Ingres 2006 Release 2

QUEL Reference Guide

INGR=S'

rrrrrrrrrrrr

This documentation and related computer software program (hereinafter referred to as the "Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Ingres Corporation (“Ingres”)
at any time.

This Documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of Ingres. This Documentation is proprietary information of Ingres and protected
by the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this Documentation for
their own internal use, provided that all Ingres copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of

the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. The user consents to Ingres obtaining injunctive relief precluding any unauthorized use of the
Documentation. Should the license terminate for any reason, it shall be the user’s responsibility to return to Ingres
the reproduced copies or to certify to Ingres that same have been destroyed.

To the extent permitted by applicable law, INGRES PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IN NO EVENT WILL INGRES BE LIABLE TO THE
END USER OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF INGRES IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The use of any product referenced in this Documentation and this Documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this Documentation is Ingres Corporation.

For government users, the Documentation is delivered with “Restricted Rights” as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Copyright © 2006 Ingres Corporation.
All Rights Reserved.

Ingres, OpenROAD, and EDBC are registered trademarks of Ingres Corporation. All other trademarks, trade names,
service marks, and logos referenced herein belong to their respective companies.

Contentis

Chapter 1: Introduction

AU BNCE . . 1-1
CONVENEIONS . . . 1-1

Chapter 2: Infroduction to QUEL

Interactive QUEL 2-1
Embedded QUEL. 2-1

Chapter 3: QUEL Data Types

ObJeCt NamMES ..o 3-1
Access to Objects Created Through SQL. e 3-2
Comment Delimiters 3-2
Data Ty PO . . o 3-3
Character Data TYPeSottt e e e e 3-3
Char Data TYPe ... 3-4

C Data TYPE ..o 3-4
Varchar Data Ty Pe ... 3-5

Text Data Ty Pe ... 3-6
NUMeEriC Data Ty PeS ... e 3-6
Integer Data TypPeS. . .. o 3-6
Floating Point Data Typeso 3-7

Date Data TYPeo 3-7
Absolute Date Input Formats 3-7
Absolute Time Input Formats 3-9
Combined Date and Time Input 3-10

Date Interval Formats 3-10

Time Interval Formats 3-11

Date and Time Display Formats 3-11

Money Data TyPe ... e 3-12
Binary Data TYPeSo 3-13
Byte Data Type ... 3-13
Byte Varying Data Type e 3-13
Storage Formats of Data Types 3-14
Lierals . 3-15

Contents iii

String Literals 3-15

NUMEC Literalso e e 3-15
Floating Point Literals 3-16

QUEL COoNStants 3-16
NULIS . e 3-17
Nulls and CompariSONS et e e e e e e e e 3-17
Nulls and Aggregate FUNCLiONS 3-18
Nulls and Integrity Constraints 3-18

Chapter 4: Elements of QUEL Statements

O PEratO S .. 4-1
ArtNMEtiC . e 4-1
COMIPaANISON . . o 4-2
LOgiCal. . o 4-2

OPEratiONS . . . 4-3
String Concatenation 4-3
ASSIgNIMENE L . 4-4

Character StriNg o 4-5
NUMBIIC . e e e e 4-5
Date . 4-6
NUL . 4-6
AN NMEtIC .o 4-6
Default Type ConVersion 4-7
Arithmetic Errors ... 4-8
Arithmetic Operations on Dates. 4-8

FUNCEIONS . 4-10

S Calar . o e 4-10
Data Type Conversion FUNCLIONS e 4-10
NUMBIIC . e e e e e 4-12

SErING o 4-13

DAt . o 4-16
Using the Date _truncC e 4-18
Using the Date_part 4-19

AGOregate 4-19
Aggregate Functions Using the Whereand By Clauses. 4-20

IENUIL L 4-22

QUalifiCatioNS 4-22
Comparison OpPerators 4-23
Partial Match Specification 4-23
Is NUll ComparisOn 4-24
ClaUSES . .ot 4-25

iv. QUEL Reference Guide

Logical Operators 4-25
General Qualification 4-25

Chapter 5: Embedded QUEL

General Syntax of EQUEL Statements 5-2
Basic Structure of EQUEL Programs 5-2
Host Language Variables 5-3
Variable Declaration. 5-3
Dereferencing Column Names 5-4
Scope of Variables 5-4
Include Statement 5-4
Indicator Variables 5-5
Retrieving Data Using Null Indicators 5-5
Setting Values Using Null Indicators e 5-5
Detecting String Truncation Using Indicator Variables 5-6
Variable Usage and Dynamic Operation of EQUEL Statements................................ 5-6
Param Statements 5-8
Data Manipulation with CUrsors 5-8
Example of CUrsor ProCeSSINg i e 5-9
Declaring @ CUISOr e e e e e e e 5-9
Opening and Closing CUISOIS ittt e e e e e e e e e 5-10
Open Cursors and Transaction ProCessing i 5-11
Retrieving the Data 5-11
Fetching Rows Inserted by Other Queries. i 5-12
Using Cursors to Update Data 5-12
Using Cursors to Delete Data i e e e e 5-12
Summary of Cursor PoSitioNing 5-13
Dynamically Specified Cursor Names 5-13
Cursors and Retrieve Loops Compared 5-15
TranSaCtioNS 5-16
Transaction Statements 5-16
Defining Transactions e e e e 5-17
Committing Transactions 5-17
Aborting Transactions 5-17
Savepoints and Partial Transaction Aborts 5-18
Interrupt and Timeout Handling in Transactions. 5-18
Deadlock: Detection, Avoidance, and Handling......... 5-18
Program Status Information 5-20
The Inquire_ingres Statement 5-20
The Dbmsinfo() FUNCEiON 5-20
Runtime Error ProCeSSINg oo e e 5-24

Contents v

Retrieve Statement e 5-24

Using the Retrieve Statement Withouta Loop 5-25
Using the Sort Clause. 5-25
Other Data Manipulation Statements 5-27
Repeat QUEKIES .. 5-27

Chapter 6: QUEL and EQUEL Statements

QUEL Releaseo 6-1
Statement ConteXt 6-1
Ingres Forms Statements 6-2
A O . o 6-2
YN aX L .o 6-2
PSP ION . . 6-2
Embedded Usage 6-2
EXaMIDIES . 6-3
AP N . . 6-3
SV N X . 6-3
D71 ol g o of [0 o 6-4
Embedded Usage 6-4
CONSIderations 6-4
EXaMIDIES . 6-4
Begin Transaction 6-5
SV N X . 6-5
DS P I ON . . 6-6
EXaMIlE . 6-6
Call 6-6
111> 6-6
PSP ION .. 6-6
Embedded Usage 6-7
EXaMIDIES . . 6-7
ClOSE CUISOF .« . ottt e e e e e e e e e e 6-8
SV N X . 6-8
DS P I ON . . 6-8
Embedded Usage 6-8
EXamMIple . 6-8
GOy .+ttt 6-9
YN AX . . 6-9
DS CriP iON 6-10
Copy Statement Parameters 6-10
Data File Format and Table Format 6-11
Column FOrmats. 6-11

vi QUEL Reference Guide

Storage Format 6-11

DelimMiterS .o 6-13

With NUll Clause 6-14
Filename Specification 6-15
VMS File Ty DS .ottt e e e e 6-16
With Clause Options e 6-16
On_error OptioN ... 6-16
Error_count OptioNn 6-17

LOg OPtiON . . e 6-17

With Rollback Option 6-17

With Row_estimate Option. 6-18
PermMIiSSIONS . .. 6-18
LOCKING .. 6-18
Restrictions and Considerations i 6-18
EXaMIDIES . o 6-19
Data File Format 6-19

CrEaAt . .. 6-21
YN aX . oot 6-21
PSP ION . . . 6-22
Embedded Usage 6-23
Considerations 6-23
EXaMIIES .. 6-24
DEClare CUMSOr ..ttt e e e e e e e 6-24
1Y 1] = 6-24
PSP ION . . . 6-25
Embedded Usage 6-25
Considerations 6-25
EXaMIIES .. 6-26
Define INtegrity 6-29
YN aX .« ot 6-29
PSP ION . ..o 6-29
Embedded Usage 6-29
EXaMIDIES 6-29
Define Permit . ..o 6-30
SV N X . oo 6-30
DS CIIP ION . .. 6-30
EXaMIlE 6-31

D iNe VW ..o 6-32
YN aX . ot 6-32
PSP ION . . .o 6-32
CONSIderatioNS o 6-32
EXaMIDIE . 6-33
DLt ... 6-33

Contents vii

YN X Lo 6-33

DSt P ION . 6-33
Embedded Usage 6-33
CoNSIderations 6-34
EXaMIPIES . o 6-34
Delete CUMSOK . . e e e e e 6-35
YN X Lo 6-35
DSt P ION . 6-36
Embedded Usage o 6-36
CoNSIderations 6-36
EXaMIPIE . 6-36
DSt OY . oo 6-37
YN AX . .o 6-37
DSt P ION . 6-37
Embedded Usage 6-37
EXaMIIES . o 6-38
Endretrieve . .. 6-38
YN aX L .o 6-38
PSP ION ... 6-38
EXaMIPlE . . 6-39
ENd Transaction 6-39
YN X L o 6-39
DSt P ION . 6-39
Considerations e 6-39
EXaMIlE . 6-40
Xt . 6-40
YN aX L .o 6-40
PSP ION ... 6-40
CONSIderations 6-40
Help . o 6-41
YN X L . 6-41
DSt P ION . 6-41
Wildcards and Help 6-43
PSS ONS . . .o 6-44
EXaMIPIES . o 6-44
INCIUdE . . 6-45
YN X L 6-45
DSt P ION . 6-45
EXaMIDIES . 6-46
X . 6-46
SV N X . 6-46
[7T of g o o [0 o 6-47
Embedded Usage 6-48

vii QUEL Reference Guide

EXaMIPIES .. 6-48
INgrES o 6-48
YN . o 6-48
DSt P iON . 6-49
Embedded Usage 6-49
EXaMIlE 6-49
INQUIrE _INGres . . .o 6-49
YN aX . oot 6-49
PSP ION . . .o 6-50
EXaMIPlE 6-52
MOy . . 6-52
YN . o 6-52
DSt PN . 6-54
Storage Structure Specification 6-54
Modify...to Merge Option 6-56
Modify...to Relocate Option 6-56
Modify...to Reorganize Option 6-57
Modify...to Truncated Option 6-57
Modify...to Add_extend Option. 6-57
With Clause Options o e 6-57
Fillfactor, Minpages, and Maxpages Options 6-57

Leaffill and Nonleaffill Options. 6-58
Allocation OptioN 6-59

Extend Option 6-59
Compression OpiON 6-59
Location OptioN 6-60
Unique_scope Option 6-60
[NoJpersistence Option 6-60
Embedded Usage 6-61
PSS ONS . . .o 6-61
LOCKING ... 6-61
EXaMIDIES 6-61
OPEN CUMSOT . e e e e 6-63
SV N X . oo 6-64
DS CIIP ION . .. 6-64
Embedded Usage 6-64
PNt . 6-65
YN aX . ot 6-65
PSP ION . . .o 6-65
EXaMIPIES . . 6-65
RaANGE .o 6-66
YN X . o 6-66

Contents ix

PSP ION ... 6-66

CONSIderations 6-67
EXaMIDIES . 6-67
RelOCatE . . . 6-68
SV N X . 6-68
DS P I ON . . 6-68
Embedded Usage 6-68
CONSIdErations 6-69
EXaMIDIE o 6-69
REPIaCE ... 6-69
SV N X . 6-69
D71 ol g o o [0 o 6-69
Embedded Usage 6-70
CONSIderations 6-70
EXaMIDIES . . 6-70
Replace CUMSOr. e 6-71
SV N X . 6-72
DS P I ON . .o 6-72
Embedded Usage 6-72
EXaMIPIES . . 6-73
REEM OV . o 6-73
YN X L o 6-73
DSt P ION . 6-74
Retrievals in Embedded QUEL 6-75
Embedded Usage 6-76
CONSIderations 6-77
EXaMIDIES . 6-77
EXamMple 3 . 6-78
RetrieVE CUMSO . . e e e e 6-79
YN AX L .o 6-79
PSP ION ... 6-79
Embedded Usage 6-79
Considerations 6-79
EXaMIIES . 6-80
SV 6-81
YN aX L .o 6-81
DESCriP ION ... 6-81
Embedded Usage 6-81
Considerations 6-81
EXaMIIES . 6-81
SaAVEPOINE . 6-82
YN aX L .o 6-82
DESCriP ION ... 6-82

X QUEL Reference Guide

S = 6-83
YN aX . ot 6-83
PSP ION . . .o 6-84

Set Aggregate [No]project Option 6-84
Set Joinop [NoJtimeout Option 6-84
Set [No]Jjournaling Option 6-85
Set Lockmode Option. 6-85
Set [Nolprintgry Option 6-87
Set [NoJgep Option 6-87
Set Ret_into Option 6-87
Set [NoJlogging Option 6-87
Set [NoJoptimizeonly Option 6-88
Set [NoJmaxio Option 6-88
Set [NoImaxrow Option 6-88
Set [NoJmaxquery Option 6-88
Session With On_error Option. 6-89
Update_rowcount Oplion 6-89
EXaMIIES .. 6-90

Sl INGIeS . 6-91
1Y 1] = 6-91
PSP ION . . . 6-92

Appendix A: Keywords

Single KeyWords A-1
Double KeyWords A-11
IS0 SQL .o A-17

Appendix B: Terminal Monitor

Accessing the Terminal Monitor B-1
QUEry BUITer . . B-1
Terminal Monitor ComMmMaAaNds e e e e B-2
Messages and Prompts o B-5
Character Input and OUtpUL B-5
Help .o B-6
BranChingo B-6
RS CEIONS . . . B-6
Terminal MoNItOr Macros e e e e B-7

BasiC CONCEPES ... B-7

Contents xi

Defining Macros o B-8

Macro Evaluation o B-8
QUOLING . .o B-9
Backslashes o B-9
More ON Parameters B-10
SYSteM MaCrOS B-10
Special CharaCters B-12
Special {define} ProCessing B-12
Parameter Prescan B-13
Special MacCros B-14

Appendix C: Calling Ingres Tools from Embedded QUEL

Ingres Tools and Parameters. C-1
RO . C-2
1S 1= o o v cC-4
RBEF . C-4
QB o C-5
Vi e C-5
BB C-6
QUEL ..o C-6
TQUEL .o C-6
INgMENU . L . Cc-7
SV S M L Cc-7

Index

xii QUEL Reference Guide

Chapter 1: Infroduction

Audience

Conventions

Query Languages

System-specific Text

The QUEL Reference Guide provides detailed descriptions of all QUEL
statements and provides examples of the correct use of QUEL statements and
features.

This guide identifies QUEL as the Ingres proprietary query language and
introduces features of QUEL’s interactive and embedded releases. It describes
QUEL data types and QUEL statements. The guide also discusses:

m Statement syntax

m Program structure

m Host language variables

m Cursors, transaction processing
m Program status information

m Error handling

m Retrieve statement

m Repeat queries

The QUEL Reference Guide is intended for programmers and users of QUEL
who have a basic understanding of how relational database systems work. In
addition, you must have a basic understanding of the operating system. This
guide is also intended as a reference guide for the database system
administrator.

The industry standard query language, SQL, is used as the standard query
language throughout the body of this guide.

Ingres is compliant with ISO Entry SQL92. In addition, numerous vendor
extensions are included. For details about the settings required to operate in
compliance with ISO Entry SQL92, see the SQL Reference Guide.

The available QUEL statements for UNIX platforms and VMS are described in
this guide. Where information differs by system, read the information for your
system.

Chapter 1: Infroduction 1-1

Conventions

VMS

Embedded QUEL
Examples

This text is specific to the UNIX environment.

This text is specific to the VMS environment.

The symbol M indicates the end of the system-specific text.

This guide contains examples of embedded QUEL code. The examples use the
following conventions:

Margins None used

Labels Appear on a line of their own and are followed by a colon
()

Host language Indicated by the QUEL comment indicator. For example:

comments /* This is a comment. */

Character strings Enclosed in double quotes (" ")

Pseudocode Represents host language statements within embedded

QUEL. For example:

tablevar = "mytable"
descvar = "name = c20, phone = c11"
#+# create tablevar (descvar)

To determine the correct syntax for your programming language, see the
Embedded QUEL Companion Guide.

1-2 QUEL Reference Guide

Chapter 2: Infroduction to QUEL

QUEL is an Ingres proprietary query language. You use QUEL statements to
manipulate and query the information in your database.

There are interactive and embedded releases of QUEL.

m Interactive QUEL enables you to enter QUEL statements from a terminal
and display query results on the terminal screen.

m Embedded QUEL enables you to include QUEL statements in programs
written in programming languages such as C or Fortran.

This chapter introduces the features of embedded and interactive QUEL.

Interactive QUEL

There are two ways to use interactive QUEL:

m The forms-based interactive terminal monitor is invoked by the iquel
command. Enter QUEL statements into a form and select commands from
a menu line.

m The command-based Terminal Monitor is invoked by the quel command.
For details, see the appendix “Terminal Monitor.”

Embedded QUEL

Embedded QUEL (EQUEL) enables you to include QUEL statements in
application programs. This guide refers to the programming language of the
application as the host language.

For each host language, there is an EQUEL preprocessor. The preprocessor
scans your source code for QUEL statements and translates the QUEL
statements into the appropriate host language statements. For detailed
information about language-dependent topics, see the Embedded QUEL
Companion Guide.

Chapter 2: Infroduction to QUEL 2-1

Embedded QUEL

In addition to the statements available to you in interactive QUEL, embedded
QUEL offers the following features:

Database cursors and transaction processing

Database cursors enable your application to process database rows that
fulfill specified search criteria. Transactions help you to preserve database
integrity by grouping QUEL statements; if a transaction fails for any
reason, the effects of all the statements in the transaction are undone.

Dynamic programming

Your application program can specify portions of many QUEL statements
using host variables. The param statement enables database manipulation
statements to be built dynamically, in cases where the humber and data
type of objects to be operated on is not determined until runtime.

Status information

QUEL provides inquiry statements that return detailed information about
the database and forms being used by your application program.

Runtime error handling

In EQUEL applications, you can silence error messages and trap errors
using an error handler routine. For more information on handling runtime
errors, see the Embedded QUEL Companion Guide.

Repeat queries

You can reduce the overhead required to run an embedded query that is
executed many times by using repeat queries. The first time a repeat
query is executed, the DBMS Server encodes the query. On subsequent
executions of the query, this encoding can account for significant
performance improvements.

2-2

QUEL Reference Guide

Chapter 3: QUEL Data Types

This chapter describes QUEL data types. This chapter points out differences in
syntax between embedded and interactive QUEL. When the embedded syntax
is dependent on the host language, you are referred to the Embedded QUEL
Companion Guide.

Object Names

The rules for naming database objects (such as tables, columns, views, and
database procedures) created using QUEL are as follows:

Names can contain only alphanumeric characters, and must begin with an
alphabetic character or an underscore (_).

Names can contain (though not begin with) the following special
characters: “0” through “9”, “#,” “@,"” and “$".

Table names cannot begin with “ii”. These names are reserved for use by
the DBMS Server.

The maximum length of an object name is 32 characters. Examples of
objects managed by Ingres tools (such as VIFRED or Vision) are:

Forms
JoinDefs
QBFNames
Graphs
Reports

Avoid assigning reserved words as object names.

For more information about objects managed by Ingres tools, see the
Character-based Querying and Reporting Tools User Guide or Forms-based
Application Development Tools User Guide.

Chapter 3: QUEL Data Types 3-1

Access to Objects Created Through SQL

Access to Objects Created Through SQL

From QUEL you can freely access objects created using SQL, if the object
name is a valid QUEL object name. However, you cannot access objects if the
object name is mixed case or contains special characters. These objects are
created through SQL using delimited identifiers. For example, using SQL you
can create a table named “"my table” (note the space embedded in the name.)
You cannot access this table from QUEL-you must use SQL. For details about
delimited identifiers, see the SQL Reference Guide.

Comment Delimiters

To indicate comments in interactive QUEL, use “/*” and “*/” (left and right
delimiters, respectively). F or example:

/* This is a comment */

When you use “/*...*/" to delimit a comment, the comment can continue over
more than one line. For example,

/* Everything from here...
...to here 1is a comment */

To indicate comments in embedded QUEL, precede the comment delimiters
with “##"”. For example:

/* This 1is an EQUEL comment */

In embedded QUEL you can also use host language comment delimiters. For
information about comment delimiters, see the Embedded QUEL Companion
Guide.

3-2

QUEL Reference Guide

Data Types

Data Types

There are four classes of data types: character, numeric, abstract and binary.
Character strings can be fixed length (c and char) or variable length (text and
varchar). Numeric strings can be exact numeric (i4, i2, or il) or approximate
numeric (float4 and float8). The abstract data types are date and money.
Binary data can be fixed length (byte) or variable length (byte varying).

Class Category Data Type (Synonyms)

Character Fixed length C

char (character)

Varying length text
varchar
Numeric Exact numeric integer4 (i4, integer)

integer2 (i2, smallint)

Integer8 (i8, bigint)

Integerl (i1, tinyint)

decimal

Approximate numeric float (float8, double precision)

float4 (real)

Abstract (none) date
(none) money
Binary byte

byte varying

Character Data Types

Character data types are strings of ASCII characters. Upper and lower case
alphabetic characters are accepted literally. There are two fixed-length
character data types, char and ¢, and two variable-length character data
types: varchar and text.

The maximum row length in a table is 2008 bytes. Therefore, the maximum
length of a character column is 2008 minus any additional space requirements.
Additional space requirements for character columns are as follows:

m varchar columns require two additional bytes to store a length specifier

m nullable char and varchar columns require one additional byte to store a
null indicator

Chapter 3: QUEL Data Types 3-3

Data Types

Char Data Type

C Data Type

Char strings can contain any printing or non-printing character, and the null
character ("\0”). In uncompressed tables, char strings are stored blank-
padded to the declared length. (If the column is nullable, char columns require
an additional byte of storage.) For example, if you enter "ABC"” into a char(5)
column, five bytes are stored, as follows:

"ABC "

In compressed tables, trailing blanks are removed from char columns. In
general, if your application must preserve trailing blanks, use varchar.

Leading and embedded blanks are significant when comparing char strings
(unlike c strings). For example, the following char strings are different:

"A B C"
"ABC"

When retrieving char strings using the question mark (?) wildcard character,
you must include any trailing blanks you want to match. For example, to
retrieve the following char string:

"ABC "

the wildcard specification must also contain trailing blanks:

"o?7? "

Length is not significant when comparing char strings. For example, the
following char strings are equal, even though the second string contains
trailing blanks:

"ABC" = "ABC "

Character is a synonym for char.

The ¢ data type accepts only printing characters. Non-printing characters, such
as control characters, are converted into blanks.

The DBMS ignores blanks when comparing c strings. For example, the c string:

"the house is around the corner"

is treated identically to:

"thehouseisaroundthecorner"

The c type is supported for backward compatibility, but char is the
recommended fixed-length character data type.

3-4 QUEL Reference Guide

Data Types

Varchar Data Type

Varchar strings are variable-length strings, stored as a 2-byte (I2) length
specifier followed by data. In uncompressed tables, varchar columns occupy
their declared length. (If the column is nullable, varchar columns require an
additional byte of storage.) For example, if you enter "ABC” into a varchar(5)
column, the stored result is:

“@3ABCxx”

where “03"” is a 2-byte length specifier, "ABC” is three bytes of data, and “xx”
represents two bytes containing unknown (and irrelevant) data.

In compressed tables, varchar columns are stripped of trailing data. For
example, if you enter "ABC” into a varchar(5) column in a compressed table,
the stored result is:

“©3ABC”

The varchar data type can contain any character, including non-printing
characters and the ASCII null character ("\0").

Blanks are significant in the varchar data type. For example, the following two
varchar strings are not considered equal:

“the store 1is closed”

and

“thestoreisclosed”

If the strings being compared are unequal in length, the shorter string is
padded with trailing blanks until it equals the length of the longer string.

