that is output from this function is unique
to the transaction and remains valid until the transaction is committed or
completely rolled back.

This function has the following syntax:
IT VOID IIapi_savePoint (IIAPI_SAVEPTPARM *savePtParm);

typedef struct _IIAPI_SAVEPTPARM

ITAPI_GENPARM sp_genParm;

IT_PTR sp_tranHandle;
IT_CHAR *sp_savePoint;
II_PTR sp_savePointHandle;

} IIAPI_SAVEPTPARM;

This function has the following parameters:
sp_genParm
Type: input and delayed output

Specifies the generic parameters. For a description, see Generic
Parameters (see page 33).

sp_tranHandle
Type: input

Specifies the transaction handle identifying the transaction for which the
savepoint is specified. Its value is either from qy_tranHandle of
ITapi_query() or co_tranHandle parameter of Ilapi_connect().

sp_savePoint
Type: input

Specifies the identifier for the savepoint marker. It is a NULL-terminated
string unique within the transaction.

sp_savePointHandle
Type: delayed output

Specifies the savepoint handle identifying the savepoint marker.

OpenAPI Function Reference 81

OpenAPI Functions

llapi_setConnectParam() Function—Assign Connection Parameter and Value to
a Connection

The Ilapi_setConnectParam() function allows the application to assign
connection parameters to a connection. These parameters are sent to the
server when Ilapi_connect() or IIapi_modifyConnect() are called. One
parameter and associated value are assigned for each call to
ITIapi_setConnectParam().

This function creates a new connection handle if called with sc_connHandle set
to NULL or an environment handle returned by Ilapi_initialize(). The returned
connection handle can be used in subsequent calls to assign additional
connection parameters to the connection. The connection handle can then be
used to call Ilapi_connect() to establish the connection to the server with the
desired connection parameters. The connection handle is released using
ITapi_disconnect() or IIapi_abort().

Once a connection has been established with Ilapi_connect(),
ITIapi_setConnectParam() can be called with the connection handle to assign
new connection parameters or to modify the parameters established with
ITapi_connect(). Parameters assigned after calling IIapi_connect() are sent to
the server by calling Ilapi_modifyConnect().

This function has the following syntax:
IT VOID IIapi_setConnectParam (IIAPI_SETCONPRMPARM *setConPrmParm);

typedef struct _IIAPI_SETCONPRMPARM
{

ITAPI_GENPARM sc_genParm;

IT_PTR sc_connHandle;
IT_LONG sc_paramlD;
IT PTR sc_paramValue;

} ITAPI_SETCONPRMPARM;

Note: Only IIAPI_CP_SHARED_SYS_UPDATE is accepted by an Ingres DBMS
Server once a connection is established.
This function has the following parameters:
sc_genParm
Type: input and delayed output

Specifies the generic parameters. For a description, see Generic
Parameters (see page 33).

82 OpenAPI® User Guide

OpenAPI Functions

sc_connHandle
Type: input and immediate output
Specifies the input and output for a connection handle.

The input is NULL for a new connection associated with the default
environment, an environment handle for a new connection associated with
the environment, or an existing connection handle.

The output is a connection handle that can be used in subsequent calls to
IIapi_setConnectParam() and IIapi_connect().

sc_paramID
Type: input

Specifies the parameter being assigned. For valid parameter ID macros,
see the following table.

sc_paramValue
Type: input

Specifies the value of the parameter being assigned. The data type and
description of the value associated with each parameter ID are as follows
(valid parameter ID macros for the sc_paramID parameter).

IIAPI_CP_APP_ID
Data type: II. CHAR

The role ID of the application. If a role password is required, the
parameter value should be specified as “role/password”.

IIAPI_CP_APPLICATION
Data type: II_ LONG

Specifies the value for an internal flag used for debugging a corrupted
database. This flag is for Ingres internal applications; it must not be
used by non-Ingres applications.

IIAPI_CP_CENTURY_BOUNDARY
Data type: II_ LONG
Specifies the date century boundary.
IIAPI_CP_CHAR_WIDTH
Data type: II_ LONG

Specifies the maximum length of a character (IIAPI_BYTE_TYPE,
ITAPI_CHA_TYPE, IIAPI_CHR_TYPE, or IIAPI_VCH_TYPE) data type.

OpenAPI Function Reference 83

OpenAPI Functions

IIAPI_CP_DATE_FORMAT
Data type: II_ LONG
Specifies the date format. Its value can be one of the following:

ITAPI_CPV_DFRMT_US
ITAPI_CPV_DFRMT_MULTI
ITAPI_CPV_DFRMT_FINNISH
ITAPI_CPV_DFRMT_ISO
ITAPI_CPV_DFRMT_GERMAN
ITAPI_CPV_DFRMT_YMD
ITAPI_CPV_DFRMT_MDY
ITAPI_CPV_DFRMT_DMY

IIAPI_CP_DBMS_PASSWORD

Data type: II. CHAR

Specifies the DBMS password for the user.
IIAPI_CP_DECIMAL_CHAR

Data type: II. CHAR

Specifies the character identifier of decimal data.
IIAPI_CP_EFFECTIVE_USER

Data type: II. CHAR

Specifies the effective user name for the new session.
IIAPI_CP_EXCLUSIVE_LOCK

Data type: II. BOOL

Indicates whether the database should be locked for exclusive use of
this application. If it should be locked, this parameter is TRUE;
otherwise, it is FALSE.

ITIAPI_CP_EXCLUSIVE_SYS_UPDATE
Data type: II. BOOL

Indicates whether the system catalog should be updated with an
exclusive lock. If so, this parameter is TRUE; otherwise, it is FALSE.

IIAPI_CP_FLOAT4_PRECISION
Data type: II_ LONG
Specifies the precision of a float4 (IIAPI_FLT_TYPE) data type.

84 OpenAPI® User Guide

OpenAPI Functions

IIAPI_CP_FLOAT4_STYLE
Data type: II. CHAR

Specifies the output column format for the four-byte floating-point
data type. Its value can be one of the following:

m IIAPI_CPV_EXPONENTIAL-exponential format
m IIAPI_CPV_FLOATF-floating-point format

m IIAPI_CPV_FLOATDEC-floating-point format, decimal alignment not

guaranteed

m IIAPI_CPV_FLOATDECALIGN-floating-point format, decimal
alignment guaranteed

Default: IIAPI_CPV_FLOATDEC
IIAPI_CP_FLOAT4_WIDTH

Data type: II_ LONG

Specifies the length of a float4 (IIAPI_FLT_TYPE) data type.
IIAPI_CP_FLOAT8_PRECISION

Data type: II_ LONG

Specifies the precision of a float8 (IIAPI_FLT_TYPE) data type.
IIAPI_CP_FLOAT8_STYLE

Data type: II. CHAR

Specifies the output column format for an eight-byte floating-point
data type. Its value can be one of the following:

m IIAPI_CPV_EXPONENTIAL-exponential format
m IIAPI_CPV_FLOATF-floating-point format

m IIAPI_CPV_FLOATDEC-(default) floating-point format, decimal
alignment not guaranteed

m IIAPI_CPV_FLOATDECALIGN-floating-point format, decimal
alignment guaranteed

Default: IIAPI_CPV_FLOATDEC
IIAPI_CP_FLOAT8_WIDTH

Data type: II_ LONG

Specifies the length of a float8 (IIAPI_FLT_TYPE) data type.
IIAPI_CP_GATEWAY_PARM

Data type: II. CHAR

Specifies Enterprise Access parameters. This parameter can be set
multiple times.

OpenAPI Function Reference 85

OpenAPI Functions

IIAPI_CP_GROUP_ID

Data type: II. CHAR

Specifies the group ID of the user.
IIAPI_CP_INT1_WIDTH

Data type: II_ LONG

Specifies the length of an integerl (IIAPI_INT_TYPE) data type.
IIAPI_CP_INT2_WIDTH

Data type: II_ LONG

Specifies the length of an integer2 (IIAPI_INT_TYPE) data type.
IIAPI_CP_INT4_WIDTH

Data type: II_ LONG

Specifies the length of an integer4 (IIAPI_INT_TYPE) data type.
IIAPI_CP_INT8_WIDTH

Data type: II_ LONG

Specifies the length of an integer8 (IIAPI_INT_TYPE) data type
(ignored if connection level, co_apilLevel, is less than IIAPI_LEVEL_3).

ITIAPI_CP_LOGIN_LOCAL
Data type: II. BOOL

Determines how the connection user ID and password are used when a
VNODE is included in the target database string. If set to TRUE, the
user ID and password are used to locally access the VNODE and the
VNODE login information is used to establish the DBMS connection. If
set to FALSE, the process user ID is used to access the VNODE and the
connection user ID and password are used in place of the VNODE login
information to establish the DBMS connection. This parameter is
ignored if no VNODE is included in the target database string. The
default is FALSE.

IIAPI_CP_MATH_EXCP
Data type: II._ CHAR

Specifies the type of error message to be returned because of a
numerical overflow/underflow at the server. Its value can be one of
the following:

m IIAPI_CPV_RET_FATAL-return fatal message
m IIAPI_CPV_RET_WARN-return warning message
m IIAPI_CPV_RET_IGNORE-ignore exceptions

86 OpenAPI® User Guide

OpenAPI Functions

IIAPI_CP_MISC_PARM
Data type: II. CHAR

Specifies miscellaneous parameters. This parameter can be set
multiple times.

ITIAPI_CP_MONEY_LORT
Data type: II_ LONG

Indicates a leading or trailing money sign. Valid values are one of the
following:

m IIAPI_CPU_MONEY_LEAD_SIGN

m ITAPI_CPU_MONEY_TRAIL_SIGN
IIAPI_CP_MONEY_PRECISION

Data type: II_ LONG

Specifies the precision of the money (IIAPI_MNY_TYPE) data type.
IIAPI_CP_MONEY_SIGN

Data type: II. CHAR

Specifies the money sign.
IIAPI_CP_NATIVE_LANG

Data type: II. CHAR

Specifies the name of the language used for error reporting. This is
converted to a language code prior to sending to the server. Can be
set to NULL to obtain the default installation language.

ITIAPI_CP_NATIVE_LANG_CODE
Data type: II_ LONG

Specifies the language code of the native language used for error
reporting. ITIAPI_CP_NATIVE_LANG can be used when the language
code is not known.

IIAPI_CP_NUMERIC_TREATMENT
Data type: II. CHAR

Specifies the treatment of the numeric literal. Its value can be one of
the following:

m IIAPI_CPV_DECASFLOAT-treat decimal literal as float
m IIAPI_CPV_DECASDEC-treat decimal literal as decimal

OpenAPI Function Reference 87

OpenAPI Functions

IIAPI_CP_RESULT_TBL
Data type: II_ LONG

Specifies the default result table structure. Its value can be one of the
following:

ITAPI_CPV_ISAM
ITAPI_CPV_CISAM
ITAPI_CPV_HEAP
ITAPI_CPV_CHEAP
ITAPI_CPV_BTREE
ITAPI_CPV_CBTREE
ITAPI_CPV_HASH
ITAPI_CPV_CHASH

IIAPI_CP_SECONDARY_INX
Data type: II_ LONG

Specifies the default secondary index structure. Its value can be one of
the following:

ITAPI_CPV_ISAM
ITAPI_CPV_CISAM
ITAPI_CPV_BTREE
ITAPI_CPV_CBTREE
ITAPI_CPV_HASH
ITAPI_CPV_CHASH

IIAPI_CP_SERVER_TYPE
Data type: II_ LONG

Specifies the type of server function desired. Its value can be one of
the following:

ITAPI_CPV_SVNORMAL
ITAPI_CPV_MONITOR

IIAPI_CP_SHARED_SYS_UPDATE
Data type: II. BOOL

Indicates whether the system catalog should be updated with a shared
lock. If so, this parameter is TRUE; otherwise, it is FALSE.

ITIAPI_CP_STRING_TRUNC
Data type: II._ CHAR

Specifies the parameters for specifying how to handle truncation when
a string value is being inserted into a column that is too short to
contain the value. Its value can be one of the following:

m IIAPI_CPV_RET_FATAL-the string is not inserted, an error is
issued, and the statement is aborted

88 OpenAPI® User Guide

OpenAPI Functions

m ITAPI_CPV_RET_IGNORE-the string is truncated and inserted. No
error or warning is issued

IIAPI_CP_TIMEZONE

Data type: II. CHAR

Specifies the time zone of the application.
IIAPI_CP_TXT_WIDTH

Data type: II_ LONG

Specifies the maximum length of a text (IIAPI_TXT_TYPE) data type.
IIAPI_CP_WAIT_LOCK

Data type: II. BOOL

Indicates whether the application is willing to wait for a lock on the
database to be released. If so, this parameter is TRUE; otherwise, it is
FALSE.

OpenAPI Function Reference 89

OpenAPI Functions

llapi_setDescriptor() Function—Send Information About Data Format

The IIapi_setDescriptor() function sends information about the format of data
that will be provided with the IIapi_putParms() or Ilapi_putColumns()
function. Parameters to Ilapi_setDescriptor() contain the number of columns
being inserted or copied to the database, as well as their data type, length,
precision, and scale.

Sends information to the server about the format of data to be provided in
subsequent calls to Ilapi_putParms() and Ilapi_putColumns().

This function has the following syntax:

IT VOID IIapi_setDescriptor
(ITAPI_SETDESCRPARM *setDescrParm) ;

typedef struct _IIAPI_SETDESCRPARM

IIAPI_GENPARM sd_genParm;

IT_PTR sd_stmtHandle;
IT_LONG sd_descriptorCount;
IIAPI_DESCRIPTOR *sd_descriptor;

} ITAPI_SETDESCRPARM;

This function has the following parameters:
sd_genParm
Type: input and delayed output

Specifies the generic parameters. For a description, see Generic
Parameters (see page 33).

sd_stmtHandle

Type: input

Specifies the statement handle identifying the query.
sd_descriptorCount

Type: input

Specifies the number of columns being described by sd_descriptor.
sd_descriptor

Type: input

Specifies an array of buffers containing the descriptions of the columns.
The number of buffers in this array must be equal to the
sd_descriptorCount value. Each buffer includes the data type, length,
precision, and scale.

90 OpenAPI® User Guide

OpenAPI Functions

llapi_setEnvParam() Function—Assign an Environment Parameter and Value in
Environment Handle

The Ilapi_setEnvParam() function allows the application to override the default
environment logical settings established by the Ilapi_initialize() for a specific
environment handle.

Settings for environment parameters, which correspond to connection
parameters, are used as the default connection parameter values unless
specifically overridden by IIapi_setConnectParam().

Environment parameters also affect the conversions performed by
ITapi_formatData() and control interactions between OpenAPI and the
application.

This function has the following syntax:
IT VOID IIapi_setEnvParam (IIAPI_SETENVPRMPARM *setEnvPrmParm) ;

typedef struct _IIAPI_SETENVPRMPARAM
{

IT_PTR se_envHandle;
II_LONG se_paramID
IT_PTR se_paramValue

IIAPI_STATUS se_status
} IIAPI_SETENVPRMPARM:;

This function has the following parameters:
se_envHandle

Type: input

Specifies the environment handle for the parameter being assigned.
se_paramID

Type: input

Specifies the parameter being assigned. For valid parameter ID macros,
see the following list.

se_paramValue
Type: input

Specifies the value of the parameter being assigned. For the data type and
description of the value associated with each parameter ID, see the
following list.

OpenAPI Function Reference 91

OpenAPI Functions

se_status
Type: output

Specifies the status of the function upon its return. Its value is one of the
following:

ITAPI_ST_SUCCESS
ITAPI_ST_FAILURE
ITAPI_ST_NOT_INITIALIZED
ITAPI_ST_INVALID_HANDLE

The following table lists valid parameter ID macros for the se_paramID
parameter:
IIAPI_EP_CHAR_WIDTH

Data type: II_ LONG

Specifies the maximum length of a character data type (IIAPI_BYTE_TYPE,
ITAPI_CHA_TYPE, IIAPI_CHR_TYPE, IIAPI_VCH_TYPE).

IIAPI_EP_TXT_WIDTH

Data type: II_ LONG

Specifies the maximum length of a text data type (IIAPI_TXT_TYPE).
IIAPI_EP_INT1_WIDTH

Data type: II_ LONG

Specifies the length of an integerl data type (IIAPI_INT_TYPE).
IIAPI_EP_INT2_WIDTH

Data type: II_ LONG

Specifies the length of an integer2 data type (IIAPI_INT_TYPE).
IIAPI_EP_INT4_WIDTH

Data type: II_ LONG

Specifies the length of an integer4 data type (IIAPI_INT_TYPE).
IIAPI_EP_FLOAT4_WIDTH

Data type: II_ LONG

Specifies the length of a float4 data type (IIAPI_FLT_TYPE).
IIAPI_EP_INT8_WIDTH

Data type: II_ LONG

Specifies the length of an integer8 (IIAPI_INT_TYPE) data type (ignored if
connection level, co_apilLevel, is less than IIAPI_LEVEL_3).

