

Ingres® 2006 Release 2

OpenSQL Reference Guide

®

November 2006

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Ingres Corporation (“Ingres”)
at any time.

This Documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of Ingres. This Documentation is proprietary information of Ingres and protected
by the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this Documentation for
their own internal use, provided that all Ingres copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. The user consents to Ingres obtaining injunctive relief precluding any unauthorized use of the
Documentation. Should the license terminate for any reason, it shall be the user’s responsibility to return to Ingres
the reproduced copies or to certify to Ingres that same have been destroyed.

To the extent permitted by applicable law, INGRES PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IN NO EVENT WILL INGRES BE LIABLE TO THE
END USER OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF INGRES IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The use of any product referenced in this Documentation and this Documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this Documentation is Ingres Corporation.

For government users, the Documentation is delivered with “Restricted Rights” as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Copyright © 2006 Ingres Corporation.

All Rights Reserved.

Ingres, OpenROAD, and EDBC are registered trademarks of Ingres Corporation. All other trademarks, trade names,
service marks, and logos referenced herein belong to their respective companies.

Contents iii

Contents

Chapter 1: Introduction

Audience... 1-1
Conventions.. 1-1

Chapter 2: Overview of OpenSQL

What Is OpenSQL? ... 2-1
Enterprise Access Products .. 2-2
Ingres Distributed Option.. 2-2
Interactive OpenSQL .. 2-2
Embedded OpenSQL .. 2-2
Specifying Parameters at Runtime ... 2-3
Differences between Embedded and Interactive OpenSQL 2-3

Features ... 2-4
Object Names .. 2-4
Regular and Delimited Identifiers .. 2-5
Restrictions on Identifiers ... 2-6
Comment Delimiters .. 2-8
Statement Terminators.. 2-8
Correlation Names .. 2-9

Chapter 3: OpenSQL Data Types

OpenSQL Data Types ... 3-1
Character Data Types... 3-1

Character .. 3-2
Varchar .. 3-3
Long Varchar ... 3-3

Numeric Data Types .. 3-4
Integer... 3-4
Decimal .. 3-5
Floating-point .. 3-6

Abstract Data Types .. 3-7
Date ... 3-7
Money ..3-11

Binary Data Types ...3-12

iv OpenSQL Reference Guide

Long Byte... 3-12
Storage Formats of Data Types .. 3-12
Literals ... 3-13

String .. 3-13
Numeric .. 3-14
Floating-point ... 3-15

OpenSQL Constants ... 3-15
Nulls ... 3-16

Nulls and Comparisons .. 3-16
Nulls and Aggregate Functions ... 3-16

Chapter 4: Elements of OpenSQL Statements

Operators ... 4-1
Arithmetic ... 4-1
Comparison .. 4-2
Logical... 4-2

Operations... 4-3
Assignment .. 4-3
Arithmetic ... 4-5

Functions.. 4-8
Function Support for Enterprise Access Products.. 4-8
Scalar ... 4-8
Aggregate .. 4-26
Ifnull Function .. 4-31
UUID ... 4-32

Expressions... 4-35
Predicates .. 4-35

Like .. 4-36
Between .. 4-37
In .. 4-38
Any-or-All .. 4-38
Exists... 4-40
Is Null .. 4-40

Search Conditions... 4-40
Subqueries ... 4-42

Chapter 5: Embedded OpenSQL

Syntax of an Embedded OpenSQL Statement .. 5-2
Structure of Embedded OpenSQL Programs .. 5-3

Contents v

Host Language Variables .. 5-4
Declaring Variables ... 5-5
The Include Statement .. 5-6
Variable Usage ... 5-6
Variable Structures ... 5-7
The Dclgen Utility ... 5-8
Indicator Variables.. 5-8
Null Indicators and Data Retrieval.. 5-9
Using Null Indicators to Assign Nulls ..5-10
Indicator Variables and Character Data Retrieval...5-10
Null Indicator Arrays and Host Structures..5-11

Data Manipulation with Cursors...5-11
Declaring a Cursor ...5-13
Opening Cursors ...5-13
Open Cursors and Transaction Processing ...5-14
Fetching the Data..5-14
Fetching Rows Inserted by Other Queries..5-15
Using Cursors to Update Data ..5-15
Using Cursors to Delete Data ...5-16
Closing Cursors ..5-18
Summary of Cursor Positioning ...5-18

Data Handlers for Large Objects ..5-20
Errors in Data Handlers ..5-21
Restrictions on Data Handlers ..5-22
Using Large Objects in Dynamic SQL ..5-22
Examples of Data Handlers ...5-23

Chapter 6: Dynamic OpenSQL

The SQLDA... 6-2
Structure of the SQLDA ... 6-2
Including the SQLDA in a Program ... 6-3
Describe Statement and the SQLDA .. 6-4
Data Type Codes ... 6-4
The Using Clause ... 6-5

Dynamic OpenSQL Statements .. 6-5
Execute Immediate Statement... 6-6
Prepare and Execute Statements... 6-6
Describe Statement ... 6-8

Executing a Dynamic Non-select Statement .. 6-8
Using Execute Immediate to Execute a Non-select Statement................................ 6-8
Preparing and Executing a Non-select Statement.. 6-9

vi OpenSQL Reference Guide

Executing a Dynamic Select Statement ... 6-10
When the Result Column Data Types are Known... 6-12
When the Result Column Data Types are Unknown .. 6-13
Preparing and Describing the Select Statement.. 6-13
Analyzing the Sqlvar Elements ... 6-14
Executing the Select with Execute Immediate ... 6-17
Using a Cursor to Retrieve the Results .. 6-18

Chapter 7: OpenSQL Features

Transactions ... 7-1
Controlling Transactions .. 7-2
Committing Transactions ... 7-2
Aborting Statements and Transactions... 7-3
Effects of Aborting Transactions ... 7-3
Interrupting Transactions ... 7-3

Retrieving Status Information... 7-3
The Dbmsinfo Function ... 7-4
The Inquire_sql Statement.. 7-5
The SQL Communications Area (SQLCA) ... 7-5

Error Handling ... 7-7
The SQLSTATE Variable... 7-7
Local and Generic Errors .. 7-8
Reading an OpenSQL Error Message ... 7-8
Displaying an Error Message .. 7-9
Handling Errors in Embedded Applications ... 7-9
Obtaining Error Information from the SQLCA ... 7-9
Trapping Errors Using the Whenever Statement ... 7-10
Defining an Error Handler .. 7-12
Obtaining Error Information Using Inquire Statements 7-13
Suppressing Error Messages ... 7-13
Specifying Program Termination on Errors .. 7-14
Handling Deadlock .. 7-15
Non-cursor Template .. 7-15
Single Cursor Template .. 7-15
Master/Detail Template .. 7-16

Multiple Session Connections .. 7-17
Connecting to Multiple Sessions .. 7-17
Switching Sessions .. 7-18
Terminating a Session ... 7-18
Multiple Sessions and the SQLCA ... 7-19
Multiple Sessions and the DBMS.. 7-19

Contents vii

Multiple Session Examples..7-20
Database Procedures ..7-22

Creating Database Procedures ..7-22
Registering Database Procedures ...7-22
Executing Database Procedures...7-24

DBMS Extensions ..7-24
The With Clause ...7-25
Syntax of the With Clause ..7-25

Database Events ..7-27
Database Event Statements ..7-28

Chapter 8: OpenSQL Statements

SQL Version.. 8-1
SQL Statements Context .. 8-1

Forms Statements .. 8-1
Extended Statements ... 8-2

Begin Declare Section... 8-2
Call.. 8-3
Close .. 8-5
Commit .. 8-6
Create Dbevent... 8-7
Connect.. 8-8
Create Index ..8-11
Create Table ..8-13

Specifying the Column Names, Data Types, and Lengths8-14
Using the Create Table...As Syntax ...8-14

Create View ...8-15
Declare Cursor ..8-18
Declare Global Temporary Table ..8-24
Declare Statement...8-27
Declare Table ...8-28
Delete ..8-29
Describe ..8-31
Direct Execute Immediate..8-32
Disconnect ..8-33
Drop..8-34
Drop Dbevent ...8-35
End Declare Section ...8-36
Endselect ...8-36
Execute ...8-37
Execute Immediate ..8-41

viii OpenSQL Reference Guide

Execute Procedure .. 8-44
Passing Parameters - Non-Dynamic Version ... 8-45
Passing Parameters - Dynamic Version ... 8-45
Execute Procedure Loops .. 8-47

Fetch... 8-49
Get Dbevent .. 8-51
Help.. 8-52
Include ... 8-54
Inquire_sql ... 8-56

Inquiring About Database Events ... 8-57
Types of Inquiries ... 8-57

Insert .. 8-60
Open ... 8-63
Prepare .. 8-65
Raise Dbevent .. 8-68
Register Dbevent ... 8-69
Remove Dbevent.. 8-70
Rollback .. 8-70
Select (interactive).. 8-71

Select Statement Clauses .. 8-72
Query Evaluation .. 8-72

The Select Clause ... 8-73
The From Clause .. 8-76
The Where Clause... 8-77

Joins ... 8-77
Outer Joins ... 8-78
Join Relationships ... 8-80
Subqueries ... 8-80

The Order By Clause .. 8-81
The Group By Clause .. 8-82
The Having Clause .. 8-83
The Union Clause ... 8-83
Select (embedded).. 8-85

Retrieving Values into Host Language Variables ... 8-87
Host Language Variables in the Union Clause.. 8-87
Repeated Queries ... 8-88
Cursor Select ... 8-88

Set... 8-91
Set_sql... 8-92
Update ... 8-94
Whenever .. 8-97

Contents ix

Chapter 9: Extended Statements

Create Schema ... 9-1
Create Table (extended) .. 9-3

Column Defaults and Nullability .. 9-5
Constraints... 9-7
The Constraint Index Options...9-12
Column-Level Constraints versus Table-Level Constraints...................................9-14
Using ...9-15

Grant ...9-18
Revoke ...9-21

Revoking the Grant Option ...9-22
Restrict versus Cascade ..9-23

Select...9-24

Chapter 10: OpenSQL Limits

OpenSQL Limits ...10-1

Chapter 11: OpenSQL Standard Catalogs

Standard Catalog Interface...11-1
The iidbcapabilities Catalog...11-2
The iidbconstants Catalog ..11-8
The iievents Catalog ...11-8
The iigwscalars Catalog ..11-8
The iitables Catalog ...11-10
The iicolumns Catalog...11-15
The iiphysical_tables Catalog ..11-18
The iiviews Catalog ...11-20
The iiindexes Catalog ...11-20
The iiindex_columns Catalog ..11-21
The iialt_columns Catalog ...11-22
The iistats Catalog ..11-22
The iihistograms Catalog ..11-23
The iiprocedures Catalog ..11-23
The iiregistrations Catalog...11-24
The iisynonyms Catalog ...11-25

Mandatory and Ingres-Only Standard Catalogs ...11-25
Mandatory Catalogs with Entries Required ..11-25
Mandatory Catalogs Without Entries Required...11-26
Ingres-Only Catalogs..11-26

x OpenSQL Reference Guide

Appendix A: An Appendix Heading

Keyword List... A-1
ISO SQL Keywords .. A-21

Appendix B: Terminal Monitors

Accessing the Terminal Monitor ... B-1
The Query Buffer... B-2
Terminal Monitor Commands.. B-3
Messages and Prompts ... B-5
Character Input and Output... B-6
Help... B-6
Aborting the Editor (VMS only).. B-7

Appendix C: Generic Error Codes

SQLSTATE Values .. C-1
Generic Error Codes .. C-6
Generic Error Data Exception Subcodes.. C-9
SQLSTATE and Equivalent Generic Errors ... C-10

Index

Chapter 1: Introduction 1–1

Chapter 1: Introduction

The OpenSQL Reference Guide describes OpenSQL usage and syntax.
OpenSQL was specifically designed to be compatible across several SQL
dialects. OpenSQL is functionally equivalent to Ingres SQL without the
extensions specific to Ingres®. This guide is designed for programmers who
write applications that are portable across all Advantage™ EDBC®,
Advantage™ Enterprise Access, and Ingres servers.

Note: If you are working through an Enterprise Access product, see your
Enterprise Access product documentation for information about syntax that
may differ from that described in this guide.

Audience
The OpenSQL Reference Guide is intended for programmers and OpenSQL
users who have a basic understanding of how Ingres and relational database
systems work. In addition, the reader should have a basic understanding of
the operating system. This guide is also intended as a reference for the
database system administrator.

Conventions
Syntax The following terminology distinctions are made when dealing with language

items:

 A command is an operation that you execute from an Advantage™
OpenROAD® Development menu or at the operating system level.

 A statement is an operation that you place in a program or called
procedure. Statements can be written in OpenROAD’s fourth-generation
language (4GL), a database query language (such as SQL), or a 3GL (like
C or COBOL).

When representing language elements in discussion text, the following
conventions are used:

Convention Usage

UPPERCASE Indicates constants (for example, TRUE, FALSE,
and FB_DIMMED)

Conventions

1–2 OpenSQL Reference Guide

Convention Usage

lowercase Indicates 4GL keywords and statements (for
example, begin keyword and callproc statement)

italic, lowercase Indicates a variable name (for example,
cursor_variable)

MixedCase/Initial
Capitalization

Indicates class names, attributes, methods, or
events (for example, DataStream class, ClientData
attribute, FetchRow method, and WindowResized
event)

When representing syntax, the following conventions are used:

Convention Usage

Boldface Indicates keywords, symbols, or punctuation that
you must type as shown

Italic Indicates a variable name for which you must
supply an actual value—this convention is used in
explanatory text, as well as syntax

Italic, underline Indicates a variable name which can be used in a
statement either dynamically (when you run the
application) or statically (when you create the
application)

[] (brackets) Indicates an optional item

{ } (braces) Indicates an optional item that you can repeat as
many times as appropriate

| (vertical bar) Indicates a list of mutually exclusive items (that is,
you can select only one item from the list)

The following example illustrates the syntax conventions:

select [all | distinct]
 resultexpression {, resultexpression}
 from tablename [corrname] {, tablename [corrname]}
 [where searchcondition]
 [group by columnname {, columnname}]
 [having searchcondition]

User Input Examples The following conventions are used for user input:

 Literal information (text that the user must enter exactly as shown) is
shown in bold:

Insert the CD-ROM into the CD-ROM drive and type
d:\install.

Conventions

Chapter 1: Introduction 1–3

 Placeholder text (variable information a user must enter) is denoted by an
italic typeface:

Enter login username.

Terminology This guide observes the following distinction in terminology:

A command is an operation that is executed at the operating system level.
An extended operation invoked by a command is often referred to as a
utility.

A statement is an operation that is embedded in a program or executed
interactively from the Terminal Monitor.

A statement can be written in Ingres 4GL, a host programming language
(such as C), or a database query language (SQL or QUEL).

Syntax and User Input When representing syntax and user input, the following conventions are used:

 Convention Usage

 Boldface Indicates any text that must be typed as shown.

 Italics Represent a variable name or placeholder for which
you must supply an actual value—this convention is
used in explanatory text, as well as syntax.

 Fixed pitch font Indicates text that is displayed on your screen, such
as prompts and messages. For example, the following
statement is a prompt:

Enter database name:

 Case Sensitivity System command and environment variable names
may be case-sensitive, depending on the
requirements of your operating system.

 [] (brackets) Used to enclose an optional item.

 { } (braces) Used to enclose an optional item that you can repeat
as many times as appropriate.

 | (vertical bar) Used between items in a list to indicate that you
should choose one of the items.

UNIX

% (percent sign) At the beginning of a command line, indicates
commands that are entered at the C-shell command
line prompt. It should not be entered by the user.

Conventions

1–4 OpenSQL Reference Guide

 Convention Usage

 $ (dollar sign) At the beginning of a command line, indicates
commands that are entered at the Bourne-shell
command line prompt. It should not be entered by the
user.

Note: This symbol is also used as a literal part of
syntax when referring to environment variable names.
When it appears anywhere except at the beginning of
a command line, it must entered exactly as shown.

Example The following example illustrates some of these conventions:

create table tablename (columnname format
 {,columnname format})
 [with_clause]

Embedded OpenSQL
Examples

Examples of embedded OpenSQL code provided in this guide use the
following conventions:

Convention Usage

Margins None are used.

; (semicolon) Represents the statement terminator.

Labels Appear on their own line and are followed by a
colon (:). Control passes to the statement following
the label.

Host language comments Indicated by the OpenSQL comment indicator; for
example:

/* This is a comment. */

' ' (single quotes) Surround character strings.

pseudocode Represents host language statements in embedded
OpenSQL. For example:

exec sql begin declaration;
 variable declarations
exec sql end declaration;

To determine the correct syntax for your programming language, see the
Embedded SQL Companion Guide.

Chapter 2: Overview of OpenSQL 2–1

Chapter 2: Overview of OpenSQL

This chapter provides an introduction to the basics of OpenSQL including an
overview of various Enterprise Access products and available OpenSQL
features.

What Is OpenSQL?
SQL (Structured Query Language) is a language that allows you to manipulate
and maintain data in a relational database. OpenSQL is a version of SQL that
was specifically designed to be compatible across several SQL dialects.
OpenSQL allows you to create applications that run on the following servers:

 The Ingres DBMS (for Ingres databases)

 Enterprise Access products (for access to other database management
systems)

 Ingres Distributed Option (for distributed databases)

 EDBC servers

OpenSQL statements can be used in the following contexts:

 Terminal Monitor

 Embedded OpenSQL programs

 Applications built with Vision (a forms-based application development tool)

 Applications built with OpenROAD (a graphical user interface application
development tool)

Use OpenSQL statements in the interactive Terminal Monitor or in embedded
OpenSQL programs. OpenSQL statement syntax and results are consistent
across supported host programming languages. This guide does not include
specific information about host languages. For details, see the Embedded SQL
Companion Guide.

Forms statements allow you to write embedded applications that interact with
users through Visual Forms Editor forms. For details about forms statements,
see the Forms-based Application Development Tools User Guide.

What Is OpenSQL?

2–2 OpenSQL Reference Guide

Enterprise Access Products

Enterprise Access products (formerly referred to as Gateways) are interfaces
between Ingres applications and database management systems other than
Ingres. The Enterprise Access products provide a variety of services, including:

 Translating between OpenSQL and host query interfaces, such as Rdb/VMS
(for Alpha VMS), or DB2 UDB (for IBM DB2 Universal Database)

 Emulating SQL functions for non-relational databases such as IMS and
RMS

 Converting between OpenSQL data types and data types that are native to
other host database management systems

 Translating host DBMS error messages to Ingres generic errors

Enterprise Access products are transparent, meaning that host databases are
presented as if they are Ingres databases.

Ingres Distributed Option

Ingres Distributed Option provides a single, consistent system view of multiple
databases managed by either the Ingres DBMS Server or by Enterprise Access
products.

Interactive OpenSQL

Interactive OpenSQL provides full access to Ingres databases, distributed
databases (through Ingres Distributed Option), and other types of databases
(through Enterprise Access products). Because interactive OpenSQL
statements are similar to their embedded versions, use interactive OpenSQL to
test the queries to be used in embedded programs. The user interface to
interactive OpenSQL is the Terminal Monitor.

Embedded OpenSQL

Using embedded OpenSQL, OpenSQL statements can be mixed with host
language statements. Use host language variables to specify values required
by embedded OpenSQL statements. For information about the requirements of
a specific host language, see the Embedded SQL Companion Guide.

What Is OpenSQL?

Chapter 2: Overview of OpenSQL 2–3

Building Embedded OpenSQL Programs

The Embedded SQL preprocessor converts embedded OpenSQL statements in
your program into host language source code statements. The resulting
statements are calls to a runtime library that provides the interface to Ingres,
Ingres Distributed Option, and Enterprise Access products. Non-SQL host
language statements are passed through the preprocessor without being
altered. After the program has been preprocessed, it must be compiled and
linked as appropriate for the host language. For details on preprocessing an
embedded OpenSQL program, see the Embedded SQL Companion Guide.

Retrieving Status Information

Status information is available to an embedded program from the SQL
Communications Area (SQLCA). The SQLCA is a data structure that can be
included in the program. The SQLCA contains information concerning the
results of the last executed OpenSQL statement. Statements in embedded
OpenSQL programs can refer to data in the SQLCA for execution of conditional
actions. For information on the language-specific data structure of the SQLCA,
see the Embedded SQL Companion Guide.

Specifying Parameters at Runtime

OpenSQL enables you to execute queries that are formulated at runtime
(rather than before preprocessing). This is known as dynamic OpenSQL.

Differences between Embedded and Interactive OpenSQL

Embedded OpenSQL builds on the features and statements available in
interactive OpenSQL. However, embedded OpenSQL differs from interactive
OpenSQL in the following areas:

 Host language variables - Embedded OpenSQL allows host variables to
be used in place of many syntactic elements. (There are no variables in
interactive OpenSQL.)

 Error and status information - In interactive OpenSQL, error and status
messages are sent directly to the terminal screen. In embedded OpenSQL,
the SQL Communications Area (SQLCA) structure receives error and status
information.

 Data manipulation statements - There are two embedded versions of
the select statement. The first version is similar to the interactive select
statement. The second version allows the retrieval and updating of an
indeterminate number of rows, using cursors. The update and delete
statements also have cursor versions. For more information about cursors,
see Data Manipulation with Cursors in the chapter “Embedded OpenSQL.”

Features

2–4 OpenSQL Reference Guide

 Dynamic OpenSQL statements - Embedded OpenSQL creates
statements dynamically from individual components specified in program
variables. These statements can be executed repeatedly with different
values.

 Additional database access statements - Embedded OpenSQL includes
several statements not required in interactive OpenSQL. These additional
statements enable your embedded application to connect to a database
and to control cursors.

 Repeated queries - A repeated query executes more quickly than other
queries, because the server retains the query execution plan. Embedded
OpenSQL allows you to specify a select, insert, update, or delete
statement as repeated.

Features
The availability of some OpenSQL features depend on the version of OpenSQL
supported by the host DBMS to which your application connects. To determine
which version of OpenSQL the host DBMS supports, select the row containing
the OPEN/SQL_LEVEL capability from the iidbcapabilities system catalog.

The following OpenSQL features are only available when the OPEN/SQL_LEVEL
value in the iidbcapabilities system catalog is 00605 or higher:

 Create schema statement

 Grant and revoke statements

 Create table statement: column constraints and defaults

 Schema.table syntax

 Delimited identifiers

 The escape clause in the like predicate

 Database procedures

For Enterprise Access, newer OpenSQL features may be available even though
the Open/SQL_LEVEL value is not at 00605 or higher. For the current
availability of OpenSQL features, see the Enterprise Access documentation.

Object Names

The rules for naming OpenSQL objects (such as tables, columns, and views)
are as follows:

 All keywords are reserved and cannot be used as variable or object names
in OpenSQL. In addition, embedded OpenSQL reserves all words beginning
with “ii”. Enforcement of keywords may vary by Enterprise Access product.

Features

Chapter 2: Overview of OpenSQL 2–5

 Names can contain only alphanumeric characters and must begin with an
alphabetic character (A-Z).

 Names can contain (though not begin with) the special characters 0
through 9 and underscore (_).

 All names are converted as necessary to the proper case for the host
DBMS. The host DBMS stores names in the system catalogs in one of three
formats: uppercase, lowercase, or mixed case. For more information, see
The iidbcapabilities Catalog in the chapter “OpenSQL Standard Catalogs.”

 The maximum length of an OpenSQL object name is 32 characters. To
ensure application portability, limit names to a maximum of 18 characters.
For names of objects managed by the Ingres tools (such as Query-By-
Forms, Report-By-Forms, Vision, and Visual Forms Editor), the maximum
is 32 characters. Examples of objects managed by the user interfaces are:

– Forms

– JoinDefs

– QBFnames

– Graphs

– Reports

For more information about objects managed by the user interfaces, see the
Character-based Querying and Reporting Tools User Guide or the guide that
documents the specific user interfaces.

Regular and Delimited Identifiers

Identifiers in OpenSQL statements specify names for the following objects:

 User

 Column

 Correlation name

 Cursor

 Database procedure

 Database procedure parameter

 Index

 Prepared query

 Schema

 Table

 View

Features

2–6 OpenSQL Reference Guide

Specify these names using regular (unquoted) identifiers or delimited
(double-quoted) identifiers. For example:

 Table name in a select statement specified using a regular identifier:

 select * from employees

 Table name in a select statement specified using a delimited identifier:

 select * from "my table"

Delimited identifiers allow special characters to be embedded in object names.
OpenSQL restricts the use of special characters in regular identifiers.

Restrictions on Identifiers

For ANSI/ISO Entry SQL-92 standards compliance, identifiers should be no
longer than 18 characters. The following table lists restrictions for each type of
identifier:

Restriction Regular Identifiers Delimited Identifiers

Quotes Specified without quotes Specified in double quotes

Keywords Cannot be a keyword Can be a keyword

Case Depends on host DBMS Is significant

Valid Special
Characters

“At” sign (@)
(Ingres only)

Crosshatch (#) (Ingres only)

Dollar sign ($)
(Ingres only)

Underscore (_)

Ampersand (&)

Asterisk (*)

“At” sign (@)

Colon (;)

Comma (,)

Crosshatch (#)

Dollar sign ($)

Double quotes (")

Equal sign (=)

Forward slash (/)

Left and right caret (< >)

Left and right parentheses

Minus sign (-)

Features

Chapter 2: Overview of OpenSQL 2–7

Restriction Regular Identifiers Delimited Identifiers

 Period (.)

Plus sign (+)

Question mark (?)

Semicolon (;)

Single quote (')

Space

Underscore (_)

Vertical bar (|)

The following characters cannot be embedded in object names using either
regular or delimited identifiers:

 Backslash (\)

 Caret (^)

 Curly braces ({ })

 DEL (ASCII 127 or X'7F')

 Exclamation point (!)

 Left quote (ASCII 96 or X'60')

 Tilde (~)

To specify double quotes in a delimited identifier, the quotes must be
repeated. For example:

"""Identifier""Name"""

is interpreted by OpenSQL as:

"Identifier"Name"

Case Sensitivity of Identifiers

Case sensitivity for regular and delimited identifiers depends on the underlying
DBMS. For compliance with ANSI/ISO Entry SQL-92 standards, delimited
identifiers must be case sensitive.

OpenSQL treats database and user names without regard to case.

Features

2–8 OpenSQL Reference Guide

Comment Delimiters

To indicate comments in interactive OpenSQL, use the following delimiters:

 “/*” and “*/” (left and right delimiters, respectively). For example:

 /* This is a comment */

When using “/*...*/” to delimit a comment, the comment can continue
over more than one line. For example,

 /* Everything from here...
 ...to here is a comment */

 “--” (left side only). For example,

 --This is a comment.

The “--” delimiter indicates that the rest of the line is a comment. A
comment delimited by “--” cannot be continued to another line.

To indicate comments in embedded OpenSQL, use the following delimiters:

 “--”, with the same usage rules as interactive OpenSQL.

 Host language comment delimiters. For information about comment
delimiters, see the Embedded SQL Companion Guide.

Statement Terminators

Statement terminators separate one OpenSQL statement from another. In
interactive OpenSQL, the statement terminator is the semicolon (;).
Statements must be terminated with a semicolon when entering two or more
OpenSQL statements before issuing the go command (\g), selecting the Go
menu item, or issuing some other Terminal Monitor command.

In the following example, the first and second statements are terminated by
semicolons. The third statement need not be terminated with a semicolon,
because it is the final statement.

select * from addrlst;
select * from emp
where fname = 'john';
select * from emp
where mgrname = 'dempsey'\g

If only one statement is entered, the statement terminator is not required. For
example, the following single statement does not require a semicolon:

select * from addrlst\g

In embedded OpenSQL applications, the use of a statement terminator is
determined by the rules of the host language. For details, see the Embedded
SQL Companion Guide.

Features

Chapter 2: Overview of OpenSQL 2–9

Correlation Names

Correlation names are used in queries to clarify the table (or view) to which a
column belongs. For example, the following query uses correlation names to
join a table with itself:

select a.empname from emp a, emp b
 where a.mgrname = b.empname
 and a.salary > b.salary;

Correlation names can also be used to abbreviate long table names.

Specify correlation names in select statements. A single query can reference a
maximum of 126 correlation and table names (including all base tables
referenced by views specified in a query).

Note: The maximum number of tables referenced in a single query is
dependent on the host DBMS. The 126 maximum listed here is for the Ingres
DBMS; other DBMSs supported by Enterprise Access and EDBC may have a
higher or lower limit.

If a correlation name is not specified, the table name implicitly becomes the
correlation name. For example, in the following query:

select * from employee
 where salary > 100000;

OpenSQL assumes the correlation name, employee, for the salary column and
interprets the preceding query as:

select * from employee
 where employee.salary > 100000;

If a correlation name is specified for a table, the correlation name (and not the
actual table name) must be used within the query. For example, the following
query generates a syntax error:

/*incorrect*/
select * from employee e
where employee.salary > 35000;

A correlation name must be unique. For example, the following statement is
illegal because the same correlation name is specified for different tables:

/*incorrect*/
select e.ename from employee e, manager e
 where e.dept = e.dept;

A correlation name that is the same as a table that you own cannot be
specified. If you own a table called mytable, the following query is illegal:

select * from othertable mytable...;

In nested queries, OpenSQL resolves unqualified column names by checking
the tables specified in the nearest from clause, then the from clause at the
next higher level, and so on, until all table references are resolved.

Features

2–10 OpenSQL Reference Guide

For example, in the following query, the dno column belongs to the deptsal
table, and the dept column to the employee table:

select ename from employee
 where salary >
 (select avg(salary) from deptsal
 where dno = dept);

Because the columns are specified without correlation names, OpenSQL
performs the following steps to determine to which table the columns belong:

Column Action

dno OpenSQL checks the table specified in the nearest from clause
(the deptsal table). The dno column does belong to the deptsal
table. OpenSQL interprets the column specification as
deptsal.dno.

dept OpenSQL checks the table specified in the nearest from clause
(deptsal). The dept column does not belong to the deptsal table.

OpenSQL checks the table specified in the from clause at the
next higher level (the employee table). The dept column does
belong to the employee table. OpenSQL interprets the column
specification as employee.dept.

OpenSQL does not search across subqueries at the same level to resolve
unqualified column names. For example, given the query:

select * from employee

where
 dept = (select dept from sales_departments
 where mgrno=manager)
 or
 dept = (select dept from mktg_departments
 where mgrno=manager_id);

OpenSQL checks the description of the sales_departments table for the mgrno
and manager columns. If they are not found, OpenSQL checks the employee
table next, but will not check the mktg_departments table. Similarly, OpenSQL
first checks the mktg_departments table for the mgrno and manager_id
columns. If they are not found, OpenSQL will check the employee table, but
will never check the sales_departments table.

Chapter 3: OpenSQL Data Types 3–1

Chapter 3: OpenSQL Data Types

This chapter describes OpenSQL data types, along with data type storage
formats, literals, and OpenSQL constants.

OpenSQL Data Types
The following table lists the OpenSQL data types:

Class Category Data Type (Synonyms)

Character Fixed length character (char)

 Variable length varchar (character varying)

 long varchar (clob, character large
object, char large object)

Numeric Exact numeric integer (integer4, int)

 smallint (integer2)

 bigint (integer8)

 tinyint (integer1)

 decimal (dec, numeric)

 Approximate numeric float (float8, double precision)

 real (float4)

Abstract (none) date

 money

Binary long byte (blob, binary large object)

Character Data Types
Character data types are strings of ASCII characters. Upper and lower case
alphabetic characters are accepted literally. OpenSQL supports one
fixed-length character data type, character, and two variable-length character
data types, varchar and long varchar.

Character Data Types

3–2 OpenSQL Reference Guide

The maximum size of a character column varies according to the DBMS being
accessed. Additional space requirements for character columns are as follows:

 Varchar columns require two additional bytes to store a length specifier.

 Nullable columns require one additional byte to store a null indicator.

Note: Unicode data types are an extended feature of OpenSQL, which means
that not all OpenSQL servers support Unicode. If an OpenSQL server supports
Unicode, the iidbcapabilities catalog has a row with a cap_capability of
NATIONAL_CHARACTER_SET and a cap_value of Y. To see if a particular
OpenSQL server supports Unicode, refer to the documentation for that server.

Character

Character strings are fixed-length strings that can contain any printing or
non-printing character, and the null character ('\0'). For example, if you enter
ABC into a character(5) column, five bytes will be stored, as follows:

'ABC '

Leading and embedded blanks are significant when comparing character
strings. For example, OpenSQL considers the following character strings to be
different:

'A B C'
'ABC'

When selecting character strings using the underscore (_) wildcard character
of the like predicate, any trailing blanks you want to match must be included.
For example, to select the following character string:

'ABC '

the wildcard specification must also contain trailing blanks:

'___ '

Length is not significant when comparing character strings. The shorter string
is (logically) padded to the length of the longer. For example, OpenSQL
considers the following character strings equal:

'ABC'
'ABC '

Char is a synonym for character.

Character Data Types

Chapter 3: OpenSQL Data Types 3–3

Varchar

Varchar strings are variable-length strings, returned to applications as a
2-byte length specifier followed by character data. The varchar data type can
contain any character, including non-printing characters and the ASCII null
character ('\0').

Blanks are significant in the varchar data type. For example, OpenSQL does
not consider the following two varchar strings equal:

'the store is closed'

and

'thestoreisclosed'

If the strings being compared are unequal in length, the shorter string is
padded with trailing blanks until it equals the length of the longer string.

For example, the following two varchar strings:

'abcde' and 'abcd'

are compared as

'abcde' and 'abcd '

Long Varchar

The long varchar data type has the same characteristics as the varchar data
type, but can accommodate strings up to two GB in length. Do not declare a
length for long varchar columns. In embedded SQL data handlers can be
created, which are routines to read and write the data for long varchar (and
long byte) columns. For details about data handlers, see Data Handlers for
Large Objects in the “Embedded SQL” chapter, and the Embedded SQL
Companion Guide.

Restrictions

The following restrictions apply to long varchar columns:

 They cannot be part of a table key.

 They do not declare a length.

 They cannot be part of a secondary index.

 They cannot be used in the order by or group by clause in a select
statement.

 They cannot have query optimization statistics. For details about query
optimization statistics, see the discussion of the optimizedb utility in the
Command Reference Guide.

Numeric Data Types

3–4 OpenSQL Reference Guide

 The following string functions do not work with long varchar columns:

– Locate

– Pad

– Shift

– Squeeze

– Trim

– Notrim

– Charextract

 These columns cannot be directly compared to other string data types. To
compare a long varchar column to another string data type, apply a
coercion function.

 A string literal of more than 2000 characters cannot be assigned to a long
varchar column. Details about assigning long strings to these columns are
found in the description of data handlers in the Embedded SQL Companion
Guide or the OpenAPI User Guide.

Numeric Data Types
OpenSQL has two categories of numeric data types: exact and approximate.
The exact numeric data types are the integer data types and the decimal data
type. The approximate numeric data types are the floating-point data types.

Integer

There are four integer data types:

 tinyint (one-byte)

 smallint (two-byte)

 integer (four-byte)

 bigint (eight-byte)

Numeric Data Types

Chapter 3: OpenSQL Data Types 3–5

The following table lists the ranges of values for each integer data type:

Integer Data Type Lowest Possible Value Highest Possible Value

tinyint (integer1) -128 +127

smallint (integer2) -32,768 +32,767

integer (integer4) -2,147,483,648 +2,147,483,647

bigint (integer8) -
9,223,372,036,854,775,8
08

+9,223,372,036,854,775,8
07

Decimal

The decimal data type is an exact numeric data type defined in terms of its
precision (total number of digits) and scale (number of digits to the right of
the decimal point). The following figure illustrates precision and scale in
decimal values:

 Precision=1

Scale=5

12345.67890

The minimum precision for a decimal value is 1 and the maximum is 31. The
scale of a decimal value cannot exceed its precision. Scale can be 0 (no digits
to the right of the decimal point).

Specify the declaration using the following syntax:

decimal(p,s)

where

p=precision

s=scale

Valid synonyms for the decimal data type are dec and numeric.

Note: The decimal data type is suitable for storing currency data. Note that, for
display purposes, a currency sign cannot be specified for decimal values.

Numeric Data Types

3–6 OpenSQL Reference Guide

Floating-point

A floating-point value is represented either as whole plus fractional digits (like
decimal values) or as a mantissa plus an exponent. The following figure
illustrates the mantissa and exponent parts of floating-point values:

 Mantissa=123

Exponent=4

 123E4

There are two floating-point data types:

 real (4-byte)

 float (8-byte)

Note: Float4 is a synonym for real. Float8 and double precision are synonyms
for float.

Floating-point numbers are double-precision quantities stored in four or eight
bytes. The range of float values is processor-dependent, and the precision is
approximately 16 significant digits.

Specify the precision (number of significant bits) for a floating-point value
using the following (optional) syntax:

float(n)

where n is a value from 0 to 53.

OpenSQL allocates storage according to the precision you specify, depending
on the host DBMS and hardware. For information about the correct notation
for a floating-point numeric literal, see Numeric in this chapter.

Abstract Data Types

Chapter 3: OpenSQL Data Types 3–7

Abstract Data Types
The abstract data types include the date and money data types.

Date

OpenSQL supports date data types for sessions connected to:

 The Ingres DBMS

 An Enterprise Access product to a host DBMS that supports date data
types (for example, DB2 UDB, Oracle, or Rdb)

If the host DBMS supports date data types, the iidbcapabilities standard
catalog table includes a row where cap_capability is set to OPEN_SQL_DATES,
and cap_value is set to LEVEL 1.

Tables created in OpenSQL with date columns are mapped to the date format
of the host DBMS. For example, OpenSQL date would map to Rdb date and to
IBM timestamp.

On input, date constants in queries must be specified using the OpenSQL
date() function.

OpenSQL supports the following operations on date data:

 Ordering on date columns

 Comparing two date columns

 Comparing a date column to a date constant

Absolute Date Input Formats

Dates are specified as quoted character strings. A date can be entered by itself
or together with a time value. For more information about date and time
display, see Date and Time Display Formats in this chapter.

The legal formats for absolute date values are determined by the
II_DATE_FORMAT setting, summarized in the following table. If
II_DATE_FORMAT is not set, the US formats are the default input formats.
II_DATE_FORMAT can be set on a session basis. For information on setting
II_DATE_FORMAT, see the System Administrator Guide.

Abstract Data Types

3–8 OpenSQL Reference Guide

II_DATE_FORMAT
Setting

Valid Input Formats Output

US (default format) mm/dd/yy
mm/dd/yyyy
dd-mmm-yyyy
mm-dd-yyyy
yyyy.mm.dd
yyyy_mm_dd
mmddyy
mm-dd
mm/dd

dd-mmm-yyyy

MULTINATIONAL dd/mm/yy
all US formats except
mm/dd/yyyy

dd/mm/yy

ISO yymmdd
ymmdd
yyyymmdd
mmdd
mdd
all US input formats except
mmddyy

yymmdd

SWEDEN/FINLAND yyyy-mm-dd

all US input formats except
mm-dd-yyyy

yyyy-mm-dd

GERMAN dd.mm.yyyy
ddmmyy
dmmyy
dmmyyyy
ddmmyyyy
and all US input formats except
yyyy.mm.dd and mmddyy

dd.mm.yyyy

YMD mm/dd
yyyy-mm-dd
mmdd
yymdd
yymmdd
yyyymdd
yyyymmdd
yyyy-mmm-dd

yyyy-mmm-dd

Abstract Data Types

Chapter 3: OpenSQL Data Types 3–9

II_DATE_FORMAT
Setting

Valid Input Formats Output

DMY dd/mm
dd-mm-yyyy
ddmm
ddmyy
ddmmyy
ddmyyyy
ddmmyyyy
dd-mmm-yyyy

dd-mmm-yyyy

MDY mm/dd
dd-mm-yyyy
mmdd
mddyy
mmddyy
mddyyyy
mmddyyyy
mmm-dd-yyyy

mmm-dd-yyyy

Year defaults to the current year. In formats that include delimiters (such as
forward slashes or dashes), specify the last two digits of the year. The first two
digits default to the current century (2000). For example, if you enter the
following date:

'03/21/00'

using the format mm/dd/yyyy, OpenSQL assumes that you are referring to
March 21, 2000.

In three-character month formats, for example, dd-mmm-yy, OpenSQL
requires three-letter abbreviations (for example, mar, apr, may).

To specify the current system date, use the constant today. For example:

select date('today');

To specify the current system time, use the constant now.

Absolute Time Input Formats

The legal format for inputting an absolute time is

'hh:mm[:ss] [am|pm] [timezone]'

Input formats for absolute times are assumed to be on a 24-hour clock. If a
time is entered with an am or pm designation, then OpenSQL automatically
converts the time to a 24-hour internal representation.

Abstract Data Types

3–10 OpenSQL Reference Guide

If timezone is omitted, OpenSQL assumes the local time zone designation.
Times are displayed using the time zone adjustment specified by
II_TIMEZONE_NAME.

If an absolute time is entered without a date, OpenSQL assumes the current
system date.

Combined Date and Time Input

Any valid absolute date input format can be paired with a valid absolute time
input format to form a valid date and time entry. The following table shows
some examples of valid date and time entries using the US absolute date input
formats:

Format Example

mm/dd/yy hh:mm:ss 11/15/00 10:30:00

dd-mmm-yy hh:mm:ss 15-nov-98 10:30:00

mm/dd/yy hh:mm:ss 11/15/99 10:30:00

dd-mmm-yy hh:mm:ss gmt 15-nov-00 10:30:00 gmt

dd-mmm-yy hh:mm:ss [am|pm] 15-nov-98 10:30:00 am

mm/dd/yy hh:mm 11/15/99 10:30

dd-mmm-yy hh:mm 15-nov-00 10:30

mm/dd/yy hh:mm 11/15/98 10:30

dd-mmm-yy hh:mm 15-nov-99 10:30

Date and Time Display Formats

OpenSQL outputs date values as strings of 25 characters with trailing blanks
inserted.

To specify the output format of an absolute date and time, II_DATE_FORMAT
must be set. For a list of II_DATE_FORMAT settings and associated formats,
see Absolute Date Input Formats in this chapter. The display format for
absolute time is:

hh:mm:ss

OpenSQL displays 24-hour times for the current time zone, which is
determined when OpenSQL is installed. Dates are stored in Greenwich Mean
Time (GMT) and adjusted for your time zone when they are displayed.

Abstract Data Types

Chapter 3: OpenSQL Data Types 3–11

If seconds are omitted when entering a time, OpenSQL displays zeros in the
seconds’ place.

Money

The money data type is an abstract data type. Money values are stored
significant to two decimal places. These values are rounded to their amounts
in dollars and cents or other currency units on input and output, and
arithmetic operations on the money data type retain two-decimal-place
precision.

Money columns can accommodate the following range of values:

$-999,999,999,999.99 to $999,999,999,999.99

A money value can be specified as either:

 A character string literal—The format for character string input of a
money value is $sdddddddddddd.dd. The dollar sign is optional and the
algebraic sign(s) defaults to + if not specified. There is no need to specify
a cents value of zero (.00).

 A number—Any valid integer or floating point number is acceptable. The
number is converted to the money data type automatically.

On output, money values display as strings of 20 characters with a default
precision of two decimal places. The display format is:

$[-]dddddddddddd.dd

where:

$ is the default currency symbol
d is a digit from 0 to 9

The following settings affect the display of money data. For details, see the
System Administrator Guide:

Variable Description

II_MONEY_FORMAT Specifies the character displayed as the currency
symbol. The default currency sign is the dollar sign
($). II_MONEY_FORMAT also specifies whether the
symbol appears before of after the amount.

II_MONEY_PREC Specifies the number of digits displayed after the
decimal point; valid settings are 0, 1, and 2.

Binary Data Types

3–12 OpenSQL Reference Guide

Variable Description

II_DECIMAL Specifies the character displayed as the decimal
point; the default decimal point character is a period
(.). II_DECIMAL also affects FLOAT, FLOAT4, and the
DECIMAL data types.

Note: If II_DECIMAL is set to comma, be sure that
when SQL syntax requires a comma (such as a list of
table columns or SQL functions with several
parameters), that the comma is followed by a space.
For example:

select col1, ifnull(col2, 0), left(col4, 22) from t1:

Binary Data Types
Binary columns can contain data such as graphic images, which cannot easily
be stored using character or numeric data types.

Long Byte

The long byte data type has the same characteristics as the byte varying data
type, but can accommodate binary data up to 2 GB in length. In embedded
SQL, data handlers can be created, which are routines to read and write the
data for long byte columns. For details about data handlers, see Data Handlers
for Large Objects in the chapter “Embedded SQL” and the Embedded SQL
Companion Guide.

Storage Formats of Data Types
The following table lists storage formats for OpenSQL data types:

Notation Type Range

character(1) -
character(n)

character n represents the lesser of the maximum configured row size and
32,000.

varchar(1) -
varchar(n)

character n represents the lesser of the maximum configured row size and
32,000.

long varchar character A string of 1 to 2 GB characters

tinyint 1-byte integer -128 to +127

Literals

Chapter 3: OpenSQL Data Types 3–13

Notation Type Range

smallint 2-byte integer -32,768 to +32,767

integer 4-byte integer -2,147,483,648 to +2,147,483,647

bigint 8-byte integer -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

decimal(p, s) fixed-point exact
numeric

Depends on precision and scale; default is (5,0): -99999 to
+99999. Maximum number of digits is 31.

real 4-byte floating -1.0e+38 to +1.0e+38 (7 digit precision)

float 8-byte floating -1.0e+38 to +1.0e+38 (16 digit precision)

date date (12 bytes) 1-jan-0001 to 30-dec-9999

money money (8 bytes) $-999,999,999,999.99 to $999,999,999,999.99

long byte binary 1 to 2 GB of binary data

Note: If your hardware supports the IEEE standard for floating-point numbers,
then the float type is accurate to 14 decimal precision ($-dddddddddddd.dd to
$+dddddddddddd.dd) and ranges from -10**308 to +10**308.

Literals
A literal is an explicit representation of a value. OpenSQL supports two types
of literals:

 String

 Numeric

String

String literals are specified by one or more characters enclosed in single
quotes. The default data type for string literals is varchar, but a string literal
can be assigned to any character data type or to the money or date data types
without using a data type conversion function.

To compare a string literal with a non-character data type (A), you must either
cast the string literal to the non-character data type A, or cast the non-
character data type to the string literal type. Failure to do so may result in
unexpected results if the non-character data type contains the ‘NUL (0) value.

Literals

3–14 OpenSQL Reference Guide

Quotes in Strings To include a single quote inside a string literal, it must be doubled. For
example:

'The following letter is quoted: ''A''.'

which evaluates to

The following letter is quoted: 'A'.

Numeric

Numeric literals specify numeric values. There are three types of numeric
literals:

 Integer

 Decimal

 Floating-point

A numeric literal can be assigned to any of the numeric data types or the
money data type without using an explicit conversion function. OpenSQL
automatically converts the literal to the appropriate data type, if necessary.

By default, OpenSQL uses the period (.) to indicate the decimal when needed.
This default can be changed by setting II_DECIMAL. For information about
setting II_DECIMAL, see the Database Administrator Guide.

Note: If II_DECIMAL is set to comma, be sure that when OpenSQL syntax
requires a comma (such as a list of table columns or OpenSQL functions with
several parameters), that the comma is followed by a space. For example:

select col1, ifnull(col2, 0), left(col4, 22) from t1:

Integer Literals Integer literals are specified by a sequence of up to 10 digits and an optional
sign, in the following format:

[+|-] digit {digit} [e digit]

Integer literals are represented internally as either an integer or a smallint,
depending on the value of the literal. If the literal is within the range -32,768
to +32,767, it is represented as a smallint. If its value is within the range
-2,147,483,648 to +2,147,483,647 but outside the range of a smallint, then it
is represented as an integer. Values that exceed the range of integers are
represented as decimals.

Integers can be specified using a simplified scientific notation, similar to the
way floating-point values are specified. To specify an exponent, follow the
integer value with the letter “e” and the value of the exponent. This notation is
useful for specifying large values. For example, to specify 100,000 use the
following exponential notation:

1e5

OpenSQL Constants

Chapter 3: OpenSQL Data Types 3–15

Decimal Literals Decimal literals are specified as signed or unsigned numbers of 1 to 31 digits
that include a decimal point. The precision of a decimal number is the total
number of digits, including leading and trailing zeros. The scale of a decimal
literal is the total number of digits to the right of the decimal point, including
trailing zeros. Decimal literals that exceed 31 digits are treated as floating-
point values.

Examples of decimal literals are:

3.
-10.
1234567890.12345
001.100

Floating-point

A floating-point literal must be specified using scientific notation. The format
is:

[+|-] {digit} [.{digit}] e|E [+|-] {digit}

For example:

2.3e-02

At least one digit must be specified, either before or after the decimal point.

OpenSQL Constants
OpenSQL provides the following constants:

Special Constant Meaning

now Current date and time. Specify this constant in quotes
only for servers and Enterprise Access products that
support the date data type.

null Indicates a missing or unknown value in a table.

today Current date. Specify this constant in quotes. Valid
only for servers and Enterprise Access products that
support the date data type.

user Effective user for the current session (the host DBMS
user identifier, not the operating system user
identifier).

Nulls

3–16 OpenSQL Reference Guide

These constants can be used in queries and expressions. For example:

select date('now');
insert into sales_order
(item_number, clerk, billing_date)
values ('123', user, date('today'));

Nulls
A null represents an undefined or unknown value and is specified by the
keyword null. A null is not the same as a zero, a blank, or an empty string. A
null can be assigned to any nullable column when no other value is specifically
assigned. More information about defining nullable columns is provided in the
Create Table section in the “OpenSQL Statements” chapter.

The is null predicate allows nulls to be handled in queries. For details, see
Exists in the “OpenSQL Statements” chapter.

Nulls and Comparisons

Because a null is not a value, it cannot be compared to any other value
(including another null value). For example, the following where clause
evaluates to false if one or both of the columns is null:

where columna = columnb

Similarly, the where clause

where columna < 10 or columna >= 10

is true for all numeric values of columna, but false if columna is null. The one
exception, count(), is described in the next section.

Nulls and Aggregate Functions

When executing an aggregate function against a column that contains nulls,
the function ignores the nulls. This prevents unknown or inapplicable values
from affecting the result of the aggregate.

For example, if you apply the aggregate function, avg(), to a column that
holds the ages of your employees, you want to be sure that any ages that
have not been entered in the table are not treated as zeros by the function.
This would distort the true average age. If a null is assigned to any missing
ages, then the aggregate returns a correct result: the average of all known
employee ages.

Nulls

Chapter 3: OpenSQL Data Types 3–17

Aggregate functions, except count(), return null for an aggregate over an
empty set, even when the aggregate includes columns that are not nullable (in
this case, count() returns 0). In the following example, the select returns null,
since there are no rows in test:

create table test (col1 integer not null);
select max(col1) as x from test;

When specifying a column that contains nulls as a grouping column (that is, in
the group by clause) for an aggregate function, OpenSQL considers all nulls in
the column as equal for the purposes of grouping. This is the one exception to
the rule that nulls are not equal to other nulls. For information about the group
by clause, see The Group By Clause in the “OpenSQL Statements” chapter.

Chapter 4: Elements of OpenSQL Statements 4–1

Chapter 4: Elements of OpenSQL
Statements

This chapter describes the following elements of OpenSQL statements:

 Functions, operators, and predicates

 Arithmetic operations, assignments, and other basic operations

 Expressions and search conditions in queries

This chapter identifies the differences in syntax between embedded and
interactive OpenSQL. If the embedded syntax is dependent on the host
language, you are referred to the Embedded SQL Companion Guide.

Operators
OpenSQL supports three types of operators:

 Arithmetic

 Comparison

 Logical

Each of these is described in the following sections.

Arithmetic

Arithmetic operators are used to combine numeric expressions arithmetically
to form other numeric expressions. Valid OpenSQL arithmetic operators are (in
descending order of precedence):

Arithmetic Operator Description

+ and - plus, minus (unary)

* and / multiplication, division (binary)

+ and - addition, subtraction (binary)

Unary operators group from right to left and binary operators group from left
to right. The unary minus (-) can be used to reverse the algebraic sign of a
value.

Operators

4–2 OpenSQL Reference Guide

Use parentheses to force the desired order of precedence. For example:

(job.lowsal + 1000) * 12

is an expression in which the parentheses force the addition operator (+) to
take precedence over the multiplication operator (*).

Comparison

Comparison operators allow you to compare two expressions. OpenSQL
includes the following comparison operators:

Operator Description

= equal to

<> not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

All comparison operators are of equal precedence.

The equal sign (=) also serves as the assignment operator in assignment
operations. For details, see Assignment in this chapter.

Logical

OpenSQL has three logical operators:

 Not (highest precedence)

 And (next precedence)

 Or (lowest precedence)

Parentheses can be used to change the precedence. For example, assume that
the following appears in a query:

exprA or exprB and exprC

OpenSQL evaluates the above as if it were:

exprA or (exprB and exprC)

Operations

Chapter 4: Elements of OpenSQL Statements 4–3

However, by using parentheses, the order in which OpenSQL evaluates the
expressions can be changed. For example:

(exprA or exprB) and exprC

When parenthesized as shown, (exprA or exprB) is evaluated first, then the
operator is used for that result with exprC.

Operations
This section describes the following basic operations that can be performed:

 Assignments

 Arithmetic operations

Assignment

An assignment operation is an operation that places a value in a column or
variable. Assignment operations occur during the execution of insert, update,
fetch, create table as...select, and embedded select statements.

When an assignment operation occurs, the data types of the assigned value
and the receiving column or variable must either be the same or compatible. If
the data types are compatible but not the same, OpenSQL performs a default
type conversion.

All character data types are compatible with one another. A value from a string
can be assigned to a date data item if the value in the string is formatted in a
valid OpenSQL date input format. For information about valid input formats,
see Absolute Date Input Formats in the chapter “OpenSQL Data Types.”

Money is compatible with all of the numeric and string types.

All numeric types are compatible with one another. For example, assuming
that the following table is created:

create table emp
(name character(20),
salary float not null,
hiredate date not null);

then this insert statement

insert into emp (name, salary, hiredate)
values ('John Smith', 40000, date('10/12/98'));

Operations

4–4 OpenSQL Reference Guide

assigns the varchar string literal, ’John Smith’, to the character name column,
the integer literal 40000 to the float salary column, and the varchar string
literal ’10/12/98’ to the date column, hiredate.

Other examples of assignments are:

update emp set name = 'Mary Smith'
where name = 'Mary Jones';
create table emp2 (name2, hiredate2) as
select name, hiredate from emp;

In the following embedded OpenSQL example, the value in the name column is
assigned to the variable, name_var, for each row that fulfills the where clause:

exec sql select name into :name_var from emp
where empno = 125;

The following sections present some specific guidelines for assignments into
each of the general data types, as well as null assignments. In addition, see
the Embedded SQL Companion Guide for information about which host
language data types are compatible with which OpenSQL data types if you are
assigning to a host language variable.

Character String

The character and varchar character types are compatible. Any character
string can be assigned to any column or variable of character data type. (If an
assignment results in truncation, OpenSQL returns a warning.) The result of
the assignment depends on the types of the assignment string and the
receiving column or variable:

 If a character string is assigned to a varchar column or variable, trailing
blanks are trimmed from the character string before it is assigned.

If the length of the receiving string is shorter than the fixed length string,
OpenSQL truncates the fixed length string (from the right end) and, if the
assignment was to a variable, a warning condition is indicated. For a
discussion of the SQLWARN indicators, see the The SQL Communications
Area (SQLCA) in the chapter “OpenSQL Features.”

 If a string is assigned to a column or variable that is shorter than the
fixed-length string, OpenSQL truncates the fixed-length string from the
right end. If a fixed-length string is assigned to a fixed-length column or
variable that is longer than the fixed-length string, OpenSQL pads it with
blanks. If the assignment is to a variable and the string is truncated, a
warning is indicated in the SQLCA.

Operations

Chapter 4: Elements of OpenSQL Statements 4–5

Numeric

Any numeric data type can be assigned to any other numeric data type. In
addition, a money value can be assigned to any numeric data type. OpenSQL
may truncate leading zeros or all or part of the fractional part of a number if
necessary. If it is necessary to truncate the non-fractional part of a value
(other than leading zeros), an overflow error results. When a float or decimal
value is assigned to an integer column or variable, the fractional part is
truncated.

Date

Date values can be assigned to a date column. In addition, a string literal, a
string host variable, or a string column value can be assigned to a date column
if its value conforms to the valid OpenSQL input formats for dates.

When assigning character strings to date columns in OpenSQL, specify the
string using the date() function. For example:

insert into transaction_log (employee, trxtime,
 trxid) values (user, date('now'), 42);

When assigning a date value to a character string, OpenSQL converts the date
to the standard OpenSQL output date format. For more information about date
output formats, see Date and Time Display Formats in the chapter “OpenSQL
Data Types.”

Null

A null can be assigned to a column of any data type if the column was defined
as a nullable column. A null can also be assigned to a host language variable if
there is an indicator variable associated with the host variable. For more
information about indicator variables, see Indicator Variables in the chapter
“Embedded OpenSQL.”

Arithmetic

An arithmetic operation combines two or more expressions using the
arithmetic operators to form a resulting numeric expression.

Before performing any arithmetic operation, OpenSQL converts the
participating expressions to identical data types. The result is returned as the
selected data type. The following sections describe this data type conversion.

Operations

4–6 OpenSQL Reference Guide

Default Type Conversion

When two numeric expressions are combined, the Enterprise Access product
converts as necessary to make the data types of the expressions identical and
assigns that same data type to the resulting expression. If it is necessary to
convert the data type of an expression, the DBMS converts the expression
having the data type of lower precedence to that of the higher.

The order of precedence among the numeric data types is, in
highest-to-lowest order:

 Money

 Float

 Real

 Decimal

 Integer

 Smallint

For example, when OpenSQL operates on an integer and a floating-point
number, the integer is converted to a floating-point number. If OpenSQL
operates on two integers of different sizes, the smaller is converted to the size
of the larger. All conversions are done before the operation is performed.

The following table summarizes the possible results of numeric combinations:

 smallint integer decimal real float money

smallint integer integer decimal real float money

integer integer integer decimal real float money

decimal decimal decimal decimal real float money

real real real real real float money

float float float float float float money

money money money money money money money

For example, for this expression:

(job.lowsal + 1000) * 12

the first operator (+) combines a float expression (job.lowsal) with a smallint
constant (1000). The result is float. The second operator (*) combines the
float expression with a smallint constant (12), resulting in a float expression.

For money data type, if the above table conflicts with Host DBMS default type
conversion, Host DBMS default type conversion has higher priority.

Operations

Chapter 4: Elements of OpenSQL Statements 4–7

Arithmetic Operations on Decimal Data Types

In expressions that combine decimal values and return decimal results, the
precision (total number of digits) and scale (number of digits to the right of
the decimal point) of the result can be determined, as shown in the following
table:

 Precision Scale

Addition and
subtraction

Larger number of fractional
digits plus largest number of
non-fractional digits + 1 (to
a maximum of 31)

Scale of operand having the
largest scale

Multiplication Total of precisions to a
maximum of 31

Total of scales to a maximum
of 31

Division 31 (31 precision of first
operand) + (scale of first
operand) (scale of second
operand)

For example, in the following decimal addition operation:

1.234 + 567.89

the scale and precision of the result is calculated as follows:

Precision = 7

Calculated as 3 (larger number of fractional digits) + 3 (larger number
of non-fractional digits) + 1 = 7

Scale = 3

The first operand has the larger number of digits to the right of the
decimal point

Result:

0569.124

Note: If the result of arithmetic using decimal data exceeds the declared
precision or scale of the column to which it is assigned, OpenSQL truncates the
result and does not issue an error.

Functions

4–8 OpenSQL Reference Guide

Functions
The following sections describe OpenSQL scalar and aggregate functions.