For example, consider the following two strings:
“abcd\001”

where "\001"” represents one ASCII character (Control-A) and
“abcd”

If they are compared as varchar data types, then
“abcd” > “abcd\001”

because the blank character added to “abcd” to make the strings the same
length has a higher value than Control-A (*\040” is greater than “\001").

Chapter 3: QUEL Data Types 3-5

Data Types

Text Data Type

All ASCII characters except the null character ("\0”) are allowed within text
strings; null characters are converted to blanks.

Blanks are not ignored when you compare text strings. Unlike varchar, if the

strings are unequal in length, blanks are not added to the shorter string. For
example, assume that you are comparing the text strings

“abcd”

and
“abecd “

The string “abcd ” is greater than the string “abcd” because it is longer.
Text is supported for backward compatibility, but varchar is the preferred
varying length character type.
Numeric Data Types
There are two categories of numeric data types: exact and approximate. The

exact data types are the integer data types. The approximate data types are
the floating point data types.

Integer Data Types

There are three integer data types: I1 (one-byte), 12 (two-byte), and 14 (four-
byte). Integer2 is a synonym for I2 and integer4 is a synonym for 14.

The following table lists the ranges of values for each integer data type:

Integer Data Lowest Possible Value Highest Possible Value
Type

14 (integer4) -2,147,483,648 +2,147,483,647

I2 (integer2) -32,768 +32,767

I1 -128 127

3-6 QUEL Reference Guide

Data Types

Floating Point Data Types

Date Data Type

A floating-point value is represented either as whole plus fractional digits (for
example, 123.45) or as a mantissa plus an exponent. The following figure
illustrates the mantissa and exponent parts of floating point values.

Mantissa = 123

Exponent = 4

There are two floating point data types: float4 (4-byte) and float (8-byte).
(Real is a synonym for float4, and float8 and double precision are synonyms
for float.)

Floating point numbers are double-precision quantities stored in four or eight
bytes. The range of float values is processor-dependent, and the precision is
approximately 16 significant digits.

For information about the correct notation for a floating-point numeric literal,
see Numeric Literals.

The date data type is an abstract data type. Date values can be either
absolute dates and times or time intervals.

Absolute Date Input Formats

Dates are specified as quoted character strings. You can specify a date by
itself or together with a time value. If you enter a date without specifying the
time, no time is displayed on output. For more information about date and
time display, see Date and Time Display Formats.

Chapter 3: QUEL Data Types 3-7

Data Types

The legal formats for absolute date values are determined by the setting of
II_DATE_FORMAT, summarized in the following table. If II_DATE_FORMAT is
not set, the US formats are the default input formats. II_DATE_FORMAT can
be set on a session basis; for information on setting II_ DATE_FORMAT, see
the System Administrator Guide.

II_DATE_FORMAT Valid Input Formats Output
Setting

US (default format) mmy/dd/yyyy dd-mmm-yyyy
dd-mmm-yyyy
mm-dd-yyyy
yyyy.mm.dd
yyyy_mm_dd
mmddyy
mm-dd
mm/dd

MULTINATIONAL dd/mm/yyyy dd/mm/yy
and all US formats except
mmy/dd/yyyy

1SO yymmdd yymmdd
ymmdd
yyyymmdd
mmdd
mdd
and all US input formats
except mmddyy

SWEDEN/FINLAND yyyy-mm-dd yyyy-mm-dd

all US input formats except
mm-dd-yyyy

GERMAN dd.mm.yyyy dd.mm.yyyy
ddmmyy
dmmyy
dmmyyyy
ddmmyyyy
and all US input formats
except yyyy.mm.dd and
mmddyy

YMD mm/dd yyyy-mmm-dd
yyyy-mm-dd
mmdd
yymdd
yymmdd
yyyymdd
yyyymmdd
yyyy-mmm-dd

3-8 QUEL Reference Guide

Data Types

II_ DATE_FORMAT Valid Input Formats Output
Setting

DMY dd/mm dd-mmm-yyyy
dd-mm-yyyy
ddmm
ddmyy
ddmmyy
ddmyyyy
ddmmyyyy
dd-mmm-yyyy

MDY mm/dd mmm-dd-yyyy
mm-dd-yyyy
mmdd
mddyy
mmddyy
mddyyyy
mmddyyyy
mmm-dd-yyyy

Year defaults to the current year. In formats that include delimiters (such as
forward slashes or dashes), you can specify the last two digits of the year. The
first two digits default to the current century (2000). For example, if you enter

"03/21/03"

using the format mm/dd/yyyy, the DBMS assumes that you are referring to
March 21, 2003.

In three-character month formats, for example, dd-mmm-yy, you must specify
three-letter abbreviations (for example, mar, apr, may).

To specify the current system date, use date(today). For example:

retrieve (tdate=date("today"))

(BODY_TEXT__C)To specify the current system time, use date(now).

Absolute Time Input Formats
The legal format for inputting an absolute time is:
hh:mm[:ss] [am|pm] [gmt]
Input formats for absolute times are assumed to be on a 24-hour clock. If you

enter a time with an am or pm designation, the DBMS Server automatically
converts the time to a 24-hour internal representation.

Chapter 3: QUEL Data Types 3-9

Data Types

If you omit gmt (Greenwich Mean Time), the local time zone designation is
assumed. Times are stored and displayed using the time zone adjustment

specified by II_TIMEZONE_NAME. If you enter an absolute time without a

date, the current system date is assumed.

Combined Date and Time Input

Any valid absolute date input format can be paired with a valid absolute time
input format to form a valid date and time entry. Some examples are shown in
following table, using the US absolute date input formats:

Format Example

"mm/dd/yy hh:mm:ss" "11/15/03 10:30:00"
"dd-mmm-yy hh:mm:ss" "15-nov-03 10:30:00"
"mmy/dd/yy hh:mm:ss" "11/15/03 10:30:00"
"dd-mmm-yy hh:mm:ss gmt" "15-nov-03 10:30:00 gmt"
"dd-mmm-yy hh:mm:ss [am|pm]" "15-nov-03 10:30:00 am"
"mm/dd/yy hh:mm" "11/15/03 10:30"
"dd-mmm-yy hh:mm" "15-nov-03 10:30"
"mm/dd/yy hh:mm" "11/15/03 10:30"
"dd-mmm-yy hh:mm" "15-nov-03 10:30"

Date Interval Formats

Date intervals, like absolute date values, are entered as quoted character
strings. You can specify date intervals in terms of years, months, days, or
combinations of these. You can abbreviate years and months to yrs and mos,
respectively. For example:

"5 years"

"8 months"

"14 days"

"5 yrs 8 mos 14 days"
"5 years 8 months"

"5 years 14 days"

"8 months 14 days"

3-10 QUEL Reference Guide

Data Types

Time Interval Formats

The following table lists valid ranges for date intervals:

Date Interval Range

Years -9999 to +9999
Months -119977 to +119977
Days -3652047 to +3652047

You can express time intervals as hours, minutes, seconds, or combinations of
these units. (You can abbreviate time intervals to hrs, mins, or secs.) For
example:

"23 hours"

"38 minutes"

"53 seconds"

"23 hrs 38 mins 53 secs"
"23 hrs 53 seconds"

"28 hrs 38 mins"

"38 mins 53 secs"

"23:38 hours"

"23:38:53 hours"

All values in an interval must be in the range -2,147,483,639 to
+2,147,483,639. The DBMS Server adjusts time units as appropriate, as
illustrated in the following table:

Value entered Value displayed
3601 seconds 1 hrs 1 secs

61 minutes 1 hrs 1 mins

26 hours 1 day 2 hours

Date and Time Display Formats

Date values are displayed as strings of 25 characters with trailing blanks
inserted. To specify the output format of an absolute date and time, you must
set II_ DATE_FORMAT. For a list of II_ DATE_FORMAT settings and associated
formats, see Absolute Date Input Formats. The display format for absolute
time is:

hh:mm:ss

The DBMS Server displays 24-hour times for the current time zone, which is
determined when Ingres is installed. Dates are stored in Greenwich Mean Time
and adjusted for your time zone when they are displayed.

Chapter 3: QUEL Data Types 3-11

Data Types

Money Data Type

If you do not enter seconds when you enter a time, zeros are displayed in the
seconds’ place when that value is retrieved and displayed.

For a time interval, the DBMS Server displays the most significant portions of
the interval that fit in the 25-character string. If necessary, trailing blanks are
appended to fill out the string. The format appears as

yy yrs mm mos dd days hh hrs mm mins ss secs

Significance is a function of the size of any component of the time interval. For
instance, if you enter the following time interval:

5 yrs 4 mos 3 days 12 hrs 32 min 14 secs

the entry is displayed as:
5 yrs 4 mos 3 days 12 hrs

truncating the minutes and seconds, the least significant portion of the time,
to fit the result into 25 characters.

The money data type is an abstract data type. Money values are stored
significant to two decimal places. Money values are rounded to dollars and
cents on input and output, and arithmetic operations on the money data type
retain two-decimal-place precision.

The range of money values is:
$-999,999,999,999.99 to $999,999,999,999.99

You can specify a money value as either:A character string literal

The format for character string input of a money value is
"$sdddddddddddd.dd". The dollar sign is optional and the algebraic sign
(s) defaults to + if not specified. You do not need to specify a cents value
of zero (.00).A number

Any valid integer or floating point number is acceptable. The DBMS Server
converts the number to the money data type automatically.

On output, money values are displayed as strings of 20 characters with a
default precision of two decimal places. The display format is:

$[-]ldddddddddddd.dd

where
$ is the default currency symbol
d is a digit from 0 to 9

3-12 QUEL Reference Guide

Binary Data Types

The following settings affect the display of money data. For more details, see
the System Administrator Guide.

Variable Description

II_MONEY_FORMAT Specifies the character displayed as the
currency symbol. The default currency sign is
the dollar sign ($).

II_MONEY_PREC Specifies the number of digits displayed after
the decimal point. Valid settings are 0, 1, and
2.

II_DECIMAL Specifies the character displayed as the decimal
point. The default decimal point character is a
period (.).

Binary Data Types

Byte Data Type

There are three binary data types:
m Byte
m Byte varying

Binary columns can contain data such as graphic images, which cannot easily
be stored using character or numeric data types. The binary data types are
described in the following sections.

The byte data type is a fixed length binary data type. If the length of the data
assigned to a byte column is less than the declared length of the column, the
value is padded with zeros to the declared length when it is stored in a table.
The minimum length of a byte column is 1 byte, and the maximum length is
limited by the maximum row width configured but not exceeding 32,000.

Byte Varying Data Type

The byte varying data type is a variable length data type. The actual length of
the binary data is stored with the binary data, and, unlike the byte data type,
the data is not padded to its declared length. The minimum length of a byte
varying column is 1 byte, and the maximum length is limited by the maximum
row width configured, but not exceeding 32,000.

Chapter 3: QUEL Data Types 3-13

Binary Data Types

Storage Formats of Data Types

The following table lists storage formats for QUEL data types:

Notation

Type

Range

char(1) - char(n)

character

A string of 1 to n characters; n
represents the lesser of the
maximum configured row size
and 32,000.

cl-cn

character

A string of 1 to n characters; n
represents the lesser of the
maximum configured row size
and 32,000.

varchar(1) -
varchar(n)

character

A string of 1 to n characters; n
represents the lesser of the
maximum configured row size
and 32,000.

text(1) - text(n)

character

A string of 1 to n characters; n
represents the lesser of the
maximum configured row size
and 32,000.

il 1-byte integer -128 to +127

i2 2-byte integer -32,768 to +32,767

i4 4-byte integer -2,147,483,648 to
+2,147,483,647

float4 4-byte floating -1.0e+38 to +1.0e+38
(7 digit precision)

float 8-byte floating -1.0e+38 to +1.0e+38
(16 digit precision)

date date (12 bytes) 1-jan-0001 to 30-dec-9999 (for
absolute dates) and
-9999 years to 9999 years (for
time intervals)

money money (8 bytes) $-999,999,999,999.99 to
$999,999,999,999.99

byte binary Fixed length binary data, 1 to
maximum configured row size.

byte varying binary Variable lengthe binary data, 1 to

maximum configured row size.

3-14 QUEL Reference Guide

Literals

Literals

String Literals

Numeric Literals

Integer Literals

Note: If your hardware supports the IEEE standard for floating point numbers,
the float type is accurate to 14 decimal precision ($-dddddddddddd.dd to
$+dddddddddddd.dd) and ranges from -10**308 to +10**308, and the
money type is accurate to 14 decimal precision.

A literal is an explicit representation of a value. There are two types of literals:
string and numeric.

String literals are specified by one or more characters enclosed in double
quotes. The default data type for string literals is varchar, but you can assign a
string literal to any character data type or to money or date data type without
using a data type conversion function.

To include a double quote inside a string literal, you must precede it with a
backslash; for example:

"The following letter is quoted: \"A\"."

which evaluates to
The following letter is quoted: "A".

Numeric literals specify numeric values. There are two types of humeric
literals: integer and floating point.

You can assignh a numeric literal to any of the numeric data types or the
money data type without using an explicit conversion function. The DBMS
Server automatically converts the literal to the appropriate data type, if
necessary.

By default, the period (.) indicates the decimal point. You can change this
default by setting II_DECIMAL. For information about setting II_ DECIMAL, see
the System Administrator Guide.

Integer literals are specified by a sequence of up to 10 digits and an optional
sign, in the following format:

[+|-]1 digit {digit} [e digit]

Chapter 3: QUEL Data Types 3-15

QUEL Constants

Integer literals are represented internally as either an i4 or a i2, depending on
the value of the literal. If the literal is within the range -32,768 to +32,767, it
is represented as a i2. If its value is within the range -2,147,483,648 to
+2,147,483,647 but outside the range of a i2, it is represented as an i4.

You can specify integers using a simplified scientific notation, similar to the
way floating point values are specified. To specify an exponent, follow the
integer value with the letter “e” and the value of the exponent. This notation is

useful for specifying large values; for example, to specify 100,000 you can use
exponential notation as follows:

10e5
Floating Point Literals

A floating point literal must be specified using scientific notation. The format
is:

[+]-] {digit} [.{digit}] e|E [+]|-] {digit}

For example:
2.3 e-02

You must specify at least one digit, either before or after the decimal point.

QUEL Constants

The following constants can be used in queries:

Special Description Used in

Constant

now The current date and time. You The date() function
must specify this constant in
quotes

null Indicates a missing or unknown Queries and expressions

value in a table.

today The current date. You must The date() function
specify this constant in quotes.

user The session’s effective user. Queries and expressions

3-16 QUEL Reference Guide

Nulls

These constants can be used in queries and expressions. For example:

/* Display the current date and time */

retrieve (dcolumn=date("now"))

/* Add a row to a sales order table, recording the
current user as the sales clerk, and a billing date
calulated as one week from today */

append to sales_order
(item_number="123", clerk=user,
billing_date=date("today")+date("7 days"));

To specify the effective user, use the Ingres -u flag (for operating system
commands).

Nulls

A null represents an undefined or unknown value and is specified by the
keyword null. A null is not the same as a zero, a blank, or an empty string.
You can assign a null to any nullable column when no other value is specifically
assigned. For more information about defining nullable columns, see Create in
the "QUEL and EQUEL Statements” chapter.

The ifnull function and the is null predicate enable you to handle nulls in
queries. For details, see Ifnull and Is Null Comparison in the “Elements of
QUEL Statements” chapter.

Nulls and Comparisons

Because a null is not a value, it cannot be compared to any other value
(including another null value). For example, the following where clause
evaluates to “false” if one or both of the columns is null:

where columna = columnb

Similarly, the where clause

where columna < 10 or columna >= 10

is true for all numeric values of “columna”, but false if “columna” is null.

Chapter 3: QUEL Data Types 3-17

Nulls

Nulls and Aggregate Functions

If you execute an aggregate function against a column that contains nulls, the
function ignores the nulls. This prevents unknown or inapplicable values from
affecting the result of the aggregate. For example, if you apply the aggregate
function avg() to a column that holds the ages of your employees, you want to
be sure that any ages that have not been entered in the table are not treated
as zeros by the function. This distorts the true average age. If a null is
assigned to any missing ages, the aggregate returns a correct result: the
average of all known employee ages.

Aggregate functions, with the exception of count(), return null for an
aggregate over an empty set, even when the aggregate includes columns
which are not nullable (count() returns 0).

In the following example, the retrieve returns null, because there are no rows
in “test.”

create table test (coll=integer not null)
retrieve (x=max(test.coll))

In the above example, you can use the ifnull function to return a zero (0)
instead of a null:

retrieve (ifnull(max(test.coll),0))

For more information, see Ifnull in the “Elements of QUEL Statements”
chapter.

Nulls and Integrity Constraints

When you create a table with nullable columns and subsequently create
integrities on those columns, the constraint must include the or...is null clause
to ensure that nulls are allowed in that column.

For example, if the following define statement is issued:

define test (a=int, b=int not null)
/* "a" is nullable */

and the following integrity constraint is defined on the “test” table:

define integrity on test is a > 10

the comparison “a >10" is not true whenever “a” is null. For this reason, the

A\

table does not allow nulls in column “a”, even though the column is defined as
a nullable column. Similarly, the following append statements fails:
append to test (b=5)

append to test (a=null, b=5)

3-18

QUEL Reference Guide

Nulls

Both of these append statements are acceptable if the integrity has not been
defined on column “a”. To allow nulls in column “a”, you must define the

integrity as

define integrity on test is a > 10 or a is null

Note: If you try to create an integrity on a nullable column without specifying
the or...is null clause and the column already contains nulls, the attempt fails.

Chapter 3: QUEL Data Types 3-19

Chapter 4: Elements of QUEL Statements

Operators

Arithmetic

This chapter describes the following elements of QUEL statements:

m Functions, operators, and predicates

m Arithmetic operations, assignments, and other basic operations
m Expressions and search conditions in queries

This chapter points out differences in syntax between embedded and

interactive QUEL. If the embedded syntax is dependent on the host language,
see the Embedded QUEL Companion Guide.

There are three types of operators in QUEL: arithmetic, comparison, and
logical, described in the following sections.

Arithmetic operators are used to combine numeric expressions arithmetically
to form other numeric expressions. Valid arithmetic operators are (in
descending order of precedence):

Operator Description

+ and - plus and minus (unary)

*x exponentiation (binary)

*and / multiplication and division (binary)
+ and - addition and subtraction (binary)

Unary operators group from right to left and binary operators group from left
to right. You can use the unary minus (-) to reverse the algebraic sign of a
value.

To force a desired order of evaluation, use parentheses; for example:
(job.lowsal + 1000) * 12

is an expression in which the parentheses force the addition operator (+) to
take precedence over the multiplication operator (*).

Chapter 4: Elements of QUEL Statements 4-1

Operators

Comparison

Logical

Comparison operators allow you to compare two expressions. Valid
comparison operators are listed in the following table:

Operator Description

= equal to

1= not equal to

> greater than

>= greater than or equal to
< less than

<= less than or equal to

All comparison operators are of equal precedence.

The equal sign (=) also serves as the assignment operator in assignment
operations. For a discussion of assignment operations, see Assignment.

QUEL has three logical operators: and, or, and not. Not has the highest
precedence, followed by and, and or has the least precedence. You can use
parentheses to change this behavior. For example, the following expression:
exprA or exprB and exprC

is evaluated as:

exprA or (exprB and exprC)

To change the order of evaluation you must use parentheses:

(exprA or exprB) and exprC

When parenthesized as shown, the DBMS evaluates (exprA or exprB) first,
then ands the result with exprC.

4-2 QUEL Reference Guide

Operations

You can also use parentheses to change the default evaluation order of a
series of expressions combined with the same logical operator. For example,
the following expression:

exprA and exprB and exprC

is evaluated as:

(exprA and exprB) and exprC

To change this default left-to-right grouping, use parentheses as follows:

exprA and (exprB and exprC)

The parentheses direct the DBMS Server to and exprB and exprC and then
ands that result with exprA.

Note: There is a per-query limit of 127 or expressions. Because the limit is
checked after the query is optimized, it is not obvious that your query has
exceeded the limit. The query optimizer converts all expressions to
expressions combined using the and logical operator. The following example
illustrates this effect of query optimization:

Before optimization:
expressionA or (expressionB and expressionC)

After optimization:
(expressionA or expressionB) and (expressionA or expressionC)

As a result of optimization, the number of ors in the query has doubled. To
avoid exceeding the limit, be aware of this side-effect of query optimization.

Operations

This section describes the basic operations that you can perform: string
concatenation, assighments, arithmetic operations, and date operations.

String Concatenation
To concatenate strings, use the + operator: for example:
"This " + "is " + "a " + "test. "

gives the value

"This is a test."

You can also concatenate strings using the concat function; see String.

Chapter 4: Elements of QUEL Statements 4-3

Operations

Assignment

An assignment operation is an operation which places a value in a column or
variable. Assignment operations occur during the execution of append,
replace, and retrieve statements.

When an assignment operation occurs, the data types of the assigned value
and the receiving column or variable must either be the same or comparable.
If they are not the same, the DBMS Server performs a default type conversion
if the data types are comparable. If they are not comparable, you must
convert the assignment value into a type which is the same or comparable
with the receiving column or variable. For information about the type
conversion functions, see Data Type Conversion Functions.

All character string types (char, varchar, c, and text) are comparable with one
another. Dates are comparable with string types if the format of the value in
the string corresponds to a valid date input format. For information about valid
date input formats, see Absolute Date Input Formats.

All numeric types are comparable with one another. Money is comparable with
all of the numeric and string types. For example, assuming that the following
table is created:

create emp

(name=char (20),

salary=money not null,
hiredate=date not null);

this append statement

append to emp (name="John Smith", salary=40000,
hiredate="10/12/93")

assigns the varchar string literal, “John Smith”, to the char column “name”,
the i4 literal 40000 to the money column “salary”, and the varchar string
literal *10/12/93” to the date column “hiredate”.

The following assignment replaces an existing value in a table:

replace emp (name = "Mary Smith")
where name = "Mary Jones"

In the following embedded QUEL example, the value in the “name” column is
assigned to the variable “name_var” for each row that fulfills the where clause.

retrieve (:name_var=emp.name)
where empno = 125

The following sections present guidelines for assigning values (including nulls)
to each of the general data types. If you are assigning to a host language
variable, see the Embedded QUEL Companion Guide for information about
which host language data types are comparable with QUEL data types.

4-4 QUEL Reference Guide

Operations

Character String

Numeric

All character types are comparable with one another; you can assign any
character string to any column or variable of character data type. The result of
the assignment depends on the types of the assignment string and the

receiving column or variable.

Assigned String Receiving
Column or
Variable

Description

Fixed-length (c or Fixed-length
char)

The assigned string is truncated or
padded with spaces if the receiving
column or variable is not the same
length as the fixed length string.

Fixed-length Variable-length
(varchar or text)

Trailing blanks are trimmed. If the
receiving column or variable is shorter
than the fixed length string, the fixed
length string is truncated from the right
side.

Variable-length Fixed-length
(varchar or text)

The variable length string is truncated
or padded, as necessary, if the
receiving column or variable is not the
same length as the variable length
string.

Variable-length Variable-length

The variable length string is truncated if
the receiving column or variable is not
long enough.

You can assign any numeric data type to any other numeric data type. You can
assign a money value to any numeric data type and a numeric value to the
money data type. Numeric assignments have the following characteristics:

m The DBMS Server can truncate leading zeros or all or part of the fractional
part of a number if necessary. If the non-fractional part of a value (other
than leading zeros) is truncated, an overflow error results. (These errors
are reported only if the -numeric_overflow flag is set. For information
about the -numeric_overflow flag, see the quel command description in

the Command Reference Guide.)

m When a float, float4, or money value is assigned to an integer column or
variable, the fractional part is truncated.

Chapter 4: Elements of QUEL Statements 4-5

Operations

Date

Null

Arithmetic

You can assign absolute date or interval column values to a date column. In
addition, you can assign a string literal, a character string host variable, or a
character string column value to a date column if its value conforms to the
valid input formats for dates.

When you assign a date value to a character string, the DBMS Server converts
the date to the display format. For more information about date display
formats, see Date and Time Display Formats in the "QUEL Data Types”
chapter.