92 OpenAPI® User Guide

OpenAPI Functions

IIAPI_EP_FLOAT8_WIDTH

Data type: II_ LONG

Specifies the length of a float8 data type (IIAPI_FLT_TYPE).
IIAPI_EP_FLOAT4_PRECISION

Data type: II_ LONG

Specifies the precision of a float4 data type (IIAPI_FLT_TYPE).
IIAPI_EP_FLOATS8_PRECISION

Data type: II_ LONG

Specifies the precision of a float8 data type (IIAPI_FLT_TYPE).
IIAPI_EP_MONEY_PRECISION

Data type: II_ LONG

Specifies the precision of a money data type (IIAPI_MNY_TYPE).
IIAPI_EP_FLOAT4_STYLE

Data type: II. CHAR

Specifies the format style of a float4 data type (IIAPI_FLT_TYPE).
IIAPI_EP_FLOATS8_STYLE

Data type: II. CHAR

Specifies the format style of a float8 data type (IIAPI_FLT_TYPE).
IIAPI_EP_NUMERIC_TREATMENT

Data type: II. CHAR

Specifies the treatment of the numeric literal. Its value is one of the
following:

m IIAPI_EPV_DECASFLOAT
m IIAPI_EPV_DECASDEC
IIAPI_EP_MONEY_SIGN
Data type: II. CHAR
Specifies the money sign of an IIAPI_MNY_TYPE data type.
s IIAPI_EP_MONEY_LORT
Data type: II_ LONG

Specifies the leading or trailing money sign. Its value is one of the
following:

s IIAPI_CPU_MONEY_LEAD_SIGN
= IIAPI_CPU_MONEY_TRAIL_SIGN

OpenAPI Function Reference 93

OpenAPI Functions

IIAPI_EP_DECIMAL_CHAR

Data type: II. CHAR

Specifies the decimal character.
IIAPI_EP_MATH_EXCP

Data type: II. CHAR

Specifies the treatment of math exceptions. Its value is one of the
following:

ITAPI_EPV_RET_FATAL
ITAPI_EPV_RET_WARN
ITAPI_EPV_RET_IGNORE

IIAPI_EP_STRING_TRUNC

Data type: II. CHAR

Specifies the truncation of strings.
IIAPI_EP_DATE_FORMAT

Data type: II_ LONG

Specifies the date format. Its value is one of the following:

ITAPI_EPV_DFRMT_US
ITAPI_EPV_DFRMT_MULT
ITAPI_EPV_DFRMT_FINNISH
ITAPI_EPV_DFRMT_ISO
ITAPI_EPV_DFRMT_GERMAN
ITAPI_EPV_DFRMT_YMD
ITAPI_EPV_DFRMT_MDY
ITAPI_EPV_DFRMT_DMY

IIAPI_EP_TIMEZONE

Data type: II. CHAR

Specifies the name of the time zone.
IIAPI_EP_NATIVE_LANG

Data type: II. CHAR

Specifies the name of the language used for error reporting. This is
converted to a language code prior to sending it to the server.

ITIAPI_EP_NATIVE_LANG_CODE
Data type: II_ LONG

Specifies the language code of the native language used for error
reporting. ITIAPI_EP_NATIVE_LANG can be used when the language code is
not known.

94 OpenAPI® User Guide

OpenAPI Functions

IIAPI_EP_CENTURY_BOUNDARY
Data type: II_ LONG
Specifies the date century boundary.
IIAPI_EP_SEGMENT_LEN
Data type: II_ LONG

Specifies the value used as the ds_length value when describing a BLOB
column using Ilapi_getDescriptor(), and will therefore be used as the
segment length when retrieving a BLOB using Ilapi_getColumns().

ITIAPI_EP_TRACE_FUNC
Data type: II_ PTR

Specifies the callback function pointer to the application for trace
messages. For more information on setting this value, see Environment
Parameter IIAPI_EP_EVENT_FUNC (see page 99).

ITIAPI_EP_EVENT_FUNC
Data type: II_ PTR

Specifies the callback function pointer to the application for database event
notification. For more information on setting this value, see Environment
Parameter IIAPI_EP_EVENT_FUNC (see page 99).

IIAPI_EP_CAN_PROMPT
Data type: II_ PTR

Specifies the callback function pointer to the application for database
password prompting. For more information on setting this value, see
Environment Parameter IIAPI_EP_CAN_PROMPT (see page 96).

More information:
Environment Parameter IIAPI_EP_CAN_PROMPT (see page 96)

Environment Parameter IIAPI_EP_TRACE_FUNC (see page 98)
Environment Parameter IIAPI_EP_EVENT_FUNC (see page 99)

OpenAPI Function Reference 95

OpenAPI Functions

Environment Parameter IIAPI_EP_CAN_PROMPT

An application can set IIAPI_EP_CAN_PROMPT in the Ilapi_setEnvParam()
function by providing the address of an application function to call back.
OpenAPI invokes this application function to receive a reply from the
application for the prompt message from the server using the following C
structure:

typedef struct _IIAPI_PROMPTPARM

{
II_PTR pd_envHandle;
IT_PTR pd_connHandle;
II_LONG pd_flags;
IT_LONG pd_timeout;
IT_UINT2pd_msg len;
IT CHAR *pd_message;
IT_UINT2pd_max_reply;
IT LONG pd_rep_flags;
IT_UINT2pd_rep_len;
IT_CHAR *pd_reply;

} IIAPI_PROMPTPARM;

The syntax of the application function is as follows:

II VOID promptFunc(IIAPI_PROMPTPARM *parm);

The application must invoke Ilapi_setEnvParam() by setting se_paramlID to
IIAPI_EP_CAN_PROMPT and se_paramValue to the address of an application-
supplied function that matches the calling sequence of the promptFunc()
template function shown.
The IIAPI_PROMPTPARM parameters are described in the following table:
pd_envHandle

Type: input

Specifies the environment handle associated with the connection. It is
NULL if the connection belongs to the default environment associated with
IIAPI_VERSION_1 applications.

pd_connHandle

Type: input

Specifies the connection handle identifying the connection.
pd_flags

Type: input

Specifies the prompt flags. Its value is one of the following:

s IIAPI_PR_NOECHO

s IIAPI_PR_TIMEOUT

96 OpenAPI® User Guide

OpenAPI Functions

ITAPI_PR_NOECHO will be set if user input should not be echoed, generally
indicating a request for a password. IIAPI_PR_TIMEOUT will be set if the
pd_timeout parameter has a valid value.

pd_timeout
Type: input

Specifies the maximum time, in seconds, to wait for user input. Ignore this
parameter if IIAPI_PR_TIMEOUT is not set in pd_flags.

Support for timeouts is platform-dependent.
pd_msg_len

Type: input

Specifies the length of the prompt message in pd_message.
pd_message

Type: input

Specifies the message to be displayed when prompting for user input.
pd_max_reply

Type: input

Specifies the maximum length of user input to be returned in pd_reply.
pd_rep_flags

Type: output

Specifies the response flags. The valid value is IIAPI_REPLY_TIMEOUT. Set
this value if timeout occurred waiting for user response. (See
ITAPI_PR_TIMEOUT in the pd_flags description.)

pd_rep_len

Type: output

Specifies the length of the user response in pd_reply.
pd_reply

Type: output

Specifies the user response.

OpenAPI Function Reference 97

OpenAPI Functions

Environment Parameter IIAPI_EP_TRACE_FUNC

An application can set IIAPI_EP_TRACE_FUNC in the Ilapi_setEnvParam()
function by providing an address of an application function to call back.
OpenAPI invokes this application function to send trace information from the
server to the application using the following C structure:

typedef struct _IIAPI_TRACEPARM
{

IT_PTR tr_envHandle;
IT _PTR tr_connHandle;
II_INT4 tr_length;
IT_CHAR *tr_message;

} ITAPI_TRACEPARM;

The syntax of the application function is as follows:

II VOID traceFunc(IIAPI_PROMPTPARM *parm) ;

The application must invoke Ilapi_setEnvParam() by providing se_paramlID to
be ITAPI_EP_TRACE_FUNC and se_paramValue to the address of an
application-supplied function that matches the calling sequence of the
traceFunc() function template shown in this section.
The IIAPI_TRACEPARM parameters are described in the following table:
tr_envHandle

Type: input

Specifies the environment handle associated with the connection. It is
NULL if the connection belongs to the default environment associated with
IIAPI_VERSION_1 applications.

tr_connHandle

Type: input

Specifies the connection handle identifying the connection.
tr_length

Type: input

Specifies the length of the output trace message in tr_message.
tr_message

Type: input

Specifies the output trace message.

98 OpenAPI® User Guide

OpenAPI Functions

Environment Parameter IIAPI_EP_EVENT_FUNC

An application can set IIAPI_EP_EVENT_FUNC in the Ilapi_setEnvParam()
function by providing an address of an application function to callback.
OpenAPI invokes this application function to send information on database
events which failed to match an existing OpenAPI event handle (and would
otherwise be ignored) to the application using the following C structure:

typedef struct _IIAPI_EVENTPARM
{

IT_PTR ev_envHandle;
IT _PTR ev_connHandle;
IT_CHAR *ev_eventName;
IT_CHAR *ev_eventOwner;
IT_CHAR *ev_eventDB;

ITAPI_DATAVALUE ev_eventTime;
} ITAPI_EVENTPARM;

The syntax of the application function is as follows:

ITI VOID eventFunc(IIAPI_EVENTPARM *parm);

The application must invoke Ilapi_setEnvParam() by providing sc_paramID to
be ITAPI_EP_EVENT_FUNC and sc_paramValue to the address of an
application-supplied function that matches the calling sequence of the
eventFunc() function template shown in this section.
The IIAPI_EVENTPARM parameters are described in the following table:
ev_envHandle

Type: input

Specifies the environment handle associated with the connection. It is
NULL if the connection is associated with the default environment assigned
to IIAPI_VERSION_1 applications.

ev_connHandle

Type: input

Specifies the connection handle identifying the connection.
ev_eventName

Type: input

Specifies the name of the database event.
ev_eventOwner

Type: input

Specifies the owner of the database event.

OpenAPI Function Reference 99

OpenAPI Functions

ev_eventDB

Type: input

Specifies the name of the database that raised the event.
ev_eventTime

Type: input

Specifies the time the event occured, stored as an IIAPI_DTE_TYPE data
value.

llapi_terminate() Function—Terminate OpenAPI

The Ilapi_terminate() function cleans up all OpenAPI resources. This function
should be called when OpenAPI functions are no longer used in the application.
If multiple calls to IIapi_initialize() have been made, the OpenAPI is shut down
only when the last corresponding call to this function is made; a warning
status is returned otherwise.

This function has the following syntax:
IT VOID IIapi_terminate (IIAPI_TERMPARM *termParm);

typedef struct _IIAPI_TERMPARM
{

IIAPI_STATUS tm_status;
} IIAPI_TERMPARM;

This statement has the following parameter:
tm_status
Type: output
The status of the function upon its return. Its value is one of the following:
s IIAPI_ST_SUCCESS
s IIAPI_ST_NOT_INITIALIZED
s IIAPI_ST_WARNING

100 OpenAPI® User Guide

OpenAPI Functions

llapi_wait() Function—Block Application Control Until Outstanding Operation
Completes or User-defined Timeout Expires

The IIapi_wait() function enables an application to give control to OpenAPI
until an outstanding task completes. Because OpenAPI is asynchronous and
many operating systems do not provide an interrupt mechanism for receiving
incoming messages, Ilapi_wait() provides a way to yield the flow of control to
OpenAPI. By occasionally calling Ilapi_wait(), an application ensures that it will
receive incoming messages from the server.

ITIapi_wait() can be used in two programming styles: synchronous and
asynchronous. To support the synchronous style of programming, the
application can invoke an OpenAPI function and call Ilapi_wait() until the
application notes the completion of the function (by checking gp_completed)
before calling the next function.

In an asynchronous application, the application code itself is event-driven (the
events being OpenAPI function completions). Once the first function is
invoked, the application calls Ilapi_wait() in a continuous top-level loop to
drive all subsequent functions asynchronously.

This function has the following syntax:
II_VOID IIapi_wait (IIAPI_WAITPARM *waitParm);

typedef struct _IIAPI_WAITPARM

{
IT_LONG wt_timeout;
II_API_STATUS wt_status;
} IIAPI_WAITPARM;

This function has the following parameters:
wt_timeout
Type: input

(Optional.) Indicates the maximum time in milliseconds to wait for the
outstanding operations to complete. If timeout is not desired, this
parameter is -1.

Support for timeouts is platform-dependent. If timeouts are not supported,
all values are treated the same as -1.

wt_status
Type: output

Specifies the status of the function upon its return. Its value is one of the
following:

s IIAPI_SUCCESS
= ITAPI_FAILURE

OpenAPI Function Reference 101

Chapter 3: OpenAPI Data Types

This chapter describes the data structures and data types that are used in
OpenAPI parameter structures.

OpenAPl Generic Data Types

The OpenAPI data types are used to define other OpenAPI data types and data
structures. The definition of these data types is platform-dependent.

Note: For the platform-specific definitions of these data types, see the
OpenAPI header files iiapi.h and iiapidep.h.
The following are the OpenAPI generic data types:
II_BOOL

Describes a boolean data type (TRUE or FALSE).
II_CHAR

Describes a character data type.
II_FLOAT4

Describes a float4 (4-byte) data type.
II_FLOATS

Describes a float8 (8-byte) data type.
II_INT

Describes an integer data type.
II_INT1

Describes an integerl (1-byte) data type.
II_INT2

Describes an integer2 (2-byte) data type.
II_INT4

Describes an integer4 (4-byte) data type.
II_LONG

Describes a long integer data type.
II_PTR

Describes a generic pointer data type.

OpenAPI Data Types 103

OpenAPI Data Types

II_UCHAR

Describes an unsigned character data type.
II_UINT1

Describes an unsigned integerl (1-byte) data type.
II_UINT2

Describes an unsigned integer2 (2-byte) data type.
II_UINT4

Describes an unsigned integer4 (4-byte) data type.
II_ULONG

Describes an unsigned long integer data type.
II_VOID

Describes data of an unknown data type.

OpenAPI Data Types

The following are OpenAPI data types:
= IIAPI_DT_ID data type

= IIAPI_QUERYTYPE data type

= IIAPI_STATUS data type

104 OpenAPI® User Guide

OpenAPI Data Types

IIAPI_DT_ID Data Type—Describe Data Type of Database Columns and Query

Parameters

This data type has the following syntax:

typedef II_INT2 IIAPI DT ID;

The value of the IIAPI_DT_ID data type can be any one of the following:

ITAPI_BYTE_TYPE
ITAPI_CHA_TYPE
ITAPI_CHR_TYPE
ITAPI_DEC_TYPE
ITAPI_DTE_TYPE
ITAPI_FLT_TYPE
ITAPI_HNDL_TYPE
ITAPI_INT_TYPE
ITAPI_LOGKEY_TYPE
ITAPI_LBYTE_TYPE
ITAPI_LTXT_TYPE
ITAPI_LVCH_TYPE
ITAPI_MNY_TYPE
ITAPI_TABKEY_TYPE
ITAPI_TXT_TYPE
ITAPI_VBYTE_TYPE
ITAPI_VCH_TYPE
ITAPI_NCHA_TYPE
ITAPI_NVCH_TYPE
ITAPI_LNVCH_TYPE
ITAPI_DATE_TYPE
ITAPI_TIME_TYPE
ITAPI_TMWO_TYPE
ITAPI_TMTZ_TYPE
ITAPI_TS_TYPE
ITAPI_TSWO_TYPE
ITAPI_TSTZ_TYPE

OpenAPI Data Types 105

OpenAPI Data Types

= JIAPI_INTYM_TYPE
= JIAPI_INTDS_TYPE

More Information

Ingres Data Types (see page 167).

IIAPI_QUERYTYPE Data Type—Describe Type of Query Being Invoked

This data type has the following syntax:

typedef II_ULONG IIAPI_QUERYTYPE;

The value of the IIAPI_QUERYTYPE data type can be any one of the following:
IIAPI_QT_QUERY

ITAPI_QT_SELECT_SINGLETON

= JTIAPI_QT_EXEC

= JIAPI_QT_OPEN

= JTAPI_QT_CURSOR_DELETE

= JIAPI_QT_CURSOR_UPDATE

= JTAPI_QT_DEF_REPEAT_QUERY

= JTAPI_QT_EXEC_REPEAT_QUERY

= JIAPI_QT_EXEC_PROCEDURE

106 OpenAPI® User Guide

OpenAPI Data Structures

IIAPI_STATUS Data Type—Describe the Return Status of an OpenAPI Function

This data type has the following syntax:

typedef II_ULONG IIAPI_STATUS;

The value of the IIAPI_STATUS data type can be any one of the following:

ITAPI_ST_SUCCESS
ITAPI_ST_MESSAGE
ITAPI_ST_WARNING
ITAPI_ST_ERROR
ITAPI_ST_NO_DATA
ITAPI_ST_FAILURE
ITAPI_ST_NOT_INITIALIZED
ITAPI_ST_INVALID_HANDLE
ITAPI_ST_OUT_OF_MEMORY

OpenAPI Data Structures

The OpenAPI data structures are described in the following sections.