Function Support for Enterprise Access Products

The overall level of function support for each Enterprise Access product is
listed in the OPENSQL_SCALARS entry of the OpenSQL Standard Catalog
Interface catalog. The Standard Catalog Interface catalog is a read-only view
built on the system catalog of the underlying DBMS. The OPENSQL_SCALARS
entry, located in the iidbcapabilities catalog section, can be one of three
values: 'NATIVE', 'FULL' or 'LEVEL 1'. The default value is 'NATIVE'. 'NATIVE'
indicates only native DBMS scalar functions are supported. 'FULL' indicates full
Ingres function support is provided. 'LEVEL 1' indicates some mapping of
Ingres functions. When OPENSQL_SCALARS is set to 'LEVEL 1', an additional
table, iigwscalars, is provided which shows support details for individual
functions.

To further determine the level of support provided for specific functions, see
the documentation for your Enterprise Access product.

Scalar

There are six types of scalar functions:

 Data type conversion

 Numeric

 String

 Date

 Bit-wise

 Random number

The scalar functions require either one or more single-value arguments. In
most instances, scalar functions can be nested to any level. Certain restrictions
apply when using some Enterprise Access products. For details, see the
documentation provided with your Enterprise Access product.

Note: If II_DECIMAL is set to comma, be sure that when OpenSQL syntax
requires a comma (such as a list of table columns or OpenSQL functions with
several parameters), that the comma is followed by a space.

For example:

Select col1, ifnull(col2, 0), left(col4, 22) from t1:

Functions

Chapter 4: Elements of OpenSQL Statements 4–9

Data Type Conversion

The following table lists the data type conversion functions. (When converting
decimal values to strings, the length of the result depends on the precision
and scale of the decimal column.)

Name Operand
Type

Result Type Description

byte(expr [, len]) any byte Converts the expression to byte binary data. If the
optional length argument is specified, the function
returns the leftmost len bytes. Len must be a
positive integer value that does not exceed the
length of the expr argument.

c(expr [, len]) any c Converts argument to c string. If the optional length
argument is specified, the function returns the
leftmost len characters. Len must be a positive
integer value that does not exceed the length of the
expr string.

char(expr [, len]) any char Converts argument to char string. If the optional
length argument is specified, the function returns the
leftmost len characters. Len must be a positive
integer value that does not exceed the length of the
expr string.

date(expr) c, text,
char,
varchar

date Converts a c, char, varchar or text string to internal
date representation.

Functions

4–10 OpenSQL Reference Guide

Name Operand
Type

Result Type Description

decimal(expr
[,precision[,scale]])

any except
date

decimal Converts any numeric expression to a decimal value.
If scale (number of decimal digits) is omitted, the
scale of the result is 0. If precision (total number of
digits) is omitted, the precision of the result is
determined by the data type of the operand, as
follows:

Operand Default
Datatype Precision

smallint 5
integer1 5
integer 11
float 15
float4 15
decimal 15
money 15

Decimal overflow occurs if the result contains more
digits to the left of the decimal point than the
specified or default precision and scale can
accommodate.

dow(expr) date c Converts an absolute date into its day of week (for
example, 'Mon,' 'Tue'). The result length is 3.

float4(expr) c, char,
varchar,
text, float,
money,
decimal,
integer1,
smallint,
integer

float4 Converts the specified expression to float4.

float8(expr) c, char,
varchar,
text, float,
money,
decimal,
integer1,
smallint,
integer

float Converts the specified expression to float.

Functions

Chapter 4: Elements of OpenSQL Statements 4–11

Name Operand
Type

Result Type Description

hex(expr) varchar,
char, c,
text

varchar Returns the hexadecimal representation of the
argument string. The length of the result is twice the
length of the argument, because the hexadecimal
equivalent of each character requires two bytes. For
example, hex('A') returns '61' (ASCII) or 'C1'
(EBCDIC).

int1(expr) c, char,
varchar,
text, float,
money,
decimal,
integer1,
smallint,
integer

integer1 Converts the specified expression to integer1.
Decimal and floating-point values are truncated.
Numeric overflow will occur if the integer portion of a
floating-point or decimal value is too large to be
returned in the requested format.

int2(expr) c, char,
varchar,
text, float,
money,
decimal,
integer1,
smallint,
integer

smallint Converts the specified expression to smallint.
Decimal and floating-point values are truncated.
Numeric overflow will occur if the integer portion of a
floating-point or decimal value is too large to be
returned in the requested format.

int4(expr) c, char,
varchar,
text, float,
money,
decimal,
integer1,
smallint,
integer

integer Converts the specified expression to integer. Decimal
and floating-point values are truncated. Numeric
overflow will occur if the integer portion of a floating-
point or decimal value is too large to be returned in
the requested format.

long_byte
(expr)

any long byte Converts the expression to long byte binary data.

long_varchar (expr) any long varchar Converts the expression to a long varchar.

money(expr) c, char,
varchar,
text, float,
money,
decimal,
integer1,
smallint,
integer

money Converts the specified expression to internal money
representation. Rounds floating-point and decimal
values, if necessary.

Functions

4–12 OpenSQL Reference Guide

Name Operand
Type

Result Type Description

nchar(expr [, len]) any nchar Converts argument to nchar unicode string. If the
optional length argument is specified, the function
returns the leftmost len characters. Len must be a
positive integer value that does not exceed the
length of the expr string.

nvarchar(expr [,
len])

any nvarchar Converts argument to nvarchar unicode string. If the
optional length argument is specified, the function
returns the leftmost len characters. Len must be a
positive integer value that does not exceed the
length of the expr string.

long_varchar (expr) c, char,
varchar,
text, long
varchar,
long byte

long varchar Converts the expression to a long varchar.

object_key(expr) varchar,
char, c,
text

object_key Converts the operand to an object_key.

table_key(expr) varchar,
char, c,
text

table_key Converts the operand to a table_key.

text(expr [, len]) any text Converts argument to text string. If the optional
length argument is specified, the function returns the
leftmost len characters. Len must be a positive
integer value that does not exceed the length of the
expr string.

unhex(expr) varchar, c,
text

varchar Returns the opposite of the hex function. For
example, unhex(x'61626320') returns 'abc' and
unhex(x'01204161') returns '\001Aa'.

Exceptions can occur when a "c" data type
suppresses the display of certain stored characters,
or when the output data type differs from the input
type.

 Note: Typically one character is generated for every
two hex digits being converted to a printable
character. If the hex digit pair being converted does
not translate to a printable character, then the value
is converted to a backslash (\), followed by the
numeric value of the hex digit pair as a three-digit
octal value.

Functions

Chapter 4: Elements of OpenSQL Statements 4–13

Name Operand
Type

Result Type Description

varbyte(expr [,
len])

any byte varying Converts the expression to byte varying binary data.
If the optional length argument is specified, the
function returns the leftmost len bytes. Len must be
a positive integer value that does not exceed the
length of the expr argument.

varchar(expr [, len]) any varchar Converts argument to varchar string. If the optional
length argument is specified, the function returns the
leftmost len characters. Len must be a positive
integer value that does not exceed the length of the
expr string.

If the optional length parameter is omitted, the length of the result returned
by the data type conversion functions c(), char(), varchar(), and text() are as
follows:

Data Type or Argument Result Length

byte Length of operand

byte varying Length of operand

c Length of operand

char Length of operand

date 25 characters

decimal Depends on precision and scale of column

float & float4 11 characters; 12 characters on IEEE
computers

integer1 (smallint) 6 characters

integer 6 characters

integer4 13 characters

long varbyte Length of operand

long varchar Length of operand

money 20 characters

text Length of operand

varchar Length of operand

Functions

4–14 OpenSQL Reference Guide

Numeric

OpenSQL supports the numeric functions listed in the following table:

Name Operand Type Result Type Description

abs(n) all numeric types
and money

same as n Absolute value of n.

atan(n) all numeric types float Arctangent of n; returns a value
from (-pi/2) to pi/2.

cos(n) all numeric types float Cosine of n; returns a value
from -1 to 1.

exp(n) all numeric types
and money

float Exponential of n.

log(n)
ln(n)

all numeric types
and money

float Natural logarithm of n.

mod(n,b) integer,
smallint,
integer1,
decimal

same as b n modulo b. The result is the
same data type as b.

Decimal values are truncated.

power(x,y) all numeric types float x to the power of y (identical to
x ** y)

sin(n) all numeric types float Sine of n; returns a value from
-1 to 1.

sqrt(n) all numeric types
and money

float Square root of n.

For trigonometric functions (atan(), cos(), and sin()), specify arguments in
radians. To convert degrees to radians, use the following formula:

radians = degrees/360 * 2 * pi

To obtain a tangent, divide sin() by cos().

Functions

Chapter 4: Elements of OpenSQL Statements 4–15

String

String functions perform a variety of operations on character data. String
functions can be nested. For example:

left(right(x.name, size(x.name) - 1), 3)

returns the substring of x.name from character positions 2 through 4, and

concat(concat(x.lastname, ', '), x.firstname)

concatenates x.lastname with a comma and then concatenates x.firstname
with the first concatenation result. The + operator can also be used to
concatenate strings:

x.lastname + ', ' + x.firstname

The following string functions do not accept long varchar or long byte
columns:

 Locate

 Pad

 Shift

 Squeeze

 Trim

 Notrim

 Charextract

To apply any of the preceding functions to a long varchar or long byte column,
first coerce the column to an acceptable data type. For example:

squeeze(varchar(long_varchar_column))

If a coercion function is applied to a long varchar or long byte value that is
longer than 2008 characters or bytes, the result is truncated to 2008
characters or bytes.

The following table lists the string functions supported in OpenSQL. The
expressions c1 and c2, representing the arguments, can be any of the string
types, except where noted. The expressions len and nshift represent integer
arguments.

Functions

4–16 OpenSQL Reference Guide

Name Result Type Description

charextract(c1,n) char Returns the nth byte of c1. If n is
larger than the length of the string,
then the result is a blank character.

concat(c1,c2) any character
data type, byte

Concatenates one string to another.
The result size is the sum of the sizes
of the two arguments. If the result is
a c or char string, it is padded with
blanks to achieve the proper length.
To determine the data type results of
concatenating strings, see the table
regarding results of string
concatenation.

left(c1,len) any character
data type

Returns the leftmost len characters
of c1. If the result is a fixed-length c
or char string, it is the same length
as c1, padded with blanks. The result
format is the same as c1.

length(c1) smallint

(for long varchar,
returns 4-byte
integer)

If c1 is a fixed-length c or char
string, returns the length of c1
without trailing blanks. If c1 is a
variable-length string, returns the
number of characters actually in c1.

locate(c1,c2) smallint Returns the location of the first
occurrence of c2 in c1, including
trailing blanks from c2. The location
is in the range 1 to size(c1). If c2 is
not found, the function returns
size(c1) + 1. The function size() is
described below, in this table.

If c1 and c2 are different string data
types, c2 is coerced into the c1 data
type.

lowercase(c1)
or lower(c1)

any character
data type

Converts all upper case characters in
c1 to lower case.

pad(c1) text or varchar Returns c1 with trailing blanks
appended to c1; for instance, if c1 is
a varchar string that could hold fifty
characters but only has two
characters, then pad(c1) appends 48
trailing blanks to c1 to form the
result.

Functions

Chapter 4: Elements of OpenSQL Statements 4–17

Name Result Type Description

right(c1,len) any character
data type

Returns the rightmost len characters
of c1. Trailing blanks are not
removed first. If c1 is a fixed-length
character string, the result is padded
to the same length as c1. If c1 is a
variable-length character string, no
padding occurs. The result format is
the same as c1.

shift(c1,nshift) any character
data type

Shifts the string nshift places to the
right if nshift > 0 and to the left if
nshift < 0. If c1 is a fixed-length
character string, the result is padded
with blanks to the length of c1. If c1
is a variable-length character string,
no padding occurs. The result format
is the same as c1.

size(c1) smallint Returns the declared size of c1
without removal of trailing blanks.

soundex(c1) any character
data type

Returns a c1 four-character field that
can be used to find similar sounding
strings. For example, SMITH and
SMYTHE produce the same soundex
code. If there are less than three
characters, the result is padded by
trailing zero(s). If there are more
than three characters, the result is
achieved by dropping the rightmost
digit(s).

This function is useful for finding like-
sounding strings quickly. A list of
similar sounding strings can be
shown in a search list rather than
just the next strings in the index.

Functions

4–18 OpenSQL Reference Guide

Name Result Type Description

squeeze(c1) text or varchar Compresses white space. White
space is defined as any sequence of
blanks, null characters, newlines
(line feeds), carriage returns,
horizontal tabs and form feeds
(vertical tabs). Trims white space
from the beginning and end of the
string, and replaces all other white
space with single blanks.

This function is useful for
comparisons. The value for c1 must
be a string of variable-length
character string data type (not fixed-
length character data type). The
result is the same length as the
argument.

substring(c1 from
loc[FOR len])

varchar Selects part of c1 starting at the loc
position and either extending to the
end of the string or for the number
of characters in the len operand. The
result format is a varchar the size of
c1.

substring(c1 from
n1 [for n2])

varchar or
nvarchar

Returns a substring of parameter c1
starting at offset n1. If n2 is
specified, the resulting string is
min(n2, length(c1)-n1) in length. If
n1 is 0 or negative, the resulting
substring starts with the 1st byte of
c1. If n1 > length(c1), the resulting
string has length 0. If n2 is negative,
an error is returned.

trim(c1) text or varchar Returns c1 without trailing blanks.
The result has the same length as
c1.

notrim(c1) any character
string variable

Retains trailing blanks when placing
a value in a varchar column. This
function can only be used in an
embedded OpenSQL program. For
more information, see the Embedded
SQL Companion Guide.

uppercase(c1)
or upper(c1)

any character
data type

Converts all lower case characters in
c1 to upper case.

Functions

Chapter 4: Elements of OpenSQL Statements 4–19

String Concatenation Results

The following table shows the results of concatenating expressions of various
character data types:

1st String 2nd String Trim
Blanks

 Result Type

 from 1st? from 2nd?

c c Yes -- c

c text Yes -- c

c char Yes -- c

c varchar Yes -- c

c long varchar Yes No long varchar

text c No -- c

char c Yes -- c

varchar c No -- c

long varchar c No No long varchar

text text No No text

text char No Yes text

text varchar No No text

text long varchar No No long varchar

char text Yes No text

varchar text No No text

long varchar text No No long varchar

char char No -- char

char varchar No -- char

char long varchar No No long varchar

varchar char No -- char

long varchar char No No long varchar

varchar varchar No No varchar

long varchar long varchar No No long varchar

Functions

4–20 OpenSQL Reference Guide

When concatenating more than two operands, expressions are evaluated from
left to right. For example:

varchar + char + varchar

is evaluated as:

(varchar+char)+varchar

To control concatenation results for strings with trailing blanks, use the trim,
notrim, and pad functions.

Date

OpenSQL supports functions that derive values from absolute dates and from
interval dates. These functions operate on columns that contain date values.
An additional function, dow(), returns the day of the week (mon, tue, and so
on) for a specified date. For a description of the dow() function, see Data Type
Conversion in this chapter.

Some date functions require you to specify a unit parameter; unit parameters
must be specified using a quoted string. The following table lists valid unit
parameters:

Date Portion How Specified

Second second, seconds, sec, secs

Minute minute, minutes, min, mins

Hour hour, hours, hr, hrs

Day day, days

Week week, weeks, wk, wks

ISO-Week iso-week, iso-wk

Month month, months, mo, mos

Quarter quarter, quarters, qtr, qtrs

Year year, years, yr, yrs

The following table lists the date functions:

Name Format
(Result)

Description

date_trunc(unit,date) date Returns a date value truncated to the specified unit.

date_part(unit,date) integer Returns an integer containing the specified (unit)
component of the input date.

Functions

Chapter 4: Elements of OpenSQL Statements 4–21

Name Format
(Result)

Description

date_gmt(date) any character
data type

Converts an absolute date into the Greenwich Mean
Time character equivalent with the format
yyyy_mm_dd hh:mm:ss GMT. If the absolute date does
not include a time, the time portion of the result is
returned as 00:00:00.

For example, the query:

select date_gmt('1-1-98 10:13 PM PST')

returns the following value:

1998_01_01 06:13:00 GMT

while the query:

select date_gmt(‘1-1-1998’)

returns:

1998_01_01 00:00:00 GMT

gmt_timestamp(s) any character
data type

Returns a twenty-three-character string giving the date
s seconds after January 1, 1970 GMT. The output
format is ‘yyyy_mm_dd hh:mm:ss GMT’.

For example, the query:

select (gmt_timestamp (1234567890))

returns the following value:
2009_02_13 23:31:30 GMT

while the query:

(II_TIMEZONE_NAME = AUSTRALIA_ QUEENSLAND)

select date(gmt_timestamp (1234567890))

returns:

14-feb-2009 09:31:30

interval (unit,date_interval) float Converts a date interval into a floating-point constant
expressed in the unit of measurement specified by unit.
The interval function assumes that there are 30.436875
days per month and 365.2425 days per year when
using the mos, qtrs, and yrs specifications.

For example, the query:

select(interval(‘days’, ‘5 years’))

returns the following value:

1826.213

This function is not supported for the Oracle and MS
SQL Enterprise Access products.

Functions

4–22 OpenSQL Reference Guide

Name Format
(Result)

Description

_date(s) any character
data type

Returns a nine-character string giving the date s
seconds after January 1, 1970 GMT. The output format
is dd-mmm-yy.

For example, the query:

select _date(123456)

returns the following value:

2-jan-70

_date4(s) any character
data type

Returns an eleven-character string giving the date s
seconds after January 1, 1970 GMT. The output format
is controlled by the II_DATE_FORMAT setting.

For example, with II_DATE_FORMAT set to US, the
query:

select _date4(123456)

returns the following value:

02-jan-1970

while with II_DATE_FORMAT set to MULTINATIONAL,
the query:

select _date4(123456)

returns this value:

02/01/1970

_time(s) any character
data type

Returns a five-character string giving the time s
seconds after January 1, 1970 GMT. The output format
is hh:mm (seconds are truncated).

For example, the query:

select _time(123456)

returns the following value:

02:17

Using Date_trunc

Use the date_trunc function to group all the dates in the same month or year,
and so forth. For example:

date_trunc('month',date('23-oct-1998 12:33'))

returns 1-oct-1998, and

date_trunc('year',date('23-oct-1998'))

Functions

Chapter 4: Elements of OpenSQL Statements 4–23

returns 1-jan-1998.

Truncation takes place in terms of calendar years and quarters (1-jan, 1-apr,
1-jun, and 1-oct).

To truncate in terms of a fiscal year, offset the calendar date by the number of
months between the beginning of your fiscal year and the beginning of the
next calendar year (6 mos for a fiscal year beginning July 1, or 4 mos for a
fiscal year beginning September 1):

date_trunc('year',date+'4 mos') - '4 mos'

Weeks start on Monday. The beginning of a week for an early January date
may fall into the previous year.

Using Date_part

This function is useful in set functions and in assuring correct ordering in
complex date manipulation. For example, if date_field contains the value 23-
oct-1998, then:

date_part('month',date(date_field))

returns a value of 10 (representing October), and

date_part('day',date(date_field))

returns a value of 23.

Months are numbered 1 to 12, starting with January.

Hours are returned according to the 24-hour clock.

Quarters are numbered 1 through 4.

Week 1 begins on the first Monday of the year. Dates before the first Monday
of the year are considered to be in week 0. However, if you specify ISO-Week,
which is ISO 8601 compliant, the week begins on Monday, but the first week is
the week that has the first Thursday. The weeks are numbered 1 through 53.

Therefore, if you are using Week and the date falls before the first Monday in
the current year, date_part returns 0. If you are using ISO-Week and the date
falls before the week containing the first Thursday of the year, that date is
considered part of the last week of the previous year, and date_part returns
either 52 or 53.

Functions

4–24 OpenSQL Reference Guide

The following table illustrates the difference between Week and ISO-Week:

Date Column Day of Week Week ISO-Week

02-jan-1998 Fri 0 1

04-jan-1998 Sun 0 1

02-jan-1999 Sat 0 53

04-jan-1999 Mon 1 1

02-jan-2000 Sun 0 52

04-jan-2000 Tue 1 1

02-jan-2001 Tue 1 1

04-jan-2001 Thu 1 1

Bit-wise

Bit-wise functions operate from right to left, with shorter operands padded
with hex zeroes to the left. Each result is a byte field the size of the longer
operand, except bit_not, which takes a single byte operand and returns the
same-sized operand.

There are six external bit-wise functions:

 bit_add – The logical "add" of two byte operands; any overflow is
disregarded.

 bit_and – The logical "and" of two byte operands. For example, if two bits
are 1, then the answer is 1, otherwise the answer is 0.

 bit_not – The logical "not" of two byte operands.

 bit_or – The logical "or" of two byte operands. For example, if either or
both bits are 1, then the answer is 1.

 bit_xor – The logical "xor" of two byte operands. For example, if either bit
is 1, then the answer is 1.

 intextract (byte,int) – Similar to charextract. Returns the nth byte of b1
as an integer. If n is larger than b1, then 0 is returned.

Functions

Chapter 4: Elements of OpenSQL Statements 4–25

Hash

This function is used to generate a four-byte numeric value from expressions
of all data types except long data types. Note that the implicit size for the
expression can affect the result. For example:

select hash(1), hash(int1(1)), hash(int2(1)), hash(int4(1))\g

returns the following single row:

Col1 Col2 Col3 Col4

-920527466 1526341860 -920527466 -1447292811

Note: Since the constant 1 is implicitly a short integer, only the return values
for Hash(1) and Hash(int2(1)) match. For the remaining columns, the
difference in the number of bytes holding the integer leads to a different hash
value. Also note that the generated hash value is not guaranteed unique, even
if the input values are unique. The hash function is not supported for
Enterprise Access products.

Random Number

The random number function is used to generate random values. Use the
following statement to set the beginning value for the random functions:

[exec sql] set random_seed [value]

There is a global seed value and local seed values. The global value is used
until you issue “set random_seed,” which changes the value of the local seed.
Once changed, the local seed is used for the whole session. If you are using
the global seed value, the seed is changed whenever a random function
executes. This means that other users issuing random calls will enhance the
“randomness” of the returned value. Note that the seed value can be any
integer.

If you omit the value, then Ingres multiplies the process ID by the number of
seconds past 1/1/1970 until now. This value generates a random starting
point. You can use value to run a regression test from a static start and get
identical results.

There are four random number functions:

 random() - Returns a random integer based on a seed value.

 randomf() - Returns a random float based on a seed value between 0 and
1. This is slower than random, but produces a more random number.

 random(l,h) - Returns a random integer in the specified range
(that is, l >= x <= h).

Functions

4–26 OpenSQL Reference Guide

 randomf(l,h) – Passing two integer values generates an integer result in
the specified range; passing two floats generates a float in the specified
range; passing an int and a float causes them to be coerced to an int and
generates an integer result in the specified range (that is, l >= x <= h).

Aggregate

Aggregate functions include the following:

 Unary

 Binary

 Count

The types are described in the following sections.

Unary Aggregate Functions

A unary aggregate function returns a single value based on the contents of a
column. Aggregate functions are also called set functions.

Note: For OpenROAD users, aggregate functions used within OpenROAD can
only be coded inside SQL statements.

The following example uses the sum aggregate function to calculate the total
of salaries for employees in department 23:

select sum (employee.salary)
 from employee
 where employee.dept = 23;

The following table lists SQL aggregate functions:

Name Result Data Type Description

any integer Returns 1 if any row in the table fulfills
the where clause, or 0 if no rows fulfill
the where clause.

avg float, money, date
(interval only)

Average (sum/count)

The sum of the values must be within
the range of the result data type.

count integer Count of non-null occurrences

max same as argument Maximum value

min same as argument Minimum value

Functions

Chapter 4: Elements of OpenSQL Statements 4–27

Name Result Data Type Description

sum integer, float,
money, date
(interval only)

Column total

stddev_pop float Compute the population form of the
standard deviation (square root of the
population variance of the group).

stddev_samp float Computes the sample form of the
standard deviation (square root of the
sample variance of the group).

var_pop float Computes the population form of the
variance (sum of the squares of the
difference of each argument value in
the group from the mean of the
values, divided by the count of the
values).

var_samp float Computes the sample form of the
variance (sum of the squares of the
difference of each argument value in
the group from the mean of the
values, divided by the count of the
values minus 1).

The general syntax of an aggregate function is as follows:

function_name ([distinct | all] expr)

where function_name denotes an aggregate function and expr denotes any
expression that does not include an aggregate function reference (at any level
of nesting).

To eliminate duplicate values, specify distinct. To retain duplicate values,
specify all (this is the default.) Distinct is not meaningful with the functions
min and max, because these functions return single values (and not a set of
values).

Nulls are ignored by the aggregate functions, with the exception of count, as
described in The Count Function and Nulls in this chapter.

Functions

4–28 OpenSQL Reference Guide

Binary Aggregate Functions

Ingres supports a variety of binary aggregate functions that perform a variety of
regression and correlation analysis.

For all of the binary aggregate functions, the first argument is the independent variable
and the second argument is the dependent variable.

The following table lists binary aggregate functions:

Name Result Data Type Description

regr_count integer Count of rows with non-null values for
both dependent and independent
variables.

covar_pop float Population covariance (sum of the
products of the difference of the
independent variable from its mean,
times the difference of the dependent
variable from its mean, divided by the
number of rows).

covar_samp float Sample covariance (sum of the
products of the difference of the
independent variable from its mean,
times the difference of the dependent
variable from its mean, divided by the
number of rows minus 1).

corr float Correlation coefficient (ratio of the
population covariance divided by the
product of the population standard
deviation of the independent variable
and the population standard deviation
of the dependent variable).

regr_r2 float Square of the correlation coefficient.

regr_slope float Slope of the least-squares-fit linear
equation determined by the
(independent variable, dependent
variable) pairs.

regr_intercept float Y-intercept of the least-squares-fit
linear equation determined by the
(independent variable, dependent
variable) pairs.

regr_sxx float Sum of the squares of the independent
variable.

Functions

Chapter 4: Elements of OpenSQL Statements 4–29

Name Result Data Type Description

regr_syy float Sum of the squares of the dependent
variable.

regr_sxy float Sum of the product of the independent
variable and the dependent variable.

regr_avgx float Average of the independent variables.

regr_avgy float Average of the dependent variables.

Count(*) Function

Count can take the wildcard character, *, as an argument. This character is
used to count the number of rows in a result table, including rows that contain
nulls. For example, the statement:

select count(*)
 from employee
 where dept = 23;

counts the number of employees in department 23. The asterisk (*) argument
cannot be qualified with all or distinct.

Because count(*) counts rows rather than columns, count(*) does not ignore
nulls. Consider the following table:

Name Exemptions

Smith 0

Jones 2

Tanghetti 4

Fong Null

Stevens Null

Running

count(exemptions)

returns the value of 3, whereas

count(*)

returns 5.

Except count, if the argument to an aggregate function evaluates to an empty
set, the function returns a null. The count function returns a zero.

Functions

4–30 OpenSQL Reference Guide

Aggregate Functions and Decimal Data

Given decimal arguments, aggregate functions (with the exception of count)
return decimal results.

The following table explains how to determine the scale and precision of
results returned for aggregates with decimal arguments:

Name Precision of Result Scale of Result

count Not applicable Not applicable

sum 31 Same as argument

avg 31 Scale of argument + 1 (to a maximum of
31)

max Same as argument Same as argument

min Same as argument Same as argument

Using Group By Clause with Aggregate Functions

The group by clause allows aggregate functions to be performed on subsets of
the rows in the table. The subsets are defined by the group by clause. For
example, the following statement selects rows from a table of political
candidates, groups the rows by party, and returns the name of each party and
the average funding for the candidates in that party.

select party, avg(funding)
 from candidates
 group by party;

Restrictions on the Use of Aggregate Functions

The following restrictions apply to the use of aggregate functions:

 Aggregate functions cannot be nested.

 Aggregate functions can only be used in select or having clauses.

 If a select or having clause contains an aggregate function, columns not
specified in the aggregate must be specified in the group by clause. For
example:

 select dept, avg(emp_age)
 from employee
 group by dept;

The above select statement specifies two columns, dept and emp_age, but
only emp_age is referenced by the aggregate function, avg. The dept column
is specified in the group by clause.

Functions

Chapter 4: Elements of OpenSQL Statements 4–31

Ifnull Function

The ifnull function specifies a value other than a null that is returned to your
application when a null is encountered. The ifnull function is specified as
follows:

ifnull(v1,v2)

If the value of the first argument is not null, ifnull returns the value of the first
argument. If the first argument evaluates to a null, ifnull returns the second
argument.

For example, the sum, avg, max, and min aggregate functions return a null if
the argument to the function evaluates to an empty set. To receive a value
instead of a null when the function evaluates to an empty set, use the ifnull
function, as in this example:

ifnull(sum(employee.salary)/25, -1)

Ifnull returns the value of the expression sum(employee.salary)/25 unless that
expression is null. If the expression is null, the ifnull function returns -1.

Note that if an attempt is made to use the ifnull function with data types that
are not nullable, such as system_maintained logical keys, a runtime error is
returned.

Note: If II_DECIMAL is set to comma, be sure that when SQL syntax requires a
comma (such as a list of table columns or SQL functions with several
parameters), that the comma is followed by a space. For example:

select col1, ifnull(col2, 0), left(col4, 22) from t1:

Data Type of Result

If the arguments are of the same data type, the result is of that data type. If
the two arguments are of different data types, they must be of comparable
data types.

When the arguments are of different but comparable data types, the DBMS
Server uses the following rules to determine the data type of the result:

 The result type is always the higher of the two data types; the order of
precedence of the data types is as follows:

date > money > float4 > float > decimal > integer >
smallint > integer1

and

c > text > char > varchar > long varchar > byte >
byte varying > long byte

Functions

4–32 OpenSQL Reference Guide

 The result length is taken from the longest value. For example:

ifnull (varchar (5), c10)

results in c10.

The result is nullable if either argument is nullable. The first argument is not
required to be nullable, though in most applications it is nullable.

Ifnull and Decimal Data

If both arguments are decimal, the data type of the result returned by ifnull is
decimal, and the precision (total number of digits) and scale (number of digits
to the right of the decimal point) of the result is determined as follows:

 Precision—The largest number of digits to the left of the decimal point
(precision - scale) plus largest scale (to a maximum of 31).

 Scale—The largest scale.

UUID

A Universal Unique Identifier (UUID) is a 128 bit, unique identifier generated
by the local system. It is unique across both space and time with respect to
the space of all UUIDs.

Benefits of Using a UUID

No centralized authority is responsible for assigning UUIDs. They can be
generated on demand (10 million per second per machine if needed).

A UUID can be used for multiple purposes:

 Tagging objects that have a brief life

 Reliably identifying persistent objects across a network

 Assigning as unique values to transactions as transaction IDs in a
distributed system

UUIDs are fixed-sized (128-bits), which is small relative to other alternatives.
This fixed small size lends itself well to sorting, ordering, and hashing of all
sorts, sorting in databases, simple allocation, and ease of programming.

The basic format of a unique 128-bits (16 octets) UUID:

Functions

Chapter 4: Elements of OpenSQL Statements 4–33

Field Data Type Octet Number Note

time_low unsigned 32 bit integer 0-3 The low field of the
timestamp.

time_mid unsigned 16 bit integer 4-5 Time middle field of the
timestamp.

time_hi_and_version unsigned 16 bit integer 6-7 The high field of the
timestamp multiplex with the
release number.

clock_seq_hi_and_reserved unsigned 8 bit integer 8 The high field of the clock
sequence multiplex with the
variant.

clock_seq_low unsigned 8 bit integer 9 The low field of the clock
sequence.

node unsigned 48 bit integer 10-15 The spatially unique node
identifier.

Ingres implements the following SQL procedures to create, convert and
compare UUIDs:

 uuid_create ();

 uuid_to_char (u);

 uuid_from_char (c);

 uuid_compare(uuid1, uuid2);

uuid_create() Creates a 128 bit UUID.

Example:

 > createdb uuiddb
 > sql uuiddb
* create table uuidtable (u1 byte (16), u2 byte(16)); \g
* insert into uuidtable values (uuid_create(), uuid_create())\g
//
// verify length in byte format
//
* select length(u1) from uuidtable;\g

P,,,,T
.col1
5,,,,6
. 16.
F,,,,G

Length returned equals 16 bytes.

uuid_to_char(u) Converts a generated UUID into its character representation.

Example:

* select uuid_to_char(u1) from uuidtable;\g

Functions

4–34 OpenSQL Reference Guide

P,,,,,,,,,,,,T
.col1
5,,,,,,,,,,,,6
.2dd33cd2-b358-01d5-bf8d-00805fc13ce5.
F,,,,,,,,,,,,G

//
// verify length of UUID in character format.
//
* select length(uuid_to_char(u1)) from uuidtable\g

P,,,,T
.col1
5,,,,6
. 36.
F,,,,G

A UUID contains 36 characters.

uuid_from_char(c) Converts a generated UUID from character representation into byte
representation.

Example:

//
// Inserts a generated UUID in character format.
//

* insert into uuidtochar values ();\g

* select * from uuidtochar;\g

P,,,,,,,,,,,,,T
.c1
5,,,,,,,,,,,,,6
.f703c440-b35c-01d5-8637-00805fc13ce5.
F,,,,,,,,,,,,,G

//
// converts UUID into byte representation
//
* select uuid_from_char (u1) from uuidtochar;\g

P,,,,,,T
.col1
5,,,,,,6
.œ\003Ä@³\\\001Õ\2067\221\0134¡\221\013.
F,,,,,,G

uuid_compare(uuid1,
uuid2)

Upon completion, returns an integer value of:

RETURN MEANING

(-1) uuid1 < uuid2

(0) uuid1 == uuid2

(+1) uuid1 > uuid2

* select uuid_compare(u1,u2) from uuidtable\g

Expressions

Chapter 4: Elements of OpenSQL Statements 4–35

P,,,,T
.col1
5,,,,6
. 1.
F,,,,G

UUID Usage

A UUID can be used to tag records to ensure that the database records are
uniquely identified regardless of which database they are stored in, for
example, in a system where there are two separate physical databases
containing accounting data from two different physical locations.

Expressions
Expressions are composed of various operators and operands that evaluate to
either a single value or a set of values. Some expressions do not use
operators. For example, a column name is an expression. Constants are
expressions also. Expressions are used in many contexts, such as specifying
values to be retrieved (in a select clause) or compared (in a where clause). For
example:

select empname, empage from employee
 where salary <String `75000'> >

In this example, empname and empage are expressions representing the
column values to be retrieved, salary is an expression representing a column
value to be compared, and 75000 is an integer literal expression.

An expression can be enclosed in parentheses, such as ('J. J. Jones'), without
affecting its meaning.

Predicates
Predicates are keywords that specify a relationship between two expressions:

expression_1 predicate expression_2

OpenSQL supports the following types of predicates:

 [not] like

 [not] between

 [not] in

 all | any | some

Predicates

4–36 OpenSQL Reference Guide

 exists

 is [not] null

The second expression can be a subquery. If the subquery does not return any
rows, then the comparison evaluates to false. For details about subqueries,
see Subqueries in this chapter.

Note: The is null predicate is the only predicate that can be used with long
varchar and long byte data.

Like

The like predicate performs pattern matching for the character data types
(character and varchar). The like predicate has the following syntax:

expression [not] like pattern [escape escape_character]

The expression can be a column name or an expression involving string
functions.

The pattern parameter must be a string literal. The pattern- matching (wild
card) characters are the percent sign (%) to denote 0 or more arbitrary
characters, and the underscore (_) to denote exactly one arbitrary character.

The like predicate does not handle trailing blanks. If matching a character data
type or if the value has user-inserted trailing blanks, these trailing blanks must
be included in your pattern. For example, if you are searching a character(10)
column for any rows that have the name harold, use the following syntax for
the like predicate:

name like 'harold '

Four blanks are added to the pattern after the name in order to include the
trailing blanks.

Because blanks are not significant when performing comparisons of c data
types, the like predicate will return a correct result regardless of whether
trailing blanks are included in the pattern.

If the escape clause is specified, the escape character suppresses any special
meaning for the following character, allowing the character to be entered
literally. The following characters can be escaped:

 The pattern matching characters % and _.

 The escape character itself. To enter the escape character literally, type it
twice.

 Brackets []. In escaped brackets ([and]), specify a series of individual
characters or a range of characters separated by a dash (-).

Predicates

Chapter 4: Elements of OpenSQL Statements 4–37

The following examples illustrate some uses of the pattern matching
capabilities of the like predicate:

To match any string starting with 'a':

name like 'a%'

To match any string starting with A through Z:

name like '\[A-Z\]%' escape '\'

To match any two characters followed by '25%':

name like '__25\%' escape '\'

To match a string starting with a backslash:

name like '\%'

Because there is no escape clause, the backslash is taken literally.

To match a string starting with a backslash and ending with a percent:

name like '\\%\%' escape '\'

To match any string starting with 0 through 4, followed by an uppercase letter,
then a [, any two characters and a final]:

name like '\[01234\]\[A-Z\][__]' escape '\'

To detect names starting with 'S' and ending with 'h', disregarding any leading
or trailing spaces:

trim(name) like 'S%h'

To detect a single quote, the quote must be repeated:

name like ''''

Between

The following table explains the operators between and not between:

Operator Meaning

y between x and z x < = y and y < = z

y not between x and z not (y between x and z)

x, y, and z are expressions and cannot be subqueries.

Predicates

4–38 OpenSQL Reference Guide

In

The following table explains the operators, in and not in:

Operator Meaning

y in (x, ..., z) y = x or ... or y = z

(x, ..., z) represents a list of expressions, each of
which evaluates to a single value. None of the
expressions (y, x, or z) can be subqueries. The in
predicate returns true if y is equal to one of the
values in the list represented by (x, ..., z).

y not in (x, ..., z) not (y in (x, ..., z))

(x, ..., z) represents a list of expressions, each of
which evaluates to a single value. The not in
predicate returns true if y is not equal to any value in
the list represented by (x, ..., z). None of the
expressions (y, x, or z) can be subqueries.

y in (subquery) The subquery must be specified in parentheses and
can refer to only one column in its select clause. The
predicate returns true if y is equal to one of the
values returned by the subquery.

y not in (subquery) The subquery must be specified in parentheses and
can refer to only one column in its select clause. The
predicate returns true if y is not equal to any of the
values returned by the subquery.

Any-or-All

An any-or-all predicate takes the form

any-or-all-operator (subquery)

The subquery must have exactly one element in the target list of its outermost
subselect (so that it evaluates to a set of single values rather than a set of
rows).

The any-or-all operator must be one of the following:

=any =all

<>any <>all

<any <all

<=any <=all

Predicates

Chapter 4: Elements of OpenSQL Statements 4–39

>any >all

>=any >=all

Let $ denote any one of the comparison operators =, <>, <, <=, >, >=. Then
the predicate:

x $any (subquery)

evaluates to true if the comparison predicate:

x $ y

is true for at least one value y in the set of values represented by subquery. If
the subquery is empty, the $any comparison fails (evaluates to false).

Likewise, the predicate:

x $all (subquery)

is true if the comparison predicate:

x $ y

is true for all values y in the set of values represented by subquery. If the
subquery is empty, the $all comparison evaluates to true.

The operator =any is equivalent to the operator in. For example:

select ename
from employee
where dept = any
 (select dno
 from dept
 where floor = 3);

can be rewritten as:

select ename
from employee
where dept in
 (select dno
 from dept
 where floor = 3);

The operator some is a synonym for operator any. For example:

select ename
from employee
where dept = some
 (select dno from dept where floor = 3);

Search Conditions

4–40 OpenSQL Reference Guide

Exists

An exists predicate takes the form:

exists (subquery)

An exists predicate expression evaluates to true if the set represented by
subquery is non-empty. For example:

select ename
from employee
where exists
 (select *
 from dept
 where dno = employee.dept
 and floor = 3);

It is typical, but not required, for the subquery argument to exists to be of the
form select *.

Is Null

The is null predicate takes the form:

is [not] null

For example:

x is null

is true if x is a null. Because you cannot test for null using the “=” comparison
operator, the null predicate must be used to determine whether an expression
is null.

Search Conditions
Search conditions are used in where and having clauses to qualify the
selection of data. Search conditions are composed of one or more predicates.
Multiple predicates can be combined using parentheses and the logical
operators (and, or, and not). The following examples illustrate possible
combinations of search conditions:

Description Example

Simple predicate salary between 10000 and 20000

Predicate with not operator edept not like 'eng_%'

Search Conditions

Chapter 4: Elements of OpenSQL Statements 4–41

Description Example

Predicates combined using
or operator

edept like 'eng_%' or edept like 'admin_%'

Predicates combined using
and operator

salary between 10000 and 20000 and
edept like 'eng_%'

Predicates combined using
parentheses to specify evaluation

(salary between 10000 and 20000 and
edept like 'eng_%') or edept like
'admin_%'

Predicates evaluate to true, false, or unknown. They evaluate to unknown if
one or both operands are null (the is null predicate is the exception). When
predicates are combined using logical operators (not, and, and or) to form a
search condition, the search condition evaluates to true, false, or unknown as
shown in the following tables:

and true false unknown

true true false unknown

false false false false

unknown unknown false unknown

or true false unknown

true true true true

false true false unknown

unknown true unknown unknown

Not(true) is false, not(false) is true, not(unknown) is unknown.

After all search conditions are evaluated, the value of the where or having
clause is determined. The where or having clause can be true or false only.
Unknown values are considered false. For more information about predicates
and logical operators, see Predicates and Logical in this chapter.

Subqueries

4–42 OpenSQL Reference Guide

Subqueries
Subqueries are select statements nested in other select statements. For
example:

select ename
from employee
where dept in
 (select dno
 from dept
 where floor = 3);

Use subqueries in a where clause to qualify a specified column against a set of
rows. In the previous example, the subquery returns the department numbers
for departments on the third floor. The outer query then retrieves the names
of employees who work in those departments.

Subqueries often take the place of expressions in predicates. Subqueries can
be used in place of expressions only in the specific instances outlined in the
descriptions of predicates earlier in this chapter. The select clause of a
subquery must contain only one element.

A subquery can refer to correlation names defined (explicitly or implicitly)
outside the subquery. For example:

select ename
from employee empx
where salary
 > (select avg(salary)
 from employee empy
 where empy.dept = empx.dept);

The preceding subquery uses a correlation name (empx) defined in the outer
query. The reference, empx.dept, must be explicitly qualified here, or it would
be implicitly qualified by empy. The query is evaluated by assigning empx each
of its values (that is, letting it range over the employee table), and evaluating
the subquery for each value of empx. At least one of the correlation names
must be specified in this example–either empx or empy, but not both, can be
allowed to default to employee.

For more information about using correlation names in nested subqueries, see
Correlation Names in the chapter “OpenSQL Data Types.”

Chapter 5: Embedded OpenSQL 5–1

Chapter 5: Embedded OpenSQL

This chapter explains how to use host language variables and cursors in
embedded OpenSQL, and describes the syntax of embedded OpenSQL
statements and the typical structure of an embedded OpenSQL program.

The term embedded OpenSQL refers to OpenSQL statements embedded in a
host language such as C or Fortran. Embedded OpenSQL statements include
most interactive OpenSQL statements, plus a number of statements that serve
the specific needs of an embedded program. (In addition, forms statements
can be used to develop forms-based applications. For details about forms
statements, see the Forms-based Application Development Tools User Guide.)

Embedded OpenSQL programs must be processed by the embedded SQL
preprocessor, which converts the statements into host language source code
statements. The host language statements are primarily calls to a runtime
library that provides the interface to the Enterprise Access product or server.
(Non-SQL host language statements are not processed by the preprocessor.)

After the program has been preprocessed, compile and link it according to the
requirements of the host language. For details about compiling and linking an
embedded OpenSQL program, see the Embedded SQL Companion Guide.

The examples in this chapter use italics to indicate pseudocode that specifies
the program statements that must be provided in the host language. All of the
examples use the semicolon (;) as the statement terminator. However, in an
actual program, the statement terminator is determined by the host language.

Syntax of an Embedded OpenSQL Statement

5–2 OpenSQL Reference Guide

Syntax of an Embedded OpenSQL Statement
The syntax of an embedded OpenSQL statement is as follows:

[margin] exec sql OpenSQL_statement [terminator]

When writing embedded OpenSQL statements, keep the following points in
mind:

 The margin, consisting of spaces or tabs, is the margin that the host
language compiler requires before the regular host code. Not all languages
require margins. To determine if a margin is required, see the Embedded
SQL Companion Guide.

 The keywords, exec sql, must precede the OpenSQL statement itself.
These words must appear together on a single line. They signal the
preprocessor that the statement is an embedded OpenSQL statement. The
preprocessor ignores statements that are not preceded by exec sql.

 The statement terminator depends on the requirements of the host
language. Different host languages require different terminators. Some
host languages, such as Fortran, do not require a statement terminator.

 Embedded OpenSQL statements can be continued across multiple lines,
according to the host language’s rules for line continuation.

 Labels can precede the embedded statement if a host language statement
in the same place can be preceded by a label. The label must be at the
correct margin for labels and no syntactic element (including comments)
can appear between it and the exec keyword.

 Host language comments must follow the rules for the host language.

 Some host languages allow you to place a line number in the margin.

For information about language-dependent syntax, see the Embedded SQL
Companion Guide.

Structure of Embedded OpenSQL Programs

Chapter 5: Embedded OpenSQL 5–3

Structure of Embedded OpenSQL Programs
In general, OpenSQL statements can be embedded anywhere in a program
that host language statements are allowed. The following example shows a
simple embedded OpenSQL program that retrieves an employee’s name and
salary from the database and prints them on a standard output device. The
statements that begin with the words, exec sql, are embedded OpenSQL
statements.

begin program

exec sql include sqlca;

exec sql begin declare section;
 name character_string(15);
 salary float;
exec sql end declare section;

exec sql whenever sqlerror stop;

exec sql connect 'personnel/db2udb';

exec sql select ename, sal
into :name, :salary
from employee
where eno = 23;

print name, salary;

exec sql disconnect;

end program

The sequence of statements in the above example illustrates the typical
structure of embedded OpenSQL programs. The first OpenSQL statement to
appear is:

exec sql include sqlca;

This statement incorporates the OpenSQL error and status handling
mechanism—the SQL Communications Area (SQLCA)—into the program. The
SQLCA is required by the whenever statement appearing later in the example.

Next is an OpenSQL declaration section. Host language variables to OpenSQL
must be declared before using the variables in embedded OpenSQL
statements.

The whenever statement that follows uses information from the SQLCA to
control program execution under error or exception conditions. An error
handling mechanism should precede all executable embedded OpenSQL
statements in a program. For details about error handling, see Error Handling
in the chapter “OpenSQL Features.”

Host Language Variables

5–4 OpenSQL Reference Guide

Following the whenever statement is a series of OpenSQL and host language
statements. The first statement:

exec sql connect 'personnel/db2udb';

initiates access to the DB2 UDB personnel database through an Enterprise
Access product. Your application must connect to a database before
attempting to access the database. The slash (/) separates the database name
from the server class. (The default server class is INGRES.) For details about
server class, see your Enterprise Access product guide.

After connecting to the personnel database, the application issues the select
statement. The into clause specifies the host language variables into which the
select statement retrieves values from the database. In the example, the
variables are name and salary.

Following the select statement is a host language statement that prints the
values contained in the variables. Host language and embedded OpenSQL
statements can be mixed in an application.

Finally, the application program disconnects from the database.

Host Language Variables
Embedded OpenSQL allows host language variables to be used for many
elements of embedded OpenSQL statements. Host language variables can be
used to transfer data from the database into the program and vice versa. Host
language variables can also replace the search condition in a where clause.

Host language variables can be used to specify:

 Database expressions - Variables can generally be used wherever
expressions are allowed in embedded OpenSQL statements, such as in
target lists and predicates. Variables must contain constant values and
cannot represent names of database columns or include any operators.

 Search conditions - A where clause can be specified in a variable. The
entire where clause must be contained in the variable. For example, to
retrieve all columns for employees who earn more than the average
salary:

 wherevar = 'salary>(select avg(salary)
 from employee)'
 exec sql select ename
 into :name
 from employee
 where :wherevar

Host Language Variables

Chapter 5: Embedded OpenSQL 5–5

 Receiving variables - A host variable can be used to specify the objects
of the into clause of the select and fetch statements. The into clause is the
means by which values retrieved from the database are transferred to host
language variables.

 Other statement arguments - The statement descriptions in this guide
note which arguments can be specified using host language variables.

A host language variable can be a single variable or a structure.

All host language variables must be declared to embedded OpenSQL before
you can use them in embedded OpenSQL statements. The names of these
variables cannot be keywords reserved by Ingres.

The following sections describe how to use host language variables. For
language-specific details, see the Embedded SQL Companion Guide.

Declaring Variables

Host language variables must be declared to OpenSQL before using them in
any embedded OpenSQL statements. Host language variables are declared to
OpenSQL in a declaration section that has the following syntax:

exec sql begin declare section;
 host variable declarations
exec sql end declare section;

A program can contain multiple declaration sections. The preprocessor treats
variables that are declared in each declaration section as global to the
embedded OpenSQL program from the point of declaration forward.

The variable declarations are identical to any variable declarations in the host
language. The data types of the declared variables must belong to a subset of
host language data types that are compatible with embedded OpenSQL data
types. OpenSQL converts between host language data types and OpenSQL
data types.

For a list of valid embedded OpenSQL data types and a discussion of data type
conversion, see the Embedded SQL Companion Guide.

The embedded OpenSQL preprocessor is concerned only with host language
variables that are declared to OpenSQL. Host language variables that are not
declared to OpenSQL are invisible to the preprocessor and therefore can
include data types that the preprocessor does not understand.

Host Language Variables

5–6 OpenSQL Reference Guide

The Include Statement

The embedded OpenSQL include statement lets you include external files in
your source code. The syntax of the include statement is as follows:

exec sql include filename;

This statement is commonly used to include an external file containing variable
declarations. For example, assuming you have a file, myvars.dec, that
contains a group of variable declarations, you can use the include statement in
the following manner:

exec sql begin declare section;
exec sql include 'myvars.dec';
exec sql end declare section;

This is the functional equivalent of listing all the declarations in the myvars.dec
file in the declaration section itself.

For details about the include statement, see Include in the chapter “OpenSQL
Statements.”

Variable Usage

After host language variables are declared, they can be used in embedded
statements. Host language variables must be preceded by a colon. For
example:

exec sql select ename, sal
into :name, :salary
from employee
where eno = :empnum;

The into clause contains two host language variables, name and salary and the
where clause contains one, empnum.

A host variable can have the same name as a database object, such as a
column. The preceding colon distinguishes the variable from a database object
of the same name.

If the application issues a query intended to retrieve values from a table into a
host variable and the query returns no value (for example, no row in the table
fulfilled the query), the contents of the variable are not modified.

Host Language Variables

Chapter 5: Embedded OpenSQL 5–7

Variable Structures

To simplify the transfer of data between database tables and embedded
programs, variable structures can be used in the select, fetch, and insert
statements. Variable structures are specified, like single variables, according
to the rules of the host language and must be declared in an embedded
OpenSQL declare section. The number, data type, and ordering of the
structure’s elements must correspond to the number, data type, and ordering
of the result columns associated with a select, fetch, or insert statement.

For example, for a database table, employee, with the columns ename (data
type character(20)) and eno (integer), declare the variable structure:

emprec
 ename character_string(20),
 eno integer;

and issue the select statement

exec sql select *
 into :emprec.ename, :emprec.eno
 from employee
 where eno = 23;

Rather than specifying individual variables, you can specify the structure name
in the select statement. To specify the preceding example using a structure
name, use the following select statement:

exec sql select *
 into :emprec
 from employee
 where eno = 23;

The embedded OpenSQL preprocessor expands the structure name into the
names of the individual members. Therefore, placing a structure name in the
into clause is equivalent to enumerating all members of the structure in the
order in which they were declared.

You can also use a structure to insert values in the database table. For
example:

exec sql insert into employee (ename, eno)
 values (:emprec);

For details on the declaration and use of variable structures, see the
Embedded SQL Companion Guide.

Host Language Variables

5–8 OpenSQL Reference Guide

The Dclgen Utility

Dclgen (“Declaration Generator”) is a structure-generating utility that maps
the columns of a database table into a structure that can be included in a
variable declaration. Invoke dclgen from the operating system level with the
following command:

dclgen language dbname tablename filename structurename

where:

language is the host language (for example, “C”).

dbname is the name of the database containing the table.

tablename is the name of the database table.

filename is the output file generated by dclgen containing the structure
declaration.

structurename is the name of the generated host language structure.

Dclgen creates the declaration file, filename, containing a structure
corresponding to the database table. The file also includes a declare table
statement that identifies the database table and columns from which the
structure was generated. After the file has been generated, an embedded
OpenSQL include statement can be used to incorporate the file into the
variable declaration section.

For details on the dclgen utility, see the Embedded SQL Companion Guide.

Indicator Variables

An indicator variable is a two-byte integer variable associated with a host
language variable in an embedded OpenSQL statement. Indicator variables
enable the application to:

 Detect when a null has been retrieved into a host variable. (When used to
detect or assign a null, indicator variables are referred to as null indicator
variables.)

 Assign a null to a table column.

 Detect character string truncation (when retrieving from a table into a host
variable).

Indicator variable must be declared to embedded OpenSQL in a declare
section.

Host Language Variables

Chapter 5: Embedded OpenSQL 5–9

In an embedded OpenSQL statement, the indicator variable is specified
immediately after the host variable, with a colon separating the two:

host_variable:indicator_variable

The optional keyword indicator can be used in the syntax:

host_variable indicator:indicator_variable

Indicator variables can be associated with host language variables that contain
the value of a database column or a constant database expression. For
example, the following statement associates null indicators with variables that
contain values retrieved from table columns:

exec sql select ename, esal
into :name:name_null, :salary:sal_null
from employee;

Null Indicators and Data Retrieval

When OpenSQL retrieves a null for a host variable that has an associated
indicator variable, it sets the indicator variable to -1 and does not change the
value of the host variable. If the value retrieved is not a null, then the
indicator variable is set to 0 and the value is assigned to the host variable.

If the value retrieved is null and the program does not supply a null indicator,
an error results.

Null indicator variables can be associated with the following:

 Select into and fetch into result variables

 Data handlers for long varchar and long byte values

The following example illustrates the use of a null indicator when retrieving
data from a database. This program retrieves employee information, then
updates a roster. If a null phone number is detected (using the indicator,
variable phone_null), the program places the string, N/A, in the roster’s phone
column.

exec sql fetch emp_cursor into :name,
 :phone:phone_null, :id;
if (phone_null = -1) then
 update_roster(name, ’N/A’, id);
else
 update_roster(name, phone, id);
end if;

Host Language Variables

5–10 OpenSQL Reference Guide

Using Null Indicators to Assign Nulls

An indicator variable can be used with a host variable to assign a null value to
a table column. When OpenSQL performs the assignment, it checks the value
of the host variable’s associated indicator variable. If the indicator variable’s
value is -1, then OpenSQL assigns a null to the column and ignores the value
of the host variable. If the indicator variable does not contain -1, OpenSQL
assigns the value of the host variable to the column. If the indicator value is -1
and the column is not nullable, then OpenSQL returns an error.

The following example demonstrates the use of an indicator variable and the
null constant with the insert statement:

read name, phone number, and id from terminal;
if (phone = ’ ’) then
 phone_null = -1;
else
 phone_null = 0;
end if;
exec sql insert into newemp (name, phone, id,
 comment) values (:name, :phone:phone_null,
 :id, null);

This second example retrieves data from a form and updates the data in the
database:

exec frs getform empform (:name:name_null = name, :id:id_null = id);
exec sql update employee
set name = :name:name_null, id = :id:id_null
where current of emp_cursor;

Use null indicators to assign nulls in:

 The insert values list

 The update set list

 Constant expressions in select target lists used in embedded select
statements or subselect clauses

All constant expressions in the above list can include the keyword null.
Specifying the word null is equivalent to specifying a null indicator with the
value -1.

Indicator Variables and Character Data Retrieval

If OpenSQL retrieves a character string into a host variable that is too small to
hold the string, the data is truncated to fit. (If the data was retrieved from the
database, OpenSQL sets the sqlwarn1 field to “W”.) If the host variable has an
associated indicator variable, the indicator is set to the original length of the
data. For example, the following statement sets the variable, char_ind, to 6
because it is attempting to retrieve a 6-character string into a 3-byte host
variable, char_3:

exec sql select 'abcdef' into :char_3:char_ind;

Data Manipulation with Cursors

Chapter 5: Embedded OpenSQL 5–11

Note: If a long varchar or long byte column is truncated into a host language
variable, the indicator variable is set to 0. The maximum size of a long varchar
or long byte column (2 GB) is too large to fit in an indicator variable.

Null Indicator Arrays and Host Structures

Use host structures to hold the data to be retrieved or written by select, fetch,
and insert statements. In combination with host structures, an indicator array
can be used to detect whether a particular member of the host structure
contains a null.

An indicator array is an array of 2-byte integers that is associated with a host
variable structure. Generally, indicator arrays are declared in the same declare
section as their associated host variable structure. For example, the following
code declares a host variable structure, emprec, and its associated indicator
array, empind:

emprec
 ename character(20),
 eid integer,
 esal float;
empind array(3) of short_integer;

The preceding structure and indicator array might be used as follows:

exec sql select name, id, sal
into :emprec:empind
from employee
where number = 12;

A particular element of the indicator array is associated with the corresponding
ordered member of the host structure: you do not need to specify each array
element separately. The embedded OpenSQL preprocessor enumerates the
elements in the array when expanding the structure into its members.

Data Manipulation with Cursors
Cursors enable embedded OpenSQL programs to process the result rows
returned by a select statement, one at a time. After a cursor has been opened,
it can be advanced through the result rows. When the cursor is positioned to a
row, the data in the row can be transferred to host language variables and
processed according to the requirements of the application. The row to which
the cursor is positioned is referred to as the current row.

A typical cursor application uses OpenSQL statements to perform the following
steps:

• Declare a cursor that will select a set of rows for processing.

• Open the cursor, thereby selecting the data.

Data Manipulation with Cursors

5–12 OpenSQL Reference Guide

• Fetch each row from the result table and move the data from the row into
host language variables.

• Optionally update or delete the current row.

• Close the cursor and terminate processing.

An Example of Cursor
Processing

This simple example of cursor processing prints the names and salaries of all
the employees in the employee table and updates the salary of employees
earning less than $10,000.

exec sql include sqlca;

exec sql begin declare section;
name character_string(15);
salary float;
exec sql end declare section;

exec sql whenever sqlerror stop;

exec sql connect personnel/rdb;

exec sql declare c1 cursor for
select ename, sal
from employee
for update of sal;

exec sql open c1;

exec sql whenever not found goto closec1;

loop while more rows

/* The WHENEVER NOT FOUND statement causes the loop
** to be broken as soon as a row is not fetched.
*/

exec sql fetch c1 into :name, :salary;

print name, salary;

if salary < 10000 then
 exec sql update employee
 set salary = 10000
 where current of c1;

end if;
end loop;

closec1:

exec sql close c1;

exec sql disconnect;

Data Manipulation with Cursors

Chapter 5: Embedded OpenSQL 5–13

Declaring a Cursor

Before a cursor can be used in an application, it must be declared. The syntax
for declaring a cursor is:

exec sql declare cursor_name cursor for
 select_statement;

The declare cursor statement assigns a name to the cursor and associates the
cursor with a select statement to use to retrieve data. A cursor is always
associated with a particular select statement. The select is executed when the
cursor is opened.

Updates can be performed only if the cursor’s select statement does not
include any of the following elements:

 Aggregates

 Union clause

 Group by clause

 Having clause

 Distinct

These elements can be present in subselects within the select statement, but
must not occur in the outermost select statement.

The cursor_name can be specified using a string literal or a host language
string variable. Cursor names can be assigned dynamically. For details, see An
Example of Dynamically Specified Cursor Names in this chapter.

Opening Cursors

Opening a cursor executes the associated select statement and positions the
cursor before the first row in the result table. To open a cursor, use the open
statement:

exec sql open cursor_name [for readonly];

To specify that you intend to read the table without updating it, include the for
readonly clause. This clause may improve the performance of the cursor
retrieval. If for readonly is specified, updates cannot be performed on the
data. For readonly can be specified even if the cursor was declared for update.