You can assign a null to a column of any data type if the column was defined
as a nullable column. You can also assign a null to a host language variable if
there is an indicator variable associated with the host variable. (For more
information about indicator variables, see Indicator Variables in the
“Embedded QUEL" chapter.)

To ensure that a null is not assigned to a column, you can use the ifnull
function, described in this chapter.

An arithmetic operation combines two or more numeric expressions using the
arithmetic operators to form a resulting numeric expression. For details about
arithmetic operators, see Arithmetic.

Before performing any arithmetic operation, the DBMS Server converts the
participating expressions to identical data types. After the arithmetic operation
is performed, the resulting expression has that storage format also. For
details, see Default Type Conversion.

4-6 QUEL Reference Guide

Operations

Default Type Conversion

When two numeric expressions are combined, the DBMS Server converts as
necessary to make the data types of the expressions identical and assigns that
data type to the result. The expression having the data type of lower
precedence to that of the higher is converted. The order of precedence among
the numeric data types is, in highest-to-lowest order:

money
float4
float

i4

i2

i1

For example, in an operation that combines an integer and a floating point
number, the integer is converted to a floating point number. If the DBMS
Server operates on two integers of different sizes, the smaller is converted to
the size of the larger. The conversions are done before the operation is
performed.

The following table lists the data types that result from combining numeric
data types in expressions:

il i2 i4 float float4 money
il i4 i4 i4 float float4 money
i2 i4 i4 i4 float float4 money
i4 i4 i4 i4 float float4 money
float float float float float float4 money
float4 float4 float4 float4 float4 float4 money
money money money money money money money

For example, for the expression
(job.lowsal + 1000) * 12

the first operator (+) combines a float4 expression (job.lowsal) with a i2
constant (1000). The result is float4. The second operator (*) combines the
float4 expression with a i2 constant (12), resulting in a float4 expression.

To convert one data type to another you must use data type conversion
functions. For details, see Data Type Conversion Functions.

Chapter 4: Elements of QUEL Statements 4-7

Operations

Arithmetic Errors

To specify error handling for numeric overflow, underflow and division by zero,
use the connect statement -numeric_overflow=option flag. Error-handling

options are:
ignore No error is issued.
warn A warning message is issued.

fail (default setting) An error message is issued and the statement that
caused the error is aborted.

This flag can also be specified on the command line for Ingres operating
system commands that accept QUEL option flags. For details about QUEL
option flags, see the quel command description in the Command Reference
Guide.

Arithmetic Operations on Dates

QUEL supports the following arithmetic operations for the date data type:

Addition Result
interval + interval = interval
interval + absolute = absolute
Subtraction Result
interval interval = interval
absolute absolute = interval
absolute interval = absolute

You cannot multiply or divide date values.

When adding intervals, each of the units is added. For example,
date("6 days") + date("5 hours")

yields "6 days 5 hours,” while

date("4 years 20 minutes") + date("6 months 80 minutes")

yields “4 years 6 months 1 hour 40 minutes.”

4-8 QUEL Reference Guide

Operations

In the preceding example, 20 minutes and 80 minutes are added and the
result is 1 hour 40 minutes.” 20 minutes plus 80 minutes is 100 minutes;
however, because there are only 60 minutes in one hour, this result is
considered to have overflowed the minute time unit. With one exception,
whenever you add intervals, the DBMS Server propagates all overflows
upward. In the above example, the result is returned as “1 hour 40 minutes.”
However, days are not propagated to months. For example, if you add 25 days
to 23 days, the result is 48 days.

When you subtract intervals or absolute dates, the result is returned in
appropriate time units. For example, if you perform the following subtraction:

date("2 days") - date("4 hours")
the result is 1 day 20 hours.”

You can convert date constants into numbers of days relative to an absolute
date. For example, to convert today’s date to the number of days since
January 1, 1900:

num_days = int4(interval("days", "today" -
date("1/1/00")))

To convert the interval back to a date:
(date("1/1/00") + concat(char(num_days), " days"))

where “num_days” is the number of days added to the date constant.

In comparisons, a blank (default) date is less than any interval date. All
interval dates are less than all absolute dates. Intervals are converted to
comparable units before they are compared. For instance, before comparing
date("5 hours") and date("200 minutes"), the DBMS Server converts both the
hours and minutes to milliseconds internally before comparing the values.
Dates are stored in Greenwich Mean Time (GMT). For this reason, “*5:00 pm”
Pacific Standard Time is equal to “"8:00 pm” Eastern Standard Time.

Adding a month to a date always yields the same date in the next month. For
example:

date("1-feb-89") + "1 month"
yields March 1.

If the result month has fewer days, the resulting date is the last day of the
next month. For instance, adding a month to May 31 yields June 30, instead of
June 31, which does not exist. Similar rules hold for subtracting a month and
for adding and subtracting years.

Chapter 4: Elements of QUEL Statements 4-9

Functions

Functions

This section describes the QUEL functions. Scalar functions take single-valued
expressions as their argument. Aggregate functions take a set of values (for
example, the contents of a column in a table) as their argument.

Scalar

There are four types of scalar functions:

m data type conversion

® numeric
m string

m date

The scalar functions require either one or two single-value arguments. Scalar
functions can be nested to any level.

Data Type Conversion Functions

The following table lists the data type conversion functions:

Name Operand Type

Result Type Description

c(expr [, len]) any

C

Converts argument to c string. If you
specify the optional length argument, the
function returns the leftmost /en characters.
Len must be a positive integer value that
does not exceed the length of the expr
string.

char(expr [, len]) any

char

Converts argument to char string. If you
specify the optional length argument, the
function returns the leftmost /en characters.
Len must be a positive integer value that
does not exceed the length of the expr
string.

date(expr) c, text, char, varchar

date

Converts a ¢, char, varchar or text string to
internal date representation.

dow(expr) date

Converts an absolute date into its day of
week (for example, “Mon,” “Tue”). The
result length is 3.

4-10 QUEL Reference Guide

Functions

Name Operand Type Result Type Description
float4(expr) c, char, varchar, text, float4 Converts the specified expression to float4.
float, money, and the
integer data types
float8(expr) ¢, char, varchar, text, float Converts the specified expression to float.
float, money, and the
integer data types
hex(expr) varchar, char, c, text varchar Returns the hexadecimal representation of
the argument string. The length of the
result is twice the length of the argument,
because the hexadecimal equivalent of each
character requires two bytes. For example,
hex("A") returns “61” (ASCII) or “C1”
(EBCDIC).
intl(expr) c, char, varchar, text, il Converts the specified expression to il.
float, money, and the Floating point values are truncated.
integer data types Numeric overflow occurs if the integer
portion of a floating point value is too large
to be returned in the requested format.
int2(expr) ¢, char, varchar, text, i2 Converts the specified expression to i2.
float, money, and the Floating point values are truncated.
integer data types Numeric overflow occurs if the integer
portion of a floating point value is too large
to be returned in the requested format.
int4(expr) ¢, char, varchar, text, i4 Converts the specified expression to i4.
float, money, and the Floating point values are truncated.
integer data types Numeric overflow occurs if the integer
portion of a floating point value is too large
to be returned in the requested format.
money(expr) ¢, char, money Converts the specified expression to
varchar, internal money representation. Rounds
text, floating point values, if necessary.
float,
and the integer data
types
text(expr [, len]) any text Converts argument to text string. If you

specify the optional length argument, the
function returns the leftmost /en characters.
Len must be a positive integer value that
does not exceed the length of the expr
string.

Chapter 4: Elements of QUEL Statements 4-11

Functions

Name Operand Type Result Type Description
varchar(expr [, any varchar Converts argument to varchar string. If you
len)) specify the optional length argument, the

function returns the leftmost /en characters.
Len must be a positive integer value that
does not exceed the length of the expr
string.

If you omit the optional length parameter, the length of the result returned by
data type conversion functions c(), char(), varchar(), and text() are as follows:

Data Type of Argument Result Length
C Length of operand
char Length of operand
date 25 characters
float & float4 11 characters; 12 characters on IEEE
computers
integerl (smallint) 6 characters
integer 6 characters
integer4 13 characters
long varchar Length of operand
money 20 characters
text Length of operand
varchar Length of operand

Numeric

The numeric functions are listed in the following table:

Name Operand Type Result Type Description

abs(n) all numeric types same as n Absolute value of n
and money

atan(n) all numeric types float Arctangent of n; returns a
and money value from

(-pi/2) to pi/2

4-12 QUEL Reference Guide

Functions

String

Name Operand Type Result Type Description

cos(n) all numeric types float Cosine of n; returns a value
and money from-1to 1

exp(n) all numeric types float Exponential of n
and money

log(n) all numeric types float Natural logarithm of n
and money

mod(n,b) i4, same as b n modulo b. The result is the
i2, same data type as b
il

sin(n) all numeric types float Sine of n; returns a value from
and money -1to 1l

sqrt(n) all numeric types float Square root of n
and money

For trigonometric functions (atan(), cos(), and sin()), you must specify
arguments in radians. To convert degrees to radians, use the following
formula:

radians = degrees/360 * 2 * pi

To obtain a tangent, you must divide sin() by cos().

String functions perform a variety of operations on character data. String
functions can be nested; for example,

left(right(x.name, size(x.name) - 1), 3)

returns the substring of “"x.name” from character positions 2 through 4, and

concat(concat(x.lastname, ", "), x.firstname)

concatenates “x.lastname” with a comma and concatenates “x.firstname” with
the first concatenation result. You can also use the + operator to concatenate
strings:

x.lastname + ", " + x.firstname

Chapter 4: Elements of QUEL Statements 4-13

Functions

The following table lists the string functions supported by QUEL. The
expressions c1 and c2, representing the arguments, can be any of the string
types, except where noted. The expressions /len and nshift represent integer

arguments.

Name Result Type Description
concat(c1,c2) Any character data Concatenates one string to another. The result size is the sum
type of the sizes of the two arguments. If the result is a c or char
string, it is padded with blanks to achieve the proper length. To
determine the data type results of concatenating strings, see
the following table, which shows the results of string
concatenation.
left(c1,len) Any character data Returns the leftmost /en characters of c1. If the result is a
type fixed-length c or char string, it is the same length as c1,
padded with blanks. The result format is the same as c1.
length(c1) i2 If c1 is a fixed-length c or char string, returns the length of c1
without trailing blanks. If c1 is a variable-length string, returns
the number of characters actually in c1.
locate(c1,c2) i2 Returns the location of the first occurrence of c2 within c1,
including trailing blanks from c2. The location is in the range 1
to size(c1). If c2 is not found, the function returns size(c1) + 1.
(The function size() is described below, in this table.)
If c1 and c2 are different string data types, c2 is coerced into
cl’s datatype.
lowercase(c1) Any character data Converts all upper case characters in c1 to lower case.
type
pad(cl) text or varchar Returns c1 with trailing blanks appended to c1; for instance, if
cl is a varchar string that holds fifty characters but only has
two characters, “pad(c1)” appends 48 trailing blanks to c1 to
form the result.
right(c1,/len) Any character data Returns the rightmost /en characters of c1. Trailing blanks are

type

not removed first. If c1 is a fixed-length character string, the
result is padded to the same length as c1. If c1 is a variable-
length character string, no padding occurs. The result format is
the same as c1.

shift(c1,nshift)

Any character data
type

Shifts the string nshift places to the right if

nshift > 0 and to the left if nshift < 0. If c1 is a fixed-length
character string, the result is padded with blanks to the length
of c1. If c1 is a variable-length character string, no padding
occurs. The result format is the same as c1.

size(c1)

Returns the declared size of c1 without removal of trailing
blanks.

4-14

QUEL Reference Guide

Functions

Name Result Type Description

squeeze(cl) text or varchar Compresses white space. White space is defined as any
sequence of blanks, null characters, newlines (line feeds),
carriage returns, horizontal tabs and form feeds (vertical tabs).
Trims white space from the beginning and end of the string,
and replaces all other white space with single blanks. This
function is useful for comparisons. The value for c1 must be a
string of variable-length character string data type (not fixed-
length character data type). The result is the same length as
the argument.

trim(c1) text or varchar Returns c1 without trailing blanks. The result has the same
length as c1.

notrim(c1) Any character Retains trailing blanks when placing a value in a varchar

string variable column. You can only use this function in an embedded QUEL

program. For more information, see the Embedded QUEL
Companion Guide.

uppercase(cl) any character data Converts all lower case characters in c1 to upper case.

type

charextract(c1,n char Returns the nth byte of c1. If n is larger than the length of the

) string, the result is a blank character.

soundex any character data Returns a four-character field that can be used to find similar

type

sounding strings. For example, SMITH and SMYTHE produce the
same soundex code. If there are less than three characters, the
result is padded by trailing zero(s). If there are more than
three characters, the result is achieved by dropping the
rightmost digit(s).

This function is useful for finding like-sounding strings quickly.
A list of similar sounding strings can be shown in a search list
rather than just the next strings in the index.

The following table shows the results of concatenating expressions of various
character data types:

ist String 2nd String Trim Blanks Result
Type
from 1st? from 2nd?
Cc C Yes - C
text Yes - c
char Yes - C
varchar Yes - C

Chapter 4: Elements of QUEL Statements 4-15

Functions

ist String 2nd String Trim Blanks Result
Type
from 1st? from 2nd?
text C No - C
text No No text
char No Yes text
varchar No No text
char C Yes - C
text Yes No text
char No - char
varchar No - char
varchar C No C
text No No text
char No char
varchar No No varchar

When concatenating more than two operands, the DBMS Server evaluates
expressions from left to right. For example: varchar + char + varchar is
evaluated as (varchar+char)+varchar. To control concatenation results for
strings with trailing blanks, use the trim, notrim, and pad functions.

Date

QUEL supports functions that derive values from absolute dates and from
interval dates. These functions operate on columns that contain date values.
Some date functions require you to specify a unit parameter; unit parameters
must be specified using a quoted string. The following table lists valid unit

parameters:

Unit How Specified

Second second, seconds, sec, secs
Minute minute, minutes, min, mins
Hour hour, hours, hr, hrs

4-16 QUEL Reference Guide

Functions

Day day, days

Week week, weeks, wk, wks
Month month, months, mo, mos
Quarter quarter, quarters, qtr, qtrs
Year year, years, yr, yrs

The following table lists the date functions:

Name Format Description
(Result)
date_trunc(unit,date) date Returns a date value truncated to the

specified unit.

date_part(unit,date) integer Returns an integer containing the specified
(unit) component of the input date.

date_gmt(date) Any Converts an absolute date into the
character Greenwich Mean Time character equivalent
data type with the format yyyy_mm_dd hh:mm:ss
GMT. If the absolute date does not include a
time, blanks are returned for the time
portion of the result.

For example, the query retrieve
(dcolumn=date_gmt("1-1-93 10:13 PM
PST")) returns the following value:

1998_01_01 06:13:00 GMT

gmt_timestamp(s) Any Converts s (where s is an integer that
character represents the number of seconds since
data type January 1, 1970 GMT) into the GMT
character equivalent with the format
yyyy_mm_dd hh:mm:ss GMT.

For example, the query

retrieve (dcolumn =
gmt_timestamp(123456)) returns the
following value:

1970_01_02 10:17:36 GMT

Chapter 4: Elements of QUEL Statements 4-17

Functions

Name Format Description
(Result)
interval (unit, float Converts a date interval into a floating-point
date_interval) constant expressed in the unit of
measurement specified by unit. The interval
function assumes that there are 30.436875
days per month and 365.2425 days per
year when using the mos, qtrs, and yrs
specifications.
For example, the query retrieve (icolumn =
interval("days", "5 years")) returns the
following value:
1826.213
_date(s) Any Returns a 9-character string giving the date
character s seconds after January 1, 1970 GMT. The
data type output format is "dd-mmm-yy".
For example, the query retrieve (dcolumn =
_date(123456)) returns the following value:
2-jan-1970
_time(s) Any Returns a 5-character string giving the time
character s seconds after January 1, 1970 GMT. The
data type output format is "hh:mm" (seconds are

truncated).

For example, the query retrieve (tcolumn =
_time(123456)) returns the following value:

02:17

Using the Date_trunc

You can use the date_trunc function to group all the dates within the same
month or year, and so forth. For example:

date_trunc(“month”,date(“23-0ct-1998 12:337))

returns “1-oct-1998”, and

date_trunc(“year”,date(“23-0ct-1998"))

returns “1-jan-1998".

Truncation takes place in terms of calendar years and quarters (“1-jan,” “1-
apr,” “1-jun” and “1-oct”).

4-18 QUEL Reference Guide

Functions

Using the Date_part

Aggregate

To truncate in terms of a fiscal year, you must offset the calendar date by the
number of months between the beginning of your fiscal year and the beginning
of the next calendar year (6 mos” for a fiscal year beginning July 1, or “4
mos” for a fiscal year beginning September 1):

date_trunc(“year”,date+”4 mos”) - “4 mos”

Weeks start on Monday. The beginning of a week for an early January date
falls into the previous year.

This function is useful in set functions and in assuring correct ordering in
complex date manipulation. For example, if date_field contains the value
23-0ct-1998,

date_part(“month”,date(date_field))

returns a value of “10” (representing October), and
date_part(“day”,date(date_field))

returns a value of “23”.

Months are numbered 1 to 12, starting with January. Hours returned according
to the 24-hour clock. Quarters are numbered 1 through 4. Week 1 begins on
the first Monday of the year. Dates before the first Monday of the year are
considered to be in week 0.

An aggregate function returns a single value based on the contents of a
column. Aggregate functions are also called “set” functions. Aggregate
functions can be nested.

The syntax for QUEL aggregate functions is as follows:
afunct(expr [by expr{, expr}] [[only] where gqual])
where afunct denotes an aggregate function, expr an expression representing

a column or host variable, and qual a qualification. (Qualifications are
explained below).

Chapter 4: Elements of QUEL Statements 4-19

Functions

The following table lists aggregate functions:

Function Data Type of Result Value Returned

count() i4 Number of entries in column.
countu() i4 Number of unique entries in column.
sum() i4, float8, money Sum of values in column.

sumu() i4, float8, money Sum of unique values in column.
avg() float8, money Average of values in column.

avgu() float8, money Average of unique values in column.
max() All types Maximum value in column.

min() All types Minimum value in column.

any() i2 Returns 1 if any rows satisfy the

condition expressed by the argument; 0
if no rows satisfy the condition.

Aggregate Functions Using the Where and By Clauses

Aggregate functions typically evaluate a column and return a single value (for
example, avg(e.age) returns the average of all values in the “age” column of
table “e”). This section describes how you can use the where and by clauses to
modify the results returned by aggregate functions.

The where clause enables you to qualify (filter) the set of values used to
determine the result of the aggregate function. For example,

sum(j.salary where j.salary > 1500
returns the sum of all salaries from table j that exceed 1500.
The by clause causes the function to return a set of results, as opposed to a

single result. One result is returned for each grouping specified by the by
clause. Think of by as meaning “for each.” For example,

avg(e.age by e.dept)
returns an average age for each department in table e.

You can combine the by and where clauses:
avg(e.age by e.dept where e.job=1023)

returns the average age, by department, for employees who have a job code
of 1023.

4-20 QUEL Reference Guide

Functions

You can use the only where format to skip zero results. For example,
count(emp.salary by emp.dept where emp.salary > 10000)

returns a value for every department, but

count(emp.salary by emp.dept
only where emp.salary > 10000)

returns a value only when there are departments containing employees
earning more than 10000.

If you use a by clause on a column that contains nulls, the DBMS Server
returns a single result for the rows that contain null in the column specified in
the by clause-in other words, nulls are grouped.

The result of the only where clause is affected by the set aggregate
project|noproject statement. For more information, see Set in the "QUEL and
EQUEL Statements” chapter.

When an aggregate is applied to a nullable column, any nulls are disregarded
in computing the aggregate. For example, for the following table “temp”:

X

0
1
1

2

null

null

The statement

retrieve (c = countu(temp.x))

yields

Several variables can appear within a single aggregate function. For example,
avg(j.salary by e.dept where e.job=j.jid)

Chapter 4: Elements of QUEL Statements 4-21

Quadlifications

Ifnull

The ifnull function enables you to specify a value other than a null that is
returned to your application when a null is encountered. The ifnull function is
specified as follows:

ifnull(vi,v2)

If the value of the first argument is not null, ifnull returns the value of the first
argument. If the first argument evaluates to a null, ifnull returns the second
argument.

The sum, avg, max, and min aggregate functions return 0 if the argument to
the function evaluates to an empty set. To receive a specified value when the
function evaluates to an empty set, use the ifnull function, as in this example:

ifnull(sum(employee.salary)/25, -1)

Ifnull returns the value of the expression “sum(employee.salary)/25"” unless
that expression is null. If that expression is null, the ifnull function returns -1.

If the arguments are of the same data type, the result is of that data type. If
the two arguments are of different data types, they must be of comparable
data types. For a description of comparable data types, see Assignment.

When the arguments are of different but comparable data types, the DBMS
Server uses the following rules to determine the data type of the result:

m The result type is always the higher of the two data types; the order of
precedence of the data types is as follows:

date > money > float4 > float > i4 > i2 > il

and

c > text > char > varchar

m The result length is taken from the longest value. For example,
ifnull (varchar (5), c10)

results in c10.

The result is nullable if either argument is nullable. The first argument is not
required to be nullable, though in most applications it is nullable.

Qualifications

The term qualification refers to a condition in a query that is applied to the
rows of a table to extract the desired subset of rows.

4-22 QUEL Reference Guide

Quadlifications

Comparison Operators

A comparison operator is a binary operator that takes two expressions as
operands. The expressions must both be numeric, character (any of the four
character types), money or date types. The following operators are recognized

in QUEL:

= equal to

<>orl= not equal to

> greater than

>= greater than or equal to
< less than

<= less than or equal to

All comparison operators are of equal precedence. When comparisons are
made between c strings or between a c string and a string of any of the other
types, all blanks are ignored. When comparisons are made between text, char,
or varchar strings, all blanks are significant.

Nullable and non-nullable data types can be compared. If one or both of the
values is null, the comparison returns the value unknown.

Partial Match Specification

QUEL supports special characters for use with comparison operators (in
particular, the equals operator) to indicate partial matches of character string
(c, char, varchar and text) data. These characters allow the following partial
match specifications:

* matches any string of zero or more characters
? matches any single character
[..]1 matches any of the characters in the brackets

QUEL allows any of these special characters singly or in combination to specify
partial match criteria, as the following examples illustrate:

e.ename="*"

matches any value in “e.ename”. If e.ename is nullable, * does not match
NULL values.

e.ename="E*"

matches any value beginning with “E”.

Chapter 4: Elements of QUEL Statements 4-23

Quadlifications

e.ename="*ein"

matches any value ending with “ein”.

e.ename="*[aeiou] *"

matches any value with at least one vowel.

e.ename="Br???"

matches any five-character value beginning with “Br”.

e.ename="[A-J]*"

matches any value beginning with A, B, C, ..., J.

e.ename="[N-Z]???"
matches any four-character value beginning with N, O, P, ..., Z.

Blanks must not be embedded in bracketed expressions such as “[A-J]*" or
“[N-Z]???.”

The special meaning of these characters can be disabled in a clause by
preceding them with a backslash character (\). Thus, "*" refers to the
asterisk character. However, in an assignment (as opposed to a clause), the
special characters do not perform a partial match specification, as in the
following:

jtitle = "**accountant**"

Because the fragment above assigns a value “**accountant**” to the column
“jtitle,” the asterisks need no escape treatment with the backslash. However,
to retrieve the value so assigned requires the following syntax:

j.jtitle="**accountant**"

Is Null Comparison

The is null predicate has the following syntax:
is [not] null

The is null predicate explicitly tests for a null value. A null is not greater than
or less than anything and is not equal to anything, even another null value.
For example, the predicate

where columnl=column2

does not evaluate to “true” even if both columns are null. To explicitly test a
column for a null value, you must use the is null predicate. Similarly, an
explicit test can be made for the absence of a null value by specifying the is
not null predicate:

columnl is not null

4-24 QUEL Reference Guide

Quadlifications

Clauses
A clause has the form
expr comp_op expr

where comp_op is a comparison operator. A clause can be enclosed in
parentheses without affecting its interpretation, as in the following examples:

(e.age < 50)
((j.salary*12) >= 20000)

A clause returns the truth value true, false or unknown.