OpenAPI Data Types 107

OpenAPI Data Structures

IIAPI_COPYMAP Data Type—Provide Information on How to Execute the SQL

Copy Statement

The IIAPI_COPYMAP data type provides information needed to execute the
copy statement, including the copy file name, log file name, humber of
columns in a row, and a description of the data.

This data type has the following syntax:

typedef struct _IIAPI_COPYMAP
{

IT_BOOL cp_copyFrom;
IT_ULONG cp_flags;
IT_LONG cp_errorCount;
IT_CHAR II_FAR *cp_fileName;
II_CHAR II_FAR *cp_logName;
IT_INT2 cp_dbmsCount;
IIAPI_DESCRIPTOR II_FAR *cp_dbmsDescr;
IT_INT2 cp_fileCount;

IIAPI_FDATADESCR II_FAR *cp_fileDescr;
} ITAPI_COPYMAP;

This data type has the following parameters:
cp_copyFrom

Indicates what kind of copy operation is being used. TRUE if the query is
COPY FROM; FALSE if the query is COPY INTO.

cp_dbmsCount
Specifies the number of columns in a row in the database table.
cp_dbmsDescr

Specifies an array of data describing the database table column. The
number of entries in this array is cp_dbmsCount.

The memory for this parameter is managed by the OpenAPI.

Note: For more information, see How Memory is Managed for Data Input
and Output (see page 35).

cp_errorCount

Specifies the maximum number of errors allowed to occur before the copy
statement is aborted.

cp_fileCount
Specifies the number of data items in the copy file.
cp_fileDesc

Specifies an array of data describing the copy file data items. The number
of entries in this array is cp_fileCount.

The memory for this parameter is managed by the OpenAPI.

108 OpenAPI® User Guide

OpenAPI Data Structures

Note: For more information, see How Memory is Managed for Data Input
and Output (see page 35).

cp_fileName

Specifies a NULL-terminating string containing the name of the copy file.
This parameter cannot be NULL.

The memory for this parameter is managed by the OpenAPI.

Note: For more information, see How Memory is Managed for Data Input
and Output (see page 35).

cp_flags

Specifies flag bits for the copy statement. Currently, there are no flag bits
defined. (This parameter is reserved for future use.)

cp_logName

Specifies a NULL-terminating string containing the name of the log file that
logs all errors occurring during the copy. This parameter is NULL if logging
of copy errors is not desired.

Note: For more information, see How Memory is Managed for Data Input
and Output (see page 35).

The memory for this parameter is managed by the OpenAPI.

OpenAPI Data Types 109

OpenAPI Data Structures

IIAPI_DATAVALUE Data Type—Provide Value for OpenAPI Data

The IIAPI_DATAVALUE data type contains the value for OpenAPI data. If the
value is unavailable, this data type contains a NULL value and the dv_null
parameter is TRUE.

This data type has the following syntax:

typedef struct _IIAPI_DATAVALUE

IT_BOOL dv_null;
II_UINT2 dv_length;
IT_PTR dv_value;

} IIAPI_DATAVALUE;

This data type has the following parameters:
dv_null

Indicates whether the data is NULL. If it is NULL, this parameter is TRUE;
otherwise, it is FALSE.

dv_length
Specifies the length of the data.
dv_value

Specifies the value of the data. When used to provide input to an OpenAPI
function, this parameter must contain dv_length bytes of data. When used
to receive output from an OpenAPI function, this parameter must be large
enough to hold the datatype described by the corresponding descriptor
(ds_length from IIAPI_DESCRIPTOR).

110 OpenAPI® User Guide

OpenAPI Data Structures

IIAPI_DESCRIPTOR Data Type—Provide Description for OpenAPI Data

The IIAPI_DESCRIPTOR data type describes OpenAPI data, including its type,
length, precision, scale, and usage. This data is normally stored in an array of
II_DATAVALUE data type values.

This data type has the following syntax:

typedef struct _IIAPI DESCRIPTOR

IIAPI_DT_ID ds_dataType;
II_BOOL ds_nullable;
IT_UINT2 ds_length;
II_INT2 ds_precision;
IT_INT2 de_scale;
II_INT2 ds_columnType;
IT _CHAR *ds_columnName;

} IIAP I_DE§CRI PTOR;

This data type has the following parameters:
ds_dataType

Specifies the data type of the value being described.
ds_nullable

Indicates whether the data is nullable. If so, this parameter is TRUE;
otherwise, it is FALSE.

ds_length
Specifies the length of the value being described.
ds_precision

Specifies the precision of the value being described. It is valid only when
the ds_dataType is IIAPI_DEC_TYPE or IIAPI_FLT_TYPE.

ds_scale

Specifies the scale of the value being described. It is valid only when the
ds_dataType parameter is IIAPI_DEC_TYPE.

ds_columnType

Specifies the usage of the value being described. Its value can be one of
the following:

s IIAPI_COL_TUPLE

= IIAPI_COL_PROCBYREFPARM
= IIAPI_COL_PROCPARM

s IIAPI_COL_SVCPARM

s IIAPI_COL_QPARM

s IIAPI_COL_PROCINPARM

OpenAPI Data Types 111

OpenAPI Data Structures

Note: IIAPI_COL_PROCINPARM is a synonym for
IIAPI_COL_PROCPARM.

s IIAPI_COL_PROCOUTPARM
s IIAPI_COL_PROCINOUTPARM

Note: IIAPI_COL_PROCINOUTPARM is a synonym for
IIAPI_COL_PROCBYREFPARM.

For a description of how Ilapi_query() uses column types to describe its
parameters, see Query Data Correlation (see page 130). Except for the
information there, copy and tuple data always have the column type of
ITAPI_DS_TUPLE.

ds_columnName

Specifies the symbolic name of the OpenAPI data. It is used only when the
data is copy file data, or a procedure parameter.

IIAPI_FDATADESCR Data Type—Describe Column Data in a Copy File

This data type describes the data in a copy file. It also describes how the file
should be formatted.

This data type has the following syntax:

typedef struct _IIAPI_FDATADESCR

IT _CHAR *fd_name;
II_INT2 fd_type;
II_INT2 fd_length;
II_INT2 fd_prec;
IT_LONG fd_column;
II_LONG fd_funcID;
IT_LONG fd_cvlLen;
II_LONG fd_cvPrec;
II_BOOL fd_delimiter;
II_INT2 fd_delimLength;
II_CHAR *fd_delimValue;
II_BOOL fd_nullable;
II_BOOL fd_nulllnfo;

IIAPI_DESCRIPTOR fd_nullDescr;
IIAPI_DATAVALUE fd nullValue;
} IIAPI_FDATADESCR;

This data type has the following parameters:
fd_name

Specifies the name of the column in the file.
fd_type

Specifies the datatype of the column as stored in the file.

112 OpenAPI® User Guide

OpenAPI Data Structures

fd_length
Specifies the length of the column as stored in the file.
fd_prec

Specifies the encoded precision and scale of the column as stored in the
file.

fd_column

Specifies the index in cp_dbmsDescr of the corresponding column in the
table (see IIAPI_COPYMAP).

fd_funclID

Specifies an Ingres Abstract Data Facility function ID used for conversion
between the table column datatype and file datatype.

fd_cvlLen

Specifies the length used during conversion.
fd_cvPrec

Specifies the encoded precision and scale used during conversion.
fd_delimiter

Indicates whether a separator is used between columns. This parameter is
TRUE if there is a separator between this and the next column; otherwise,
it is FALSE.

fd_delimLength

Specifies the length of the separator between this and the next column.
This parameter is valid only if fd_isDelimiter is TRUE.

fd_delimValue

Specifies the value of the separator between this and the next column.
This parameter is valid only if fd_isDelimiter is TRUE.

fd_nullable

Indicates whether a NULL value is allowed in the column. This parameter is
TRUE if NULL is allowed; otherwise, it is FALSE.

fd_nullInfo

Indicates whether a symbol representing a NULL value should be specified
for this column. If so, this parameter is TRUE; otherwise, it is FALSE. This
parameter is valid only if fd_nullable is TRUE.

fd_nullDescr

Specifies the description of the NULL symbol. This parameter is valid if
fd_nullable and fd_nullInfo are TRUE.

OpenAPI Data Types 113

OpenAPI Data Structures

fd_nullValue

Specifies the value of the NULL symbol. This parameter is valid if
fd_nullable and fd_nullInfo are TRUE.

IIAPI_II_DIS_TRAN_ID Data Type—Identify Distributed Ingres Transaction ID

The IIAPI_II_DIS_TRAN_ID data type specifies and names a distributed Ingres
transaction.

This data type has the following syntax:

typedef struct _IIAPI_II DIS TRAN_ID
{
IIAPI_II _TRAN_IDii_tranID;

II_CHAR ii_tranName [IIAPI_TRAN_MAXNAME] ;
} IIAPI_II_DIS_TRAN_ID;

This data type has the following parameters:

ii_tranID

Specifies the unique transaction ID of the distributed transaction. This ID
is an 8-byte ID stored in the ITAPI_II_TRAN_ID data type.

ii_tranName

Specifies the unique transaction name of the Ingres transaction. It is a
NULL-terminated string representing the transaction. The name must not
be more than 63 bytes, leaving one byte for NULL.

IIAPI_I_TRAN_ID Data Type—Identify Local Ingres Transaction ID

The IIAPI_II_TRAN_ID data type specifies a local Ingres transaction ID.

This data type has the following syntax:

typedef struct _IIAPI II TRAN_ID
{
II_UINT4 it_highTran;

II_UINT4 it_lowTran;
} IIAPI_II_TRAN_ID;

This data type has the following parameters:
it_highTran

Specifies the high order bytes of the transaction ID.
it_lowTran

Specifies the low order bytes of the transaction ID.

114 OpenAPI® User Guide

OpenAPI Data Structures

IIAPI_SVR_ERRINFO Data Type—Describe Additional Server Information
Associated with Error Messages

The IIAPI_SVR_ERRINFO data type contains additional server-specific
information that was received along with an error, warning, or user message.

This data type has the following syntax:

typedef struct _IIAPI_SVR _ERRINFO
{

II_LONG svr_id_error;
IT_LONG svr_local_error;
IT_LONG svr_id_server;
IT_LONG vr_server_type;
IT_LONG svr_severity;
IT_INT2 svr_parmCount;
ITI_API_DESCRIPTOR *svr_parmDescr;
IT_API_DATAVALUE *svr_parmValue;

} IIAPI_SVR_ERRINFO;

This data type has the following parameters:
svr_id_error
Specifies the generic error code or encoded SQLSTATE of the message.
svr_local_error
Specifies the server specific error code.
svr_id_server
Specifies the ID of the server.
svr_server_type
Specifies the type of the server.
svr_severity

Specifies the message type. Valid values can be a combination of the
following:

m IIAPI_SVR_DEFAULT

s IIAPI_SVR_MESSAGE

s IIAPI_SVR_WARNING

s IIAPI_SVR_FORMATTED
svr_parmCount

Specifies the number of message parameters.
svr_parmDescr

Specifies the description of the message parameters. The memory for this
parameter is managed by the OpenAPI.

OpenAPI Data Types 115

OpenAPI Data Structures

Note: For more information, see How Memory is Managed for Data Input
and Output (see page 35).

svr_parmValue

Specifies the value of the message parameters. The memory for this
parameter is managed by the OpenAPI.

Note: For more information, see How Memory is Managed for Data Input
and Output (see page 35).

IIAPI_TRAN_ID Data Type—Identify an OpenAPI Transaction

The IIAPI_TRAN_ID data type specifies and nhames an OpenAPI transaction.
OpenAPI supports Ingres transaction management. The union in this data type
will increase as more transaction managers are supported.

This data type has the following syntax:

typedef struct _IIAPI_TRAN_ID
{
IT_ULONG ti_type;
union
IIAPI_II_DIS_TRAN_ID iiXID;
ITIAPI_XA DIS TRAN_ID xaXID;

} ti_value;
} ITIAPI_TRAN_ID;

This data type has the following parameters:

ti_type
Specifies the type of transaction being identified. The valid values are:
s IIAPI_TI_IIXID
s IIAPI_TI_XAXID

ti_value.iiXID

Specifies the unique ID of an Ingres transaction. This parameter is valid
only if ti_type is IIAPI_TI_IIXID.

ti_value.xaXID

Specifies the unique ID of an XA transaction. This parameter is valid only if
ti_type is IIAPI_TI_XAXID.

116 OpenAPI® User Guide

OpenAPI Data Structures

IIAPI_XA_DIS_TRAN_ID Data Type—Identify a Distributed XA Transaction ID

The IIAPI_XA_DIS_TRAN_ID datatype specifies a distributed XA transaction
ID.

This data type has the following syntax:

typedef struct _IIAPI_XA DIS_TRAN_ID

{
IIAPI_XA TRAN_ID xa_tranID;
II_INT4 xa_branchSegnum;

II_INT4 xa_branchFlag;
} TIAPI_XA DIS_TRAN_ID;

This data type has the following parameters:
xa_tranlID
Specifies the unique transaction ID of an XA transaction.
xa_branchSeqnum
Specifies the branch sequence number.
xa_branchFlag
Specifies branch flags. A combination of one of the following flags:
s IIAPI_XA_BRANCH_FLAG_NOOP
s IIAPI_XA_BRANCH_FLAG_FIRST
s IIAPI_XA_BRANCH_FLAG_LAST
s IIAPI_XA_BRANCH_FLAG_2PC
s IIAPI_XA_BRANCH_FLAG_1PC

OpenAPI Data Types 117

OpenAPI Data Structures

IIAPI_XA_TRAN_ID Data Type—lIdentify an XA Transaction ID

The IIAPI_XA_TRAN_ID datatype specifies an XA transaction ID.

This data type has the following syntax:

typedef struct _IIAPI_XA TRAN_ID
{

IT LONG xt_formatlID;
IT_LONG xt_gtridLength;
IT LONG xt_bquallLength;
IT_CHAR xt_data[128];
} TIAPI_XA TRAN_ID;
This data type has the following parameters:
xt_formatID
Specifies the format ID set by TP monitor.
xt_gtridLength
Specifies the length of gtrid value in xt_data (first data item).
xt_bqualLength
Specifies the length of bqual value in xt_data (second data item).
xt_data

Specifies the concatenated gtrid and bqual data values. Length is
xt_gtridLength + xt_bqualLength.

118 OpenAPI® User Guide

Chapter 4: Accessing a DBMS Using SQL

This chapter provides information on how to use SQL statements with OpenAPI
to access a DBMS. It also details the syntax of those SQL statements for which
the syntax differs from that of embedded SQL. Lastly, it instructs how to enter
SQL statement parameters using Ilapi_query(), IIapi_setDescriptor(), and
ITIapi_putParms().

Mapping of SQL to OpenAPI

Most SQL statements are invoked by calling Ilapi_query() with a query type of
IIAPI_QT_QUERY, iiapi_setDescriptor(), and Iapi_putParms() for query
parameters (optional), followed by ITAPI_getQueryInfo() and IIapi_close().
Some SQL statements require additional OpenAPI functions to provide query
parameters and retrieve result data. As a common practice, an application
should call IIapi_getQueryInfo() after each query is completed to check if the
data source reported any errors.

Note: For more information on issuing SQL statement parameters,

see Queries, Parameters, and Query Data Correlation (see page 128). For the
syntax of SQL statements, see SQL Syntax (see page 126) and the SQL
Reference Guide.