Data Manipulation with Cursors

5–14 OpenSQL Reference Guide

Open Cursors and Transaction Processing

OpenSQL treats a multi-query transaction as a single statement (logically).
Cursors cannot remain open across transactions. The commit statement closes
all open cursors, even if a close cursor statement was not issued.

If an error occurs while a cursor is open, the Enterprise Access product or
DBMS may roll back the entire transaction and close the cursor.

Fetching the Data

The fetch statement advances the position of the cursor through the result
rows returned by the select. Using the fetch statement, your application can
process the rows one at a time.

The syntax of the fetch statement is:

exec sql fetch cursor_name
 into variable {, variable};

The fetch statement advances the cursor to the first or next row in the result
table and loads the values into host language variables.

To illustrate, the example of cursor processing shown previously contains the
following declare cursor statement:

exec sql declare c1 cursor for
select ename, sal
from employee
for update of sal;

open c1;

Later in the program, the following fetch statement appears:

exec sql fetch c1 into :name, :salary;

This fetch statement puts the values from the ename and sal columns of the
current row into the host language variables name and salary.

Since the fetch statement operates on a single row at a time, it is ordinarily
placed inside a host language loop.

Data Manipulation with Cursors

Chapter 5: Embedded OpenSQL 5–15

There are two ways to detect when the last row in the result table has been
fetched:

 The sqlcode variable in the SQLCA is set to 100 if an attempt to fetch past
the last row of the result table is made. (The SQL Communications Area
(SQLCA) is a group of variables used by OpenSQL to provide error and
status information to applications. After the last row is retrieved,
succeeding fetches do not affect the contents of the host language
variables specified in the into clause of the fetch statement.

 The whenever not found statement specifies an action to be performed
when the cursor moves past the last row. For details about the whenever
statement, see Trapping Errors Using the Whenever Statement in the
chapter “OpenSQL Features.”

Cursors can only move forward through a set of rows. To fetch a row again, a
cursor must be closed and reopened.

Fetching Rows Inserted by Other Queries

While a cursor is open, the application can append rows using non-cursor
insert statements. If rows are inserted after the current cursor position, the
rows may or may not be visible to the cursor, depending on the following
criteria:

 Updatable cursors - The newly inserted rows are visible to the cursor.
Updatable cursors reference a single base table or updatable view.

 Non-updatable cursors - If the cursor select statement retrieves rows
directly from the base table, the newly inserted rows are visible to the
cursor. If the select statement manipulates the retrieved rows (for
example, includes an order by clause), the cursor retrieves rows from an
intermediate buffer, and cannot detect the newly inserted rows.

Using Cursors to Update Data

To use a cursor to update data, specify the for update clause in the cursor’s
declaration:

exec sql declare cursor_name cursor for
 select_statement
 for update of column {, column};

The for update clause must list any columns in the selected database table
that may require updating. Columns that have not been declared cannot be
updated. If you are deleting rows, you do not need to declare the cursor for
update.

Data Manipulation with Cursors

5–16 OpenSQL Reference Guide

The syntaxes for the close and fetch statements are no different for cursors
opened for update. However, the update statement has an extended version
for cursors:

exec sql update tablename
 set column = expression {, column = expression}
 where current of cursor_name;

The where clause of the cursor version specifies the row to which the cursor
currently points, and the update affects only data in that row. Each column
specified in the set clause must have been declared for updating in the declare
cursor statement.

Be sure that the cursor is pointing to a row (a fetch has been executed) before
performing a cursor update. The update statement does not advance the
cursor. A fetch is still required to move the cursor forward one row. Two cursor
updates not separated by a fetch will cause the same row to be updated twice
or generate an error on the second update, depending on the underlying
DBMS.

Using Cursors to Delete Data

The cursor version of the delete statement has the following syntax:

exec sql delete from tablename
 where current of cursor_name;

The delete statement deletes the current row. The cursor must be positioned
on a row (as the result of a fetch statement) before a cursor delete can be
performed. After the row is deleted, the cursor points to the position after the
row (and before the next row) in the set. To advance the cursor to the next
row, issue the fetch statement.

You do not have to declare a cursor for update to perform a cursor delete.

Data Manipulation with Cursors

Chapter 5: Embedded OpenSQL 5–17

An Example of
Updating and
Deleting with Cursors

This example illustrates updating and deleting with a cursor:

exec sql include sqlca;

exec sql begin declare section;
name character_string(15);
salary float;
exec sql end declare section;

exec sql whenever sqlerror stop;

exec sql connect personnel/rdb;

exec sql declare c1 cursor for
select ename, sal
from employee
for update of sal;

exec sql open c1;

exec sql whenever not found goto closec1;

loop while more rows

exec sql fetch c1 into :name, :salary;
 print name, salary;

/* Increase salaries of all employees earning less
 than 60,000. */

if salary < 60,000 then

print ’Updating ’, name;
 exec sql update employee
 set sal = sal * 1.1
 where current of c1;

/* Fire all employees earning more than 300,000. */

else if salary > 300,000 then

print ’Terminating ’, name;
 exec sql delete from employee
 where current of c1;

end if;

end loop;

closec1:

exec sql close c1;

exec sql disconnect;

Data Manipulation with Cursors

5–18 OpenSQL Reference Guide

Closing Cursors

The final action in cursor processing is to close the cursor. Once the cursor is
closed, no more processing can be performed with it unless another open
statement is issued. The syntax for closing the cursor is as follows:

exec sql close cursor_name;

The same cursor can be opened and closed any number of times in a single
program, but it must be closed before reopening it. If a cursor is closed and
reopened, the associated select statement is executed again and the cursor is
positioned before the start of the result rows.

Summary of Cursor Positioning

The following table summarizes the effects of cursor statements on cursor
positioning:

Statement Effect on Cursor Position

open Cursor positioned before first row in set.

fetch Cursor moves to next row in set. If it is already on the
last row, the cursor moves beyond the set and its
position becomes undefined.

update(cursor) Cursor remains on current row.

delete(cursor) Cursor moves to a position after the deleted row (but
before the following row).

close Cursor and set of rows become undefined.

For extended examples of the use of cursors in embedded OpenSQL, see the
Embedded SQL Companion Guide.

Data Manipulation with Cursors

Chapter 5: Embedded OpenSQL 5–19

An Example of
Dynamically
Specified Cursor
Names

A dynamically specified cursor name (a cursor name specified using a host
string variable) can be used to scan a table that contains rows that are
related hierarchically, such as a table of employees and managers. In a
relational database, this structure must be represented as a relationship
between two columns. In an employee table, typically employees are
assigned an ID number. One of the columns in the employee table contains
the ID number of each employee’s manager. This column establishes the
relationships between employees and managers.

To use dynamically specified cursor names to scan this kind of table:

 Write a routine that uses a cursor to retrieve all the employees that work
for a manager.

 Create a loop that calls this routine for each row that is retrieved and
dynamically specifies the name of the cursor to be used by the routine.

The following example retrieves rows from the employee table that has the
following format:

exec sql declare employee table
(ename varchar(32),
 title varchar(20),
 manager varchar(20));

This program scans the employee table and prints out all employees and the
employees that they manage:

/* This program will print out, starting with
** the top manager,
** each manager and who they manage for the entire
** company. */

exec sql include sqlca;

/* main program */
exec sql begin declare section;
 topmanager character string(21)
exec sql end declare section;

exec sql connect enterprise/db2udb;

exec sql whenever not found goto closedb;
exec sql whenever sqlerror call sqlprint;

/* Retrieve top manager */
exec sql select ename into :topmanager from employeewhere title = 'President';

print ’President’, topmanager
call printorg(1, topmanager);
/* start with top manager */

/* closedb */
closedb:
exec sql disconnect;

Data Handlers for Large Objects

5–20 OpenSQL Reference Guide

/* This subroutine retrieves and displays employees
** who report to a given manager. This subroutine is
** called recursively to determine if a given
** employee is also a manager and if so,
** it will display who reports to them.
*/

subroutine printorg(level, manager)
level integer

exec sql begin declare section;
 manager character string(21)
 ename character string(33)
 title character string(21);
 cname character string(4);
exec sql end declare section;

/* set cursor name to 'c1', 'c2', ... */
cname = ’c’ + level

exec sql declare :cname cursor for
select ename, title, manager from employee
 where manager = :manager
 order by ename;

exec sql whenever not found goto closec;

exec sql open :cname;

loop
 exec sql fetch :cname into :ename, :title,
 :manager;

/* Print employee's name and title */
 print title, ename
/* Find out who (if anyone) reports to this employee*/
 printorg(level+1, ename);

end loop

closec:
exec sql close :cname;
return;

Data Handlers for Large Objects
To read and write long varchar and long byte columns (referred to as large
objects), create routines called data handlers. Data handlers use get data and
put data statements to read and write segments of large object data. To
invoke a data handler, specify the datahandler clause in an insert, update,
fetch, or select statement. When the query is executed, the data handler
routine is invoked to read or write the column.

In embedded SQL programs, use the datahandler clause in place of a variable
or expression. For example, you can specify a data handler in a where clause;
the syntax of the datahandler clause is as follows:

datahandler(handler_routine ([handler_arg]))[:indicator_var]

Data Handlers for Large Objects

Chapter 5: Embedded OpenSQL 5–21

The following table lists the parameters for the datahandler clause:

Parameter Description

handler_routine Pointer to the data handler routine. Must be a valid pointer.
An invalid pointer results in a runtime error.

handler_arg Optional pointer to an argument to be passed to the data
handler routine. The argument does not have to be
declared in the declare section of the program.

indicator_var Optional indicator variable. For datahandler clauses in
insert and update statements and where clauses, if this
variable is set to a negative value, the data handler routine
is not called. If the data returned by a select or fetch
statement is null, the indicator variable is set to -1 and the
data handler routine is not called.

For example, the following select statement returns the column, bookname,
using the normal SQL method and the long varchar column, booktext, using a
data handler:

exec sql select bookname, booktext into
 :booknamevar, datahandler(get_text())
 from booktable where bookauthor = 'Melville';

Separate data handler routines can be created to process different columns.

In select loops, data handlers are called once for each row returned.

Errors in Data Handlers

Errors from put data and get data statements are raised immediately, and
abort the SQL statement that invoked the data handler. If an error handler is
in effect (as the result of a set_sql(errorhandler) statement), the error
handling routine is called.

The data handler read routines (routines that issue get data statements) must
issue the enddata statement before exiting. If a data handler routine attempts
to exit without issuing the enddata statement, a runtime error is issued.

To determine the name of the column for which the data handler was invoked,
use the inquire_sql(columnname) statement. To determine the data type of
the column, use the inquire_sql(columntype) statement. The
inquire_sql(columntype) statement returns an integer code corresponding to
the column data type. For a table listing the data type codes, see the table
titled Data Type Codes. These inquire_sql statements are valid only within a
data handler routine. Outside of a data handler, these statements return
empty strings.

Data Handlers for Large Objects

5–22 OpenSQL Reference Guide

Restrictions on Data Handlers

Data handlers are subject to the following restrictions:

 The datahandler clause is not valid in interactive SQL.

 The datahandler clause cannot be specified in a dynamic SQL statement.

 The datahandler clause cannot be specified in an execute procedure
statement.

 The datahandler clause cannot be specified in a declare section.

 A data handler routine must not issue a database query. The following
statements are valid in data handlers:

– Put data and get data

– Enddata (for read data handlers only)

– Inquire_sql and set_sql

– Host language statements

Using Large Objects in Dynamic SQL

The following sections contain considerations and restrictions for using large
object data in dynamic SQL programs.

Length Considerations

The sqllen field of the SQLDA is a 2-byte integer in which the DBMS server
returns the length of a column. If a long varchar or long byte column that is
longer than the maximum value possible for sqllen (32,768) is described, a 0
is returned in sqllen.

Long varchar and long byte columns can contain a maximum of 2 GB of data.
To prevent data truncation, be sure that the receiving variable to which the
SQLDA sqldata field points is large enough to accommodate the data in the
large object columns your program is reading. If data is truncated to fit in the
receiving variable, the sqlwarn member of the sqlca structure is set to indicate
truncation.

Data Handlers for Large Objects

Chapter 5: Embedded OpenSQL 5–23

Using Data Handlers in Dynamic SQL

To specify a data handler routine to be called by a dynamic query that reads or
writes a large object column, prepare the SQLDA fields for the large object
column as follows:

 Set the sqltype field to IISQL_HDLR_TYPE. This value is defined when
using the include sqlda statement to define an SQLDA structure in your
program.

 Declare a sqlhdlr structure in your program. For details, see the Embedded
SQL Companion Guide. Load the sqlhdlr field of this structure with a
pointer to your data handler routine. If a variable is to be passed to the
data handler, load the sqlarg field with a pointer to the variable. If no
argument is to be passed, set the sqlarg field to 0.

If the value of the large object column is null (sqlind field of the SQLDA set to
-1) the data handler is not invoked.

Examples of Data Handlers

The following examples illustrate how data handlers are used to enter and
retrieve large objects from the database. The sample table in this example
stores the contents of a book, one chapter per row. The table consists of a
char column (chapter_name) and a long varchar column (chapter_text).

The following create table statement shows the precise structure of the table,
book.

exec sql create table book
 (chapter_name char(50),
 chapter_text long varchar);

Data Handlers for Large Objects

5–24 OpenSQL Reference Guide

PUT DATA Handler
Example

This example illustrates the use of the put data statement; the data handler
routine writes a chapter from a text file to the book table. The data handler is
called when the insert statement is executed.

exec sql begin declare section;
 char chapter_namebuf(50);
exec sql end declare section;

int put_handler();/* not necessary to
 declare to embedded SQL */
...
copy chapter text into chapter_namebuf

exec sql insert into book
 (chapter_name, chapter_text)
 values (:chapter_namebuf,
 datahandler(put_handler()));
...

put_handler()

exec sql begin declare section;
 char chap_segment[3000];
 int chap_length;
 int segment_length;
 int error;

exec sql end declare section;

int local_count = 0;

 ...
exec sql whenever sqlerror goto err;

chap_length = byte count of file

open file for reading

loop while (local_count < chap_length)

 read segment from file into chap_segment

 segment_length = number of bytes read

 exec sql put data
 (segment = :chap_segment,
 segmentlength = :segment_length)

 local_count = local_count + segment_length

end loop

exec sql put data (dataend = 1); /* required by embedded SQL */

...

err:

exec sql inquire_sql(:error = errorno);

if (error <> 0)
 print error
 close file

Data Handlers for Large Objects

Chapter 5: Embedded OpenSQL 5–25

GET DATA Handler
Example

This example illustrates the use of the get data statement in a data handler.
This routine retrieves a chapter titled, “One Dark and Stormy Night,” from
the book table. The data handler routine is called when the select statement
is executed.

exec sql begin declare section;

 char chapter_namebuf(50);

exec sql end declare section;

 int get_handler()

...

Copy the string "One Dark and Stormy Night" into the chapter_namebuf variable.
exec sql select chapter_name, chapter_text
 into :chapter_namebuf, datahandler(get_handler())
 from book where chapter_name = :chapter_namebuf
 exec sql begin
 /* get_handler will be invoked
 once for each row */
 exec sql end;
...

get_handler()

exec sql begin declare section;
 char chap_segment[1000];
 int segment_length;
 int data_end;
 int error;
exec sql end declare section;

 ...

exec sql whenever sqlerror goto err;

data_end = 0

open file for writing

/* retrieve 1000 bytes at a time and write to text file. on last segment, less
than 1000 bytes may be returned, so segment_length is used for actual number of
bytes to write to file. */

while (data_end != 1)

 exec sql get data (:chap_segment = segment,
 :segment_length = segmentlength,
 :data_end = dataend)
 with maxlength = 1000;

 write segment_length number of bytes from
 "chap_segment" to text file

end while

...

err:

exec sql inquire_ingres(:error = errorno);

Data Handlers for Large Objects

5–26 OpenSQL Reference Guide

if (error != 0)

 print error
 close file

Dynamic SQL Data
Handler

This example illustrates the use of data handlers in a dynamic SQL program.
The sample table, big_table, was created with the following create table
statement:

create table big_table
 (object_id integer, big_col long varchar);

The dynamic program retrieves data from big_table.

The data handler routine, userdatahandler, accepts a structure composed of a
(long varchar) character string and an integer (which represents an object ID).
The data handler writes the object ID followed by the text of the large object
to a file. The logic for the data handler is shown in the following pseudocode:

userdatahandler(info)

hdlr_param pointer to info structure

{exec sql begin declare section;

 char segbuf[1000];
 int seglen;
 int data_end;

exec sql end declare section;

data_end = 0

open file for writing

set arg_str field of info structure to filename
 /* to pass back to main program */

write arg_int field to file /* id passed in
 from main program */

loop while (data_end != 1)
 exec sql get data
 (:segbuf = segment, :dataend = dFataend)
 with maxlength = 1000;

 write segment to file

end loop

close file

}

Data Handlers for Large Objects

Chapter 5: Embedded OpenSQL 5–27

The structures required for using data handlers in dynamic SQL programs are
declared in the eqsqlda.h source file, which is included in your program by an
include sqlda statement. The following (C-style) definitions pertain to the use
of data handlers:

define IISQ_LVCH_TYPE 22
define IISQ_HDLR_TYPE 46

typedef struct sqlhdlr_
{
 char *sqlarg;
 int (*sqlhdlr)();
} IISQLHDLR;

The following definitions must be provided by the application program. In this
example the header file, mydecls.h, contains the required definitions.

/* Define structure hdlr_param, which will be used to pass information to and
receive information from the data handler. The data handler argument is a pointer
to a structure of this type, which is declared in the main program.*/

typedef struct hdlr_arg_struct

{
 char arg_str[100];
 int arg_int;

} hdlr_param;

The following code illustrates the main program, which uses dynamic SQL to
read the long varchar data from the sample table. This sample program sets
up the SQLDA to handle the retrieval of two columns, one integer column and
one long varchar column. The long varchar column is processed using a user-
defined data handler.

exec sql include 'mydecls.h';

main()

{

/* declare the sqlda */

exec sql include sqlda;

declare host SQLDA: _sqlda

declare sqlda as pointer to host SQLDA _sqlda

exec sql begin declare section;

 character stmt_buf[100];
 short integer indicator1;
 short integer indicator2;

exec sql end declare section;

integer userdatahandler()

integer i

Data Handlers for Large Objects

5–28 OpenSQL Reference Guide

/* Set the iisqhdlr structure; the data handler "userdatahandler" is invoked with
a pointer to "hdlr_arg" */

iisqlhdlr data_handler;

/* Declare parameter to be passed to datahandler -- in this example a pointer to
a hdlr_param -- a struct with one character string field and one integer field as
defined in "mydecls.h". */

declare hdlr_param hdlr_arg

set the SQLDA’s sqln field to 2

copy "select object_id,big_col from big_table2" to the host language variable
stmt_buf

i = 0

exec sql connect 'mydatabase';

set the sqlhdlr field to point to the userdatahandler routine

set the sqlarg field to point to arguments (hdlr_arg)

/* Set the first sqlvar structure to retrieve column "object_id".Because this
column appears before the large object column in the target list, it IS retrieved
prior to the large object column, and can be put into the hdlr_arg that is passed
to the data handler. */

sqlvar[0].sqltype = IISQ_INT_TYPE

sqlvar[0].sqldata points to hdlr_arg.arg_int

sqlvar[0].sqlind points to indicator1

/* Set the second sqlvar structure to invoke a datahandler.the "sqltype" field
must be set to iisq_hdlr_type.the "sqldata" field must be pointer to iisqlhdlr
type. */

sqlvar[1].sqltype = IISQ_HDLR_TYPE

sqlvar[1].sqldata points to data_handler

sqlvar[1].sqlind points to indicator2

/* The data handler is called when the large object is retrieved. The data
handler writes the object_id and large object to a file and returns the file name
to the main program in the hdlr_arg struct. */

exec sql execute immediate :stmt_buf
 using descriptor sqlda;

exec sql begin;

/* process the file created in the data handler */

call processfile(hdlr_arg)

exec sql end;

}

Chapter 6: Dynamic OpenSQL 6–1

Chapter 6: Dynamic OpenSQL

This chapter discusses the functionality of dynamic programming including the
SQL Descriptor Area (SQLDA) and dynamic OpenSQL statements, and
describes how to execute a dynamic non-select statement and a dynamic
select statement.

Dynamic programming enables embedded OpenSQL programs to specify a
variety of program elements (such as queries and OpenSQL statements) at
runtime. In applications where table names or column names are not known
until runtime, or where complete queries must be built based on the
application’s runtime environment, the hard-coded OpenSQL statement is not
sufficient. For example, an application might include an expert mode in which
the runtime user can type in select queries and browse the results at the
terminal. To support applications such as these, OpenSQL provides dynamic
OpenSQL.

Dynamic OpenSQL provides the ability to specify table and column names and
build queries at runtime. Using dynamic OpenSQL, you can:

 Execute a statement that is stored in a buffer (execute immediate)

 Encode a statement stored in a buffer and execute it many times (prepare
and execute)

 Obtain information about a table at runtime (prepare and describe)

For details about the execute immediate, prepare, execute, and describe
statements, see Dynamic OpenSQL Statements in this chapter.

To support dynamic select statements, the cursor statements (for example,
declare and open) have dynamic versions. For details, see Executing a
Dynamic Select Statement and Using a Cursor to Retrieve the Results in this
chapter.

The OpenSQL Descriptor Area (SQLDA) is an integral part of dynamic
programming. The SQLDA is a host language structure used by dynamic
OpenSQL as a storage space for information. When used with the describe
statement, this information includes the name, data type, and length of the
result columns, the form’s fields, or the table field’s columns. When the SQLDA
is used with other dynamic forms statements, the information includes the
data type, length, and addresses of the variables that either store values from
the table or form or contain values to be placed in the table or form.

Depending on your host language, some of the statements discussed in this
chapter may vary in syntax or may not be supported. For information about
dynamic programming that is specific to your host language, see the
Embedded SQL Companion Guide.

The SQLDA

6–2 OpenSQL Reference Guide

The SQLDA
The descriptor area, called the SQLDA (SQL Descriptor Area), is a host
language structure used by both dynamic OpenSQL and dynamic Forms
Runtime System (FRS). Dynamic OpenSQL uses the SQLDA to store
information about each result column of the select statement. Dynamic FRS
uses the SQLDA to hold descriptive information about the fields of a described
form or columns of a described table field. Both dynamic OpenSQL and
dynamic FRS use the SQLDA to store descriptive information about program
variables. The SQLDA must be used when executing a describe statement (see
the Describe Statement and The SQLDA in this chapter). The SQLDA can
optionally be used when executing a fetch, open, prepare, execute, or execute
immediate statement. (For details about these statements, see Dynamic
OpenSQL Statements in this chapter.)

Structure of the SQLDA

Storage for the SQLDA structure is typically allocated at runtime. If a program
allows several dynamically defined cursors to be opened at one time, the
program can allocate several SQLDA structures, one for each select statement,
and assign each structure a different name.

Each host language has different considerations for the SQLDA structure.
Before writing a program that uses the SQLDA, see the Embedded SQL
Companion Guide on dynamic OpenSQL statements.

The layout of the SQLDA is:

sqldabc 8-byte character array assigned a blank-padded value,
“SQLDA.”

sqldabc 4-byte integer assigned the size of the SQLDA.

sqln 2-byte integer indicating the number of allocated sqlvar
elements. This value must be set by the program before
describing a statement. The value must be greater than or
equal to zero.

The SQLDA

Chapter 6: Dynamic OpenSQL 6–3

sqld 2-byte integer indicating the number of result columns
associated with the describe statement. This number specifies
how many of the allocated sqlvar elements were used to
describe the statement. If sqld is greater than sqln, then the
program must reallocate the SQLDA to provide more storage
buffers and reissue the describe statement.

To use the SQLDA to place values in a table or form, the
program must set sqld to the proper number before the SQLDA
is used in a statement.

When describing a dynamic OpenSQL statement, if the value in
sqld is zero, the described statement is not a select statement.

sqlvar An sqln-size array of:

sqltype 2-byte integer containing a code number indicating the data
type of the column or variable. For a list of the codes and
corresponding types, see Data Type Codes in this chapter.

sqllen 2-byte integer indicating the length of the column, variable, or
field.

sqldata Pointer to the variable described by the type and length.

sqlind Pointer to indicator variable associated with the host variable.

sqlname String containing the result column name (if a select statement
is being described). Maximum length is 32 characters.

Including the SQLDA in a Program

To define the SQLDA, your application must issue the following include
statement:

exec sql include sqlda;

Do not place this statement in a declaration section.

In most languages, this statement incorporates a set of type definitions that
can be used to define the SQLDA structure. In some languages, it actually
declares the structure. If the structure is declared directly (instead of using the
include statement), you can specify any name for the structure. For
information about how your language handles this statement, see the
Embedded SQL Companion Guide.

A program can have more than one SQLDA-type structure. A dynamic FRS
describe statement and a dynamic OpenSQL statement can use the same
SQLDA structure if the described fields or table field columns have the same
names, lengths, and data types as the columns of the database table specified
in the dynamic OpenSQL statement.

The SQLDA

6–4 OpenSQL Reference Guide

Describe Statement and the SQLDA

Dynamic OpenSQL uses the describe statement to return information about
the result columns of a select statement. Describing a select tells the program
the data types, lengths, and names of the columns retrieved by the select. If
you describe a statement other than select, the only information returned is a
0 in the sqld field. For a complete discussion of how to use describe in a
dynamic OpenSQL application, see Preparing and Describing the Select
Statement in this chapter.

Data Type Codes

The describe statement returns a code indicating the data type of a field or
column. This code is returned in sqltype, one of the fields in an sqlvar element.
The following table lists the type codes:

Data Type Name Data Type Code Nullable

integer 30

-30

No

Yes

float 31

-31

No

Yes

decimal 10

-10

No

Yes

character 20

-20

No

Yes

varchar 21

-21

No

Yes

date 3

-3

No

Yes

money 5

-5

No

Yes

If the column, variable, or field described by the sqlvar element is nullable, the
type code is returned as a negative value.

Dynamic OpenSQL Statements

Chapter 6: Dynamic OpenSQL 6–5

The Using Clause

The using clause is an optional clause that provides certain OpenSQL
statements with dynamic capabilities. The using clause directs OpenSQL to use
the variables pointed to by the sqlvar elements of the SQLDA (or other host
variables) when executing the statement.

The syntax of the using clause is shown below:

using descriptor descriptor_name

Note: The keyword descriptor is optional in some statements that accept the
using clause.

The following statements accept the using clause:

 Describe

 Execute

 Execute immediate

 Fetch

 Open

 Prepare

For details about the execute statement, see Executing a Dynamic Non-select
Statement in this chapter. For details about the execute immediate statement,
see Executing a Dynamic Select Statement in this chapter.

Dynamic OpenSQL Statements
This section describes the (non-cursor) dynamic OpenSQL statements.
Dynamic OpenSQL has four statements that are exclusively used in a dynamic
program:

 Execute immediate

 Prepare

 Execute

 Describe

In addition, all statements that support cursors (declare, open, fetch, update,
delete) have dynamic versions to support dynamically executed select
statements.

Dynamic OpenSQL Statements

6–6 OpenSQL Reference Guide

Execute Immediate Statement

The execute immediate statement executes an OpenSQL statement specified
as a string literal or using a host variable. The execute immediate is most
useful when the program intends to execute a statement only once, or when
using a select loop with a dynamic select statement.

The execute immediate statement can be used to execute all OpenSQL
statements except for the following statements:

call fetch

close include

connect inquire_sql

declare open

describe prepare

disconnect set_sql

execute whenever

The syntax of execute immediate is as follows:

exec sql execute immediate statement_string
 [into variable {, variable} | using [descriptor]
 descriptor_name
 [exec sql begin;
 program_code
 exec sql end;]];

The contents of the statement_string must not include the keywords, exec sql,
or a statement terminator. The optional into/using clause and begin/end
statement block can only be used when you are executing a dynamic select
statement.

Prepare and Execute Statements

The prepare statement tells OpenSQL to encode the dynamically built
statement and assign it the specified name. After a statement is prepared, the
program can execute the statement one or more times in a transaction by
issuing the execute statement and specifying the statement name.

If your program executes the same statement many times in a transaction,
the prepare and execute method can improve the performance of the
statement. Committing a transaction discards any statements that were
prepared during the transaction.

Dynamic OpenSQL Statements

Chapter 6: Dynamic OpenSQL 6–7

The following OpenSQL statements cannot be prepared:

call execute

close fetch

connect include

declare inquire_sql

describe open

disconnect set

execute immediate whenever

The syntax of the prepare statement is as follows:

exec sql prepare statement_name
 [into descriptor_name|using descriptor descriptor_name]
 from host_string_variable | string_literal;

The statement_name can be a string literal or variable. The contents of the
host string variable or the string literal cannot include exec sql or the
statement terminator.

If the into clause is included in the prepare statement, the prepare statement
also describes the statement string into the specified descriptor area and it is
not necessary to describe the statement string separately.

The syntax of the execute statement is as follows:

exec sql execute statement_name
 [using host_variable {, host_variable}
 | using descriptor descriptor_name];

A prepared statement can be fully specified, or some portions can be specified
by question marks (?). The portions specified using question marks must be
filled in by the using clause when the statement is executed.

Executing a Dynamic Non-select Statement

6–8 OpenSQL Reference Guide

Describe Statement

The describe statement describes a prepared OpenSQL statement into a
program descriptor (SQLDA) to allow the program to interact with the dynamic
statement as though it was hard coded in the program. This statement is used
primarily with dynamic select statements.

The syntax for the describe statement is as follows:

exec sql describe statement_name into|using descriptor_name;

For more information about the describe statement, see Describe Statement,
The SQLDA, and Preparing and Describing the Select Statement in this
chapter.

Executing a Dynamic Non-select Statement
Use either the execute immediate statement or the combination of prepare
and execute to execute a dynamic non-select statement. Execute immediate is
most useful if the program executes the statement only once within a
transaction. If the program executes the statement many times within a
transaction, for example, within a program loop, use the prepare and execute
combination: prepare the statement once, then execute as many times as
necessary.

If the program does not know whether the statement is a select statement,
the program can prepare and describe the statement. The results returned by
the describe statement will indicate whether the statement was a select. For
more information and a sample of the conditional coding to handle such
situations, see Executing the Select with Execute Immediate in this chapter.

Using Execute Immediate to Execute a Non-select Statement

Execute immediate executes an OpenSQL statement specified using a string
literal or host variable. The execute immediate statement can be used to
execute all but a few of the OpenSQL statements. For a list of statements that
you cannot execute with the execute immediate statement, see Execute
Immediate Statement in this chapter.

When the execute immediate statement is used to execute a statement that is
not a select, its syntax is as follows:

exec sql execute immediate statement_string;

Executing a Dynamic Non-select Statement

Chapter 6: Dynamic OpenSQL 6–9

For example, the following statement executes a drop statement specified as a
string literal:

/*
** Statement specification included
** in string literal. The string literal does
** NOT include 'exec sql' or ';'
*/
exec sql execute immediate 'drop employee';

As another example, the following code reads OpenSQL statements from a file
into a host string variable named buffer, and executes the contents of the
variable. If the variable includes a statement that cannot be executed by
execute immediate, or if another error occurs, the loop is broken.

exec sql begin declare section;
 character buffer(100);
exec sql end declare section;
 open file;
loop while not end of file and not error

read statement from file into buffer;
exec sql execute immediate :buffer;

end loop;
close file;

If only a statement’s parameters, such as an employee name or number,
change at runtime, then you do not need to use execute immediate; you can
replace a value with a host variable. For example, the following fragment
increases the salaries of all employees with a specific employee number (read
out of a file into variable, number):

loop while not end of file and not error

read number from file;
exec sql update employee
 set sal = sal * 1.1
 where eno = :number;

end loop;

Preparing and Executing a Non-select Statement

The prepare and execute statements can also be used to execute dynamic
non-select statements. These two statements, working together, allow your
program to save a statement string and execute it as many times as
necessary. However, a prepared statement is discarded when the transaction
in which it was prepared is rolled back or committed. Also, if a statement is
prepared with the same name as an existing statement, the new statement
supersedes the old statement.

Executing a Dynamic Select Statement

6–10 OpenSQL Reference Guide

The following example demonstrates how a runtime user can prepare (save) a
dynamically specified OpenSQL statement and execute it a specific number of
times:

read OpenSQL statement from terminal into buffer;
exec sql prepare s1 from :buffer;
read number in N
loop N times
 exec sql execute s1;
end loop;

The next example illustrates a dynamically prepared query. This example
creates a table whose name is the same as the user’s name, and inserts into
the table a set of rows with fixed-typed parameters (the user’s children):

get user name from terminal;
buffer = ’create table ’ + user_name + ’(child
character(15), age integer)’;
exec sql execute immediate :buffer;

buffer = ’insert into ’ + user_name + ’(child, age)
values (?, ?)’;
exec sql prepare s1 from :buffer;

read child’s name and age from terminal;
loop until no more children
exec sql execute s1 using :child, :age;

read child’s name and age from terminal;
end loop;

There are some statements that cannot be executed using prepare and
execute. For a list of these statements, see Dynamic OpenSQL Statements in
this chapter.

Executing a Dynamic Select Statement
If you know the data types of the result columns, use the execute immediate
statement with the into clause. For details, see When the Result Column Data
Types are Known in this chapter.

If you do not know the data types of the result columns, the select statement
must be prepared and described first, then the program can either:

 Use the execute immediate statement with the using clause to execute the
select.

 Declare a cursor for the prepared select statement and use the cursor to
retrieve the results.

For more information, see When the Result Column Data Types are Unknown
in this chapter.

Executing a Dynamic Select Statement

Chapter 6: Dynamic OpenSQL 6–11

The execute immediate option defines a select loop to process the results of
the select. Select loops minimize disk and communications I/O but do not
allow the program to issue any other OpenSQL statements in the loop. If the
program must access the database while processing rows, use the cursor
option.

If the program does not know whether the statement is a select, the prepare
and describe statements can be used to determine whether the statement is a
select. The following example demonstrates the program logic required to
accept OpenSQL statements from a user, execute the statements, and print
the results. If the statement is a select, the program uses a cursor to execute
the query.

statement_buffer = ’ ’;
loop while reading statement_buffer from terminal

exec sql prepare s1 from :statement_buffer;
exec sql describe s1 into :result_descriptor;

if (sqlda.sqld = 0) then

exec sql execute s1;

else

/* This is a SELECT */
 exec sql declare c1 cursor for s1;
 exec sql open c1;

allocate result variables using result_descriptor;

loop while there are more rows in the cursor

exec sql fetch c1 using descriptor
 :result_descriptor;
 if (sqlca.sqlcode not equal 100) then
 print the row using result_descriptor;
 end if;

end loop;

free result variables from result_descriptor;

exec sql close c1;

end if;

process sqlca for status;

end loop;

Executing a Dynamic Select Statement

6–12 OpenSQL Reference Guide

When the Result Column Data Types are Known

If the program knows the data types of the resulting columns and of the result
variables used to store the column values, the program can execute the select
statement using the execute immediate statement with the into clause.

In the following example, a database contains several password tables, each
having one column and one row and containing a password value. An
application connected to this database requires a user to correctly enter two
passwords before continuing. The first password entered is actually the name
of a password table and the second is the password value in that table.

The following code uses the execute immediate statement to execute the
dynamically defined select built by the application to check these passwords:

...
exec frs prompt noecho ('First Password: ',
 :table_password);
exec frs prompt noecho ('Second Password: ',
 :value_password);

select_stmt = ’select column1 from ’ +
 table_password;
exec sql execute immediate :select_stmt
 into :result_password;
if (sqlcode < 0) or (value_password <>
 result_password)
then
 exec frs message 'Password authorization failure';
endif
...

Because the application’s developer knows the data type of the column in the
password table (although not which password table will be selected), the
developer can execute the dynamic select with the execute immediate
statement and the into clause.

The syntax of execute immediate in this context is shown below:

exec sql execute immediate select_statement
 into variable {, variable};
[exec sql begin;
 host_code
 exec sql end;]

This syntax retrieves the results of the select into the specified host variables.
The begin and end statements define a select loop that processes each row
returned by the select statement and terminates when there are no more rows
to process. If a select loop is used, your program cannot issue any other
OpenSQL statements for the duration of the loop.

If the select loop is not included in the statement, OpenSQL assumes that the
select statement is a singleton select returning only one row and, if more than
one row is returned, issues an error.

Executing a Dynamic Select Statement

Chapter 6: Dynamic OpenSQL 6–13

When the Result Column Data Types are Unknown

In most instances, when executing a dynamically defined select statement, the
program does not know the number or types of result columns. To provide this
information to the program, first prepare and then describe the select
statement. The describe statement returns to the program the type description
of the result columns of a prepared select statement. After the select is
described, the program must dynamically allocate (or reference) the correct
number of result storage areas of the correct size and type to receive the
results of the select.

If the statement is not a select statement, describe returns a zero to the sqld
and no sqlvar elements are used.

After the statement has been prepared and described and the result variables
allocated, the program has two choices regarding the execution of the select
statement:

 The program can associate the statement name with a cursor name, open
the cursor, fetch the results into the allocated result storage area (one row
at a time), and close the cursor.

 The program can use execute immediate, which allows you to define a
select loop to process the returned rows. If the select will return only one
row, then it is not necessary to define the select loop.

Preparing and Describing the Select Statement

If the program has no advance knowledge of the resulting columns, the first
step in executing a dynamic select statement is to prepare and describe the
statement. Preparing the statement encodes and saves the statement and
assigns it a name. For information about the syntax and use of prepare, see
Prepare and Execute Statements in this chapter.

The describe statement returns descriptive information about a prepared
statement into a program descriptor, that is, an SQLDA structure. This
statement is primarily used to return information about the result columns of a
select statement to the program, but other statements can be described.
When describing a non-select statement, the only information returned to the
program is that the statement was not a select statement. The syntax of the
describe statement is shown below:

exec sql describe statement_name into|using descriptor_name;

Executing a Dynamic Select Statement

6–14 OpenSQL Reference Guide

When a select statement is described, OpenSQL returns the information about
each result column to a sqlvar element. (For information about sqlvar
elements, see Structure of the SQLDA in this chapter.) This is a one-to-one
correspondence: the information in one sqlvar element corresponds to one
result column. Before issuing the describe statement, the program must
allocate sufficient sqlvar elements and set the SQLDA sqln field to the number
of allocated sqlvars. The program must set sqln before the describe statement
is issued.

After issuing the describe statement, the program must check the value of
sqld, which contains the number of sqlvar elements actually used to describe
the statement. If sqld is zero, the prepared statement was not a select
statement. If sqld is greater than sqln, the SQLDA does not have enough
sqlvar elements: more storage must be allocated and the statement must be
redescribed.

The following fragment shows a typical describe statement and the
surrounding host program code. The program assumes that 20 sqlvar
elements will be sufficient:

sqlda.sqln = 20;
exec sql describe s1 into sqlda;

if (sqlda.sqld = 0) then
 statement is not a select statement;

else if (sqlda.sqld > sqlda.sqln) then

 save sqld;
 free current sqlda;
 allocate new sqlda using sqld as the size;
 sqlda.sqln = sqld;
 exec sql describe s1 into sqlda;

end if;

Analyzing the Sqlvar Elements

After describing a statement, the program must analyze the contents of the
sqlvar array. Each element of the sqlvar array describes one result column of
the select statement. Together, all the sqlvar elements describe one complete
row of the result table.

The describe statement sets the data type, length, and name of the result
column (sqltype, sqllen and sqlname), and the program must use that
information to supply the address of the result variable and result indicator
variable (sqldata and sqlind).

Executing a Dynamic Select Statement

Chapter 6: Dynamic OpenSQL 6–15

For example, assuming the table, object, was created as follows:

exec sq create table object
(o_id integer not null,
 o_desc character(100) not null,
 o_price float not null,
 o_sold date);

and the following dynamic query was described as follows:

exec sql prepare s1 from 'select * from object';
exec sql describe s1 into sqlda;

The SQLDA descriptor results would be:

sqld 4 (columns)

sqlvar(1) sqltype = 30 (integer)

 sqllen = 4

 sqlname = ’o_id’

sqlvar(2) sqltype = 20 (character)

 sqllen = 100

 sqlname = ’o_desc’

sqlvar(3) sqltype = 31 (float)

 sqllen = 8

 sqlname = ’o_price’

sqlvar(4) sqltype = -3 (date)

 sqllen = 0

 sqlname = ’o_sold’

The describe statement sets the value of sqllen to the length of the result
column. For character data types, sqllen is set to the maximum length of the
character string. For numeric data types, sqllen is set to the size of the
numeric field as declared when created. For the date data type, sqllen is set to
0, but the program should use a 25-byte character string to retrieve or set
date data. Note that, for nullable columns, a negative value is returned.

After the statement is described, your program must analyze the values of
sqltype and sqllen in each sqlvar element. If sqltype and sqllen do not
correspond exactly with the types of variables used by the program to process
the select statement, then sqltype and sqllen must be modified to be
consistent with the program variables. After describing a select statement,
there will be one sqlvar element for each expression in the select target list.

Executing a Dynamic Select Statement

6–16 OpenSQL Reference Guide

After processing the values of sqltype and sqllen, allocate storage for the
variables that will contain the values in the result columns of the select
statement, by pointing sqldata at a host language variable that will contain the
result data. If the value of sqltype is negative, which indicates a nullable result
column data type, allocate an indicator variable for the particular result
column and set sqlind to point to the indicator variable. If sqltype is positive,
indicating that the result column data type is not nullable, an indicator variable
is not required. In this case, set sqlind to zero.

To omit the null indicator for a nullable result column (sqltype is negative), set
sqltype to its positive value and sqlind to zero. If sqltype is positive and an
indicator variable is allocated, set sqltype to its negative value, and set sqlind
to point to the indicator variable.

In the above example, after the program analyzes the results as described,
the date type is changed to character and sqlind and sqldata are set to
appropriate values. The values in the resulting sqlvar elements are:

sqlvar(1) sqltype = 30 (integer),

 sqllen = 4,

 sqldata = Address of 4-byte integer,

 sqlind = 0,

 sqlname = ’o_id’

sqlvar(2) sqltype = 20 (character),

 sqllen = 100,

 sqldata = Address of 100-byte character string,

 sqlind = 0,

 sqlname = ’o_desc’

sqlvar(3) sqltype = 31 (float),

 sqllen = 8

 sqldata = Address of 8-byte floating point,

 sqlind = 0,

 sqlname = ’o_price’

sqlvar(4) sqltype = -30 (Nullable character, was date),

 sqllen = 25, (was 0)

 sqldata = Address of 25-byte character string,

 sqlind = Address of 2-byte indicator variable,

 sqlname = ’o_sold’

Executing a Dynamic Select Statement

Chapter 6: Dynamic OpenSQL 6–17

Executing the Select with Execute Immediate

You can execute a dynamic select statement that has been prepared and
described with an execute immediate statement that includes the using clause.
The using clause tells OpenSQL to place the values returned by the select into
the variables pointed to by the elements of the SQLDA sqlvar array. If the
select will return more than one row, you can also define a select loop to
process each row before another is returned.

The syntax of execute immediate in this context is shown below:

exec sql execute immediate select_statement
 using [descriptor] descriptor_name;
[exec sql begin;
 host_code
 exec sql end;]

Within a select loop, no OpenSQL statements other than an endselect can be
issued. For selects without select loops, OpenSQL issues an error if more than
one row is returned.

To illustrate this option, the following example contains a dynamic select. The
results of the select statement are used to generate a report.

...
allocate an sqlda
read the dynamic select from the terminal into a
stmt_buffer

exec sql prepare s1 from :stmt_buffer;
exec sql describe s1 into :sqlda;
if (sqlca.sqlcode < 0) or (sqlda.sqld = 0) then
 print (’Error or statement is not a select’);
 return;
else if (sqlda.sqld > sqlda.sqln) then
 allocate a new sqlda;
 exec sql describe s1 into :sqlda;
endif;

analyze the results and allocate variables

exec sql execute immediate :stmt_buffer
 using descriptor :sqlda;
exec sql begin;
process results, generating report
if error occurs, then
 exec sql endselect;
endif
exec sql end;
...

Executing a Dynamic Select Statement

6–18 OpenSQL Reference Guide

Using a Cursor to Retrieve the Results

To give your program the ability to access the database or issue other
database statements while processing rows retrieved as the result of the
select, use a cursor to retrieve those rows.

To use cursors, after the SQLDA has been analyzed and result variables have
been allocated and pointed at, the program must declare and open a cursor in
order to fetch the result rows. The syntax of the cursor declaration for a
dynamically defined select statement is as follows:

exec sql declare cursor_name cursor for statement_name;

This statement associates the select statement represented by
statement_name with the specified cursor. Statement_name is the name
assigned to the statement when the statement was prepared. As with
non-dynamic cursor declarations, the select statement is not evaluated until
the cursor is actually opened. After opening the cursor, the program retrieves
the result rows using the fetch statement with the SQLDA instead of the list of
output variables.

The syntax for a cursor fetch statement is as follows:

exec sql fetch cursor_name using descriptor descriptor_name;

Before the fetch statement, the program has filled the result descriptor with
the addresses of the result storage areas. When executing the fetch
statement, OpenSQL copies the result columns into the result areas referenced
by the descriptor.

The following program fragment elaborates on an earlier example in this
section. The program reads a statement from the terminal. If the statement is
quit, the program ends. Otherwise, the program prepares the statement. If
the statement is not a select, then it is executed. If the statement is a select
statement, then it is described, a cursor is opened, and the result rows are
fetched. Error handling is not shown.

Executing a Dynamic Select Statement

Chapter 6: Dynamic OpenSQL 6–19

exec sql include sqlca;
exec sql include sqlda;

allocate an sqlda with 400 sqlvar elements;
sqlda.sqln = 400;

read statement_buffer from terminal;

loop while (statement_buffer <> ’quit’)

exec sql prepare s1 from :statement_buffer;
exec sql describe s1 into sqlda;

if (sqlda.sqld = 0) then /* This is not a select */
 exec sql execute s1;
 else /* This is a select */
 exec sql declare c1 cursor for s1;
 exec sql open c1;

 print column headers from the sqlname fields;
 analyze the SQLDA, inspecting types and lengths;
 allocate result variables for a cursor result row;
 set sqlvar fields sqldata and sqlind;

 loop while (sqlca.sqlcode = 0)
 exec sql fetch c1 using descriptor sqlda;
 if (sqlca.sqlcode = 0) then
 print the row using sqldata and sqlind
 pointed at by the sqlvar array;
 end if;
 end loop;

 free result variables from the sqlvar elements;

 exec sql close c1;

end if;

process sqlca and print the status;
 read statement_buffer from terminal;

end loop;

Chapter 7: OpenSQL Features 7–1

Chapter 7: OpenSQL Features

This chapter discusses the following features of OpenSQL:

 Transactions

 Status information and error handling

 Multiple session connections

 Database procedures

 DBMS-specific extensions (using the with clause and the direct execute
immediate statement)

 Database events

Transactions
A transaction is one or more OpenSQL statements processed as a single,
indivisible database action. A transaction that consists of a single OpenSQL
statement is sometimes called a single query transaction (SQT). If the
transaction contains multiple statements, it is often called a multiple query
transaction (MQT).

By default, all transactions are multiple query transactions. The transaction
begins with the first OpenSQL statement following a connect, commit, or
rollback statement, which can be issued by you, the program, or in some
instances, by the DBMS. The transaction continues until there is an explicit
commit or rollback statement or until the session terminates. (Terminating the
session or disconnecting from the database normally issues an implicit commit
statement. If the session or connection terminates abnormally, the results
depend on the host DBMS.)

In Enterprise Access products, transactions are managed by the underlying
DBMS. Transaction handling may vary depending on the DBMS to which your
session is connected.

For example, some DBMSs begin a transaction immediately following the
connect or rollback statements, rather than awaiting the next OpenSQL
statement. For details, see the documentation for the host DBMS.

None of the database changes made by a transaction are visible to other
sessions until the transaction is committed. In a multi-user environment,
where many transactions may be executing simultaneously, this behavior
maintains database consistency. For example, if two transactions are updating

Transactions

7–2 OpenSQL Reference Guide

the same information in a table, the DBMS must ensure that one transaction’s
updates are complete before allowing the other to proceed.

Controlling Transactions

The commit and rollback statements allow control of the effects of a
transaction on the database:

 The commit statement makes the changes permanent.

 The rollback statement undoes the changes made by the transaction.

When a commit statement is issued, the DBMS makes all changes resulting
from the transaction permanent, terminates the transaction, and drops any
locks held during the transaction. When a rollback statement is issued, the
DBMS undoes any database changes made by the transaction, terminates the
transaction, and releases any locks held during the transaction.

Committing Transactions

Transactions are composed of one or more OpenSQL statements. In general, a
transaction begins with the first statement after connection to the database or
the first statement following a commit or rollback. The precise starting point of
a transaction depends on the DBMS to which you are connected. Subsequent
statements are part of the transaction until a commit or rollback is executed.
By default, an explicit commit or rollback must be issued to close a
transaction.

To direct the DBMS to commit each database statement individually, use the
set autocommit on statement. (This statement cannot be issued in an open
transaction.) When autocommit is set on, a commit occurs automatically after
every statement, except prepare and describe.

 If autocommit is on and a cursor is opened, the server or Enterprise Access
product does not issue a commit until the close cursor statement is executed,
because cursors are logically a single statement. A rollback statement can be
issued when a cursor is open. To restore the default behavior (and enable
multiquery transactions), issue the set autocommit off statement.

To determine whether you are in a transaction, use the inquire_sql statement.
For information about inquire_sql, see Retrieving Status Information in this
chapter and Inquire_sql in the “OpenSQL Statements” chapter. To find out if
autocommit is on or off, use dbmsinfo. For information about dbmsinfo, see
The Dbmsinfo Function in this chapter.

Retrieving Status Information

Chapter 7: OpenSQL Features 7–3

Aborting Statements and Transactions

Transactions and statements can be aborted by an application or by the DBMS.
Applications can abort transactions or statements as a result of:

 Rollback statement

 Timeout (if available and set)

The DBMS aborts statements and transactions as a result of these conditions:

 Deadlock

 Error while executing a database statement

Effects of Aborting Transactions

When a statement or transaction is aborted:

 Rolling back a single statement does not cause the DBMS to release any
locks held by the transaction. Locks are released when the transaction
ends.

 If cursors are open, the entire transaction is always aborted.

 When an entire transaction is aborted, all open cursors are closed, and all
prepared statements are invalidated.

Interrupting Transactions

The effect of a keyboard interrupt (Ctrl+C or Ctrl+Y) on a transaction depends
on the Enterprise Access product and underlying DBMS. For details, see the
DBMS documentation.

Retrieving Status Information
The following features enable your application program to obtain status
information:

 Dbmsinfo - Returns information about the current session

 Inquire_sql - Returns information about the last database statement that
was executed

 Inquire_frs - Returns information about the forms system

 SQLCA (SQL Communications Area) - Returns status and error information
about the last OpenSQL statement that was executed

These statements are described in the following sections.

Retrieving Status Information

7–4 OpenSQL Reference Guide

The Dbmsinfo Function

Dbmsinfo is a function that returns a string containing information about the
current session. This statement can be used in the Terminal Monitor or in an
embedded OpenSQL application. The dbmsinfo statement has the following
syntax:

select dbmsinfo ('request_name') [as result_column]

For example, to determine which version of the Enterprise Access product or
server you are using, enter:

select dbmsinfo('_version');

In OpenSQL, only one dbmsinfo request is allowed per select statement. In
addition, when issuing a select dbmsinfo statement, you cannot specify other
select statement clauses (such as from or where).

The following table lists valid request_names:

Request Name Response Description

autocommit_state Returns 1 if autocommit is on; 0 if autocommit is off.

_bintim Returns the current time and date in an internal
format, represented as the number of seconds since
January 1, 1970 00:00:00 GMT.

database Returns the name of the database to which the
session is connected.

dba Returns the DBMS username of the database owner.

_et_sec Returns the elapsed time for session, in seconds.

query_language Returns query language in use (“SQL”).

server_class Returns the class of DBMS server, for example “db2”.

terminal Returns the terminal address for local connections.

transaction_state Returns 1 if presently in a transaction, 0 if not.

username Returns the DBMS user name of the current session’s
user (like user).

_version Returns the DBMS version number.

Retrieving Status Information

Chapter 7: OpenSQL Features 7–5

The Inquire_sql Statement

The inquire_sql statement returns information about the results of the last
OpenSQL database statement issued by a session. Using inquire_sql you can
obtain a variety of information, including:

 Error number and text (if the last statement resulted in an er`ror)

 Type of error being returned (for details, see Local and Generic Errors in
this chapter)

 Whether a transaction is open

 Session identifier (in multiple-session applications)

Note: The inquire_sql statement does not return status information about
forms statements. Use the inquire_frs statement, described in the Forms-
based Application Development Tools User Guide, to obtain information about
forms statements.

The SQL Communications Area (SQLCA)

The SQL Communications Area (SQLCA) consists of a number of variables that
contain error and status information accessible by the program. This
information reflects only the status of executed embedded OpenSQL database
statements. Forms statements do not affect these variables. Because each
embedded OpenSQL statement has the potential to change values in the
SQLCA, the application must perform any checking and consequent processing
required to deal with a status condition immediately after the statement in
question. Otherwise, the next executed OpenSQL statement might change the
status information in the variables.

Each host language implements the SQLCA structure differently. For
instructions on how to include the SQLCA in your applications, see the
Embedded SQL Companion Guide.

The following list describes the variables that compose the SQLCA (not all of
the variables are currently used):

sqlcaid An 8-byte character string variable initialized to “SQLCA.” This
value does not change.

sqlcabc A 4-byte integer variable initialized to the length in bytes of the
SQLCA, 136. This value also does not change.

sqlcode A 4-byte integer variable indicating the OpenSQL return code. Its
value falls into one of three categories:

 = 0 The statement executed successfully (though there
may have been warning messages - see sqlwarn0).

Retrieving Status Information

7–6 OpenSQL Reference Guide

 < 0 An error occurred. The value of sqlcode is the
negative value of the error number returned to
errorno. (For a discussion of errorno, see Error
Handling in this chapter.) A negative value sets the
sqlerror condition of the whenever statement.

 >0 The statement executed successfully but an
exceptional condition occurred. The value +100
indicates that no rows were processed by a delete,
fetch, insert, select, update, modify, copy, create
index, or create...as select statement. This value
(+100) sets the not found condition of the whenever
statement.

sqlerrm A varying-length character string variable composed of an initial
2-byte count and a 70-byte long buffer. This variable is used for
error messages. When an error occurs for a database statement,
the leading 70 characters of the error message are assigned to
this variable. If the message contained within the variable is less
than 70 characters, the variable contains the complete error
message. Otherwise, the variable contains a truncated error
message.

To retrieve the full error message, use the inquire_sql statement
with the errortext object. If no errors occur, sqlerrm will contain
blanks. For some languages, this variable is divided into two other
variables: sqlerrml, a 2-byte integer count indicating how many
characters are in the buffer, and sqlerrmc, a 70-byte fixed-length
character string buffer.

sqlerrp An 8-byte character string variable, currently unused.

sqlerrd An array of six 4-byte integers. Currently only sqlerrd(1) and
sqlerrd(3) are in use. sqlerrd(1) is used to store error numbers
returned by the server. For more information about sqlerrd(1),
see Local and Generic Errors in this chapter.

 sqlerrd (3) indicates the number of rows processed by a delete,
fetch, insert, select, update, copy, modify, create index, or
create...as select statement. All other database statements reset
this variable to zero. Some host languages start array subscripts
at 0. In these languages (C, BASIC), use the subscript 2 to select
the third array variable.

qlwarn0
through
sqlwarn7

A set of eight 1-byte character variables that denote warnings
when set to “W.” The default values are blanks.

 sqlwarn0 If set to “W,” at least one other sqlwarn contains
a “W.” When “W” is set, the sqlwarning condition
of the whenever statement is set.

Error Handling

Chapter 7: OpenSQL Features 7–7

 sqlwarn1 Set to “W” on truncation of a character string
assignment from the database into a host
variable. If an indicator variable is associated
with the host variable, the indicator variable is
set to the original length of the character string.

 sqlwarn2 Set to “W” on elimination of nulls from
aggregates.

 sqlwarn3 Set to “W” when mismatching number of result
columns and result host variables in a fetch or
select statement.

 sqlwarn4 Set to “W” when preparing (prepare) an update
or delete statement without a where clause.

 sqlwarn5 Currently unused.

 sqlwarn6 Set to “W” when the error returned in sqlcode
caused the abnormal termination of an open
transaction.

 sqlwarn7 Currently unused.

sqlext An 8-byte character string variable not currently in use.

Error Handling
The following section describes the types of errors returned to OpenSQL
sessions, and the methods used to handle errors.

The SQLSTATE Variable

The SQLSTATE variable is a 5-character string in which OpenSQL returns the
status of the last SQL statement executed. The values returned in SQLSTATE
are specified in the ANSI/ISO Entry SQL-92 standard. For details about the
requirements for declaring the SQLSTATE variable in embedded programs, see
the Embedded SQL Companion Guide.

If queries are executed while connected to a DBMS that does not support
SQLSTATE, SQLSTATE is set to '5000K' (meaning “SQLSTATE not available”).
This result does not necessarily mean that an error occurred. To check the
results of the query, one of the other error-checking methods must be used.
SQLSTATE is not available within database procedures. However, a routine
that directly executes a database procedure can check SQLSTATE to determine
the result of the procedure call.

Error Handling

7–8 OpenSQL Reference Guide

The following is a brief example illustrating the use of SQLSTATE in an
embedded program:

exec sql begin declare section;

 character SQLSTATE(5)

exec sql end declare section;

exec sql connect mydatabase;

if SQLSTATE <> "00000" print 'Error on connection!'

Local and Generic Errors

A local error is a specific error issued by a specific server, such as Ingres or
the Enterprise Access to IBM DB2 UDB product. All server-specific local errors
are also mapped into generic errors, enabling applications to handle errors
returned from a variety of servers in a consistent way.

For example, the Ingres DBMS returns the local error number 4702 for a
timeout error, but other database management systems may return different
error numbers for a timeout error. To handle errors consistently, OpenSQL
maps the different local timeout error numbers to the same generic error
number.

By default, Enterprise Access servers return errors as follows:

 Generic errors

– Returned to sqlcode (an SQLCA variable) as a negative value

– Returned when your application issues the inquire_sql(errorno)
statement

 Local errors

– Returned in sqlerrd(1), the first element of the SQLCA’s sqlerrd array

– Returned when your application issues the inquire_sql(dbmserror)
statement

To reverse this arrangement (so that local error numbers are returned to
errorno and sqlcode and generic errors to dbmserror and sqlerrd(1)), use the
set_sql(errortype) statement. To obtain the text of error messages, use the
inquire_sql(errortext) statement or check the SQLCA variable sqlerrm.

Reading an OpenSQL Error Message

Every generic error message consists of an error code and the accompanying
error message text.

Error Handling

Chapter 7: OpenSQL Features 7–9

All generic error codes begin with E_, followed by one or two letters plus a
4-digit hexadecimal number, and, optionally, descriptive text or the decimal
equivalent of the hex error code. For example:

E_GEC2EC_SERIALIZATION

indicates a serialization failure (deadlock).

The content and format of local error messages are determined by the local
DBMS.

Displaying an Error Message

If you are working in one of the forms-based user interfaces, such as the
Terminal Monitor, error messages display on a single line across the bottom of
the terminal screen. The text appears first, followed by the error code. If the
text is longer than one line, press the Help key to display the rest of the
message. To clear the error message from the screen, press the Return key.

If you are not working in a forms-based user interface, OpenSQL displays the
error code followed by the entire message text.

If you have included an SQLCA, embedded OpenSQL applications do not
automatically display error messages. You must provide program code to do
so.

Handling Errors in Embedded Applications

OpenSQL provides a variety of tools for trapping and handling errors in
embedded applications, including:

 The SQLCA

 The whenever statement

 Handler routines

 Inquire statements

 The IIseterr function

Obtaining Error Information from the SQLCA

The SQL Communications Area (SQLCA) is a collection of host language
variables whose values provide status and error information about embedded
OpenSQL database statements. (The status of forms statements is not
reflected in SQLCA variables.) If your application does not have an SQLCA, the
default is to display errors and continue with the next statement if possible.