Logical Operators

The following Boolean logical operators are recognized in QUEL:

not (negation)
and (conjunction)

or (disjunction)
These operators take and return truth functions (true, false or unknown).

Not has the highest precedence of the three operators; and and or have
equal precedence. Parentheses can be used to override the default order of
processing; by default logical operators are processed from left to right.

General Quadlification

You can use the following constructions to form a where clause:
= not qual

m qual or qual

m qual and qual

m (qual)

where gual is a condition that qualifies a query. For example:

where e.age <= 50
where (e.age <=50) and (j.salary >= 40000) and
(e.job=j.jid)

These examples apply boolean operators to the results of each predicate. If
boolean operators are not specified, the result of the qual condition is the
result of the predicate. Not(true) is false, not(false) is true, not(unknown) is
unknown. AND and OR are defined by the tables that follow.

Chapter 4: Elements of QUEL Statements 4-25

Quadlifications

The following table shows the results of the AND Logical Operator:

true false unknown
true true false unknown
false false false false
unknown unknown false unknown

The following table shows the results of the OR Logical Operator:

true false unknown
true true true true
false true false unknown
unknown true unknown unknown

4-26 QUEL Reference Guide

Chapter 5: Embedded QUEL

This chapter discusses the following topics:
m Statement syntax

m Program structure

m Host language variables

m Cursors

m Transaction processing

m Program status information

m Error handling

m The retrieve statement

m Repeat queries

When the syntax of an EQUEL statement depends on the host language, you
are referred to the Embedded QUEL Companion Guide.

The examples in this section indicate host language statements by using
language-independent pseudocode. Pseudocode statements are italicized and
enclosed in curly braces as shown below.

{

host language statement

}

Chapter 5: Embedded QUEL 5-1

General Syntax of EQUEL Statements

General Syntax of EQUEL Statements

All EQUEL statements must be preceded by a pair of humber signs:
##EQUEL_statement

The number signs must be the leftmost characters on the line, except in
languages that require line numbers. (If you are programming in a language
that uses line humbers, see the Embedded QUEL Companion Guide for the
correct format.) The EQUEL preprocessor ignores lines that do not begin with
“HH

EQUEL statements can be continued across multiple lines; each continuation
line must begin with “##”. For example:

#i#retrieve (sal = e.salary, ename = e.empname)
##where e.empnum = 23

To continue a string literal to the next line, precede the continuation line with
a backslash () and omit the “##"”. For example:

##append to employee (empname = "john jones")

EQUEL does not require statement terminators. However, if your host
language uses a statement terminator, you can use it to terminate EQUEL
statements.

EQUEL comments can appear only on lines that begin with “##”. EQUEL
comments are delimited by “/*” and “*/". You can also use the host language
format to place comments in an EQUEL program.

String literals in EQUEL statements must follow the rules of the host language.

Basic Structure of EQUEL Programs

A typical EQUEL application performs the following steps:
m Connect with a database.
m Execute queries against the database.

m Disconnect from the database.

5-2

QUEL Reference Guide

Host Language Variables

In general, you can mix EQUEL and host language statements. Specific
restrictions are discussed in this chapter. The following example shows a
simple EQUEL program that retrieves and prints the salary and name for
employee 23:

begin program

ename character_string (26)
sal float

/* connect... */

ingres "personnel"

/* execute queries... */

range of e is employee
retrieve (sal = e.salary, ename = e.empname)

where e.empnum = 23
#H{

print ename, sal
#H o}
/* disconnect */
exit

end program

Host Language Variables

The following section discusses the use of host language variables in an EQUEL
application.

Variable Declaration

EQUEL statements use host language variables to transfer data between a
database and an application program. In addition, you can use host variables
to specify the names of cursors, tables, views, and columns. You must declare
host variables to EQUEL before you can use them in EQUEL statements. (If a
variable is not used in an EQUEL statement, it does not need to be declared to
EQUEL.) To declare a variable to EQUEL, precede the variable declaration with
##. For example,

char employee, street, city, zipcode

The Embedded QUEL Companion Guide lists the data types acceptable to
EQUEL and discusses conversion between host language and QUEL data types.
EQUEL restricts you to these data types for variables you use in EQUEL
statements.

EQUEL automatically converts between host and QUEL data of the same type
(numeric or character). However, EQUEL does not convert across data types.
For example, you cannot ask EQUEL to return a numeric value in a host
character variable. To convert data types, use the QUEL data type conversion
functions. For details, see Data Type Conversion Functions in the “Elements of
QUEL Statements” chapter.

Chapter 5: Embedded QUEL 5-3

Host Language Variables

Dereferencing Column Names

If a host variable declared to EQUEL has the same name as a column, table, or
form object in a table, you must precede the column name with a number sign
(#) (dereference it). Dereferencing tells the EQUEL preprocessor to treat the
flagged item as a column (or table or form object) name, not a host variable.

For example, if table “"employee” has a column named “salary”, and the your
application has a variable also named “salary”, you must use the following
retrieve statement to read data from the column into the host variable of the
same name:

##retrieve (salary = e.#salary)

Scope of Variables

Include Statement

EQUEL obeys host language conventions for the scope of variables. The scope
of an EQUEL-declared variable opens at its declaration. The variable is visible
to the preprocessor from that point to the end of the file, unless an EQUEL
statement closes the scope of the variable. For information about statements
that open and close the scope of variables, see the Embedded QUEL
Companion Guide.

The include statement allows you to include external files in your source code.
The syntax of the include statement is

##include filename

For example, you can use include to incorporate a file of EQUEL variable
declarations:

begin program

include "myvars.dec"

#/*

** the equel program can reference the data items
** declared in myvars.dec

#it */

end program

For information about the naming conventions for include files, see the
Embedded QUEL Companion Guide.

5-4

QUEL Reference Guide

Host Language Variables

Indicator Variables
An indicator variable can be associated with a host variable for the following
purposes:
m To indicate if a null was retrieved from a column
m To assign a null to a column.
m To indicate if a string retrieved from a column was truncated.

Use the following syntax to associate an indicator variable with a host
variable:

host_variable:indicator_variable

If your application program retrieves a null into a host variable, and an
indicator variable is not associated with the host variable, the DBMS Server
issues a runtime error.

Retrieving Data Using Null Indicators

After you retrieve data into a host variable that is associated with an indicator
variable, the indicator variable contains one of the following values:

-1 Value was null. The contents of the host variable are unchanged.

0 Value was not null. The host variable contains the retrieved value.

The following example illustrates the use of an indicator variable. In this
example the indicator value is used to detect missing phone numbers, which
are listed in a roster as “n/a":
##retrieve cursor emp_cursor (name, phone:phone_null, id)
7 (phone_null = -1) then

update_roster(name, "n/a”, id)
else

update_roster(name, phone, 71d)
end if

The following EQUEL statements can include indicator variables in their output
target lists:
m retrieve

m retrieve cursor

Setting Values Using Null Indicators

To assign null to a database column, set the indicator variable (associated with
the host variable you are writing) to -1 and execute the assignment
statement. You can also assign null using the keyword null.

Chapter 5: Embedded QUEL 5-5

Host Language Variables

You can use the following statements in conjunction with indicator variables to
assign null values:

= append
m replace

m replace cursor

If you attempt to assign a null to an object that is not nullable, the DBMS
Server issues a runtime error.

A null indicator variable can accompany a variable used in the where clause of
the retrieve, append and replace statements, if you are comparing with
nullable columns or expressions.

The following example demonstrates the use of both an indicator variable and
the null constant: an indicator variable is used to set “phone” to null (if no
phone number was entered), and the null constant is used to set the
“comment” field before it is written to the new employee database.

read ename, eno, phone from terminal

if phone = "" then
phone_null = -1
else
phone_null = @
end if

##append to newemp (empname = ename,
#phone = phone:phone_null,
empnum = eno, comment = null)

Detecting String Truncation Using Indicator Variables

If you application retrieves a character string into a host variable that is too
small to hold the string, the DBMS Server truncates the string to fit into the
host variable. If you specify an indicator variable with the host variable, the
indicator variable is set to the original length of the data. You can detect
truncation by comparing the value of the indicator variable with the length of
the string that was retrieved: if the indicator variable is greater than the
length, the string was truncated.

Variable Usage and Dynamic Operation of EQUEL Statements

EQUEL allows you to use host language variable to specify many and various
parts of EQUEL statements. This powerful feature enables you to write
applications that have a great deal of runtime flexibility.

Of course, the data type and use of the host language variable must make
sense in the context of the EQUEL statement.

5-6

QUEL Reference Guide

Host Language Variables

The following are general rules and guidelines:

Host variables can be used to receive values from tables and status
information obtained from the DBMS Server.

Host variables can be used to specify the following portions of EQUEL

statements:

Portion of Description

Statement

Values of A variable can contain a value to be matched in a

constants within
expressions

database qualification (where clause), a value to be
stored in a database column or an operand in a
complex expression. The variable must contain a single
value of an appropriate data type, and must not be a
string containing multiple operands or operators.

Qualifications

A string variable can be used to specify an entire
qualification (where clause), including names of range
variables and columns, values to be matched, and
QUEL functions. This string variable must not contain
names of host language functions or other host
language variables which are not understood by the
database management system. This feature allows
considerable flexibility in programs, permitting
applications to construct a “where clause” from
parameters that the user specifies at runtime.

Names of
database objects

The general rule when using variable substitution for
database object names, (such as range variables,
tables, and columns) is that one variable can substitute
for one name in a statement: for example, you cannot
assign a string variable a value such as “e.salary”; you
must specify the range variable e and the column
salary using separate host variables. When using a
variable to specify a database name, you can use a
single string variable to specify both the network node
and database name.

Miscellaneous
arguments

In general, constant values for statement arguments
can be specified using host variables of the appropriate
data type. For example, the components of a with
clause on the index and copy statements, and the
items in a define permit or a save statement, can be
represented by host variables. In the sort clause of a
retrieve statement, the sort keys can be specified
individually using string variables containing the name
of a result column. A string variable can be used to
specify the entire target_list on the create, copy, define
view and declare cursor statements.

Chapter 5: Embedded QUEL 5-7

Data Manipulation with Cursors

m Host variables of short integer types can be used as null indicator variables
as described in this chapter.

Host variables cannot be substituted for keywords in EQUEL statements. For
details about the parameters that can be specified using host variables, see
the "QUEL and EQUEL Statements” chapter.

In the following example, the retrieve statement makes use of host variables.
The two host variables are "name” and “sal”.

retrieve (name = e.empname, sal = e.salary)
#Ht where e.empnum = 23

In the following example, the variable “eno” is used as an expression in the
where clause.

retrieve (ename = e.empname, sal = e.salary)
where e.empnum = eno

If an embedded retrieve statement returns no rows, the contents of the host
variables are not be modified.

Param Statements

The EQUEL param statement allows you to create lists of host variables at
runtime, for retrieve and append (and other) operations, rather than hard-
coding variables into such statements.

The param feature is not supported for all host languages; it is described in
detail in the Embedded QUEL Companion Guide for the languages that do
support it.

Data Manipulation with Cursors

Cursors return a series of rows to an embedded application, one row at a time,
as the result of a retrieve statement. To use cursors, perform the following
steps:

= Declare a cursor; when you declare a cursor, you assign it a name and
associate the cursor with a retrieve statement.

= Open the cursor.

= Retrieve columns from the next row. The columns you specified in the
declare statement are retrieved into the host variables you specify in the
retrieve statement.

5-8 QUEL Reference Guide

Data Manipulation with Cursors

= If required by your application, replace selected columns from the current
row with the contents of the host variables you specify, or delete the
current row.

= Close the cursor to terminate processing of the table.

During processing, the row to which the cursor is pointing is referred to as the
current row. The cursor is advanced by issuing a cursor retrieve statement.
The current row is updated by issuing a cursor replace statement.

Example of Cursor Processing

The following example uses a cursor to print the names and salaries of all the
employees in the table and set any salaries under $10,000 to $10,000.

begin program

name character_string(15)

salary float

ingres personnel

range of e is employee

declare cursor cl for

retrieve

(e.empname, e.#salary)

for update of (#salary)

open cursor cl

loop while more rows

retrieve cursor cl (name, salary)

print name, salary
if salary less than 10000 then

replace cursor cl (#salary = 10000)
end if

/* use the inquire_ingres statement to check endquery

status for end-of-table*/

end loop

close cursor cl

exit

end program

Declaring a Cursor

To declare a cursor, you associate a cursor name with a retrieve statement.
You must declare a cursor before you can use it. In your source code, the
declare statement must appear before the first use of the cursor; the declare
statement is used by the preprocessor and does not generate executable code.

The syntax for declaring a cursor is
declare cursor cursor_name for

retrieve_statement
for [deferred | direct] update of column {, column?}

Chapter 5: Embedded QUEL 5-9

Data Manipulation with Cursors

The cursor_name can be either a literal or a host language character string
variable assigned a valid cursor name at runtime. Cursor names must obey the
naming conventions described in the "QUEL Data Types” chapter. The retrieve
clause used in a declare statement must observe the correct QUEL syntax.

The for update clause allows you to specify the manner in which the DBMS
Server updates the tables that are referenced by the cursor. If you intend only
to delete rows, you do not need to declare the cursor for update. The default
mode for the for update clause is deferred. In deferred mode, the updates you
make using the cursor are not written until you close the cursor. Only one
cursor can be open for deferred update at any time. In direct mode, the
updates you make using the cursor are written immediately. If you write a
change that affects the sequence of rows (for example, you modify a key
field), the next retrieve statement returns the next row in the new sequence.

No data is retrieved as a result of the declare cursor statement. Data is

retrieved when you open the cursor and issue a retrieve cursor statement.

Opening and Closing Cursors

You must open a cursor before you can use it to read, write, or delete data:
open cursor cursor_name [for readonly]

When you open a cursor, it is positioned before the first row; the first retrieve
cursor statement you issue advances the cursor to the first row and return its
data. More than one cursor can be open at the same time.

You can use the for readonly clause if you do not intend to write or delete
data; for readonly is valid even if the cursor was defined for direct|deferred
update. Specifying for readonly can speed up processing. If you attempt to
write data using a cursor that was opened readonly, the DBMS Server issues a
runtime error.

The close statement terminates processing of a cursor:

close cursor cursor_name

A cursor can be opened and closed any number of times; it must be closed,
however, before it can be reopened. Closing and reopening a cursor

repositions it to the top of the table.

Cursors cannot remain open across transactions; a cursor must be opened and
closed within a single transaction.

5-10 QUEL Reference Guide

Data Manipulation with Cursors

Open Cursors and Transaction Processing

The only way you can have more than one cursor open at a time is using
multi-query transactions (MQT). (Cursors opened for update must be opened
in direct mode.) An MQT also allows your program to issue other queries while
there are open cursors. No work is committed (written to the database) until
the end transaction statement is executed. At this point, all queries since the
last begin transaction statement are committed and any open cursors are
closed.

The following table summarizes the interaction of EQUEL transaction
statements and cursors:

Statement Effect

begin transaction Denotes the beginning of a transaction.
More than one cursor can be open within a
transaction.

end transaction Commits all cursor updates specified within
the transaction, and closes all open cursors.

abort Undoes all cursor updates within the
transaction and closes open cursors.

savepoint savepoint_name Not allowed if cursors are open: cursors
must be opened and closed between
savepoints.

abort to savepoint_name Undoes all cursor updates performed after
the specified savepoint. Closes open
cursors.

Retrieving the Data

The retrieve cursor statement reads the next row of data (as specified in the
declare statement) into the specified host variables. The syntax is:

retrieve cursor cursor_name (variable {, variable})

To detect the end of a table, use the inquire_ingres statement to determine
the endquery status. For details about inquire_ingres, see Inquire ingres in
the "QUEL and EQUEL Statements” chapter.

The retrieve cursor statement is typically used within a program loop to
processes a series of rows; using cursors you can only move forward through
rows (or reposition to the top of the table by closing and reopening the
cursor).

Chapter 5: Embedded QUEL 5-11

Data Manipulation with Cursors

Fetching Rows Inserted by Other Queries

While a cursor is open, your application can append rows using non-cursor
append statements. If these newly inserted rows are inserted after the current
cursor position, the rows are or are not be visible to the cursor, depending on
the following criteria:

m Updatable cursors
The newly inserted rows are visible to the cursor.
m Non-updatable cursors

If the cursor retrieve statement retrieves rows directly from the base
table, the newly inserted rows are visible to the cursor. If the retrieve
statement manipulates the retrieved rows (for example, includes an sort
by clause), the cursor retrieves rows from an intermediate buffer, and
cannot detect the newly inserted rows.

Using Cursors to Update Data

To update fields that were retrieved using a cursor, use the replace cursor
statement:

#+# replace cursor cursor_name (column = expression
{, column = expression})

The replace cursor statement causes no change in the position of the cursor. A
retrieve cursor is required to move the cursor forward one row. If you try to
replace the same row twice (without advancing the cursor) and the cursor was
opened in deferred mode, the DBMS Server issues a runtime error.

The update affects only the current row, and you can only update columns that
were declared in the for...update clause of the declare cursor statement. For
details, see Declaring a Cursor.

Using Cursors to Delete Data

To delete a row from a table, use the delete cursor statement:
delete cursor cursor_name

This statement deletes the current row. The cursor does not have to be
declared for update to use a delete cursor. The cursor must have been
positioned to the row using retrieve cursor. Once the row is deleted, a retrieve
cursor must be issued to advance the cursor to the next row.

5-12

QUEL Reference Guide

Data Manipulation with Cursors

The following example illustrates the use of a cursor to update and delete
FOWS:

name character_string(15)
salary float
ingres personnel
declare cursor cl for
retrieve (employee.empname, employee.#salary)
for update of (#salary)
open cursor cl
loop while more rows
retrieve cursor cl (name, salary)
print name, salary
/* Increase salaries of all employees earning less
** than 60,000. */
if salary < 60,000 then
print "updating", name
replace cursor cl (#salary = salary * 1.1)
/* Fire all employees earning more than 300,000. */
else 1f salary > 300,000 then
print "terminating ", name
delete cursor cl
end if
end loop
close cursor cl
exit

Summary of Cursor Positioning

The following list summarizes the effects of cursor statements on cursor

positioning:

Statement Effect on Cursor

open cursor Cursor positioned before first row in set.

retrieve cursor Cursor moves to next row in set. If already on last
row, cursor moves beyond the set and its position
becomes undefined.

replace cursor Cursor remains on current row.

delete cursor Cursor moves to a position after the deleted row (but
before the following row).

close cursor Cursor and set of rows become undefined.

For more information about cursors, see the Embedded QUEL Companion
Guide.

Dynamically Specified Cursor Names

The following example illustrates the use of host variables to dynamically
declare cursor names, and the use of a recursive routine to scan a table that
contains a “tree” structure (in this example, an organization chart).

Chapter 5: Embedded QUEL 5-13

Data Manipulation with Cursors

In this example, the table “orgchart” contains three columns: employee name,
title, and the name of the employee’s manager. The program uses a
subroutine that displays the employees that report to a manager. If an
employee is also a manager, the subroutine calls itself to list the employees he
or she manages.

The subroutine declares a cursor for each level it scans. The cursor name is
defined as “C” plus the number of the level being scanned (C1, C2, and so on).

character-string ename(25)

integer level

ingres "mydatabase"

/* First, print the president’s name */
retrieve (ename=orgchart.employee)
where orgchart.title="president"

print "the president is ", ename
/* initialize level for recursive calls */
level=0

begin transaction
printorg(level, ename)
end transaction

/*****************************
* display employees **
* for each manager **
****************************/
printorg(alevel, amanager)
character amanager(25), cursorname(2), cname(25),
character title(25), cmanager(25)
integer alevel, end _of _query, ecount
/* is this employee a manager? */
retrieve (ecount=count(orgchart.manager
where orgchart.manager=amanager))
/* no, return */
7 ecount=0
return
endif
cursorname = "c" + char(alevel+1)
declare cursor cursorname for retrieve
(orgchart.employee,
orgchart.title,
orgchart.manager)
where orgchart.manager=amanager
open cursor cursorname
/* cursor loop reads all employees for manager */
end_of_query=0
loop while end of query = @
retrieve cursor cursorname (cname, ctitle, cmanager)
inquire_ingres(end_of_query=endquery)
if end_of _query = 0
indent to appropriate level, print cname, ctitle
/* see if this employee is a manager */
call printorg(alevel+1, cname)
end 1f
end while loop
close cursor cursorname
return

5-14

QUEL Reference Guide

Data Manipulation with Cursors

Cursors and Retrieve Loops Compared

Use cursors:
m When a program needs to scan a table to update or delete rows

m When a program requires access to other tables (or cursors) while
processing rows

m When more than one table needs to be scanned simultaneously (“parallel
query”)

m When more than one table needs to be scanned in a nested fashion, for
example, in a master-detail application

Use retrieve loops if the program is scanning the rows to:
m Generate a report, or

m Accumulate general statistics

For straightforward reading operations, the retrieve loop runs faster than a
cursor. However, you cannot execute other queries inside a retrieve loop.

The following example shows the use of a retrieve loop and a cursor to scan a
table:

begin program
ename character_string(21)
salary float
eno, thatsall 7integer
ingres "personnel"
range of e is employee
/* retrieve loop */
retrieve (ename = e.empname, eno = e.empnum,
salary = e.#salary)
sort by #ename
#H{
print ename, eno, salary
#t)

/* cursor retrieve */
declare cursor cl for
retrieve (e.empname, e.empnum, e.#salary)
sort by empname
open cursor cl
loop until thatsall = 1
#H retrieve cursor cl (ename, eno, salary)
#t inquire_ingres (thatsall = endquery)
if thatsall = @ then
print ename, eno, salary
end if
end loop
close cursor cl
exit
end program

Chapter 5: Embedded QUEL 5-15

Transactions

Transactions

A transaction is one or more QUEL statements that are processed as a single
database action. The effects of a transaction on the database become
permanent and visible to other users when the transaction is committed.

Your application program can abort (reverse the effects) of some or all of the
statements within a multi-query transaction (MQT). The ability to execute
groups of statements as a single transaction, and to selectively abort
transactions, enables you to ensure that your applications preserve the
consistency of the data in the database.

The DBMS Server insures that simultaneously executing transactions do not
interfere with each other-this is called “concurrency control.” For more
information about concurrency issues, see Deadlock: Detection, Avoidance,

and Handling.

Transaction Statements

EQUEL's transaction-controlling statements are:
m abort

Terminates an MQT without committing (updating the database)
m abort to savepoint_name

Rolls back all statements executed after the specified savepoint
m begin transaction

Begins an MQT
m end transaction

Ends an MQT and commits the transaction’s effects to the database.
m savepoint savepoint_name

Declares a savepoint

For details about these statements, see the "QUEL and EQUEL Statements”
chapter.

5-16 QUEL Reference Guide

Transactions

Defining Transactions

One or more QUEL statements enclosed within a begin transaction-end
transaction block constitutes a multi-query transaction (MQT). Any QUEL
statement not within a begin transaction-end transaction block is a single-
query transaction (SQT).

MQTs guarantee the atomic execution of a group of QUEL statements. Within
MQTs you can declaring savepoints, which enable you to partially undo the
effects of a transaction without aborting the transaction.

The following QUEL statements must not appear within an MQT:
m begin transaction

m end transaction

m set lockmode

Committing Transactions

When a transaction is committed, its effects on the database are made
permanent and visible to other users. Before a transaction is committed, none
of its updates to the database are visible to other users, and the transaction
can be aborted. An SQT is committed upon execution (barring errors). An MQT
is committed when the end transaction statement is executed.

Note: Under certain circumstances, the effects of an uncommitted transaction
are visible to other users. For details, see Set Lockmode Option in the "QUEL
and EQUEL Statements” chapter.

Aborting Transactions

At any time before an end transaction statement commits an MQT, the
transaction can be aborted, either by the application program (using an abort
statement) or by the DBMS Server (under specific circumstances). When a
transaction is aborted, all effects of the transaction on the database are rolled
back. No other transactions in progress are adversely affected.