The following table shows the general SQL statement, as well as those SQL
statements that are invoked differently:

SQL OpenAPI Function Description Query Type

Statement

<general SQL> IIapi_query() Invokes the SQL statement ITIAPI_QT_QUERY
[IIapi_setDescriptor()] Optional. Sends the information

about the format of data to be
sent with subsequent
IIapi_putParms() calls

[IIapi_putParms()] Optional. Sends data value for
SQL statement parameters

IIapi_getQueryInfo() Retrieves query results

IIapi_close() Frees resources associated with

the SQL statement

close

ITapi_close() Closes a cursor along with the

statement handle

Accessing a DBMS Using SQL 119

Mapping of SQL to OpenAPI

SQL OpenAPI Function Description Query Type
Statement
commit ITIapi_commit() Commits a transaction
connect ITapi_connect() Connects to a data source
copy from ITapi_query() Copies data from a file into a ITAPI_QT_QUERY
table
IIapi_getCopyMap() Retrieves copy data descriptors
ITIapi_putColumns() Submits copy data for the copy

from statement. This function is
called repeatedly until all data is

sent.
IIapi_getQueryInfo() Retrieves query results
IIapi_close() Frees resources associated with

the SQL statement

copy into IIapi_query() Copies data from a table into a IIAPI_QT_QUERY
file
ITapi_getCopyMap() Retrieves copy data descriptors
ITapi_getColumns() Retrieves copy data for the copy

into statement. This function is
called repeatedly until all data is

retrieved.
ITapi_getQueryInfo() Retrieves query results
ITapi_close() Frees resources associated with
the SQL statement
delete (cursor) Ilapi_query() Deletes rows from a table using a IIAPI_QT_CURSOR_
cursor DELETE
IIapi_setDescriptor() Sends information about the

format of data to be sent with
subsequent Ilapi_putParms()

calls
IIapi_putParms() Sends data values for SQL
statement parameters
ITapi_getQueryInfo() Retrieves the row count
IIapi_close() Frees resources associated with

the SQL statement

delete (repeat) Ilapi_query() Defines a repeated delete First repeat:
IIAPI_QT_DEF_
REPEAT_QUERY

120 OpenAPI® User Guide

Mapping of SQL to OpenAPI

SQL OpenAPI Function Description Query Type
Statement
IIapi_setDescriptor() Sends information about the
format of data to be sent with
subsequent Ilapi_putParms()
calls
ITapi_putParms() Sends data values for SQL
statement parameters
ITapi_getQueryInfo() Retrieves a repeat query ID
ITapi_close() Frees resources associated with
the SQL statement
ITIapi_query() Executes a repeated delete Subsequent repeats:
IIAPI_QT_EXEC_
REPEAT_QUERY
ITapi_setDescriptor() Sends information about the
format of data to be sent with
subsequent Ilapi_putParms()
IIapi_putParms() Sends data values for SQL
statement parameters
ITapi_getQueryInfo() Retrieves row count and query
results
IIapi_close() Frees resources associated with
the SQL statement
describe IIapi_query() Describes a previously prepared IIAPI_QT_QUERY
statement
ITapi_getDescriptor() Retrieves descriptors if a
prepared statement is a select
statement
ITapi_getQueryInfo() Retrieves query results
ITapi_close() Frees resources associated with
the SQL statement
disconnect IIapi_disconnect() Disconnects from a data source
execute IIapi_query() Executes a previously-prepared IIAPI_QT_EXEC

statement

[IIapi_setDescriptor()]

Optional. Sends information
about the format of data to be
sent with subsequent
IIapi_putParms() calls

Accessing a DBMS Using SQL 121

Mapping of SQL to OpenAPI

SQL OpenAPI Function
Statement

Description Query Type

[IIapi_putParms()]

Optional. Sends data values for
SQL statement parameters

ITapi_getQueryInfo()

Retrieves query results

ITapi_close()

Frees resources associated with
the SQL statement

execute ITIapi_query() Invokes a database procedure ITAPI_QT_EXEC_
procedure PROCEDURE
ITapi_setDescriptor() Sends information about the
format of data to be sent with
subsequent Ilapi_putParms()
IIapi_putParms() Sends data values for SQL
statement parameters
[IIapi_getDescriptor] Retrieves descriptors of output
parameters or columns of row-
returning procedures
[IIapi_getColumns] Retrieves output parameter
values or column values of row-
returning procedures
ITapi_getQueryInfo() Retrieves query results
ITapi_close() Frees resources associated with
the SQL statement
fetch IIapi_getColumns() Retrieves rows of data

[IIapi_getQueryInfo()]

Retrieves query results

get dbevent IIapi_catchEvent()

Retrieves a database event

[IIapi_getEvent()]

Wait for a database event to be
received

IIapi_close()

Frees resources associated with
the SQL statement

insert (repeat) Ilapi_query()

Defines a repeated insert First repeat:
ITAPI_QT_DEF_

REPEAT_QUERY

IIapi_setDescriptor()

Sends information about the
format of data to be sent with
subsequent Ilapi_putParms()

ITapi_putParms()

Sends data values for SQL
statement parameters

122 OpenAPI® User Guide

Mapping of SQL to OpenAPI

SQL OpenAPI Function Description Query Type
Statement
ITapi_getQueryInfo() Retrieves a repeat query ID
IIapi_close() Frees resources associated with
the SQL statement
ITapi_query() Executes a repeated insert Subsequent repeats:
IIAPI_QT_EXEC_
REPEAT-QUERY
ITapi_setDescriptor() Sends information about the
format of data to be sent with
subsequent Ilapi_putParms()
calls
IIapi_putParms() Sends data values for SQL
statement parameters
IIapi_getQueryInfo() Retrieves row count and query
results
IIapi_close() Frees resources associated with
the SQL statement
open IIapi_query() Opens a cursor IIAPI_QT_OPEN
[IIapi_setDescriptor()] Sends information about the
format of cursor to be sent with
subsequent Ilapi_putParms()
calls
[IIapi_putParms()] Sends data values for the cursor
parameter
ITapi_getDescriptor() Retrieves descriptors for data
[IIapi_getQueryInfo()] Retrieves query results
prepare IIapi_query() Prepares a statement to be IIAPI_QT_QUERY

executed later

[IIapi_getDescriptor]

Retrieves descriptor when “into
sqlda” is used in prepare query
text

IIapi_getQueryInfo()

Retrieves query results

IIapi_close()

Frees resources associated with
the SQL statement

Accessing a DBMS Using SQL 123

Mapping of SQL to OpenAPI

SQL OpenAPI Function Description Query Type
Statement

prepare to IIapi_prepareCommit() Polls the server to determine the

commit commit status of a local

transaction associated with a
specified distributed transaction,
and secures the transaction

rollback ITapi_rollback() Rolls back a transaction to its
beginning or to a savepoint
savepoint ITapi_savepoint() Declares a savepoint marker
within a transaction
select IIapi_query() Retrieves values from one or IIAPI_QT_QUERY
more tables or
IIAPI_QT_
SELECT_
SINGLETON
ITapi_getDescriptor() Retrieves descriptors for data
IIapi_getColumns() Retrieves rows of data. This

function is called repeatedly until
all data is retrieved.

IIapi_getQueryInfo() Retrieves query results

IIapi_close() Frees resources associated with
the SQL statement

select (repeat) Ilapi_query() Defines a repeated select First repeat:
ITAPI_QT_DEF_
REPEAT_QUERY

ITapi_setDescriptor() Sends information about the
format of data to be sent with
subsequent Ilapi_putParms()

calls
ITapi_putParms() Sends data values for SQL
statement parameters
IIapi_getQueryInfo() Retrieves repeat query ID
ITapi_close() Frees resources associated with

the SQL statement

ITapi_query() Executes a repeated select Subsequent repeats:
ITAPI_QT_EXEC_
REPEAT_QUERY

124 OpenAPI® User Guide

Mapping of SQL to OpenAPI

SQL OpenAPI Function Description Query Type
Statement
IIapi_setDescriptor() Sends information about the
format of data to be sent with
subsequent Ilapi_putParms()
calls
IIapi_putParms() Sends data values for SQL
statement parameters
ITapi_getDescriptor() Retrieves descriptors for one row
of data
ITapi_getColumns() Retrieves rows of data. This
function is called repeatedly until
all data is retrieved.
ITapi_getQueryInfo() Retrieves query results
ITapi_close() Frees resources associated with
the SQL statement
set autocommit Ilapi_autocommit() Enables or disables the
on/off autocommit state in the server
update (cursor) IIapi_query() Updates column values in a table API_QT_

using a cursor CURSOR_UPDATE

II_api_setDescriptor()

Sends information about the
format of data to be sent with
subsequent Ilapi_putParms()
calls

IIapi_putParms()

Sends data values for SQL
statement parameters

ITapi_getQueryInfo()

Retrieves row count, logical key,
and query results

ITapi_close()

Frees resources associated with
the SQL statement

update
(repeat)

ITIapi_query()

Defines a repeated update First repeat:
IIAPI_QT_DEF_

REPEAT_QUERY

ITapi_setDescriptor()

Sends information about the
format of data to be sent with
subsequent Ilapi_putParms()
calls

ITapi_putParms()

Sends data values for SQL
statement parameters

IIapi_getQueryInfo()

Retrieves a repeated query ID

Accessing a DBMS Using SQL 125

SQL Syntax

SQL OpenAPI Function
Statement

Description

Query Type

IIapi_close()

Frees resources associated with
the SQL statement

IIapi_query()

Executes the repeated update

Subsequent repeats:
IIAPI_QT_EXEC_
REPEAT_QUERY

IIapi_setDescriptor()

Sends information about the
format of data to be sent with
subsequent Ilapi_putParms()
calls

ITapi_putParms()

Sends data values for SQL
statement parameters

IIapi_getQueryInfo()

Retrieves row count, logical key,
and query results

IIapi_close()

Frees resources associated with
the SQL statement

SQL Syntax

This section describes the statements for which the syntax required by
OpenAPI differs from that of embedded SQL.

Describe Statement

This statement has the following syntax in OpenAPI:

describe statement_name

Do not include an into or using clause.

Execute Statement

This statement has the following syntax in OpenAPI:

execute statement_name

Do not include a using clause.

126 OpenAPI® User Guide

SQL Syntax

Declare Statement, Open Cursor Statement

The declare cursor statement is not supported; the information associated with
declare cursor is provided when the cursor is opened.

This statement has the following syntax in OpenAPI:

statement_name | select_statement [for readonly]

The open cursor syntax consists of the statement name or select statement
text which in embedded SQL would be provided in the declare cursor
statement, along with an optional for readonly clause. Do not include a using
clause with the open cursor query. The application can provide a cursor name
as a parameter to the open cursor query. If the application does not provide a
cursor name, a default name of the form IIAPICURSORn (where n is an
integer) is used.

Cursor Delete Statement

This statement has the following syntax in OpenAPI:

delete from tablename

Do not include a where clause. The application provides the cursor ID as a
parameter to the cursor delete query. The cursor ID is the statement handle
returned when the cursor is opened. OpenAPI builds the where clause using
the information in the cursor ID.

Cursor Update Statement

This statement has the following syntax in OpenAPI:

update tablename set clause

Do not include a where clause. The application provides the cursor ID as a
parameter to the cursor update query. The cursor ID is the statement handle
returned when the cursor is opened. OpenAPI builds the where clause using
the information in the cursor ID.

Accessing a DBMS Using SQL 127

Queries, Parameters, and Query Data Correlation

Execute Procedure

Repeat Queries

OpenAPI does not require any query text to execute a database procedure.
The application provides the database procedure name, procedure owner, and
procedure parameters as parameters to the query and sets the query type to
ITAPI_QT_EXEC_PROCEDURE. A database procedure can be executed as a
regular query with query type IIAPI_QT_QUERY using the non-dynamic
syntax, but procedure return values and output parameters are not available.

OpenAPI does not support the repeated keyword in delete, insert, select, and

update statements. Repeat queries are supported in OpenAPI using the same

underlying mechanism as used by embedded SQL. While embedded SQL hides
the repeat query mechanism from the application, OpenAPI applications must
manage this mechanism themselves.]

Using Repeat Queries with OpenAPI (see page 153) describes how an OpenAPI
application can use repeat queries.

Queries, Parameters, and Query Data Correlation

Use this section as a guide for entering SQL statement parameters with
ITapi_query(). It also provides valid column and data types for parameters
when sending data formats with IIapi_setDescriptor().

128 OpenAPI® User Guide

Queries, Parameters, and Query Data Correlation

Queries and Parameters

Each SQL statement invoked with IIapi_query() may or may not have query
parameters associated with it. In general, query input parameters are needed
when:

® An application specifies a dynamic parameter marker (?) in the query text

®m A procedure ID, procedure name, procedure owner, or procedure
parameters are required for the SQL statement

® A cursor ID or cursor name is required for the SQL statement

®m A repeat query ID, repeat query parameters, or repeat query handle is
required for a repeated statement

The table in this section lists the query types for SQL statements that can have
guery parameters associated with them. The first three columns provide
information for sending an SQL statement to the DBMS Server. The Query
Type column lists valid entries for the qy_queryType parameter of
ITapi_query(). The Query Text? column indicates whether a query text entry is
required in the qy_queryText parameter of Ilapi_query(). Query text is not
required for some SQL statements because OpenAPI can construct the query
text based solely on the query type.

When SQL statements require query parameters, the application invokes
ITapi_query() and then enters the parameters in subsequent calls to
ITapi_setDescriptor() and Ilapi_putParms(). The Query Input Parameters
column indicates what parameters are needed.

Note: For a description of SQL statements and their parameters, see the SQL
Reference Guide.

When an application calls IIapi_getQueryInfo(), it receives information about
the status of a previously-invoked SQL statement. For some statements,
ITapi_getQueryInfo() also returns available response data in the gq_mask
parameter. This information is given for applicable SQL statements in the
Result Parameters column of the table.

Query Type Query Query Input Result Parameters
Text? Parameters

API_QT_EXEC Yes * [dynamic parameter
values]

API_QT_OPEN Yes * [cursor name] IIAPI_GQ_CURSOR
[dynamic parameter
values]

API_QT_CURSOR_ Yes * Cursor ID

DELETE

Accessing a DBMS Using SQL 129

Queries, Parameters, and Query Data Correlation

Query Type Query Query Input Result Parameters
Text? Parameters

API_QT_CURSOR_ Yes * Cursor ID ITAPI_GQ_TABLE_KEY or
UPDATE [parameter values] IIAPI_GQ_OBJECT_KEY
API_QT_DEFINE_ Yes * [repeat query ID] IIAPI_GQ_REPEAT_
REPEAT_QUERY [repeat query QUERY_ID

parameters]
API_QT_EXEC_ No Repeat query handle
REPEAT_QUERY [repeat query

parameters]
API_QT_EXEC_ No Procedure name or IIAPI_GQ_PROCEDURE_
PROCEDURE procedure ID ID

[procedure owner]

[procedure parameters] IIAPI_GQ_PROCEDURE_RET
API_QT_QUERY Yes [parameter values]
API_QT_SELECT_ Yes [parameter values]

SINGLETON

* The query syntax for these statements differs from that used in embedded SQL. See SQL Syntax

(see page 126).

Query Data Correlation

When an application calls Ilapi_setDescriptor() to send information to the
DBMS Server about parameter formats, it should make sure that the
sd_descriptor parameter contains the appropriate column type and data type
for each query parameter of an SQL statement.

The following table provides query parameters and their corresponding
ds_columnType and ds_dataType values in the API_DESCRIPTOR structure:

Query Parameters Descriptor Column Type

Data Type

Cursor name

ITAPI_COL_SVCPARM

ITAPI_CHA_TYPE

Cursor ID

ITAPI_COL_SVCPARM

ITAPI_APIHNDL_TYPE

Procedure ID

ITAPI_COL_SVCPARM

ITAPI_HNDL_TYPE

Procedure name

ITAPI_COL_SVCPARM

ITAPI_CHA_TYPE

Procedure owner

ITAPI_COL_SVCPARM

ITAPI_CHA_TYPE

130 OpenAPI® User Guide

Queries, Parameters, and Query Data Correlation

Query Parameters Descriptor Column Type Data Type

Procedure IIAPI_COL_PROCPARM Any of the Ingres data

parameters or ITAPI_COL_ types in Ingres Data
PROCBYREFPARM Types the “Data
IIAPI_COL_PROCINPARM Types” appendix

ITAPI_COL_PROCOUTPARM
ITAPI_COL_PROCINOUTPARM

Parameter values ITAPI_COL_QPARM Any of the Ingres data
types in Ingres Data
Types the “Data
Types” appendix

Repeat query ID IIAPI_COL_SVCPARM IIAPI_INT_TYPE
ITAPI_COL_SVCPARM IIAPI_INT_TYPE
ITAPI_COL_SVCPARM IIAPI_CHA_TYPE
Repeat query handle IIAPI_COL_SVCPARM ITAPI_APIHNDL_TYPE
Repeat query IIAPI_COL_QPARM Any of the Ingres data
parameters types in Ingres Data

Types the “Data
Types” appendix

Dynamic parameter IIAPI_COL_QPARM Any of the Ingres data

values types in Ingres Data
Types the “Data
Types” appendix

Accessing a DBMS Using SQL 131

Chapter 5: Accessing the Name Server

This chapter provides the syntax and descriptions for using the Name Server
query statements supported by OpenAPI.

Mapping of Name Server Query Statements to OpenAPI

The following table shows the mapping of Name Server query statements to

OpenAPI functions:

Name Server
Query Statement

OpenAPI Function

Description Query Type

connect

ITIapi_connect()

Connects to the Name Server

IIapi_autocommit()

(Required) Enables or
disables autocommit
transactions

create, destroy

IIapi_query()

IIAPI_QT_QUERY

[IIapi_setDescriptor()]

[IIapi_putParms()]

ITapi_getQueryInfo()

IIapi_close()

show

ITapi_query()

IIAPI_QT_QUERY

[IIapi_setDescriptor()]

[IIapi_putParms()]

Tiapi_getDescriptor()

ITapi_getColumns()

ITapi_getQueryInfo()

ITapi_close()

disconnect

ITapi_autocommit()

ITIapi_disconnect()

Accessing the Name Server 133

Name Server Query Statement Syntax

Name Server Query Statement Syntax

The Name Server query text is divided into fields, which are separated by a
blank space. The first four fields of a query text statement describe the action
to be performed and the virtual node name with which the action is
associated. These four fields appear in the following order in each query

statement:

Field Parameter Value

Description

1 Function create, The task that will be performed.
destroy, or
show

2 Type global or The registration type of the object. A
private global object is available to all users on

the local node. A private object is
available to a single user. Private
objects are created and destroyed for
the currently logged-in user. Only a
user with the NET_ADMIN GCA
privilege (generally a system
administrator) can create and destroy
global objects.