Error Handling

7–10 OpenSQL Reference Guide

Two variables in the SQLCA contain error information: sqlcode and sqlerrm.
The value in sqlcode indicates one of three conditions:

 Success - Sqlcode contains zero.

 Error - Sqlcode contains the error number as a negative value.

 Warning - (Set when the statement executed successfully but an
exceptional condition occurred.) Sqlcode contains +100, indicating that no
rows were processed by a delete, fetch, insert, update, modify, copy, or
create table...as statement.

The sqlerrm variable is a varying length character string variable that contains
the text of the error message. The maximum length of sqlerrm is 70 bytes. If
the error message exceeds that length, OpenSQL truncates the message when
it assigns it to sqlerrm. To retrieve the full message, use the inquire_sql
statement (see The Inquire_sql Statement in this chapter). In some host
languages, this variable has two parts: sqlerrml, a 2-byte integer indicating
how many characters are in the buffer, and sqlerrmc, a 70-byte fixed length
character string buffer.

The SQLCA also contains eight 1-byte character variables, sqlwarn0 -
sqlwarn7, that are used to indicate warnings. For a complete listing of these,
see The SQL Communications Area (SQLCA) in this chapter.

The SQLCA is often used in conjunction with the whenever statement, which
defines a condition and an action to take whenever that condition is true. The
conditions are set to true by values in the sqlcode variable. For example, if
sqlcode contains a negative error number, then the sqlerror condition of the
whenever statement is true, and any action specified for that condition is
performed.

You can also access the SQLCA variables directly. For information about
implementing the SQLCA in an application and using its variables, see the
Embedded SQL Companion Guide.

Trapping Errors Using the Whenever Statement

The whenever statement specifies a particular action to be performed
whenever a particular condition is true. Since conditions are set to true by
values in the SQLCA sqlcode, the whenever statement responds only to errors
generated by embedded OpenSQL database statements. Forms statements do
not set sqlcode.

Error Handling

Chapter 7: OpenSQL Features 7–11

The conditions that indicate errors or warnings are listed in the following table:

Condition Description

sqlwarning Indicates that the executed OpenSQL database statement
produced a warning condition. Sqlwarning becomes true
when the SQLCA sqlwarn0 variable is set to “W.”

sqlerror Indicates that an error occurred in the execution of the
database statement. Sqlerror becomes true when the
SQLCA sqlcode variable contains a negative number.

There are two other conditions that are more closely related to status
conditions rather than error conditions. For a complete list of the conditions,
see Whenever in the chapter “OpenSQL Statements.”

The actions that can be specified for these conditions are listed in the following
table:

Action Description

continue Execution continues with the next statement.

stop Prints an error message and terminates the program’s
execution. Pending updates are not committed.

goto label Performs a host language “go to.”

call procedure Calls the specified host language procedure. If call sqlprint is
specified, the sqlprint procedure prints the error or warning
message and continues with the next statement.

In an application program, a whenever statement is in effect until the next
whenever statement (or the end of the program). For example, if you put the
following statement in your program:

exec sql whenever sqlerror call myhandler;

OpenSQL traps errors for all database statements in your program that
physically follow the whenever statement to the procedure, myhandler. A
whenever statement does not affect the statements that physically precede it.

Error Handling

7–12 OpenSQL Reference Guide

The following diagram illustrates the scope of the whenever statement:

If your program includes an SQLCA, OpenSQL will not display error messages
unless your application issues a whenever ... sqlprint statement, or you set
II_EMBED_SET to sqlprint.

Defining an Error Handler

An error handling function can be defined to be called when OpenSQL errors
occur. To do this, you must:

 Write the error handling routine and link it into your embedded OpenSQL
application.

 In the application, issue the following set statement:

 exec sql set_sql(errorhandler = error_routine)

… where error_routine is the name of the error-handling routine you created.
Do not declare error_routine in an OpenSQL declare section, and do not
precede error_routine with a colon (:). The error_routine argument must be a
function pointer.

Error Handling

Chapter 7: OpenSQL Features 7–13

When this form of error-trapping is enabled, all OpenSQL errors are trapped to
your routine until you disable error-trapping (or until the application
terminates). Forms errors are not trapped.

To disable the trapping of errors to your routine, your application must issue
the following set statement:

exec sql set_sql(errorhandler = 0 | :error_var)

where error_var is a host integer variable having a value of 0.

Your error-handling routine must not issue any database statements in the
same session in which the error occurred. If it is necessary to issue database
statements in an error handler, open a session or switch to another session.

To obtain error information, your error-handling routine should issue the
inquire_sql statement.

Obtaining Error Information Using Inquire Statements

There are two inquire statements that can perform error checking: inquire_sql
and inquire_frs. Both statements return error numbers and the associated
error text using the constants errorno and errortext. Inquire_sql returns the
error number and text for the last executed OpenSQL database statement.
Inquire_frs returns information about the last executed forms statement.

Unlike the whenever statement, an inquire statement must be executed
immediately after the database or forms statement in question. The
inquire_sql returns a generic error number in errorno by default. OpenSQL can
be directed to return a local error number in errorno. For more information,
see Local and Generic Errors in this chapter.

Neither of the inquire statements suppress the display of error messages. Both
of the inquire statements return a wide variety of information in addition to
error numbers and text. For a complete list of the information returned by
inquire_sql, see “Chapter 8: OpenSQL Statements.” For details about
inquire_frs, see the Forms-based Application Development Tools User Guide.

Suppressing Error Messages

The IIseterr function is a feature that allows the display of error messages to
be suppressed. Although IIseterr is intended for use in Ingres 4GL
applications, it can also be used to suppress error messages generated by
forms statements. For details, see the 4GL Reference Guide.

Error Handling

7–14 OpenSQL Reference Guide

If IIseterr is used in an embedded OpenSQL program that makes use of the
SQLCA, errors returned by embedded OpenSQL database statements do not
interact with IIseterr. If your program does not use the SQLCA, errors
resulting from both forms statements and embedded OpenSQL database
statements are passed through IIseterr, if it is present. For ease of use and
implementation, it is recommended that you use the SQLCA and whenever
statements to handle embedded OpenSQL database statement errors.

Specifying Program Termination on Errors

The set_sql(programquit) statement specifies how an embedded OpenSQL
application handles the following types of errors:

 Attempting to execute a query when not connected to a database

 Enterprise Access product or DBMS server failure

 Communications service failure

By default, when these types of errors occur, OpenSQL issues an error but lets
the program continue. To force an application to abort when one of these
errors occur, issue the following set_sql statement:

exec sql set_sql (programquit = 1);

If an application aborts as the result of one of the previously listed errors,
OpenSQL issues an error, then rolls back open transactions and disconnects all
open sessions. (To disable aborting and restore the OpenSQL default behavior,
specify programquit = 0.)

Errors affected by the programquit setting belong to the generic error class
GE_COMM_ERROR, which is returned to errorno as 37000, and to sqlcode (in
the SQLCA) as -37000. An application can check for these errors and, when
detected, must disconnect from the current session. After disconnecting from
the current session, the application can attempt another connection, switch to
another session (if using multiple sessions), or perform clean-up operations
and quit.

You can also specify programquit using II_EMBED_SET.

To determine the current setting for this behavior, use the inquire_sql
statement:

exec sql inquire_sql (int_variable = programquit);

This returns a 0 if programquit is not set (OpenSQL continues on any of the
errors) or 1 if programquit is set (OpenSQL exits the application on these
errors).

Error Handling

Chapter 7: OpenSQL Features 7–15

Handling Deadlock

Deadlock occurs when two transactions are each waiting for the other to
release a part of the database to enable it to complete its update. Transactions
that handle deadlocks in conjunction with other errors can be difficult to code
and test, especially if cursors are involved.

To facilitate the proper coding and testing for these situations, you can use the
following three template programs as guides in your resolution of similar error
situations. Deadlock conditions are identified by the generic error code value
of E_GEC2EC_SERIALIZATION.

The following templates assume the default OpenSQL transaction behavior (set
autocommit is off).

Non-cursor Template

This template assumes your transactions do not contain a cursor.

exec sql whenever not found continue;
exec sql whenever sqlwarning continue;
exec sql whenever sqlerror goto err;
/* branch on error */

start:
exec sql insert into ...
exec sql update ...
exec sql select ...

exec sql commit;
goto end;
err:
exec sql whenever sqlerror call sqlprint;
 if (sqlca.sqlcode = E_GEC2EC_SERIALIZATION) then
 goto start;
 else if (sqlca.sqlcode < 0) then
 exec sql inquire_sql (:err_msg = errortext);
 exec sql rollback;
 print ’Error’, err_msg;
 end if;

end:

Single Cursor Template

This template is similar to the first, but with a single cursor added.

exec sql whenever not found continue;
exec sql whenever sqlwarning continue;
exec sql whenever sqlerror goto err;
/* branch on error */

exec sql declare c1 cursor for ...

start:
exec sql open c1;
while more rows loop

Error Handling

7–16 OpenSQL Reference Guide

 exec sql fetch c1 into ...
 if (sqlca.sqlcode = E_GE0064_NO_MORE_DATA) then
 exec sql close c1;
 exec sql commit;
 goto end;
 end if;

 exec sql insert into ...
 exec sql update ...
 exec sql select ...

end loop;
goto end

err:
exec sql whenever sqlerror call sqlprint;
if (sqlca.sqlcode = E_GEC2EC_SERIALIZATION) then
 goto start;
else if (sqlca.sqlcode \ 0) then
 exec sql inquire_sql (:err_msg = errortext);
 exec sql rollback;
 print ’Error’, err_msg;
end if;

end:

Master/Detail Template

This template is like the previous one, but includes two cursors with a
master/detail relationship.

exec sql whenever not found continue;
exec sql whenever sqlwarning continue;
exec sql whenever sqlerror goto err;
/* branch on error */

exec sql declare master cursor for ...
exec sql declare detail cursor for ...

start:
exec sql open master;
while more master rows loop
 exec sql fetch master into ...
 if (sqlca.sqlcode = E_GE0064_NO_MORE_DATA) then
 exec sql close master;
 exec sql commit;
 goto end;
 end if;

/* ...queries using master data... */
 exec sql insert into ...
 exec sql update ...
 exec sql select ...

 exec sql open detail;
 while more detail rows loop
 exec sql fetch detail into ...
 if (sqlca.sqlcode = E_GE0064_NO_MORE_DATA) then
 exec sql close detail;
 end loop; /* drops out of detail fetch loop */
 end if;

/* ...queries using detail & master data... */

Multiple Session Connections

Chapter 7: OpenSQL Features 7–17

 exec sql insert into ...
 exec sql update ...
 exec sql select ...

 end loop; /* end of detail fetch loop */

/* ...more queries using master data... */
 exec sql insert into ...
 exec sql update ...
 exec sql select ...

end loop; /* end of master fetch loop */
goto end

err:
exec sql whenever sqlerror call sqlprint;
if (sqlca.sqlcode = E_GEC2EC_SERIALIZATION) then
 goto start;
else if (sqlca.sqlcode < 0) then
 exec sql inquire_sql (:err_msg = errortext);
 exec sql rollback;
 print ’Error’, err_msg;
end if;
end:

Multiple Session Connections
OpenSQL provides embedded applications with the ability to maintain multiple
sessions. An application can open an initial session and, with subsequent
connect statements, open additional sessions with the same or different types
of servers or Enterprise Access products.

Connecting to Multiple Sessions

Individual sessions in a multiple session application are identified by a session
identifier that is specified when the connect statement for each session is
issued. Each connect statement in a multiple session application, including the
first connect statement, must specify a session identifier.

It is possible to open new sessions with previously unconnected databases or
with databases already associated with an open session. New sessions can be
opened under different user names (for Enterprise Access products that
support the connect statement’s identified by clause) and can be entered using
different option flags. For a description of syntax and optional flags for
connect, see the SQL Reference Guide.

Once an application issues a connect statement, the session initiated by the
statement is the current session and all subsequent embedded OpenSQL
statements apply to the database associated with that statement until another
connect statement or a set_sql statement (to switch sessions) is issued.

Multiple Session Connections

7–18 OpenSQL Reference Guide

If an error occurs during a connection attempt, the program is no longer
connected to any session after the failure, whether or not it was connected
before the attempted connection. After the failure of an attempt to connect,
the program must either attempt to connect again or switch to a previously
established session before continuing.

Switching Sessions

To switch from one open session to another, use the set_sql statement. To
open a new session, issue the connect statement. To determine the session
identifier for the current session, use the inquire_sql statement.

Applications can switch sessions freely. Note that session switching is
supported under the following circumstances:

 In a transaction.

 While cursors are open.

 In OpenSQL statement blocks (such as select loops).

The code for the nested session must be inside a host language
subroutine. If it is not, the SQL preprocessor will issue an error.

 In subroutines called by a whenever statement.

After an application switches sessions, the error information obtained from the
SQLCA or the inquire_sql statement is not updated until an OpenSQL
statement has completed in the new session.

Terminating a Session

To terminate the current session, the application issues the disconnect
statement. An optional session identifier parameter exists to identify the
current session specifically if desired.

When an application terminates one of many open sessions, it is not
automatically placed in another session. The application must issue either a
connect or set_sql statement to establish the current session. If the
application fails to do this, OpenSQL returns an error when the next OpenSQL
statement is issued.

To terminate a specific session, specify the session identifier. To obtain the
session identifier for the current session, issue the
inquire_sql(:session_id=session) statement. To disconnect all sessions, issue
the disconnect all statement.

Multiple Session Connections

Chapter 7: OpenSQL Features 7–19

Multiple Sessions and the SQLCA

The SQL Communications Area (SQLCA) is a data area in which OpenSQL
passes query status information to your application program. Although an
application can sustain multiple sessions, there is only one SQLCA per
application. By contrast, the values returned by inquire_sql(errorcode) and
inquire_sql(errortext) are specific to a session.

If you switch sessions in a select loop (for example, by calling a routine that
switches sessions) and execute database statements in the alternate session,
the values in the SQLCA will be reset. When you return to the original session,
the SQLCA will not reflect the results of the select loop.

When switching between sessions, the values in the SQLCA fields are not
updated until after the first OpenSQL statement in the current session has
completed. If you switch sessions, the values in the SQLCA will apply to the
previous session until an OpenSQL statement in the current session resets
them. In contrast, the error information returned by inquire_sql (errortext and
errorno) always apply to the current session.

When an application switches sessions within a select loop or other block
statement, the SQLCA field values are updated to reflect the status of the
statements executed inside the nested session. After the application switches
back to the session with the loop, the SQLCA field values reflect the status of
the last statement in the nested session. Sqlcode and sqlwarn are not updated
until the statement immediately following the loop completes. (The
information obtained by inquire_sql is not valid until the statement following a
loop completes.) For this reason, the application should reset the sqlcode and
sqlwarn fields before continuing the loop.

Multiple Sessions and the DBMS

Each session in a multiple-session application requires an independent
connection to the Enterprise Access products or DBMS server. When creating
multiple-session applications, keep the following points in mind:

 In a multi-session application, an application can encounter deadlock
against itself. For example, one session may attempt to update a table
that was locked by another session.

 An application can also lock itself out in an undetectable manner. For
example, if a table is updated in a transaction in one session and then
selected from in another transaction in a second session, the second
session waits indefinitely.

 For sessions connected to Ingres databases, be sure that the server
parameter connect_limit is large enough to accommodate the number of
sessions required by the application.

Multiple Session Connections

7–20 OpenSQL Reference Guide

Multiple Session Examples

This section presents two examples of multiple sessions. The first example,
illustrates session switching using two open sessions in a forms-based
application. These sessions gather project information for updating the
projects database using the personnel database to verify employee
identification numbers.

exec sql begin declare section;
 empid integer;
 found integer;
 ...
exec sql end declare section;

/* Set up two database connections */
exec sql connect 'projects/rdb' session 1;
exec sql connect 'unixbox::personnel/db2udb' session 2;

/* Set 'projects' database to be current session */
exec sql set_sql (session = 1);

exec frs display projectform;
exec frs activate field empid;
exec frs begin;

/* Validate user-entered employee id against master
** list of employees in personnel database. */

found = 0;
exec sql getform (:empid = empid);

/* Switch to 'personnel' database session */
exec sql set_sql (session = 2);
exec sql repeated select 1 into :found from employee
 where empid = :empid;

/* Switch back to 'project' database session */
exec sql set_sql (session = 1);
if (found !=1) then
 exec frs message 'Invalid employee identification';
 exec frs sleep 2;
else
 exec frs resume next;
endif;

exec frs end;
program code to validate other fields in
 ’projectform’
exec frs activate menuitem 'Save';
exec frs begin;
get project information and update ’projectinfo’
 table
exec frs end;
...

exec sql disconnect;
exec sql set_sql (session = 2);
exec sql disconnect;

Multiple Session Connections

Chapter 7: OpenSQL Features 7–21

The second example illustrates session switching inside a select loop and the
resetting of status fields. The main program processes sales orders and calls
the subroutine, new_customer, for every new customer.

The main program:

...
exec sql include sqlca;
exec sql begin declare section;

/* Include output of DCLGEN for declaration
** of record order_rec
*/
exec sql include 'decls';
exec sql end declare section;
exec sql connect 'customers/alb' session 1;
exec sql connect sales session 2;
...

exec sql select * into :order_rec from orders;
exec sql begin;
if (order_rec.new_customer = 1) then
 call new_customer(order_rec);
endif
process order;
exec sql end;
...

exec sql disconnect;

exec sql set_sql(session = 1);
exec sql disconnect;

The subroutine, new_customer, from the select loop, containing the session
switch:

subroutine new_customer(record order_rec)
begin;

exec sql set_sql(session = 1);
exec sql insert into accounts values (:order_rec);

process any errors;
exec sql set_sql(session = 2);

sqlca.sqlcode = 0;
sqlca.sqlwarn.sqlwarn0 = ’ ’;

end subroutine;

Database Procedures

7–22 OpenSQL Reference Guide

Database Procedures
A database procedure is a named routine that is stored in the host DBMS or
linked to an Enterprise Access or EDBC product. The following sections
describe how to create, declare, and execute database procedures.

Creating Database Procedures

Database procedures can be created using the following methods:

 Ingres Database Procedures - The Ingres DBMS (and some Enterprise
Access and EDBC products) allows you to create database procedures
using the create procedure statement. For details about the create
procedure statement, see the SQL Reference Guide.

 Host DBMS Procedures – Enterprise Access and EDBC provide access to
procedures located in the host DBMS. (These procedures are created and
maintained in the host DBMS.) The procedure must be declared to
Enterprise Access or EDBC by issuing the register procedure statement.
For details regarding support of host DBMS procedures, see your
Enterprise Access or EDBC product guide. For details about creating and
managing the host DBMS procedures, see your host DBMS documentation.

 Enterprise Access and EDBC Procedures – Enterprise Access and EDBC
to host DBMSs that do not support database procedures provide an
alternate mechanism for database procedures: object code modules for
the routine are linked into the Enterprise Access or EDBC executable
program. These routines must be declared to Enterprise Access or EDBC
by issuing the register procedure statement. For details on the creating
and registering this kind of procedure, see your Enterprise Access or EDBC
product guide.

 Ingres Distributed Option – Using the Distributed Option, you can
execute database procedures that are located in a remote database,
Enterprise Access, or EDBC.

Note: OpenSQL does not control the transaction behavior that occurs when
executing a database procedure. Transaction behavior is determined by the
host DBMS.

Registering Database Procedures

The register procedure statement defines the interface between an application
and a database procedure when support for the create procedure statement is
not available. Creation and maintenance of the database procedure is
dependent on the host DBMS, Enterprise Access, or EDBC. The register
procedure statement defines the procedure name, its parameters and their
types, and the host DBMS, Enterprise Access, or EDBC information required to
access the procedure.

Database Procedures

Chapter 7: OpenSQL Features 7–23

Non-row returning register procedure syntax:

register procedure procedure_name
 [(parameter_definition {,parameter_definition})]
 as import from '...'
 with [with_clause]

Note: The byref keyword can be used for parameters.

Row-returning register procedure syntax:

register procedure procedure_name
 [(parameter_definition {,parameter_definition})]
 as import from '...'
 result row (return_type_list);

Note: The byref keyword cannot be used for parameters.

The procedure_name specifies the procedure name to be used in the OpenSQL
execute procedure or remove procedure statements. The from clause specifies
host DBMS, Enterprise Access, or EDBC information required to identify the
procedure being registered. Additional information may be required by an
Enterprise Access or EDBC product, and is specified using the optional with
clause. The return_type_list is a list of data types.

The parameter_definition is specified as:

parameter_name datatype [not|with null]
 [not default | [with] default [default_value]]
 [byref]
 [is host_info]

Parameters are nullable unless you specify not null. The default_value can be
a numeric or character literal or one of the following constants: null, user,
current_date, or current_time. If the default value is omitted, a
system-generated default is assigned. If the default clause is omitted, default
null is assumed. The byref keyword specifies that the parameter is passed by
reference, enabling the procedure to return a value in the parameter. The
byref keyword must also be used in the execute procedure statement to obtain
the returned value. Byref cannot be used if the procedure returns rows. The is
clause specifies additional information about the parameter, as required by the
host DBMS, Enterprise Access, or EDBC product. The host information must be
enclosed in single quotes.

Deleting a Procedure Registration

To delete a procedure registration, use the remove procedure statement. After
deleting the registration, the procedure cannot be executed (unless you
register the procedure again).

DBMS Extensions

7–24 OpenSQL Reference Guide

The remove procedure syntax is:

remove procedure procedure_name

For details about using the register procedure or remove procedure
statements, see your Enterprise Access or EDBC product guide.

Executing Database Procedures

To execute a database procedure, issue the execute procedure statement.

To ensure portability of your application code and consistency of the
transactions in your application, observe the following guidelines for executing
database procedures:

 Do not issue commit or rollback statements within a database procedure,
because these statements or their equivalents may not be supported in all
host database management systems.

 Issue a commit or rollback statement before and after executing a
database procedure.

 If an error occurs while a database procedure is being executed, the
current transaction may be rolled back by the host DBMS. While this is
permitted by OpenSQL, it is not required. After executing a database
procedure, your application should check for errors and, if necessary, roll
back the transaction.

DBMS Extensions
OpenSQL statements work with all Enterprise Access, EDBC, and DBMS
servers. However, the underlying DBMS typically supports additional SQL
statements and extensions. (For example, Ingres SQL includes statements
that support rules and database events, and the DB2 UDB SQL create table
statement includes extensions governing “editprocs.”)

OpenSQL provides the following methods for issuing DBMS-specific statements
from an OpenSQL application:

 Ingres SQL extensions - These can be coded directly in an application.
The embedded SQL or 4GL preprocessors recognize the extension and
execute it properly. However, extended statements will fail if issued
against a non-Ingres DBMS.

DBMS Extensions

Chapter 7: OpenSQL Features 7–25

 Direct execute immediate - The direct execute immediate statement
passes a statement to the underlying DBMS. OpenSQL does not attempt to
process or translate the statement. The direct execute immediate
statement can be used with any SQL statement that can be executed
dynamically (statements that can be issued with a DBMS execute
immediate). Statements that return rows (for example, select or fetch)
cannot be issued.

 Enterprise Access and EDBC with clause – Many Enterprise Access and
EDBC products support with clauses that provide the ability to access
DBMS extensions to database connection and Data Definition Language
(DDL) SQL statements. The following section describes the EDBC and
Enterprise Access with clause in detail.

The With Clause

The Enterprise Access and EDBC with clause enables DBMS-specific options to
be specified in an OpenSQL statement. EDBC and Enterprise Access servers
process only the options directed at them, and ignore the rest. Valid options
depend on the specific Enterprise Access or EDBC product, and DBMS. For
information on valid with clause parameters, see your Enterprise Access or
EDBC product guide. The DBMS, Enterprise Access, or EDBC is responsible for
performing the specified action or translating the with clause to the syntax
required by the underlying DBMS.

The following OpenSQL statements support the Enterprise Access and EDBC
with clause:

 Connect

 Create index

 Create table

 Create view

 Drop index

 Drop table

 Drop view

Syntax of the With Clause

The with clause must be specified using the following syntax:

with [db_id_]option_name [= option_value]
 {, [db_id_]option_name [= option_value]}

DBMS Extensions

7–26 OpenSQL Reference Guide

The with clause can contain options intended for different Enterprise Access or
EDBC products. Enterprise Access, EDBC, and Ingres options can be specified
in a with clause.

The following table describes the parameters of the with clause:

Parameter Description

db_id_ Specifies the server class of the Enterprise Access or EDBC
product for which the option is specified. The trailing
underscore is required, and the option_name parameter must
be appended with no intervening space.

If this parameter is specified, only the specified Enterprise
Access or EDBC product will process the option. If this
parameter is omitted, all Enterprise Access, EDBC, or database
management systems will attempt to process the option.
Enterprise Access and EDBC will ignore options they cannot
process. Valid values are:

DB2_ DB2 or DB2 UDB

IMS_ IMS

RDB_ Rdb/VMS

RMS_ RMS

SQL_ All Ingres relational or SQL-based
 Enterprise Access or EDBC products

option_name Name of the option. If this is an Enterprise Access-specific or
EDBC-specific option, option_name must be preceded by the
db_id. For details about the product-specific options, see your
Enterprise Access or EDBC product guide.

option_value Value (if required by the option). This value can be specified
using a quoted or unquoted character string, numeric literal, or
variable.

All values must be specified using simple data formats, such as
integers, numerics, names, or strings. If a complex value is
required, it must be encoded in a quoted string.

To specify a list of values, use a comma-separated list enclosed
in parentheses. For example:

with myoption=(value1, value2, value3)

If an option is specified using a string variable, (for example with :stringvar,)
and no value is to be provided, the variable must contain the string “NULL.”
Enterprise Access or EDBC will ignore the option.

Database Events

Chapter 7: OpenSQL Features 7–27

Examples

 Connect to a DB2 subsystem DB2T and set the default database for table
creation to mydb.

connect 'mvs1::db2t/db2' with db2_ct_option =
'mydb';

EDBC for DB2 receiving the preceding connect request will issue the DB2
statements required to connect to the DB2T DB2 subsystem with the
indicated default database.

 Create a database table and specify DBMS-specific extensions for DB2.

create table newtab (col1 integer, col2 integer not null)
with db2_ct_option = 'audit all', alb_type = private;

Database Events
Database events are an extended feature of OpenSQL. This means that not all
OpenSQL servers support database events. If an OpenSQL server supports
database events, there will be a row in iidbcapabilites with a cap_capability of
DBEVENTS and a cap_value of Y. To see if a particular OpenSQL server
supports database events or for any restrictions, refer to the documentation
for that server.

Database events enable an application or the DBMS to notify other applications
that a specific event has occurred. An event is any occurrence that your
application program is designed to handle. Note that support for database
events is optional for OpenSQL servers.

The following diagram illustrates a typical use of database events: various
applications raise database events, and the DBMS notifies a monitor
(receiving) application that is registered to receive the database events.

The monitor application responds to the database events by performing the
actions the application designer specified when writing the monitor application.

Database Events

7–28 OpenSQL Reference Guide

Application

raise dbevent

Database
Procedure

raise dbevent

Other
Application

Receiving
Application

raise dbevent

Event notification

OpenSQL Server

Note: In the diagram above, OpenSQL Server refers only to OpenSQL servers
that support database events.

Database events can be raised by an application that issues the raise dbevent
statement.

Database Event Statements

The following sections describe the SQL statements required to define and use
database events. The statements are:

 create dbevent

 raise dbevent

 register dbevent

 get dbevent

 remove dbevent

 drop dbevent

 inquire_sql

 set_sql

Creating a Database Event

To create a database event, use the create dbevent statement:

create dbevent event_name

where event_name is a unique database event name and a valid object name.

Database Events

Chapter 7: OpenSQL Features 7–29

Database events can be raised by all applications connected to the database,
and received by all applications connected to the database and registered to
receive the database event.

Raising a Database Event

To raise a database event, use the raise dbevent statement:

raise dbevent event_name [event_text]

The raise dbevent statement can be issued from interactive or embedded SQL
applications. When the raise dbevent statement is issued, the DBMS sends a
database event message to all applications that are registered to receive
event_name. If no applications are registered to receive a database event, raising
the database event has no effect.

The optional event_text parameter is a string (maximum 256 characters) that
can be used to pass information to receiving applications. For example, you
can use event_text to pass the name of the application that raised the database
event, or to pass diagnostic information.

Registering to Receive a Database Event

To register an application to receive database events, use the register dbevent
statement:

register dbevent event_name

where event_name is an existing database event. Sessions must register for each
database event to be received. For each database event, the registration is in
effect until the session issues the remove dbevent statement or disconnects
from the database.

The DBMS issues an error if a session attempts to register for a database
event for which the session does not have register privilege

The register dbevent statement can be issued from interactive or embedded
SQL program.

Receiving a Database Event

To receive a database event and its associated information, an application
must perform two steps:

1. Remove the next database event from the session’s database event queue
(using get dbevent or, implicitly, using whenever dbevent or set_sql
dbeventhandler).

Database Events

7–30 OpenSQL Reference Guide

2. Inquire for database event information (using inquire_sql). The get
dbevent statement gets the next database event, if any, from the queue of
database events that have been raised and for which the application
session has registered, as shown in the following illustration:

Get dbevent returns database events for the current session only; if an
application runs multiple sessions, each session must register to receive the
desired database events, and the application must switch sessions to receive
database events queued for each session.

The optional with clause specifies whether your application waits for a
database event to arrive in the queue. If get dbevent with wait is specified, the
application will wait indefinitely for a database event to arrive. If get dbevent
with wait=wait_value is specified, the application waits the specified number of
seconds for a database event to arrive. If no database event arrives in the
specified time, the get dbevent statement times out, and no database event is
returned. If get dbevent with nowait is specified, the DBMS checks for a
database event and returns immediately. The default is nowait.

The with wait clause cannot be specified if the GET dbevent statement is
issued in a select loop or user-defined error handler.

To obtain database event information, your application must issue the
inquire_sql statement, and specify one or more of the following parameters:

dbeventname

The name of the database event (in lowercase letters). If there are no
database events in the database event queue, the DBMS returns an empty
string (or a string containing blanks, if your host language uses blank
padded strings).

dbeventowner

The username of the user that created the database event.

dbeventdatabase

The database in which the database event was raised; returned in
lowercase letters.

Database Events

Chapter 7: OpenSQL Features 7–31

dbeventtime

The date and time the database event was raised, in date format. The
receiving host variable must be a string (minimum length of 25
characters).

dbeventtext

The text, if any, specified in the optional event_text parameter by the
application that raised the database event. The receiving variable must be
a 256-character string. If the receiving variable is too small, the text is
truncated.

Processing Database Events

Three methods can be used to process database events:

 Use the GET dbevent statement to explicitly consume each database event
from the database event queue of the session. Typically, a loop will be
constructed that polls for database events and calls routines that
appropriately handle different database events. Get dbevent is a low
overhead statement: it polls the application’s database event queue and
not the server.

 Trap database events using the whenever dbevent statement. To display
database events and remove them from the database event queue, specify
whenever dbevent sqlprint. To continue program execution without
removing database events from the database event queue, specify
whenever dbevent continue. To transfer control to a database event
handling routine, specify whenever dbevent goto or whenever dbevent
call. To obtain the database event information, the routine must issue the
inquire_sql statement.

 Trap database events to a handler routine, using set_sql dbeventhandler.
To obtain the database event information, the routine must issue the
inquire_sql statement.

Note: If your application terminates a select loop using the endselect
statement, unread database events may be purged. Note that dbevents are
received only during communication between the application and the DBMS
server while performing SQL query statements. When notification is received,
the application programmer should ensure that all database events in the
database events queue are processed by using the get dbevent loop, which is
described below.

Database Events

7–32 OpenSQL Reference Guide

Using GET DBEVENT

To get a database event registration, use the get dbevent statement:

exec sql get dbevent [with nowait | wait [= wait_value]];

To specify whether the GET dbevent statement waits for database events or
checks the queue and returns immediately, specify the with [no]wait clause.
By default, GET dbevent checks and returns immediately.

If with wait is specified, GET dbevent waits indefinitely for the next database
event to arrive. If with wait = wait_value is specified, GET dbevent returns when
a database event arrives or when wait_value seconds have passed, whichever
occurs first.

The following example shows a loop that processes all database events in the
database event queue. The loop terminates when there are no more database
events in the queue.

loop
exec sql get dbevent;
exec sql inquire_sql (:event_name =

dbeventname);
if event_name = 'event_1'
process event 1
else
if event_name = 'event_2'
process event 2
else
...
endif
until event_name = ''

Using WHENEVER DBEVENT

To specify an action to occur whenever a DBEvent is raised, use the
WHENEVER statement:

exec sql whenever DBEvent action;

The action can be one of the following: Continue, Stop, or Go to label.

To use the whenever dbevent statement, your application must include an
SQLCA. When a database event is added to the database event queue, the
sqlcode variable in the SQLCA is set to 710 (as will the standalone SQLCODE
variable; SQLSTATE is not affected). However, if a query results in an error
that resets sqlcode, the whenever statement will not trap the database event.
The database event will still be queued, and your error-handling code can use
the GET dbevent statement to check for queued database events.

Database Events

Chapter 7: OpenSQL Features 7–33

To avoid inadvertently (and recursively) triggering the whenever mechanism
from within a routine called as the result of a whenever dbevent statement,
your database event-handling routine should turn off trapping:

main program:
exec sql whenever dbevent call event_handler;
...
event_handler:
/* turn off the whenever event trapping */
exec sql whenever dbevent continue;
exec sql inquire_sql(:evname=dbeventname...);
process events
return

Using User-defined Database Event Handlers

To define your own database event-handling routine, use the exec sql
set_sql(dbeventhandler) statement. This method traps database events as
soon as they are added to the database event queue; the whenever method
must wait for queries to complete before it can trap database events. For more
information, see the Set_sql section in the chapter “SQL Statements.”

Removing a Database Event Registration

To remove a database event registration, use the remove dbevent statement:

remove dbevent event_name

where event_name specifies a database event for which the application has
previously registered. After a database event registration is removed, the
DBMS will not notify the application when the specified database event is
raised. (Pending database event messages are not removed from the database
event queue.)

When attempting to remove a registration for a database event that was not
registered, the DBMS issues an error.

Database Events

7–34 OpenSQL Reference Guide

Dropping a Database Event

To drop a database event, use the drop dbevent statement:

drop dbevent event_name

where event_name is a valid and existing database event name. Only the user
that created a database event can drop it. After a database event is dropped,
it cannot be raised, and applications cannot register to receive the database
event. (Pending database event messages are not removed from the database
event queue.) If a database event is dropped while applications are registered
to receive it, the database event registrations are not dropped from the DBMS
until the application disconnects from the database or removes its registration
for the dropped database event. If the database event is recreated (with the
same name), it can again be received by registered applications.

To enable or disable the display of database events as they are received by an
application, use the following statement:

exec sql set_sql(dbeventdisplay = 1 | 0)

Specify a value of 1 to enable the display of received database events, or 0 to
disable the display of received database events. This feature can also be
enabled by using II_EMBED_SET. For details about II_EMBED_SET, see the
System Administrator Guide.

A routine can be created that will trap all database events returned to an
embedded SQL application. To enable or disable a database event-handling
routine or function, your embedded SQL application must issue the following
set_sql statement:

exec sql set_sql(dbeventhandler = event_routine | 0)

To trap database events to your database event-handling routine, specify
event_routine as a pointer to your error-handling function. For information
about specifying pointers to functions, see your host language companion
guide. Before using the set_sql statement to redirect database event handling,
create the database event-handling routine, declare it, and link it with your
application.

Chapter 8: OpenSQL Statements 8–1

Chapter 8: OpenSQL Statements

This chapter presents OpenSQL statements individually, describing the
purpose, syntax, and use of each statement.

SQL Version
This chapter describes the version of OpenSQL indicated by the following
values in the iidbcapabilities catalog:

CAP_CAPABILITIES CAP_VALUE

OPEN/SQL_LEVEL 00602

SQL Statements Context
At the beginning of each statement description, you will see the following
table:

SQL ESQL

* *

The columns in this table have the following meanings:

 An asterisk (*) under SQL indicates you can use the statement in an
interactive session.

 An asterisk (*) under ESQL indicates that you can use the statement in
embedded programs.

Forms Statements

This chapter does not describe Ingres Forms statements. For information
about these statements, see the Forms-based Application Development Tools
User Guide.

Begin Declare Section

8–2 OpenSQL Reference Guide

Extended Statements

If the iidbcapabilities catalog contains the following row:

CAP_CAPABILITIES CAP_VALUE

SQL92_COMPLIANCE ENTRY

These additional statements and features can be used:

 grant

 revoke

 create schema

 create table constraints and defaults enhancements

If these statements and extensions are not supported, the iidbcapabilities
catalog contains the following row:

CAP_CAPABILITIES CAP_VALUE

SQL92_COMPLIANCE NONE

Begin Declare Section

SQL ESQL

 *

Begins a program section that declares host language variables to embedded
OpenSQL.

Syntax
exec sql begin declare section;

Description

The begin declare section statement signals the start of a declaration section
that declares host language variables for use in embedded OpenSQL. (All
variables used in embedded OpenSQL or forms statements must be declared.)
A single program can have multiple declaration sections.

Call

Chapter 8: OpenSQL Statements 8–3

The statements that can appear inside a declaration section are:

 Legal host language variable declarations.

 An include statement that includes a file that contains host language
variable declarations. (This must be an SQL include statement, not a host
language include statement.)

 A declare table statement (normally generated by dclgen in an included
file).

The end declare section statement marks the end of the declaration section.

For more information about declaring and using host language variables, see
the Host Language Variables section in the Embedded SQL Companion Guide.

Example

The example below shows the typical structure of a declaration section.

 exec sql begin declare section;
 buffer character_string(2000);
 number integer;
 precision float;
 exec sql end declare section;

Call

SQL ESQL

 *

Calls the operating system or an Ingres tool.

Syntax

To call the operating system:

exec sql call system (command = command_string)

To call an Ingres tool:

exec sql call subsystem (database = dbname
 {, parameter = value})

Description

The call statement allows an embedded SQL application to call the operating
system or an Ingres tool (such as Query-By-Forms or Report-Writer).

Call

8–4 OpenSQL Reference Guide

When used to call the operating system, this statement executes the specified
command_string as if the user typed it at the operating system command line.
After the command_string is executed, control returns to the application at the
statement following the call statement.

If command_string is a null, empty, or blank string, the statement transfers
the user to the operating system. The user can then execute any operating
system command. Exiting or logging out of the operating system returns the
user to the application.

The command_string can invoke an Ingres tool. For example:

exec sql call system (command =
 'qbf personnel/alb');

However, it is more efficient to call the Ingres tool directly:

exec sql call qbf (database = 'personnel/alb');

When an Ingres tool is called directly, the database argument must identify
the database to which the session is connected.

The call statement is not sent to the database. Therefore, it cannot appear in a
dynamic SQL statement string. When calling an Ingres tool, an application
cannot rely on the dynamic scope of open transactions, open cursors, or
queries that have been defined, prepared, or specified as repeated queries.
The application programmer must treat each subsystem call as an individual
DBMS session. The Ingres tool commits any open transaction when it starts.
For this reason, it is a good practice to commit before calling the Ingres tool.

When the user exits from the Ingres tool, control passes to the statement
following the call.

The following table lists the valid parameters for this command. All parameters
can be specified using a quoted or unquoted string literal or a string variable.

Parameter Description

subsystem The name of the tool to be called

dbname The name of the current database

parameter A list of one or more parameters specific to the called tool

value The value assigned to the specified parameter

command_string Specifies the command to be executed at the operating
system level when the operating system is called

Close

Chapter 8: OpenSQL Statements 8–5

Performance

If this statement is being used to call an Ingres tool, it is most efficient to call
the tool directly, rather than calling the operating system and, from there,
calling the tool. For details, see the Text description.

Examples

a. Run a default report on the employee table in the column mode.

 exec sql commit;
 exec sql call report (database='personnel/alb',
 name='employee', mode='column');

b. Run QBF in the append mode with the QBF name, expenses, suppressing
verbose messages.

 exec sql commit;
 exec sql call qbf (database='personnel/alb',
 qbfname='expenses',
 flags='-mappend -s');

Close

SQL ESQL

 *

Closes an open cursor.

Syntax
exec sql close cursor_name

Description

The close statement closes an open cursor. The cursor_name must have been
previously defined in your source file by a declare cursor statement. Once
closed, the cursor cannot be used for further processing unless reopened with
a second open statement. A commit, rollback, or disconnect statement closes
all open cursors.

A string constant or host language variable can be used to specify the cursor
name.

Commit

8–6 OpenSQL Reference Guide

Permissions

This statement is available to all users.

Example

This example illustrates cursor processing from cursor declaration to closing.

 exec sql declare c1 cursor for
 select ename, jobid
 from employee
 where jobid = 1000;
 ...
 exec sql open c1;
 loop until no more rows;
 exec sql fetch c1
 into :name, :jobid;
 print name, jobid;
 end loop;
 exec sql close c1;

Commit

SQL ESQL

* *

Commits the current transaction.

Syntax
[exec sql] commit [work]

Description

This statement terminates the current transaction. Once committed, the
transaction cannot be aborted, and all changes it made become visible to all
users through any statement that manipulates that data.

The optional keyword work is included for compatibility with other versions of
SQL.

Create Dbevent

Chapter 8: OpenSQL Statements 8–7

Embedded Usage

In addition to committing the current transaction, an embedded commit
statement also:

 Closes all open cursors

 Discards all statements prepared (with the prepare statement) during the
current transaction

When a program issues the disconnect statement, an implicit commit is also
issued. Any pending updates are submitted. To roll back pending updates
before terminating the program, a rollback statement must be issued.

Permissions

This statement is available to all users.

Example

This embedded example issues two updates, each in its own transaction.

exec sql connect 'mvs1::personnel/db2';

exec sql update employee set salary = salary * 1.1
 where rating = 'Good';

exec sql commit;

exec sql update employee set salary = salary * 0.9
where rating = 'Bad';

exec sql disconnect;
/* Implicit commit issued on disconnect */

Create Dbevent

SQL ESQL DB Proc

* *

Defines a database event.

Syntax
[exec sql] create dbevent [schema.]event_name

Connect

8–8 OpenSQL Reference Guide

Description

The create dbevent statement creates the specified database event. Database
events enable an application to pass status information to other applications.

Event_name must be a valid object name.

Database events can be registered or raised by any session.

For a full description of database events, see Database Events in the chapter
“OpenSQL Features.”

Embedded Usage

The event_name cannot be specified using a host language variable.
Event_name can be specified as the target of a dynamic SQL statement string.

Connect

SQL ESQL

 *

Connects the application to a database and, optionally, to a specified
transaction.

Syntax
exec sql connect dbname
 [session session_identifier]
 [identified by username]
 [options = flag {, flag}]
 [with_clause]

The with_clause parameter consists of the word with followed by a
comma-separated list of valid options. For an overview of this parameter, see
the With Clause topic of the Enterprise Access product. For a list of the valid
with clause options for a specific Enterprise Access product, see your
Enterprise Access product guide.

Connect

Chapter 8: OpenSQL Statements 8–9

Description

The embedded SQL connect statement connects an application to a database,
similar to the operating-system-level sql command. The connect statement
must precede all statements that access the database. The connect statement
cannot be issued in a dynamic OpenSQL statement.

Use the session clause if your application includes multiple open sessions. The
session clause uniquely identifies each session, by associating each session
with the specified session_identifier. The session identifier must be a positive
integer.

Multiple-session applications require the session clause on each connect
statement including the first. If this clause is not present on the first connect
in the application, OpenSQL assumes that the application does not use
multiple open sessions, and subsequent attempts to open other sessions
generate an error.

To switch from one existing session to another existing session, use the
set_sql statement. The connect statement with the session clause is used only
to establish new sessions. You can, however, open more than one session with
the same database.

For a discussion of multiple sessions and examples of their use, see Multiple
Session Connections in the chapter “OpenSQL Features.”

The identified by clause allows the session to run as the specified user, like the
-u flag of the sql command. To determine whether your Enterprise Access
product supports the -u flag (and, therefore, the identified by clause), see
your Enterprise Access product guide.

The options clause allows up to 12 flags to be specified that control session
behavior. For details about these flags, see the description of the sql command
in the Command Reference Guide. Not all flags are supported by all Enterprise
Access products.

The with clause enables Enterprise Access product-specific connection
parameters to be specified. For an overview of the Enterprise Access product
with clause, see The With Clause in the chapter “OpenSQL Features.” To
determine the options supported by a specific Enterprise Access product, see
your Enterprise Access product guide.

Connect

8–10 OpenSQL Reference Guide

The following table lists valid parameters for this command:

Parameters Description

dbname Specifies the database to which the session will connect.
Dbname can be a quoted or unquoted string literal or a
host string variable. If the name includes any name
extensions, such as a virtual node name or server class,
string literals must be quoted.

server_class Specifies the Enterprise Access product or type of server to
which the session is connecting. Examples include:

 Server class codes Product

 DB2 DB2

 DB2UDB DB2 UDB

 RDB Rdb/VMS

 RMS RMS

 IMS IMS

 DBD Star

 INGRES Ingres (default)

session_identifier A positive integer literal or variable whose value must be
unique among existing session identifiers in the application.
A value of 0 is equivalent to omitting the session clause.

username Specifies the user identifier under which this session will
run. Username can be a quoted or unquoted character
string literal or string variable. Valid only if the Enterprise
Access product supports the identified by clause.

flag Any flag that is accepted by the sql command and is not
specific to the Terminal Monitor can be specified in the
options clause. The flags can be expressed as quoted or
unquoted character string literals or as string variables.
See your Enterprise Access product guide for supported
flags.

with_clause Specifies Enterprise Access product specific connection
parameters. The command line +c flag provides access to
the connect statement’s Enterprise Access product with
clause. For a discussion of the Enterprise Access product
with clause, see DBMS Extensions in the chapter “OpenSQL
Feature.”

Create Index

Chapter 8: OpenSQL Statements 8–11

Permissions

This statement is available to any user. Some Enterprise Access products do
not support the identified by clause. For details, see your Enterprise Access
product guide.

Examples

1. Connect to the DB2UDB database mydb on virtual node UNIXBOX.

exec sql connect 'unixbox::master/db2'
with db2udb = 'audit all';

2. Connect to two databases: the Ingres database named personnel, which is
located in London, and the local Rdb/VMS database called sales. Set the
current session to the personnel database.

exec sql connect 'london::personnel' session 1;

exec sql connect 'sales/rdb' session 2;

exec sql set_sql (session = 1);

Create Index

SQL ESQL

* *

Creates an index on an existing base table.

Syntax
[exec sql] create [unique] index indexname on tablename
 (columnname {, columnname})
 [with with_clause]

The with_clause parameter consists of a comma-separated list of valid
Enterprise Access product with clause options. For an overview of the
Enterprise Access product with clause, see “Chapter 7: OpenSQL Features.”
For a list of the valid with clause options for a specific Enterprise Access
product, see your Enterprise Access product guide.

Description

The create index statement creates an index on an existing base table. The
index contains the columns specified and is keyed on those columns, in the
order they are specified.

Create Index

8–12 OpenSQL Reference Guide

Indexes can improve query processing. If data is retreived from a table based
on an indexed column, the DBMS uses indexes, if available, to accelerate
query processing. To obtain the greatest benefit, create indexes that contain
all of the columns that are generally queried and keyed on some subset of
those columns.

Any number of indexes can be created for a table, but, for portability, each
index can contain no more than 16 columns.

To prevent the index from accepting duplicate values in key fields, specify the
unique option. If the base table on which the index is being created has
duplicate values for the index’s key fields, then the create index statement will
fail. Similarly, if you attempt an insert or update that violates the uniqueness
constraint of an index created on the table, then the insert or update will fail.
This is true for an update statement that updates multiple rows: the update
statement will fail as soon as it attempts to write a row that update violates
the uniqueness constraint.

Particular Enterprise Access products may support extensions to the create
index statement (using the with clause). For a discussion of the Enterprise
Access product with clause, see “Chapter 7: OpenSQL Features.”

To ensure application portability, follow each create index statement with a
commit statement.

An index cannot be updated directly. When a table is changed, the DBMS
updates indexes as required. To destroy an index, use the drop statement. All
indexes on a table are destroyed when the table is dropped.

The following table lists valid parameters for this statement:

Parameter Description

indexname Specifies the name of the index. This must be
a valid object name.

tablename Specifies the table on which the index is to be
created.

columnname {,
columnname}

A list of columns from the specified table to be
included in the index.

with_clause Specifies Enterprise Access product-specific
options. For details, see your Enterprise Access
product guide.

Embedded Usage

The preprocessor does not validate the syntax of the with clause.

Create Table

Chapter 8: OpenSQL Statements 8–13

Example

Create an index called, x, for the columns, ename and age, on employee table.

 create index x on employee (ename, age);

Create Table

SQL ESQL

* *

Creates a new base table.

Syntax
[exec sql] create table tablename
 (columnname format {, columnname format})
 [with_clause]

To create a table and load from another table:

[exec sql] create table tablename
 [(columnname {, columnname})] as subselect {union [all] subselect}
 [with with_clause]

The with_clause parameter consists of a comma-separated list of valid
Enterprise Access product with clause options. For an overview of the
Enterprise Access product with clause, see “Chapter 7: OpenSQL Features.”
For a list of the valid with clause options for a specific Enterprise Access
product, see the documentation for that product.

For the syntax of subselect, see Select (interactive) in this chapter. For details
about ISO Entry SQL92 extensions to this statement, see Create Table
(extended) in the chapter “Extended Statements.”

Description

The create table statement creates a new base table owned by the user who
issues the statement. If you use the create table...as syntax, then the table
that you create is some subset of the columns and values in an existing
table(s) defined by the subselect.

Tablename specifies the name of the new table. This must be a valid OpenSQL
name. For the rules for naming database objects, see Object Names in the
chapter “Overview of OpenSQL.”

Create Table

8–14 OpenSQL Reference Guide

The as clause causes the table that you create to be defined and populated by
the subselect specified in the statement.

To ensure application portability, follow every create table statement with a
commit statement.

Embedded Usage

 Host variables can be used to specify constant expressions in the subselect
of a create table...as statement.

 The preprocessor does not validate the syntax of the with_clause.

Specifying the Column Names, Data Types, and Lengths

The name and data type of each column in the new table are specified by the
columnname and format arguments. If you specify create table...as select, the
new table takes its column names and formats from the results of the select
clause of the subselect in the as clause (unless you specify column names
following the table name). For more information, see Create Table in this
chapter.

Columnname can be any valid OpenSQL name. Format specifies the data type
and length of the column using the following syntax:

datatype [not null | with null]

Datatype can be any valid OpenSQL data type and length.

The with|not null clause determines whether or not a column will accept null or
default values, or neither, during an insert, update, or copy operation. The
options for the with|not null clause are:

 with null - The columns accepts nulls. The DBMS inserts null as the
default value if no value is supplied by the user.

 not null - The column does not accept nulls, and the DBMS does not
supply a default value. The user must supply a non-null value. (The
column is mandatory.)

If the with|not null clause is omitted, with null is assumed.

Using the Create Table...As Syntax

The create table...as syntax allows a table to be created from another table or
tables. The new table is populated with the set of rows resulting from
execution of the specified subselect.

Create View

Chapter 8: OpenSQL Statements 8–15

When the create table statement includes an as clause, specifying column
names is optional unless two or more columns of the table would otherwise
have the same name. If that is the case, specify the column names.

The column format cannot be specified when using create table ...as; the
formats are copied from the source table columns specified in the subselect
clause. The nullability attribute of a column in the new table is the same as the
corresponding column in the source table.

Examples

1. Create the employee table with columns eno, ename, age, job, salary, and
dept.

 create table employee
 (eno smallint,
 ename varchar(20) not null,
 age integer,
 job smallint,
 salary float,
 dept smallint
 started date);

2. Create a table listing employee numbers for employees who make more
than the average salary.

 create table highincome as
 select eno
 from employee
 where salary
 (select avg (salary)
 from employee);

Create View

SQL ESQL

* *

Defines a virtual table.

Syntax
[exec sql] create view view_name [(columnname {, columnname})]
 as subselect {
 union [all] subselect}
 [with_clause]

For the syntax of the subselect, see Select (interactive) in this chapter.

Create View

8–16 OpenSQL Reference Guide

The with_clause parameter consists of the word with followed by a
comma-separated list of valid Enterprise Access product with clause options
(including, for this statement, check option). For an overview of the Enterprise
Access product with clause, see “Chapter 7: OpenSQL Features.” For a list of
the valid with clause options for a specific Enterprise Access product, see the
product guide. The check option is not supported by all Enterprise Access
products. Enterprise Access products that do not support check option will
ignore it when creating the specified view.

Description

The syntax of the create view statement is very similar to that of the as form
of create table. However, data is not retrieved when a view is created.
Instead, the view definition is stored and, when the view_name is later used in
an SQL statement, the statement operates on the tables that are used to
define the view. (The tables or views used to define a view are called its base
tables.)

All selects on views are fully supported. Simply use a view_name in place of a
tablename in any SQL retrieval. However, updates, inserts, and deletes on
views are subject to several rules:

 The view was created from more than one table.

– The view was created from a non-updateable view.

– Any columns in the view are derived from an expression or aggregate
(set) function.

 Additionally, inserts are not allowed if:

– The view definition contains a where clause and specifies the with
check option (if supported by the Enterprise Access product).

– If any column in the underlying table that was declared as not null not
default is not present in the view.

 The ability to update a view depends in part on whether the with check
option is specified.

When a view is created with check option, columns that are part of the
view’s qualification cannot be updated.

If the with check option is not specified, any row in the view can be
updated, even if the update results in a row that is no longer a part of the
view.

Create View

Chapter 8: OpenSQL Statements 8–17

For example, consider the following two statements:

 create view v
 as select *
 from t
 where c = 10;
 update v
 set c = 5;

Because the with check option is not specified in the view’s definition, you
are allowed to update column c. If the view had been created with check
option, the update would not be allowed.

By default, with check option is not set.

When a table used in the definition of a view is dropped, the view is also
dropped.

Note: Particular Enterprise Access products may support extensions to the
create view statement, using the with clause.

To ensure application portability, follow every create view statement with a
commit statement.

Embedded Usage

When used in an embedded program, constant expressions can be specified in
the select_stmt with host language string variables. If the select_stmt includes
a where clause, a host language string variable can be used to represent the
entire where clause qualification.

Example

Define a view of employee data including names, salaries, and managers’
names.

 create view empdpt (ename, sal, dname)
 as select employee.name, employee.salary,
 dept.name
 from employee, dept
 where employee.mgr = dept.mgr;

Declare Cursor

8–18 OpenSQL Reference Guide

Declare Cursor

SQL ESQL

 *

Declares a cursor for use in data manipulation.

Syntax
exec sql declare cursor_name cursor
 for select [all | distinct]
 result_expression {, result_expression}
 from table {, table}
 [where search_condition]
 [group by column {, column}]
 [having search_condition]
 [union [all] full_select]
 [order by result_column [asc | desc]
 {, result_column [asc | desc]}]
 [for update of column {, column}]

Dynamic SQL form:

exec sql declare cursor_name cursor
 for statement_name;

Description

The declare cursor statement associates a specified cursor with a select
statement. For information about using the select statement with cursors, see
Cursor Select in this chapter.

Declare cursor is a compile-time statement and must appear before the first
statement that references the cursor. Despite its declarative nature, a declare
cursor statement must not be located in a host language variable declaration
section.

Cursor_name can be specified using a quoted or unquoted string literal or a
host language string variable. If cursor_name is a reserved word, it must be
specified in quotes. Cursor_name can contain a maximum of 24 alphanumeric
characters.

The typical order of events in cursor processing is:

1. Issue a declare cursor statement to associate a cursor with a select
statement.

2. Open the cursor. When the cursor is opened, the DBMS executes the
select statement that was specified in the declare cursor statement.

Declare Cursor

Chapter 8: OpenSQL Statements 8–19

3. Process rows one at a time. The fetch statement returns one row from the
results of the select statement that was executed when the cursor was
opened.

4. Close the cursor by issuing the close statement.

A source file can have multiple cursors, but the same cursor cannot be
declared twice. If you want to declare several cursors using the same host
language variable to represent cursor_name, it is only necessary to declare
the cursor once, since declare cursor is a compile-time statement. Multiple
declarations of the same cursor_name will cause a preprocessor error, even if
its actual value is to be changed between declarations. For example, the
following statements cause a preprocessor error:

exec sql declare :cname[i] cursor for s1;
i = i + 1
/* The following statement causes preprocessor error */
exec sql declare :cname[i] cursor for s2;

Instead, declare the cursor once. The value assigned to the host language
variable cursor_name is not determined until the open cursor statement is
executed. For example:

exec sql declare :cname[i] cursor for :sname[i];
loop incrementing i
exec sql open :cname[i];
end loop;

If a cursor is declared using a host language variable, all subsequent
references to that cursor must use the same host language variable. At
runtime, a dynamically specified cursor name, that is, a cursor declared using
a variable, must be unique among all dynamically specified cursor names in an
application. In a similar manner, any cursors referenced in a dynamic
statement, for example a dynamic update or delete cursor statement, must be
unique among all open cursors within the current transaction.

A cursor name declared in one source file cannot be referred to in another file,
since the scope of a cursor declaration is the source file. If the cursor is
redeclared in another file with the same associated query, it will still not
identify the same cursor, not even at runtime. For example, if a cursor c1 is
declared in source file, file1, then all references to c1 must be made within
file1. Failure to follow this rule results in runtime errors. For example, if you
declare cursor c1 in an include file, open it in one file and fetch from it in
another file, at runtime the DBMS returns an error indicating that the cursor c1
is not open on the fetch.

This rule applies equally to dynamically specified cursor names. If a dynamic
update or delete cursor statement is executed, the cursor referenced in the
statement must be declared in the same file in which the update or delete
statement appears.

Declare Cursor

8–20 OpenSQL Reference Guide

The embedded SQL preprocessor does not generate any code for the declare
cursor statement. Therefore, in a language that does not allow empty control
blocks, (for example, COBOL, which does not allow empty IF blocks), the
declare cursor statement should not be the only statement in the block.

The for update clause must be included if there is any possibility that the
cursor will be used to update rows. List any column that might be updated. If
you only intend to delete rows, then the for update clause is not required. The
actual updating or deleting takes place with the cursor version of the update or
delete statement, respectively (see Update and Delete in this chapter).

A cursor cannot be declared for updating if its select statement:

 Refers to more than one table.

For example, the following cursor declaration causes a compile-time error:

 exec sql declare c1 cursor for
 select employee.id, accounts.sal
 from employee, accounts
 where employee.salno = accounts.accno
 for update of sal;
 /* illegal join on different tables for
 update */

This declaration is illegal because two tables were used in the select
statement.

 Refers to a non-updateable view.

For example, assume that empdept is a read-only view, not a table, then
the following example generates a runtime error at the time the open
statement is executed. No preprocessor error is generated, because the
preprocessor does not know that empdept is a view.

exec sql declare c2 cursor for
 select name, deptinfo
 from empdept /* empdept is a read-only view */
 for update of deptinfo;

...

exec sql open c2;

 Includes a distinct, group by, having, order by, or union clause.

It is also illegal to update a column that is a constant or is based on a
calculation. For example, the following cursor declaration generates an error
when you attempt to update the column named constant:

exec sql declare c3 cursor for
select 123 as constant, ename
from employee
for update of constant;
 /* "constant" cannot be declared for update */

If an updateable column has been given a result column name by using this
syntax:

columnname as resultname

Declare Cursor

Chapter 8: OpenSQL Statements 8–21

then the column referred to in the for update list must name the table column
name, and not the result column name.

Updates associated with a cursor take effect on the underlying table when the
statement is executed. The effects of the updates can be seen by the program
before the cursor is closed. The actual committal of the changes does not
override or interfere with commit or rollback statements that may be executed
subsequently in the program. Because changes take effect immediately, avoid
updating keys that cause the current row to move “forward” with respect to
the current position of the cursor, because this may result in fetching the
same row more than once.