MQTs can be aborted in the following ways:
m Program abort

The QUEL statement abort terminates an MQT.
m Log file too full

When the log file becomes too full (80% is the default), the DBMS Server
begins to abort the oldest transactions to free up space in the log file. (To
avoid forced aborts, allocate sufficient space for the log file.)

Chapter 5: Embedded QUEL 5-17

Transactions

m Deadlock

When the DBMS Server detects deadlock, it aborts one transaction to end
the deadlock. For an explanation of deadlock, see Deadlock: Detection,
Avoidance, and Handling.

m Exit statement

Exiting the database with an EQUEL exit statement aborts any in-progress
MQT.

Savepoints and Partial Transaction Aborts

The savepoint statement establishes a point within an MQT to which the
transaction can be aborted. This enables your application to partially undo the
effects of a transaction instead of aborting the entire transaction. All database
changes performed by the transaction after the savepoint are rolled back. All
changes preceding the savepoint remain.

If the same savepoint name is used in multiple savepoint statements within an
MQT, the most recently executed savepoint is always in effect. There is no
limit to the number of savepoint declarations allowed within a transaction.

Interrupt and Timeout Handling in Transactions

Any user action which aborts an EQUEL program also causes the DBMS Server
to abort any transaction in progress. Termination of EQUEL programs in this
manner is strongly discouraged.

If an application times out while waiting for a lock, the DBMS Server displays
an error message and aborts any statement in progress. A timeout error
during an MQT does not abort the transaction. For details about timeout, see
Set Lockmode Option in the "QUEL and EQUEL Statements” chapter.

Deadlock: Detection, Avoidance, and Handling

Deadlock occurs when each of two transactions has locked some portion of a
database that the other transaction requires. Neither transaction releases the
part of the database it has until it gets the other part. This standoff brings
processing to a halt.

The DBMS Server detects deadlock, aborts one of the transactions, and
returns an error message to the process whose transaction was aborted.

You cannot guarantee deadlock-free processing. However, you can include
appropriate handling of deadlock within your program. (For example, if the
application detects deadlock, it restarts the transaction.)

5-18 QUEL Reference Guide

Transactions

The following example is an EQUEL program that handles general errors in a
collection of single statements. All detected errors suspend program execution
with the exception of deadlock, which resumes execution at the statement that
caused deadlock.

The following is a simple deadlock handling example:

begin program

/*
** an equel program that performs a series of appends
** and handles ingres errors, including deadlock,
** within a single-query transaction.
#Hx/
ingerr, inum integer
ingres "personnel"
create item (number = i4)

inum = 0

loop until inum = 9

inum = inum + 1

append to item (number = inum)

#Ho/*
** if an ingres error occurred, then report the error
** and break out of the loop if the error was
** something
** other than deadlock. if the error was deadlock
** then resume with the append that encountered the
** deadlock.
* X
** the error number for deadlock is 4700.
#it */
inquire_ingres (ingerr = errorno)

if ingerr /= 0 then

if ingerr != 4700 then

print "error number ", ingerr, "on append ", inum
break loop,
else
#t /*
#Ht ** deadlock - try again without incrementing
** the counter
#it */
inum = inum + 1
end if
else
print "append ", inum, "succeeded"”
end 1f
end loop
exit

Another approach to handling deadlock is to suppress the error message and
restart the transaction without notifying the user. This approach requires the
use of an error handler declared with iiseterr(). For an example of this
approach, see the Embedded QUEL Companion Guide.

Chapter 5: Embedded QUEL 5-19

Program Status Information

Program Status Information

The following features enable you to obtain QUEL status information:
m The inquire_ingres statement

Returns runtime information about the status of programs and the results
of queries.

m The dbmsinfo() function
Returns runtime information about the current database session.
For a detailed description of the inquire_ingres statement, see Inquire ingres

in the "QUEL and EQUEL Statements” chapter. For details about the dbmsinfo
function, see The Dbmsinfo() Function in this chapter.

The Inquire_ingres Statement

An example of the use of the inquire_ingres statement follows:

begin program
rcount, errno integer
errmsg character_string(256)
ingres "personnel”
append to employee (empnum = 12,
empname = "john smith", salary = 10000)
/* find out if an error occurred while appending */
inquire_ingres (rcount = rowcount, errno = errorno,
errmsg = errortext)
/* 1f error occurred, print its number and message */
if errno > @ then print "ingres error"”, errorno, "occurred”
print errmsg
/* tell the user whether or not a row was added */
else if rcount > O then
print "row successfully appended”
else
print "integrity violation or duplicate record”
end if
exit
end program

The rowcount value is useful for detecting integrity violations.

The Dbmsinfo() Function

Dbmsinfo() is a function that returns a string containing information about the
current session. You can use this statement in the Terminal Monitor or in an
embedded QUEL application. The dbmsinfo() statement has the following
syntax:

dbmsinfo("request_name")

5-20 QUEL Reference Guide

Program Status Information

For example, to find out which release of Ingres you are using, enter:

retrieve (x=dbmsinfo("_version"))

The following table lists valid request_name:

Request Name

Description

autocommit_state

Returns 1 if autocommit is on; 0 if autocommit is off.

_bintim Returns the current time and date in an internal format, represented as the
number of seconds since January 1, 1970 00:00:00 GMT.

_bio_cnt Returns the number of I/0s to and from the front-end client (application)
that created your session.

collation Returns the collating sequence defined for the database associated with the
current session. This returns blanks if the database is using the collating
sequence of the machine’s native character set, such as ASCII or EBCDIC.

_cpu_ms Returns the CPU time for your session, in milliseconds.

cursor_deferred_update

Returns “Y” if the default cursor mode is deferred; “N” otherwise. The
default cursor mode is specified when the DBMS Server is started.

cursor_direct_update

Returns “Y” if the default cursor mode is direct; "N” otherwise. The default
cursor mode is specified when the DBMS Server is started.

database Returns the database name.

dba Returns the user name of the database owner.

dbms_bio Returns the number of buffered I/O requests for all connected sessions.

dbms_cpu Returns the cumulative CPU time for the DBMS Server, in milliseconds, for
all connected sessions.

dbms_dio Returns the number of direct I/O requests for all connected sessions.

db_delimited_case

Returns "LOWER” if delimited identifiers are translated to lower case,
“UPPER" if delimited identifiers are translated to upper case, or *"MIXED" if
the case of delimited identifiers is not translated. For details about delimited
identifiers, see the SQL Reference Guide.

db_name_case

Returns "LOWER” if regular identifiers are translated to lower case, or
“UPPER" if regular identifiers are translated to upper case.

_dio_cnt

Returns the number of disk I/O blocks for your session.

_et_sec

Returns the elapsed time for session, in seconds.

flatten_aggregate

Returns “Y” if the DBMS Server is configured to flatten queries involving
aggregate subselects; “"N” otherwise. (Query flattening options are specified
when the DBMS Server is started.)

flatten_none

Returns “Y” if query flattening is disabled. (Query flattening options are
specified when the DBMS Server is started.)

Chapter 5: Embedded QUEL 5-21

Program Status Information

Request Name

Description

flatten_optimize

Returns “Y” if the DBMS Server is configured to flatten queries wherever
possible; “"N” otherwise. (Query flattening options are specified when the
DBMS Server is started.)

flatten_singleton

Returns “Y” if the DBMS Server is configured to flatten queries involving
singleton subselects; “"N” otherwise. (Query flattening options are specified
when the DBMS Server is started.)

initial_user

Returns the user identifier in effect at the start of the session.

language

Returns the language used in the current session to display messages and
prompts.

on_error_state

Returns the current setting for transaction error handling: “rollback
transaction” or “rollback statement”. To set transaction error handling, use
the set session with on_error statement.

_pfault_cnt

Returns the number of page faults for server.

query_language

Returns “sql” or “quel”.

security_priv

Returns “Y” if the effective user has the security privilege, or "N” if the
effective user does not have the security privilege.

server_class

Returns the class of DBMS server, for example “ingres”.

session_id

Returns the internal session identifier in hexadecimal.

session_user

Returns the session’s current effective user ID.

system_user

Returns the system user ID.

terminal

Returns the terminal address.

transaction_state

Returns 1 if presently in a transaction, 0 if not.

update_rowcnt

Returns “qualified” if inquire_ingres(rowcount) returns the number of rows
that qualified for change by the last query, or “changed” if
inquire_ingres(rowcount) returns the number of rows that were actually
changed by the last query. For details, see Update rowcount Option in the
“"QUEL and EQUEL Statements chapter.

update_syscat

Returns “Y” if the effective user is allowed to update system catalogs, or "N”
if the effective user is not allowed to update system catalogs.

username

Returns the session’s current effective user ID.

_version

Returns the DBMS version number.

5-22 QUEL Reference Guide

Program Status Information

The following additional request_names are part of the Knowledge
Management Extension:

Request Name

Description

group Returns the session’s group identifier or blanks if no group identifier is in
effect.
role Returns the session’s role identifier or blanks if no role identifier is in effect.

query_io_limit

Returns the session’s value for query_io_limit or -1 if no limit is defined for
the session.

query_row_limit

Returns the session’s value for query_row_limit or -1 if no limit is defined for
the session.

create_table

Returns “Y” if the session has create_table privileges in the database or “N”
if the session does not.

create_procedure

Returns “Y” if the session has create_procedure privileges in the database or
“N" if the session does not.

db_admin Returns “Y” if the session has the db_admin privilege.

lockmode Returns “Y” if the session can issue the set lockmode statement or *N” if the
session cannot.

maxio Returns the value specified in the last set maxio statement. If no previous
set maxio statement was issued or if set nomaxio was specified last, this
returns the same value as the request name query_io_limit.

maxquery Same as maxio.

maxrow Returns the value specified in the last set maxrow statement. If no previous

set maxrow statement was issued or if set homaxrow was specified last, this
returns the same value as the request name query_row_limit.

security_audit_log

Returns the name of the current security auditing log file. For details about
security auditing, see the SQL Reference Guide.

Chapter 5: Embedded QUEL 5-23

Runtime Error Processing

Runtime Error Processing

By default, all EQUEL and DBMS server errors are returned to the EQUEL
program, and messages are displayed on the standard output device. Using
the iiseterr feature, you can define your own error-handling routine, which can
display or suppress error messages. The iiseterr() function is not supported in
all host languages. For more information, see the Embedded QUEL Companion
Guide.

The program error handler must be declared in your program as an integer
function, and declared as a parameter to the EQUEL routine iiseterr().

Avoid issuing any EQUEL statements within a user-written error handler,
except for informative messages such as message, prompt, sleep and clear
screen, and termination statements such as exit. If an error occurs in the error
handler, there is the risk of infinite looping.

Retrieve Statement

In EQUEL, the retrieve statement returns data to a set of host language
variables. In EQUEL programs, the retrieve statement is normally followed
immediately by a block of program code enclosed by the delimiters “##{"” and
“##3}". At runtime, the program retrieves a row into host variables and
executes this block of code once for each row of data retrieved. If no rows are
retrieved, the code block is not executed. The retrieve loop normally
terminates after all rows have been processed.

You can terminate the loop before all rows are retrieved, using the endretrieve
or endloop statements. You must not use a host language goto statement to
exit the loop; if you do, the next database access statement causes an error.

Retrieve loops must not include other statements that access the database.
When the retrieve loop terminates, control passes to the statement following
the retrieve loop.

The following example illustrates the use of retrieve loops. This example
retrieves a collection of rows, containing an employee’s name, salary, and
manager’s name. For each row, the program statements in the retrieve loop
compute and print the ratio of the employee’s salary to the manager’s.

5-24 QUEL Reference Guide

Retrieve Statement

The program processes at most 10 rows, and executes an endretrieve
statement when the loop counter exceeds 10.

begin program

ename character_string(21)
mname character_string(21)
salary, msalary float
eno, n integer
ingres personnel

n =20

range of e is employee
range of m is employee
retrieve (ename = e.empname, salary = e.#salary,
mname = m.empname, msalary = m.#salary)
where e.manager = m.empnum
#H
#n=n+1
ifn > 10
endretrieve
else
print ename, salary, mname, msalary
end if
#t)
exit
end program

The value from the salary column is automatically converted from money, as it
is represented in the database, to floating point, as it is stored in the program
variable.

The retrieve statement can be formulated as a repeat query, thus reducing the
overhead required to run the same query repeatedly within an application. For
more information, see Repeat Queries.

Using the Retrieve Statement Without a Loop

You can code a retrieve statement without an accompanying loop; in this case,
one row, at most, is retrieved. This is appropriate, for instance, when your
query seeks an exact match for a unique key. However, if more than one row
qualifies according to the where clause, only one of the matching rows is
returned.

Using the Sort Clause

The sort clause is used to sort result rows based on the contents of one or
more columns. The names of result columns in the EQUEL retrieve statement
are also names of program variables (the variables that receive the data from
the retrieve). When coding the sort clause, you must typically dereference the
sort column names.

Chapter 5: Embedded QUEL 5-25

Retrieve Statement

For example:

begin program
ename character_string(26)
eno integer
salary float
ingres "personnel"
range of e is emp
retrieve (eno = e.empnum, ename = e.empname,
salary = e.#salary)
sort by #eno
#{
print eno, ename, salary
)
exit
end program

In this example, the sort column in the sort by clause must be dereferenced to
sort on the “eno” column. If the column were not dereferenced, EQUEL
assumes that the variable “eno” contained the name of the sort by column.

In the following example, the application prompts the user for the desired sort
column; the user-specified sort key is read into the “sort_key” variable, which
is used in the sort by clause. In this example, the variable must not be
dereferenced: it is a variable and not a column name.

begin program

ename character_string(26)
sort_key character_string(24)
eno integer

salary float

ingres "personnel"
print "Select sort column to use for employee 17ist,”
print "choices are eno, ename, or salary: "
read sort_key from terminal

range of e is emp

retrieve (eno = e.empnum, ename = e.empname,

salary = e.#salary)

sort by sort_key

{
print eno, ename, salary

#t)

exit

end program

5-26

QUEL Reference Guide

Repeat Queries

Other Data Manipulation Statements

Unlike retrieve, other EQUEL database access statements do not have an
inherent loop structure. The following example shows the use of the EQUEL
append, replace, and delete statements.
begin program
ename character_string(21)
salary float
eno integer
ename = "smith"
salary = 15000
ingres "personnel"
range of e is employee
append to employee (empname = ename,
###salary = salary)
salary = 17500
replace e (#salary = salary)
where e.empname = ename
delete e where e.#salary = salary
exit
end program

As with the retrieve statement, the non-cursor versions of the delete, append,
and replace statements can be formulated as repeated queries.

Repeat Queries

To reduce processing overhead for frequently executed queries, EQUEL allows
you to specify retrieve, replace, append, or delete statements as “repeat
queries.” The first time a repeat query is executed, the DBMS Server retains
the query execution plan (QEP). For subsequent executions of the repeat
query, the retained QEP is used. For non-repeated queries, the DBMS Server
must recreate the QEP every time the query executes. The first execution of a
repeat query is slightly slower than an ordinary non-repeat query, because of
the effort required to store the query plan. On subsequent executions, the
query runs significantly faster than a non-repeat query.

The DBMS Server stores one QEP for each repeat query. To minimize the
number of QEPs that must be managed, you must place code containing
repeat queries in separate modules. When running applications containing
repeat queries, each user has its own set of QEPs.

Variables containing values that can change from one pass to the next must be
flagged by the "@" character. Any variable not marked as a parameter
variable has its value fixed in the execution plan at the time the query is first
executed. Typically, parameter variables occur in the where clause of queries,
and the target list of append and replace statements. Result variables in the
target list of a retrieve statement must not be flagged.

Chapter 5: Embedded QUEL 5-27

Repeat Queries

Flagged variables can substitute only for constants in the query. They must
not contain qualifications (an entire “where clause”) or the names of tables,
range variables, or columns. The maximum number of flagged variables in one
query is 127.

The following program illustrates the use of repeat queries:

begin program

ename character_string(26)
salary float
eno integer

quit character_string(10)
responsecharacter_string(10)
count integer
ingres personnel
range of e is emp
loop while quit = "no"
print "enter an employee number:
read eno from terminal
print "retrieving data ...
count = 0
/* in the following query, eno is flagged */
repeat retrieve (ename = e.empname,
salary = e.#salary)
where e.empnum = @eno
#H |
count = count + 1
print ename, salary
endretrieve

if count 0 then
print "delete that record? [yes or no]:
read response from terminal
if response = "yes" then
repeat delete e where e.empnum = @eno
end if
else if count = 0@ then
print "no rows matched that employee number"
print "adding employee number to table"
repeat append to employee (empnum = @eno)
end if
print "inquire about another employee? [yes or no]:
read quit from terminal
end loop
##H exit
end program

5-28 QUEL Reference Guide

Chapter 6: QUEL and EQUEL Statements

This chapter presents QUEL statements individually, describing each
statement’s purpose, syntax, and use.

QUEL Release

This chapter describes the release of QUEL indicated by the following values in
the iidbcapabilities catalog:

CAP_CAPABILITY CAP_VALUE

INGRES/QUEL_LEVEL 0850 (00605 for Ingres 2.0)

For more information about standard catalogs, see the Database Administrator
Guide.

Statement Context

At the beginning of each statement description, you see the following table:

QUEL EQUEL KME

* * *

The columns in this table have the following meanings:

m An asterisk under QUEL indicates you can use the statement in an
interactive session.

m An asterisk under EQUEL indicates that you can use the statement in
embedded programs.

m An asterisk under KME indicates that the statement is part of the
Knowledge Management Extension or has features that are part of the
Knowledge Management Extension.

Chapter 6: QUEL and EQUEL Statements 6-1

Ingres Forms Statements

Ingres Forms Statements

Abort

Syntax

Description

Embedded Usage

This chapter does not describe Ingres Forms statements. For information
about these statements, see the Forms-based Application Development Tools
User Guide.

QUEL EQUEL KME

Undoes some or all of the effects of a multi-query transaction (MQT).

[##] abort [to savepoint_name]

The abort statement reverses some or all of the updates performed by a multi-
query transaction. If you do not specify a savepoint, abort undoes all the
updates that were performed by the transaction, closes any open cursors, and
terminates the transaction.

If you specify a savepoint, abort undoes all the updates that were performed
between the savepoint savepoint_name and the abort statement. Open
cursors are closed, but the entire transaction is not terminated (as shown in
the second example, below).

For more information, see Savepoint.

You can specify savepoints using host string variables or integer literals.

6-2 QUEL Reference Guide

Append

Examples
The following examples provide details.
Example 1
The following examples show the use of abort to undo all the updates performed
by the transaction.
begin transaction
append to emp(empname="jones,bill",
sal=100000, bdate=1814)
append to emp(empname="jones,bill", sal=100000,
bdate=1714)
abort /* undoes both appends; table is unchanged */
Example 2

The following example shows the use of savepoints to undo the updates
performed between savepoints “setone” and “settwo.”

begin transaction

append to emp(empname="jones,bill", sal=10000,
bdate=1945)

savepoint 1

append to emp(empname="smith,stan", sal=50000,
bdate=1911)

savepoint settwo

abort to 1

/*undoes 2nd append, deactivates savepoint settwo */
append to emp(empname="smith,stan", sal=50000,
bdate=1948)

abort to 1

end transaction

/* only the first append is committed */

Append

QUEL EQUEL KME

Adds a row to a database table.

Syntax

[##] [repeat] append [to] tablename (columnname = expression
{,columnname = expression}) [where qual]

Chapter 6: QUEL and EQUEL Statements 6-3

Append

Description

Embedded Usage

Considerations

Examples

Example 1

The append statement adds a row to the specified table. The columns of the
row contain the values assigned in the columnname = expression clauses.

To reduce processing overhead for frequently repeated appends, specify the
repeat option. Repeat directs the DBMS Server to save an execution plan after
the append is first executed. In repeat append statements, you must flag
variables if their values change (or can possibly change) each time the append
is executed. If the variable appears on the right side of an equal sign (=), it
must be preceded by an “at” sign (@). The @ flag tells the EQUEL
preprocessor that the value of the variable must be checked each time the
query is executed.

You can specify tablename, columnname, expressions in the target list or in
the where clause, or the entire where clause, using host string variables.

m Some host languages support the param version of append. See the
Embedded QUEL Companion Guide for more information.

m The append statement fires any rules defined on the specified table that is
fired by an equivalent SQL insert statement. Rules are part of the
Knowledge Management Extension. For more information, see the SQL
Reference Guide.

The following examples provide details.

This example illustrates the use of the append statement to add a row to the
“employee” table, based on values in variables “namevar” and “numvar”.

append to employee
(empname = namevar, sal = sal * 1.1, eno = numvar)

6-4 QUEL Reference Guide

Begin Transaction

Example 2

Example 3

Example 4

This example illustrates the use of the append statement to add interviewees
that tested above the minimum grade value to the "employee” table.

range of i is interviewee
append to employee (empname = i.name)
where i.evaluate >= minimum grade

This example appends data from an array of 100 names into the “employee”
table. Because the statement is issued many times, the repeat keyword is
specified. This example assumes that “"names” has been declared and
initialized as an array of 100 character strings, and “i” has been declared as an
integer.

i=1

loop until i > 100 ## repeat append to employee (empname = @names(i))
i=1i+1

end loop

This example shows the use of a null indicator to assign null to the “age”
column if the employee’s age is not known.

loop while more rows in data set
read name, salary, dept, age from data set
if eage = 0 then
nullind -1
else
nullind = 0
append to employee
(empname = name, #salary = salary, edept = dept,
eage = age:nullind)
end loop

Begin Transaction

Syntax

QUEL EQUEL KME

k3 *

Declares the beginning of a multi-query transaction (MQT).

[##] begin transaction

Chapter 6: QUEL and EQUEL Statements 6-5

Call

Description
The begin transaction statement marks the beginning of a multi-query
transaction (MQT). A begin transaction statement cannot be issued if any
cursors are open. For information about transaction processing and cursors,
see the "Embedded QUEL" chapter.

Example

This example shows a simple transaction that adds two rows to the table
“emp.”

begin transaction

append to emp(empname="jones,bill", sal=10000,

bdate=1914)

append to emp(empname="smith,stan", sal=20000,

bdate=1948)

end transaction /* commits both appends to table */

Call

QUEL EQUEL KME

Calls an Ingres tool (such as RBF or Report-Writer) or the operating system.

Syntax
To call an Ingres tool:
#i# call subsystem (database = dbname {, parameter = value})
To call the operating system:
#i# call system (command = command_string)
Description

The call statement enables you to call an Ingres tool from within an embedded
QUEL program. When calling an Ingres tool:

m subsystem must be the name of an Ingres tool.

m dbname must be the name of the current database. You cannot invoke the
Ingres tool on a different database.

6-6 QUEL Reference Guide

Call

m parameter must be the name of a parameter accepted by the Ingres tool
being called.

m value must be the value to be assigned to the parameter. If a particular
parameter has no value, a null string (empty quotes) must be used.

Note: When your application calls an Ingres tool, the state of open
transactions, open cursors, and repeat queries is not preserved. Each call to
an Ingres tool must be considered as a separate DBMS server session.

When the user exits from the Ingres tool, control passes to the statement
following the call. When used to call the operating system, the specified
command_string is executed as if the user typed it at the operating system
command line.

If command_string is a null, empty, or blank string, the statement transfers
control to the operating system. The user can execute any operating system
commands. Logging out returns the user to the application.

For more information about calling Ingres tools, see the “Calling Ingres Tools
from Embedded QUEL” appendix.

Embedded Usage
Command_string, subsystem, dbname, and parameter must be specified using

a (quoted or unquoted) string literal or host string variable. Value must be a
quoted string or a string variable.

Examples
The following examples provide details.
Example 1
The following example runs a default report on the “employee” table in column
mode.
call report (database="personnel",
name="employee", mode="column")
Example 2

The following example runs QBF in the append mode with the QBFName
“expenses,” suppressing verbose messages.

call gbf (database="personnel",
qbfname="expenses", flags="-mappend -s")

Chapter 6: QUEL and EQUEL Statements 6-7

Close Cursor

Close Cursor

QUEL EQUEL KME

Closes an open cursor.