3 Object login, The object to be created, destroyed, or
connection, or shown. Login is the remote user
attribute authorization definition (user name and

password). Connection refers to a
connection data definition. Attribute
refers to the attribute of the virtual
node.

4 Virtual node vnode name The virtual node name (vnode)

name associated with the operation. Each

guery statement must contain a vnode
identifier.

Note: A single-letter abbreviation is sufficient for the first three fields
(function, type, and object). Virtual node names cannot be abbreviated. For
query text statements that specify either the destroy or show function, you
can enter the asterisk character (*) as a wildcard in any field other than the
function, type, and object fields. Wildcards cannot be used with the create

function.

134 OpenAPI® User Guide

Name Server Query Syntax

Name Server Query Syntax

This section describes the OpenAPI syntax for the statements used to access
the Name Server.

Create Login Statement—Create a Login Definition
This statement creates a remote user authorization.

This statement has the following syntax:

create global|private login vnode username password

This statement has the following parameters:
global|private

Specifies a global or private object. A global object is available to all users
on the local node. A private object is available to a single user.

vnode

Specifies the virtual node name to be associated with this authorization.

username

Specifies the name of the account to be used on the host machine of a
remote installation.

password

Specifies the password of the remote account.

Examples: Create login statement

The following example creates a private user authorization on vnode apitest
for user Tom:

create private login apitest tom tompassword

The following example creates a global user authorization on vhode dbtest
using an installation password:

create global login dbtest * installationpassword

Accessing the Name Server 135

Name Server Query Syntax

Destroy Login Statement—Destroy a Login Definition
This statement deletes a remote user authorization.

This statement has the following syntax:

destroy global|private login vnode

This statement has the following parameters:
global|private

Specifies a global or private object. A global object is available to all users
on the local node. A private object is available to a single user.

vnode

Specifies the virtual node name to be associated with this authorization.
Examples: Destroy login statement

The following example destroys a private user authorization on vnode apitest:

destroy private login apitest

The following example destroys a private user authorization on all the vnodes
where it occurs. Using a wildcard for the vnode parameter lets you destroy all
instances of a particular login with a single query text statement:

destroy private login *

Create Password Statement—Define an Installation Password

This statement creates an installation password for the local installation.

This statement has the following syntax:

create global login local vnode * password

This statement has the following parameters:
local_vnode

Specifies the name that has been configured as local_vnode parameter on
the local installation. You can find this name on the Parameters tab for the
Name Server in the Configuration Manager utility. (Alternatively, you can
use the cbf utility at the command line.)

password

Specifies the installation password to be assigned to this installation.

136 OpenAPI® User Guide

Name Server Query Syntax

Example: Create password statement

The following example defines an installation password for the local
installation, which has a local_vnode name of apitest:

create global login apitest * apitest_password

Create Connection Statements—Create a Connection Data Definition

This statement creates a connection data definition. If a connection data
definition exists that matches the specified one in all respects, the operation
will have no effect, and no error will be reported.

This statement has the following syntax:

create connection global|private vnode net_addr protocol port

This statement has the following parameters:
global|private

Specifies a global or private object. A global object is available to all users
on the local node. A private object is available to a single user.

vnode

Specifies the virtual node name to be associated with this connection data
definition.

net_addr
Specifies the address or name of the remote node.

Your network administrator specified this address or name when the
network software was installed. Normally, the node name, as defined at
the remote node, is sufficient for this parameter.

The format of a net address depends on the type of network software that
the node is using.

protocol

Specifies the Ingres keyword for the protocol used to connect to the
remote node. Its value can be one of the following:

= wintcp
= lanman
= nvispx
s decent
s tep_ip

Accessing the Name Server 137

Name Server Query Syntax

port

Specifies the unique identifier used by the remote Communications Server
for interprocess communication.

The format of a listen address depends on the network protocol.
Example: Create connection statement

The following example creates a global connection data definition on vnode
apitest, where net_addr=apitest, protoco/=TCP/IP, and port=mg0:

create global connection apitest apitest tcp_ip mgo

Note: The virtual nhode name and the host are different objects, although
typically they have the same value.

Destroy Connection Statement—Destroy a Data Definition
This statement deletes a connection data definition.

This statement has the following syntax:

destroy global|private connection vnode net_addr protocol port

This statement has the following parameters:
global|private

Specifies a global or private object. A global object is available to all users
on the local node. A private object is available to a single user.

vnode

Specifies the virtual node name to be associated with this connection data
definition.

net_addr
Specifies the address or name of the remote node.

Your network administrator specifies this address or name when the
network software is installed. Normally, the node name, as defined at the
remote node, is sufficient for this parameter.

The format of a net address depends on the type of network software that
the node is using.

138 OpenAPI® User Guide

Name Server Query Syntax

protocol

Specifies the Ingres keyword for the protocol used to connect to the
remote node. Its value can be one of the following:

port

wintcp
lanman
nvispx

decent

tcp_ip

Specifies the unique identifier used by the remote Communications Server
for interprocess communication.

The format of a listen address depends on the network protocol.

Examples: Destroy connection statement

The following example destroys a private connection data definition on vnode
apitest, where net_addr=apitest, protoco/=TCP/IP, and port=mg2:

destroy private connection apitest apitest tcp_ip mg2

The following example destroys all global connection data definitions on vhode
payroll that include the TCP/IP protocol:

destroy global connection payroll * tcp_ip *

Accessing the Name Server 139

Name Server Query Syntax

Show Connection Statement—Display Connection Data Definitions
This statement displays a connection data definition.

This statement has the following syntax:

show global|private connection vnode net_addr protocol port

This statement has the following parameters:
global|private

Specifies a global or private object. A global object is available to all users
on the local node. A private object is available to a single user.

vnode

Specifies the virtual node name to be associated with this connection data
definition.

net_addr
Specifies the address or name of the remote node.

Your network administrator specifies this address or name when the
network software is installed. Normally, the node name, as defined at the
remote node, is sufficient for this parameter.

The format of a net address depends on the type of network software that
the node is using.

protocol

Specifies the Ingres keyword for the protocol used to connect to the
remote node. Its value can be one of the following:

= wintcp

= lanman

= nvispx

s decent

s tcp_ip
port

Specifies the unique identifier used by the remote Communications Server
for interprocess communication.

The format of a listen address depends on the network protocol.

140 OpenAPI® User Guide

Name Server Query Syntax

Example: Show connection statement

The following example displays global connection data definitions on vnode
apitest, where net_addr is apitest:

show global connection apitest apitest* *

The following is an example of sample output from this operation:

global connection apitest apitest tcp_ip mg2

Create Attribute Statement—Create an Attribute Data Definition
This statement creates an attribute data definition.

This statement has the following syntax:

create global|private attribute vnode attr_name attr_value

This statement has the following parameters:
global|private

Specifies a global or private object. A global object is available to all users
on the local node. A private object is available to a single user.

vnode

Specifies the virtual node name to be associated with this attribute data
definition.

attr_name
Specifies the name of the attribute.
attr_value

Specifies the value of the attribute.
Example: Create attribute statement

The following example creates a global attribute definition on vnode apitest,
where attr_name=connection_type and attr_value=direct:

create global attribute apitest connection_type direct

Accessing the Name Server 141

Name Server Query Syntax

Destroy Attribute Statement—Destroy an Attribute Data Definition
This statement deletes an attribute data definition.

This statement has the following syntax:

destroy global|private attribute vnode attr_name attr_value

This statement has the following parameters:
global|private

Specifies a global or private object. A global object is available to all users
on the local node. A private object is available to a single user.

vnode

Specifies the virtual node name to be associated with this attribute data
definition.

attr_name
Specifies the name of the attribute.
attr_value

Specifies the value of the attribute.
Examples: Destroy atiribute statement

The following example destroys a private attribute definition on vnode apitest,
where attr_name=connection_type and attr_value=direct:

destroy private attribute connection_type direct

The following example destroys all global attribute data definitions for vnode
payroll that include the connection_type attribute:

destroy global attribute payroll connection_type *

142 OpenAPI® User Guide

Name Server Query Syntax

Display Attribute Statement—Display an Attribute Data Definition
This statement displays an attribute data definition.

This statement has the following syntax:

show global|private attribute vnode attr_name attr_value

This statement has the following parameters:
global|private

Specifies a global or private object. A global object is available to all users
on the local node. A private object is available to a single user.

vnode

Specifies the virtual node name to be associated with this attribute data
definition.

attr_name
Specifies the name of the attribute.
attr_value

Specifies the value of the attribute.
Examples: Display atiribute statement

The following example displays all global attribute data definitions on vnode
apitest:

show global attribute apitest * *

The following is an example of sample output from this operation:

global attribute apitest connection_type direct

Show Server Statement—Display Servers in the Local Installation
This statement displays servers in the local installation.

This statement has the following syntax:

show server server_class

This statement has the following parameter:
server_class

Specifies the name of the server class of the server to be displayed. To
display all servers in the local installation, specify “servers.”

Accessing the Name Server 143

Name Server Query Syntax

Examples: Show server statement

The following example displays all servers in the local installation:

show server servers

The following example displays an Ingres server in the local installation:

show server ingres

How to Use ~V Marker in the Name Server Query Text

You can use a ~V marker in any of the subfields of the objects (such as login,
connection, or attribute) and in the Type field in the Name Server query text.
The ~V marker must be preceded and followed by a space character. Values
for the parameter markers are sent with the query using Ilapi_setDescriptor()
and Ilapi_putParams(), in the same order as the parameter markers appear in

the query text.

Example: Using the ~V marker in name server query text

The following query text is a valid query text with the ~V marker:

show server ~V

When sent with parameter value of “servers,” it is identical to the query:

show server servers

The advantage is that the query using ~V does not require the application to
build the query text at runtime using values not available at compile time.

144 OpenAPI® User Guide

Chapter é: Creating an Application with
OpenAPI

This chapter describes the requirements for creating an OpenAPI application.
It also describes how to use the synchronous and asynchronous sample code
available with OpenAPI.

How You Can Create an OpenAPI Application

This section describes the header file, library, and environment variables used
by an OpenAPI application.

Note: For more information, see the readme.

Header Files

Each application source file that invokes an OpenAPI function must include the
OpenAPI header file (iiapi.h). This header file includes a platform-dependent
header file, iiapidep.h, which configures OpenAPI for a particular platform.

Library

When using OpenAPI, an application must link with the OpenAPI library. Where
applicable, a shared library can also be provided. Applications may also need
to be linked with the standard Ingres runtime library.

Environment Variables

The following user environment variables are used by OpenAPI:
= JI_API_TRACE
= JI_API_LOG

Creating an Application with OpenAPI 145

Sample Code

II_API_TRACE
The II_API_TRACE environment variable specifies the desired trace level of
OpenAPI. When it is not defined, it has a value of 0. You can set the
II_API_TRACE environment variable to one of the following values:
Value Action
1 Display fatal error messages
2 Display non-fatal error messages
3 Display warning messages
4 Display checkpoint messages, such as which OpenAPI function
is being executed
5 Display detail information, such as values of input and output
parameters
IL_API_LOG

The II_API_LOG environment variable specifies the desired output file for all
OpenAPI tracing.

Sample Code

The Ingres installation includes OpenAPI sample code that demonstrates
synchronous and asynchronous execution of OpenAPI functions. The sample
code provides an example of how an application uses OpenAPI functions are
and combines them to access database information.

The sample code is located in the API directory, which is under the Ingres
demo directory. Makefiles for compiling and linking the demo programs are
provided for UNIX (Makefile) and Windows NT (makefile.wnt) environments.

146 OpenAPI® User Guide

Sample Code

How the Synchronous Sample Code Works

main() Function

Error Checking

The synchronous sample code consists of a number of sources files whose
names begin with the prefix “apis”. Each source file demonstrates a single
aspect of the OpenAPI interface and compiles into its own executable demo
program.

OpenAPI functions are called synchronously: each OpenAPI function call is
followed by a loop that calls IIapi_wait() repeatedly until the original OpenAPI
call completes.

Note: Database event processing is inherently asynchronous and is not
demonstrated in the synchronous sample code. The asynchronous sample
code provides an extensive example of database event handling using
OpenAPI.

The main() function at the beginning of the source file usually contains the
specific aspect being demonstrated. OpenAPI function calls that support the
demonstration, such as connection or transaction management, are at the end
of the file. Sometimes, when the demonstration calls for multiple executions of
an OpenAPI function, you can place the OpenAPI function call in its own
function following main().

Typically, the sample programs do not perform error checking on the results of
OpenAPI function calls. Error processing is demonstrated in one of the sample
programs.

In general, these source files show:

® How OpenAPI function parameters are established

® The order in which OpenAPI functions are called to perform a specific
action

® How OpenAPI function output is processed

While the samples can be compiled and executed, the actual runtime actions
performed provide little useful information.

How You Can Run a Program

Each sample program takes a single command line argument, which is the
target database to run against. For example:

apisconn mydb

Creating an Application with OpenAPI 147

Sample Code

Source File Descriptions

The following list identifies the synchronous sample source files and the
OpenAPI functionality they demonstrate.

apisinit.c

Demonstrates OpenAPI initialization, termination, and handling of
environment handles.

apisdata.c

Demonstrates data conversion using Ilapi_convertData() and
IIapi_formatData().

apiserr.c

Demonstrates processing OpenAPI status results and error handling.
apisconn.c

Demonstrates establishing, terminating, and aborting connections.
apiscomm.c

Demonstrates committing transactions.
apisroll.c

Demonstrates rolling back transactions, setting savepoints, and rolling
back to a savepoint.

apisauto.c
Demonstrates starting and ending autocommit transactions.
apis2phl.c

Demonstrates distributed transactions (part 1): register transaction ID and
prepare to commit.

apis2ph2.c

Demonstrates distributed transactions (part 2): connect to transaction,
rollback, release transaction ID.

apisparm.c
Demonstrates handling of query parameters.
apissell.c
Demonstrates retrieving data using a select loop and canceling a query.
apisselc.c
Demonstrates retrieving data using a cursor.
apiscdel.c

Demonstrates deleting rows using a cursor.

148 OpenAPI® User Guide

Sample Code

apiscupd.c

Demonstrates updating rows using a cursor.
apisproc.c

Demonstrates executing database procedures.
apisprbr.c

Demonstrates executing database procedures with BYREF parameters.
apisprrp.c

Demonstrates executing row-producing database procedures.
apisprgt.c

Demonstrates executing database procedures with global temporary table
parameters.

apiscopy.c

Demonstrates using COPY TABLE statement to transfer data between
application and DBMS.

apisrept.c

Demonstrates defining and executing repeat statements.
apisblob.c

Demonstrates processing BLOB parameters and results.
apisname.c

Demonstrates accessing Name Server VNODE information.

How the Asynchronous Sample Code Works

The asynchronous sample code consists of a number of sources files whose
names begin with the prefix “apia”. The source files are compiled and linked to
produce a single comprehensive demo program that provides a real-life
example of using OpenAPI in a client/server environment. OpenAPI functions
are called asynchronously: each OpenAPI function call is provided with a
callback function, which notifies the demo program of the completion of the
function call.

Though single-threaded, the demo program consists of two independent
execution units: a server unit, which creates, registers, and waits for database
events, and a client unit, which periodically raises database events. The main
processing control in the demo program initializes one, the other, or both of
the execution units, then loops calling Ilapi_wait() until all asynchronous
activity has ended. Each execution unit, when initialized, issues its first
asynchronous request. The units regain execution control when their requests
complete and continue issuing new requests until they reach their termination
conditions.

Creating an Application with OpenAPI 149

Sample Code

How the Client Execution Unit Works

The client execution unit demonstrates asynchronous processing using unique
callbacks. Each asynchronous OpenAPI call is given a unique callback function,
which determines the next action to be performed when the call completes.
Each callback function checks the OpenAPI function call status, processes any
result data, and determines the next action to be performed. Operation
continues by making a new asynchronous OpenAPI function call and providing
the next function in the processing sequence as the callback function. After all
requested database events have been raised (including the optional server
termination event), the client unit stops making asynchronous OpenAPI
requests.

How the Server Execution Unit Works

The server execution unit demonstrates asynchronous processing using a
Finite State Machine. A single callback function is used for all asynchronous
OpenAPI calls. A control block passed with the asynchronous call contains the
information necessary, including the current state, to process the call results
and determine the next state and actions to be performed. The server unit
continues waiting for and processing database events until the termination
event is received. Upon receiving the termination event, the server unit
cancels any active requests, frees resources, and terminates.