If the for update clause is specified, the cursor can still be opened for reading
only. The open statement accepts the optional for readonly clause, which
specifies that, though the cursor may have been declared for update, the
cursor is not being opened for update. By including this clause in the open
statement, the performance of the cursor retrieval can be improved.

Not all database management systems allow the use of a cursor to update a
row more than once. For details, see your Enterprise Access product and
DBMS-specific documentation for details.

The union form of the select statement can be used in a cursor declaration. To
select all columns, use select *. Each column does not need to be listed
individually.

When the order by clause is specified, the ordering is performed according to
SQL comparison rules. Each column specified in the ordering must specify
either a column name, which identifies a column of the result table, or an
integer, which identifies a numbered column of the result table. A named
result column can be identified by an ordering name or a number. An
unnamed result column must be identified by an ordering number.

Host language variables can be used in the select statement of a declare
cursor to substitute for expressions in the select clause or in the search
condition (see Select (interactive) in this chapter). When the search condition
is specified within a single string variable (as when the query is constructed
using the form system query mode) then all the following clauses, such as the
order by or update clause, can be included within the variable. These variables
must be valid at the time of the cursor’s open statement, because that is when
the select is actually evaluated—they need not have defined values at the time
of the declare cursor statement. Host language variables cannot substitute for
any table or column names.

You can also use the dynamic OpenSQL syntax and specify a prepared
statement name instead of a select statement. The statement name must
identify a select statement that has been prepared previously. The statement
name must not be the same as another prepared statement name that is
associated with a currently open cursor.

Declare Cursor

8–22 OpenSQL Reference Guide

Examples

1. Declare a cursor for a retrieval of employees from the shoe department,
ordered by name (ascending) and salary (descending). (This could also be
specified as a select loop.)

 exec sql declare cursor1 cursor for
 select ename, sal
 from employee
 where dept = 'shoes'
 order by 1 asc, 2 desc;

2. Declare a cursor for updating the salaries and departments of employees
currently in the shoe department.

 exec sql declare cursor2 cursor for
 select ename, sal
 from employee
 where dept = 'shoes'
 for update of sal, dept;

3. Declare a cursor for updating the salaries of employees whose last names
are alphabetically like a given pattern.

 searchpattern = 'a%';
 exec sql declare cursor3 cursor for
 select ename, sal
 from employee
 where ename like :searchpattern
 for update of sal;

 ...

 exec sql open cursor3;

In the above example, the variable, searchpattern, must be a valid
declaration in the host language at the time the statement, open cursor3,
is executed. It also must be a valid embedded OpenSQL declaration at the
point where the cursor is declared.

4. Declare a cursor in order to print the results of a retrieval for runtime
viewing and salary changes.

 exec sql declare cursor4 cursor for
 select ename, age, eno, sal
 from employee
 for update of sal;

 exec sql whenever sqlerror stop;
 exec sql whenever not found goto close_cursor;
 exec sql open cursor4;

 loop /* loop is broken when NOT FOUND becomes
 true. */
 exec sql fetch cursor4
 into :name, :age, :idno, :salary;
 print name, age, idno, salary;
 print ’New salary’;
 read newsal;
 if (newsal > 0 and newsal <> salary) then
 exec sql update employee
 set sal = :newsal
 where current of cursor4;
 end if;
 end loop;

Declare Cursor

Chapter 8: OpenSQL Statements 8–23

 close_cursor:
 exec sql close cursor4;

5. Declare a cursor for retrieval of specific data. The for update clause refers
to column name sal and not res.

 exec sql declare cursor5 cursor for
 select ename, sal as res
 from employee
 where eno between :eno_low and :eno_high
 for update of sal;

 loop while more input
 read eno_low, eno_high;
 exec sql open cursor5;
 print and process rows;
 end loop;

6. Declare two cursors for the department and employee tables and open
them in a master-detail fashion.

 exec sql declare master_cursor cursor for
 select * from dept
 order by dno;

 exec sql declare detail_cursor cursor for
 select * from employee
 where edept = :dno
 order by ename;

 exec sql open master_cursor;

 loop while more departments

 exec sql fetch master_cursor
 into :dname, :dno, :dfloor, :dsales;

 if not found break loop;

/* For each department retrieve all the employees
and display the department and employee data.*/
 exec sql open detail_cursor;

 loop while more employees

 exec sql fetch detail_cursor
 into :name, :age, :idno, :salary, :edept;

 /*For each department retrieve all the employees
 and display the department and employee data.*/
 process and display data;

end loop;
 exec sql close detail_cursor;
 end loop;

 exec sql close master_cursor;

Declare Global Temporary Table

8–24 OpenSQL Reference Guide

7. Declare a cursor that is a union of three tables with identical typed
columns (the columns have different names). As each row returns, record
the information and add it to a new table. Ignore all errors.

 exec sql declare shapes cursor for
 select boxname, boxnum from boxes
 where boxid > 100
 union
 select toolname, toolnum from tools
 union
 select nailname, nailnum from nails
 where nailweight > 4;

 exec sql open shapes;
 exec sql whenever not found goto done;

 loop while more shapes

 exec sql fetch shapes into :name, :number;
 record name and number;
 exec sql insert into hardware (:name, :number);
 end loop;

 done:

 exec sql close shapes;

Declare Global Temporary Table

SQL ESQL DB Proc

* *

Creates a temporary table.

Syntax
[exec sql] declare global temporary table [session.]table_name

 (column_name format {, column_name format})

 on commit preserve rows

[with norecovery]

To create a temporary table by selecting data from another table:

[exec sql] declare global temporary table [session.]table_name

 (column_name {, column_name})

 as sub-select

 on commit preserve rows

[with norecovery]

For details about sub-selects, see Select (interactive) in the chapter “OpenSQL
Statements.”

Declare Global Temporary Table

Chapter 8: OpenSQL Statements 8–25

The on commit preserve rows and with norecovery are required for the declare
global temporary table session statement; these keywords cannot be omitted.
The on commit preserve rows clause directs the DBMS to retain the contents
of a temporary table when a commit statement is issued.

Description

The declare global temporary table statement creates a temporary table, also
referred to as a session-scope table. Temporary tables are useful in
applications that need to manipulate intermediate results and want to
minimize the processing overhead associated with creating tables. Depending
on the target DBMS, temporary tables may reduce overhead in the following
ways:

 No logging is performed on temporary tables.

 No page locking is performed on temporary tables.

 Disk space requirements are minimized. If possible, the temporary table is
created in memory and never written to disk.

 No system catalog entries are made for temporary tables.

Embedded Usage

In embedded programs, do not specify the declare global temporary table
session statement within the declare section of an embedded program; place
the statement in the body of the embedded program.

Restrictions

Temporary tables may be subject to the following restrictions:

 Temporary tables may not be used within database procedures.

 Temporary tables may not be used in view definitions.

 The following SQL statements may not be used on temporary tables:

— Create index

— Create view

— Grant

— Help

— Revoke

— Set lockmode

Note: Repeat queries referencing temporary tables cannot be shared between
sessions.

Declare Global Temporary Table

8–26 OpenSQL Reference Guide

The following commands cannot be issued with a temporary table name:

 auditdb

 copydb

 optimizedb

 statdump

 verifydb

Related Statements

For more information, see the following statement descriptions in this chapter:

 Create Table

 Delete

 Drop

 Insert

 Select

 Update

Examples

1. Create a temporary table.

exec sql declare global temporary table
 session.emps
 (name char(20) , empno char(5))
 on commit preserve rows
 with norecovery;

2. Use a sub-select to create a temporary table containing the names and

employee numbers of the highest-rated employees.
exec sql declare global temporary table
 session.emps_to_promote
 as select name, empno from employees
 where rating >= 9
 on commit preserve rows
 with norecovery;

Declare Statement

Chapter 8: OpenSQL Statements 8–27

Declare Statement

SQL ESQL

 *

Declares names to identify one or more dynamic OpenSQL prepared statement
names.

Syntax
exec sql declare statement_name {, statement_name} statement

Description

Declare statement lists one or more names that are used in a program to
identify prepared OpenSQL statements. Declare statement is provided for
purposes of program documentation. The declaration of prepared statement
names is not required. No syntactic elements can be specified using host
language variables.

The embedded SQL preprocessor does not generate any code for declare
statement. Therefore, in a language that does not allow empty control blocks
(for example, COBOL, which does not allow empty IF blocks), this statement
must not be the only statement in the block.

Example

This example declares one statement name for a dynamic statement that will
be executed 10 times.

exec sql declare ten_times statement;

loop while more input
 print ’Type in statement to be executed 10 times?’;
 read statement_buffer;

 exec sql prepare ten_times from :statement_buffer;
 loop 10 times
 exec sql execute ten_times;
 end loop;
end loop;

Declare Table

8–28 OpenSQL Reference Guide

Declare Table

SQL ESQL

 *

Describes the structure of a database table.

Syntax
exec sql declare tablename table
 (columnname type [with null | not null]
 {, columnname type})

Description

The declare table statement is a comment statement inside a variable
declaration section that lists the columns and data types of a table, for the
purpose of program documentation. The dclgen utility includes this statement
in the file it generates. Dclgen creates a structure corresponding to a database
table. For details, see the Embedded SQL Companion Guide.

Any elements of the syntax cannot be replaced with host language variables.

The embedded SQL preprocessor does not generate any code for the declare
table statement. Therefore, in a language that does not allow empty control
blocks (for example, COBOL, which does not allow empty IF blocks), the
declare table statement must not be the only statement in the block.

Example

Declare a database table.

 exec sql declare employee table
 (eno integer2 not null,
 ename character(20) not null,
 age integer,
 job integer2,
 sal float,
 dept integer2 not null);

Delete

Chapter 8: OpenSQL Statements 8–29

Delete

SQL ESQL

* *

Deletes rows from a table.

Syntax

Interactive version:

delete from tablename [where search_condition]

Embedded versions:

 Non-cursor version:

exec sql [repeated] delete from tablename
[where search_condition]

 Cursor version:

exec sql delete from tablename
where current of cursor_name;

Description

The delete statement removes rows from the specified table that satisfy the
search_condition in the where clause. If the where clause is omitted, the
statement deletes all rows in the table. The result is a valid but empty table.

If the where clause includes a subselect, the tables specified in the subselect
cannot include the table from which you are deleting rows.

Embedded Usage

There are two embedded versions of the delete statement: one deletes rows
according to the search criteria specified in its where clause, and the second
deletes the row to which the specified cursor is positioned.

Delete

8–30 OpenSQL Reference Guide

Non-cursor Delete

The non-cursor version of the embedded OpenSQL delete statement is
virtually identical to the interactive delete. Host language variables can be
used to represent constant expressions in the search_condition but they
cannot represent names of database columns or include any operators. A host
string variable can also replace the complete search condition.

The non-cursor delete can be formulated as a repeated query by using the
keyword repeated. Doing so reduces the overhead required to run the same
delete repeatedly within your program. The repeated keyword directs the
OpenSQL to encode the delete and save its execution plan when it is first
executed. This encoding can account for significant performance improvements
on subsequent executions of the same delete. The repeated keyword is valid
only for non-cursor deletes, and it is ignored if used with the cursor version.
The repeated delete cannot be specified using a dynamic OpenSQL statement.

If the search_condition is dynamically constructed, that is, if the complete
clause is specified in a host string variable, do not use the repeated option if
you intend to change the search_condition after the statement’s initial
execution. The saved execution plan is based on the initial values in the
search_condition and any changes would be ignored. This rule does not apply
to simple variables used in search_conditions.

Cursor Delete

The cursor version immediately deletes the row to which the specified cursor is
pointing. If the cursor is not currently pointing at a row when the delete is
executed, then the DBMS generates an error indicating the need to issue a
fetch statement to position the cursor on a row. (After a deletion, the cursor
points to a position after the deleted row, but before the next row, if any.)

The commit and rollback statements close all open cursors. A common
programming error is to delete the current row of a cursor, commit the
change, then loop to repeat the process. This process fails because the first
commit closes the cursor.

In performing a cursor delete, certain conditions must be met:

 A cursor must be declared in the same file in which any delete statements
referencing that cursor appear. This applies also to any cursors referenced
in dynamic delete statement strings.

 A cursor name in a dynamic delete statement must be unique among all
open cursors in the current transaction.

 The cursor stipulated in the delete must be open before the statement is
executed.

 The cursor’s select statement must not contain a distinct, group by,
having, order by, or union clause.

Describe

Chapter 8: OpenSQL Statements 8–31

 The from clause of the delete and the from clause in the cursor’s
declaration must refer to the same database table.

The cursor name can be specified with a string constant or a host language
variable.

If the statement does not delete any rows, the sqlcode variable in the SQLCA
structure is set to 100.

The sqlerrd(3) variable in the SQLCA structure contains the number of rows
deleted.

Example

Remove all employees who make over $35,000.

 delete from employee where salary >35000;

Describe

SQL ESQL

 *

Retrieves information about a prepared dynamic OpenSQL statement.

Syntax
exec sql describe statement_name
 into|using descriptor_name [using names]

Description

The describe statement returns information about a prepared dynamic
OpenSQL statement. Describe is intended primarily for use with dynamic select
statements. Describe returns the data type, length, and name of the select’s
result columns. If the prepared statement is not a select, describe returns a
zero to the SQLDA sqld field. For a complete discussion of the SQLDA (SQL
Descriptor Area), see “Chapter 6: Dynamic OpenSQL.”

Direct Execute Immediate

8–32 OpenSQL Reference Guide

The statement_name can be specified as either a string literal or using a host
language string variable. In either case, statement_name must identify a valid
prepared statement. (An invalid prepared statement results whenever an error
occurs when the specified statement is prepared or if a commit or rollback
statement is executed after the statement is prepared and before it is
executed.)

Descriptor_name identifies an SQLDA (SQL Descriptor Area). The actual name
can be “SQLDA” or any other valid OpenSQL name defined by the program
when the structure is allocated. Because the SQLDA is not declared in a
declaration section, the preprocessor does not verify that descriptor_name
represents an SQLDA structure. If descriptor_name does not represent an
SQLDA structure, undefined errors will occur at runtime.

Descriptor_name can be preceded by a colon (:).

The optional using names clause directs the OpenSQL Enterprise Access
product or server to return the names of result columns in the descriptor if the
described statement is a select statement.

The describe statement cannot be issued until after the program allocates the
SQLDA and sets the value of the SQLDA sqln field to the number of elements
in the SQLDA sqlvar array. The results of the describe statement are complete
and valid only if the number of the result columns (from the select) is less
than or equal to the number of allocated sqlvar elements. For more
information about describing a select statement and analyzing the results, see
“Chapter 6: Dynamic OpenSQL.”

The prepare statement can also be used with the into clause to retrieve the
same descriptive information provided by describe.

Direct Execute Immediate

SQL ESQL

 *

Sends DBMS-specific commands to the DBMS without translation.

Syntax
exec sql direct execute immediate string | string_variable

Disconnect

Chapter 8: OpenSQL Statements 8–33

Description

The direct execute immediate statement allows statements to be sent to the
Enterprise Access product or DBMS to which a session is connected. The
Enterprise Access product does not translate the statement. If the statement is
not supported by the DBMS or Enterprise Access product, an error is returned.
The direct execute immediate statement cannot be used to return rows to a
session.

A host language variable or string literal can be used to specify the statement.
If you use a string literal, avoid embedding quotes in the literal. If you specify
the statement using a host language variable, the OpenSQL string-delimiting
conventions must be observed.

Disconnect

SQL ESQL

 *

Terminates access to the database.

Syntax
exec sql disconnect [session session_identifier | all]

Description

The disconnect statement terminates access to the database, closes any open
cursors, and commits any open transactions.

To disconnect the current session, issue the disconnect statement, omitting
the session identifier. Other sessions (if any) will remain connected. To switch
sessions, use the set_sql statement. To disconnect all open sessions, specify
disconnect all.

To disconnect a specific session in a multi-session application, use the session
session_identifier clause to identify the session you want to disconnect. The
session_identifier must be a positive integer constant or variable containing
the session identifier. To determine the session_identifier for the current
session, use the inquire_sql(:session_id = session) statement. If an invalid
session is specified, OpenSQL issues an error and does not disconnect the
session.

Drop

8–34 OpenSQL Reference Guide

Examples

1. Disconnect from the current database.

 exec sql disconnect;

2. On an error, roll back pending updates, then disconnect the database
session.

 exec sql whenever sqlerror goto err;

 ...

 err:
 exec sql rollback;
 exec sql disconnect;

Drop

SQL ESQL

* *

Destroys one or more tables, indexes, or views.

Syntax
[exec sql] drop table tablename [with with_clause]
[exec sql] drop index indexname [with with_clause]
[exec sql] drop view viewname [with with_clause]

The with_clause parameter consists of a comma-separated list of valid
Enterprise Access product with clause options. For an overview of the
Enterprise Access product with clause, see “Chapter 7: OpenSQL Features.”
For a list of the valid with clause options for a specific Enterprise Access
product, see the product guide.

Description

The drop statement removes the specified tables, indexes, and views from the
database. When a table is dropped, any indexes, views, or privileges defined
on that table are automatically dropped also. When a view is dropped, all
associated privileges and dependent views are dropped.

To ensure application portability, follow every drop statement with a commit
statement.

Drop Dbevent

Chapter 8: OpenSQL Statements 8–35

Embedded Usage

You cannot replace any portions of the statement with host language
variables.

Examples

1. Drop an index named, tindex.

 drop index tindex;
 commit;

2. Drop a base table and all related views, indexes, and permissions.

 drop table employee;
 commit;

3. In an embedded program, drop a view.

 exec sql drop view tempview;
 exec sql commit;

Drop Dbevent

SQL ESQL DB Proc

* *

Drops a database event.

Syntax
[exec sql] drop dbevent [schema.]event_name;

Description

The DROP dbevent statement drops the specified database event. If
applications are currently registered to receive the database event, the
registrations are not dropped. If the database event was raised prior to being
dropped, the database event notifications remain queued, and applications can
receive them using the get dbevent statement.

For a full description of database events, see Database Events in the chapter
“OpenSQL Features.”

End Declare Section

8–36 OpenSQL Reference Guide

Embedded Usage

The event_name cannot be specified using a host language variable.
Event_name can be specified as the target of a dynamic SQL statement string.

End Declare Section

SQL ESQL

 *

Ends declaration of host language variables.

Syntax
exec sql end declare section

Description

The end declare section statement marks the end of a host language variable
declaration section.

A host language variable declaration section contains declarations of host
language variables for use in an embedded OpenSQL program. The begin
declare section statement starts each variable declaration section. For more
information about declaration sections and host language variables, see Begin
Declare Section in this chapter, and “Chapter 5: Embedded OpenSQL.”

Endselect

SQL ESQL

 *

Terminates a select loop.

Syntax
exec sql endselect;

Execute

Chapter 8: OpenSQL Statements 8–37

Description

The endselect statement terminates embedded OpenSQL select loops. A select
loop is a block of code delimited by begin and end statements and associated
with a select statement. As the select statement retrieves rows from the
database, each row is processed by the code in the select loop. (For more
information about select loops, see Select (interactive) in this chapter.) When
the endselect statement is executed, the program stops retrieving rows from
the database and program control is transferred to the first statement
following the select loop.

The endselect statement must be inside the select loop that it is intended to
terminate. If an endselect statement is placed inside a forms statement code
block that is syntactically nested within a select loop, the statement ends the
nested construct as well as the select loop.

The statement must be terminated according to the rules of the host language.

To find out how many rows were retrieved before the endselect statement was
issued, check the sqlerrd(3) variable of the SQLCA.

Example

Break out of a select loop on a data loading error.

 exec sql select ename, eno into :ename, :eno
 from employee;
 exec sql begin;
 load ename, eno into data set;
 if error then
 print ’Error loading ’, ename, eno;
 exec sql endselect;
 end if
 exec sql end;
 /* endselect transfers control to here */

Execute

SQL ESQL

 *

Executes a previously prepared dynamic OpenSQL statement.

Execute

8–38 OpenSQL Reference Guide

Syntax
exec sql execute statement_name
 [using variable {, variable} |
 using descriptor descriptor_name]

Description

The execute statement executes the prepared OpenSQL statement specified by
statement_name. Execute can be used to execute any statement that can be
prepared, with the exception of the select statement. (The execute statement
cannot be used to execute a prepared select statement. For more information,
see Prepare and Execute Statements and the Execute Immediate Statement in
the chapter “Dynamic OpenSQL.”)

The statement_name can be specified using a string literal or a host language
variable. Statement_name must identify a valid prepared statement. If the
statement identified by statement_name is invalid, the Enterprise Access
product or server issues an error and aborts the execute statement. (A
prepared statement is invalid if a transaction was committed or rolled back
after the statement was prepared or if an error occurred while preparing the
statement.)

If the prepared statement refers to a cursor update or delete and the
associated cursor is not open, the Enterprise Access product or server issues
an error. For more information, see Update and Delete in this chapter.

If the prepared statement uses a question mark (?) to specify one or more
constant expressions, the using clause must be specified in the statement. If
you know the number and data types of the expressions specified by question
marks in the prepared statement, use the using variable {, variable} option.
The number of the variables listed must correspond to the number of question
marks in the prepared statement, and each variable’s data type must be
compatible with its usage in the prepared statement.

The following example prepares a statement containing one question mark
from a buffer and executes it using a host language variable:

statement_buffer =
’delete from ’ + table_name + ’ where code = ?’;
exec sql prepare del_stmt from :statement_buffer;
...

exec sql execute del_stmt using :code;

The value in the variable, code, replaces the ? in the where clause of the
prepared delete statement.

Execute

Chapter 8: OpenSQL Statements 8–39

If the number and data types of the prepared statement parameters are not
known until runtime, use the using descriptor option. In this alternative, the
descriptor_name identifies an SQLDA, a host language structure that must be
allocated prior to its use. The SQLDA includes the sqlvar array. Each element
of sqlvar is used to describe and point to a host language variable. The
execute statement uses the values placed in the variables pointed to by the
sqlvar elements to execute the prepared statement.

When the SQLDA is used for input, the program must set the sqlvar array
element type, length, and data area for each portion of the prepared
statement specified by question marks, prior to executing the statement.

Here are some of the ways the program can supply that information:

 When preparing the statement, the program can request all type and
length information from the interactive user.

 Before preparing the statement, the program can scan the statement
string, and build a select statement out of the clauses that include
parameters. The program can then prepare and describe this select
statement to collect data type information to be used on input.

 If another application development tool is being used to build the dynamic
statements (such as a Vision frame or a VIFRED form), the data type
information included in those objects can be used to build the descriptor.
An example of this method is shown in the Examples section.

In addition, the program must correctly set the sqld field in the SQLDA
structure. For a complete description of the structure of the SQLDA and how to
use it, see “Chapter 6: Dynamic OpenSQL.”

The variables used by the using clause can be associated with indicator
variables if indicator variables are permitted with the same statement in the
non-dynamic case. For example, because indicator variables are permitted in
the insert statement values clause, then the following dynamically defined
insert statement can include indicator variables (name_ind and age_ind) in the
execute statement:

statement_buffer = 'insert into employee (name, age) values (?, ?)';
exec sql prepare s1 from :statement_buffer;
exec sql execute s1 using :name:name_ind,
 :age:age_ind;

However, a host structure variable cannot be used in the using clause, even if
the named statement refers to a statement which allows a host structure
variable when issued non-dynamically.

This statement must be terminated according to the rules of the host
language.

Execute

8–40 OpenSQL Reference Guide

Examples

1. Although the commit statement can be prepared, once the statement is
executed, the prepared statement becomes invalid. For example, the
following code will cause an error on the second execute statement:

 statement_buffer = 'commit';

 exec sql prepare s1 from :statement_buffer;

 process and update data;
 exec sql execute s1; /* Once committed, 's1' is lost */

 process and update more data;
 exec sql execute s1;
 /* 's1' is NOT a valid statement name */

2. When leaving an application, each user deletes all their rows from a
working table. User rows are identified by their different access codes. One
user may have more than one access code.

 read group id from terminal;
 statement_buffer = 'delete from ' + group_id + '
 where access_code = ?';

 exec sql prepare s2 from :statement_buffer;

 read access_code from terminal;
 loop while (access_code <> 0)

 exec sql execute s2 using :access_code;
 read access_code from terminal;

 end loop;
 exec sql commit;

3. This example uses the OpenSQL forms system and Dynamic OpenSQL. The
program reads the forms descriptions using the formdata statement and
then uses that information to fill an input SQLDA for a variety of
statements. For details about forms programming, see the Forms-based
Application Development Tools User Guide.

In preparation, the program must allocate a large local SQLDA, called
local_sqlda. At the start of form display, the program must retrieve
descriptive information into the local SQLDA. The form name is only known
at runtime through a command line flag.

 exec frs formdata :form_name;
 exec frs begin;

 Using inquire_frs statements, retrieve the type
 and length information from the form and fill the
 corresponding element in the sqlvar. For each
 field on the form set the sqltype, sqllen and
 sqldata fields. If the type is negative (nullable)
 set the sqlind field too.

 Build 3 dynamic statements into 3 statement
 buffers to execute the insert, update and delete
 operations, using the field names returned by inquire_frs.

 exec frs end;

Execute Immediate

Chapter 8: OpenSQL Statements 8–41

At this point, the program has built a SQLDA that it will use for input, and
three statement buffers, each with a full list of field names and parameter
markers. The insert statement buffer, insert_buffer, may look like:

'insert into table1 (field1, field2) values (?, ?)'

while the delete statement buffer, delete_buffer, may look like:

'delete from table1 where field1 = ? and field2 = ?'

Now prepare the statements:

 exec sql prepare insert_stmt from :insert_buffer;
 exec sql prepare update_stmt from :update_buffer;
 exec sql prepare delete_stmt from :delete_buffer;

Run the form allowing the user to enter data and execute an operation.
Supply the menu items, Insert, Update, and Delete, as well as others. For
example:

...

 exec frs activate menuitem 'Insert';
 exec frs begin;
 Get values from the form and point the sqldata and
 sqlind fields of local_sqlda to those values;
 exec sql execute insert_stmt
 using descriptor :local_sqlda;
 exec frs end;

...

Execute Immediate

SQL ESQL

 *

Executes an SQL statement specified as a string literal or in a host language
variable.

Syntax
exec sql execute immediate statement_string
 [into variable {, variable} | using [descriptor]
 descriptor_name
 [exec sql begin;
 program_code
 exec sql end;]]

Execute Immediate

8–42 OpenSQL Reference Guide

Description

The execute immediate statement executes a dynamically built statement
string. Unlike the prepare and execute sequence, this statement does not
name or encode the statement and cannot supply parameters. The execute
immediate statement is equivalent to:

exec sql prepare statement_name from
 :statement_buffer;
exec sql execute statement_name;
’Forget’ the statement_name;

Execute immediate can be used:

 To execute a dynamic statement once in your program

 To execute a dynamic select statement and process the result rows with a
select loop

If you intend to execute the statement string repeatedly and it is not a select
statement, use the prepare and execute statements instead. For more
information about the alternatives available for executing dynamic statements,
see “Chapter 6: Dynamic OpenSQL.” If the statement string is blank or empty,
OpenSQL returns a runtime syntax error.

The execute immediate statement must be terminated according to the rules
of the host language.

The following OpenSQL statements cannot be executed using execute
immediate:

call disconnect inquire_sql

close endselect open

connect execute prepare

declare fetch set

describe help set_sql

direct execute immediate include whenever

The statement string must not include exec sql, any host language
terminators, or references to variable names. If your statement string includes
embedded quotes, it is easiest to specify the string in a host language
variable. If you choose to specify a string that includes quotes as a string
constant, remember that quoted characters within the statement string must
follow the OpenSQL string delimiting rules. Even if your host language delimits
strings with double quotes, the quoted characters within the statement string
must be delimited by single quotes. For complete information about
embedding quotes within a string literal, see the Embedded SQL Companion
Guide.

Execute Immediate

Chapter 8: OpenSQL Statements 8–43

If the statement string is a cursor update or cursor delete, the declaration of
the named cursor must appear in the same file as the execute immediate
statement executing the statement string.

The into or using clause can only be used when the statement string is a select
statement.

The into clause specifies variables to store the values returned by a select.
This option can be used if the program knows the data types and lengths of
the result columns before the select executes. The variables must be type
compatible with the associated result columns. For information about the
compatibility of host language variables and OpenSQL data types, see the
Embedded SQL Companion Guide.

Include the using clause if the program does not know the types and lengths
of the result columns until runtime. The using clause specifies an SQL
Descriptor Area (SQLDA), a host language structure having, among other
fields, an array of sqlvar elements. Each sqlvar element describes and points
to a host language variable. When the using clause is specified, OpenSQL
places the result column values in the variables pointed at by the sqlvar
elements.

If you intend to use the using clause, the program can first prepare and
describe the select statement. This process returns data type, name, and
length information about the result columns to the SQLDA. Your program can
then use that information to allocate the necessary variables before executing
the select. For more information and about executing dynamic select
statements and some examples of executing a dynamic select, see “Chapter 6:
Dynamic OpenSQL.”

If the select statement will return more than one row, include the begin/end
statement block. This block defines a select loop. OpenSQL processes each row
that the select returns using the program code that you supply in the select
loop. The program code inside the loop must not include any other database
statements, except the endselect statement. If the select returns multiple
rows and you do not supply a select loop, the application receives only the first
row and an error to indicate that others were returned but unseen.

Example

This example reads an SQL statement from the terminal into a host string
variable, statement_buffer. If the user enters quit, the program ends. If an
error occurs, the program informs the user.

 exec sql include sqlca;

 read statement_buffer from terminal;
 loop while (statement_buffer <> ’QUIT’)

 exec sql execute immediate :statement_buffer;
 if (sqlcode = 0) then

Execute Procedure

8–44 OpenSQL Reference Guide

 exec sql commit;
 else if (sqlcode = 100) then
 print ’No qualifying rows for statement:’;
 print statement_buffer;
 else
 print ’Error :’, sqlcode;
 print ’Statement :’, statement_buffer;
 end if;

 read statement_buffer from terminal;
 end loop;

Execute Procedure

SQL ESQL

* *

Invokes a database procedure.

Syntax

Non-dynamic version:

[exec sql] execute procedure [schema.]proc_name
 [(param_name=param_spec {, param_name=param_spec})]
 [result row (variable [:indicator_var] {, variable[:indicator_var]})]
 [into return_status]
 [exec sql begin;program code;
 exec sql end;]

where param_spec is a literal value, a host variable containing the value to be
passed (:hostvar), or a host variable passed by reference
(byref(:host_variable)).

Dynamic version:

[exec sql] execute procedure [schema.]proc_name
 [using [descriptor] descriptor_name]
 [into return_status]

Description

The execute procedure statement executes the database procedure identified
by proc_name. Proc_name can be specified using a literal or a host string
variable. Database procedures can be executed from interactive SQL (the
Terminal Monitor), an embedded OpenSQL program, or from another database
procedure. For details about database procedures, see “Chapter 7: OpenSQL
Features.”

Execute Procedure

Chapter 8: OpenSQL Statements 8–45

This statement can be executed dynamically or non-dynamically. When
executing a database procedure, you generally provide values for the formal
parameters specified in the procedure’s definition.

Passing Parameters - Non-Dynamic Version

In the non-dynamic version, parameters can be passed by value or by
reference. Each param_name must match one of the parameter names in the
parameter list of the procedure’s definition. Param_name must be a valid
identifier specified using a quoted or unquoted string or a host variable.

Data can be passed to a database procedure by:

 Value - To pass a parameter by value, specify param_name =value. When
passing parameters by value, the database procedure receives a copy of
the value. Values can be specified using:

– Numeric or string literals

– OpenSQL constants (such as today or user)

– Host variables

– Arithmetic expressions

The value assigned to a param_name must be compatible in type with the
formal parameter represented by param_name. You can specify date data
using quoted character string values. If the data types are not compatible,
OpenSQL issues an error and does not execute the procedure.

 Reference - To pass a parameter by reference, specify the parameter as
param_name = byref(:host_variable). When passing parameters by
reference, the database procedure can change the contents of the
variable. Any changes made by the database procedure are visible to the
calling program. You cannot pass parameters by reference in interactive
SQL.

Passing Parameters - Dynamic Version

In the dynamic version, the descriptor_name specified in the using clause
identifies an SQL Descriptor Area (SQLDA), a host language structure allocated
at runtime. Prior to issuing the execute procedure statement, the program
must place the parameter names in the sqlname fields of the SQLDA’s sqlvar
elements and the values assigned to the parameters must be placed in the
host variables pointed to by the sqldata fields. When the statement is
executed, the using clause directs OpenSQL to use those parameter names
and values.

Execute Procedure

8–46 OpenSQL Reference Guide

Parameter names and values follow the same rules for use and behavior when
specified dynamically as those specified non-dynamically. For example,
because positional referencing is not allowed when you issue the statement
non-dynamically, when you use the dynamic version, any sqlvar element
representing a parameter must have entries for both its sqlname and sqldata
fields. The names must match those in the procedure’s definition and the data
types of the values must be compatible with the parameter to which they are
assigned.

OpenSQL assigns a null or a default value to any parameter in the procedure’s
definition that is not assigned an explicit value when the procedure is
executed. If the parameter is not nullable and does not have a default, an
error is issued.

For example, for the create statement:

create procedure p (i integer not null,
d date, c varchar(100)) as ...

the following associated execute statement implicitly assigns a null to
parameter d.

exec sql execute procedure p (i = 123,
c = 'String');

When executing a procedure dynamically, set the SQLDA sqld field to the
number of parameters that you are passing to the procedure. The sqld value
tells OpenSQL how many sqlvar elements the statement is using, indicating
the number of parameters specified. If the sqld element of the SQLDA is set to
0 when you dynamically execute a procedure, it indicates that no parameters
are being specified, and if there are parameters in the formal definition of the
procedure, these are assigned null or default values when the procedure
executes. If the procedure parameter is not nullable and does not have a
default, an error is issued.

A parameter cannot be specified in the execute procedure statement that was
not specified in the create procedure or register procedure statement.

Return_status is an integer variable that receives the return status from the
procedure. If a return_status is not specified in the database procedure, or the
return statement is not executed in the procedure, then 0 is returned to the
calling application.

Note: The into clause cannot be used in interactive SQL.

The statement must be terminated according to the rules of the host language.

Execute Procedure

Chapter 8: OpenSQL Statements 8–47

Execute Procedure Loops

Use an execute procedure loop to retrieve and process rows returned by a row
producing procedure using the result row clause. The result row clause
identifies the host variables into which the values produced by the procedure
return row statement are loaded. The entries in the result row clause must
match in both number and type the corresponding entries in the result row
declaration of the procedure.

The begin-end statements delimit the statements in the execute procedure
loop. The code is executed once for each row as it is returned from the row
producing procedure. Statements cannot be placed between the execute
procedure statement and the begin statement.

During the execution of the execute procedure loop, no other statements that
access the database can be issued - this causes a runtime error. However, if
your program is connected to multiple database sessions, you can issue
queries from within the execute procedure loop by switching to another
session. To return to the outer execute procedure loop, switch back to the
session in which the execute procedure statement was issued. To avoid
preprocessor errors, the nested queries cannot be within the syntactic scope of
the loop but must be referenced by a subroutine call or some form of a goto
statement.

There are two ways to terminate an execute procedure loop: run it to
completion or issue the endexecute statement. A host language goto
statement cannot be used to exit or return to the execute procedure loop.

To terminate an execute procedure loop before all rows are retrieved the
application must issue the endexecute statement. The endexecute statement
must be syntactically within the begin-end block that delimits the endxecute
procedure loop. For more information, see Endexecute.

The following example retrieves a set of rows from a row producing procedure:

exec sql execute procedure deptsal_proc (deptid = :deptno)
 result row (:deptname, :avgsal, :empcount);
exec sql begin;
 browse data;
 if error condition then
 exec sql endexecute;
 end if;
exec sql end;”

Permissions

You must have permission to execute the specified procedure.

Execute Procedure

8–48 OpenSQL Reference Guide

Locking

The locks taken by the procedure depend on the statements that are executed
inside the procedure. All locks are taken immediately when the procedure is
executed.

Performance

The first execution of the database procedure may take slightly longer than
subsequent executions. For the first execution, the host DBMS may need to
create a query execution plan.

Examples

These examples assume the following create procedure statement has been
successfully executed:

exec sql create procedure p
(i integer not null,
d date,
c varchar(100)) as ...

1. This example uses a host variable, a null constant, and an empty string.

 exec sql execute procedure p
 (i=:ivar, d=null, c='')
 into :retstat;

2. This example assumes parameter “c” is null and uses a null indicator for
parameter “d”.

 exec sql execute procedure p
 (i=:ivar, d=:dvar:ind)
 into :retstat;

3. This example demonstrates the use of the whenever statement for
intercepting errors and messages from a database procedure.

 exec sql whenever sqlerror goto err_exit;
 exec sql whenever sqlmessage call sqlprint;

 exec sql execute procedure p into :retstat;
 ...

 err_exit:
 exec sql inquire_sql (:errbug = errortext);

4. This example demonstrates a dynamically executed execute procedure
statement. The example creates and executes the dynamic equivalent of
the following statement:

 exec sql execute procedure enter_person
 (age = :i4_var, comment = :c100_var:indicator);

Fetch

Chapter 8: OpenSQL Statements 8–49

Dynamic version:

 exec sql include sqlda;
 allocate an SQLDA with 10 elements;
 sqlda.sqln = 10;
 sqlda.sqld = 2;

 /* 20-byte character for procedure name */
 proc_name = 'enter_person';

 /* 4-byte integer to put into parameter 'age' */
 sqlda.sqlvar(1).sqltype = int;
 sqlda.sqlvar(1).sqllen = 4;
 sqlda.sqlvar(1).sqldata = address(i4_var)
 sqlda.sqlvar(1).sqlind = null;
 sqlda.sqlvar(1).sqlname ='age';

 /* 100-byte nullable character to put into the
 ** parameter "comment" */
 sqlda.sqlvar(2).sqltype = char;
 sqlda.sqlvar(2).sqllen = 100;
 sqlda.sqlvar(2).sqldata = address(c100_var);
 sqlda.sqlvar(2).sqlind = address(indicator);
 sqlda.sqlvar(2).sqlname = 'comment';

exec sql execute procedure :proc_name
 using descriptor sqlda;

5. Call a database procedure, passing parameters by reference. This enables
the procedure to return the number of employees that received bonuses
and the total amount of bonuses conferred.

 exec sql execute procedure grant_bonuses
 (ecount = byref(:number_processed),
 btotal = byref (:bonus_total));

Fetch

SQL ESQL

 *

Fetches data from a database cursor into host language variables.

Syntax

Non-dynamic version:

exec sql fetch cursor_name
 into variable[:indicator_var] {, variable[:indicator_var]}

Dynamic version:

exec sql fetch cursor_name using descriptor descriptor_name

Fetch

8–50 OpenSQL Reference Guide

Description

The fetch statement retrieves the results of the select statement that is
executed when a cursor is opened. When a cursor is opened, the cursor is
positioned immediately before the first result row. The fetch statement
advances the cursor to the first (or next) row and loads the values in that row
into the specified variables. Each fetch statement advances the cursor one
row.

There must be a one-to-one correspondence between variables specified in the
into or using clause of fetch and expressions in the select clause of the declare
cursor statement. If the number of variables does not match the number of
expressions, the preprocessor will generate a warning and, at runtime, the
SQLCA variable sqlwarn3 will be set to “W.”

The variables listed in the into clause can include structures that substitute for
some or all of the variables. The structure is expanded by the preprocessor
into the names of its individual variables. Therefore, placing a structure name
in the into clause is equivalent to enumerating all members of the structure in
the order in which they were declared.

The descriptor associated with the using descriptor clause must identify an
SQLDA that contains type descriptions of one or more host language variables.
Each element of the SQLDA is assigned the corresponding value in the current
row of the cursor. For more details, see “Chapter 6: Dynamic OpenSQL,” and
Describe in this chapter.

The variables listed in the into clause or within the descriptor must be
type-compatible with the values being retrieved. If a result expression is
nullable, then the host language variable that will receive that value must
have an associated null indicator.

If the statement does not fetch a row—a condition that occurs after all rows in
the set have been processed—the sqlcode of the SQLCA is set to 100
(condition not found) and no values are assigned to the variables.

The cursor identified by cursor_name must be an open cursor. Cursor_name
can be either a string constant or a host language variable.

The statement must be terminated according to the rules of the host language.

Get Dbevent

Chapter 8: OpenSQL Statements 8–51

Examples

1. Typical fetch, with associated cursor statements.

 exec sql begin declare section;
 name character_string(20);
 age integer;
 exec sql end declare section;

 exec sql declare cursor1 cursor for
 select ename, age
 from employee
 order by ename;
 ...

 exec sql open cursor1;

loop until no more rows
 exec sql fetch cursor1
 into :name, :age;
 print name, age;
 end loop;

 exec sql close cursor1;

Assuming the structure:

 emprec
 name character_string(20),
 age integer;

the fetch in the above example could have been written

 exec sql fetch cursor1
 into :emprec;

The preprocessor would then interpret that statement as though it had
been written

 exec sql fetch cursor1
 into :emprec.name, :emprec.age;

2. Fetch using an indicator variable.

 exec sql fetch cursor2 into :name,
 :salary:indicator_var;

Get Dbevent

SQL ESQL DB Proc

 *

Gets an event previously defined by the create dbevent statement.

Syntax
exec sql get dbevent [with nowait | wait [=wait_value]];

Help

8–52 OpenSQL Reference Guide

Description

The GET dbevent statement receives database events for which an application
is registered. The GET dbevent statement returns the next database event
from the database event queue. To obtain database event information, issue
the inquire_sql statement. For a full description of database events, see
Database Events in the chapter “OpenSQL Features.”

To specify whether the GET dbevent statement waits for database events or
checks the queue and returns immediately, specify the with [no]wait clause.
By default, GET dbevent checks and returns immediately.

If with wait is specified, GET dbevent waits indefinitely for the next database
event to arrive. If with wait = wait_value is specified, GET dbevent returns when
a database event arrives or when wait_value seconds have passed, whichever
occurs first. If GET dbevent times out before a database event arrives, no
database event is returned. Wait_value can be specified using an integer
constant or integer host language variable.

The with wait option cannot be used within a select loop.

Help

SQL ESQL

*

Gets information about SQL and a variety of database objects.

Syntax
help [*]
help tablename | viewname | indexname
 {, tablename | viewname | indexname}
help table tablename {, tablename}
help view viewname {, viewname}
help index indexname {, indexname}
help help
help sql
help sql_statement

Description

The help statement displays information about the contents of the database or
specific tables. In addition, help can be used at the terminal monitor to obtain
information regarding OpenSQL, including such features as the syntax of
OpenSQL statements and valid data types.

Help

Chapter 8: OpenSQL Statements 8–53

The following table lists help parameters:

Parameter Description

help Lists all user tables, views, and indexes that exist in the
current database. (System catalogs are not listed.)

help * Gives information about the makeup of all user-defined
(not system) tables, views, and indexes in the database.

help tablename
{, tablename}

Provides the name, owner, creation date and time, and
the dbms version under which the table was created.
Displays the name, data type, length, nullability,
default, and key sequence for each column in the table.

help viewname
{, viewname}

Displays information similar to that displayed by help
tablename.

help indexname
{,indexname}

Displays information similar to that displayed by help
tablename.

help table
tablename
{, tablename}

Displays the same information as help tablename plus
additional table information, depending on the particular
Enterprise Access product or server.

help view
viewname
{, viewname}

Displays the text of the view, the view name, owner and
the state of the check option.

help index
indexname
{, indexname}

Displays the name, owner, creation date and time,
dbms version under which it was created, and, for each
column, its name, data type, length, nullability, default
attribute, and key sequence.

help help Displays a list of OpenSQL features for which help is
available.

help sql Displays general information about OpenSQL.

help sql_statement Displays information on the specified sql_statement.

The asterisk (*) can be used as a pattern matching character when specifying
an object name. For example, if you type help table emp*, you receive help on
all tables in the database whose names begin with emp. If you type, help table
*emp, you receive help on all the tables whose names end with emp.

When the asterisk is used by itself with help, as in help *, OpenSQL provides
information about all tables, views, and indexes in the database.

Include

8–54 OpenSQL Reference Guide

Examples

1. Retrieve a list of all tables, views, and indexes in the database.

 help;

2. Retrieve help about the employee table.

 help employee;

3. Retrieve help about the employee and dept tables.

 help employee, dept;

4. Retrieve the definition of the view highpay.

 help view highpay;

5. List information on the select statement.

 help select;

Include

SQL ESQL

 *

Includes an external file in source code.

Syntax
exec sql include filename | sqlca | sqlda

Description

The include statement provides a way to include external files in your program
source code. This statement is normally used to include variable declarations,
although it is not restricted to such use. When used to include variable
declarations, it must be inside an embedded OpenSQL declaration section. The
file generated by dclgen should be specified by means of the include
statement.

Unlike the “include” facilities of most programming languages, the file specified
by the OpenSQL include statement must comprise complete, not partial,
statements or declarations. For example, it is illegal to use include in the
following manner, where the file, predicate, contains a common predicate for
select statements.

Include

Chapter 8: OpenSQL Statements 8–55

Incorrect:

exec sql select ename
from employee
where
exec sql include 'predicate';

Filename must be a quoted string constant specifying a file name or a logical
system symbol that contains a file name. If the specified file has no extension,
OpenSQL assumes the default extension of your host language.

The specified file can contain declarations, host language statements,
embedded OpenSQL statements and nested includes. When the original source
file is preprocessed, the include statement is replaced by a host language
include directive, and the included file is also preprocessed.

There are two special instances of the include statement:

 include sqlca—Include the SQL Communications Area

 include sqlda—Include the definitions associated with the SQL Descriptor
Area

Both these statements must be placed outside all declaration sections,
preferably at the start of the program.

The statement must be terminated as required by the rules of your host
language.

Examples

1. Include the SQLCA in the program.

 exec sql include sqlca;

2. Include global variables.

 exec sql begin declare section;
 exec sql include 'global.var';
 exec sql end declare section;

3. Include a file that contains header files that list variable declarations.

 exec sql begin declare section;
 exec sql include 'mypath:global.var';
 exec sql end declare section;

Inquire_sql

8–56 OpenSQL Reference Guide

Inquire_sql

SQL ESQL

 *

Provides an application program with a variety of runtime information.

Syntax
exec sql inquire_sql (variable = object {, variable = object})

Description

The inquire_sql statement enables an embedded OpenSQL program to retrieve
a variety of runtime information, such as:

 Information about the last executed database statement

 Status information, such as the current session ID, the type of error (local
or generic) being returned to the application, and whether a transaction is
currently open

The inquire_sql statement does not execute queries. The information
inquire_sql returns to the program reflects the results of the last query that
was executed. For this reason, the inquire_sql statement must be issued after
the database statement about which you want information, and before another
database statement is executed (and resets the values returned by
inquire_sql).

Some of the information returned by inquire_sql is also available in the
SQLCA. For example, the error number returned by the object errorno is also
available in the SQLCA sqlcode field.

Similarly, when an error occurs, you can retrieve the error text using
inquire_sql with the errortext object or you can retrieve it from the SQLCA
sqlerrm variable. Errortext provides the complete text of the error message,
which is often truncated in sqlerrm.

This statement must be terminated according to the rules of your host
language.

Inquire_sql

Chapter 8: OpenSQL Statements 8–57

Inquiring About Database Events

The following table lists the inquire_sql parameters that return information
about a database event. For information about database events, see Database
Events in the chapter “OpenSQL Features.” All character values are returned in
lower case. If no event is queued, an empty or blank string is returned
(depending on your host language conventions).

Object Data Type Description

Dbeventname Character The name of the event (assigned using the
create dbevent statement). The receiving
variable must be large enough for the full
event name; if the receiving variable is
too small, the event name is truncated to
fit.

Dbeventowner Character The creator of the event.

Dbeventdatabase Character The database in which the event was
raised.

Dbeventtime Date The date and time at which the event was
raised.

Dbeventtext Character The text (if any) specified as the
event_text parameter when the event was
raised. The receiving value must be a 256-
character string; if the receiving variable
is too small, the text is truncated to fit.

Types of Inquiries

The following table lists the valid inquiries that can be performed using the
inquire_sql statement:

Object Data Type Comment

dbmserror integer The number of the error caused by the last
query. This number corresponds to the value of
sqlerrd(1), the first element of the sqlerrd array
in the SQLCA. You can specify whether a local or
generic error is returned using
set_sql(errortype).

Inquire_sql

8–58 OpenSQL Reference Guide

Object Data Type Comment

endquery integer If the previous fetch statement was issued after
the last row of the cursor, endquery returns the
value “1.” If the last fetch statement returns a
valid row, the value returned is “0.” This is
identical to the NOT FOUND condition (value
100) of the SQLCA variable sqlcode, which can
be checked after a fetch statement is issued.
Like the NOT FOUND condition, when endquery
returns “1,” the variables assigned values from
the fetch remain unchanged.

errorno integer A positive integer, representing the error number
of the last query. The error number is cleared
before each embedded OpenSQL statement, so
that this object is only valid immediately after
the statement in question. This error number is
the same as the positive value of the SQLCA
variable sqlcode, except in two cases:

1. A single query generates multiple different
errors, in which case the sqlcode identifies
the first error number, and the errorno
object identifies the last error.

2. After switching sessions. In this case,
sqlcode reflects the results of the last
statement executed before switching
sessions, while errorno will reflect the
results of the last statement executed in the
current session.

If a statement executes with no errors or
sqlcode is set to a positive number (for
example, +100 to indicate no rows affected),
then the error number is set to 0.

errortext character The error text of the last query. The error text is
only valid immediately after the database
statement in question. The text that is returned
is the complete error message of the last error.
This message may have been truncated when it
was deposited into the SQLCA variable sqlerm. A
character string result variable of size 512
should be sufficient to retrieve all OpenSQL
error messages. If the result variable is shorter
than the error message, the message is
truncated. If there is no error message, a blank
message is returned.

errortype character Returns genericerror if OpenSQL returns generic

Inquire_sql

Chapter 8: OpenSQL Statements 8–59

Object Data Type Comment

error numbers to errorno and sqlcode, or
dbmserror if OpenSQL returns local DBMS error
numbers to errorno and sqlcode. For information
about generic and local errors, see “Chapter 7:
OpenSQL Features.”

programquit integer Returns 1 if applications quit:

1. After issuing a query when not connected to
a database.

2. If the Enterprise Access product or server
fails.

3. If communications services fail.

Returns 0 if applications continue after
encountering such errors.

querytext character Returns the text of the last query issued. Valid
only if this feature is enabled. To enable or
disable the saving of query text, use
set_sql(savequery). A maximum of 1024
characters is returned. If the query is longer, it
is truncated to 1024 characters. If the receiving
variable is smaller than the query text being
returned, the text is truncated to fit.

If a null indicator variable is specified together
with the receiving host language variable, the
indicator variable is set to -1 if query text
cannot be returned, 0 if query text is returned
successfully. Query text cannot be returned if
(1) savequery is disabled, (2) no query has
been issued in the current session, or (3) the
inquire_sql statement is issued outside of a
connected session.

rowcount integer The number of rows affected by the last query.
“Affected” means subject to any of the following
statements: insert, delete, update, select, fetch,
create index, or create table as select. If any of
these statements run successfully, the value of
rowcount is the same as the value of the SQLCA
variable sqlerrd(3). If these statements
generate errors, or if statements other than
these are run, then the value of rowcount is
negative and the value of sqlerrd(3) is 0.

savequery integer Returns 1 if query text saving is enabled, 0 if
disabled.

Insert

8–60 OpenSQL Reference Guide

Object Data Type Comment

session integer Returns the session identifier of the current
database session. If the application is not using
multiple sessions or there is no current session,
0 is returned.

transaction integer Returns a value of 1 if there is a transaction
open. Returns 0 if no transaction is open.

Example

Execute some database statements, and handle errors by displaying the
message and aborting the transaction.

 exec sql whenever sqlerror goto err_handle;

 exec sql select name, sal
 into :name, :sal
 from employee
 where eno = :eno;

 if name = ’Badman’ then
 exec sql delete from employee where eno = :eno;
 else if name = ’Goodman’ then
 exec sql update employee set sal = sal + 3000
 where eno = :eno;
 end if;

 exec sql commit;

 ...

 err_handle:

 exec sql whenever sqlerror continue;
 exec sql inquire_sql (:err_msg = errortext);
 print ’Enterprise Access product error: ’,
sqlca.sqlcode;
 print err_msg;
 exec sql rollback;

 end if;

Insert

SQL ESQL

* *

Inserts rows into a table.

Insert

Chapter 8: OpenSQL Statements 8–61

Syntax
[exec sql [repeated]] insert into tablename [(column {, column})]
 [values (value{, value})] | [subselect]

Description

The insert statement inserts new rows into the specified table. Use either the
values list or specify a subselect. When using the values list, only a single row
can be inserted with each execution of the statement. If you specify a
subselect, then the statement inserts all the rows that result from the
evaluation of the subselect. The subselect must not select rows from the table
into which you are inserting rows; specifically, you cannot specify the same
table in the into clause of the insert statement and the from clause of the
subselect.

The column list identifies the columns of the specified table into which the
values are placed. When the column list is included, OpenSQL places the first
value in the values list or subselect into the first column named, the second
value into the second column named, and so on. The data types of the values
must be compatible with the data types of the columns in which they are
placed.

The list of column names can be omitted only if:

 You specify a subselect that retrieves a value for each column in
tablename. The values must be of an appropriate data type for each
column and must be retrieved in an order corresponding to the order of
the columns in tablename.

 There is a one-to-one correspondence between the values in the values list
and the columns in the table. That is, the values list must have a value of
the appropriate data type for each column and the values must be listed in
an order corresponding to the order of the columns in the table.

Values in the values list must be string or numeric literals or one of the
OpenSQL constants. When the column list is included, any columns in the table
that are not specified in the column list are assigned their default value. A
value must be specified for mandatory columns. (Mandatory columns are
columns defined as not default or not null with no default specified.)

Embedded Usage

Host language variables can be used within expressions in the values clause or
in the search condition of the subselect. Variables used in search conditions
must denote constant values, and cannot represent names of database
columns or include any operators. A host string variable can also replace the
complete search condition of the subselect, as when it is used in the forms
system query mode. Host language variables that correspond to column
expressions can include null indicator variables.

Insert

8–62 OpenSQL Reference Guide

The keyword repeated directs the Enterprise Access product or server to
encode the insert and save its execution plan when it is first executed. This
encoding can improve the performance of subsequent executions of the same
insert.

Do not specify the repeated option for insert statement that is constructed
using dynamic OpenSQL. A dynamic where clause cannot be used in a
repeated insert: the query plan is saved when the query is first executed, and
subsequent changes to the where clause will be ignored.

The values clause can include structure variables that substitute for some or
all of the expressions. The structure is expanded by the preprocessor into the
names of its individual members. Therefore, placing a structure name in the
values clause is equivalent to enumerating all members of the structure in the
order in which they were declared.

The sqlerrd(3) of the SQLCA indicates the number of rows inserted by the
statement. If no rows are inserted, for example, if no rows satisfied the
subselect search condition, then the sqlcode variable of the SQLCA is set to
100.

Examples

1. Add a row to an existing table.

 insert into emp (name, sal, bdate)
 values ('Jones, Bill', 10000, 1944);

2. Insert into the jobtable all rows from the newjob table where the job title
is not Janitor.

 insert into job (jid, jtitle, lowsal, highsal)
 select job_no, title, lowsal, highsal
 from newjob
 where title <> 'Janitor';

3. Add a row to an existing table, using the default columns.

 insert into emp
 values ('Jones, Bill', 10000, 1944);

4. Use a structure to insert a row.

 /* Description of table employees from
 database deptdb */

 exec sql declare employees table
 (eno smallint not null,
 ename character(20) not null,
 age smallint,
 jobcode smallint,
 sal float not null,
 deptno smallint);

 exec sql begin declare section;

Open

Chapter 8: OpenSQL Statements 8–63

 emprec
 int eno;
 char ename[21];
 int age;
 int job;
 float sal;
 int deptno;

 exec sql end declare section;

 /* Assign values to fields in structure */

 eno = 99;
 ename = "Arnold K. Arol”;
 age = 42;
 jobcode = 100;
 sal = 100000;
 deptno=47;

exec sql connect deptdb;

exec sql insert into employees values (:emprec);

exec sql disconnect;

Open

SQL ESQL

 *

Opens a cursor for processing.

Syntax

Non-dynamic version:

exec sql open cursor_name [for readonly]

Dynamic version:

exec sql open cursor_name [for readonly]
 [using variable {, variable} |
 using descriptor descriptor_name]

Description

The open statement executes the select statement specified when the cursor
was declared and positions the cursor immediately before the first row
returned. (To actually retrieve the rows, the fetch statement must be used.) A
cursor must be opened before it can be used in any data manipulation
statements such as fetch, update, or delete and you must declare a cursor
before it can be opened.

Open

8–64 OpenSQL Reference Guide

The for readonly clause indicates that, though the cursor may have been
declared for update, the cursor is being opened for reading only. The for
readonly clause may improve the performance of data retrieval, and should be
used whenever appropriate.

When a cursor that was declared for a dynamically prepared select statement
is opened, the using clause must be used if the prepared select statement
contains constants specified with question marks. For information about using
question marks to specify constants in prepared statements, see Prepare in
this chapter.

The using clause provides the values for these “unspecified” constants in the
prepared select so that the open statement can execute the select. For
example, assume that your application contains the following dynamically
prepared select statement:

statement_buffer =
‘select * from’ + tablename + ‘where low < ? and
 high > ?’;
exec sql prepare sel_stmt from :statement_buffer;

When the cursor is opened for this prepared select statement, values must be
provided for the question marks in the where clause. The using clause
performs this task.

Declare the cursor for sel_stmt;
assign values to variables named “low” and “high”;
exec sql open cursor1
using :low, :high;

The values represented by low and high replace the question marks in the
where clause and the DBMS can evaluate the select. If Descriptor Area
(SQLDA) is used, then the values that replace the question marks are taken
from variables pointed to by the sqlvar elements of the descriptor. Allocate the
SQLDA and the variables to which the sqlvar elements point and place values
in the variables before using the descriptor in an open cursor statement.

The same cursor can be opened and closed (with the close statement) any
number of times in a single program. It must be closed, however, before it can
be reopened.

A string constant or a host language variable can be used to represent
cursor_name. This statement must be terminated according to the rules of
your host language.

Prepare

Chapter 8: OpenSQL Statements 8–65

Examples

1. Declare and open a cursor.

 Exec sql declare cursor1 cursor for
 select :one + 1, ename, age
 from employee
 where age >= :minage;

 …

 exec sql open cursor1;

When the open statement is encountered, the variables, one and minage,
are evaluated. The first statement that follows the opening of a cursor
should be a fetch statement to define the cursor position and retrieve data
into the indicated variables:

 exec sql fetch cursor1
 into :two, :name, :age;

The value of the expression, :one + 1, is assigned to the variable, two, by
the fetch.

2. The following example demonstrates the dynamic OpenSQL syntax. In a
typical application, the prepared statement and its parameters would be
constructed dynamically.

 Select_buffer = ‘select * from employee
 where eno = ?’;
 exec sql prepare select1 from :select_buffer;
 exec sql declare cursor2 cursor for select1;
 eno = 1234;
 exec sql open cursor2 using :eno;

Prepare

SQL ESQL

 *

Prepares and names a dynamically constructed OpenSQL statement for
execution.

Syntax
exec sql prepare statement_name
 [into descriptor_name [using names]]
 from string_constant | string_variable

Prepare

8–66 OpenSQL Reference Guide

Description

The prepare statement encodes the dynamically constructed OpenSQL
statement string in the from clause and assigns it the specified
statement_name. When the program subsequently executes the prepared
statement, it uses the name to identify the statement, rather than the full
statement string. Both the name and statement string can be represented by
either a string constant or a host language variable.

Within the statement string, replace constant expressions in where clauses,
insert values clauses, and update set clauses with question marks. When the
statement executes, these question marks are replaced with specified values.
Question marks cannot be used in place of table or column names or reserved
words.

To illustrate, the following example prepares and executes a delete statement
on a dynamically defined table:

statement_buffer =
’delete from ’ + table_name + ’ where code = ?’;
exec sql prepare del_stmt from :statement_buffer;

…

exec sql execute del_stmt using :code;

The value in the variable, code, replaces the ? in the where clause of the
prepared delete statement.