Syntax

close cursor cursor_name

Description

The close cursor statement closes the specified cursor. Once closed, the cursor
cannot be used for further processing unless reopened. An abort or end
transaction statement implicitly closes all open cursors. Cursor_name must
defined (using declare cursor) before it can be opened and closed.

Embedded Usage

You can specify cursor_name using a string constant or a host language
variable.

Example

The following is an example of cursor processing.

begin program

ename character_string ename(26)

eno integer

ingres "personnel"

range of e is employee

declare cursor cl for retrieve (e.empname, e.empnum)

#Ht where e.empnum 1000

open cursor cl

loop until no more rows

retrieve cursor cl (ename, eno)
print ename, eno

end loop

close cursor cl

exit

end program

6-8 QUEL Reference Guide

Copy

Copy

Syntax

QUEL EQUEL KME

Copies data from a table into a file or from a file into a table.

[##] copy tablename
([columnname = format [with null [(value)]]
{, columnname = format [with null[(value)]]}])
into | from "filenamel, type]"
[with with-clause]

The with-clause consists of a comma-separated list of one or more of the
following items:

on_error = terminate | continue
error_count = n

rollback = enabled | disabled
log = "filename"

row_estimate = n

The following options are valid only for bulk copy operations. For details about
these settings, see Modify. The value specified for any of these options
becomes the new setting for the table, and override any settings you have
made previously (either using the modify statement or during a previous copy
operation).

allocation = n

extend = n

fillfactor = n (isam, hash, and btree only)
minpages = n (hash only)

maxpages = n (hash only)

leaffill = n (btree only)

nonleaffill = n (btree only)

Chapter 6: QUEL and EQUEL Statements 6-9

Copy

Description

The copy statement enables you to copy the contents of a table to a data file
(copy into) or copy the contents of a file to a table (copy from). The following
table briefly describes the valid statement parameters. Details about the
parameters are provided in the following sections. For more information and
procedures for using the copy statement, see the Database Administrator
Guide.

Copy Statement Parameters

Binary Copying

VMS

Bulk Copying

Parameter Description

tablename Specifies an existing table from which data is read or to
which data is written.

columnname Specifies the column from which data is read or to which
data is written.

format Specifies the format in which a value is stored in the file.

filename Specifies the file from which data is read or to which data is
written

filetype Specifies the file type: text, binary, or variable. (Optional)

To copy all rows of a table to a file using the order and format of the columns
in the table, omit the column list from the copy statement. This operation is
referred to as a binary copy. For example, to copy the entire “"employee”
table into the file “"emp_name”, issue the following statement:

copy table employee () into 'emp_name';

You must include the parentheses in the statement, even though no columns
are listed. The resulting file contains data stored in proprietary binary formats.
To load data from a file that was created by a binary copy (copy into) you
must use a binary copy (copy from).

Bulk copy always creates a binary file. ®

To improve performance when loading data from a file into a table, you can
use a bulk copy. The requirements for performing a bulk copy are:

m The table is not journaled

m The table has no secondary indexes

6-10 QUEL Reference Guide

Copy

m The table is empty and occupies fewer than 18 pages if the table is other
than heap

m The table is not partitioned

If the DBMS Server determines that all these requirements are met, the data
is loading using bulk copy. If the requirements are not met, data is loaded
using a less rapid technique. For detailed information about bulk copying, see
the Database Administrator Guide.

Data File Format and Table Format

Column Formats

Storage Format

Table columns need not be the same data type or length as their
corresponding entries in the data file. For example, humeric data from a table
can be stored in char(0) or varchar(0) fields in a data file. The copy statement
converts data types as necessary. When converting data types (except
character to character), copy checks for overflow. When converting from
character to character, copy pads character strings with blanks or nulls, or
truncates strings from the right, as necessary.

When copying from a table to a file, you must specify the column names in the
order you want the values to be written to the file. The order of the columns in
the data file can be different from the order of columns in the table. When
copying from a file to a table, you must sequence the table columns according
to the order of fields in the data file.

The following sections describe how you specify the data file format for table
columns. The format specifies how each is stored and delimited in the data
file.

This section describes how you specify the format of fields in the data file. Be
aware of the following points when specifying storage formats for copy into:

m Data from numeric columns, when written to text fields in the data file, is
right-justified and filled with blanks on the left.

m If you are copying data from a floating-point table column to a text field in
a data file, the data is formatted according to the options specified by the -
i and -f flags. (For information about these flags, see the quel command
description in the Command Reference Guide.)

Chapter 6: QUEL and EQUEL Statements 6-11

Copy

m To avoid rounding of large floating point values, use the quel command -f
flag to specify a floating point format that correctly accommodates the
largest value you want to copy. (For information about this flag, see the
quel command description in the Command Reference Guide.)

The following Copy Data File Storage Formats table explains the data file
formats for the various QUEL data types. Delimiters are described in the

section following the table:

Format How Stored (Copy Into)

How Read (Copy From)

integerl, Stored as integers of 1-, 2- or 4-byte
smallint, integer length, respectively.

Read as integers of 1-, 2- or 4-byte
length, respectively.

float4, float Stored as floating point numbers

(single or double precision,
respectively).

Read as floating point numbers (single or
double precision, respectively).

char(1),...,char(n Stored as fixed-length strings; n

Read as fixed-length string

) represents the lesser of the maximum
configured row size and 32,000.

char(0) Stored as fixed-length strings (padded Read as variable-length character string
with blanks if necessary). For character terminated by the first comma, tab, or
data, the length of the string written to newline encountered.
the file is the same as the column
length.

char(0)delim Stored padded to the column’s Read as variable-length character string

declared width. The one-character
delimiter is inserted immediately after
the value. Because this format uses
spaces to pad data, a space (sp) is not
a valid delimiter for this format.

terminated by the specified character.

varchar(1),...,var Stored as fixed-length strings preceded
char(n) by a 5-character, right-justified length

specifier. If necessary, the value is
padded with null characters to the
specified length; n represents the
lesser of the maximum configured row
size and 32,000.

Read as fixed-length string, preceded by a
5-character, right-justified length
specifier.

varchar(0) Stored as a variable-length string

preceded by a 5-character, right-
justified length specifier.

Read as variable-length string, preceded
by a 5-character, right-justified length
specifier.

do (Not applicable) Dummy field: read as a variable-length
character string terminated by the first
comma, tab, or newline encountered. The
data in the field is skipped.

6-12 QUEL Reference Guide

Copy

Format How Stored (Copy Into) How Read (Copy From)
dn Dummy column: instead of placing a Dummy field: read as a variable-length
value in the file, copy inserts the name character string of the specified length.
of the column n times. For example, if The data in the field is skipped.
you specify x=d1, the column name
“x" is inserted once, if you specify
x=d2, copy inserts the column name
“x"” twice, and so on. You can specify a
delimiter as a column name, for
example, nl=d1.
d0delim Indicates a delimited dummy column. Dummy field: read as a variable-length
Instead of placing a value in the file, character string delimited by the specified
copy inserts the specified delim. character. The data in the field is skipped.
(Unlike the dn format, does not insert
the column name.)
date Stored in date format. Read as a date field.
money Stored in money format. Read as a money field.
Note: The dummy format (dn) behaves differently for copy from and copy
into. When you copy a table into a file, n specifies the number of times the
column name is repeated. When you copy from a file to a table, n specifies the
number of bytes to skip.
For user-defined data types (UDTs), use char or varchar. For details about
UDTs, see the Object Management Extension User Guide.
Delimiters

Delimiters are those characters in the data file that separate fields and mark
the end of records. Valid delimiters are listed in the following Data File

Delimiters table:

Delimiter Description

nl newline character
tab tab character

sp space

nul or null null character
comma comma

colon colon

dash dash

Chapter 6: QUEL and EQUEL Statements

Copy

With Null Clause

Delimiter Description

Iparen left parenthesis

rparen right parenthesis

X any non-numeric character

When you specify a single character as the delimiter, you must enclose that
character in quotes. If the data type specification is dO, the quotes must
enclose the entire format. For example, d0% specifies a dummy column
delimited by a percent sign (%).

If the data type specification is char(0) or varchar(0), only the delimiter
character must be quoted. For example, char(0)"%" specifies a char field
delimited by a percent sign.

Do not use the space delimiter (sp) with char(0) fields: the char(0) format
uses spaces as padding for character and numeric columns.

When copying from a table into a file, you can insert delimiters independently
of columns. For example, to insert a newline character at the end of a line,
specify nl=d1 at the end of the column list. This directs the DBMS Server to
add one (d1) newline (nl) character. (Do not confuse lowercase “I” with the
number “1”.)

When copying data from a table to a file, the with null clause directs copy to
put the specified value in the file in place of null fields. You must specify the
with null clause for any column that is nullable; if you omit the with null
clause, the DBMS Server returns an error when it encounters null data, and
aborts the copy statement.

When copying data from a file to a table, the with null clause specifies the
value in the file to be interpreted as a null. When copy encounters this value in
the file, it writes a null to the corresponding table column.

To prevent conflicts between valid data and null entries, choose a value that
does not occur as part of the data in your table. The value you choose to
represent nulls must be compatible with the format of the field in the file.
Character formats require quoted values and numeric formats require
unquoted numeric values.

For example, the following example is incorrect, because the value specified
for nulls (numeric zero) conflicts with the character data type of the field:

Wrong:

cOcomma with null(0)

6-14 QUEL Reference Guide

Copy

The following example, however, is correct:

Right:

cOcomma with null("0")

The null value is character data, specified in quotes, and does not conflict with
the data type of the field. Do not use the keyword null, quoted or unquoted,
for a numeric format.

When copying from a table to a file, be sure that the field format you specify is
at least as large as the value you specify for the with null clause. If the column
format is too small, the DBMS Server truncates the null value written to the
data file to fit the specified format. For example, in the following statement the
string "NULL" is truncated to “"N” because the format is incorrectly specified as
one character:

Wrong:
copy table tl (coll = varchar(l) with null ("NULL")) into "tl.dat"

The correct version specifies a 4-character format for the column.

Right:
copy table tl1 (coll = varchar(4) with null ("NULL")) into "tl.dat"

If you specify with null but omit value, copy appends a trailing byte indicating
whether the field is null. For null fields, copy inserts an undefined data value in
place of the null and sets the trailing byte to indicate a null field. You must
specify value for nullable char(0) and varchar(0) columns.

Filename Specification

VMS

Filename must be enclosed in single quotation marks; the file specification can
include a directory/path name. For copy into, if the file does not exist, copy
creates the file.

For copy into, if the file already exists, copy overwrites it. ™

For copy into, if the file already exists, copy creates another version of the
file. ™

Chapter 6: QUEL and EQUEL Statements 6-15

Copy

VMS File Types

You can specify file type using the optional type parameter. Type must be one
of the values listed in the following VMS File Types table:

Type Record Format Record Attributes

text Variable length Records delimited by carriage
return

binary Fixed length None

variable Variable length None

If you omit type, copy determines the file type as follows:

m If all fields in the file are character types (char, varchar), and all records
end in <newline>, copy creates a text file.

m If the file contains variable length records, its file type is variable. Variable
length records occur if one or more fields are stored as varchar(0).

m If none of the preceding conditions apply, copy creates a binary file.

If you specify type, the contents of the file must be in accordance with these
rules. If it is not, copy creates the data file according to the preceding rules.

With Clause Options

On_error Option

The following sections describe the valid with clause options.

To direct copy to continue after encountering conversion errors, specify the
on_error option. To direct copy to continue until a specified number of
conversion errors have occurred, specify the error_count option (instead of
on_error). By default, copy terminates when an error occurs while converting
a table row into file format.

When on_error is set to continue, copy displays a warning whenever a
conversion error occurs, skips the row that caused the error, and continues
processing the remaining rows. At the end of the processing, copy displays a
message that indicates how many warnings were issued and how many rows
were successfully copied.

Setting on_error to continue does not affect how copy responds to errors other
than conversion errors. Any other error, such as an error writing the file,
terminates the copy operation.

6-16 QUEL Reference Guide

Copy

Error_count Option

Log Option

VMS

With Rollback Option

To specify how many errors can occur before processing terminates, use the
error_count option. The default error_count is 1. If on_error is set to continue,
setting error_count has no effect.

To store any rows that copy cannot process to a file, specify the with log
option. With log can only be used if you specify on_error continue. When you
specify with log, copy places any rows that it cannot process into the specified
log file. The rows in the log file are in the same format as the rows in the
database.

Logging works as follows:

Copy opens the log file prior to the start of data transfer. If it cannot open
the log file, copy halts. If an error occurs writing to the log file, copy issues a
warning, but continues. If the specified log file already exists, it is
overwritten with the new values (or truncated if the copy operation
encounters no bad rows). ™

Copy attempts to open the log file prior to the start of data transfer. If it
cannot open the log file, copy halts. If an error occurs writing to the log file,
copy issues a warning, but continues. If the log file already exists, copy
creates a new version. ®

If you are copying from a data file that contains duplicate rows (or rows that
duplicate rows that are already in the table) to a table that has a unique key,
copy displays a warning message and does not add the duplicate rows. Note
that, if you specified the with log option, copy does not write the duplicate
rows to the log file.

To direct the DBMS Server to back out all rows appended by the copy if the
copy is terminated due to an error, specify with rollback=enabled. To retain
the appended rows, specify with rollback=disabled. The default is with
rollback=enabled. When copying to a file, the with rollback clause has no
effect.

The rollback=disabled option does not mean that a transaction cannot be
rolled back. Database server errors that indicate data corruption still causes
rollback, and rows are committed until the transaction is complete.

Chapter 6: QUEL and EQUEL Statements 6-17

Copy

With Row_estimate Option

Permissions

Locking

To specify the estimated number of rows to be copies from a file to a table,
use the with row_estimate option. The DBMS Server uses the specified value
to allocate memory for sorting rows before inserting them into the table. An
accurate estimate can enhance the performance of the copy operation.

The estimated number of rows must be no less than 0 and no greater than
2,147,483,647. If you omit this parameter, the default value is 0, in which
case the DBMS Server makes its own estimates for disk and memory
requirements.

To copy from a table into a file or from a file to a table, one of the following
must apply:

= You own the table, or

m The table has select (for copy into) or insert (for copy from) permission
granted to public, or

m The current session is running with a user, role, or group identifier that
has been granted select (copy into) or insert (copy from) privilege on the
table.

When you copy from a table into a file, the DBMS Server takes a shared lock
on the table. When you copy into a table, the DBMS Server takes an exclusive
lock on the table.

Restrictions and Considerations

m You cannot use copy to add data to a view, index, or system catalog.

m When copying data into a table, copy ignores any integrity constraints

(defined using the define integrity statement) defined against the table.

m When copying data into a table, copy ignores ANSI/ISO Entry SQL-92

check and referential constraints, but does not ignore unique (and primary
key) constraints. For details about ANSI/ISO table constraints, see the
SQL Reference Guide.

m The copy statement does not fire any rules defined against the table.

6-18 QUEL Reference Guide

Copy

Examples

Data File Format

Example 1

The following examples illustrate various features of the copy statement.

In the following example, the contents of the file "emp.txt” are copied into the
“employee” table. A dummy column is used to omit the “city” column. The
format of the” employee” table is as follows:

ename char(15)
age integer4
dept char(10)

comment varchar (20)

The “emp.txt” file contains the following data:

Jones, J. 32 Anytown,USA toy,00017A comment
Smith,P. 41 New York,NY admin,@0015Another comment

The following diagram illustrates the copy statement that copies the file
“emp.txt” into the employee table and maps the fields in the file to the
portions of the statement that specify how the field is to be copied. Note the
following points:

m A dummy column is used to skip the city and state field in the data file,
because there is no matching column in the employee table.

m The “department” field is delimited by a comma.

m The “comment” field is a variable-length varchar field, preceded by a five-
character length specifier.

AAA AAA

Jones, J.°""""32 Anytown, USA toy, 00017This is a comment

Smith, P.”*"""41 “*"New York, NY"** admin, 00015Another comment

I N

Copy table employee
(

> ename=char (12),

——» age=char (3),

. xxx=d17) ,
dept=char (0) comma, -

comment=varchar (0) nl -
)

from "emp cext"

Chapter 6: QUEL and EQUEL Statements 6-19

Copy

Example 2:

Load the “employee” table from a data file. The data file contains binary data
(as opposed to character data that can be changed using a text editor):
copy table employee (eno=integer2, ename=char(10),

age=integer2, job=integer2, sal=float4,

dept=integer2, xxx=dl)

from "myfile.in"

Example 3:

Copy data from the “employee” table into a file. The example copies employee
names, employee numbers, and salaries into a file, inserting commas and
newline characters so that the file can be printed or edited. All items are
stored as character data. The “sal” column is converted from its table format
(money) to ASCII characters in the data file.

copy table employee (ename=char(0)tab,

eno=char (0) tab, sal= char(0)nl)
into "myfile.out"

Jue ik Eh . 101, $25000.00
Shiclay Seakk . 2, $20000.00
Example 4:

Bulk copy the “employee” table into a file. Resulting data file contains binary
data:

copy table employee () into "ourfile.dat"
Example 5:

Bulk copy from the file created in the preceding example:

copy table other_employee_table () from "ourfile.dat"
Example 6:

Copy the “acct_recv” table into a file. The following statement skips the
address column, uses the percent sign (%) as a field delimiter, uses “xx” to
indicate null “debit” and “credit” fields, and inserts a newline at the end of
each record:

copy table acct_recv
(acct_name=char (0)"%",
address="d0%",
credit=char(0)"%" with null("xx"),
debit=char(0)"%" with null("xx"),
acct_mngr=char (15),
nl=dl)
into "qtr_result";

6-20 QUEL Reference Guide

Create

Create

Syntax

Srith Cocphh $#123245.00% $-72890 . 00% Jons

REC 01l 1% #3e321.00% -32785 . 00 WaEcewn

Speing Db L F Wamco -
Example 7:

Copy a table called “gifts” to a file for archiving. This table contains a record of
all non-monetary gifts received by a charity foundation. The columns in the
table contain the name of the item, when it was received, and who sent it.
Because givers are often anonymous, the column representing the sender is
nullable.
copy table gifts

(item_name=char (0) tab,

date_recd=char(0)tab,

sender=char (20)n1l with null("anonymous"))
into "giftdata";

Eoaakbse O4-mac=-1993 Nicholaa

aled 10-ocE-1988 FREES R TR
cockaek 01l -dec-1

QUEL EQUEL KME

Creates a new database table.

[##] create [locationname:]tablename
(columnname=format [null_clause]
{, columnname=format} [null_clause])
[with [location = /ocationname]
[no]journaling
[no]duplicates]]

Chapter 6: QUEL and EQUEL Statements 6-21

Create

Description

The create statement creates an empty table, owned by the user issuing the
statement. The table is created as a heap. To change to a different storage
structure, use the modify statement. The following table describes the create
statement parameters:

Parameter Description

tablename Specifies the name of the table. Table names must
not begin with “ii”.

columnname Specifies the name of each column in the new
table. The column name must be a valid object
name.

format Specifies the data type, length, and null

characteristics of each column. Format has the
syntax datatype [not null [with | not default] |
with null]

The optional with clause consists of a comma-separated list of any of the
following parameters:

m location = locationname

m [no]journaling

m [no]duplicates

The optional null_clause enables you to set the location, journaling, and
duplicate row characteristics of the table. The following table summarizes the

possible null and default settings of the with_clause and the resulting column
attributes (the default is not null with default):

Null/Default Specification Nulls Allowed? Defaults Allowed?
None No Yes
with null Yes Yes (null is default)
not null No Yes
not null with default No Yes
not null not default No No

(mandatory column)

6-22 QUEL Reference Guide

Create

Embedded Usage

Considerations

A table can have a maximum of 1024 columns. A row can have a maximum of
2008 bytes. A text or varchar column uses two bytes in addition to the
specified length (to store the string length). Nullable columns (columns
defined with null) use an additional byte for a null flag. In tables having a
compressed format (chash, cbtree, cheap, or cisam), c columns require 1 byte
in addition to the declared length, and char columns require 2 additional bytes.
These space requirements must be considered as part of the maximum
allowable 2008 bytes per row.

In the optional with clause, locationname refers to the areas where the new
table is created. The locations must be defined on the system, and the
database must have been extended to the corresponding areas. If you do not
specify a location, the default area for the database is assumed. If you specify
multiple locations, the table is physically partitioned across the areas. For
more information, see the Database Administrator Guide.

If you specify with journaling, all append, replace and delete statements that
update this table are logged in the journal for this database, if journaling for
the database is enabled. (To enable database journaling, use the ckpdb
command.) Journaling allows the recovery system to reconstruct the table
after a disk crash. You need not enable journaling to recover from operating
system or server failures because this is handled by normal query processing.
Journaling also allows an audit trail to be built for the table. You can use this
audit trail to monitor updates to a table or maintain change histories.

If you specify with duplicates, the table accepts duplicate rows even if the
table is subsequently modified to a storage structure which does not ordinarily
permit duplicate rows. The default is with noduplicates. The
duplicates|noduplicates parameter is irrelevant when the table is a heap. For
more details, see Modify.

You can use unquoted strings or host string variables to specify locationname,
tablename, columnname, format, and the complete target list (the list of
column names and format descriptions.)

The EQUEL preprocessor does not validate the syntax of the with_clause.

m If you are creating a table in a distributed database, the syntax of create is
different. For a full description of creating tables in a distributed database,
see the Database Administrator Guide.

m Tables are created with no expiration date. To set an expiration date for a
table, use the save statement.

Chapter é6: QUEL and EQUEL Statements 6-23

Declare Cursor

Examples

The following examples provide details.

Example 1

The following example shows the use of the create statement to create the
“employee” table:

create employee

(eno = 12,

ename = c20,

age = il,

job = i2,

sal = money with null,
dept = i2)

with journaling

Example 2

The following example illustrates the use of a host variable with the create
statement to create a table whose definition is decided at runtime:

tablevar = "mytable”
descvar = "name = c20, phone = cl11"
create tablevar (descvar)

Declare Cursor

QUEL EQUEL KME

Declares a cursor.

Syntax
declare cursor cursor_name
for retrieve [unique] (target_list)
[where qual]
[sort by column|:sortorder] {, column][:sortorder]}]
[for [deferred | direct] update [of (co/lumn {, column})]]

6-24 QUEL Reference Guide

Declare Cursor

Description

Embedded Usage

Considerations

The declare cursor statement associates a cursor name with a set of retrieval
criteria. The declare cursor statement must occur before any other references
to the cursor—declare cursor statements cannot be embedded in a host
language variable declaration section.

If the cursor is used to update or delete rows, you must specify the for update
clause and include all columns that are updated.

If the sort by clause is specified, the cursor retrieves rows sorted by result
column, as specified. For each column on which you are sorting, you can
specify the sortorder parameter as asc for ascending, or desc for descending.

The declare cursor statement does not retrieve any data (despite the presence
of the retrieve clause). Data is retrieved into host variables when you open the
cursor and issue a retrieve cursor statement.

Cursor_name can be either a constant or a host language variable. The
maximum length of a cursor name is 32 characters.

m The same cursor name cannot be declared twice in a single program.

m The scope of a cursor is the source file. A cursor name declared in one
source file cannot be referred to in another file.

m The EQUEL preprocessor does not generate any code for the declare cursor
statement. If your host language does not allow empty control blocks, (for
example, empty if blocks), the declare cursor statement must not be the
only statement in the block.

m Result columns which have the same name as a host variable must be
dereferenced with the number (#) sign.

m The retrieve clause for the declare cursor statement must obey the rules
for the retrieve statement, with an additional restriction. A cursor retrieve
clause does not allow you to store the results of the query in host
variables. The target list assignments, when used, are result column
names, not receiving host variables.

m A cursor cannot be declared for update if its retrieve statement refers to
more than one table or to a view, or includes a unique or a sort by clause.

m You can use a host variable to specify the where clause and succeeding
clauses (such as sort by or update). You can use host variables to specify
table or column names.

Chapter 6: QUEL and EQUEL Statements 6-25

Declare Cursor

Examples

The following examples provide details.