150 OpenAPI® User Guide

Sample Code

How You Can Run the Demo Program

You can run the demo program in a variety of configurations: client-only,
server-only, and client and server. You can run multiple instances of the demo
program simultaneously. Each server instance receives and displays events
raised by each client instance.

You run the demo program with the following command line syntax:
apiademo [-s] [-c] [-t] [-i] db [n]
This command uses the following parameters:
-s
Runs the server execution unit.
-C

Runs the client execution unit.

Sends termination indication to demonstration servers.
db

Specifies the name of the target database.

Specifies the number of events to be raised by the client.

Default: 5
Examples: apiademo command

The following commands are equivalent:

This command... Is the same as this command...
apiademo dbname apiademo -s -c -t dbname 5
apiademo -c dbname apiademo -c dbname 5

apiademo -t dbname apiademo -c -t db 0

Creating an Application with OpenAPI 151

Sample Code

Source File Descriptions

The asynchronous sample source files are as follows:
apiademo.c

Demonstrates main processing control.
apiacint.c

Demonstrates client execution unit.
apiasvr.c

Demonstrates server execution unit.
apiautil.c

Demonstrates utility functions.

152 OpenAPI® User Guide

Chapter 7: Using Repeat Queries with
OpenAPI

This chapter provides information on implementing repeat queries using
OpenAPI, unique repeat query IDs, and the query parameter mechanism used
for repeat queries.

Repeat Queries

Embedded SQL provides the ability to mark delete, insert, select, and update
statements with the keyword repeated. Through a protocol hidden by the
embedded preprocessor and implemented by the embedded runtime system,
these queries are optimized in the server for repeated execution. The queries
are shared among all clients running a given application.

OpenAPI also lets you use repeat queries, though not with the ease provided
by embedded SQL. For an OpenAPI application to use repeat queries, it must
adhere to the same protocol implemented in the embedded runtime system.
This protocol is explained in the following paragraphs.

Using Repeat Queries with OpenAPI 153

Repeat Query ID

How the Repeat Query Protocol Works

You must first define a repeat query for a given server connection. When a
repeat query is defined, the server determines if another client has defined the
repeat query previously. This is done through a unique repeat query ID that
the application provides. If the repeat query has not been defined previously,
the server builds a query plan for the repeat query. All subsequent attempts to
define the repeat query for that server inherits the original query plan.

Once a repeat query has been defined, the application invokes (executes) the
qguery. The repeat query can be invoked repeatedly once it has been defined,
and subsequent definitions are not generally required. However, it is possible
that a server will need to drop a query plan for a repeat query, and the
application must be prepared for such an occurrence. If the server returns an
indication that a repeat query is no longer defined, the application must
redefine the query and redo the invocation that failed.

An OpenAPI application defines a repeat query by calling Ilapi_query() with
the query type set to IIAPI_QT_DEF_REPEAT_QUERY and the query text
containing the statement to be repeatedly executed (not including the
repeated keyword). A unique repeat query ID (described in Repeat Query ID
(see page 154)) is passed as a parameter using Ilapi_setDescriptor() and
ITapi_putParms(). If there are no errors processing the query, the application
obtains a repeat query handle by calling Ilapi_getQueryInfo(). The repeat
query handle will be used to invoke the repeat query.

To invoke a repeat query, the application calls IIapi_query() with the query
type set to IIAPI_QT_EXEC_REPEAT_QUERY and no query text. The repeat
query handle returned by Ilapi_getQueryInfo() when the query was defined is
passed as a query parameter using Ilapi_setDescriptor() and
ITapi_putParms(). If an OpenAPI error code of E_AP0014_INVALID_REPEAT_ID
is returned (or the IIAPI_GQF_UNKNOWN_REPEAT_QUERY flag is returned by
ITapi_getQueryInfo()), the application must redefine and invoke the repeat
query.

Repeat Query ID

A server uses a unique repeat query ID to identify a repeat query being used
by multiple clients running the same application. This ID must be unique
across all applications and all versions of a given application. A repeat query
ID consists of two integers (32 bits each) and a character string (64 bytes
maximum). Embedded SQL uses the source file hame, a positional value, and
a timestamp to uniquely identify a query at preprocessing time.

154 OpenAPI® User Guide

Query Parameters

Compile-time and Runtime IDs

An OpenAPI application can use either a compile-time or runtime ID for repeat
queries. A compile-time ID is more difficult to maintain, while a runtime ID is
less efficient because different clients running the same application will not
share repeat queries.

The application programmer must maintain a compile-time ID. If a query is
changed and recompiled, the query ID must be changed to distinguish the new
query from the previous version. The application programmer must create the
query ID in such a way as to guarantee uniqueness, not just in that
application, but across all existing applications.

A runtime ID can use information about the client runtime environment, such
as machine name and process ID, to create a unique ID for that client. This is
easier to manage than a compile-time ID, but clients running the same
application and executing identical queries will duplicate resources on the
server. OpenAPI can create a runtime-unique repeat query ID for the
application. The application is not required to provide a repeat query ID when
the repeat query is defined. If the repeat query ID is omitted, OpenAPI
generates a runtime-unique ID that uses host, process, timestamp, and
application profile information. An application should not mix usage of
OpenAPI-generated IDs and application-provided IDs.

Query Parameters

Repeat queries usually require parameters that take on different values each
time the query is invoked. These parameters are represented by host variables
in embedded SQL. OpenAPI does not support embedded host variable
references and dynamic parameter markers cannot be used since the query is
not being prepared (although the define/invoke mechanism appears similar to
the prepare/execute scenario of dynamic SQL).

This section describes a parameter marker mechanism used by embedded SQL
to implement support for host variables. An OpenAPI application can use this
mechanism as an alternative to dynamic SQL for standard queries. The
following section extends the parameter marker mechanism for use in repeat
queries.

Using Repeat Queries with OpenAPI 155

Repeat Query Parameters

How the ~V Mechanism Works

In place of dynamic parameter markers (?) and embedded host variables
(:host_var), you can form a query using the parameter marker ~V. A ~V
marker can appear any place a dynamic parameter marker or embedded host
variable is allowed. The ~V marker must be preceded and followed by a space
character. Values for the parameter markers are sent with the query using
ITapi_setDescriptor() and IIapi_putParms(), in the same order the parameter
markers appear in the query text.

As an example, the following query:

select * from employee where dept = ~V and age > ~V

when sent with parameter values of 'admin' and 35 is identical to the query:

select * from employee where dept = 'admin' and age > 35

The advantage is that the query using ~V does not require the application to
build the query text at runtime using values not available at compile time;
neither does it require the use of a cursor to perform the query dynamically.

More information:

Example: Repeat query using the ~V marker (see page 157)

Repeat Query Parameters

The query parameters (described in Query Parameters (see page 155)) are
evaluated when the query is parsed. For repeat queries, this occurs when the
query is defined, which means the values will be fixed at execution time,
regardless of the values sent when executed.

Repeat query parameters that take on unique values at execution time are
possible using an extension to the query parameter mechanism described in
Query Parameters (see page 155). These extended parameter markers take
the form:

$n =~V

where n is replaced by sequentially increasing integers starting with 0.

156 OpenAPI® User Guide

Repeat Query Parameters

Example: Repeat query using the ~V marker
The query from the previous section, if used as a repeat query would be:
select * from employee where dept = $0 = ~V and age > $1 = ~V
When implementing repeat queries, parameter values must be sent when the
repeat query is defined, as well as when the query is invoked. Query text is
not sent when a repeat query is invoked, but the parameters sent at

invocation must be in the same order as when the repeat query was defined.

More information:

How the ~V Mechanism Works (see page 156)

Using Repeat Queries with OpenAPI 157

Appendix A: Error Handling

This appendix describes how an application using OpenAPI checks for and
handles errors.

Error Codes

OpenAPI generates the following error codes.

E_APO0O01_CONNECTION_ABORTED

The connection between the application and the server has been severed.
A server error message also may be available.

E_APO0O2_TRANSACTION_ABORTED

The server aborted the current transaction. A server error message also may
be available.

E_APO003_ACTIVE_TRANSACTIONS

The application requested an operation that can be performed only when no
transactions are active on the connection.

E_AP0004_ACTIVE_QUERIES

The application requested an operation that can be performed only when no
queries are active on the connection.

E_APO005_ACTIVE_EVENTS

The application requested an operation that can be performed only when no
database event requests are active on the connection.

E_AP0006_INVALID_SEQUENCE

The application invoked a function that violated the OpenAPI order of
processing.

E_AP0007_INCOMPLETE_QUERY

The application attempted to close a query that had not yet completed
processing. The application should cancel the query instead.

E_AP0008_QUERY_DONE

The application attempted to cancel a query that had completed processing.
The application should close the query instead.

Error Handling 159

Error Codes

E_AP0009_QUERY_CANCELLED

The query was cancelled by a call to ITapi_cancel().

E_APOOOA_QUERY_INTERRUPTED

Copy statement processing interrupted by the server.

E_AP000B_COMMIT_FAILED

The server was unable to commit the transaction.

E_APO0O0C_2PC_REFUSED

The server was unable to prepare the distributed transaction to be committed.
The transaction should be rolled back.

E_APOOOD_PARAMETERS_REQUIRED

The specified query type requires parameters, but the application indicated
that no parameters would be provided.

E_APOOOE_INVALID_CONNECT_PARM

The server rejected a connection parameter or value.

E_APOOOF_NO_CONNECT_PARMS

IIapi_modifyConnect() was called with no prior calls to
IIapi_setConnectParam().

E_APOO10_INVALID_COLUMN_COUNT

The number of parameter or column values being sent or retrieved did not
match what the OpenAPI expected.

E_APOO11_INVALID_PARAM_VALUE

A parameter value was not within the permissible range of values.

E_APOO12_INVALID_DESCR_INFO

The ds_dataType or ds_columnType of at least one of the descriptor entries
was invalid.

E_APOO013_INVALID_POINTER

A required pointer parameter was NULL.

E_APOO14_INVALID_REPEAT_ID

The repeat query being executed was no longer available to the server. The
application should define and re-execute the repeat query.

160 OpenAPI® User Guide

Error Codes

E_APOO15_INVALID_TRANS_STMT

The application attempted a transaction commit or rollback by using
ITapi_query(). Use Ilapi_commit() or Ilapi_rollback() to manage transactions.

E_AP0016_ROW_DISCARDED

A cursor pre-fetch result row was received, but all OpenAPI buffers were filled
with unread result rows. The row was discarded.

E_AP0017_SEGMENT_DISCARDED

The column and row count parameters for Ilapi_getColumns() only permitted
the first segment of a BLOB column to be returned.

E_AP0018_INVALID_DISCONNECT

A disconnect request was made while the connection was already in the
process of disconnecting.

E_AP0020_BYREF_UNSUPPORTED

BYREF procedure parameters are not supported at connection level
ITAPI_LEVEL_O.

E_AP0021_GTT_UNSUPPORTED

Global Temporary Table procedure parameters are not supported at
connection level IIAPI_LEVEL_O.

E_AP0024_INVALID_DATA_SIZE

The ds_length of at least one of the descriptor entries was invalid.

E_AP0025_SVC_DATA_TYPE

The ds_dataType of at least one of the descriptor entries, whose
ds_columntType was IIAPI_COL_SVCPARM, was invalid.

E_AP0028_LVL1_DATA_TYPE

The ds_dataType of at least one of the descriptor entries specified a type that
is not supported below connection level ITIAPI_LEVEL_1.

E_AP0029_LVL2 DATA_TYPE

The ds_dataType of at least one of the descriptor entries specified a type that
is not supported below connection level IIAPI_LEVEL_2.

E_APO02A_LVL3_DATA_TYPE

The ds_dataType of at least one of the descriptor entries specified a type that
is not supported below connection level ITIAPI_LEVEL_3.

Error Handling 161

Error Codes

E_AP002B_LVL4 DATA_TYPE

The ds_dataType of at least one of the descriptor entries specified a type that
is not supported below connection level IIAPI_LEVEL_4.

SQLSTATE Values and Descriptions

OpenAPI- and server-generated errors are accompanied by an SQLSTATE
value. SQLSTATE is a standard way to report SQL errors. The following table
contains SQLSTATE values that may accompany an OpenAPI or server error:

SQLSTATE Value Description
II_SS00000_SUCCESS 00000 Success
II_SS01000_WARNING 01000 Warning
II_SS02000_NO_DATA 02000 No more data
II_SS08004_CONNECTION_REJECTED 08004 Connection rejected
II_SS08006_CONNECTION_FAILURE 08006 Connection failure
II_SSOA500_INVALID_QRY_LANG 0A500 Invalid query language
II_SS21000_CARD_VIOLATION 21000 Cardinality violation
II_SS22000_DATA_EXCEPTION 22000 Data exception
II_SS22001_STRING_RIGHT_TRUNC 22001 String data, right truncation
II_SS22002_NULLVAL_NO_IND_PARAM 22002 Null value, no indicator parameter
II_SS22003_NUM VAL_OUT_OF_RANGE 22003 Numeric value out of range
II_SS22005_ASSIGNMENT_ERROR 22005 Error in assignment
II_SS22008_DATETIME_FLD_OVFLOW 22008 Datetime field overflow
II_SS22011_SUBSTRING_ERROR 22011 Substring error
II_SS22012_DIVISION_BY_ZERO 22012 Division by zero
II_SS22015_INTERNAL FLD_OVFLOW 22015 Internal field overflow
II_SS22022_INDICATOR_OVFLOW 22022 Indicator overflow
II_SS22500_INVALID_DATA_TYPE 22500 Invalid data type
II_SS23000_CONSTR_VIOLATION 23000 Integrity constraint violation
II_SS24000_INV_CURS_STATE 24000 Invalid cursor state
II_SS25000 INV_XACT_STATE 25000 Invalid transaction state
II_SS26000_INV_SQL_STMT_NAME 26000 Invalid SQL statement name

162 OpenAPI® User Guide

Error Codes

SQLSTATE Value Description
II_SS27000_TRIG_DATA_CHNG_ERR 27000 Triggered data change violation
II_SS28000_INV_AUTH_SPEC 28000 Invalid authorization specification
II_SS40001_SERIALIZATION_FAIL 40001 Serialization failure
II_SS42000_SYN_OR_ACCESSERR 42000 Syntax error or access rule violation
II_SS42500_TBL_NOT_FOUND 42500 Table not found
II_SS42501_COL_NOT_FOUND 42501 Column not found
II_SS42502_DUPL_OBIJECT 42502 Duplicate object
II_SS42503_INSUF_PRIV 42503 Insufficient privilege
II_SS42504_UNKNOWN_CURSOR 42504 Cursor not found
II_SS42506_INVALID_IDENTIFIER 42506 Invalid identifier
II_SS50001_INVALID_DUP_ROW 50001 Invalid duplicate row
II_SS50002_LIMIT_EXCEEDED 50002 Limit has been exceeded
IT_SS50003_EXHAUSTED_RESOURCE 50003 Resource exhausted
II_SS50004_SYS_CONFIG_ERROR 50004 System configuration error
II_SS50005_GW_ERROR 50005 Gateway-related error
II_SS50006_FATAL_ERROR 50006 Fatal error
II_SS50007_INVALID_SQL_STMT_ID 50007 Invalid SQL statement ID
II_SS50008_UNSUPPORTED_STMT 50008 Unsupported statement
II_SS50009_ERROR_RAISED_IN_DBPROC 50009 Procedure error raised
II_SS5000A_QUERY_ERROR 5000A Query error
II_SS5000B_INTERNAL ERROR 5000B Internal error
II_SS5000C_FETCH_ORIENTATION 5000C Fetch orientation has value zero
II_SS5000D_INVALID_CURSOR_NAME 5000D Invalid cursor name
II_SS5000E_DUP_STMT_ID 5000E Duplicate SQL statement ID
II_SS5000H_UNAVAILABLE_RESOURCE 5000H Unknown or unavailable resource
II_SS01001_CURS_OPER_CONFLICT 01001 Cursor operation conflict
II_SS01002_DISCONNECT_ERROR 01002 Error during disconnect
II_SS01003_NULL_ELIM_IN_SETFUNC 01003 NULL eliminated in set() function
II_SS01004_STRING_RIGHT_TRUNC 01004 String data, right truncation
II_SS01005_INSUF_DESCR_AREAS 01005 Insufficient descriptor items