Illustrating incorrect usage, the following example is wrong because it includes
a parameter specification in place of the table name:

exec sql prepare bad_stmt
from ‘delete from ? where code = ?’;

Whenever an application executes a prepared statement that contains
parameters specified with questions marks, the program must supply values
for each question mark. If the statement string is blank or empty, OpenSQL
returns a runtime syntax error.

If the statement name identifies an existing prepared statement, the existing
statement is destroyed and the new statement takes effect. This rule holds
across the dynamic scope of the application. The statement name must not
identify an existing statement name that is associated with an open cursor.
The cursor must be closed before its statement name can be destroyed. Once
prepared, the statement can be executed any number of times.

However, if a transaction is rolled back or committed, the prepared statement
becomes invalid. If the prepared statement is to be executed only once,
execute immediate should be used on the statement string. If the prepared
statement is to be executed repeatedly, the prepare and execute sequence
should be used.

Prepare

Chapter 8: OpenSQL Statements 8–67

The following statements cannot be prepared and executed dynamically:

call disconnect inquire_sql

close endselect open

connect execute immediate set

declare execute set_sql

describe fetch help whenever

direct execute
immediate

include

In addition, you cannot prepare and dynamically execute OpenSQL statements
that include the keyword repeated.

If the statement string is a select statement, the select must not include an
into clause. The select statement string can include the different clauses of the
cursor select statement, such as the for update and order by clauses.

As with execute immediate, the statement string must not include exec sql,
any host language terminators, or references to variable names. If your
statement string includes embedded quotes, it is easiest to specify the string
in a host language variable. If you specify a string that includes quotes as a
string constant, remember that quoted characters within the statement string
must follow the OpenSQL string delimiting rules. Consequently, even if your
host language delimits strings with double quotes, the quoted characters
within the statement string must be delimited by single quotes. For complete
information about embedding quotes within a string literal, see the Embedded
SQL Companion Guide.

The into descriptor_name clause is equivalent to issuing the describe
statement after the statement is successfully prepared. For example, the
prepare statement

exec sql prepare prep_stmt
 into sqlda from :statement_buffer;

is equivalent to

exec sql prepare prep_stmt from :statement_buffer;
exec sql describe prep_stmt into sqlda;

The into clause returns the same information as does the describe statement.
If the prepared statement is a select, the descriptor will contain the data
types, lengths, and names of the result columns. If the statement was not a
select, the descriptor’s sqld field will contain a zero. For more information
about the results of describing a statement, see “Chapter 6: Dynamic
OpenSQL,” and Describe in this chapter.

Raise Dbevent

8–68 OpenSQL Reference Guide

This statement must be terminated according to the rules of your host
language.

Example

A two-column table, whose name is defined dynamically but whose columns
are called, high and low, is manipulated within an application, and statements
to delete, update and select the values are prepared.

 get tablename from a set of names;

 statement_buffer =
 'delete from ' + tablename + '
 where high = ? and low = ?';
 exec sql prepare del_stmt from :statement_buffer;

 statement_buffer =
 ’insert into ’ + tablename + ’ values (?, ?)’;
 exec sql prepare ins_stmt from :statement_buffer;

 statement_buffer =
 ’select * from ’ + tablename + ’ where low ?’;
 exec sql prepare sel_stmt from :statement_buffer;

 ...

 exec sql execute del_stmt using :high, :low;

 ...

 exec sql execute ins_stmt using :high, :low;

 ...

 exec sql declare sel_csr for sel_stmt;
 exec sql open sel_csr using :high, :low;
 loop while more rows
 exec sql fetch sel_csr into :high1, :low1;
 ...
 end loop;

Raise Dbevent

SQL ESQL DB Proc

* *

Enables an application to notify other applications of its status.

Syntax
[exec sql] raise dbevent [schema.]event_name [event_text];

Register Dbevent

Chapter 8: OpenSQL Statements 8–69

Description

The raise dbevent statement enables a session to communicate status
information to other sessions that are registered to receive event_name. For a
full description of database events, see Database Events in the chapter
“OpenSQL Features.” Use the optional event_text parameter to pass a (maximum
256 character) string to receiving applications; to obtain the text, receiving
applications must use the inquire_sql(dbeventtext) statement.

Embedded Usage

Event_name cannot be specified using a host language variable, though event_text
can be specified using a host string variable.

Register Dbevent

SQL ESQL DB Proc

* *

Specifies that an application is to be notified when an event is raised.

Syntax
[exec sql] register dbevent [schema.]event_name;

Description

The register dbevent statement enables a session to specify the database
events it intends to receive. For a full description of database events, see
Database Events in the chapter “OpenSQL Features.”

A session receives only the database events for which it has registered. To
remove a registration, use the remove statement. After registering for a
database event, the session receives the database event using the GET
dbevent statement.

Embedded Usage

Event_name cannot be specified using a host language variable.

Remove Dbevent

8–70 OpenSQL Reference Guide

Remove Dbevent

SQL ESQL DB Proc

* *

Removes a database event for which an application has previously registered.

Syntax
[exec sql] remove dbevent [schema.]event_name;

Description

The remove dbevent statement specifies that an application no longer intends
to receive the specified database event. For a full description of database
events, see Database Events in the chapter “OpenSQL Features.”

If the database event has been raised before the application removes the
registration, the database event remains queued to the application and will be
received when the application issues the GET dbevent statement.

Rollback

SQL ESQL

* *

Rolls back the current transaction.

Syntax
[exec sql] rollback [work]

Description

The rollback statement backs out the changes made during the current
transaction. The optional keyword work has no effect. It is included for
compatibility with other versions of SQL.

Select (interactive)

Chapter 8: OpenSQL Statements 8–71

Embedded Usage

In addition to aborting the current transaction, an embedded rollback:

 Closes all open cursors

 Discards all statements that were prepared in the current transaction

Performance

Executing a rollback undoes the work done by a transaction. The time required
to do this is generally the same amount of time as it took to perform the work
originally.

Select (interactive)

SQL ESQL

*

Retrieves values from one or more tables or views.

Syntax
select [first rowCount][all|distinct] * | result_expression {, result_expression}
 from from_source {, from_source}
 [where search_condition]
 [group by column {, column}]
 [having search_condition]
 {union [all] (select)}
 [order by result_column [asc | desc]
 {, result_column [asc | desc]}];

where result_expression is one of the following:

 [schema.]tablename.* (to select all columns)

 [[schema.]tablename.]columnname [[as] result_column]
(to select one column)

 expression [as] result_column

Description

The select statement returns values from one or more tables or views in the
form of a single result table. Using the various clauses of the select statement,
you can specify:

 Qualifications for the values in the result table

Select (interactive)

8–72 OpenSQL Reference Guide

 Sorting and grouping of the values in the result table

This statement description presents details of the select statement in
interactive OpenSQL (ISQL). In ISQL the results of a query are displayed on
your terminal. In embedded OpenSQL (ESQL), results are returned in host
language variables. For details about using the select statement in ESQL, see
Select (embedded) in this chapter.

The following sections describe the clauses of the select statement, explain
how to create simple queries, and explain how the results of a query are
obtained.

Select Statement Clauses

The select statement has the following clauses:

 select

 from

 where

 group by

 having

 order by

The following sections describe how the clauses are processed and explain
each clause in detail.

Query Evaluation

This section describes the logic applied to the evaluation of select statements.
This logic does not precisely reflect how OpenSQL evaluates your query to
figure out the fastest and most efficient way to return results. However, by
applying the logic presented here to your queries and data, you can anticipate
the results of your query.

1. Evaluate the from clause. Combine all the sources specified in the from
clause to create a Cartesian product (a table composed of all the rows and
columns of the sources). If joins are specified, evaluate each join to obtain
its results table, then combine it with the other sources in the from clause.
If select distinct is specified, discard duplicate rows.

2. Apply the where clause. Discard rows in the result table that do not
fulfill the restrictions specified in the where clause.

3. Apply the group by clause. Group results according to the columns
specified in the group by clause.

The Select Clause

Chapter 8: OpenSQL Statements 8–73

4. Apply the having clause. Discard rows in the result table that do not
fulfill the restrictions specified in the having clause.

5. *Evaluate the select clause. Discard columns that are not specified in
the select clause.

6. *Perform any unions. Combine result tables as specified in the union
clause.

7. Apply the order by clause. Sort the result rows as specified.

* In case of Select first n… union select …., the first n rows of the result from
union are chosen.

The Select Clause
The select clause specifies which values are to be returned. To display all the
columns of a table, use the asterisk wildcard character (*). For example, the
following query displays all rows and columns from the employees table:

select * from employees;

To select specific columns, specify the column names. For example, the
following query displays all rows, but only two columns from the employees
table:

select ename, enumber from employees;

To specify the table from which the column is to be selected, use the
[schema.]table.columnname syntax. For example:

select personnel.managers.name,
 personnel.employees.name

In the preceding example, both source tables contain a column called, name.
The column names are preceded by the name of the source table. The first
column of the result table contains the values from the name column of the
managers table, and the second column contains the values from the name
column of the employees table. If a column name is used in more than one of
the source tables, you must qualify the column name with the table to which it
belongs, or with a correlation name. For details, see The From Clause in this
chapter.

The Select Clause

8–74 OpenSQL Reference Guide

The number of rows in the result table can be limited using the first clause.
RowCount is a positive integer value that indicates the maximum rows in the
result table. The query is effectively evaluated without concern for the first
clause, but only the first “n” rows (as defined by rowCount) are returned. Note
that this clause may not be used in a where clause subselect and it may only
be used in the first of a series of union’ed selects. However, it may be used in
the create table, as select and insert into, select statements. When used with
create table…as select and insert into…select statements, first n should not be
used along with the order by clause.

To eliminate duplicate rows from the result table, specify the keyword distinct.
To preserve duplicate rows, specify the keyword all. By default, duplicate rows
are preserved.

For example, the following table contains order information. The partno
column contains duplicate values, because different customers have placed
orders for the same part.

partno customerno qty unit_price

123-45 101 10 10.00

123-45 202 100 10.00

543-21 987 2 99.99

543-21 654 33 99.99

987-65 321 20 29.99

The following query displays the part numbers for which there are orders on
file:

select distinct partno from orders

The result table looks like this:

partno

123-45

543-21

987-65

A constant value can be included in the result table. For example:

select 'Name:', ename, date('today'),
 edept from employees;

The Select Clause

Chapter 8: OpenSQL Statements 8–75

The preceding query selects all rows from the employees table. The result
table is composed of the string constant 'Name:', the employee’s name,
today’s date (specified using the constant today), and the employee’s
department, or if there is no department assigned, the string constant
'Unassigned'.

The result table looks like this (depending, of course, on the data in the
employees table):

COL1 ename COL3 COL4

Name: Mike Sannicandro Aug 8, 1999 Micrography

Name: Dave Murtagh Aug 8, 1999 Percussive arts

Name: Benny Barth Aug 8, 1999 Unassigned

Name: Dean Reilly Aug 8, 1999 Lumber

Name: Al Obidinski Aug 8, 1999 Unassigned

The select clause can be used to obtain values calculated from the contents of
a table. For example:

select ename, annual_salary/52 from employees;

The preceding query calculates each employee’s weekly salary based on their
annual salary.

Aggregate functions can be used to calculate values based on the contents of
column. For example:

select max(salary), min(salary), avg(salary)
 from employees;

The preceding query returns the highest, lowest, and average salary from the
employees table. These values are based on the amounts stored in the salary
column. For details about aggregate functions, see “Chapter 4: Elements of
OpenSQL Statements.”

To specify a name for a column in the result table, use the
as result_column clause. For example:

select ename, annual_salary/52 as weekly_salary
from employees;

In the preceding example, the name, weekly_salary, is assigned to the second
result column. If you omit a result column name for columns that are not
drawn directly from a table (for example, calculated values or constants), the
result columns are assigned the default name COLn, where n is the column
number. Result columns are numbered from left to right. Column names
cannot be assigned in select clauses that use the asterisk wildcard (*) to select
all the columns in a table.

The From Clause

8–76 OpenSQL Reference Guide

The From Clause
The from clause specifies the source tables and views from which data is to be
read. The specified tables and views must exist at the time the query is issued.
The tables or views must be specified using the following syntax:

[schema.]table [corr_name]

where table is the name of a table or view. To ensure program portability,
specify no more than 15 tables in a query, including the tables in the from list
and tables in subqueries. (Individual host database management systems may
allow more than 15 tables.)

The following sections explain these sources in detail.

Specifying Tables and Views

This section describes how to specify table names in queries. The same rules
apply to views.

To select data from a table you own, specify the name of the table. To select
data from a table you do not own, specify schema.table, where schema is the
name of the user that owns the table. However, if the table is owned by the
database DBA, the schema qualifier is not required. You must have the
appropriate permissions to access the table (or view) granted by the owner.

A correlation name can be specified for any table in the from clause. A
correlation name is an alias (or alternate name) for the table. For example:

select... from employees e, managers m...

The preceding example assigns the correlation name “e” to the employees
table and “m” to the managers table. Correlation names are useful for
abbreviating long table names and for joining a table to itself.

If you assign a correlation name to a table, you must refer to the table using
the correlation name. For example:

Correct:

select e.name, m.name
from employees e, managers m...

Incorrect:

select employees.name, managers.name
from employees e, managers m...

The Where Clause

Chapter 8: OpenSQL Statements 8–77

The Where Clause
The where clause specifies criteria that restrict the contents of the results
table. You can test for simple relationships or, using subqueries, relationships
between a column and a set of columns.

Simple Where Clauses

Using a simple where clause, you can restrict the contents of the results table
as follows:

 Comparisons

 select ename from employees
 where manager = 'Jones';

 select ename from employees
 where salary > 50000;

 Ranges

 select ordnum from orders
 where odate between date('jan-01-1993') and
 date('today');

 Set membership

 select * from orders
 where partno in ('123-45', '678-90');

 Pattern matching

 select * from employees
 where ename like 'A%';

 Nulls

 select ename from employees
 where edept is null;

 Combined restrictions using logical operators

 select ename from employees
 where edept is null and
 hiredate = date('today');

For details about query restriction operators, see Predicates in the chapter
“Elements of OpenSQL Statements.”

Joins

Joins combine information from multiple tables and views into a single result
table, according to column relationships specified in the where clause.

The Where Clause

8–78 OpenSQL Reference Guide

For example, given the following two tables:

Employee Table

ename edeptno

Benny Barth 10

Dean Reilly 11

Rudy Salvini 99

Tom Hart 123

Department Table

ddeptno dname

10 Lumber

11 Sales

99 Accounting

123 Finance

The following query joins the two tables on the relationship of equality
between values in the edeptno and ddeptno columns. The result is a list of
employees and the names of the departments in which they work:

select ename, dname from employees, departments
where edeptno = ddeptno;

A table can be joined to itself using correlation names—this is useful when
listing hierarchical information. For example, the following query displays each
employee’s name and the name of the employee’s manager.

select e.ename, m.ename
 from employees e, employees m
 where e.eno = m.eno

Tables can be joined on any number of related columns. The data types of the
join columns must be comparable.

Outer Joins

Data can be combined from two or more tables to produce an intermediate
results table using an outer join.

Note: Outer join functionality is available only if OUTER_JOIN is set to “Y” in
the iidbcapabilities table.

The Where Clause

Chapter 8: OpenSQL Statements 8–79

Note: Outer joins specified in the from clause are not the same as joins
specified in the where clause: the from clause specifies sources of data, while
the where clause specifies restrictions to be applied to the sources of data to
produce the results table.

Outer joins are specified in the from clause, using the following syntax:

source join_type join source
 on search_condition

where:

 The source parameter is the table, view, or outer join where the data for
the left or right side of the join originates.

 The join_type parameter specifies inner, left, right, or full outer join. The
default join type is inner.

 The search_condition is a valid restriction, subject to the rules for the
where clause. The search condition must not include aggregate functions
or subselects.

Think of an outer join is as the union of two select statements: the first query
returns rows that fulfill the join condition, and the second returns nulls for
rows that do not.

There are three types of outer joins:

 Left outer join - Returns all values from the left source

 Right outer join - Returns all values from the right source

 Full outer join - Returns all values from both sources

Note: Right and left joins are symmetrical: (table1 right-join table2) returns
the same results as (table2 left-join table1).

By default, joins are evaluated left to right. To override the default order of
evaluation, use parentheses.

A source can itself be an outer join, and the results of joins can be joined with
the results of other joins, as illustrated in the following pseudocode:

(A join B) join (C join D)

The placement of restrictions is important in obtaining correct results. For
example:

A join B on cond1 and cond2

does not return the same results as:

A join B on cond1 where cond2

The Where Clause

8–80 OpenSQL Reference Guide

In the first example, the restriction determines which rows in the join result
table will be assigned null values; in the second example, the restriction
determines which rows will be omitted from the result table.

The following example uses an outer join in the from clause to display all
employees along with the name of their department, if any:

select e.ename, d.dname from
(employees e left join departments d
 on e.edept = d.ddept);

Join Relationships

The simple joins illustrated in the two preceding examples depend on equal
values in the join columns. This type of join is called an equijoin. Other types
of relationships can be specified in a join. For example, the following query
lists salespersons that have met or exceeded their sales quota:

select s.name, s.sales_ytd
 from sales s, quotas q
 where s.empnum = d.empnum and
 s.sales_ytd >= d.quota;

Subqueries

Subqueries are select statements placed in a where or having clause. The
results returned by the subquery are used to evaluate the conditions specified
in the where or having clause. Subqueries are also referred to as subselects.

Subqueries must return a single column, and cannot include an order by or
union clause.

The following example uses a subquery to display all employees whose salary
is above the average salary:

select * from employees where salary >
 (select avg(salary) from employees);

In the preceding example, the subquery returns a single value: the average
salary. Subqueries can also return sets of values. For example, the following
query returns all employees in all departments managed by Barth.

select ename from employees where edept in
 (select ddept from departments
 where dmgr = 'Barth');

For details about the operators used in conjunction with subqueries, see
Predicates in the chapter “Elements of OpenSQL Statements.”

The Order By Clause

Chapter 8: OpenSQL Statements 8–81

The Order By Clause
The order by clause specifies the columns on which the results table is to be
sorted. Columns in the order by clause can be specified using either the
column name or a number corresponding to the position of the column in the
from clause. (You must specify unnamed result columns using a number.) In a
union select, use numbers to specify the columns in the order by clause;
column names cannot be used.

For example, if the employees table contains the following data:

ename edept emanager

Murtagh shipping Myron

Obidinski lumber Myron

Reilly finance Costello

Barth lumber Myron

Karol editorial Costello

Smith shipping Myron

Loram editorial Costello

Delore finance Costello

Kugel food prep Snowden

then this query:

select emanager, ename, edept from employees
order by emanager, edept, ename

produces this list of managers, the departments they manage, and the
employees in each department:

 Costello editorial Karol

 Costello editorial Loram

 Costello finance Delore

 Costello finance Reilly

 Myron lumber Barth

 Myron lumber Obidinski

 Myron shipping Murtagh

 Myron shipping Smith

 Snowden food prep Kugel

The Group By Clause

8–82 OpenSQL Reference Guide

… and this query:

select ename, edept, emanager from employees
order by ename

produces this alphabetized employee list:

Barth lumber Myron

Delore finance Costello

Karol editorial Costello

Kugel food prep Snowden

Loram editorial Costello

Murtagh shipping Myron

Obidinski lumber Myron

Reilly finance Costello

Smith shipping Myron

To display result columns sorted in descending order (numeric or alphabetic),
specify order by columnname desc. For example, to display the employees in
each department from oldest to youngest:

select edept, ename, eage from employees
order by edept, eage desc;

If a nullable column is specified in the order by clause, nulls are sorted to the
beginning or end of the results table, depending on the host DBMS.

Note: If the order by clause is omitted, the order of the rows in the results
table is not guaranteed by the DBMS. In particular, the order of the rows in
the results table is not guaranteed to have any relationship to the source
tables’ storage structure or key structure.

The Group By Clause
The group by clause combines results for identical values in a column. This
clause is typically used in conjunction with aggregate functions to generate a
single figure for each unique value in a column.

For example, to obtain the number of orders for each part number in the
orders table:

select partno, count(*) from orders
group by partno;

The Having Clause

Chapter 8: OpenSQL Statements 8–83

The preceding query returns one row for each part number in the orders table,
even though there may be many orders for the same part number.

Nulls are used to represent unknown data, and two nulls are typically not
considered equal in OpenSQL comparisons. However, the group by clause
treats nulls as equal and returns a single row for nulls in a grouped column.

Grouping can be performed on multiple columns. For example, to display the
number of orders for each part placed each day:

select odate, partno, count(*) from orders
group by odate, partno;

If the group by clause is specified, all columns in the select clause must be
specified in the group by clause or be aggregate functions.

The Having Clause
The having clause filters the results of the group by clause, in the same way
the where clause filters the results of the select...from clauses. The having
clause uses the same restriction operators as the where clause.

For example, to return the number of orders placed today for each part:

select odate, partno, count(*) from orders
group by odate, partno
having odate = date('today');

The Union Clause
The union clause enables the results of select statements to be combined into
a single result table. For example, to list all employees in the table of active
employees plus those in the table of retired employees:

select ename from active_emps
union
select ename from retired_emps;

By default, the union clause eliminates any duplicate rows in the result table.
To retain duplicates, specify union all. You can combine any number of select
statements using the union clause, and you can use both union and union all
when combining multiple tables.

Unions are subject to the following restrictions:

 The select statements must return the same number of columns.

 The columns returned by the select statements must correspond in order
and data type. The column names do not have to be identical.

The Union Clause

8–84 OpenSQL Reference Guide

 The select statements cannot include individual order by clauses.

To sort the result table, specify the order by clause following the last select
statement. The result columns returned by a union are named according to the
first select statement.

By default, unions are evaluated from left to right. To specify a different order
of evaluation, use parentheses.

Any number of select statements can be combined using the union clause.
There is a maximum of 126 tables allowed in any query.

Note: The maximum number of tables referenced in a single query is
dependent on the host DBMS. The 126 maximum listed here is for the Ingres
DBMS; other DBMSs supported by Enterprise Access and EDBC may have a
higher or lower limit.

Examples

1. Find all employees who make more than their managers. This example
illustrates the use of correlation names.

 select e.ename
 from employee e, dept, employee m
 where e.dept = dept.dno and dept.mgr = m.eno
 and e.salary > m.salary;

2. Select all information for employees that have salaries above the average
salary.

 select * from employee
 where salary > (select avg(salary) from employee);

3. Select employee information sorted by department and, within
department, by name.

 select e.ename, d.dname from employee e, dept d
 where e.dept = d.dno
 order by dname, ename;

4. Select lab samples analyzed by lab #12 from both production and archive
tables.

 select * from samples s
 where s.lab = 12
 union
 select * from archived_samples s
 where s.lab = 12

Select (embedded)

Chapter 8: OpenSQL Statements 8–85

Select (embedded)

SQL ESQL

 *

Retrieves values from the database.

Syntax

Non-cursor version:

exec sql [repeated] select [all|distinct]
 * | result_expression {, result_expression}
 into variable[:indicator_var] {, variable[:indicator_var]}
 from from_source {, from_source}
 [where search_condition]
 [group by column {, column}]
 [having search_condition]
 [union [all] full_select]
 [order by result_column [asc | desc]
 {, result_column [asc | desc]}]
[exec sql begin;
 program code;
exec sql end;]

where result_expression is one of the following:

 [schema.]tablename.* (to select all columns)

 [[schema.]tablename.]columnname as result_column (to select one
column)

 expression as result_column

Cursor version (embedded within a declare cursor statement):

select [all|distinct]
 * | result_expression {, result_expression}
 from from_source {, from_source}
 [where search_condition]
 [group by column {, column}]
 [having search_condition]
 [union [all] full_select]
 [order by result_column [asc|desc]
 {, result_column [asc|desc]}];

Description

The embedded select statement returns values from tables to host language
variables in an embedded OpenSQL program. For details about the various
clauses of the select statement, see Select (interactive) in this chapter. The
following sections discuss details of interest to the embedded OpenSQL
programmer.

Select (embedded)

8–86 OpenSQL Reference Guide

Non-Cursor Select

The non-cursor version of the embedded OpenSQL select statement can be
used to retrieve a single row or a set of rows from the database.

If the optional begin-end block syntax is not used, then the embedded select
statement can retrieve only one row from the database. This kind of select
statement is called the singleton select and is compatible with the ISO
standard. If the singleton select does try to retrieve more than one row, an
error occurs and the result variables hold information from the first row. For
example, the following example retrieves a single row from the database:

exec sql select ename, sal
into :ename, :sal
from employee
where eno = :eno;

Select Loops

A select loop can be used to read a table and process its rows individually.
When a program needs to read a table without issuing any other database
statements during the retrieval (such as for report generation), use a select
loop. In other cases, such as when database updates are required, or when
other tables need to be browsed while the current retrieval is in progress, use
a cursor.

The begin-end statements delimit the statements in the select loop. The code
is executed once for each row as it is returned from the database. Statements
cannot be placed between the select statement and the begin statement.

Within the select loop, no other statements that access the database can be
issued. This will cause a runtime error. To see how to manipulate and update
rows and tables within the database while data is being retrieved, see Data
Manipulation with Cursors in the chapter “Embedded OpenSQL.”

However, if your program is connected to multiple database sessions, queries
can be issued from within the select loop by switching to another session. To
return to the outer select loop, switch back to the session in which the select
statement was issued. To avoid preprocessor errors, the nested queries cannot
be within the syntactic scope of the loop but must be referenced by a
subroutine call or some form of a goto statement. For more information about
multiple sessions, see “Chapter 7: OpenSQL Features.”

There are two ways to terminate the select loop: run it to completion or issue
the endselect statement. A host language goto statement cannot be used to
exit or return to the select loop.

Select (embedded)

Chapter 8: OpenSQL Statements 8–87

To terminate a select loop before all rows are retrieved the application must
issue the endselect statement. The endselect statement must be syntactically
within the begin-end block that delimits the select loop. For more information,
see Endselect in this chapter.

The following example retrieves a set of rows from the database:

exec sql select ename, sal, eno
into :ename, :sal, :eno
from employee
order by eno;
exec sql begin;
browse data;
if error condition then
 exec sql endselect;
end if;
exec sql end;

Retrieving Values into Host Language Variables

The into clause specifies the host program variables into which the values
retrieved by the select are loaded. There must be a one-to-one correspondence
between expressions in the select clause and the variables in the into clause.
If the statement does not retrieve any rows, the variables are not modified. If
the number of values retrieved from the database is different from the number
of columns, an error is issued and the sqlwarn3 variable of the SQLCA is
assigned the value 'W'. Each result variable may have an indicator variable for
null data.

Host language variables can be used as expressions in the select clause and
the search_condition, in addition to their use in the into clause. Variables used
in search_conditions must denote constant values and cannot represent names
of database columns or include any operators. Host string variables can also
substitute for the complete search condition.

Host Language Variables in the Union Clause

When select statements are combined using the union clause, the into clause
must appear only after the first list of select result expressions, because all
result rows of the select statements that are combined by the union clause
must be identical. The following example shows the correct use of host
language variables in a union. Result variables are specified only for the first
select statement.

exec sql select ename, enumber
 into :name, :number
 from employee
union
select dname, dnumber
 from directors
 where dnumber < 100;

Select (embedded)

8–88 OpenSQL Reference Guide

Repeated Queries

To reduce the overhead required to repeatedly execute a select query
statement, specify the query as a repeated query. For repeated queries,
OpenSQL saves the query execution plan after the first time the query is
executed. This provides significant performance on subsequent executions of
the same select.

If your application needs to be able to change the search conditions,
dynamically constructed search conditions cannot be used with repeated
queries. The saved execution plan is based on the initial value of the search
condition and subsequent changes are ignored.

Cursor Select

The cursor select statement is specified as part of a declare cursor statement.
Within the declare cursor statement, the select statement is not preceded by
exec sql. The cursor select statement specifies the data to be retrieved by the
cursor. When executed, the declare cursor statement does not perform the
retrieval–the retrieval occurs when the cursor is opened. If the cursor is
declared for update, the select cannot refer to more than one table, cannot
refer to a view and cannot include a group by, having, order by, or union
clause.

The cursor select can return multiple rows, because the cursor provides the
means to process and update retrieved rows one at a time. The correlation of
expressions to host language variables takes place with the fetch statement,
so the cursor select does not include an into clause. The rules for the
remaining clauses are the same as in the non-cursor select.

Error Handling

If the select statement retrieves no rows, the SQLCA variable sqlcode is set to
100. The number of rows returned from the database is in the SQLCA variable
sqlerrd(3). In a select loop, if the endselect statement was issued, sqlerrd(3)
contains the number of rows retrieved before endselect was issued.

Embedded Usage

Host language variables can be used as expressions in the select clause and
the search_conditions. Variables used in search_conditions must specify
constant values and cannot represent names of database columns or include
any operators. Host string variables can also substitute for the complete
search condition.

Select (embedded)

Chapter 8: OpenSQL Statements 8–89

Examples

1. The following examples illustrate the non-cursor select. For examples of
the cursor select statement, see Declare Cursor in this chapter.

Retrieve the name and salary of an employee. Drop locks by committing
the transaction.

 exec sql select ename, sal
 into :namevar, :salvar
 from employee
 where eno = :numvar;
 exec sql commit;

2. Select all columns in a row into a host language variable structure. (The
emprec structure has members that correspond in name and type to
columns of the employee table.)

 exec sql select *
 into :emprec
 from employee
 where eno = 23;

3. Select a constant into a variable.

 exec sql select 'Name: ', ename
 into :title, :ename
 from employee
 where eno >= 148 and age = :age;

4. Select the row in the employee table whose number and name correspond
to the variables, numvar and namevar. The columns are selected into a
host structure called, emprec. Because this statement is issued many
times (in a subprogram, perhaps), it is formulated as a repeat query.

 exec sql repeated select *
 into :emprec
 from employee
 where eno = :numvar and ename = :namevar;

5. Example of a select loop: insert new employees, and then select all
employees and generate a report. If an error occurs during the process,
end the retrieval and back out the changes. No database statements are
allowed inside the select loop (begin-end block).

 error = 0;
 exec sql insert into employee
 select * from newhires; exec sql select eno, ename, eage, esal, dname
 into :eno, :ename, :eage, :esal, :dname
 from employee e, dept d
 where e.edept = d.deptno
 group by ename, dname
 exec sql begin;
 generate report of information;
 if error condition then
 error = 1;
 exec sql endselect;
 end if;

 exec sql end;

Select (embedded)

8–90 OpenSQL Reference Guide

 /*
 ** Control transferred here by completing the
 ** retrieval or because the endselect statement
 ** was issued.
 */
 if error = 1
 print 'Error encountered after row',
 sqlca.sqlerrd(3);
 exec sql rollback;
 else
 print 'Successful addition and reporting';
 exec sql commit;
 end if;

6. The following select statement uses a string variable to substitute for the
complete search condition. The variable search_condition is constructed
from an interactive forms application in query mode, and during the select
loop the employees who satisfy the qualification are displayed.

 run forms in query mode;
 construct search_condition of employees;

 exec sql select *
 into :emprec
 from employee
 where :search_condition;
 exec sql begin;
 load emprec into a table field;
 exec sql end;
 display table field for browsing;

7. The following example illustrates session switching inside a select loop.
The main program processes sales orders and calls the subroutine,
new_customer, for every new customer.

The main program:

 ...
 exec sql include sqlca;
 exec sql begin declare section;

 /* Include output of dclgen for declaration of
 ** record order_rec */
 exec sql include 'decls';
 exec sql end declare section;

 exec sql connect customers session 1;
 exec sql connect sales session 2;
 ...

 exec sql select * into :order_rec from orders;
 exec sql begin;
 if (order_rec.new_customer = 1) then
 call new_customer(order_rec);
 endif
 process order;
 exec sql end;
 ...

 exec sql disconnect;

The subroutine, new_customer, which is called from the select loop,
contains the session switch:

Set

Chapter 8: OpenSQL Statements 8–91

 subroutine new_customer(record order_rec)

 begin;

 exec sql set_sql(session = 1);
 exec sql insert into accounts
 values (:order_rec);

 process any errors;

 exec sql set_sql(session = 2);

 /* Reset status information before resuming
 ** select loop */

 sqlca.sqlcode = 0;
 sqlca.sqlwarn.sqlwarn0 = ' ';

 end subroutine;

Set

SQL ESQL

* *

Sets a session option.

Syntax
[exec sql] set autocommit on |off

Description

The set statement specifies a runtime option for the current session. The
selected runtime option remains in effect until the end of the session or
another set statement changes its value within the session.

The Set Autocommit Option

The set autocommit on statement causes an implicit commit to occur after
every successfully executed query. Set autocommit off means an explicit
commit statement is required to commit a transaction. By default, autocommit
is off.

The set autocommit statement cannot be issued within a transaction. For a
description of OpenSQL transaction behavior, see “Chapter 7: OpenSQL
Features.”

Set_sql

8–92 OpenSQL Reference Guide

Set_sql

SQL ESQL

 *

Sets a variety of session options.

Syntax
exec sql set_sql (object = value {, object = value})

Description

The set_sql statement can switch sessions in a multiple session application,
specify the type of DBMS error to be returned to an application, change the
default behavior when a connection error is experienced, set trace functions,
and set other session characteristics.

Set_sql can be used to override II_EMBED_SET. For more information about
II_EMBED_SET, see the System Administrator Guide.

The following table provides a summary of the valid objects and values for the
set_sql statement:

Object Data Type Description

dbeventdisplay integer Enables or disables the display of events as they are queued
to an application. Specify 1 to enable display, 0 to disable
display.

dbeventhandler function pointer Specifies a user-defined routine to be called when an event
notification is queued to an application. The event handler
must be specified as a function pointer.

dbmserror integer Sets the value returned by the inquire_sql(dbmserror)
statement. For details about the values returned by the
inquire_sql(dbmserror) statement, see Local and Generic
Errors in the chapter “OpenSQL Features.”

errorhandler function pointer Specifies a user-defined routine to be called when an
OpenSQL error occurs in an embedded application. The error
handler must be specified as a function pointer.

errorno integer Sets the value returned by the inquire_sql(errorno)
statement. For details about the values returned by the
inquire_sql(errorno) statement, see Local and Generic Errors
in the chapter “OpenSQL Features.”

Set_sql

Chapter 8: OpenSQL Statements 8–93

Object Data Type Description

errortype character string Specifies the type of error number returned to errorno and
sqlcode. Value can be either genericerror, specifying generic
error numbers, or dbmserror, specifying local DBMS error
numbers. Generic error numbers are returned by default. For
information about local and generic errors, see Local and
Generic Errors in the chapter “OpenSQL Features.”

gcafile character string Specifies an alternate text file to which OpenSQL writes GCA
information. The default file name is “iiprtgca.log”. To enable
this feature, use the set_sql printgca option.

If a directory or path specification is omitted, the file is
created in the current default directory.

printgca integer Turns the printgca debugging feature on or off. Printgca
prints all communications (GCA) messages from the
application as it executes (by default, to the file “iiprtgca.log”
in the current directory). Value can be either 1, to turn the
feature on, or 0, to turn the feature off.

printqry integer Turns the printqry debugging feature on or off. Printqry
prints all query text and timing information from the
application as it executes (by default to the file “iiprtqry.log”
in the current directory). Value can be either 1, to turn the
feature on, or 0, to turn the feature off.

printtrace integer Enable/disable trapping of DBMS trace messages to a text
file (by default, “iiprttrc.log”). Specify 1 to enable trapping of
trace output, 0 to disable trapping.

programquit integer Specifies whether OpenSQL aborts on one of the following
errors:

An application issues a query, but is not connected to a
database.

The Enterprise Access product or DBMS fails.

Communications services fail.

Specify 1 to abort on these conditions, 0 to continue.

qryfile character string Specifies an alternate text file to which OpenSQL writes
query information. The default file name is “iiprtqry.log”. To
enable this feature, use the set_sql printqry option.

If a directory or path specification is omitted, the file is
created in the current default directory.

Update

8–94 OpenSQL Reference Guide

Object Data Type Description

savequery integer Enables/disables saving of the text of the last query issued.
Specify 1 to enable, 0 to disable. To obtain the text of the
last query, issue the inquire_sql(querytext) statement. To
determine whether saving is enabled, use the
inquire_sql(savequery) statement.

session integer Sets the current session. Value can be any session identifier
associated with an open session in the application.

tracefile character string Specifies an alternate text file to which OpenSQL writes
tracepoint information. The default file name is “iiprttrc.log”.
To enable this feature, use the set_sql printtrace option.

If a directory or path specification is omitted, the file is
created in the current default directory.

Update

SQL ESQL

* *

Updates column values in a table.

Syntax

Interactive version:

update tablename
 set columnname = expression {, columnname = expression}
 [where search_condition]

Embedded versions:

 Non-cursor version:

 exec sql [repeated] update tablename
 set column = expression {, column = expression}
 [where search_condition]

 Cursor version:

 exec sql update tablename
 set column = expression {, column = expression}
 where current of cursor_name

Update

Chapter 8: OpenSQL Statements 8–95

Description

The update statement replaces the values of the specified columns by the
values of the specified expressions for all rows of the table that satisfy the
search_condition. For a discussion of search conditions, see “Chapter 4:
Elements of OpenSQL Statements.”

The expressions in the set clause can use constants or expressions involving
column values from the table being updated. The data type of the column
must agree with the data type of the value being assigned to it. To place a null
in a nullable column, use the null constant.

If an update to a row would violate an integrity constraint defined on the table,
that row remains unchanged.

If a subselect is specified, the subselect must not select rows from the table in
which you are updating rows.

Embedded Usage

Host language variables can only be used within expressions in the set clause
and the search_condition. (Variables used in search_condition must denote
constant values and cannot represent names of database columns or include
any operators.) A host string variable can be used to specify the complete
search condition.

If the update did not update any rows, the sqlcode of the SQLCA is set to 100.
If the update succeeded, the sqlerrd(3) of the SQLCA contains the number of
rows updated by the statement.

To formulate the non-cursor update as a repeated query, specify the keyword
repeated. The repeated keyword directs OpenSQL to encode the update and
save its execution plan when the update is first executed. This encoding can
improve the performance of subsequent executions of the same update. The
repeated keyword is available only for non-cursor updates, and is ignored if
used with the cursor or dynamic versions.

If your statement includes a dynamically constructed search_condition, that is,
if the complete search_condition is specified by a host string variable, do not
use the repeated option if you intend to change the search_condition after the
statement’s initial execution. The saved execution plan is based on the initial
value of the search_condition and any changes to search_condition would be
ignored. This rule does not apply to simple variables used in a
search_condition.

Update

8–96 OpenSQL Reference Guide

Cursor Updates

The cursor version of update is similar to the interactive update, except for the
where clause. The where clause, required in the cursor update, specifies that
the update occur to the row the cursor currently points to. If the cursor is not
pointing to a row, as would be the case immediately after an open or delete
statement, a runtime error message is generated indicating that a fetch must
first be performed. If the row the cursor is pointing to has been deleted from
the underlying database table (as the result, for example, of a non-cursor
delete), no row is updated and the sqlcode is set to 100. Following a cursor
update, the cursor continues to point to the same row.

Two cursor updates not separated by a fetch may cause the same row to be
updated twice, or may cause an error, depending on the host DBMS.

In performing a cursor update, make sure that certain conditions are met:

 A cursor must be declared in the same file in which any update statement
referencing that cursor appears. This applies also to any cursor referenced
in a dynamic update statement string.

 A cursor name in a dynamic update statement must be unique among all
open cursors in the current transaction.

 The cursor stipulated in the update must be open before the statement is
executed.

 The update statement and the from clause in the cursor’s declaration must
refer to the same database table.

 The columns in the set clause must have been declared for update at the
time the cursor was declared (see the declare cursor statement).

 Host language variables can be used only for the cursor names or for
expressions in the set clause.

The commit and rollback statements close all open cursors. A common
programming error is to update the current row of a cursor, commit the
change, and then attempt to loop and repeat the process—the commit closes
the cursor, and subsequent fetches will fail.

Examples

1. Give all employees who work for Smith a 10% raise.

 update emp
 set salary = .1 * salary
 where dept in
 (select dno
 from dept
 where mgr in
 (select eno
 from emp
 where ename like '%Smith'));

Whenever

Chapter 8: OpenSQL Statements 8–97

2. Set all salaried people who work for Smith to null.

 update emp
 set salary = null
 where dept in
 (select dno
 from dept
 where mgr in
 (select eno
 from emp
 where ename like '%Smith'));

Whenever

SQL ESQL

 *

Performs an action when a specified condition becomes true.

Syntax
exec sql whenever condition action

Description

The whenever statement provides a convenient method for handling error and
exception conditions arising from embedded OpenSQL database statements. It
stipulates that some action occur when the program attains a specified
condition. Whether or not a condition is true is determined by variables in the
SQLCA. For this reason, an SQLCA must be included in your program before
you issue the whenever statement.

Once a whenever has been declared, it remains in effect until another
whenever is specified for the same condition. Since whenever is a declarative
and not an executable statement, its physical location in the program’s source
code, rather than its sequence in the program’s execution, determines its
scope.

Whenever statements can be repeated for the same condition and can appear
anywhere after the include sqlca statement.

The condition can be any of the following:

 sqlwarning—True when the sqlwarn0 variable of the SQLCA is set to “W,”
indicating that the last embedded OpenSQL database statement produced
a warning condition.

Whenever

8–98 OpenSQL Reference Guide

 sqlerror—True when the sqlcode of the SQLCA is set to a negative value,
indicating that an error occurred in the last embedded OpenSQL database
statement.

 not found—True when the sqlcode is set to a value of 100, indicating that
a select, fetch, update, delete, insert, copy, create index, or create as
subselect statement affected no rows.

 dbevent—Indicates that an event has been raised. The sqlcode variables
of the SQLCA is set to 710. This condition occurs only for events that the
application is registered to receive.

Action may be any of the following:

 continue—No action will be taken when the condition occurs. The
program proceeds with the next executable statement. If a fatal error
occurs, an error message is printed and the program aborts.

 stop—The program will display an error message and terminate when the
condition occurs. If the program is connected to a database when the
condition occurs, the program disconnects from the database without
committing pending updates. The stop action cannot be specified for the
not found condition.

 goto label—Specifies a label in the program to which control is
transferred when the condition occurs (same as a host language “go to”
statement). The label (or paragraph name, in COBOL) must be specified
using the rules of your host language. The keyword goto can also be
specified as go to.

 call procedure—Specifies a host language procedure to be called (in
COBOL, a paragraph to be performed) when the condition occurs. The
procedure must be specified according to the conventions of the host
language. No arguments can be passed to the procedure. To direct the
program to print any error or warning message and continue with the next
statement, specify call sqlprint. (The sqlprint routine is a procedure
provided by OpenSQL, not a user-written procedure.)

If your program does not include an SQLCA (and therefore no whenever
statements), OpenSQL displays all errors. If your program includes an SQLCA,
OpenSQL continues execution (and does not display errors) for all conditions
for which you do not issue a whenever statement. To override the continue
default and direct OpenSQL to display errors and messages, set
II_EMBED_SET to sqlprint.

The program’s condition is automatically checked after each embedded
OpenSQL database statement. If one of the conditions has become true, the
action specified for that condition is taken. If the action is goto, then the label
must be within the scope of the statements affected by the whenever
statement at compile time.

An action specified for a condition affects all subsequent embedded OpenSQL
source statements until another whenever is encountered for that condition.

Whenever

Chapter 8: OpenSQL Statements 8–99

The embedded SQL preprocessor does not generate any code for the whenever
statement. Therefore, in a language that does not allow empty control blocks,
(for example, COBOL, which does not allow empty IF blocks), the whenever
statement should not be the only statement in the block.

Be careful to avoid coding potentially infinite loops with whenever statements.
Within a sequence of statements functioning as an error handling block for a
particular condition, the first statement should be a whenever continue that
turns off the action. For example, consider the following program fragment:

exec sql whenever sqlerror goto error_label;
exec sql create table worktable
(workid integer2, workstats varchar(15));
 ...

process data;
 ...

error_label:
exec sql whenever sqlerror continue;
exec sql drop worktable;
exec sql disconnect;
 ...

If the error handling block did not specify continue for condition sqlerror and
the drop statement caused an error, at runtime the program would infinitely
loop between the drop statement and the label, error_label.

Host language variables cannot be used in a whenever statement. This
statement must be terminated according to the rules of your host language.

Examples

1. During program development, print all errors and continue with next
statement.

 exec sql whenever sqlerror call sqlprint;

2. During database cursor manipulation, close the cursor when
no more rows are retrieved.

 exec sql open cursor1;
 exec sql whenever not found goto close_cursor;

 loop until whenever not found is true
 exec sql fetch cursor1
 into :var1, :var2;
 print and process the results;
 end loop;

 close_cursor:
 exec sql whenever not found continue;
 exec sql close cursor1;

3. Stop program upon detecting an error or warning condition.

 exec sql whenever sqlerror stop;
 exec sql whenever sqlwarning stop;

Whenever

8–100 OpenSQL Reference Guide

4. Reset whenever actions to default within an error handling block.

 error_handle:
 exec sql whenever sqlerror continue;
 exec sql whenever sqlwarning continue;
 exec sql whenever not found continue;

 ...

 handle cleanup

 ...

5. Always confirm that the connect statement succeeded before continuing.

 exec sql whenever sqlerror stop;

 exec sql connect :dbname;

 exec sql whenever sqlerror continue;

Chapter 9: Extended Statements 9–1

Chapter 9: Extended Statements

This chapter lists statements and extensions that may be available in
OpenSQL. To determine whether these statements and extensions are
supported, check for the following row in the iidbcapabilities catalog:

CAP_CAPABILITIES CAP_VALUE

SQL92_COMPLIANCE ENTRY

If the statements and extensions are not supported, the cap_value column
contains NONE.

Create Schema

SQL ESQL

* *

Creates a named collection of database objects.

Syntax
[exec sql] create schema authorization schema_name
 [object_definition {object_definition}];

where object_definition is a create table, create view, or grant statement.

Description

The create schema statement creates a named collection of database objects
(tables, views and privileges). The schema_name parameter must be the
same as the effective user for the session issuing the create schema
statement. All objects specified in the create schema statement are owned by
that user. You cannot create a schema for another user. Each user has one
schema per database.

The statements in the create schema statement must not be separated by
semicolon delimiters. However, the create schema statement must be
terminated with a semicolon following the last object definition statement
(create table, create view, or grant).

Create Schema

9–2 OpenSQL Reference Guide

If object definitions are omitted, an empty schema is created. For details
about the statements used to create tables and privileges, see Create Table
(extended) and Grant respectively in this chapter. If an error occurs within the
create schema statement, the entire statement is rolled back. If you issue a
create schema specifying an existing schema (schema_name), OpenSQL
issues an error.

To add objects to your schema, issue the required create statements outside
of a create schema statement. If no schema exists for your user identifier, one
is implicitly created when you create any database object. Thereafter, if you
issue a create schema statement, OpenSQL issues an error.

If, within a create schema statement, you create tables that have referential
constraints, the order of create table statements is not significant. This is
unlike the requirements for creating tables with referential constraints outside
of a Create Schema statement, where the referenced table must exist before a
constraint that references it can be created. For details about referential
constraints, see Create Table (extended) in this chapter.

Other users can reference objects in your schema if you have granted them
the required permissions. To reference an object in a schema other than your
own, specify the object name as follows:

schema.object

For example, user harry can select data from user joe’s employees table (if joe
has granted harry select permission). Harry can issue the following select
statement:

select lname, fname from joe.employees
 where dname = 'accounting';

Restrictions

The following restrictions apply to create table statements within a create
schema statement:

 Create table...as select cannot be used.

 A with clause cannot be specified.

 The following data types cannot be used:

– integer2

– integer4

– float4

– float8

– date

Create Table (extended)

Chapter 9: Extended Statements 9–3

The only valid with clause option for create view statements within a create
schema statement is with check option.

Embedded Usage

Syntax elements cannot be replaced with host language variables.

Permissions

Any user can issue the create schema statement.

Example

Create a schema authorization containing tables, views, and privileges.

create schema authorization joe
create table employees(lname character(30) not null,
 fname character(30) not null,
 salary decimal,
 dname character(10)
 references dept(deptname),
 primary key (lname, fname)
 create table dept(deptname character(10)
 not null unique,
 budget decimal,
 expenses decimal default 0)
 create view mgr (mlname, mfname, mdname) as
 select lname, fname, deptname from employees,dept
 where dname = deptname
grant references(lname, fname)
on table employees to harry;

Create Table (extended)

SQL ESQL

* *

Creates a new base table.

Syntax
[exec sql] create table tablename
 [(column_specification {, column_specification}
 (column_specification {, column_specification }
 [, [constraint constraint_name] table_constraint
 {, [constraint constraint_name] table_constraint}])
 [with with_clause]

Create Table (extended)

9–4 OpenSQL Reference Guide

To create a table and load rows from another table:

[exec sql] create table tablename
 (column_name {, column_name}) as
 subselect
 {union [all]
 subselect}
 [with with_clause]

For the syntax of subselect, see Select in this chapter.

The with_clause parameter consists of the word with followed by a comma-
separated list of with clause options. For an overview of the Enterprise Access
with clause, see DBMS Extensions in the chapter “OpenSQL Features.” For a
list of the valid with clause options for a specific Enterprise Access, see your
Enterprise Access manual. For a list of valid with clause options for the Ingres
DBMS, see the SQL Reference Guide.

The column_specification has the following syntax:

column_name datatype
[[with] default default_spec | with default | not default]
[with null | not null]
[[constraint constraint_name] column_constraint
{ [constraint constraint_name] column_constraint}]

where column_constraint is one or more of the following:

unique [with constraint_with_ clause]

primary key [with constraint_with_clause]

references [schema.]table_name[(column_name)]
 [with constraint_with_clause]

Table constraints must be specified as one or more of the following:

unique (column_name {, column_name}) [with constraint_with_
clause]

primary key (column_name {, column_name}) [with
constraint_with_clause]

foreign key (column_name {, column_name})
references [schema.]table_name [(column_name
{, column_name})] [with constraint_with_clause]

Constraints are described in detail later in this statement description.

Description

The create table statement creates a new base table owned by the user who
issues the statement. If you use the create table...as select syntax, the table
that you create will contain a subset of the columns and values in existing
tables specified by the subselect.

Create Table (extended)

Chapter 9: Extended Statements 9–5

Tablename specifies the name of the new table, and must be a valid object
name. For the rules for naming database objects, see Object Names in the
chapter “Overview of OpenSQL.”

Column Specifications

The following characteristics of the new column can be specified:

 Name—A valid name must be assigned to each column.

 Data type—A valid data type must be assigned to each column.

If create table...as select is specified, the new table takes its column
names and formats from the results of the select clause of the subselect
specified in the as clause (unless different column names are specified).

 Nullability and defaults—Specify:

– whether a column will accept nulls

– whether the column is mandatory

– the value to be assigned if no value is specified by the user (the
default value)

 Constraints—Specify checks to be performed on the contents of a
column. When the table is updated, if the column fails the checks,
OpenSQL issues an error and aborts the statement that attempted to
insert the invalid value.

The following sections describe these characteristics in detail.

Column Defaults and Nullability

The following sections explain how to specify whether columns accept nulls
and how default values are assigned to columns.

Default Values

To specify whether a column requires an entry (is mandatory), use the not
default clause. If the column does not require an entry, specify a value to be
inserted if none is provided by the user (a default value). Valid options are:

 not default—The column is mandatory.

 default default_spec | user | null—OpenSQL inserts the specified value if
the user or program does not specify a value for the column. The default
value must be compatible with the data type of the column.

Create Table (extended)

9–6 OpenSQL Reference Guide

If the default clause is omitted, the column default depends on whether the
column is nullable. Nullable columns default to nulls, and non-nullable columns
are mandatory.

The following is an example of the default option:

create table dept(dname character(10),
 budget decimal default 100000.00,
 creation date default date('01/01/94'));

The following considerations and restrictions apply when specifying a default
value for a column:

 The data type and length of the default value must not conflict with the
data type and length of the column.

 The maximum length for a default value is 1500 characters or the declared
length of the column, whichever is shorter.

 For fixed length string columns, if the column is wider than the default
value, the default value is padded with blanks to the full width of the
column.

 For numeric columns that accept fractional values (floating-point and
decimal), the decimal point character specified for the default value must
match the decimal point character in effect when the value is inserted. To
specify the decimal point character, set II_DECIMAL.

 For date columns, the default value must be a valid date specified using
the date() function. If the time zone is omitted, the time zone defaults to
the time zone of the user inserting the row.

 User (meaning the session’s current user ID) can be specified as the
default value or, for nullable columns, null.

Nullability

To specify whether a column accepts null values, use the with|not null clause:

 with null—The column accepts nulls. OpenSQL inserts null as the default
value if no value is supplied by the user. If the with | not null clause is
omitted, the column is created with null.

 not null—The column does not accept nulls. If the default clause is
omitted or not default is specified, the column is mandatory.

Create Table (extended)

Chapter 9: Extended Statements 9–7

The with | not null clause works in combination with the with | not default
clause, as shown in the following table:

Nullability and
Default Specification

Result

with null The column accepts nulls. If no value is provided, a
null is inserted.

not null The column is mandatory and does not accept nulls.
Typical for primary key columns.

with null default The column accepts null values. If no value is
provided, the default value is inserted.

with null not default The column accepts null values. The user must
provide a value (mandatory column).

not null default The column does not accept nulls. If no value is
provided, the default value is inserted. (The
specified default value cannot be null.)

not null not default The column is mandatory and does not accept nulls.
Typical for primary key columns.

Constraints

To ensure that the contents of columns fulfills your database requirements,
specify constraints. The types of constraints are:

 Unique constraints—Ensures that a value appears in a column only once.
Unique constraints are specified using the unique option.

 Check constraints—Ensures that the contents of a column fulfills user-
specified criteria (for example, “salary >0”). Check constraints are
specified using the check option.

 Referential constraints—Ensures that a value assigned to a column
appears in a corresponding column in another table. Referential
constraints are specified using the references option.

 Primary key constraints—Declares one or more columns for use in
referential constraints in other tables.

Constraints are checked at the end of every statement that modifies the table.
If the constraint is violated, OpenSQL returns an error and aborts the
statement. If the statement is within a multi-statement transaction, the
transaction is not aborted.

Note: Constraints are not checked when adding rows to a table using the copy
statement.

Create Table (extended)

9–8 OpenSQL Reference Guide

Each type of constraint is described in detail in the following sections.
Constraints can be specified for individual columns or for the entire table. For
details, see Column-Level Constraints versus Table-Level Constraints in this
chapter.

The Unique Constraint To ensure that no two rows have the same value in a particular column or set
of columns, specify not null unique. (If you specify a column as unique, you
must also specify not null.) The following is an example of a column-level
unique constraint:

create table dept (dname character(10)
 not null unique, ...);

In the preceding example, the unique constraint ensures that no two
departments have the same name.

To ensure that the data in a group of columns is unique, the unique constraint
must be specified at the table level (rather than specifying unique constraints
for individual columns). A maximum of 32 columns can be specified in a table-
level unique constraint.

The following is an example of a table-level unique constraint:

create table depts (dname character(10) not null,
 dlocation character(10) not null,
 unique (dname, dlocation));

In the preceding example, the unique constraint ensures that no two
departments in the same location have the same name. Note that the columns
are declared not null, as required by the unique constraint.

Any column or set of columns that is designated as the primary key is
implicitly unique and not null. A table can have only one primary key, but can
have any number of unique constraints.

Note: Unique constraints may create system indexes that cannot be explicitly
dropped by the table owner. These indexes are used to enforce the unique
constraint.

The Check Constraint To create conditions that a particular column or set of columns must fulfill,
specify a check constraint using the check option. For example, to ensure that
salaries are positive numbers:

create table emps (name character(25), sal decimal
check (sal > 0));

The expression specified in the check constraint must be a Boolean expression.
For details, see Expressions in the chapter “Elements of OpenSQL
Statements.”

Create Table (extended)

Chapter 9: Extended Statements 9–9

To specify a check constraint for a group of columns, the check constraint
must be specified at the table level (rather than specifying check constraints
for individual columns). The following is an example of a table-level check
constraint:

create table dept (dname character(10),
 location character(10),
 budget decimal,
 expenses decimal,
 check (budget > 0 and expenses <= budget));

The preceding example ensures that each department has a budget and that
expenses do not exceed the budget.

Check constraints cannot include the following:

 Subqueries

 Set functions (aggregate functions)

 Dynamic parameters

 Host language variables

Column-level check constraints cannot refer to other columns.

The Referential
Constraint

To validate an entry against the contents of a column in another table (or
another column in the same table), specify a referential constraint using the
references option. The references option maintains the referential integrity of
your tables.

The column-level referential constraint uses the following syntax:

references [schema.] table_name (column_name)[referential actions]
[constraint_with_clause]

The following is an example of a column-level referential constraint:

create table emp (ename char(10),
 edept char(10) references dept(dname));

In the preceding example, the referential constraint ensures that no employee
is assigned to a department that is not present in the dept table.

The table-level referential constraint uses the following syntax, including the
foreign key… references option:

foreign key (column_name{,column_name})
 references [schema.] table_name [(column_name{,column_name}]
 [referential actions] [constraint_with_clause]

Create Table (extended)

9–10 OpenSQL Reference Guide

The following is an example of a table-level referential constraint:

create table mgr (name char(10),
 empno char(5),
 ...
foreign key (name, empno) references emp);

The preceding example verifies the contents of the name and empno columns
against the corresponding columns in the emp table to ensure that anyone
entered into the table of managers is on file as an employee. This example
omits the names of the referenced column. The emp table must have a
primary key constraint that specifies the corresponding name and employee
number columns.

Referential actions allow the definition of alterate processing options in the
event a referenced row is deleted, or referenced columns are updated when
there are existing matching rows. A referential action specifies either an
update rule or a delete rule, or both, in either sequence.

The on update and on delete rules, use the following syntax:

on update {cascade | set null | restrict | no action}

or

on delete {cascade | set null | restrict | no action}

The “on update cascade” causes the values of the updated referenced
column(s) to be propagated to the referencing columns of the matching rows
of the referencing table.

The “on delete cascade” specifies that if a delete is attempted on a referenced
row that has matching referencing rows, the delete is “cascaded” to the
referencing table as well. That is, the matching referencing rows are also
deleted. If the referencing table is itself a referenced table in some other
referential relationship, the delete rule for that relationship is applied, and so
forth. (Since rule types can be mixed in a referential relationship heirarchy,
the second delete rule may be different from the first delete rule.) If an error
occurs somewhere down the line in a cascaded operation, the original delete
fails, and no update is performed.

In addition to cascade, the no action, set null, and restrict actions are also
supported for both delete and update.

 No action is the default behavior of returning an error upon any attempt to
delete or update a referenced row with matching referencing rows.

 Restrict is a similar to no action, with a minor variation; it behaves
identically, but returns a different error code. Both options are supported
for ANSI SQL compliance.

Create Table (extended)

Chapter 9: Extended Statements 9–11

 Set null causes the referencing column(s) of the matching rows to be set
to the null value (signifying that they do not currently participate in the
referential relationship). The column(s) can be updated later to a non-null
value(s), at which time the resulting row must find a match somewhere in
the referenced table.

The following is example of the delete and update rules:

create table employee (empl_no int not nul),
 emp_name char(20) not null,
 dept_id char(6) references department (dept_id)
 on delete cascade on update cascade,
 mgrno int references employee (empl_no) on update
 cascade
 on delete set null);

If a department row is deleted, all employees in that department are also
deleted. If a department ID is changed in the department table, it is also
changed in all referencing employee rows.

If a manager's ID is changed, his employees are changed to match. If the
manager is fired, all his employees have mgr_id set to null.

The following considerations apply to the table and column being referenced
(the column specified following the keyword, references):

 The referenced table must be an existing base table (it cannot be a view).

 The data types of the columns must be comparable.

 You must have references privilege for the referenced columns. For
details, see Grant in this chapter.

 If the table and column names are specified, the referenced columns must
compose a unique or primary key constraint for the referenced table.