Example 1

The following example declares a cursor for retrieval of employees from the
shoe department, ordered by name (ascending) and salary (descending):
declare cursor cursorl for

retrieve (employee.empname, employee.salary)

where employee.dept = "shoes"
sort by #ename:asc, sal:desc

Example 2

The following example declares a cursor for updating the salaries and
departments of shoe department employees:

declare cursor cursor2 for

retrieve (employee.empname, employee.salary)
where employee.dept = "shoes"

for update of (salary, dept)

Example 3

The following example declares a cursor for retrieval and update of employee

information:

begin program

eno integer

age integer

thatsall integer

ename character_string(26)
salary float

newsalary float
ingres "personnel"

declare cursor cursor4 for
retrieve (employee.empname, employee.#age,
employee.empnum, employee.#salary)
for direct update of (#salary)
open cursor cursoré
loop while no errors and endquery not reached
retrieve cursor cursor4 (ename, age, eno, salary)
inquire_ingres (thatsall = endquery)
if thatsall = 0@ then

print ename, age, eno, salary

print "enter new salary: "

read newsalary from terminal

if newsalary > 0 and newsalary != salary then
#t replace cursor cursor4d (#salary = newsalary)
end if
end if
end loop

6-26 QUEL Reference Guide

Declare Cursor

Example 4

Example 5

##close cursor cursor4
#texit
end program

In the following example, the “for update” clause refers to the column named
“salary” and not result column “res”. The variables “eno_low” and “eno_high”
must have previously been declared:

declare cursor cursor5 for
retrieve (employee.empname, res = employee.salary)
where employee.empnum >= eno_low and
employee.empnum <= eno_high
#Ht for update of (#salary)
loop while more input
read eno_low, eno_high

open cursor cursor5

print and process rows
close cursor cursor5
end loop

The following example declares two cursors for the “department” and
“employee” tables and opens them in master-detail fashion:

declare cursor master_cursor for
retrieve (dept.all)
sort by dno

declare cursor detail_cursor for
where employee.edept = dept.dno
sort by empname

begin transaction

open cursor master_cursor

loop while more departments

retrieve cursor master_cursor

inquire_equel (thatsall = endquery)

if thatsall = 0 then

/* for each department retrieve all the employees
and display the department and employee data.*/
open cursor detail_cursor

loop while more employees

retrieve cursor detail_cursor

(name, age, idno, salary, edept)

/* for each department retrieve all the employees
and display the department and employee data.*/

inquire_equel (thatsall = endquery)

if thatsall = 0@ then

process and display data

end if

end loop
close cursor detail_cursor

end loop

end transaction

Chapter 6: QUEL and EQUEL Statements 6-27

Declare Cursor

Example é

The following example declares a cursor that is a union of three tables with
identically typed columns (the columns have different names). The expression
“one + 1” in the target list of the declare cursor must be assigned to a result
column. This is not the case with the other target list items, which are
verbatim table columns. The name “two” must be dereferenced (with a #
sign), because there is a host variable of the same name. The host variable is
used later, in the retrieve cursor statement, to receive the value of the result
column. The sort key names mentioned in the sort by clause are result column
names, and must be dereferenced if they have the same names as any host

variables.
begin program
age integer
thatsall integer
one integer
two integer
minage integer
ename character_string(26)

salary float
ingres "personnel"

declare cursor cursor7 for

retrieve (#two = one + 1, employee.empname,
employee.#age)

where employee.age minage

sort by empname, #age

one =1
minage = 21

open cursor cursor’7
loop while no errors and endquery not reached
retrieve cursor cursor7 (two, ename, age)
1inquire_ingres (thatsall = endquery)

if thatsall = @ then

print two, ename, age
end if
end loop

close cursor cursor?
##H exit
end program

6-28 QUEL Reference Guide

Define Integrity

Define Integrity

Syntax

Description

Embedded Usage

Examples

Example 1

QUEL EQUEL KME

k3 *

Defines integrity constraints.

[#+#] define integrity [on] range_variable [is] qual

The define integrity statement creates an integrity constraint for the specified
base table. Only the owner of a table is allowed to define integrities on the
table. The integrity constraint you specify in the qual parameter must be true
for the table at the time the define integrity statement is issued. If not, the
DBMS Server displays an error message and does not create the integrity. If
the constraint includes one or more columns that contain nulls, you must
specify or is null in the qual parameter.

While executing, the define integrity statement takes out an exclusive lock on
the table.

You can use host string variables to specify range_variable, qual, or the table
names, column names and constant expressions that constitute qual.

The following examples provide details.

The following example makes sure that all employees salaries are greater than
or equal to $6000:

range of e is employee
define integrity on e is e.salary >= 6000

Chapter 6: QUEL and EQUEL Statements 6-29

Define Permit

Example 2

Define Permit

Syntax

Description

The following example defines an integrity using a variable:

define integrity on e is e.salary >= salvar

QUEL EQUEL KME

Adds permissions to a table.

[##] define permit oplist on | of | to range_var
[(columnname {, columnname})] to user_name | all [at term]
[from time to time] [on day1 to day2] [where qual]

The define permit statement adds permissions to the table specified by
range_var. The following table lists the define permit statement parameters:

Parameter Description

oplist A comma-separated list of any of the following operations:
retrieve, replace, delete, append, or all.

user_name The login name of a user or the word all (meaning all
users).

term Must be one of the following: a two-character generic

device name, such as tt, rt, tx or op, a three-character
device name, such as tta or ttb, or a four-character
terminal identifier, such as ttal or ttb4. All terminal
names that match the specified term names are given the
permissions. Omitting this phrase is equivalent to
specifying all.

time Must be specified in hh:mm format, using the twenty-four
hour clock. Time specifies the times of the day during
which this permission applies. At other times, the
permission is not granted.

6-30 QUEL Reference Guide

Define Permit

Example

Parameter Description

days Must be three-character abbreviations for days of the
week (mon, tue, wed, thu, fri, sat, sun).

The DBMS Server appends the where clause to the specified type of query
(append, retrieve, replace, or delete) when the query is executed by the
specified user. To append, replace, and delete columns using a where clause, a
user must have retrieve permission for the columns. Do not specify column
names in a define permit for the delete statement (because you delete rows,
not columns).

When you define permissions, the DBMS Server “ands” the separate parts of a
single define permit statement and “ors” separate define permit statements.
For example, if you issue the following define permit statement:

define permit replace on e to eric at ttad [...]

the permit applies only to “eric” when logged in on “tta4”, but if you issue two
define permit statements:

define permit replace of e to eric at ttad [...]
define permit retrieve of e to all at all [...]

When “eric” logs in at “tta4”, his login is affected by the union of the
permissions specified by the two statements. That is, “eric” can both retrieve
and update data from the “employee” table. If “eric” logs in at “ttb2”, he is
granted only the permissions specified in the second define permit statement:
he can only retrieve rows from the employee table. If another user logs in on
“tta4” or any other terminal, he or she is granted only the permissions
specified in the second define permit statement.

You must be the DBA to issue the define permit statement. The database
administrator (DBA) is typically responsible for maintaining database security
using permissions. Permissions cannot be granted to users on a table that is
not owned by the DBA.

Permissions cannot be defined on views, although the DBMS Server honors
permissions defined on the base tables on which the view is based.

In the following example, define permit is used to enable “ariane” to retrieve
names, ages, and salaries of employees whom she manages from the
“employee” table at terminal “tta2” between 8:00 am and 5:00 pm, Monday
through Friday:

Chapter 6: QUEL and EQUEL Statements 6-31

Define View

range of d is dept

range of e is employee

define permit retrieve of e (ename, age, salary)
to ariane at "tta2" from 8:00 to 17:00 on mon to fri
where e.dept=d.dno and d.mgr="ariane*"

Define View

QUEL EQUEL KME

Defines a virtual table.

Syntax
[##] define view view_name (target_list) [where qual]

Description
The define view statement defines a view. A view is a virtual table: the view
definition is stored, but define view does not create any new base tables. The
syntax of the define view statement is similar to the retrieve statement. When
the view is used to form queries, the DBMS Server interprets the query to
retrieve data from the base tables that define the view.

Considerations

m In general, no updates are supported on views derived from more than
one base table.

m You cannot update columns that are in the where clause of the view
definition.

m You can only update simple columns from the target_list of a view
definition; you cannot update columns that are not simple columns (such
as aggregates, derived columns, or constants).

m You cannot update a row with a value that causes the row to be dropped
from the view.

m You can only define views based on tables for which you have retrieve
permission.

m When you destroy a table that is referenced by a view, the DBMS Server
automatically destroys the view.

6-32 QUEL Reference Guide

Delete

Example
The following example defines a view of employee data that includes name,
salary and manager’s name:
range of e is employee
range of d is dept
define view empdpt
(ename = e.name, e.sal, dname = d.name)
where e.mgr = d.mgr
Delete
QUEL EQUEL KME
£ b3
Deletes rows from a database table.
Syntax
[#+#] [repeat] delete range_variable | tablename [where qual]
Description

Delete removes rows that satisfy the where clause from the table to which
range_variable refers. If no where clause is specified, all rows are deleted.

To reduce the overhead required to execute a frequently repeated delete,
specify repeat delete. Repeat directs the DBMS Server to encode the delete
and save its execution plan. Program variables that change each time the
query is executed and that appear on the right-hand side of an equal sign (=)
must be preceded by the @ sign.

The delete statement fires any rules that is fired by an equivalent SQL delete
statement. Rules are part of the Knowledge Management Extension. For more
information, see the SQL Reference Guide.

Embedded Usage

You can use host variables to specify range_variables, table names, column
names and expressions. Host variables that correspond to expressions (in the
where clause) can include null indicator variables. You can use a host string
variable to specify the where clause.

Chapter é6: QUEL and EQUEL Statements 6-33

Delete

Considerations

Examples

Example 1

Example 2

To delete rows, you must own the table or have delete permission.

Do not mix range variables with table names in a delete statement: the
resulting disjoint query gives unexpected results. The following example
illustrates a disjoint query; the table name following the keyword delete is
not the same as the range variable specified in the where clause. All rows
are deleted as a result of this disjoint query.

Wrong:

range of e is employee
delete employee where e.salary > 35000

After deleting a large number of rows from a table, you can use the modify
statement to recover empty space. To delete all rows in a table, you can
use the modify tablename to truncated. For more information, see Modify.

The following examples provide details.

The following example deletes the row in the “employee” table corresponding
to the employee number specified by host variable numvar:

delete employee where employee.empnum = numvar

The following example deletes the row in the “"employee” table whose name
corresponds to the specified by host variable namevar. Notice the use of
repeat, and the use of @ to flag a program variable that changes with each
execution of the delete statement:

range of e is employee
repeat delete e

where e.empname = @namevar

6-34 QUEL Reference Guide

Delete Cursor

Example 3
The following embedded example shows the use of delete in a loop; the loop
reads entries from an array of employee IDs and deletes the corresponding
row from the database:
i=1
loop until (numbers(i)=end of 1ist)
repeat delete employee
where employee.empnum = @numbers (i)
#HWoi=1+1
end loop
Example 4
The following embedded example shows the use of delete in conjunction with a
host string variable containing search criteria:
construct search_condition
delete employee
where search_condition
Example 5

In the following embedded example, employees whose salary is null are on a
leave of absence. If they were hired after a certain date (supplied by the
program), they are deleted.

delete employee

where employee.salary is null
and employee.hire_date > base_date

Delete Cursor

QUEL EQUEL KME

Deletes a row from a database table.

Syntax

delete cursor cursor_name

Chapter 6: QUEL and EQUEL Statements 6-35

Delete Cursor

Description

Embedded Usage

Considerations

Example

The delete cursor statement deletes the row to which the cursor currently
points. If the cursor is not pointing to a row (for example, the cursor has
reached the end of the set or is positioned after a row due to a previous
delete), the DBMS Server issues a runtime error.

After the row is deleted, the cursor points to a position after the deleted row,
but before the next row (if any). To advance the cursor, the application
program must issue a retrieve cursor statement.

If the cursor is opened for direct update, the deletion occurs immediately. If
the cursor is opened for deferred update (the default), the deletion occurs
when the cursor is closed.

You can specify cursor_name using a string constant or a host language
variable.

m The end transaction and abort statements close all open cursors. You
cannot, for example, delete a row, commit the delete (by issuing an end
transaction statement), and retrieve the next row, because the end
transaction statement closed the cursor.

m Cursor_name must be an open cursor.

The following example deletes the row in the "employee” table to which the
cursor is pointing:

declare cursor cursorl for

retrieve (employee.empname, employee.empnum)

open cursorl
loop until no more rows

retrieve cursor cursorl (name, idno)
7f 7dno < 1000 then
print "deleting " name
delete cursor cursorl
end if

end loop

6-36 QUEL Reference Guide

Destroy

Destroy

Syntax

Description

Embedded Usage

QUEL EQUEL KME

Destroys existing tables, views, permissions, or integrities.

[##] destroy tablename {, tablename}

[#+#] destroy permit | integrity tablename integer {, integer} | all

Destroy removes tables from the database, or integrity constraints and
permissions from a table or view. Only the owner is allowed to destroy a table
or its permissions and integrity constraints. Destroying a table destroys all
views built on that table.

If the table being destroyed has secondary indexes, the secondary indexes are
also destroyed. You can destroy a secondary index separately, without
affecting the base table.

To destroy individual permissions or constraints for a table, you must use the
integer argument. Use the help permit statement (for permissions) or a help
integrity statement (for constraints) to display the argument values for the
various individual permissions and constraints. To destroy all constraints or
permissions, specify all.

Destroy accepts a maximum of 30 arguments. To destroy more than 30
objects, you must use multiple destroy statements.

You can use host string variables to specify tablename, viewname, and the
integer arguments.

Chapter 6: QUEL and EQUEL Statements 6-37

Endretrieve

Examples

Example 1

Example 2

Endretrieve

Syntax

Description

The following examples provide details.

The following example destroys the “employee” and “dept” tables:
destroy employee, dept

The following example destroys specific permissions on the “job” table, and all
integrity constraints on the “employee” table:

destroy permit job 2, 4, 5
destroy integrity employee all

QUEL EQUEL KME

Terminates a retrieve loop.

endretrieve

The endretrieve statement terminates EQUEL retrieve loops. A retrieve loop is
a retrieve statement followed by a block of code delimited by curly braces ({
}). The endretrieve statement is used within the code block to terminate the
retrieve loop and transfer control to the first statement following the loop.

If the endretrieve statement is issued inside a forms display loop that is nested
within a retrieve loop, the endretrieve statement terminates the display loop
as well as the retrieve loop.

6-38 QUEL Reference Guide

End Transaction

Example

The following example illustrates the use of the endretrieve statement to break
out of a retrieve loop in the event of an error:

retrieve (ename = employee.empname,
eno = employee.empnum)
#H{
load ename, eno into data set
if error then print "error while loading!"
endretrieve
end if
)
/* endretrieve transfers control to here */

End Transaction

Syntax

Description

Considerations

QUEL EQUEL KME

k3 *

Terminates a multi-query transaction (MQT) and commits updates to the
database.

[##] end transaction

The end transaction statement terminates a successful multi-query transaction
(MQT) and commits its updates to the database. When the updates are
committed, the effects (on the database) become visible to other users. For
more information, see Begin Transaction in this chapter and Transactions in
the "Embedded QUEL" chapter.

The end transaction statement closes all open cursors.

Chapter 6: QUEL and EQUEL Statements 6-39

Exit

Example

The following example shows a simple MQT: two append statements framed
by begin transaction and end transaction statements:

begin transaction

append to employee(empname="jones,bill",
sal=10000, bdate=1914)

append to employee(empname="smith,stan",
sal=20000, bdate=1948)

end transaction

/* commits new rows to table */

Exit

QUEL EQUEL KME

Terminates access to the database.

Syntax

exit

Description

The exit statement terminates access to a database. The application program
must have previously connected to the database using the ingres statement.
The exit statement is equivalent to the Terminal Monitor g command. After
access is terminated with the exit statement, your application can issue
another ingres statement to connect to the same or a different database. An
EQUEL program can access only one database at a time.

Considerations

m If the exit statement is issued during a multi-query transaction, all updates
performed because the previous begin transaction is aborted.

m The exit statement closes all open cursors.

6-40 QUEL Reference Guide

Help

Help

Syntax

Description

QUEL EQUEL KME

Gets information about a variety of database objects.

help [objectname {, objectname}]

help comment column table columnname {, columnname}

help comment table table {, table }

help constraint constraintname

{, constraintname}

help default tablename

help help

help index indexname {, indexname?}

help integrity tablename {, tablename}

help permit on procedure | table | view
objectname {, objectname}

help procedure procedure_name

{, procedure_name}

help register objectname

help synonym synonym {, synonym}

help table tablename {, tablename?}

help view viewname {, viewname}

The following help statements are part of the Knowledge Management
Extension:

help rule rulename, {rulename?}

help permit on dbevent
objectname {, objectname}

help security_alarm tablename

The help statement displays information about database objects. In general, to
display high-level information, specify help objectname (for example, help
mytable); to display detailed information, specify help objecttype objectname
(for example, help table mytable).

You can use the asterisk wildcard character (*) in object name specifications
to display a selected set of objects. For details, see Wildcards and Help.

Chapter 6: QUEL and EQUEL Statements 6-41

Help

The following table lists help options:

Statement

Description

help

Displays object name, owner, and type for all tables,
views, and indexes to which the user has access, and
all synonyms owned by the user. System tables and
temporary tables are not listed. Information is
displayed in a one-line-per-object format.

help objectname {, objectname?}

(where objectname is the name of a table,

view, or index)

Displays detailed information for specified objects;
display format is block-style.

help comment column tablename

columnname
{, columnname}

Displays any comments defined for the specified
columns.

help comment table tablename

{, tablename?}

Displays any comments defined for the specified tables.

help constraint tablename

Displays any constraints defined on columns of the
specified table or on the entire table. For details about
table constraints, see the create table statement
description in the SQL Reference Guide.

These constraints are not the same as the integrities
displayed by the help integrities statement.

help default tablename

Displays any user-defined defaults defined on columns
of the specified table

help help

Displays valid help statements.

help index indexname {, indexname?}

Displays detailed information about the specified
indexes.

help integrity objectname

{, objectname}(where objectname is the

name of a table or index)

Displays any integrity constraints defined on the
specified tables or indexes. Integrity constraints are
defined using the create integrity statement, described
in this chapter.

help permit on procedure | table | dbevent |
view objectname {, objectname?}

(where objectname is the name of a
database procedure, table, event, or view)

Displays the permit numbers and text. The permit
numbers are required for the corresponding drop
permit statement.

help procedure procedure_name

{, procedure_name}

Displays detailed information about the specified
procedure.

help register objectname

Displays information about registered objects. For
details about registering objects, see the Database
Administrator Guide.

6-42

QUEL Reference Guide

Help

Statement

Description

help rule rulename, {rulename?} Displays the text of the create rule statement that

defined the rule.

help security_alarm tablename{, tablename} Displays all security alarms defined for the specified

table. The information includes an index number you
can use to delete the security alarm (using the drop
security_alarm statement).

help synonym synonym<{synonym}} Displays information about the specified synonyms. To
display all the synonyms you own, specify help
synonym *,

help table tablename {, tablename} Displays detailed information about the specified tables.

help view viewname {, viewname} Displays detailed information about the specified views.

Wildcards and Help

You can use the asterisk (*) wildcard to specify all or part of the owner or
object name parameters in a help statement. The help statement displays only
objects to which the user has access, which are:

m Objects owned by the user
m Objects owned by other users who have granted permissions to the user

m Objects owned by the DBA to which you have access

If you specify wildcards for both the owner and object name (*.*), help
displays all objects to which you have access. To display help information
about objects you do not own, you must specify the owner name, using the
schema.objectname syntax. For details about schemas, see the SQL Reference
Guide.

If you omit the owner name wildcard (that is, specify * instead of *.*), help
displays the objects you can access without the owner prefix. The following
examples illustrate the effects of the wildcard character:

help * Display objects owned by the session’s effective user.

help davey.* Display all objects owned by “davey”.

help *.mytable Display all objects named “mytable” regardless of
owner.

help d*.* Display all objects owned by users beginning with “d”.

help *.d* Display all objects beginning with “d” regardless of
owner.

help *.* Display all objects regardless of owner.

Chapter 6: QUEL and EQUEL Statements 643

Help

Permissions
This statement is available to any user.
Examples
The following examples provide details.
Example 1
The following example displays a list of all tables in the database:
help
Example 2
The following example displays information about the “employee” table:
help employee
Example 3
The following example displays information about the “employee” and “dept”
tables:
help employee, dept
Example 4
The following example displays information about the definition of the
“highpay” view:
help view highpay
Example 5
The following example displays all permits issued on the “job” and “employee”
tables:
help permit job, employee
Example é

The following example lists all integrity constraints issued on the “dept” and
“employee” tables:

help integrity dept, employee

6-44 QUEL Reference Guide

Include

Include

Syntax

Description

QUEL EQUEL KME

Includes an external file in source code.

include [inline] filename

The include statement provides a means to include external files in your
program'’s source code (for example, variable declarations).

Filename must be a string constant that specifies the file to be included. If the
file is a simple name (with an extension) it can be specified without quotes;
however, if filename includes non-alphanumeric characters, the string constant
must be quoted. Filename can be a logical (VMS) or system variable (UNIX)
that specifies the location and name of the file to be included.

The file specified in an include statement can contain variable declarations and
host code. Include files can contain include statements.

When the preprocessor encounters an include statement, it processes the
include file and creates work files. Default filename extensions, both for the
included file and work files, are host-language dependent. For more
information, see the Embedded QUEL Companion Guide. The default
extensions can be overridden with the -n and -o flags of the preprocessor
command.

In addition to translating the include file, the preprocessor translates the ##
include statement to the equivalent host language statement.

Include and include inline are processed differently. When the preprocessor
encounters an include statement, it preprocesses the specified file separately,
before including it. When the preprocessor encounters an include inline
statement, it preprocesses the include file as if it were part of the original file.
As a result, you can use include inline to complete partial statements.

Chapter 6: QUEL and EQUEL Statements 6-45

Index

Examples

The following examples provide details.

Example 1

The following example includes the contents of the file named “global.var” into
an EQUEL program:

include "global.var"

#o/*

** the equel program can reference the data items

** declared in "global.var"
#H*/

Example 2

The following example incorporates the contents of the file named
“messages.src” into a message statement. In this example, "messages.src”
contains the text “Retrieved employee ”. At runtime, the program retrieves an
employee and displays “Retrieved employee employee name”.

retrieve (msgvar = employee.empname)

#{

message include inline "messages.src" msgvar
#H)

Index

QUEL EQUEL KME

Creates an index on an existing table.

Syntax

[##] index [unique] on tablename is indexname
(columnname {, columnname})
[with_clause]

6-46 QUEL Reference Guide

Index

Description

The optional with clause must consist of a comma-separated list of one of
more of the following:

structure = btree | cbtree | isam | cisam | hash | chash
key = (columnname {, columnname})
fillfactor = n

minpages = n

maxpages = n

leaffill = n

nonleaffill = n

maxindexfill = n

location = (/ocationname {, locationname})
allocation = n

extend = n

The index statement creates an index on an existing table. Indexes can make
retrieval and updating more efficient. A key is constructed from base table
columns in the order you specify. A maximum of 32 columns can be specified
per index. You can create any number of indexes for a base table.

Locationname specifies the location of the index you are creating; the location
must exist, and the database must have been extended to the location. If no
locationname is specified, the index is created in the default database location.
If multiple locationnames are specified, the index is physically partitioned
across the areas.

Structure is specified using the with structure option. The default index
structure is isam. To specify the default index structure, use the -n flag when
you invoke QUEL. To modify the storage structure of indexes, use the modify
statement.

If key=(column list) is specified, the columns in column list must be an
ordered subset of the leading columns specified in the index definition. For
example, an index defined on columns “a,” *b,” “c” and “d” can be keyed on

a”, or “ab,” or “abc” or “abcd.” (The default is “abcd” if the key clause is
omitted.)

Indexes cannot be directly updated. When a primary table is changed, its
indexes are automatically updated by the system. To minimize the time it
takes to update a table, limit the number of indexes.

If you modify or destroy a primary table, indexes on the primary table are
destroyed. You can modify and destroy an index (an index is also a table).