Error Handling 163

Error Codes

SQLSTATE Value Description
II_SS01006_PRIV_NOT_REVOKED 01006 Privilege not revoked
II_SS01007_PRIV_NOT_GRANTED 01007 Privilege not granted
II_SS01008_IMP_ZERO_BIT_PADDING 01008 Implicit zero-bit padding
II_SS01009_SEARCH_COND_TOO_LONG 01009 Search condition too long
II_SS0100A_QRY_EXPR_TOO_LONG 0100A Query expression too long
II_SS01500_LDB_TBL_NOT_DROPPED 01500 Star local database table not dropped
II_SS01501_NO_WHERE_CLAUSE 01501 No where clause: update, delete
II_SS07000_DSQL_ERROR 07000 Dynamic SQL error
II SS07001_USING_PARM_MISMATCH 07001 Using clause/parameter mismatch
II_SS07002_USING_TARG_MISMATCH 07002 Using clause/target mismatch
II_SS07003_CAN_EXEC_CURS_SPEC 07003 Cannot execute cursor spec
II_SS07004_NEED_USING_FOR_PARMS 07004 Using clause required: params
II_SS07005_STMT_NOT_CURS_SPEC 07005 Prepared statement not cursor
specification
II_SS07006_RESTR_DT_ATTR_ERR 07006 Restricted data type violation
II_SS07007_NEED_USING_FOR_RES 07007 Using clause required: result
II_SS07008 INV_DESCR_CNT 07008 Invalid descriptor count
II_SS07009_INV_DESCR_IDX 07009 Invalid descriptor index
II_SS07500_CONTEXT_MISMATCH 07500 Execution context not valid
II_SS08000_CONNECTION_EXCEPTION 08000 Connection error
IT_SS08001_CANT_GET_CONNECTION 08001 Cannot establish connection
IT_SS08002_CONNECT_NAME_IN_USE 08002 Connection name in use
II_SS08003_NO_CONNECTION 08003 Connection does not exist
II_SS08007_XACT_RES_UNKNOWN 08007 Transaction result unknown
II_SS08500_LDB_UNAVAILABLE 08500 Star local database unavailable
II_ SSOAO000_FEATUR_NOT_SUPPORTED 0A000 Feature not supported
II_SSO0A001_MULT_SERVER_XACTS 0A001 Multiple server transactions
II_SS22007_INV_DATETIME_FMT 22007 Invalid datetime format
II_SS22009_INV_TZ_DISPL_VAL 22009 Invalid timezone displacement
II_SS22018_INV_VAL_FOR_CAST 22018 Invalid character value in cast
II_SS22019_INV_ESCAPE_CHAR 22019 Invalid escape character

164 OpenAPI® User Guide

Error Codes

SQLSTATE Value Description
II_SS22021_CHAR_NOT_IN_RPRTR 22021 Character not in set
II_SS22023_INV_PARAM_VAL 22023 Invalid parameter value
II_SS22024_UNTERM_C_STRING 22024 Unterminated string
II_SS22025_INV_ESCAPE_SEQ 22025 Invalid escape sequence
II_SS22026_STRING_LEN_MISMATCH 22026 String data, length mismatch
II_SS22027_TRIM_ERROR 22027 Error in trim() function
II_SS2B000_DEP_PRIV_EXISTS 2B000 Dependent privileges exist
II_SS2C000_INV_CH_SET_NAME 2C000 Invalid character set name
II_ SS2D000_INV_XACT_TERMINATION 2D000 Invalid transaction termination
II_SS2EO000_INV_CONN_NAME 2E000 Invalid connection name
II_SS33000_INV_SQL_DESCR_NAME 33000 Invalid descriptor name
IT_SS34000_INV_CURS_NAME 34000 Invalid cursor name
ITI_SS35000_INV_COND_NUM 35000 Invalid condition number
II_SS3C000_AMBIG_CURS_NAME 3C000 Ambiguous cursor name
II_SS3D000_INV_CAT_NAME 3D000 Invalid catalog name
II_SS3F000_INV_SCHEMA_NAME 3F000 Invalid schema name
II_SS40000_XACT_ROLLBACK 40000 Transaction rollback
II_SS40002_CONSTR_VIOLATION 40002 Integrity constraint violation
II_SS40003_STMT_COMPL_UNKNOWN 40003 Statement results unknown
II_SS42505_0OBJ_NOT_FOUND 42505 Object not found
II_SS42507_RESERVED_IDENTIFIER 42507 Reserved identifier
II_SS44000_CHECK_OPTION_ERR 44000 With check option violation
II_SS50000_MISC_ING_ERRORS 50000 Miscellaneous Ingres errors
II_SS5000F_TEXTUAL_INFO 5000F Textual information
II_SS5000G_DBPROC_MESSAGE 5000G Database procedure message
II_SS5000I_UNEXP_LDB_SCHEMA_CHNG 50001 Star local database schema change
II_SS5000]_INCONSISTENT_DBMS_CAT 50001] Inconsistent DBMS catalog
II_SS5000K_SQLSTATE_UNAVAILABLE 5000K SQLSTATE code unavailable
IT_SS5000L_PROTOCOL_ERROR 5000L Protocol error
II_SS5000M_IPC_ERROR 5000M IPC error

Error Handling 165

Error Codes

SQLSTATE Value Description
IT_SS5000N_OPERAND_TYPE_MISMATCH 5000N Operand type mismatch
II_SS50000_INVALID_FUNC_ARG_TYPE 50000 Invalid function argument
II_SS5000P_TIMEOUT_ON_LOCK_REQUEST 5000P Lock request timeout
II_SS5000Q_DB_REORG_INVALIDATED_QP 5000Q Query plan invalidated
II_SS5000R_RUN_TIME_LOGICAL_ERROR 5000R Runtime logical error
II_SSHZ000_RDA HZ000 Remote database access error

166 OpenAPI® User Guide

Appendix B: Data Types

This appendix describes the Ingres data types used by OpenAPI.

Ingres Data Types

Ingres data types are described by the information conveyed in the
IIAPI_DESCRIPTOR structure. This structure describes the data type, length,
and precision of OpenAPI data.

The following table provides the data type, length, and precision value for each
Ingres data type and maps the data type to its corresponding C type and SQL
type. The following symbols are used in the table:

n
Specifies the length of the specific data value. This value varies, but is
limited by the maximum length supported by the DBMS, typically between
2 KB and 32 KB.

P
Specifies the precision for the specific data value. This value varies, but is
limited by the maximum precision allowed by the length of the data.

s

Specifies the scale for the specific data value. This value varies, but is
limited by the precision value.

Lengths, precisions, or scales that are not required are shown as 0 in the
table.

If the C type is shown as none, a character buffer of the appropriate length
can be used to store the data value and Ilapi_convertData() or
ITapi_formatData() can be used to convert the data value to a type that has a
corresponding C type.

The following table lists the Ingres data types:

Data Type Length Precision/ C Type SQL Type BLOB?
Scale

IIAPI_BYTE_TYPE n 0/0 char* byte(n) no

IIAPI_CHA_TYPE n 0/0 char* char(n) no

ITAPI_CHR_TYPE n 0/0 char* c(n) no

Data Types 167

Ingres Data Types

Data Type Length Precision/ C Type SQL Type BLOB?
Scale
ITAPI_HNDL_TYPE 4 0/0 void* n/a no
IIAPI_DATE_TYPE 4 0/0 none ansidate no
IIAPI_DEC_TYPE 1-16 (dep.on p/s none decimal(p,s) no
precision)
IIAPI_INTDS_TYPE 12 p/0 none interval day to no
second
IIAPI_DTE_TYPE 12 0/0 none ingresdate no
IIAPI_FLT_TYPE 4 p/0 float float4/real no
8 double float8/float
IIAPI_INT_TYPE 1 0/0 char integerl no
2 short integer2/smallint
4 long integerd/integer
8 long long integer8/bigint
IIAPI_INTYM_TYPE 3 p/0 none interval year to no
month
IIAPI_LOGKEY_TYPE 16 0/0 char* object_key no
IIAPI_LBYTE_TYPE (max 2 GB) 0/0 char* long byte yes
ITAPI_LNVCH_TYPE (max 2 GB) 0/0 short* long nvarchar yes
ITAPI_LVCH_TYPE (max 2 GB) 0/0 char* long varchar yes
IIAPI_LTXT_TYPE n 0/0 char* null no
ITIAPI_MNY_TYPE 8 p/0 none money no
IIAPI_NCHA_TYPE n 0/0 short* nchar(n) no
IIAPI_NVCH_TYPE n 0/0 short* nvarchar(n) no
IIAPI_TABKEY_TYPE 8 0/0 char* table_key no
IIAPI_TIME_TYPE 10 p/0 none time with local time no
zone
IIAPI_TMWO_TYPE 10 p/0 none time without time no
zone
IIAPI_TMTZ_TYPE 10 p/0 none time with time zone no
IIAPI_TSWO_TYPE 14 p/0 none timestamp without no
time zone
IIAPI_TSTZ_TYPE 14 p/0 none timestamp with time no
zone

168 OpenAPI® User Guide

Data Type Descriptions

Data Type Length Precision/ C Type SQL Type BLOB?
Scale
IIAPI_TS _TYPE p/0 none timestamp with local no
time zone
IIAPI_TXT_TYPE 0/0 char* text(n) no
IIAPI_VBYTE_TYPE 0/0 char* varbyte(n) no
IIAPI_VCH_TYPE 0/0 char* varchar(n) no

Data Type Descriptions

Ingres data types are described as follows.

IIAPI_BYTE_TYPE

Specifies a fixed-length binary string containing data with the declared
length. The declared length is stored as the ds_length parameter in the
corresponding data descriptor.

Limits: Length is 1 to DBMS maximum bytes.

ITIAPI_CHA_TYPE

Specifies a fixed-length character string that is stored blank-padded to the
declared length. The declared length is stored as the ds_length parameter
in the corresponding data descriptor. Embedded blanks are significant.
Valid characters for this data type include printing, non-printing, and NULL
characters.

Limits: Length is 1 to DBMS maximum characters.

ITIAPI_CHR_TYPE

Specifies a fixed-length character string that is stored blank-padded to the
declared length. The declared length is stored as the ds_length parameter
in the corresponding data descriptor. Embedded blanks are insignificant.
Valid characters for this data type include printing characters only. This
data type is supported for previous Ingres versions; when possible, use
IIAPI_CHA_TYPE.

Limits: Length is 1 to DBMS maximum characters.

ITIAPI_HNDL_TYPE

Specifies a data type used only by OpenAPI and the application. This data
type describes a handle, which is a pointer to one of the control blocks
created by OpenAPI. OpenAPI translates the information in the control
block into data acceptable by the data source. This data type does not
appear in queries.

Data Types 169

Data Type Descriptions

IIAPI_DATE_TYPE

Specifies an ANSI date data type that is stored in 4 bytes.
IIapi_convertData() or Ilapi_formatData() can be used to convert to
character string representation.

IIAPI_DEC_TYPE

Specifies a packed-decimal data type stored in 1 to 16 bytes depending on
the precision of the value as follows: len = (precision)/2 + 1.
IIapi_convertData() or Ilapi_formatData() can be used to convert to
character string or floating point representation.

IIAPI_DTE_TYPE

Specifies an Ingres internal date data type that is stored in 12 bytes.
IIapi_convertData() or Ilapi_formatData() can be used to convert to
character string or floating point representation.

IIAPI_FLT_TYPE

Specifies a floating-point data type.

Limits: Data value range is -1.0e+38 to +1.0e+38.
IIAPI_INT_TYPE

Specifies a data type supporting varying data value ranges. It is
dependent on the ds_length of the data value.

Limits:

If the length is 1, the range is -128 to +127.

If the length is 2, the range is -32,768 to +32,767.

If the length is 4, the range is -2,147,483,648 to +2,147,483,647.

If the length is 8, the range is -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

ITIAPI_INTDS_TYPE

Specifies an ANSI day to second interval data type that is stored in 12
bytes. IIapi_convertData() or Ilapi_formatData() can be used to convert
to character string representation.

ITIAPI_INTYM_TYPE

Specifies an ANSI year to date interval data type that is stored in 3 bytes.
IIapi_convertData() or Ilapi_formatData() can be used to convert to
character string representation.

ITIAPI_LOGKEY_TYPE

Specifies a data type with values unique within the data source. An
application should not attempt to update a column containing a system-
maintained object key.

170 OpenAPI® User Guide

Data Type Descriptions

IIAPI_LBYTE_TYPE

Specifies a variable-length binary string. The actual length of the large
byte segment is stored in the first two bytes of the data buffer, followed by
the large byte data.

Limits: Length is 0 to 2,000,000,000 bytes.
IIAPI_LNVCH_TYPE

Specifies a variable-length National Character Set string. Each character in
the string is represented by an unsigned two-byte integer holding a UTF-
16-encoded character. The actual length in characters of the large
nvarchar segment is stored in the first two bytes of the data buffer,
followed by the large nvarchar data.

Limits: Length is 0 to 1,000,000,000 NCS characters.
IIAPI_LVCH_TYPE

Specifies a variable-length character string. The actual length of the large
varchar segment is stored in the first two bytes of the data buffer,
followed by the large varchar data. Valid characters for this data type
include printing, non-printing, and NULL characters. Trailing blanks are
insignificant in a varchar data type.

Limits: Length is 0 to 2,000,000,000 characters.
IIAPI_LTXT_TYPE

Specifies a variable-length character string. The maximum size for this
data type is stored as the ds_length parameter in the corresponding
descriptor. The actual length of the text data is stored in the first two
bytes of the data buffer, followed by the text data.

Valid characters for this data type include printing and nonprinting
characters. All blanks are significant in a text data buffer. This type is
supported for typeless NULL values. A NULL value of this type can be
coerced into any other data type. Otherwise, use IIAPI_VCH_TYPE.

Limits: Length is 1 to DBMS maximum characters.
IIAPI_MNY_TYPE

Specifies the Ingres money data type stored in 8 bytes with two fixed
decimal places. Ilapi_convertData() or IIapi_formatData() can be used to
convert to character string or floating point representation.

ITIAPI_NCHA_TYPE

Specifies a fixed length National Character Set string that is stored blank-
padded to the declared length. Each character in the string is represented
by an unsigned two-byte integer holding a UTF-16 encoded character. The
full byte length (twice the declared character length) is stored as the
ds_length parameter in the corresponding data descriptor.

Limits: Length is 1 to DBMS maximum NCS characters.

Data Types 171

Data Type Descriptions

ITIAPI_NVCH_TYPE

Specifies a variable-length National Character Set string. Each character in
the string is represented by an unsigned two-byte integer holding a UTF-
16 encoded character. The maximum size in bytes for nvarchar data is
stored as the ds_length parameter in the corresponding descriptor. The
actual length in characters of the varchar data is stored in the first two
bytes of the data buffer, followed by the nvarchar data.

Limits: Length is 0 to DBMS maximum NCS characters.
IIAPI_TABKEY_TYPE

Specifies a data type with a value that is unique within the table where the
table key is stored. An application should not attempt to update a column
containing a system-maintained table key.

IIAPI_TIME_TYPE

Specifies an Ingres time data type with local time zone that is stored in 10
bytes. IIapi_convertData() or Ilapi_formatData() can be used to convert
to character string representation.

IIAPI_TMTZ_TYPE

Specifies an ANSI time data type with timezone that is stored in 10 bytes.
IIapi_convertData() or Ilapi_formatData() can be used to convert to
character string representation.

IIAPI_TMWO_TYPE

Specifies an ANSI time data type without time zone that is stored in 10
bytes. IIapi_convertData() or Ilapi_formatData() can be used to convert
to character string representation.

ITIAPI_TS_TYPE

Specifies an Ingres timestamp data type with local timezone that is stored
in 14 bytes. Ilapi_convertData() or IIapi_formatData() can be used to
convert to character string representation.

IIAPI_TSTZ_TYPE

ANSI timestamp data type with timezone that is stored in 14 bytes.
IIapi_convertData() or Ilapi_formatData() can be used to convert to
character string representation.

IIAPI_TSWO_TYPE

Specifies an ANSI timestamp data type without time zone that is stored in
14 bytes. IIapi_convertData() or Ilapi_formatData() can be used to
convert to character string representation.

172 OpenAPI® User Guide

Data Type Descriptions

ITIAPI_TXT_TYPE

Specifies a variable-length character string. The maximum size for this
data type is stored as the ds_length parameter in the corresponding
descriptor. The actual length of the text data is stored in the first two
bytes of the data buffer, followed by the text data. Valid characters for this
data type include printing and non-printing characters. All blanks are
significant in a text data buffer. This type is supported for previous Ingres
versions; when possible, use IIAPI_VCH_TYPE.

Limits: Length is 1 to DBMS maximum characters.
IIAPI_VBYTE_TYPE

Specifies a variable-length binary string. The maximum size for varbyte
data is stored as the ds_length parameter in the corresponding descriptor.
The actual length of the varbyte data is stored in the first two bytes of the
data buffer, followed by the varbyte data.

Limits: Length is 0 to 2,000 bytes.
IIAPI_VCH_TYPE

Specifies a variable-length character string. The maximum size for varchar
data is stored as the ds_length parameter in the corresponding descriptor.
The actual length of the varchar data is stored in the first two bytes of the
data buffer, followed by the varchar data. Trailing blanks are insignificant
in a varchar data type.

Limits: Length is 0 to 2,000 characters.