 If multiple columns in a table-level referential constraint are specified, the
columns specified for the referencing table must correspond in number,
data type, and position to the columns specified for the referenced table,
and they must compose a unique or primary key constraint for the
referenced table.

 If the referenced table is specified and the column name is omitted, the
referenced table must have a primary key constraint. The referencing
columns are verified against the referenced table’s primary key.

Create Table (extended)

9–12 OpenSQL Reference Guide

The Primary Key
Constraint

The primary key constraint is used to denote one or more columns to which
other tables will refer in referential constraints. A table can have only one
primary key; the primary key for a table is implicitly unique and must be
declared not null.

The following is an example of a primary key constraint and a related
referential constraint:

Referenced table:

create table partnumbers(partno int primary key...);

Referencing table:

create table inventory(ipartno int...
 foreign key (ipartno) references (partnumbers));

In this case, the part numbers in the inventory table are checked against those
in the partnumbers table; the referential constraint for the inventory table is a
table-level constraint and therefore must specify the foreign key clause. The
referential constraint for the inventory does not specify the column that is
referenced in the partnumbers table. By default, the DBMS checks the column
declared as the primary key. For related details, see The Referential Constraint
in this chapter.

The Constraint Index Options

The primary key/unique and referential constraint definitions can optionally
include a with clause to describe the characteristics of the indexes that are
created by Ingres to enforce the constraints. The constraint with clause can be
appended to both column and table level constraint definitions.

The column_constraint has the following syntax:

unique [with constraint_with_clause]

primary key [with constraint_with_clause]

references [schema.]table_name[(column_name)] [referential_actions][with
constraint_with_clause]

The table_constraint has the following syntax:

unique (column_name {,column_name}) [with constraint_with_clause]

primary key (column_name {,column_name}) [with constraint_with_clause]

foreign key (column_name {,column_name})
 references [schema.]table_name[(column_name
 {,column_name})][referential_actions][with constraint_with_clause]

Create Table (extended)

Chapter 9: Extended Statements 9–13

The constraint with clause consists of one or more of the following options:

 no index

 index = base table structure

 index = index_name

 structure = hash | btree | isam

 fillfactor = n

 minpages = n

 maxpages = n

 leaffill = n

 nonleaffill = n

 allocation = n

 extend = n

 location = (location_name{, location_name})

The no index and index = base table structure options cannot be used in
conjunction with any other constraint with option. All other options can be
used in combination, provided they are separated by commas and enclosed in
parentheses. For example, "with (structure = hash, fillfactor = 70)" is a
sample of the correct syntax to use when more than one option is coded. If
the with clause includes a single option, parentheses are not required.

No Index Option The no index option indicates that no secondary index is created to support
the constraint. It is only permissible for referential constraints and results in
no index being available to check the integrity of deletes and updates to the
referenced table. The database procedures that perform the integrity checks
will still execute in the absence of these indexes. However, the query plan may
use some other user-defined index on the same column(s), or it may resort to
a full table scan of the referencing table, if there is no alternative.

To avoid poor performance, the no index option should only be used if:

 An alternate index on referencing columns is available

 There are very few rows in the referencing table (as in a prototype
application)

 Deletes and updates are rarely (if ever) performed on the referenced table

Create Table (extended)

9–14 OpenSQL Reference Guide

The Index = Base
Table Structure
Option

The index = base table structure option indicates that the base table
structure of the constrained table be used for integrity enforcement, rather
than a newly created secondary index. Obviously, the base table structure
must not be heap, and it must match the column(s) in the constraint
definition. Since non-heap base table structures can only be specified using
the modify statement (after the table has been created), with index = base
table structure can only be used for table constraints defined with alter table
(rather than the create table statement).

The alter table statement, which adds the constraint, must be preceded by the
with index = base table statement. For example:

modify [schema.]table_name to unique_scope = statement

which indicates that the uniqueness semantics enforced by the index are
consistent with Ingres and ANSI rules.

The Index =
Index_Name Option

The index = index_name option can be used for several purposes. If the
named index already exists and is consistent with the column(s) constrained
by the constraint definition, no new index is created. If the named index does
not already exist, the generated index created for constraint enforcement
uses the name, index_name. Finally, if more than one constraint in the same
table definition specifies index = index_name with the same index_name, an
index will be generated with that name and will be shared among the
constraints.

In any case where an existing index is used for a constraint or a single index is
shared among several constraints, the key columns of the index and the
columns of the constraints must be compatible.

All other constraint with options perform the same function as the
corresponding with options of the create index statement and the index
related with options of the create table ... as select statement. Note, though,
that they are limited to those options documented above. For example, the
key and compression options of create index and create table ... as select are
NOT supported for constraint definition.

Column-Level Constraints versus Table-Level Constraints

Constraints can be specified for individual columns as part of the column
specification (column-level constraints) or for groups of columns as part of the
table definition (table-level constraints). Following are examples of each:

Column-level constraints:

create table mytable(name char(10) not null,
 id integer references idtable(id),
 age integer check (age > 0));

Create Table (extended)

Chapter 9: Extended Statements 9–15

Table-level constraints:

create table yourtable(firstname char(20) not null,
 lastname char(20) not null,
 unique(firstname, lastname));

Note: Multiple column constraints are space separated.

Names can be assigned to both column-level and table-level constraints. If the
constraint name is omitted, the DBMS assigns one. To drop a constraint (using
the alter table statement), specify the constraint name. It is advisable to
specify a name when creating a constraint—otherwise system catalogs must
be queried to determine the name assigned by the DBMS when the constraint
was created.

Using “Create table...as Select”

The create table...as select syntax allows you to create a table from another
table or tables. (The create table...as select syntax is an OpenSQL extension,
and is not part of the ANSI/ISO Entry SQL-92 standard.) The new table is
populated with the set of rows resulting from execution of the specified select
statement.

By default, the columns of the new table have the same names as the
corresponding columns of the base table from which you are selecting data.
Different names can be specified for the new columns.

The data types of the new columns are the same as the data types of the
source columns. The nullability of the new columns is determined as follows:

 If a source table column is nullable, then the column in the new table is
nullable.

 If a source table column is not nullable, then the column in the new table
is defined as not null.

If the source column has a default value defined, the column in the new table
retains the default definition. However, if the default value in the source
column is defined using an expression, the default value for the result column
is unknown and its nullability depends on the source columns used in the
expression. If all the source columns in the expression are not nullable, the
result column is not nullable. If any of the source columns are nullable, the
result column is nullable.

A system-maintained logical key column cannot be created using the create
table...as select syntax. When creating a table using create table...as select,
any logical key columns in the source table that are reproduced in the new
table are assigned the format of not system_maintained.

Create Table (extended)

9–16 OpenSQL Reference Guide

Embedded Usage

 Host language variables can be used to specify constant expressions in the
subselect of a create table...as statement.

 Locationname can be specified using a host language string variable.

 The preprocessor does not validate the syntax of the with_clause.

Permissions

This statement is available to all users.

Examples

1. Create the employee table with columns eno, ename, age, job, salary, and
dept.

 create table employee
 (eno smallint,
 ename varchar(20) not null,
 age smallint,
 job smallint,
 salary float4,
 dept smallint);

2. Create a table listing employee numbers for employees who make more
than the average salary.

 create table highincome as
 select eno
 from employee
 where salary >
 (select avg (salary)
 from employee);

3. Create a table specifying defaults.

 create table dept
 (dname char(10)
 location char(10) default 'LA'
 creation_date date default date('1/1/93'));

4. Create a table specifying referential constraints. When a department
number is assigned to an employee, it will be checked against the entries
in the dept table.

 create table emps (
 empno char(5),
 deptno char(5) references dept),
 ...);

5. Create a table specifying check constraints. In this example, department
budgets default to $100,000, expenses to $0. The check constraint insures
that expenses do not exceed the budget.

 create table dept (
 dname char(10),
 budget decimal default 100000,
 expenses decimal default 0,
 check (budget >= expenses));

Create Table (extended)

Chapter 9: Extended Statements 9–17

6. Create a table specifying unique constraints and keys.

create table dept (
 deptno char(5) primary key,
 dname char(10) not null,
 dlocation char(10) not null,
unique (dname, dlocation));

7. Create a table specifying null constraints.

create table emp (
 salary decimal not default with null ,
 hiredate date not default with null,
 sickdays float default 5.0 with null);

8. Unique constraint uses base table structure, not a generated index:

alter table department add primary key (dept_id)
 with index = base table structure;

9. Unique constraint generates index in non-default location. First referential
constraint generates no index at all:

create table employee (empl_no int not null
 unique with location = (ixloc1),
 emp_name char(20) not null,
 dept_id char(6) references department (dept_id) with no index,
 mgrno int references employee (empl_no));

10. Referential and primary key constraints share the same named index:

create table assignment (empl_no int not null
 references employee (empl_no) with (index = assnpkix,
 location = (ixloc2)),
 proj_id int not null references project (proj_id),
 task char(20),
 primary key (empl_no, proj_id) with index =
 assnpkix);

11. Referential action:

create table employee (empl_no int not null
 unique with location = (ixloc1),
 emp_name char(20) not null,
 dept_id char(6) references department (dept_id)
 on delete cascade on update cascade with no index,
 mgrno int references employee (empl_no) on update cascade
 on delete set null);

Grant

9–18 OpenSQL Reference Guide

Grant

SQL ESQL

* *

Grants privileges on the database as a whole or on individual tables, views, or
procedures.

Syntax
[exec sql] grant all [privileges] | privilege {, privilege}
 on [table] [schema.]table_name
 to public | auth_id {, auth_id}
 [with grant option];

Description

The grant statement enables a DBA or user to control access to tables. To
remove privileges, use the revoke statement. The following table describes the
grant statement parameters.

Parameter Description

table_name Name of the table for which the privilege is being defined.

auth_id The name of the users to which you are granting
privileges.

By default, neither the public nor any user has any table privileges. Table
privileges must be granted explicitly. Valid table privileges are:

 Select

 Insert

 Update

For update, a list of columns can optionally be specified; if the column list is
omitted, update privilege is granted to all updatable columns of the table or
view.

 Delete

 References—The references privilege enables specified users to create
referential constraints that reference the specified tables and columns. For
details about referential constraints, see Create Table (extended) in this
chapter.

Grant

Chapter 9: Extended Statements 9–19

A list of columns can optionally be specified. If the column list is omitted,
references privilege is granted to all updateable columns of the table. You
cannot grant the references privilege on a view.

 All [privileges]—All grants select, insert, update, delete, and references on
the specified objects to the specified users.

The Grant All Privileges Option

To grant a privilege on an object you do not own, you must have been granted
the privilege with grant option–only the privileges for which you have grant
option are granted.

The results of granting all privileges on a view you do not own are determined
as follows:

 Select—Granted if you can grant select privilege on all tables and views in
the view definition.

 Update—Granted for all columns for which you can grant update privilege;
if you were granted update...with grant option on a subset of the columns
of a table, update is granted only for those columns.

 Insert—Granted if you can grant insert privilege on all tables and views in
the view definition.

 Delete—Granted if you can grant delete privilege on all tables and views
in the view definition.

 References—The references privilege is not valid for views.

The following example illustrates the results of the grant all privileges option.
The accounting_mgr user creates the following employee table:

create table employee (name character(25),
 department character(5), salary decimal)...

Using the following grant statement, grants the accounting_supervisor user
the ability to select all columns but only allows accounting_supervisor to
update the department column (to prevent unauthorized changes of the salary
column):

grant select, update (department) on table employees
 to accounting_supervisor with grant option;

If the accounting_supervisor user issues the following grant statement:

grant all privileges on table employees to
accounting_clerk;

the accounting_clerk user receives select and update(department) privileges.

Grant

9–20 OpenSQL Reference Guide

The Grant Option

To enable a user to grant a privilege to another user, specify the with grant
option clause.

For example, if user tony, creates a table called mytable, and issues the
following statement:

grant select on tony.mytable to laura
 with grant option;

user laura can select data from tony.mytable and can authorize user evan to
select data from tony.mytable by issuing the following statement:

grant select on tony.mytable to evan;

Because laura did not specify the with grant option clause, evan cannot
authorize another user to select data from tony.mytable.

The owner of an object can grant any privilege to any user (or to public). The
user to whom the privilege is granted with grant option can grant only the
specified privilege. In the preceding example, laura can grant select privilege
but cannot grant, for example, insert privilege.

In the previous example, the second grant (to evan) depends on the first grant
(to laura). If tony revokes select permission from laura (using the revoke
statement), tony must specify how OpenSQL should handle dependent grants
that laura has issued. The choices are:

 Revoke with cascade—Revokes all dependent grants; in the preceding
example, select permission will be revoked from user, evan.

 Revoke with restrict—Do not revoke specified grant if there are
dependent grants. In the preceding example, select permission will not be
revoked from laura because her grant to evan depends on the grant she
received from tony.

For more details, see Revoke in this chapter, and in the Database
Administrator Guide.

Embedded Usage

Specify the with clause using a host string variable (with :hostvar).

Permissions

To grant privileges on an object, you must own the object or have the grant
option for the privilege you are granting.

Revoke

Chapter 9: Extended Statements 9–21

Examples

1. Grant update privileges on the columns, empname and empaddress in the
employee table to the users, joank and gerryr.

grant update(empname, empaddress)
 on table employee
to joank, gerryr;

2. Enable any user to select data from the employee roster.

grant select on emp_roster to public;

3. Enable the accounting manager, rickr, complete access to salary
information and to grant permissions to other users.

 grant all on employee to rickr with grant option;

4. Enable any user to create a table constraint that references the employee
roster.

 grant references on emp_roster to public;

Revoke

SQL ESQL

* *

Revokes database privileges.

Syntax
[exec sql] revoke [grant option for]
 all [privileges] | privilege {, privilege}
 on [table] [schema.]table_name
 from public | auth_id{, auth_id}
 [cascade | restrict];

Revoke

9–22 OpenSQL Reference Guide

Description

The revoke statement removes database privileges granted to the specified
users or public. (To confer privileges, use the grant statement.) You cannot
revoke privileges granted by other users. The following table lists the valid
parameters for this statement:

Parameter Description

privilege Specifies the privilege you want to revoke. (To revoke all
privileges for the object, specify all.) The privilege must be one
of the following:

� Select

� Update

� Insert

� Delete

� References

table_name The name of the table on which the privileges were granted.

auth_id Specifies the authorization identifier from which privileges are
being revoked.

For more information about privileges, see Grant in this chapter.

Revoking the Grant Option

The grant statement grant option enables users other than the owner of an
object to grant privileges on that object. For example:

grant select on employee_roster to mike with grant
 option;

enables mike to grant the select privilege (with or without grant option) to
other users.

The grant option can be revoked without revoking the privilege with which it
was granted. For example:

revoke grant option for select on employees to
 mike...

means that mike can still select data from the employees table, but cannot
grant the select privilege to other users.

Revoke

Chapter 9: Extended Statements 9–23

Restrict versus Cascade

The restrict and cascade options specify how OpenSQL handles dependent
privileges. The cascade option (default) directs OpenSQL to revoke the
specified privileges plus all privileges that depend on the privileges being
revoked. The restrict option directs OpenSQL not to revoke the specified
privilege if there are any dependent privileges.

The owner of an object can grant privileges on that object to any user.
Privileges granted by users who do not own the object are dependent on the
privileges granted with grant option by the owner. For example, if user jerry
owns the employees table, he can grant tom the ability to select data from the
table and to enable other users to select data from the table:

grant select on employees to tom with grant option;

User tom can now enable another user to select data from the employees
table:

grant select on employees to sylvester with grant
 option;

The grant tom conferred on sylvester is dependent on the grant the table’s
owner jerry conferred on tom. In addition, sylvester can enable other users to
select data from the employees table.

 To remove his grant to tom and all grants tom may have issued, jerry
must specify revoke...cascade:

revoke select on employees from tom cascade;

As a result of this statement, the select privilege granted by tom to
sylvester is revoked, as are any select grants issued by sylvester to other
users conferring select privilege for the employees table.

 To prevent dependent privileges from being revoked, jerry must specify
revoke... restrict:

revoke select on employees from tom restrict;

Because there are dependent privileges (tom has granted select privilege
on the employees table to sylvester), this revoke statement will fail, and
no privileges will be revoked.

The restrict and cascade parameters have the same effect whether you are
revoking a specific privilege or the grant option for a specific privilege. In
either case, restrict prevents the operation from occurring if there are
dependent privileges, and cascade causes dependent privileges to be deleted.
When you revoke a grant option with cascade, all dependent privileges are
revoked, not just the grant option portion of the dependent privileges.

Select

9–24 OpenSQL Reference Guide

Embedded Usage

Any portion of the syntax cannot be replaced with host language variables.

Permissions

Any user can issue the revoke statement.

Example

Prevent any user from granting any form of access to the payroll table. Delete
all dependent grants.

 revoke grant option for all on payroll
 from public cascade;

Select

SQL ESQL

*

Retrieves values from one or more tables or views.

Syntax

select [all|distinct] * | result_expression {, result_expression}
 from from_source {, from_source}
 [where search_condition]
 [group by column {, column}]
 [having search_condition]
 {union [all] (select)}
 [order by result_column [asc | desc]
 {, result_column [asc | desc]}];

where result_expression is one of the following:

 [schema.]tablename.* (to select all columns)

 [[schema.]tablename.]columnname [as result_column]
(to select one column)

 expression [as] result_column

Select

Chapter 9: Extended Statements 9–25

For SQL-92 compliant installations, the as keyword in the result expression is
optional. All other select syntax and semantics are documented in the chapter
“OpenSQL Statements.”

Chapter 10: OpenSQL Limits 10–1

Chapter 10: OpenSQL Limits

OpenSQL Limits
To maintain application portability, your OpenSQL application should observe
the limits listed in the following table. Individual host DBMS’s may permit
values in excess of those listed here.

Item Min/Max Limit

Char length Max 240 characters

Columns in index Max 16 columns

Columns in order by clause Max 16 columns

Columns in table Max 127 columns

Columns in view Max 127 columns

Columns: total length in group by
clause

Max 2000 bytes

Columns: total length in order by
clause

Max 2000 bytes

Elements in select list Max 127 elements

Negative float value Min Processor-dependent

Negative float value Max Processor-dependent

Positive float value Min Processor-dependent

Positive float value Max Processor-dependent

Host variables in OpenSQL statement Max 256 variables

Integer value Min -2,147,483,648

Integer value Max +2,147,483,647

Predicates in having clause Max 50 predicates

Predicates in where clause Max 50 predicates

Row length (including overhead) Max 2000 bytes

Scalar functions in select list Max 127 functions

Smallint value Min -32,768

Smallint value Max 32,767

OpenSQL Limits

10–2 OpenSQL Reference Guide

Item Min/Max Limit

SQL identifier Max 18 characters

Tables in SQL statement Max 15 tables

User ID Max 18 characters

Varchar length Max 2000 characters

Chapter 11: OpenSQL Standard Catalogs 11–1

Chapter 11: OpenSQL Standard
Catalogs

This chapter describes the Standard Catalog Interface catalogs. The Standard
Catalog Interface described here corresponds to the formats you will find when
the iidbcapabilities catalog contains the values in the following table.

CAP_CAPABILITY CAP_VALUE

STANDARD_CATALOG_LEVEL 00602

The Standard Catalog Interface is a group of tables and views defined on the
system catalogs of the underlying DBMS. Users who need to query the system
catalogs must use the Standard Catalog Interface.

Unless otherwise noted, values in system catalogs are left justified, and
columns are non-nullable.

The length of char fields, as listed in the Data Type column, is a maximum
length. The actual length of the field is installation-dependent. When
developing applications that access these catalogs, allocate storage based on
the length as shown in the Data Type column.

All dates stored in system catalogs have the following format (underscores and
colons are required):

yyyy_mm_dd hh:mm:ss GMT (Greenwich Mean Time)

Note: In this chapter, “default” means the assumed value if no other value is
present.

Standard Catalog Interface
The Standard Catalog Interface catalogs are read-only views built on system
catalogs of the underlying DBMS. The Standard Catalog Interface provides a
portable representation for information about OpenSQL.

Standard Catalog Interface

11–2 OpenSQL Reference Guide

The iidbcapabilities Catalog

The iidbcapabilities catalog contains information about the capabilities
provided by the Enterprise Access product or Ingres DBMS. The following table
describes the columns in the iidbcapabilities catalog:

Column Name Data Type Description

cap_capability char(32) Contains one of the values listed in the
capability column of the following table.

cap_value char(32) The contents of this field depend on the
capability. See the Values column in the
following table.

The CAP_CAPABILITY
Column

The cap_capability column in the iidbcapabilities catalog contains one or
more of the following values:

Capability Value

CAP_SLAVE2PC Indicates if the DBMS supports Ingres
two-phase commit slave protocol:

Version 6.3 and above: Y

Distributed Option: Y

Enterprise Access product: usually N

DBEVENTS Y if the DBMS supports database
events, N if not.

DBEVENT_GRANT Y if DBEvent related grant statements
are accepted, N if rejected.

DB_NAME_CASE Case sensitivity of the database with
respect to database object names:
LOWER, UPPER, MIXED. Defaults to
LOWER. If the value is MIXED, case
must be carefully preserved when
specifying database objects. This field
applies to names of database objects
(tables, views, columns, and owners.)
Names of user interface objects (such
as forms or reports) are always lower
case.

Standard Catalog Interface

Chapter 11: OpenSQL Standard Catalogs 11–3

Capability Value

DB_DELIMITED_CASE Case conversion performed by the
DBMS for object names specified using
delimited identifiers (that is, in double
quotes). LOWER if delimited identifiers
are translated to lower case, UPPER if
delimited identifiers are translated to
upper case, or MIXED if no case
translation is performed.

DBMS_TYPE The type of DBMS the application is
communicating with. Valid values are
the same as those accepted by the with
dbms clause used in queries. Examples:
INGRES, STAR, RMS. The default value
is INGRES.

DISTRIBUTED Y if the DBMS is distributed, N if not.

ESCAPE Contains Y if DBMS supports the
ESCAPE clause of the LIKE predicate in
the WHERE clause of search
statements. Contains N if ESCAPE is not
supported.

ESCAPE_CHAR Character used to escape pattern
characters in LIKE predicate.

IDENT_CHAR Characters permitted in non-delimited
identifiers beyond alphanumeric and
'_'.

INGRES Set to Y if the DBMS supports all
versions of Ingres Release 6 and Ingres
Release 1; otherwise N. Default is Y.

INGRES/SQL_LEVEL Version of Ingres SQL supported by the
DBMS. Examples:

00600 = 6.0

00601 = 6.1

00602 = 6.2

00603 = 6.3

00604 = 6.4

00605 = OpenIngres 1.x

00800 = OpenIngres 2.0 and Ingres II
2.0

00850 = Ingres II 2.5

00860 = Ingres 2.6

00902 = Ingres r3

Standard Catalog Interface

11–4 OpenSQL Reference Guide

Capability Value

00000 = DBMS does not support Ingres
SQL

Default is 00000.

INGRES/QUEL_LEVEL Version of Ingres QUEL supported by
the DBMS. Examples:

00600 = 6.0

00601 = 6.1

00602 = 6.2

00603 = 6.3

00604 = 6.4

00605 = OpenIngres 1.x

00800 = OpenIngres 2.0 and Ingres II
2.0

00850 = Ingres II 2.5

00860 = Ingres 2.6

00902 = Ingres r3

00000 = Does not support QUEL

Default is 00000.

INGRES_AUTH_GROUP Y if the DBMS supports group
identifiers.

INGRES_AUTH_ROLE Y if the DBMS supports role identifiers.

INGRES_LOGICAL_KEY Y if the DBMS supports Ingres logical
keys.

INGRES_RULES Y if the DBMS supports Ingres rules; N
if it does not.

INGRES_UDT Y if the DBMS supports Ingres user-
defined data types, N if the DBMS does
not support user-defined data types.

MAX_COLUMNS Maximum number of columns allowed
in a table. Default is 127.

NATIONAL_CHARACTER_SET Y if the DBMS supports Unicode, N if it
does not.

Standard Catalog Interface

Chapter 11: OpenSQL Standard Catalogs 11–5

Capability Value

NULL_SORTING How NULL values are sorted relative to
other values:

HIGH NULLS are considered the highest
possible value.

LOW NULLS are considered the lowest
possible value.

FIRST NULLs appear at start regardless
of ascending/descending.

LAST NULLS appear at end regardless
of ascending/descending.

OPEN_SQL_DATES Contains LEVEL 1 if the Enterprise
Access product supports the OpenSQL
date data type.

OPEN/SQL_LEVEL Version of OpenSQL supported by the
DBMS. Examples:

00600 = 6.0

00601 = 6.1

00602 = 6.2

00603 = 6.3

00604 = 6.4

00605 = OpenIngres 1.x

00800 = OpenIngres 2.0 and Ingres II
2.0

00850 = Ingres II 2.5

00860 = Ingres 2.6

00902 = Ingres r3

Default is 00602.

OPENSQL_SCALARS Can be one of three values: 'NATIVE',
'FULL' or LEVEL 1. The default value is
'NATIVE'. 'NATIVE' indicates only native
DBMS scalar functions are supported.
'FULL' indicates full Ingres scalar
function support is provided.

LEVEL 1 indicates some mapping of
Ingres scalar functions. When
OPENSQL_SCALARS is set to LEVEL 1,
an additional table, iigwscalars, is
provided which shows support details
for individual scalar functions. See The
iigwscalars Catalog in this chapter.

Standard Catalog Interface

11–6 OpenSQL Reference Guide

Capability Value

OUTER_JOIN Whether outer joins are supported: N
for no, Y for yes.

OWNER_NAME Contains N if owner.table table name
format not supported. Contains Y if
owner.table format supported. Contains
QUOTED if owner.table supported with
optional quotes (“owner”.table).

PHYSICAL_SOURCE T indicates that both iitables and
iiphysical_tables contain physical table
information.

P indicates that only iiphysical_tables
contains the physical table information.

SAVEPOINTS Y if savepoints behave exactly as in
Ingres, else N. Default is Y.

STANDARD_CATALOG_LEVEL Version of the standard catalog
interface supported by this database.
Valid values:

00602 (default)
00604
00605
00800
00850
00860
00902

For catalog formats, see the appendix
“System Catalogs” in the Database
Administrator Guide.

SQL92_COMPLIANCE The level of SQL-92 supported:

 NONE SQL-92 Entry level
not supported

 ENTRY SQL-92 Entry level

 FIPS-IEF SQL-92 Entry level
plus FIPS Integrity
Enhancements
features

 INTERMEDIATE SQL-92 Intermediate
level

 FULL SQL-92 Full level

Standard Catalog Interface

Chapter 11: OpenSQL Standard Catalogs 11–7

Capability Value

SQL_MAX_CHAR_COLUMN_LEN Maximum length of a CHAR column.
Permits 0 for unsupported and -1 for
unknown or unlimited.

SQL_MAX_VCHR_COLUMN_LEN Maximum length of a VARCHAR
column. Permits 0 for unsupported and
-1 for unknown or unlimited.

SQL_MAX_NCHAR_COLUMN_LEN Maximum length of an NCHAR column.

SQL_MAX_NVCHR_COLUMN_LEN Maximum length of a NVARCHAR
column.

SQL_MAX_BYTE_COLUMN_LEN Maximum length of a BYTE column.
Permits 0 for unsupported and -1 for
unknown or unlimited.

SQL_MAX_VBYT_COLUMN_LEN Maximum length of a VARBYTE column.
Permits 0 for unsupported and -1 for
unknown or unlimited.

SQL_MAX_CHAR_LITERAL_LEN Maximum length of a string literal.
Permits 0 for unsupported and -1 for
unknown or unlimited.

SQL_MAX_BYTE_LITERAL_LEN Maximum length of a hex literal.
Permits 0 for unsupported and -1 for
unknown or unlimited.

SQL_MAX_USER_NAME_LEN Maximum length of a user name.
Permits 0 for unsupported and -1 for
unknown or unlimited.

SQL_MAX_ROW_LEN Maximum length of a row. Permits 0 for
unsupported and -1 for unknown or
unlimited.

SQL_MAX_STATEMENTS Maximum number of active (prepared)
statements. Permits 0 for unsupported
and -1 for unknown or unlimited.

UNION Whether UNION selects are supported:

 N No

 Y Yes

 ALL Yes and UNION ALL.

UNIQUE_KEY_REQ Set to Y if the database service requires
that some or all tables have a unique
key. Set to N or not present if the
database service allows tables without
unique keys.

Standard Catalog Interface

11–8 OpenSQL Reference Guide

The iidbconstants Catalog

The iidbconstants catalog contains values required by the Ingres tools. The
following table describes the columns in the iidbconstants catalog:

Column Name Data Type Description

user_name char(32) Name of the current user

dba_name char(32) Name of the owner of the database

system_owner char(32) The name of the system catalog
owner (for example, $ingres)

The iievents Catalog

The iievents catalog contains an entry for each database event that has been
created. This catalog is present only if the DBEVENTS entry in the
iidbcapabilities catalog section has a value of Y. For complete information
about database events, see Database Events in the chapter “OpenSQL
Features.”

The information is stored in the following format:

Column Name Data Type Description

event_name char(32) Name of the event. This name is unique
among all events owned by user.

event_owner char(32) Owner of the event. This name can be
referenced in the different event statements
to qualify the event.

text_sequence integer Text sequence of create dbevent text.

text_segment varchar (240) Text segment of create dbevent text.

The iigwscalars Catalog

The iigwscalars catalog contains an entry for each function that an Enterprise
Access Product supports. This catalog is present only if the
OPENSQL_SCALARS entry in the iidbcapabilities catalog section has a value of
LEVEL 1. If this catalog is present in your database, it details the level of
support provided for functions.

Standard Catalog Interface

Chapter 11: OpenSQL Standard Catalogs 11–9

The information is stored in the following format:

Column Name Data Type Description

function_name char(32) Name identifying the function.

support char(10) This column has one of four values:

RESTRICT indicates this function is supported
but with restrictions. A restriction may be as
simple as requiring a literal value for a
parameter, or may indicate a slight variation
from the standard Ingres behavior for this
function.

 COMPAT indicates a native DMBS function
exactly matches the Ingres function. No
translation is performed.

TRANS indicates that the function is
translated to the target DMBS SQL without
restrictions.

NO indicates that a function is not supported.

parm1 char(10) A value of LITERAL indicates that the first
parameter to this function must be a literal
value. A value of EXPR indicates that both
literal values and expressions are allowed for
this parameter.

parm2 char(10) LITERAL or EXPR.

parm3 char(10) LITERAL or EXPR.

mapping varchar(253) This column documents the target DBMS SQL
that is generated when the Enterprise Access
product does translations.

comments varchar(400) Comments.

Standard Catalog Interface

11–10 OpenSQL Reference Guide

The iitables Catalog

The iitables catalog contains an entry for each queryable object in the
database (table, view, or index). To find out what tables, views, and indexes
are owned by you or the DBA, you can query this catalog. For example:

select * from iitables where (table_owner = user or
table_owner = (select dba_name from iidbconstants))

Column Name Data Type Description

table_name char(32) The object’s name. Must be a valid object
name.

table_owner char(32) The owner’s user name. Generally, the
creator of the object is the owner.

create_date char(25) The object’s creation date. Blank if unknown.

alter_date char(25) The last time this table was altered. This date
is updated whenever the logical structure of
the table changes, either through changes to
the columns in the table or changes to the
primary key. Physical changes to the table,
such as changes to data, secondary indexes,
or physical keys, do not change this date.
Blank if unknown.

table_type char(8) Type of query object:

T = Table
V = View
I = Index

Further information about tables can be found
in iiphysical_tables. Further information about
views can be found in iiviews.

table_subtype char(8) Specifies the type of table or view. Possible
values are:

N (native) – For standard Ingres databases.

L (links) – For the Distributed Option.

I (imported tables) – For Enterprise Access
products.

(blank) - If unknown

Standard Catalog Interface

Chapter 11: OpenSQL Standard Catalogs 11–11

Column Name Data Type Description

table_version char(8) Version of the object. Enables the user
interfaces to determine where additional
information about this particular object is
stored. This reflects the database type, as
well as the version of an object within a given
database. For Ingres tables, the value for this
field is II2.5.

system_use char(8) Contains S if the object is a system object, U
if user object, or blank if unknown.

Used by utilities to determine which tables
need reloading. If the value is unknown, the
utilities use the naming convention of “ii” for
tables to distinguish between system and
user catalogs. In addition, any table
beginning with ii_ is assumed to be a user
interface object, rather than a DBMS system
object. The standard system catalogs
themselves must be included in the iitables
catalog and are considered system tables.

table_size integer Stores the page size of a table.

The following columns in iitables have values only if table_type is T (table) or I
(index).

Enterprise Access products that do not supply this information set these
columns to -1 for numeric data types, blank for character data types.

Column Name Data Type Description

table_stats char(8) Contains Y if this object has entries in the
iistats table, N if this object does not have
entries. If this field is blank, then query
iistats to determine if statistics exist.

This column is used for optimization of
Ingres databases.

table_indexes char(8) Contains Y if this object has entries in the
iiindexes table that refer to this as a base
table, or N if this object does not have
entries. If the field is blank, then query
iiindexes on the base_table column.

This field is used for optimization of Ingres
databases.

Standard Catalog Interface

11–12 OpenSQL Reference Guide

Column Name Data Type Description

is_readonly char(8) Contains one of these values:

N – If updates are physically allowed

Y – If no updates are allowed

Blank - If unknown

Used for tables that are defined to the
Enterprise Access product only for
retrieval, such as tables in hierarchical
database systems.

If this field is set to Y, then no updates will
work, independent of what permissions
might be set. If it is set to N, updates may
be allowed, depending on whether the
permissions allow it.

concurrent_access char(1) Y if concurrent access is allowed.

num_rows integer The estimated number of rows in the
table. Set to -1 if unknown.

storage_structure char(16) The storage structure for the table: heap,
hash, btree, or isam. Blank if unknown.

is_compressed char(8) Contains Y if the table is stored in
compressed format, N if the table is
uncompressed, blank if unknown.

key_is_compressed char(8) Contains Y if the table uses key
compression, N if no key compression, or
blank if unknown.

duplicate_rows char(8) D – If the table allows duplicate rows.

U - If the table does not allow duplicate
rows.

Blank - If unknown.

The table storage structure (unique or
non-unique keys) can override this
setting.

Standard Catalog Interface

Chapter 11: OpenSQL Standard Catalogs 11–13

Column Name Data Type Description

unique_rule char(8) D - Indicates that duplicate physical
storage structure keys are allowed. (A
unique alternate key may exist in
iialt_columns and any storage structure
keys may be listed in iicolumns.)

U - If the object is an Ingres object,
indicates that the object has unique
storage structure key. If the object is not
an Ingres object, then it indicates that the
object has a unique key, described in
either iicolumns or iialt_columns.

Blank - If uniqueness is unknown or does
not apply.

number_pages integer The estimated number of physical pages
in the table. Set to -1 if unknown.

overflow_pages integer The estimated number of overflow pages
in the table. Set to -1 if unknown.

row_width integer The size, in bytes, of the uncompressed
binary value for a row of this query object.

unique_scope char(8) R if this object is row-level, S if
statement-level, blank if not applicable.

allocation_size integer The allocation size, in pages. Set to –1 if
unknown.

extend_size integer The extend size, in pages. Set to –1 if
unknown.

allocated_pages integer Total number of pages allocated to the
table.

The following columns are used by the Ingres DBMS Server. If an Enterprise
Access does not supply this information, it will set these columns to the default
values: -1 for numeric columns and a blank for character columns. The
information in the following section is not duplicated in iiphysical_tables.

Column Name Data Type Description

expire_date integer Expiration date of table. This is an Ingres
_bintim date.

Standard Catalog Interface

11–14 OpenSQL Reference Guide

Column Name Data Type Description

modify_date char(25) The date on which the last physical
modification to the storage structure of the
table occurred. Blank if unknown or
inapplicable.

location_name char(24) The first location of the table. If there are
additional locations for a table, they are
shown in the iimulti_locations table and
multi_locations is set to Y.

table_integrities char(8) Contains Y if this object has Ingres style
integrities. If the value is blank, query the
iiintegrities table to determine if integrities
exist.

table_permits char(8) Contains Y if this object has Ingres style
permissions.

all_to_all char(8) Contains Y if this object has Ingres permit
all to all, N if not.

ret_to_all char(8) Contains Y if this object has Ingres permit
retrieve to all, N if not.

is_journalled char(8) Contains Y if Ingres journaling is enabled on
this object, N if not.

view_base char(8) Contains Y if object is a base for a view
definition, N if not, or blank if unknown.

multi_locations char(8) Contains Y if the table is in multiple
locations, N if not.

table_ifillpct smallint Fill factor for the index pages used on the
last modify command in the nonleaffill
clause, expressed as a percentage (0 to
100).

Used for Ingres btree structures to rerun the
last modify command.

table_dfillpct smallint Fill factor for the data pages used on the
last modify command in the fillfactor clause,
expressed as a percentage (0 to 100).

Used for Ingres btree, hash, and isam
structures to rerun the last modify
command.

Standard Catalog Interface

Chapter 11: OpenSQL Standard Catalogs 11–15

Column Name Data Type Description

table_lfillpct smallint Fill factor for the leaf pages used on the last
modify command in the leaffill clause,
expressed as a percentage (0 to 100).

Used for Ingres btree structures to rerun the
last modify command.

table_minpages integer Minpages parameter from the last execution
of the modify command.

Used for Ingres hash structures only.

table_maxpages integer Maxpages parameter from the last execution
of the modify command.

Used for Ingres hash structures only.

table_relstamp1 integer High part of last create or modify timestamp
for the table.

table_relstamp2 integer Low part of last create or modify timestamp
for the table.

table_reltid integer The first part of the internal relation ID.

table_reltidx integer The second part of the internal relation ID.

table_relversion integer Stores the version of table.

table_reltotwidth integer This width includes all deleted columns.

table_reltcpri integer Indicates a table's priority in the buffer
cache. Values can be between 0 and 8. Zero
is the default, and 1–8 can be specified
using the priority clause in create table or
modify table.

The iicolumns Catalog

For each queryable object in the iitables catalog, there are one or more entries
in the iicolumns catalog. Each row in iicolumns contains the logical information
on a column of the object. User interfaces and user programs use the
iicolumns catalog to perform dictionary operations and dynamic queries.

Column Name Data Type Description

table_name char(32) The name of the table.

table_owner char(32) The owner of the table.

column_name char(32) The column name.

Standard Catalog Interface

11–16 OpenSQL Reference Guide

Column Name Data Type Description

column_datatype char(32) The column data type name returned
to users and applications:

Decimal
Integer
Int
Float
Real
Double precision
Char
Character
Varchar
Date

column_length integer The length of the column returned to
users and applications. If a data type
contains two length specifiers, this
column uses the first length. Set to
zero for the data types that are
specified without length (date). This
length is not the actual length of the
column’s internal storage. For decimal
columns, contains the precision.

column_scale integer The second number in a two-part
user length specification. For
typename (len1, len2) it will be len2.

column_nulls char(8) Contains Y if the column can contain
null values, N if the column cannot
contain null values.

column_defaults char(8) Contains Y if the column is given a
default value when a row is inserted,
or N if the column is not given a
default value.

column_sequence integer The number of this column in the
corresponding table’s create
statement, numbered from 1.

key_sequence integer The order of this column in the
primary key, numbered from 1. For
an Ingres table, this indicates the
column’s order in the primary storage
structure key. If 0, then this column
is not part of the primary key.

sort_direction char(8) Defaults to A (for ascending) when
key_sequence is greater than 0;
otherwise, this value is a blank.

Standard Catalog Interface

Chapter 11: OpenSQL Standard Catalogs 11–17

Column Name Data Type Description

column_ingdatatype smallint Contains the numeric Ingres
representation of the column’s
external data type (the data type
returned to users and applications).

If the installation has user-defined
data types (UDTs), this column
contains the data type that the UDT is
converted to when returned to an
Ingres user interface product.

If the value is positive then the
column is not nullable. If the value is
negative, then the column is nullable.
The data types and their
corresponding values are:

decimal - 10/10
integer - 30/30
float - 31/31
date* - 3/3
char - 20/20
varchar - 21/21

* Returned as a string

column_internal_
datatype

char(32) The internal data type of the column:
char, c, varchar, text, integer, float,
date, money, table_key, object_key.
If the installation has user-defined
data types, this column contains the
user-specified name.

column_internal_
length

smallint The internal length of the column. For
example, for data type smallint, this
column contains 2. Contains 0 if the
data type is fixed-length. The length
does not include the null indicator
byte for nullable columns, or the
length specifier byte for varchar and
text columns.

column_internal_
ingtype

smallint Contains the numeric representation
of the internal datatype. For a list of
valid values, see column_ingdatatype.
If the installation has user-defined
data types, this column contains the
user-specified data type number.

Standard Catalog Interface

11–18 OpenSQL Reference Guide

Column Name Data Type Description

column_system_
maintained

char(8) Contains Y if the column is system-
maintained, or N if not system-
maintained.

column_updatable char(8) Contains Y if the column can be
updated, N if not, or blank if
unknown.

column_has_default char(8) Contains Y if the column has a default
value, N if not, or blank if unknown.

column_default_
value

varchar(1501) The default value defined for the
column.

The iiphysical_tables Catalog

The information in the iiphysical_tables catalog overlaps with some of the
information in iitables. This information is provided as a separate catalog
primarily for use by Enterprise Access products. Query the physical_source
column, in iidbcapabilities, to determine whether you must query
iiphysical_tables. If you do not want to query iidbcapabilities, then you must
always query iiphysical_tables to be sure of getting the correct information.

If a queryable object is type T or I (for index, in an Ingres installation only),
then it is a physical table and may have an entry in iiphysical_tables as well as
iitables.

In most Enterprise Access products, this table is keyed on table_name plus
table_owner:

Column Name Data Type Description

table_name char(32) The table name. This is an object name.

table_owner char(32) The table owner’s user name.

table_stats char(8) Y if this object has entries in the iistats
table.

table_indexes char(8) Y if this object has entries in the iiindexes
table that refer to this as a base table.

is_readonly char(8) Y if updates are physically allowed on this
object.

concurrent_access char(8) Y if concurrent access is allowed.

num_rows integer The estimated number of rows in the table.
Set to -1 if unknown.

Standard Catalog Interface

Chapter 11: OpenSQL Standard Catalogs 11–19

Column Name Data Type Description

storage_structure char(16) The storage structure of the table. Possible
values are: heap, btree, isam, or hash.

is_compressed char(8) Indicates if the table is stored in
compressed format. Y if it is compressed,
N if not compressed, or blank if unknown.

key_is_compressed char(8) Indicates if the table uses compression. Y if
the table uses compression, N if no
compression, or blank if unknown.

duplicate_rows char(8) Contains U if rows must be unique, D if
duplicates are allowed, or blank if
unknown.

unique_rule char(8) Contains U if the storage structure is
unique, D if duplicates are allowed, or
blank if unknown or inapplicable.

number_pages integer The estimated number of physical pages in
the table. Set to -1 if unknown.

overflow_pages integer The estimated number of overflow pages in
the table. Set to -1 if unknown.

row_width integer The size (in bytes) of the uncompressed
binary value for a row in the object for
Ingres. Set to -1 if this is unknown.

allocation_size integer The table allocation size, in pages. Set to -
1 if unknown.

extend_size integer The extend size , in pages. Set to -1 if
unknown.

allocated_pages integer The total number of pages allocated to the
table.

table_pagesize integer Stores the pages of a table

Standard Catalog Interface

11–20 OpenSQL Reference Guide

The iiviews Catalog

The iiviews catalog contains one or more entries for each view in the database
(views are indicated in iitables by table type = “V”). Because the text_segment
column is limited to 240 characters per row, a single view can require more
than one row to contain all its text. In this case, the text will be broken in mid-
word across the sequenced rows. The text column is pure text, and can
contain newline characters.

Column Name Data Type Description

table_name char(32) The view name. Must be a valid object
name.

table_owner char(32) The view owner’s user name.

view_dml char(8) The language in which the view was
created: S (for SQL) or Q (for QUEL).

check_option char(8) Contains Y if the check option was specified
in the create view statement, N if not, or
blank if unknown.

text_sequence integer The sequence number for the text field,
starting with 1.

text_segment varchar(256) The text of the view definition.

The iiindexes Catalog

Each table with a table_type of I (index) in the iitables table has an entry in
iiindexes. In Ingres, all indexes also have an entry in iiphysical_tables.

Column Name Data Type Description

index_name char(32) The index name. Must be a valid object
name.

index_owner char(32) The index owner’s user name.

create_date char(25) Creation date of index.

base_name char(32) The base table name. Must be a valid
object name.

base_owner char(32) The base table owner. Must be a valid user
name.

storage_structure char(16) The storage structure for the index: heap,
hash, isam, or btree.

Standard Catalog Interface

Chapter 11: OpenSQL Standard Catalogs 11–21

Column Name Data Type Description

is_compressed char(8) Contains Y if the table is stored in
compressed format, N if the table is
uncompressed, or blank if unknown.

unique_rule char(8) Contains U if the index is unique, D if
duplicate key values are allowed, or blank
if unknown.

unique_scope char(8) Contains S if uniqueness is checked after
completion of queries or R if uniqueness is
checked after each row is modified or
inserted.

system_use char(8) Contains S if the index was created by the
DBMS, U if created by a user, or blank if
unknown. (The Ingres DBMS creates
unique indexes to enforce unique
constraints on tables.)

persistent char(8) Contains Y if the index is retained when its
base table is modified (using the Ingres
modify statement), or N if the index is
dropped when the table is modified.

The iiindex_columns Catalog

For indexes, any Ingres columns that are defined as part of the primary index
key will have an entry in iiindex_columns. For a full list of all columns in the
index, use the iicolumns catalog.

Column Name Data Type Description

index_name char(32) The index containing column_name. This is
an object name.

index_owner char(32) The index owner. Must be a valid user name.

column_name char(32) The name of the column. Must be a valid
object name.

key_sequence integer Sequence of column within the key,
numbered from 1.

sort_direction char(8) Defaults to A (ascending).

Standard Catalog Interface

11–22 OpenSQL Reference Guide

The iialt_columns Catalog

All columns defined as part of an alternate key have an entry in iialt_columns.

Column Name Data Type Description

table_name char(32) The table to which column_name belongs.

table_owner char(32) The table owner.

key_id integer The number of the alternate key for this
table.

column_name char(32) The name of the column.

key_sequence smallint Sequence of column within the key,
numbered from 1.

The iistats Catalog

This catalog contains entries for columns that have statistics.

Column Name Data Type Description

table_name char(32) The name of the table.

table_owner char(32) The table owner’s user name.

column_name char(32) The column name to which the statistics
apply.

create_date char(25) The date on which statistics were gathered.

num_unique float8 The number of unique values in the column.

rept_factor float8 The repetition factor.

has_unique char(8) Contains Y if the column has unique values;
otherwise, N.

pct_nulls float8 The percentage (fraction of 1.0) of the table
which contains NULL for the column.

num_cells integer The number of cells in the histogram.

column_domain integer Identifies the domain from which the
column draws its values.

is_complete char(8) Contains Y if the column contains all
possible values in its domain, N if the
column does not contain all possible values
in its domain, or blank if unknown.

Standard Catalog Interface

Chapter 11: OpenSQL Standard Catalogs 11–23

Column Name Data Type Description

stat_version char(8) Version of statistics (for example, ING6.5).

hist_data_length integer Length of the histogram boundary values.

The iihistograms Catalog

The iihistograms table contains histogram information used by the optimizer.

Column Name Data Type Description

table_name char(32) The table for the histogram. Must be a valid
object name.

table_owner char(32) The table owner’s user name.

column_name char(32) The name of the column.

text_sequence integer The sequence number for the histogram,
numbered from 1. There may be several rows
in this table, used to order the
“text_segment” data when histogram is read
into memory.

text_segment char(228) The encoded histogram data, created by
optimizedb.

The iiprocedures Catalog

The iiprocedures catalog contains one or more entries for each database
procedure defined on a database. Because the text of the procedure definition
can contain more than 240 characters, iiprocedures may contain more than
one entry for a single procedure. The text may contain newlines and may be
broken mid-word across rows.

This table is keyed on procedure_name and procedure_owner:

Column Name Data Type Description

procedure_name char(32) The database procedure name, as
specified in the create procedure
statement.

procedure_owner char(32) The procedure owner’s Ingres
username.

create_date char(25) The procedure’s creation date.

Standard Catalog Interface

11–24 OpenSQL Reference Guide

Column Name Data Type Description

proc_subtype char(8) The subtype of this procedure. For
standard Ingres procedures, this will be
N(native). For the Distributed Option,
this may be I (imported).

text_sequence smallint The sequence number for the
test_segment.

text_segment varchar(240) The text of the procedure definition.

system_use char(8) Contains S if the procedure is system-
generated, U if created by a user, or
blank if unknown. Ingres generates
procedures to enforce table constraints.

The iiregistrations Catalog

The iiregistrations catalog contains the text of register statements, and is used
by Ingres Distributed Option and Enterprise Access products.

Column Name Data Type Description

object_name char(32) The name of the registered table, view, or
index.

object_owner char(32) The name of the owner of the table, view,
or index.

object_dml char(8) The language used in the registration
statement. S for SQL or Q for QUEL.

object_type char(8) Describes the object type of object_name.
The values are T if the object is a table, V
if it is a view, or I if it is an index.

object_subtype char(8) Describes the type of table or view created
by the register statement. For the
Distributed Option, this will be L (link). For
an Enterprise Access product, this will be I
(imported object).

text_sequence smallint The sequence number of the text field,
numbered from 1.

text_segment Varchar (240) The text of the register statement.

Mandatory and Ingres-Only Standard Catalogs

Chapter 11: OpenSQL Standard Catalogs 11–25

The iisynonyms Catalog

The iisynonyms catalog contains information about the synonyms that have
been defined for the database. Entries appear in iisynonyms when a create
synonym statement is issued. Entries are removed when a drop synonym
statement is issued for an existing synonym, or when a drop table|view|index
statement drops the table on which the synonym is defined.

Column Name Data
Type

Description

synonym_name char(32) The name of the synonym.

synonym_owner char(32) The owner of the synonym.

table_name char(32) The name of the table, view or index for
which the synonym was created.

table_owner char(32) The owner of the table.

Mandatory and Ingres-Only Standard Catalogs
Mandatory catalogs are required to be present on all installations. Ingres-only
catalogs are required for Ingres installations. This section lists the catalogs in
each category. For a detailed description on all catalogs, see the Database
Administrator Guide.

Mandatory Catalogs with Entries Required

The following catalogs must be present on both Enterprise Access product and
Ingres installations. These catalogs must contain entries.

 iidbcapabilities

 iidbconstants

 iitables

 iicolumns

Mandatory and Ingres-Only Standard Catalogs

11–26 OpenSQL Reference Guide

Mandatory Catalogs Without Entries Required

The following catalogs must be present on both Enterprise Access product and
Ingres installations. However, these catalogs are not required to contain
entries.

 iiphysical_tables

 iiviews

 iiindexes

 iiindex_columns

 iialt_columns

 iistats

 iihistograms

 iiaudittables

 iiconstraint_indexes

 iiconstraints

 iikeys

 iiref_constraints

 iisecurity_alarms

Ingres-Only Catalogs

The following catalogs are required by Ingres installations.

 iipermits

 iiintegrities

 iimulti_locations

 iirules

 iilog_help

 iifile_info

Appendix A: Keywords A–1

Appendix A: Keywords

This appendix lists OpenSQL keywords and indicates the contexts in which
they are reserved. This list allows you to avoid assigning object names that
conflict with reserved words.

Note: The keywords in this list do not necessarily correspond to supported
Ingres features. Some words are reserved for future or internal use and to
provide backward compatibility with older features.

Keyword List
In the following table, the column headings have the following meanings:

 ISQL (Interactive SQL) - These keywords are reserved by the DBMS.

 ESQL (Embedded SQL) - These keywords are reserved by the SQL
preprocessors.

 IQUEL (Interactive QUEL) - These keywords are reserved by the DBMS.

 EQUEL (Embedded QUEL) - These keywords are reserved by the QUEL
preprocessors.

 4GL – These keywords are reserved in the context of SQL or QUEL in 4GL
routines.

Note: The ESQL and EQUEL preprocessors also reserve forms statements. For
details about forms statements, see the Forms-based Application Development
Tools User Guide.

Single Keywords

The following table displays OpenSQL keywords:

 SQL QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

abort * * * *

activate * * * *

add * * * *

addform * * * *

after * * * *

Keyword List

A–2 OpenSQL Reference Guide

 SQL QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

all * * * *

alter * * * *

and * * * *

any * * * *

append * * * *

array * * * *

as * * * *

asc * * * *

at * * * *

authorization * * * *

avg * * * *

avgu * * * *

before * * * *

begin * * * *

between * * * *

breakdisplay * * * *

by * * * *

byref * * * *

call * * * *

callframe * * * *

callproc * * * *

cascade * * * *

case * *

cast *

check * * * *

clear * * * *

clearrow * * * *

close * * * *

coalesce *

Keyword List

Appendix A: Keywords A–3

 SQL QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

column * * * *

command * * * *

commit * * * *

committed * * * *

connect * * * *

constraint * * * *

continue * * * *

copy * * * *

copy_from *

copy_into *

count * * * *

countu * * * *

create * * * *

current * * * *

current_user * * * *

curval * *

cursor * * * *

cycle * *

datahandler * * * *

dbms_password *

declare * * * *

default * * * *

define * * * *

delete * * * *

deleterow * * * *

desc * * * *

describe * * * *

descriptor * * * *

destroy * * * *

Keyword List

A–4 OpenSQL Reference Guide

 SQL QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

direct * * * *

disconnect * * * *

display * * * *

distinct * * * *

distribute * * * *

do * * * *

down * * * *

drop * * * *

else * * * *

elseif * * * *

enable * * * *

end * * * *

end-exec * * * *

enddata * * * *

enddisplay * * * *

endfor *

endforms * * * *

endif * * * *

endloop * * * *

endrepeat *

endretrieve * * * *

endselect * * * *

endwhile * * * *

escape * * * *

except *

exclude * * * *

excluding * * * *

execute * * * *

exists * * * *

Keyword List

Appendix A: Keywords A–5

 SQL QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

exit * * * *

fetch * * * *

field * * * *

finalize * * * *

first * *

for * * * *

foreign * * * *

formdata * * * *

forminit * * * *

forms * * * *

from * * * *

full * * * *

get * * * *

getform * * * *

getoper * * * *

getrow * * * *

global * * * *

goto * * * *

grant * * * *

granted *

group * * * *

having * * * *

help * * * *

help_forms * * * *

help_frs * * * *

helpfile * * * *

identified * * * *

if * * * *

iimessage * * * *

Keyword List

A–6 OpenSQL Reference Guide

 SQL QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

iiprintf * * * *

iiprompt * * * *

iistatement * * * *

immediate * * * *

import * * * *

in * * * *

include * * * *

increment * *

index * * * *

indicator * * * *

ingres * * * *

initial_user * * * *

initialize * * * *

inittable * * * *

inquire_equel * * * *

inquire_forms * * * *

inquire_frs * * * *

inquire_ingres * * * *

inquire_sql * * * *

insert * * * *

insertrow * * * *

integrity * * * *

intersect *

into * * * *

is * * * *

isolation * * * *

join * * * *

key * * * *

leave *

Keyword List

Appendix A: Keywords A–7

 SQL QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

left * * * *

level * * * *

like * * * *

loadtable * * * *

local * * * *

max * * * *

maxvalue * *

menuitem * * * *

message * * * *

min * * * *

minvalue * *

mode * * * *

modify * * * *

module * * * *

move * * * *

natural * * * *

next * * * *

nextval * *

nocache * *

nocycle * *

noecho * * * *

nomaxvalue * *

nominvalue * *

noorder * *

not * * * *

notrim * * * *

null * * * *

nullif *

of * * * *

Keyword List

A–8 OpenSQL Reference Guide

 SQL QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

on * * * *

only * * * *

open * * * *

option * * * *

or * * * *

order * * * *

out * * * *

outer * * * *

param * * * *

partition *

permit * * * *

prepare * * * *

preserve * * * *

primary * * * *

print * * * *

printscreen * * * *

privileges * * * *

procedure * * * *

prompt * * * *

public * * * *

purgetable * *

putform * * * *

putoper * * * *

putrow * * * *

qualification * * * *

raise * * * *

range * * * *

rawpct * *

read * * * *

Keyword List

Appendix A: Keywords A–9

 SQL QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

redisplay * * * *

references * * * *

referencing * * * *

register * * * *

relocate * * * *

remove * * * *

rename * * * *

repeat * * * *

repeatable * * * *

repeated * * * *

replace * * * *

replicate * * * *

restart * *

restrict * * * *

result * *

resume * * * *

retrieve * * * *

return * * * *

revoke * * * *

right * * * *

roll *

rollback * * * *

row * *

rows * * * *

run * * * *

save * * * *

savepoint * * * *

schema * * * *

screen * * * *

Keyword List

A–10 OpenSQL Reference Guide

 SQL QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

scroll * * * *

scrolldown * * * *

scrollup * * * *

section * * * *

select * * * *

serializable * * * *

session * * * *

session_user * * * *

set * * * *

set_4gl * * * *

set_equel * * * *

set_forms * * * *

set_frs * * * *

set_ingres * * * *

set_sql * * * *

sleep * * * *

some * * * *

sort * * * *

sql * * * *

start * *

stop * * * *

submenu * * * *

substring * *

sum * * * *

sumu * * * *

system * * * *

system_
maintained

* * * *

system_user * * * *

table * * * *

Keyword List

Appendix A: Keywords A–11

 SQL QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

tabledata * * * *

temporary * * * *

then * * * *

to * * * *

type * * * *

uncommitted * *

union * * * *

unique * * * *

unloadtable * * * *

until * * * *

up * * * *

update * * * *

user * * * *

using * * * *

validate * * * *

validrow * * * *

values * * * *

view * * * *

when * * * *

whenever * * * *

where * * * *

while * * * *

with * * * *

work * * * *

write * *

Keyword List

A–12 OpenSQL Reference Guide

Double Keywords

The following table lists OpenSQL double keywords:

 SQL QUEL

Double Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

after field * * * *

alter default *

alter group * * * *

alter location * * * *

alter profile *

alter role * * * *

alter security_audit * * * *

alter_sequence * *

alter table * * * *

alter user * * * *

array of * * * *

base table structure *

before field * * * *

begin transaction * * * *

by role *

by user * * * *

call on * * * *

call procedure * * * *

class of * * * *

clear array *

close cursor * * * *

comment on * * * *

connect to * * * *

copy table * * * *

create dbevent * * * *

create domain *

create group * * * *

Keyword List

Appendix A: Keywords A–13

 SQL QUEL

Double Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

create integrity * * * *

create link * * * *

create location * * * *

create permit * * * *

create procedure * * * *

create profile * * *

create role * * * *

create rule * * * *

create security_alarm * * * *

create sequence * *

create synonym * * * *

create user * * * *

create view * * * *

cross join * *

curr value *

current installation * * * *

current value * *

define cursor * * * *

declare cursor * * * *

define integrity * * * *

define link * * * *

define location * * * *

define permit * * * *

define qry * * * *

define query * * * *

define view * * * *

delete cursor * * * *

describe form *

destroy integrity * * * *

destroy link * * * *

Keyword List

A–14 OpenSQL Reference Guide

 SQL QUEL

Double Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

destroy permit * * * *

destroy table * * * *

destroy view * * * *

direct connect * * * *

direct disconnect * * * *

direct execute * * * *

disable security_audit * * * *

disconnect current * * * *

display submenu * * * *

drop dbevent * * * *

drop domain *

drop group * * * *

drop integrity * * * *

drop link * * * *

drop location * * * *

drop permit * * * *

drop procedure * * * *

drop profile * *

drop role * * * *

drop rule * * * *

drop security_alarm * * * *

drop sequence * *

drop synonym * * * *

drop user * * * *

drop view * * * *

each row *

each statement *

enable security_audit * * * *

end exclude *

end transaction * * * *

Keyword List

Appendix A: Keywords A–15

 SQL QUEL

Double Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

exec sql * * * *

execute immediate * * * *

execute on * * * *

execute procedure * * * *

foreign key * * * *

for deferred * * * *

for direct * * * *

for readonly * * * *

for retrieve * * * *

for update * * * *

from group * * * *

from role * * * *

from user * * * *

full join * * * *

full outer *

get attribute *

get data * * *

get dbevent * * *

get global *

global temporary * * * *

help all *

help comment * * * *

help integrity * * * *

help permit * * * *

help table * * * *

help view * * * *

identified by * * * *

inner join * * * *

is null * * * *

Keyword List

A–16 OpenSQL Reference Guide

 SQL QUEL

Double Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

isolation level * *

left join * * * *

left outer * *

modify table * * * *

next value * *

no cache * *

no cycle * *

no maxvalue * *

no minvalue * *

no order *

not like * * * *

not null * * * *

on commit * * * *

on current * * * *

on database * * * *

on dbevent * * * *

on location * * * *

on procedure * * * *

on sequence *

only where * * * *

open cursor * * * *

order by * * * *

primary key * * * *

procedure returning * * * *

put data * * * *

raise dbevent * * * *

raise error * * * *

read only *

read write *

Keyword List

Appendix A: Keywords A–17

 SQL QUEL

Double Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

register dbevent * * * *

register table * * * *

register view * * * *

remote system_password *

remote system_user *

remove dbevent * * * *

remove table * * * *

remove view * * * *

replace cursor * * * *

result row * *

resume entry * * * *

resume menu * * * *

resume next * * * *

retrieve cursor * * * *

right join * * * *

run submenu * * * *

session group * * * *

session role * * * *

session user * * * *

set aggregate * * * *

set autocommit * * * *

set cache * * * *

set connection *

set cpufactor * * * *

set date_format * * * *

set ddl_concurrency * * * *

set deadlock * * * *

set decimal * * * *

set flatten * *

Keyword List

A–18 OpenSQL Reference Guide

 SQL QUEL

Double Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

set global *

set hash * *

set io_trace * * * *

set j_freesz1 * * * *

set j_freesz2 * * * *

set j_freesz3 * * * *

set j_freesz4 * * * *

set j_sortbufsz * * * *

set jcpufactor * * * *

set joinop * * * *

set journaling * * * *

set lock_trace * * * *

set lockmode * * * *

set log_trace * * * *

set logdbevents * * * *

set logging * * * *

set maxconnect * *

set maxcost * * * *

set maxcpu * * * *

set maxidle * *

set maxio * * * *

set maxpage * * * *

set maxquery * * * *

set maxrow * * * *

set money_format * * * *

set money_prec * * * *

set nodeadlock * * * *

set noflatten * *

set nohash *

Keyword List

Appendix A: Keywords A–19

 SQL QUEL

Double Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

set noio_trace * * * *

set nojoinop * * * *

set nojournaling * * * *

set nolock_trace * * * *

set nolog_trace * * * *

set nologdbevents * * * *

set nologging * * * *

set nomaxconnect * *

set nomaxcost * * * *

set nomaxcpu * * * *

set nomaxidle * *

set nomaxio * * * *

set nomaxpage * * * *

set nomaxquery * * * *

set nomaxrow * * * *

set noojflatten *

set nooptimizeonly * * * *

set noparallel *

set noprintdbevents * * * *

set noprintqry * * * *

set noprintrules * * * *

set noqep * * * *

set norowlabel_visible *

set norules * * * *

set nosql * * * *

set nostatistics * * * *

set notrace * * * *

set nounicode_substitution *

set ojflatten *

set optimizeonly * * * *

Keyword List

A–20 OpenSQL Reference Guide

 SQL QUEL

Double Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

set parallel *

set printdbevents * * * *

set printqry * * * *

set printrules *

set qbufsize * * * *

set qep * * * *

set query_size * * * *

set random_seed * *

set result_structure * * * *

set ret_into * * * *

set role *

set rowlabel_visible *

set rules * * * *

set session * * * *

set sortbufsize * * * *

set sql * * * *

set statistics * * * *

set trace * * * *

set unicode_substitution *

set update_rowcount * *

set work * * * *

system user * * * *

to group * * * *

to role * * * *

to user * * * *

user authorization * * * *

with null * * * *

with short_remark * * * *

ANSI/ISO SQL Keywords

Appendix A: Keywords A–21

ANSI/ISO SQL Keywords
The following keywords are ANSI/ISO standard keywords that are not
currently reserved in SQL or embedded SQL. You may want to treat these as
reserved words to ensure compatibility with other implementations of SQL.

absolute decimal lower

action deferrable match

allocate deferred minute

alter desc module

are diagnostics month

asc domain names

assertion double national

bit else nchar

bit_length except no

both exception nullif

cascaded exec numeric

case external octet_length

cast extract only

catalog false option

char first outer

character float output

char_length found overlaps

character_length get pad

coalesce go partial

collate hour position

collation identity precision

connection initially prior

constraints input privileges

convert insensitive read

corresponding int real

cross integer relative

current_date intersects second

current_time interval size

current_timestamp isolation smallint

date language space

day last sql

deallocate leading sqlcode

dec level sqlerror

ANSI/ISO SQL Keywords

A–22 OpenSQL Reference Guide

substring translate varchar

then translation varying

time trim work

timestamp true write

timezone_hour unknown year

timezone_minute upper zone

trailing usage

transaction value

Appendix B: Terminal Monitors B–1

Appendix B: Terminal Monitors

The terminal monitors let you interactively enter, edit, and execute individual
queries or files containing queries. The terminal monitor also let you execute
operating system level commands.

There are two versions of the terminal monitor:

 Forms-based

 Line-based

This chapter describes the line-based version, and includes instructions on how
to invoke the Terminal Monitor and issue queries interactively.

For information about the forms-based version of the Terminal Monitor, see
the Character-based Querying and Reporting Tools User Guide.

Accessing the Terminal Monitor
To access the line-based Terminal Monitor, type this command at the
operating system prompt:

sql [flags]

The sql command accepts a variety of flags that define how the Terminal
Monitor and the DBMS Server behave during your session. For details about
these flags, see the sql command description in the Command Reference
Guide.

The following table lists some useful flags:

Flag Description

-a Disables the autoclear function. This means that the query buffer
is never automatically cleared. It is as if you inserted the \append
command after every \go. This flag requires you to explicitly clear
the query buffer using \reset after every query.

-d Turns off display of the dayfile (the text file that is displayed when
the Terminal Monitor is invoked).

-s Suppresses status messages. All messages except error messages
are turned off, including login and logout messages, the dayfile,
and prompts. This flag is useful for executing queries redirected
from files.

The Query Buffer

B–2 OpenSQL Reference Guide

The Query Buffer
In the Terminal Monitor, each query that you type is placed in a query buffer,
rather than executed immediately. The queries are executed when you type
the execution command (\go or \g). The results, by default, appear on your
terminal. For example, assume that you have a table called employee that lists
all employees in your company. To see a list of those employees who live in a
particular city (cityA), you could enter the following statement:

select name from employee where city='cityA'
\g

The query is placed in the query buffer and executed when you enter \g. The
returned rows display on your terminal.

Several other operations can also be performed on the query buffer. You can:

 Edit the contents.

 Print the contents.

 Write the contents to another file.

After a \go command, the query buffer is cleared if another query is typed
unless a command that affects the query buffer is typed first. Commands that
retain the query buffer contents are:

\append or \a
\edit or \e
\print or \p
\bell
\nobell

For example, typing:

help parts
\go
select * from parts

results in the query buffer containing:

select * from parts

whereas, typing:

help parts
\go
\print
select * from parts

results in the query buffer containing:

help parts
select * from parts

Terminal Monitor Commands

Appendix B: Terminal Monitors B–3

This feature can be overridden by executing the \append command before
executing the \go command or by specifying the -a flag when issuing the sql
command to begin your session.

Terminal Monitor Commands
The Terminal Monitor commands allow you to manipulate the contents of the
query buffer or your environment. Unlike the OpenSQL statements that you
type into the Terminal Monitor, Terminal Monitor commands are executed as
soon as the Return key is pressed.

All of the Terminal Monitor commands must be preceded with a backslash (\).
To enter a backslash literally, you must enclose it in quotes. For example, the
following statement inserts a backslash into the Test table:

insert into test values('\')\g

Some Terminal Monitor commands accept a file name as an argument. These
commands must appear alone on a single line. The Terminal Monitor interprets
all characters appearing on the line after such commands as a file name.
Those Terminal Monitor commands that do not accept arguments can be
stacked on a single line. For example:

\date\go\date

returns the date and time before and after execution of the current query
buffer.

The Terminal Monitor commands are shown in the following table:

 Command Description

 \r or \reset Erase the entire query (reset the query buffer). The
former contents of the buffer are lost and cannot be
retrieved.

 \p or \print Print the current query. The contents of the buffer are
printed on the user terminal.

Windows

UNIX

\e or \ed or \edit or
\editor [filename]

Enter the text editor of the operating system
(designated by the startup file). Use the appropriate
editor exit command to return to the Terminal Monitor.
If no file name is given, the current contents of the
query buffer are sent to the editor, and upon return,
the query buffer is replaced with the edited query. If a
file name is given, the query buffer is written to that
file. On exit from the editor, the file contains the edited
query, but the query buffer remains unchanged.

Terminal Monitor Commands

B–4 OpenSQL Reference Guide

 Command Description

VMS

 Enter the text editor (see the VAX EDT Editor manual).
Use the EDT command exit or the sequence of
commands, write followed by quit, to return to the
Terminal Monitor. If no file name is given, the current
contents of the query buffer are sent to the editor, and
upon return, the query buffer is replaced with the
edited query. If a file name is given, the query buffer is
written to that file, and on exit from the editor, the file
contains the edited query, but the workspace remains
unchanged.

 \g or \go Process the current query. The contents of the buffer
are transmitted to the DBMS and run.

 \time or \date Print the current time and date.

 \a or \append Append to the query buffer. Typing \append after
completion of a query overrides the auto-clear feature
and guarantees that the query buffer will not be reset
until executed again.

UNIX

\s or \sh or \shell Escape to the UNIX shell (command line interpreter).
Pressing Ctrl+D exits the shell and returns you to the
Terminal Monitor.

VMS

 Escape to the command line interpreter to execute VMS
commands. The VAX command line interpreter (DCL) is
initiated. Subsequently, typing the logout command
exits DCL and returns you to the Terminal Monitor.

 \q or \quit Exit the Terminal Monitor.

 \cd or \chdir dir_name Change the working directory of the monitor to the
named directory.

 \i or \include or \read
filename

Read the named file into the query buffer. Backslash
characters in the file are processed as they are read.

 \w or \write filename Write the contents of the query buffer to the named
file.

Messages and Prompts

Appendix B: Terminal Monitors B–5

 Command Description

 \script [filename] Write/stop writing the subsequent SQL statements and
their results to the specified file. If no file name is
supplied with the \script command, output is logged to
a file called script.ing in the current directory. The
\script command toggles between logging and not
logging your session to a file. If you supply a file name
on the \script command that terminates logging to a
file, the file name is ignored.

Use this command to save result tables from SQL
statements for output. The \script command in no way
impedes the terminal output of your session.

 \bell and \nobell Tell the Terminal Monitor to include (\bell) or not to
include (\nobell) a bell (that is, Ctrl+G) with the
continue or go prompt. The default is \nobell.

 \[no]continue Tell the Terminal Monitor to continue statement
processing on error or not to continue (nocontinue). In
either case, the error message displays. The command
can be abbreviated to \co (\continue) or \noco
(\nocontinue). The default action is to continue. This
command can be used to change that behavior. You
can also change the default by setting
II_TM_ON_ERROR. For information about
II_TM_ON_ERROR, see the System Administrator
Guide.

Messages and Prompts
The Terminal Monitor has a variety of messages to keep you informed of its
status and that of the query buffer.

When you log in, the Terminal Monitor prints a login message that tells the
version number and the login time. Following that message, the dayfile
appears.

When the Terminal Monitor is ready to accept input and the query buffer is
empty, the message go appears. The message, continue, appears instead, if
there is something in the query buffer.

The prompt, >>editor, indicates that you are in the text editor.

Character Input and Output

B–6 OpenSQL Reference Guide

Character Input and Output
When you input non-printable ASCII characters through the Terminal Monitor,
the Terminal Monitor maps these characters to blanks. Whenever this occurs,
the Terminal Monitor displays the message:

Non-printing character nnn converted to blank

where nnn is replaced with the actual character. For example, if you enter the
statement:

insert into test values('^La')

the Terminal Monitor converts the ^L to a blank before sending it to the DBMS
and displays the message described above.

To insert non-printing data into a char or varchar field, specify the data as a
hexadecimal value. For example:

insert into test values (x’07’);

This feature can be used to insert a newline character into a column:

insert into test values (’Hello world’+x’0a’);

This statement inserts ’Hello world\n’ into the test table.

On output, if the data type is char or varchar, any binary data are shown as
octal numbers (\000, \035, and so on.). To avoid ambiguity, any backslashes
present in data of the char or varchar type are displayed as double
backslashes. For example, if you insert the following into the “test” table:

insert into test values('\aa')

when you retrieve that value, you will see:

\\aa

Help
The Help statement provides information about a variety of OpenSQL
statements and features. For a complete list of help options, see Help in the
chapter “OpenSQL Statements.”

Aborting the Editor (VMS only)

Appendix B: Terminal Monitors B–7

Aborting the Editor (VMS only)

VMS

Do not type Ctrl+Y and Ctrl+C while you are escaped to an editor (unless
the editor assigns its own meaning to Ctrl+C) or VMS. VMS does not
properly signal these events to the initiating process.

Appendix C: Generic Error Codes C–1

Appendix C: Generic Error Codes

This appendix lists Ingres generic error codes and maps generic errors to
SQLSTATE values. Error code mapping works as follows:

 Proprietary error codes - Each host DBMS returns a set of proprietary
error codes. These error codes are unique to the DBMS and therefore not
useful for developing portable applications. Enterprise Access products
map proprietary error codes to generic error codes. This is a many-to-one
mapping: many proprietary error codes may map to a single generic error
code. For details about proprietary error codes, see your host DBMS
documentation.

 Generic error codes - Enterprise Access products return a consistent set
of errors. To enable your application to interact with different host DBMS
(through Enterprise Access products), your applications should check
generic error codes.

 SQLSTATE - SQLSTATE is the ANSI standard error variable. If you are
developing ANSI-compliant applications, your application should check
SQLSTATE. The mapping of generic errors to the SQLSTATE is many-to-
one: many generic errors may map to a single SQLSTATE value.

SQLSTATE Values
The following table lists the values returned in SQLSTATE. An asterisk in the
“OpenSQL Only?” column indicates that the value is not part of the basic set of
values prescribed by ANSI, but rather a value that ANSI permits the DBMS
vendor to define:

SQLSTATE OpenSQL
Only?

Description

00000 Successful completion

01000 Warning

01001 Cursor operation conflict

01002 Disconnect error

01003 Null value eliminated in set function

01004 String data, right truncation

01005 Insufficient item descriptor areas

01006 Privilege not revoked

SQLSTATE Values

C–2 OpenSQL Reference Guide

SQLSTATE OpenSQL
Only?

Description

01007 Privilege not granted

01008 Implicit zero-bit padding

01009 Search condition too long for information
schema

0100A Query expression too long for information
schema

01500 * LDB table not dropped

01501 * DSQL UPDATE or DELETE will affect entire table

02000 No data

07000 Dynamic SQL error

07001 Using clause does not match dynamic
parameter specification

07002 Using clause does not match target
specification

07003 Cursor specification cannot be executed

07004 Using clause required for dynamic parameters

07005 Prepared statement not a cursor specification

07006 Restricted data type attribute violation

07007 Using clause required for result fields

07008 Invalid descriptor count

07009 Invalid descriptor index

07500 * Context mismatch

08000 Connection exception

08001 SQL-client unable to establish SQL-connection

08002 Connection name in use

08003 Connection does not exist

08004 SQL-server rejected establishment of SQL-
connection

08006 Connection failure

08007 Transaction resolution unknown

08500 * LDB is unavailable

0A000 Feature not supported

SQLSTATE Values

Appendix C: Generic Error Codes C–3

SQLSTATE OpenSQL
Only?

Description

0A001 Multiple server transactions

0A500 * Valid query language

21000 Cardinality violation

22001 String data, right truncation

22002 Null value, no indicator parameter

22003 Numeric value out of range

22005 Error in assignment

22007 Invalid datetime format

22008 Datetime field overflow

22009 Invalid time zone displacement value

22011 Substring error

22012 Division by zero

22015 Interval field overflow

22018 Invalid character value for cast

22019 Invalid escape character

22021 Character not in repertoire

22022 Indicator overflow

22023 Invalid parameter value

22024 Unterminated C string

22025 Invalid escape sequence

22026 String data, length mismatch

22027 Trim error

22500 * Invalid data type

23000 Integrity constraint violation

24000 Invalid cursor state

25000 Invalid transaction state

26000 Invalid SQL statement name

27000 Triggered data change violation

28000 Invalid authorization specification

2A000 Syntax error or access rule violation in direct

SQLSTATE Values

C–4 OpenSQL Reference Guide

SQLSTATE OpenSQL
Only?

Description

SQL statement

2A500 * Table not found

2A501 * Column not found

2A502 * Duplicate object name

2A503 * Insufficient privilege

2A504 * Cursor not found

2A505 * Object not found

2A506 * Invalid identifier

2A507 * Reserved identifier

2B000 Dependent privilege descriptors still exist

2C000 Invalid character set name

2D000 Invalid transaction termination

2E000 Invalid connection name

33000 Invalid SQL descriptor name

34000 Invalid cursor name

35000 Invalid condition number

37000 Syntax error or access rule violation in SQL
dynamic statement

37500 * Table not found

37501 * Column not found

37502 * Duplicate object name

37503 * Insufficient privilege

37504 * Cursor not found

37505 * Object not found

37506 * Invalid identifier

37507 * Reserved identifier

3C000 Ambiguous cursor name

3D000 Invalid catalog name

3F000 Invalid schema name

40000 Transaction rollback

SQLSTATE Values

Appendix C: Generic Error Codes C–5

SQLSTATE OpenSQL
Only?

Description

40001 Serialization failure

40002 Integrity constraint violation

40003 Statement completion unknown

42000 Syntax error or access rule violation

42500 * Table not found

42501 * Column not found

42502 * Duplicate object name

42503 * Insufficient privilege

42504 * Cursor not found

42505 * Object not found

42506 * Invalid identifier

42507 * Reserved identifier

44000 With check option violation

50000 * Miscellaneous Ingres-specific errors

50001 * Invalid duplicate row

50002 * Limit has been exceeded

50003 * Resource exhausted

50004 * System configuration error

50005 * Enterprise Access product-related error

50006 * Fatal error

50007 * Invalid SQL statement ID

50008 * Unsupported statement

50009 * Database procedure error raised

5000A * Query error

5000B * Internal error

5000D * Invalid cursor name

5000E * Duplicate SQL statement ID

5000F * Textual information

5000G * Database procedure message

5000H * Unknown/unavailable resource

Generic Error Codes

C–6 OpenSQL Reference Guide

SQLSTATE OpenSQL
Only?

Description

5000I * Unexpected LDB schema change

5000J * Inconsistant DBMS catalog

5000K * SQLSTATE status code unavailable

5000L * Protocol error

5000M * IPC error

HZ000 Remote Database Access

Generic Error Codes
Generic error codes are error codes that map to DBMS-specific errors returned
by Ingres and by the DBMS that you access through Enterprise Access
products. If your application interacts with more than one type of DBMS, it
should check generic errors in order to remain portable. This table lists generic
error codes:

Generic Error
Code

Message Explanation

+00050 Warning
message

The request was successfully completed,
but a warning was issued.

+00100 No more data A request for data was processed, but
either no data or no more data fitting the
requested characteristics was found.

00000 Successful
completion

The request completed normally with no
errors or unexpected conditions occurring.

-00001 to
 -29999

Reserved These values are reserved for warning
messages.

-30100 Table not found A table referenced in a statement doesn’t
exist or is owned by another user. This
error may also be returned concerning an
index or a view.

-30110 Column not
known or not in
table

A column referenced in a statement could
not be found.

-30120 Unknown cursor An invalid or unopened cursor name or
identifier was specified or referenced in a
statement.

Generic Error Codes

Appendix C: Generic Error Codes C–7

Generic Error
Code

Message Explanation

-30130 Other database
object not found

A database object other than a table,
view, index, column or cursor was
specified or referenced in a statement, but
could not be identified or located. This
might apply to a database procedure, a
grant or permission, a rule, or other
object.

-30140 Other unknown
or unavailable
resource

A resource, of a type other than one
mentioned above, is either not known or
unavailable for the request.

-30200 Duplicate
resource
definition

An attempt to define a database object
(such as a table) was made, but the
object already exists.

-30210 Invalid attempt
to insert
duplicate row

A request to insert a row was refused; the
table will not accept duplicates, or there is
a unique index defined on the table.

-31000 Statement
syntax error

The statement just processed had a
syntax error.

-31100 Invalid identifier An identifier, such as a table name, cursor
name or identifier, procedure name, was
invalid. It may have contained incorrect
characters or been too long.

-31200 Unsupported
query language

A request to use an unrecognized or
unsupported query language was made.

-32000 Inconsistent or
incorrect query
specification

A query, while syntactically correct, was
logically inconsistent, conflicting or
otherwise incorrect.

-33000 Runtime logical
error

An error occurred at runtime. An incorrect
specification was made, an incorrect host
variable value or type was specified or
some other error not detected until
runtime was found.

-34000 Not privileged/
restricted
operation

An operation was rejected because the
user did not have appropriate permission
or privileges to perform the operation, or
the operation was restricted (for example,
to a certain time of day) and the operation
was requested at the wrong time or in the
wrong mode.

Generic Error Codes

C–8 OpenSQL Reference Guide

Generic Error
Code

Message Explanation

-36000 System limit
exceeded

A system limit was exceeded during query
processing, for example, number of
columns, size of a table, row length, or
number of tables in a query.

-36100 Out of needed
resource

The system exhausted, or did not have
enough of, a resource such as memory or
temporary disk space required to complete
the query.

-36200 System
configuration
error

An error in the configuration of the system
was detected.

-37000 Communication/
transmission
error

The connection between the DBMS and
the client failed.

-38000 Error in the
Enterprise
Access product

An error occurred in an Enterprise Access
product or DBMS interface.

-38100 Host system
error

An error occurred in the host system.

-39000 Fatal error -
session
terminated

A severe error occurred that terminated
the session with the DBMS or the client.

-39100 Unmappable
error

An error occurred that is not mapped to a
generic error.

-40100 Cardinality
violation

A request tried to return more or fewer
rows than allowed. This usually occurs
when a singleton select request returns
more than one row, or when a nested
subquery returns an incorrect number of
rows.

-402dd Data exception A data handling error occurred. The
subcode dd defines the type of error.

-40300 Constraint
violation

A DBMS constraint, such as a referential
integrity or the CHECK option on a view
was violated. The request was rejected.

-40400 Invalid cursor
state

An invalid cursor operation was requested;
for example, an update request was
issued for a read-only cursor.

Generic Error Data Exception Subcodes

Appendix C: Generic Error Codes C–9

Generic Error
Code

Message Explanation

-40500 Invalid
transaction
state

A request was made that was invalid in
the current transaction state; for example,
an update request was issued in a read-
only transaction, or a request was issued
improperly in or out of a transaction.

-40600 Invalid SQL
statement
identifier

An identifier for an SQL statement, such
as a repeat query name, was invalid.

-40700 Triggered data
change violation

A change requested by a cascaded
referential integrity change was invalid.

-41000 Invalid user
authorization
identifier

An authorization identifier, usually a user
name, was invalid.

-41200 Invalid SQL
statement

Unlike generic error -31000 (statement
syntax error), this was a recognized
statement that is either currently invalid
or unsupported.

-41500 Duplicate SQL
statement
identifier

An identifier for an SQL statement, such
as a repeat query name, was already
active or known.

-49900 Serialization
failure
(Deadlock)

An error occurred that caused the query to
be rejected. The transaction may have
been rolled back (check SQLWARN6 in the
SQLCA structure). The query or
transaction can be resubmitted; the error
was a timeout, deadlock, forced abort, log
file full, or other error that Ingres resolved
by aborting the query or transaction.

Generic Error Data Exception Subcodes
The following table lists subcodes returned with generic error -402 (generic
errors -40200 through -40299):

Subcode Description

00 No subcode

01 Character data truncated from right

02 Null value, no indicator variable specified

SQLSTATE and Equivalent Generic Errors

C–10 OpenSQL Reference Guide

Subcode Description

03 Exact numeric data, loss of significance (decimal overflow)

04 Error in assignment

05 Fetch orientation has value of zero

06 Invalid date or time format

07 Date/time field overflow

08 Reserved

09 Invalid indicator variable value

10 Invalid cursor name

15 Invalid data type

20 Fixed-point overflow

21 Exponent overflow

22 Fixed-point divide

23 Floating-point divide

24 Decimal divide

25 Fixed-point underflow

26 Floating-point underflow

27 Decimal underflow

28 Other unspecified math exception

99 Maximum legal subcode

SQLSTATE and Equivalent Generic Errors
SQLSTATE is the ANSI/ISO Entry SQL-92-compliant method for returning
errors to applications. The following table lists the correspondence between
SQLSTATE values and generic errors:

SQLSTATE Generic Error

00000 E_GE0000_OK

01000 E_GE0032_WARNING

01001 E_GE0032_WARNING

01002 E_GE0032_WARNING

SQLSTATE and Equivalent Generic Errors

Appendix C: Generic Error Codes C–11

SQLSTATE Generic Error

01003 E_GE0032_WARNING

01004 E_GE0032_WARNING

01005 E_GE0032_WARNING

01006 E_GE0032_WARNING

01007 E_GE0032_WARNING

01008 E_GE0032_WARNING

01009 E_GE0032_WARNING

0100A E_GE0032_WARNING

01500 E_GE0032_WARNING

01501 E_GE0032_WARNING

02000 E_GE0064_NO_MORE_DATA

07000 E_GE7D00_QUERY_ERROR

07001 E_GE7D00_QUERY_ERROR

07002 E_GE7D00_QUERY_ERROR

07003 E_GE7D00_QUERY_ERROR

07004 E_GE7D00_QUERY_ERROR

07005 E_GE7D00_QUERY_ERROR

07006 E_GE7D00_QUERY_ERROR

07007 E_GE7D00_QUERY_ERROR

07008 E_GE7D00_QUERY_ERROR

07009 E_GE7D00_QUERY_ERROR

07500 E_GE98BC_OTHER_ERROR

08000 E_GE98BC_OTHER_ERROR

08001 E_GE98BC_OTHER_ERROR

08002 E_GE80E8_LOGICAL_ERROR

08003 E_GE80E8_LOGICAL_ERROR

08004 E_GE94D4_HOST_ERROR

08006 E_GE9088_COMM_ERROR

08007 E_GE9088_COMM_ERROR

08500 E_GE75BC_UNKNOWN_OBJECT

SQLSTATE and Equivalent Generic Errors

C–12 OpenSQL Reference Guide

SQLSTATE Generic Error

0A000 E_GE98BC_OTHER_ERROR

0A001 E_GE98BC_OTHER_ERROR

0A500 E_GE79E0_UNSUP_LANGUAGE

21000 E_GE9CA4_CARDINALITY

22000 E_GE9D08_DATAEX_NOSUB

22001 E_GE9D09_DATAEX_TRUNC

22002 E_GE9D0A_DATAEX_NEED_IND

22003 E_GE9D0B_DATAEX_NUMOVR

22003 E_GE9D1C_DATAEX_FIXOVR

22003 E_GE9D1D_DATAEX_EXPOVR

22003 E_GE9D21_DATAEX_FXPUNF

22003 E_GE9D22_DATAEX_EPUNF

22003 E_GE9D23_DATAEX_DECUNF

22003 E_GE9D24_DATAEX_OTHER

22005 E_GE9D0C_DATAEX_AGN

22007 E_GE9D0F_DATAEX_DATEOVR

22008 E_GE9D0E_DATAEX_DTINV

22009 E_GE9D0F_DATAEX_DATEOVR

22011 E_GE80E8_LOGICAL_ERROR

22012 E_GE9D1E_DATAEX_FPDIV

22012 E_GE9D1F_DATAEX_FLTDIV

22012 E_GE9D20_DATAEX_DCDIV

22012 E_GE9D24_DATAEX_OTHER

22015 E_GE9D0F_DATAEX_DATEOVR

22018 E_GE7918_SYNTAX_ERROR

22019 E_GE7918_SYNTAX_ERROR

22021 E_GE9D08_DATAEX_NOSUB

22022 E_GE9D11_DATAEX_INVIND

22023 E_GE9D08_DATAEX_NOSUB

22024 E_GE98BC_OTHER_ERROR

SQLSTATE and Equivalent Generic Errors

Appendix C: Generic Error Codes C–13

SQLSTATE Generic Error

22025 E_GE7918_SYNTAX_ERROR

22026 E_GE9D08_DATAEX_NOSUB

22027 E_GE7918_SYNTAX_ERROR

22500 E_GE9D17_DATAEX_TYPEINV

23000 E_GE9D6C_CONSTR_VIO

24000 E_GE9DD0_CUR_STATE_INV

25000 E_GE9E34_TRAN_STATE_INV

26000 E_GE75B2_NOT_FOUND

27000 E_GE9EFC_TRIGGER_DATA

28000 E_GEA028_USER_ID_INV

2A000 E_GE7918_SYNTAX_ERROR

2A500 E_GE7594_TABLE_NOT_FOUND

2A501 E_GE759E_COLUMN_UNKNOWN

2A502 E_GE75F8_DEF_RESOURCE

2A503 E_GE84D0_NO_PRIVILEGE

2A504 E_GE75A8_CURSOR_UNKNOWN

2A505 E_GE75B2_NOT_FOUND

2A506 E_GE797C_INVALID_IDENT

2A507 E_GE797C_INVALID_IDENT

2B000 E_GE7D00_QUERY_ERROR

2C000 E_GE7918_SYNTAX_ERROR

2D000 E_GE9E34_TRAN_STATE_INV

2E000 E_GE797C_INVALID_IDENT

33000 E_GE75BC_UNKNOWN_OBJECT

34000 E_GE75A8_CURSOR_UNKNOWN

35000 E_GE7D00_QUERY_ERROR

37000 E_GE7918_SYNTAX_ERROR

37500 E_GE7594_TABLE_NOT_FOUND

37501 E_GE759E_COLUMN_UNKNOWN

37502 E_GE75F8_DEF_RESOURCE

SQLSTATE and Equivalent Generic Errors

C–14 OpenSQL Reference Guide

SQLSTATE Generic Error

37503 E_GE84D0_NO_PRIVILEGE

37504 E_GE75A8_CURSOR_UNKNOWN

37505 E_GE75B2_NOT_FOUND

37506 E_GE797C_INVALID_IDENT

37507 E_GE797C_INVALID_IDENT

3C000 E_GE9DD0_CUR_STATE_INV

3D000 E_GE98BC_OTHER_ERROR

3F000 E_GE797C_INVALID_IDENT

40000 E_GE98BC_OTHER_ERROR

40001 E_GEC2EC_SERIALIZATION

40002 E_GE9D6C_CONSTR_VIO

40003 E_GE9088_COMM_ERROR

42000 E_GE7918_SYNTAX_ERROR

42500 E_GE7594_TABLE_NOT_FOUND

42501 E_GE759E_COLUMN_UNKNOWN

42502 E_GE75F8_DEF_RESOURCE

42503 E_GE84D0_NO_PRIVILEGE

42504 E_GE75A8_CURSOR_UNKNOWN

42505 E_GE75B2_NOT_FOUND

42506 E_GE797C_INVALID_IDENT

42507 E_GE797C_INVALID_IDENT

44000 E_GE7D00_QUERY_ERROR

50000 E_GE98BC_OTHER_ERROR

50001 E_GE7602_INS_DUP_ROW

50002 E_GE8CA0_SYSTEM_LIMIT

50003 E_GE8D04_NO_RESOURCE

50004 E_GE8D68_CONFIG_ERROR

50005 E_GE9470_GATEWAY_ERROR

50006 E_GE9858_FATAL_ERROR

50007 E_GE9E98_INV_SQL_STMT_ID

SQLSTATE and Equivalent Generic Errors

Appendix C: Generic Error Codes C–15

SQLSTATE Generic Error

50008 E_GEA0F0_SQL_STMT_INV

50009 E_GEA154_RAISE_ERROR

5000A E_GE7D00_QUERY_ERROR

5000B E_GE98BC_OTHER_ERROR

5000C E_GE9D0D_DATAEX_FETCH0

5000D E_GE9D12_DATAEX_CURSINV

5000E E_GEA21C_DUP_SQL_STMT_ID

5000F E_GE98BC_OTHER_ERROR

5000H E_GE75BC_UNKNOWN_OBJECT

5000I E_GE98BC_OTHER_ERROR

5000J E_GE98BC_OTHER_ERROR

5000K E_GE98BC_OTHER_ERROR

5000L E_GE9088_COMM_ERROR

5000M E_GE9088_COMM_ERROR

HZ000 E_GE9088_COMM_ERROR

 Index–1

Index

-- (double hyphen)
comment delimiter, 2-8

- (minus sign)
subtraction, 4-1

'

' (single quotation mark)
pattern matching, 4-37

"

" (double quotation marks)
delimited identifiers, 2-5

$

$ (dollar sign)
currency displays, 3-11

%

% (percent sign)
pattern match character, 4-36

(

() (parentheses)
expressions, 4-35
logical operator grouping, 4-3
precedence of arithmetic operations, 4-2

*

* (asterisk)
count (function), 4-29

.

. (period)
decimal indicator, 3-14

/

/ (slash)
comment indicator (with asterisk), 2-8
division, 4-1

?

? (question mark)
parameter indicator, 8-38, 8-66

[

[] (brackets)
pattern matching, 4-36

\

\ (backslash)
pattern matching, 4-37

\go (Terminal Monitor command)[go], B-2

Index–2 OpenSQL Reference Guide

_

_ (underscore)
pattern matching, 4-36

_date (function), 4-22

_date4 (function), 4-22

_time (function), 4-22

+

+ (plus sign)
addition, 4-1

=

= (equals sign)
assignment operator, 4-2
comparison operator, 4-2

>

> <(greater/less than symbol), 4-2

A

a (Terminal Monitor command), B-4

aborting transactions, 8-38

abs (function), 4-14

absolute value, 4-14

aggregate functions
data selection, 8-75
described, 4-26
nulls, 3-16

and (logical operator), 4-40

any-or-all (predicate), 4-38

append

\append (Terminal Monitor command), B-4

arithmetic
expressions, 4-1
operations, 4-5
operators, 4-1

as (clause), 8-14, 9-15

assignment operations, 4-3
character string, 4-4
date, 4-5
null, 4-5
numeric, 4-5

atan (function), 4-14

autocommit, 8-91

avg (function), 4-26

B

base tables, 8-16

begin declare section (statement), 8-2

bell (Terminal Monitor command), B-5

binary data types, 3-12

binary functions, 4-28

binary operators, 4-1

bit-wise functions, 4-24

blanks
char data type, 3-2
padding, 4-16
trailing, 4-17, 4-36

C

C (function), 4-9

call (statement), 8-3

calling
Ingres tools, 8-3
operating system, 8-3

case
character strings, 2-7

 Index–3

lowercase (function), 4-16
names, 2-5
uppercase (function), 4-18

catalogs (system)
dates, 11-1
iialt_columns, 11-22
iicolumns, 11-15
iidbcapabilities, 11-2
iidbconstants, 11-8
iievents, 11-8
iigwscalars, 11-8
iihistograms, 11-23
iiindex_columns, 11-21
iiprocedures, 11-23
iirules, 11-25
iistats, 11-22
iitables, 11-10
iiviews, 11-20
updating, 11-1

cd (Terminal Monitor command), B-4

char (data type), 3-2

char (function), 4-9

character data
assignment, 4-4
comparing, 3-2
OpenSQL, 4-4
SQL, 4-15

charextract (function), 4-16

chdir (Terminal Monitor command), B-4

check constraints, 9-8

clauses, 4-40
escape, 4-36

close (statement), 8-5

column constraint, 9-12

columns
expressions, 4-35
naming, 8-14

columns (in tables)
aggregate functions, 4-26
defaults, 9-5
nullability, 9-6
updating, 8-94

comments

OpenSQL, 2-8
program, 8-28
variable declaration section, 8-28

commit (statement), 8-6

committing transactions, 8-6

comparison (predicate), 4-35

comparisons, nulls and, 3-16

computation, logarithms, 4-14

concat (function), 4-16

connect (statement), 8-8

constants
list of OpenSQL constants, 3-15
now, 3-9
null, 3-16
today, 3-9

constraint index options
index = base table structure, 9-14
index = index_name, 9-14
no index, 9-13

constraints
adding and removing, 9-4
check, 9-8
column_constraint, 9-12
described, 9-7
primary key option, 9-12
referential, 9-9
table_constraint, 9-12
unique, 9-8

conventions
syntax, 1-3
system-level commands, 1-3

conversion
numeric data, 4-6
string/character data, 4-4

copy (statement) and constraints, 9-7

correlation names, 2-9

cos (function), 4-14

count (aggregate function), 4-29

create dbevent (statement), 8-7

create index (statement), 8-11

Index–4 OpenSQL Reference Guide

create schema authorization (statement), 9-1

create table (statement), 8-13, 9-3

create view (statement), 8-15

creating
schemas, 9-1
tables, 9-3

cursor
close (statement), 8-5
declare cursor (statement), 5-13, 8-18
deleting rows, 5-16
fetch (statement), 5-14
open (statement), 8-63
open cursor (statement), 5-13
positioning, 5-18
select (statement) and, 2-3
select loops vs, 8-88
updating rows, 5-15

D

data handlers
described, 5-20

data types
binary, 3-12
char, 3-2
conversion functions (list), 4-9
date, 3-7
decimal, 3-5, 4-7, 4-14, 4-32
floating-point, 3-6
host languages, 5-5
integer, 3-4
long byte, 3-12
long varchar, 3-3, 4-16, 5-20
money, 3-11
nchar, 4-12
nvarchar, 4-12
storage formats, 3-12
varchar, 3-3

database event, defining, 8-7

database event, dropping, 8-35

database event, getting, 8-51

database event, raising, 8-68

database event, registering, 8-69

database event, removing, 8-70

databases
accessing or terminating access, 2-3, 7-17,
8-33
connecting to programs, 7-17, 8-8
revoking privileges, 9-21
transactions, 7-1

date (data type)
assignment, 4-5
date_part (function), 4-20
date_trunc (function), 4-20
display formats, 3-10
formats, 3-7
functions, 4-20
input formats, 3-7
interval (function), 4-21

date (function), 4-9, 4-20

date_gmt (function), 4-21

dates
catalogs (system), 11-1
\date (Terminal Monitor command), B-4
selecting current, 7-4

dbmsinfo (function), 7-4

dclgen declaration generator (utility), 5-8

deadlock
defined, 7-15
handling, 7-15

decimal (data type), 3-5, 4-7, 4-14, 4-32

decimal (function), 4-10

decimal literals, 3-15

declarations
begin declare section (statement), 8-2
declare cursor (statement), 5-13, 8-18
declare statement (statement), 8-27
declare table (statement), 8-28
dynamic SQL statements, 8-27
end declare (statement), 8-36
host variable, 8-2

declare global temporary table (statement), 8-
24

default values, assigning to table columns, 9-5

delete (statement), 8-29

 Index–5

deleting
delete (statement), 8-29
rows, 5-16, 8-29

delimited identifiers, 2-5

describe (statement), 6-8, 6-13, 8-31

destroying tables, indexes, or views, 8-34

direct execute immediate (statement), 8-32

disconnect (statement), 8-33

dmy format (dates), 3-9

dow (function), 4-10

drop (statement), 8-34

drop dbevent (statement), 8-35

dynamic SQL long varchar (data type), 5-22

E

e (Terminal Monitor command), B-3

ed (Terminal Monitor command), B-3

edit (Terminal Monitor command), B-3

editor (Terminal Monitor command), B-3

embedded OpenSQL
database access, 2-3, 7-17
in contrast to interactive OpenSQL, 2-3
include (statement), 5-6
keywords, 2-4
overview, 2-2
preprocessor, 2-3, 5-1
preprocessor errors, 5-5
sample program, 5-3
SQLCA, 5-3
variables, 5-4

end declare section (statement), 8-36

endquery (statement), 8-58

endselect (statement), 8-36

error handling
data handlers, 5-21

errors
errorno flag, 8-58

generic, 7-8, C-1
handling, 7-15, 8-97, C-1
local, 7-8
SQLSTATE, C-1

escape (clause)
like (predicate), 4-36

exec sql (keyword), 5-2

execute (statement), 6-6, 6-9, 8-37

execute immediate (statement), 6-6, 6-8, 8-41

exists (predicate), 4-40

exp (function), 4-14

exponential
function, 4-14
notation, 3-15

F

fetch (statement), 8-49

files, external, 8-54

float4 (function), 4-10

float8 (function), 4-10

floating-point
conversion, 4-6
data type, 3-6
literals, 3-15
range, 3-6

functions
aggregate, 4-26, 4-28
avg, 4-26
binary, 4-28
bit-wise, 4-24
date, 4-20
hash, 4-25
log, 4-14
max, 4-26
min, 4-26
mod, 4-14
numeric (list), 4-14
random number, 4-25
scalar, 4-8
string, 4-15
sum, 4-27

Index–6 OpenSQL Reference Guide

unary, 4-26
UUID, 4-32

G

g (Terminal Monitor command), B-4

generic errors, 7-8
list, C-6

German format (dates), 3-8

get dbevent (statement), 8-51

go (Terminal Monitor command), B-4

grant (statement), 9-18

grant option, 9-20

group by (clause), 4-30, 8-71, 9-24

H

hash functions, 4-25

having (clause), 4-40, 8-71, 9-24

help (statement), 8-52

hex (function), 4-11

I

i (Terminal Monitor command), B-4

ifnull (function), 4-31

II_DECIMAL, 3-14

II_EMBED_SET, 7-12, 7-14

II_TIMEZONE_NAME, 3-10

iialt_columns catalog, 11-22

iicolumns catalog, 11-15

iidbcapabilities catalog, 11-2

iidbconstants catalog, 11-8

iievents catalog, 11-8

iigwscalars catalog, 11-8

iihistograms catalog, 11-23

iiindex_columns catalog, 11-21

iiprocedures catalog, 11-23

iiregistrations catalog, 11-24

iiseterr, 7-13

iistats catalog, 11-22

iisynonyms catalog, 11-25

iitables catalog, 11-10

iiviews catalog, 11-20

in (predicate), 4-38

include (statement), 6-3, 8-54
embedded OpenSQL, 5-6

include (Terminal Monitor command), B-4

indexes
create index (statement), 8-11
destroying, 8-12, 8-34
sorting, 8-12

indicator variables
character data retrieval, 5-10
ESQL, 5-8

inquire_sql (statement), 7-5, 8-56, 8-60

insert (statement), 5-20, 8-60

int1 (function), 4-11

int2 (function), 4-11

int4 (function), 4-11

integers
data type, 3-4
literals, 3-14
range, 3-4

interactive OpenSQL in contrast to embedded
OpenSQL vs, 2-3

interval (function), 4-21

ISO format (dates), 3-8

ISO standard
delimited identifiers, 2-7
SQL keywords, A-21

 Index–7

J

joins, outer, 8-78

K

keyboard keys, Ctrl, B-7

keywords, ISO, A-21

L

labels in embedded OpenSQL, 5-2

left (function), 4-16

length (function), 4-16

like (predicate), 4-36
escape clauses, 4-36

limits
data handlers, 5-22
float data type, 3-13
integer data, 3-5
long varchar length, 5-22
number of columns in unique constraint, 9-
8

Limits
OpenSQL, 10-1

literals
decimal, 3-15
floating-point, 3-15
integer, 3-14
numeric, 3-14
string, 3-13

local errors, 7-8

locate (function), 4-16

log (function), 4-14

logarithmic function, 4-14

logical operators
OpenSQL, 4-40

long byte (data type), 3-12

long varchar (data type), 3-3
datahandler routines, 5-20
long_varchar (function), 4-11, 4-12
restrictions for string functions, 4-15

long_byte (function), 4-11

loops
endselect (statement), 8-36
retrieve, 5-14, 8-36
terminating, 8-36

lowercase (function), 4-16

M

max (function), 4-26

mdy format (dates), 3-9

min (function), 4-26

mod (function), 4-14

modulo arithmetic, 4-14

money (data type), 3-11

money (function), 4-11

multinational format (dates), 3-8

multiple sessions, 8-60
described, 7-17

multi-statement transactions (MST), 9-7

N

naming
case, 2-5
conventions, 2-4
correlation names, 2-9

nchar (function), 4-12

nesting queries, 4-42

nobell (Terminal Monitor command), B-5

not (logical operator), 4-40

not null column format, 9-6

notrim (function), 4-18

Index–8 OpenSQL Reference Guide

now date constant, 3-9, 3-15

null constant, 3-15

null indicators, 5-8

nullability
ifnull (function), 4-31

nullability in table columns, 3-16, 9-6

nulls
aggregate functions, 3-16, 4-27
assignment, 4-5
is null (predicate), 4-40
null constant, 3-15
OpenSQL, 3-16

numeric (data type)
functions (list), 4-14

numeric data type
assignment, 4-5
range and precision, 3-4

numeric literals, 3-14

nvarchar (function), 4-12

O

object_key (function), 4-12

open (statement), 8-63

open cursor (statement), 5-13

OpenSQL
advanced techniques, 6-1
dynamic, 6-1, 8-27, 8-31, 8-41, 8-65
names, 2-4

operating system, calling, 8-3

operations
arithmetic, 4-5
assignment, 4-3

operators
arithmetic, 4-1
logical, 4-40

or (logical operator), 4-40

outer joins, 8-78

ownership, tables, 8-13, 9-4

P

p (Terminal Monitor command), B-3

pad (function), 4-16

patterns, matching, 4-36

precision
decimal (data type), 3-5, 4-7, 4-32
floating-point (data type), 3-6

predicates, 4-35
any-or-all, 4-38
exists, 4-40
in, 4-38
is null, 4-40
like, 4-36

prepare (statement), 6-6, 6-9, 8-65

preprocessor, 5-1

primary key option constraints, 9-12

print (Terminal Monitor command), B-3

privileges
database, 9-21
granting, 9-18

programquit
described, 7-14
program quit (constant), 8-59, 8-93

programs
connecting to databases, 8-8
source code, 8-54
suspending execution, 7-14, 8-98

Q

queries
nested, 4-42
repeat, 8-88
subqueries, 4-42

R

r (Terminal Monitor command), B-3

 Index–9

raise dbevent (statement), 8-68

random number functions, 4-25

read (Terminal Monitor command), B-4

referential integrity, 9-9

register dbevent (statement), 8-69

remove dbevent (statement), 8-70

repeat queries
select (statement), 8-88

reset (Terminal Monitor command), B-3

restrictions
characters in delimited identifiers, 2-7
check constraints, 9-9
column default values, 9-6
data handlers, 5-22
database procedure parameters, 8-45
into clause in ISQL, 8-46
logical key (data type), 9-15
logical keys and nulls, 4-31
long varchar columns, 3-3
referential constraints, 9-11
SQLSTATE and database procedures, 7-7
string functions and long varchar, 4-15
unions, 8-83

Restrictions
OpenSQL, 10-1

retrieving, 8-58
endselect (statement), 8-36
select (statement), 8-71, 9-24
status information, 2-3
values, 8-71, 9-24
values into variables, 8-49

revoke (statement), 9-21

right (function), 4-17

rollback, 7-2, 8-70

rounding, money (data type), 3-11

rows (in tables), 8-58
counting, 4-29
deleting, 5-16, 8-29
inserting, 8-60
rowcount constant, 8-59
updating, 5-15

runtime information, obtaining, 8-56

S

s (Terminal Monitor command), B-4

scalar functions, 4-8

schema, creating, 9-1

script (Terminal Monitor command), B-5

search conditions, 4-40

select (statement)
datahandler clause, 5-20
embedded, 2-3, 8-85
interactive, 8-71, 9-24
query evaluation, 8-72
select loop, 8-86

set (statement), 8-91

set autocommit (statement), 8-91

set_sql (statement), 8-92

sh (Terminal Monitor command), B-4

shell (Terminal Monitor command), B-4

shift (function), 4-17

sin (function), 4-14

size (function), 4-17

sorting indexes, 8-12

soundex (function), 4-17

source code, including external file in, 8-54

SQLCA (SQL Communications Area)
described, 7-5
error handling, 8-87, 8-88
multiple sessions, 7-19

SQLDA (SQL Descriptor Area), 8-32
execute procedure (statement), 8-45

sqlprint, 8-98

SQLSTATE, 7-7, C-10

sqlvar, 6-15

sqrt (function), 4-14

squeeze (function), 4-18

standard catalogs, supported level, 11-1

Index–10 OpenSQL Reference Guide

statement, defined, 1-3

status information, obtaining, 7-5

storage formats of data types, 3-12

strings
c (function), 4-15
char (function), 4-15
concat (function), 4-16
functions, 4-15
functions (list), 4-15
left (function), 4-16
length (function), 4-16
literals, 3-13
locate (function), 4-16
lowercase (function), 4-16
notrim (function), 4-18
padding, 4-16
right (function), 4-17
shift (function), 4-17
size (function), 4-17
soundex (function), 4-17
squeeze (function), 4-18
text (function), 4-15
trim (function), 4-18
uppercase (function), 4-18
varchar (function), 4-15
varying length, 3-3

structures, variable, 5-7

sum (function), 4-27

Sweden/Finland format (dates), 3-8

syntax conventions, 1-3

system, calling, 8-3

T

table constraint, 9-12

table_key (function), 4-12

tables
base, 8-16
creating, 8-13, 9-3
destroying, 8-34
inserting rows, 8-60
obtaining information about, 8-52
ownership, 8-13, 9-4

retrieving values from, 8-71, 9-24
virtual, 8-15

temporary table, creating, 8-24

Terminal Monitor, B-1

text (function), 4-12

time
display format, 3-10
functions, 4-20
interval (function), 4-21
selecting current, 7-4
\time (Terminal Monitor command), B-4

today date constant, 3-9, 3-15

transactions
commit (statement), 7-2, 8-6
control statements, 7-2
management, 7-1
rolling back, 7-2, 8-70
transaction (constants), 8-60

trim (function), 4-18

truncation
data conversion, 4-15
dates, 4-20

truth functions, 4-41

two phase commit
connect (statement), 8-8

U

unary functions, 4-26

unary operators, 4-1

unhex (function), 4-12

Unicode, 3-2

unique (clause), 8-11

unique constraint, 9-8

Universal Unique Identifier (UUID), 4-32

update (statement), 8-94
datahandler clause, 5-20

uppercase (function), 4-18

 Index–11

US format (dates), 3-8

user constant, 3-15

utility, defined, 1-3

UUID (function), 4-32

V

values, retrieving, 8-49, 8-71, 9-24

varbyte (function), 4-13

varchar (data type), 3-3

varchar (function), 4-13

variable declarations
begin declare section (statement), 8-2
host languages, 5-5
host variables, 8-2

variables
host language, 5-4, 8-2, 8-36, 8-49
null indicator, 5-8
structure, 5-7

views

creating, 8-15
destroying, 8-34
printing, 8-53
updating, 8-16

W

w (Terminal Monitor command), B-4

whenever (statement), 7-10, 8-97

where (clause), 4-40, 8-71, 9-24

wild card characters
select (statement), 8-73

with (clause)
Enterprise Access, 7-25

with null column format, 9-6

write (Terminal Monitor command), B-4

Y

ymd format (dates), 3-8

	Bookshelf
	OpenSQL Reference Guide
	Contents
	Chapter 1: Introduction
	Audience
	Conventions

	Chapter 2: Overview of OpenSQL
	What Is OpenSQL?
	Enterprise Access Products
	Ingres Distributed Option
	Interactive OpenSQL
	Embedded OpenSQL
	Specifying Parameters at Runtime
	Differences between Embedded and Interactive OpenSQL

	Features
	Object Names
	Regular and Delimited Identifiers
	Restrictions on Identifiers
	Comment Delimiters
	Statement Terminators
	Correlation Names

	Chapter 3: OpenSQL Data Types
	OpenSQL Data Types
	Character Data Types
	Character
	Varchar
	Long Varchar

	Numeric Data Types
	Integer
	Decimal
	Floating-point

	Abstract Data Types
	Date
	Money

	Binary Data Types
	Long Byte

	Storage Formats of Data Types
	Literals
	String
	Numeric
	Floating-point

	OpenSQL Constants
	Nulls
	Nulls and Comparisons
	Nulls and Aggregate Functions

	Chapter 4: Elements of OpenSQL Statements
	Operators
	Arithmetic
	Comparison
	Logical

	Operations
	Assignment
	Character String
	Numeric
	Date
	Null

	Arithmetic
	Default Type Conversion
	Arithmetic Operations on Decimal Data Types

	Functions
	Function Support for Enterprise Access Products
	Scalar
	Data Type Conversion
	Numeric
	String
	String Concatenation Results
	Date
	Using Date_trunc
	Using Date_part
	Bit-wise
	Hash
	Random Number

	Aggregate
	Unary Aggregate Functions
	Binary Aggregate Functions
	Count(*) Function
	Aggregate Functions and Decimal Data
	Using Group By Clause with Aggregate Functions
	Restrictions on the Use of Aggregate Functions

	Ifnull Function
	Data Type of Result
	Ifnull and Decimal Data

	UUID
	Benefits of Using a UUID
	UUID Usage

	Expressions
	Predicates
	Like
	Between
	In
	Any or All
	Exists
	Is Null

	Search Conditions
	Subqueries

	Chapter 5: Embedded OpenSQL
	Syntax of an Embedded OpenSQL Statement
	Structure of Embedded OpenSQL Programs
	Host Language Variables
	Declaring Variables
	The Include Statement
	Variable Usage
	Variable Structures
	The Dclgen Utility
	Indicator Variables
	Null Indicators and Data Retrieval
	Using Null Indicators to Assign Nulls
	Indicator Variables and Character Data Retrieval
	Null Indicator Arrays and Host Structures

	Data Manipulation with Cursors
	Declaring a Cursor
	Opening Cursors
	Open Cursors and Transaction Processing
	Fetching the Data
	Fetching Rows Inserted by Other Queries
	Using Cursors to Update Data
	Using Cursors to Delete Data
	Closing Cursors
	Summary of Cursor Positioning

	Data Handlers for Large Objects
	Errors in Data Handlers
	Restrictions on Data Handlers
	Using Large Objects in Dynamic SQL
	Length Considerations
	Using Data Handlers in Dynamic SQL

	Examples of Data Handlers

	Chapter 6: Dynamic OpenSQL
	The SQLDA
	Structure of the SQLDA
	Including the SQLDA in a Program
	Describe Statement and the SQLDA
	Data Type Codes
	The Using Clause

	Dynamic OpenSQL Statements
	Execute Immediate Statement
	Prepare and Execute Statements
	Describe Statement

	Executing a Dynamic Non select Statement
	Using Execute Immediate to Execute a Non select Statement
	Preparing and Executing a Non select Statement

	Executing a Dynamic Select Statement
	When the Result Column Data Types are Known
	When the Result Column Data Types are Unknown
	Preparing and Describing the Select Statement
	Analyzing the Sqlvar Elements
	Executing the Select with Execute Immediate
	Using a Cursor to Retrieve the Results

	Chapter 7: OpenSQL Features
	Transactions
	Controlling Transactions
	Committing Transactions
	Aborting Statements and Transactions
	Effects of Aborting Transactions
	Interrupting Transactions

	Retrieving Status Information
	The Dbmsinfo Function
	The Inquire_sql Statement
	The SQL Communications Area (SQLCA)

	Error Handling
	The SQLSTATE Variable
	Local and Generic Errors
	Reading an OpenSQL Error Message
	Displaying an Error Message
	Handling Errors in Embedded Applications
	Obtaining Error Information from the SQLCA
	Trapping Errors Using the Whenever Statement
	Defining an Error Handler
	Obtaining Error Information Using Inquire Statements
	Suppressing Error Messages
	Specifying Program Termination on Errors
	Handling Deadlock
	Non cursor Template
	Single Cursor Template
	Master/Detail Template

	Multiple Session Connections
	Connecting to Multiple Sessions
	Switching Sessions
	Terminating a Session
	Multiple Sessions and the SQLCA
	Multiple Sessions and the DBMS
	Multiple Session Examples

	Database Procedures
	Creating Database Procedures
	Registering Database Procedures
	Executing Database Procedures

	DBMS Extensions
	The With Clause
	Syntax of the With Clause

	Database Events
	Database Event Statements
	Creating a Database Event
	Raising a Database Event
	Registering to Receive a Database Event
	Receiving a Database Event
	Processing Database Events
	Using GET DBEVENT
	Using WHENEVER DBEVENT
	Using User-defined Database Event Handlers
	Removing a Database Event Registration
	Dropping a Database Event

	Chapter 8: OpenSQL Statements
	SQL Version
	SQL Statements Context
	Forms Statements
	Extended Statements

	Begin Declare Section
	Call
	Close
	Commit
	Create Dbevent
	Connect
	Create Index
	Create Table
	Specifying the Column Names, Data Types, and Lengths
	Using the Create Table...As Syntax

	Create View
	Declare Cursor
	Declare Global Temporary Table
	Examples

	Declare Statement
	Declare Table
	Delete
	Describe
	Direct Execute Immediate
	Disconnect
	Drop
	Drop Dbevent
	End Declare Section
	Endselect
	Execute
	Execute Immediate
	Execute Procedure
	Passing Parameters - Non-Dynamic Version
	Passing Parameters - Dynamic Version
	Execute Procedure Loops

	Fetch
	Get Dbevent
	Help
	Include
	Inquire_sql
	Inquiring About Database Events
	Types of Inquiries

	Insert
	Open
	Prepare
	Raise Dbevent
	Register Dbevent
	Remove Dbevent
	Rollback
	Select (interactive)
	Select Statement Clauses
	Query Evaluation

	The Select Clause
	The From Clause
	The Where Clause
	Joins
	Outer Joins
	Join Relationships
	Subqueries

	The Order By Clause
	The Group By Clause
	The Having Clause
	The Union Clause
	Select (embedded)
	Retrieving Values into Host Language Variables
	Host Language Variables in the Union Clause
	Repeated Queries
	Cursor Select

	Set
	Set_sql
	Update
	Whenever

	Chapter 9: Extended Statements
	Create Schema
	Create Table (extended)
	Column Defaults and Nullability
	Constraints
	The Constraint Index Options
	Column-Level Constraints versus Table-Level Constraints
	Using “Create table...as Select”

	Grant
	Revoke
	Revoking the Grant Option
	Restrict versus Cascade

	Select

	Chapter 10: OpenSQL Limits
	OpenSQL Limits

	Chapter 11: OpenSQL Standard Catalogs
	Standard Catalog Interface
	The iidbcapabilities Catalog
	The iidbconstants Catalog
	The iievents Catalog
	The iigwscalars Catalog
	The iitables Catalog
	The iicolumns Catalog
	The iiphysical_tables Catalog
	The iiviews Catalog
	The iiindexes Catalog
	The iiindex_columns Catalog
	The iialt_columns Catalog
	The iistats Catalog
	The iihistograms Catalog
	The iiprocedures Catalog
	The iiregistrations Catalog
	The iisynonyms Catalog

	Mandatory and Ingres-Only Standard Catalogs
	Mandatory Catalogs with Entries Required
	Mandatory Catalogs Without Entries Required
	Ingres-Only Catalogs

	Appendix A: Keywords
	Keyword List
	Single Keywords
	Double Keywords

	 ANSI/ISO SQL Keywords

	Appendix B: Terminal Monitors
	Accessing the Terminal Monitor
	The Query Buffer
	Terminal Monitor Commands
	Messages and Prompts
	Character Input and Output
	Help
	Aborting the Editor (VMS only)

	Appendix C: Generic Error Codes
	SQLSTATE Values
	Generic Error Codes
	Generic Error Data Exception Subcodes
	SQLSTATE and Equivalent Generic Errors

	Index