Data Types 173

Index

A

allocating
connection handle ¢ 49
environment handle ¢ 66
event handle ¢ 43
statement handle « 74
transaction handle 77

API functions
generic parameters ¢ 33
IIapi_abort() » 36
IIapi_autocommit() ¢ 37
IIapi_cancel() » 20, 38
IIapi_catchEvent() e 15, 43
IIapi_close() » 19, 35, 46
IIapi_commit() » 18, 48
IIapi_connect() » 15, 16, 49
IIapi_convertData() » 52
IIapi_disconnect() o 54
IIapi_formatData() 55
IIapi_getColumns() » 21, 29, 56
IIapi_getCopyMap() 58
IIapi_getDescriptor() e 21, 59
ITapi_getErrorinfo() e 60
IIapi_getEvent() » 62
ITapi_getQueryInfo() 19, 63
IIapi_initialize() » 66
IIapi_modifyConnect() » 68
IIapi_prepareCommit() e 69
IIapi_putColumns() ¢ 29, 70
IIapi_putParms() » 19, 29, 72
IIapi_query() » 18, 19, 74
IIapi_registerXID() o 18, 77
IIapi_releaseEnv() » 78
IIapi_releaseXID() ¢ 79
IIapi_rollback() « 18, 80
IIapi_savePoint() ¢ 81
IIapi_setConnectParam() ¢ 82
IIapi_setDescriptor() e 19, 90
IIapi_setEnvParam() ¢ 91
IIapi_terminate() 100
IIapi_wait() 14, 101
mapping to SQL statements ¢ 119

application programming interfaces
characteristics « 8
comparison with API « 9

applications
blocking control from ¢ 101
requirements for creating e 145
asynchronous code
description e 13
sample ¢ 149
using IIapi_wait() 101

backward compatibility, description ¢ 10
BLOBS

description e 29

retrieving from server ¢ 56

sending to server ¢ 70
blocking control from application e 101

C

callback

description e 13

generic parameter ¢ 33
canceling SQL statements « 38
closure

description e 13

generic parameter ¢ 33
committing

transactions e 48

two-phase commit transactions ¢ 69
compatibility, backward e 10
connection handle

allocating « 49, 82

description e 15

freeing » 36, 54
connections

DBMS server o 16, 49

ending ¢ 36

parameters o 68, 82
conversion, data types ¢ 30, 52, 55
copying

data formats for ¢ 58

from file to database ¢ 70
creating OpenAPI applications e 145
cursors

description e 22

opening e 23

Index 175

D

data formats
retrieving from DBMS server ¢ 21, 59
sending to DBMS server ¢ 90
data types
common e 103
conversion ¢ 30, 52, 55
copying unformatted data ¢ 70
data types ¢ 167
ITAPI_COPYMAP 108
ITAPI_DATAVALUE 110
ITAPI_DESCRIPTOR e 111
ITAPI_DT_ID e 105
ITAPI_FDATADESCR e 112
ITAPI_II_DIS_TRAN_ID e 114
ITAPI_II_TRAN_ID ¢ 114
ITAPI_QUERYTYPE e 106
ITAPI_STATUS e 107
ITAPI_SVR_ERRINFO e 115
ITAPI_TRAN_ID e 116
ITAPI_XA_DIS_TRAN_ID e 117
ITAPI_XA_TRAN_ID « 118
list of ¢ 103
OpenAPI parameter structures e 103
data types, list of ¢ 167
database events
checking for ¢ 62
description e 24
retrieving ¢ 43, 56
DBMS server
closing connection ¢ 54
connecting ¢ 49
connection parameters ¢ 82
delayed output parameters o 11
disconnecting server ¢ 54
distributed transaction, description e 17

ending connections e 36
ending SQL statements ¢ 46
environment handle

allocating » 66

description e 15

freeing 78
environment variables used by OpenAPI e 145
environment, releasing resources ¢ 78
errors

list of messages 162

method for handling « 30

returning from DBMS server e 60
event handle

allocating 43

description e 15

freeing ¢ 46

F

formats
copying data e 58
retrieving data from DBMS server e 21, 59
sending data to DBMS server ¢ 90
freeing
connection handle « 36, 54
environment handle ¢ 78
event handle ¢ 46
statement handle ¢ 46
transaction handle e 79

G

GCA (General Communications Architecture),
relationship to OpenAPI « 9

General Communications Architecture (GCA) e
9

generic parameters
description e 11, 33
gp_callback « 33
gp_closure ¢ 33
gp_status e« 33

H
header file required for API e 145
|

II_API_LOG environment variable, description
* 146
II_API_TRACE environment variable,
description ¢ 146
ITapi_abort() » 36
ITapi_autocommit() e 37
ITapi_cancel() » 20, 38
ITapi_catchEvent() 15, 43
ITapi_close()
description e 19, 46
sample code ¢ 35
ITapi_commit() » 18, 48
ITapi_connect() » 15, 16, 49
ITapi_convertData() o 52
IIAPI_COPYMAP data type » 108
ITAPI_DATAVALUE data type » 110

176 OpenAPI® User Guide

ITAPI_DESCRIPTOR data type » 111
IIapi_disconnect() o 54
IIAPI_DT_ID data type ¢ 105
IIAPI_FDATADESCR data type » 112
IIapi_formatData() e 55
ITapi_getColumns() » 21, 29, 56
ITapi_getCopyMap() 58
ITapi_getDescriptor()

description 59

formats for retrieving data e 21
ITapi_getErrorinfo() e 60
ITapi_getEvent() » 62
ITapi_getQueryInfo() 19, 63
ITAPI_II_DIS_TRAN_ID data type » 114
ITAPI_II_TRAN_ID data type » 114
IIapi_initialize() o 66
ITIapi_modifyConnect() » 68
IIapi_prepareCommit() e 69
IIapi_putColumns() ¢ 29, 70
IIapi_putParms() 19, 29, 72
IIapi_query()

description ¢ 18, 19, 74

invoking Name server query statements e

19

invoking SQL statements ¢ 19
ITAPI_QUERYTYPE data type » 106
ITapi_registerXID() » 18, 77
IIapi_releaseEnv() « 78
IIapi_releaseXID() o 79
IIapi_rollback() 18, 80
IIapi_savePoint() ¢ 81
IIapi_setConnectParam() 82
IIapi_setDescriptor() ¢ 19, 90
IIapi_setEnvParam() ¢ 91
ITAPI_STATUS data type o 107
ITAPI_SVR_ERRINFO data type 115
IIapi_terminate() 100
ITAPI_TRAN_ID data type o 116
IIapi_wait() 14, 101
ITAPI_XA_DIS_TRAN_ID data type o 117
ITAPI_XA_TRAN_ID data type » 118
immediate output parameters o 11
initializing API e 66

L

library required for API e 145
local transaction, description ¢ 17
long byte

data type ¢ 29

retrieving from server ¢ 56

sending to server ¢ 70
long varchar

data type o 29

retrieving from server ¢ 56

sending to server ¢ 70

M

mapping SQL statements to API functions e
119

N

Name server
closing connection ¢ 54
connection parameters ¢ 82

Name server query statements 133
invoking ¢ 19, 74
sending parameters to server e 72

O
OpenAPI concepts « 10

P

parameter block
data types used in ¢ 103
description ¢ 11

parameters
delayed output e 11
immediate output e 11
query type requirements ¢ 129
sending to server ¢ 68, 72

Q

queries
invoking ¢ 74
parameter requirements e 129
parameters for repeated o 155
sending parameters to server e 72

R

releasing
ID for two-phase commit e 79
resources for environment handle ¢ 78
repeat queries
description e 153
ID « 154
parameters e 156
resources, environment, releasing e 78

Index 177

retrieving allocating e 77

database events ¢ 43 description e 15
unformatted data e 29 freeing 79, 80
return status transactions
check for completion e 11 assigning ID for two-phase commit e 77
generic parameters ¢ 33 beginning ¢ 74
returning committing ¢ 48
columns from DBMS server o 56 data type for defining o 114
data formats for copy ¢ 58 description e 17
error information ¢ 60 enabling autocommit ¢ 37
SQL statement information ¢ 63 marking a savepoint 81
rolling back releasing ID for two-phase commit e 79
partial e 81 rolling back « 80
transactions e 80 two-phase commit
assigning transaction ID e 77
S preparation ¢ 69
sample code, description e 145 releasing transaction ID e 79
savepoint, marking for a transaction ¢ 81 U
sending
connection parameters to server ¢ 68 unformatted data
copy information to server ¢ 70 description e 29
query statement parameters to server e 72 retrieving from server e 56
unformatted data to DBMS server o 29 sending to server ¢ 70
server, connecting ¢ 49
SQL statements W
canceling ¢ 38 wait, blocking control from application ¢ 101
ending e 46

invoking ¢ 19, 74
mapping to API functions ¢ 119
query parameters e 129
repeated queries ¢ 153
retrieving data e 21, 56, 63
sending parameters to server e 72
SQLSTATE, error messages » 162
starting query statements 74
statement handle
allocating » 74
description e 15
freeing « 46
status, checking 30
structures, data types used in o 103
synchronous code
description e 14
sample o 147

T

terminating OpenAPI ¢ 100
timeout, initialization e 66
transaction handle

178 OpenAPI® User Guide

	Bookshelf
	Ingres OpenAPI User Guide
	Contents
	1: Introduction
	Audience
	Contact Ingres Technical Support
	What Is OpenAPI?
	Common Features of Application Programming Interfaces
	Differences Between OpenAPI and Other Application Programming Interfaces
	OpenAPI Communication
	Relationship of OpenAPI to Basic Ingres Architecture

	How OpenAPI Handles Backward Compatibility
	OpenAPI Concepts and Processes
	Parameter Blocks
	How Callback and Closure Work
	How Asynchronous Processing Works
	How Synchronous Processing Works
	Handles
	Types of Handles

	How Connections are Established and Severed
	Transactions
	How Transactions Work
	How an Application Begins a Transaction
	How an Application Ends a Transaction
	How Distributed Transactions are Used
	How Savepoints are Used

	How Query Statements Work
	Typical Flow of Operations for SQL and Name Server Query Statement Processing
	Order of Invoking OpenAPI Functions
	How Query Statements are Cancelled

	How Data is Retrieved
	How Cursors Work
	Order of Function Calls Used to Manipulate Data with a Cursor

	Database Events
	Order in which OpenAPI Creates, Retrieves, and Deletes Database Events
	How Database Events are Processed

	SQL Syntax
	Name Server Query Statement Syntax
	Query Parameters
	How Unformatted Data is Handled
	Data Conversion
	Error Handling
	How Status Checking Works

	2: OpenAPI Function Reference
	Generic Parameters
	How Memory is Managed for Data Input and Output
	OpenAPI Functions
	IIapi_abort() Function--Abort a Connection
	IIapi_autocommit() Function--Enable or Disable Autocommit Transactions
	IIapi_cancel() Function--Cancel an Outstanding Query Statement
	Function Summary
	OpenAPI Management
	Session Management
	Query Processing
	Transaction Operations
	Miscellaneous

	IIapi_catchEvent() Function--Retrieve a Database Event
	IIapi_close() Function--End a Query Statement or Database Event Retrieval
	IIapi_commit() Function--Commit a Transaction
	IIapi_connect() Function--Connect to a DBMS Server or Name Server
	IIapi_convertData() Function--Convert Ingres Data Values to Compatible Types Using Default Settings
	IIapi_disconnect() Function--Close a Server Connection
	IIapi_formatData() Function--Convert Ingres Data Values to Compatible Types
	IIapi_getColumns() Function--Return Columns from a Previously Invoked Query Statement or Database Event Retrieval
	IIapi_getCopyMap() Function--Return the Data Format of Copy File and Database Table Involved in a Copy Statement
	IIapi_getDescriptor() Function--Communicate Format of Return Data with IIapi_getColumns()
	IIapi_getErrorInfo() Function--Return Additional Error or User-defined Information
	IIapi_getEvent() Function--Wait for Database Events
	IIapi_getQueryInfo() Function--Return Information about a Query
	IIapi_initialize() Function--Initialize OpenAPI to a Specified Input Version
	IIapi_modifyConnect Function--Send Connection Parameters to Server
	IIapi_prepareCommit() Function--Begin Two-phase Commit of Transaction
	IIapi_putColumns() Function--Send Data to Server to Copy Data from File to Database Table
	IIapi_putParms() Function--Send Query Statement Parameter Values to a Server
	IIapi_query() Function--Begin Query Statement and Allocate Statement Handle
	IIapi_registerXID() Function--Reserve Unique ID for Two-phase Commit Transaction
	IIapi_releaseEnv() Function--Release Resources Associated with Environment Handle
	IIapi_releaseXID() Function--Release Unique ID for Two-phase Commit Transaction
	IIapi_rollback() Function--Roll back a transaction
	IIapi_savePoint() Function--Mark Savepoint in a Transaction for Partial Rollback
	IIapi_setConnectParam() Function--Assign Connection Parameter and Value to a Connection
	IIapi_setDescriptor() Function--Send Information About Data Format
	IIapi_setEnvParam() Function--Assign an Environment Parameter and Value in Environment Handle
	Environment Parameter IIAPI_EP_CAN_PROMPT
	Environment Parameter IIAPI_EP_TRACE_FUNC
	Environment Parameter IIAPI_EP_EVENT_FUNC

	IIapi_terminate() Function--Terminate OpenAPI
	IIapi_wait() Function--Block Application Control Until Outstanding Operation Completes or User-defined Timeout Expires

	3: OpenAPI Data Types
	OpenAPI Generic Data Types
	OpenAPI Data Types
	IIAPI_DT_ID Data Type--Describe Data Type of Database Columns and Query Parameters
	IIAPI_QUERYTYPE Data Type--Describe Type of Query Being Invoked
	IIAPI_STATUS Data Type--Describe the Return Status of an OpenAPI Function

	OpenAPI Data Structures
	IIAPI_COPYMAP Data Type--Provide Information on How to Execute the SQL Copy Statement
	IIAPI_DATAVALUE Data Type--Provide Value for OpenAPI Data
	IIAPI_DESCRIPTOR Data Type--Provide Description for OpenAPI Data
	IIAPI_FDATADESCR Data Type--Describe Column Data in a Copy File
	IIAPI_II_DIS_TRAN_ID Data Type--Identify Distributed Ingres Transaction ID
	IIAPI_II_TRAN_ID Data Type--Identify Local Ingres Transaction ID
	IIAPI_SVR_ERRINFO Data Type--Describe Additional Server Information Associated with Error Messages
	IIAPI_TRAN_ID Data Type--Identify an OpenAPI Transaction
	IIAPI_XA_DIS_TRAN_ID Data Type--Identify a Distributed XA Transaction ID
	IIAPI_XA_TRAN_ID Data Type--Identify an XA Transaction ID

	4: Accessing a DBMS Using SQL
	Mapping of SQL to OpenAPI
	SQL Syntax
	Describe Statement
	Execute Statement
	Declare Statement, Open Cursor Statement
	Cursor Delete Statement
	Cursor Update Statement
	Execute Procedure
	Repeat Queries

	Queries, Parameters, and Query Data Correlation
	Queries and Parameters
	Query Data Correlation

	5: Accessing the Name Server
	Mapping of Name Server Query Statements to OpenAPI
	Name Server Query Statement Syntax
	Name Server Query Syntax
	Create Login Statement--Create a Login Definition
	Examples: Create login statement

	Destroy Login Statement--Destroy a Login Definition
	Examples: Destroy login statement

	Create Password Statement--Define an Installation Password
	Example: Create password statement

	Create Connection Statements--Create a Connection Data Definition
	Example: Create connection statement

	Destroy Connection Statement--Destroy a Data Definition
	Examples: Destroy connection statement

	Show Connection Statement--Display Connection Data Definitions
	Example: Show connection statement

	Create Attribute Statement--Create an Attribute Data Definition
	Example: Create attribute statement

	Destroy Attribute Statement--Destroy an Attribute Data Definition
	Examples: Destroy attribute statement

	Display Attribute Statement--Display an Attribute Data Definition
	Examples: Display attribute statement

	Show Server Statement--Display Servers in the Local Installation
	Examples: Show server statement

	How to Use ~V Marker in the Name Server Query Text
	Example: Using the ~V marker in name server query text

	6: Creating an Application with OpenAPI
	How You Can Create an OpenAPI Application
	Header Files
	Library
	Environment Variables
	II_API_TRACE
	II_API_LOG

	Sample Code
	How the Synchronous Sample Code Works
	main() Function
	Error Checking
	How You Can Run a Program
	Source File Descriptions

	How the Asynchronous Sample Code Works
	How the Client Execution Unit Works
	How the Server Execution Unit Works
	How You Can Run the Demo Program
	Source File Descriptions

	7: Using Repeat Queries with OpenAPI
	Repeat Queries
	How the Repeat Query Protocol Works

	Repeat Query ID
	Compile-time and Runtime IDs

	Query Parameters
	How the ~V Mechanism Works

	Repeat Query Parameters
	Example: Repeat query using the ~V marker

	A: Error Handling
	Error Codes
	SQLSTATE Values and Descriptions

	B: Data Types
	Ingres Data Types
	Data Type Descriptions

	Index