For details about the with clause options, see Modify.

Chapter 6: QUEL and EQUEL Statements 6-47

Ingres

Embedded Usage

Host string variables can be used to specify tablename, indexname,
columnname, and the with clause.

The EQUEL preprocessor does not validate the syntax of the with_clause.

Considerations
m Only the owner of a table is allowed to create indexes on that table.
m You cannot create indexes on other indexes or on system tables.
Examples
The following examples provide details.
Example 1
The following example creates an index called “x” for the columns ename and
age on table employee:
index on employee is x(ename, age)
Example 2
The following example creates an index called "ename”, located on the area
referred to by the locationname “remote”:
index on employee is remote:ename(ename, age)
Ingres
QUEL EQUEL KME
b3
Connects to a database.
Syntax

ingres [flag {,flag}] dbname

6-48 QUEL Reference Guide

Inquire_ingres

Description

The ingres statement connects an application program to a database. The
ingres statement must precede any statements that operate on the database.
A program can access only one database at a time. However you can connect,
one at a time, to any number of databases. For information about flags, see
the quel command description in the Command Reference Guide.

Embedded Usage

You can specify each flag using a quoted character string or a string variable.
You can specify dbname using a host character string with or without quotes,
or a string variable.

Example

The following example connects to the “personnel” database as user “neil”,
locking the database for exclusive use by specifying the -1 option:

userid character_string(10)
userid = "-uneil"
ingres userid "-1" "personnel"

Inquire_ingres

QUEL EQUEL KME

Returns diagnostic information about the program’s interaction with the
database.

Syntax

#3# inquire_ingres (variable = object {, variable = object})

Chapter 6: QUEL and EQUEL Statements 6-49

Inquire_ingres

Description
The inquire_ingres statement returns diagnostic information about the last
database statement that was executed. Inquire_ingres and inquire_equel are
synonymous.
Inquire_ingres must be issued immediately following the database statement
in question, because the next EQUEL statement resets this diagnostic
information.
Valid values for object are listed in the following Inquire_ingres Statement
Parameters table:
Object Data Type Description
connection_target character Returns the node and database to which the current session
is connected; for example, “bignode::mydatabase”.
dbmserror integer Returns the number of the error caused by the last query.
endquery integer Returns 1 if the previous fetch statement was issued after
the last row of the cursor, 0 if the last fetch statement
returned a valid row. If endquery returns 1, the variables
assigned values from the fetch are left unchanged.
errorno integer Returns the error number of the last query as a positive
integer. The error number is cleared before each embedded
QUEL statement; errorno is meaningful only immediately
after the statement in question.
errortext character Returns the error text of the last query. The error text is
only valid immediately after the database statement in
question. The error text that is returned is the complete
error message of the last error. A character string result
variable of size 256 is sufficient to retrieve all error
messages. If the result variable is shorter than the error
message, the message is truncated. If there is no error
message, a blank message is returned.
errortype character Returns “genericerror” if the DBMS Server returns generic
error numbers to errorno, or “*dbmserror” if it returns local
DBMS error numbers to errorno. For information about
generic and local errors, see the SQL Reference Guide.
prefetchrows integer Returns the number of rows the DBMS Server buffers when

fetching data using readonly cursors. This value is reset
every time a readonly cursor is opened; if your application is
using this feature, be sure to set the value after opening a
readonly cursor.

6-50 QUEL Reference Guide

Inquire_ingres

Object

Data Type

Description

programquit

integer

Returns 1 if the programquit option is enabled. If
programquit is enabled, the following errors cause EQUEL
applications to abort:

= Issuing a query when not connected to a database
= Failure of the DBMS Server

= Failure of communications services

Returns 0 if applications continue after encountering such
errors.

querytext

character

Returns the text of the last query issued; valid only if this
feature is enabled. To enable or disable the saving of query
text, use the set_ingres(savequery) statement.

A maximum of 1024 characters is returned. If the query is
longer, it is truncated to 1024 characters. If the receiving

variable is smaller than the query text being returned, the
text is truncated to fit.

If you specify a null indicator variable in conjunction with the
receiving host variable, the indicator variable is set to -1 if
query text cannot be returned, 0 if query text is returned
successfully. Query text cannot be returned if (1) savequery
is disabled, (2) no query has been issued in the current
session, or (3) the inquire_ingres statement is issued outside
of a connected session.

rowcount

integer

Returns the number of rows affected by the last query. The
following statements affect rows: append, delete, replace,
retrieve, fetch, modify, index, and copy. If these statements
generate errors, or if statements other than these are run,
the value of rowcount is negative. Exception: for modify to
truncated, inquire_ingres(rowcount) always returns 0. The
value returned for rowcount is determined by the set
update_rowcount option. For details, see Update rowcount
Option.

savequery

integer

Returns 1 if query text saving is enabled, 0 if disabled.

transaction

integer

Returns a value of 1 if there is a transaction open.

Chapter 6: QUEL and EQUEL Statements 6-51

Modify

Example

This example shows the use of inquire_ingres to retrieve error message text:

range of e is employee
loop until (7 > 10)

repeat replace e (sal = e.sal*1.1)
where e.empname = goodemps(i))

inquire_ingres (errno = errorno)

if errno > @
#it inquire_ingres (errmsg = errortext)

print "ingres error: ", errno
print errmsg

end if

i=7+1
end loop
o
Modify
QUEL EQUEL KME
* *

Changes properties of a table or index.

Syntax

[##] modify tablename|indexname

to storage_structure [unique]

[on columnname [asc|desc]{, columnname [asc|desc]}]
[with_clause]

6-52 QUEL Reference Guide

Modify

A with_clause consists of the word with followed by a comma-separated list of
any number of the following items:
allocation = n
extend = n
fillfactor=n (isam, hash, and btree only)
minpages=n (hash only)
maxpages=n (hash only)
leaffill=n (btree only)
nonleaffill=n (btree only)
newlocation=(/ocation_name {, location_name})
oldlocation=(/ocation_name {, location_name})
location=(/ocation_name {, location_name})
compression [= ([[no]key] [,[no]data])] | nocompression
[no]persistence
unique_scope = row | statement
To move a table:
[##] modify tablename|indexname to relocate
with oldlocation = (/ocationname {, locationname}),
newlocation = (/ocationname {, locationname}),
To change locations for a table:
[##] modify tablename|indexname to reorganize
with location = (Jocationname {, locationname})
To delete all data in a table:
[##] modify tablename|indexname to truncated
To reorganize a btree table’s index:
[##] modify tablename|indexname to merge
To add pages to a table:
[##] modify tablename|indexname to add_extend
[with extend = number_of_pages]
where number_of _pages is 1 to 8,388,607.
Chapter 6: QUEL and EQUEL Statements 6-53

Modify

Description

The modify statement enables you to perform the following operations:
m Change the storage structure of the specified table or index.

m Specify the number of pages allocated for a table or index, and the
number of pages by which it grows when it requires more space.

m Add pages to a table.
m Reorganize a btree index.
m Move a table or index, or portion thereof, from one location to another.

m Spread a table over many locations or consolidate a table onto fewer
locations.

m Delete all rows from a table and release its file space back to the operating
system.

m Specify whether an index is recreated when its base table is modified.

m Specify how unique columns are checked during updates: after each row is
inserted or after the update statement is completed.

You can change a table’s location and storage structure in the same modify
statement.

The modify statement operates on existing tables and indexes. When you
modify a table, the DBMS Server destroys any indexes that exist for the
specified table (unless the index was created with persistence, or the table is a
btree and you are modifying the table to reorganize its index).

(The modify statement does not fire rules defined for the specified tables. For
details about rules, see the SQL Reference Guide.)

Storage Structure Specification

Changing the storage structure of a table or index is often done to improve
performance of access to the table. For example, change the structure of a
table to heap before performing a bulk copy into the table to improve the
performance of copy.

6-54 QUEL Reference Guide

Modify

The storage_structure parameter must be one of the following table storage
structures:

Structure Description

isam Indexed sequential access method structure, duplicate rows
allowed unless the with noduplicates clause is specified
when the table is created.

hash Random hash storage structure, duplicate rows allowed
unless the with noduplicates clause is specified when the
table is created

heap Unkeyed and unstructured, duplicated rows allowed, even if
the with noduplicates clause is specified when the table is
created.

heapsort Heap with rows sorted and duplicate rows allowed unless

the with noduplicates clause is specified when the table is
created (sort order not retained if rows are added or
replaced).

btree Dynamic tree-structured organization with duplicate rows
allowed unless the with noduplicates clause is specified
when the table is created.

You cannot modify an index to heap or heapsort.

The DBMS Server uses existing data to build the index (for isam tables),
calculate hash values (for hash tables) or for sorting (heapsort tables).

To optimize the storage structure of heavily-used tables (tables containing
data that is frequently added to, changed, or deleted), modify those tables
periodically.

The optional keyword unique requires each key value in the restructured table
to be unique. (The key value is the concatenation of all key columns in a row.)
If you specify unique for a table that contains non-unique keys, the DBMS
Server returns an error and does not change the table’s storage structure. For
the purposes of determining uniqueness, a null is considered to be equal to
another null.

You cannot specify unique for heap or heapsort tables.

The optional on clause determines the table’s primary keys. You can only
specify this clause when modifying to one of the following storage structures:
isam, hash, heapsort, or btree. When the table is sorted after modification, the
first column specified in this clause is the most significant key, and each
successive specified column is the next most significant key.

Chapter 6: QUEL and EQUEL Statements 6-55

Modify

If you omit the on clause when modifying to isam, hash, or btree, the table is
keyed, by default, on the first column. When you modify a table to heap, you
must omit the on clause.

When you modify a table to heapsort, you can specify the sort order as asc
(ascending) or desc (descending). The default is ascending. When sorting, the
DBMS Server considers nulls greater than any non-null value.

Modify...to Merge Option

When data is added to a btree table, the index automatically expands.
However, a btree index does not shrink when rows are deleted from the btree
table. To shrink a btree index, use the modify... to merge option. Modify...to
merge affects only the index, and therefore usually runs a good deal faster
than the other modify variants. Modify...to merge does not require any
temporary disk space.

Modify...to Relocate Option

To move the data without changing the number of locations or storage
structure, specify relocate. For example, to relocate the employee table to
three different areas:

modify employee to relocate

with oldlocation (areal, area2, area3),
newlocation (aread, areab, areab);

The data on “areal” is moved to “area4”, the data on “area2” is moved to
“area5”, and the data on “area3” is moved to area6. The number of areas
listed in the oldlocation and newlocation options must be equal. The data in
each area listed in the oldlocation list is moved without change to the
corresponding area in the newlocation list. You can only use the oldlocation
and newlocation options in the with clause when you specify relocate.

To change some but not all locations, specify only the locations to be changed.
For example, move only the data on “areal” of the employee table:
modify employee to relocate

with oldlocation (areal),
newlocation (aread);

The DBMS Server is very efficient at spreading a table or index across multiple
locations. For example, if a table is to be spread over three locations:

create table large (wide varchar(2000),
with location = (areal, area2, area3);

Rows are added to each location in turn, in 16-page (approximately 32
kilobyte) chunks. If it is not possible to allocate 16 full pages on an area when
it is that area’s turn to be filled, the table is out of space, even if there is
plenty of room in the table’s other areas.

6-56

QUEL Reference Guide

Modify

Modify...to Reorganize Option

To move the data and change the number of locations without changing
storage structure, specify reorganize. For example, to spread an employee
table over three locations:

modify employee to reorganize
with location = (areal, area2, area3);

When you specify reorganize, the only valid with clause option is location.

Modify...to Truncated Option

To delete all the rows in the table and release the file space back to the
operating system, specify modify...to truncated. For example, the following
statement deletes all rows in the “acct_payable” table and releases the space:

modify acct_payable to truncated;

Using truncated converts the storage structure of the table to heap. You
cannot specify any of the with_clause options when you modify to truncated.

Modify...to Add_extend Option

To add pages to a table, specify modify...to add_extend. To specify the
number of pages to be added, use the extend=number_of_pages option. If
you omit the with extend=number_of _pages option, the DBMS Server adds
the default humber of pages specified for extending the table. To specify the
default, use the modify...with extend statement. If no default has been
specified for the table, 16 pages are added.

With Clause Options

The following sections describe the remaining with clause options for the
modify statement.

Fillfactor, Minpages, and Maxpages Options

Fillfactor specifies the percentage (from 1 to 100) of each primary data page
that must be filled with rows, under ideal conditions. For example, if you
specify a fillfactor of 40, the DBMS Server fills 40% of each of the primary
data pages in the restructured table with rows. You can specify this option with
the isam, hash, or btree structures. Take care when specifying large fillfactors
because a nonuniform distribution of key values can later result in overflow
pages and thus degrade access performance for the table.

Chapter 6: QUEL and EQUEL Statements 6-57

Modify

Minpages specifies the minimum number of primary pages a hash table must
have. Maxpages specifies the maximum number of primary pages a hash table
can have. Minpages and maxpages must be at least 1. If both minpages and
maxpages are specified in a modify statement, minpages must not exceed
maxpages.

For best performance, the values that you choose for minpages and maxpages
must be a power of 2. If you choose a number other than a power of 2, the
DBMS Server can change the number to the nearest power of 2 when the
modify executes. If you want to ensure that the number you specify is not
changed, set both minpages and maxpages to that number.

Default values for fillfactor, minpages and maxpages are listed in the following
table:

Storage Structure Fillfactor Minpages Maxpages
hash 50 16 no limit
compressed hash 75 1 no limit
isam 80 n/a n/a
compressed isam 100 n/a n/a

btree 80 n/a n/a
compressed btree 100 n/a n/a

Leaffill and Nonleaffill Options

For btree tables, the leaffill parameter specifies to the DBMS Server how full to
fill the leaf index pages. Leaf index pages are the index pages that are directly
above the data pages. Nonleaffill specifies how full to fill the non-leaf index
pages. Non-leaf index pages are the pages above the leaf pages. Specify
leaffill and nonleaffill as percentages. For example, if you modify a table to
btree, specifying nonleaffill=75, each non-leaf index page is 75% full when the
modification is complete.

The leaffill and nonleaffill parameters can assist you in controlling locking
contention in btree index pages. If you retain some open space on these
pages, concurrent users can access the btree with less likelihood of contention
while their queries descend the index tree. You must strike a balance between
preserving space in index pages and creating a greater number of index
pages; more levels of index pages require more I/O to locate a data row.

Default values for leaffill and nonleaffill are 70% and 80%, respectively.

6-58

QUEL Reference Guide

Modify

Allocation Option

Extend Option

Compression Option

To specify the number of pages initially allocated to the table or index, use the
with allocation option. By allocating disk space to a table, you can avoid
runtime errors that result from running out of disk space.

The number of pages specified must be between 4 and 8,388,607 (the
maximum number of pages in a table). If the specified number of pages
cannot be allocated, the modify statement is aborted.

You can modify a table to a smaller size. If the table requires more pages that
you specify, the table is extended and no data is lost. You can modify a table
to a larger size, to reserve disk space for the table.

If the table is spread across multiple locations, space is allocated across all
locations.

To specify the number of pages by which a table or index grows when it
requires more space, use the with extend clause. The number of pages
specified must be between 1 and 8,388,607 (the maximum number of pages
in a table). By default, tables and indexes are extended by groups of 16
pages. If the specified number of pages cannot be allocated when the table
must be extended (for example, during an insert operation), the DBMS Server
aborts the statement and issues an error.

To specify data and key compression, use the with compression clause. Not all
storage structures can be compressed, as shown in the following table:

Storage Base Table or Can Compress Can Compress
Structure Secondary Index Data? Key?
Hash Base Table Yes No
Secondary Index Yes No
Heap Base Table Yes No
Secondary Index No No
Btree Base Table Yes Yes
Secondary Index No Yes
ISAM Base Table Yes No
Secondary Index Yes No

Chapter 6: QUEL and EQUEL Statements 6-59

Modify

To specify an uncompressed storage structure, specify with nocompression.

To compress both key and data for tables where this is valid (primarily btree),
specify with compression, omitting the key/data clause. To compress data or
keys independently of one another, specify with compression = (key|data). To
explicitly suppress compression of data or keys, specify with compression =
(nokey | nodata).

Location Option

To change the location of a table when modifying its storage structure, specify
the location option. This option allows you to specify one or more new
locations for the table. The locations specified must exist when the statement
executes and the database must have been extended to those locations. For
information about areas and extending databases, see the Database
Administrator Guide.

Unique_scope Option

The unique_scope option specifies, for tables or indexes with unique storage
structures, how uniqueness is checked during an update option. There are two
options:

® unique_scope = row
Uniqueness is checked as each row is inserted (for multi-row updates).
m unique_scope = statement

Uniqueness is checked after the update statement is completed.

The default unique_scope is row.

[No]persistence Option

The [no]persistence option specifies whether an index is recreated when its
related base table is modified. The [no]persistence option is valid only for
indexes. There are two options:

m with persistence

The index is recreated when its base table is modified.
m with nopersistence

The index is dropped when its base table is modified.

By default, indexes are created with nopersistence.

6-60 QUEL Reference Guide

Modify

Embedded Usage

The preprocessor does not verify the syntax of the with_clause. You can
specify the values in the with_clause options using host variables.

Permissions
You must be the owner of the specified table or a user with the security
privilege.

Locking
The modify statement requires an exclusive table lock. Other sessions, even
those using readlock=nolock, cannot access the table until the transaction
containing the modify statement is committed.

Examples
The following examples provide details.

Example 1
Modify the “employee” table to an indexed sequential storage structure with
eno as the keyed column:
modify employee to isam on eno
If “eno” is the first column of the “employee” table, the same result can be
achieved by
modify employee to isam

Example 2
Perform the same modify, but request a 60% occupancy on all primary pages:
modify employee to isam on eno

with fillfactor = 60
Example 3

Modify the “job” table to compressed hash storage structure with “jid” and
“salary” as keyed columns:

modify job to hash on jid, salary
with compression

Chapter 6: QUEL and EQUEL Statements 6-61

Modify

Example 4

Example 5

Example é

Example 7

Example 8

Example ¢

Perform the same modify, but also request 75% occupancy on all primary
pages, a minimum of 7 primary pages and a maximum of 43 primary pages:

modify job to hash on jid, salary
with compression, fillfactor = 75,
minpages = 7, maxpages = 43

Perform the same modify again but only request a minimum of 16 primary
pages:

modify job to hash on jid, salary
with compression, minpages = 16

Modify the “dept” table to a heap storage structure and move it to a new
location:

modify dept to heap with location=(area4)

Modify the “dept” table to a heap again, but have rows sorted on the “dno”
column and have any duplicate rows removed:

modify dept to heapsort on dno

Modify the “employee” table in ascending order by “ename,” descending order
by “age,” and have any duplicate rows removed:

modify employee to heapsort on ename asc,
age desc

Modify the “"employee” table to btree on “ename,” so that data pages are 50%
full and index pages are initially 40% full:

modify employee to btree on ename
with fillfactor = 50, leaffill = 40

6-62 QUEL Reference Guide

Open Cursor

Example 10

Example 11

Example 12

Example 13

Example 14

Open Cursor

Modify a table to btree with data compression, no key compression. This is the
format used by the (obsolete) cbtree storage structure:

modify tablel to btree
with compression=(nokey, data)

Modify an index to btree using key compression:

modify indexl to btree with compression=(key)

Modify an index so it is retained when its base table is modified:

modify empidx to btree with persistence

Modify a table, specifying the number of pages to be initially allocated to it and
the number of pages by which it is extended when it requires more space:

modify inventory to btree
with allocation = 10000, extend = 1000

Modify an index to have uniqueness checked after the completion of an update
statement:

modify empidx to btree unique on empid
with unique_scope = statement

QUEL EQUEL KME

Opens a cursor for processing.

Chapter é6: QUEL and EQUEL Statements 6-63

Open Cursor

Syntax

Description

Embedded Usage

#3# open cursor cursor_name [for readonly]

The open cursor statement opens a cursor for processing. A cursor must be
opened before it can be used to retrieve, append, or delete rows.

The retrieve clause of a declare cursor statement is evaluated when the cursor
is opened. After you open a cursor, it is positioned immediately prior to the
first row of the result table. To advance the cursor and retrieve the first row,
your application program must issue a retrieve cursor statement.

The for readonly clause indicates that, even though the cursor has been
declared for update, it is being opened for reading only. Opening a cursor for
readonly improves database access time. You cannot use a readonly cursor to
append, update, or delete rows.

Different cursors can be open at the same time only within a multi-query
transaction. The same cursor can be opened and closed any number of times
in a single program. A cursor must be closed, however, before it can be
reopened.

The cursor_name parameter must be a declared cursor.

You can specify cursor_name using a string constant or a host language
variable.

6-64 QUEL Reference Guide

Print

Print

Syntax

Description

Examples

Example 1

QUEL EQUEL KME

Prints tables.

print tablename {, tablename}

The print statement displays the contents of the specified tables on your
terminal (or standard output). The format of the display is determined by flags
that are specified when QUEL is invoked. For information about these flags,
see the quel command description in the Command Reference Guide.

Print truncates and pads as necessary. Non-printing and control characters are
displayed in a manner similar to the way they are specified in string constants.
For example, carriage return is printed as “\r” and the “bell” character (octal
value 7) is printed as “\007".

The print statement leaves enough space in each text column to accommodate
the declared column width. If there are control characters in a text string, the
number of characters printed can be greater than the width of the column. In
this case, the printed columns do not align.

To print a table, you must own the table or have retrieve permission.

The following examples provide details.

The following example prints the “employee” table:

print employee

Chapter é6: QUEL and EQUEL Statements 6-65

Range

Example 2
The following example prints both the “employee” and “dept” tables:
print employee, dept
Range
QUEL EQUEL KME
*x 3
Associates a range variable with a table.
Syntax
[##] range of range_var is tablename {, range_var is tablename}
Description

A range statement associates a range variable with the table or view specified
by tablename. A range declaration remains in effect until:

m The session ends, or
m The variable is redeclared by another range statement, or

m Its table or view definition is destroyed

Not all range variables are declared using the range statement: the table
name you specify in a retrieve statement is considered to be an implicit or
default range variable.

Range variables enable you to treat the same table as though it were two
separate tables. In the following example, range variables “e” and "m” allow
you to extract employees and their managers from the same table.

range of d is dept

range of e is employee

range of m is employee

retrieve (e.ename, mgr=m.ename)
where e.dept=d.dno and d.mgr=m.eno

6-66 QUEL Reference Guide

Range

Considerations

Examples

Example 1

Example 2

m Default and explicitly declared range variables cannot be used as though
they were identical, because they refer to different copies of the same
table. Using a default and a declared range variable in the same query
results in a disjoint query, whose results are seldom what you want and
often disastrous.

m If you are using EQUEL, range_var and tablename can be specified using
host variables.

m A maximum of 126 range variables can be in effect at any time. After the
126th range statement, the least recently used range variable is replaced
by the next range statement. This limit includes both default and explicitly
declared range variables.

The following examples provide details.

The first three examples illustrate a common error: disjoint queries, which are
queries that incorrectly mix declared and implicit range variables.

This example inadvertently deletes all rows in the “dept” table, not just the
rows where the “dno” value is 1, because “d” and “dept” refer to different
copies of the same table:

Wrong:

range of d is dept
delete d where dept.dno=1

The following example inadvertently returns the Cartesian product of the two
tables, not just the “ename” and “dept” values from each row:

Wrong:

range of e is emp
retrieve (e.ename, emp.dept)

Chapter é6: QUEL and EQUEL Statements 6-67

Relocate

Example 3
The following example inadvertently replaces the age value for all rows, not
only for the “jones” rows:
Wrong:
range of e is emp
replace emp (e.age=e.age+l) where e.ename = "jones*"
Example 4
This example correctly declares range variable “e” to range over the
“employee” table and “d” over the “dept” table:
Right:
range of e is employee, d is dept
Relocate
QUEL EQUEL KME
*x X
Relocates tables.
Syntax
[##] relocate tablename to locationname
Description

The relocate statement moves a table from its current location to the location
specified by locationname. You can't relocate a table that exists on multiple
locations—-you must use the modify statement to move it. Relocate takes an
exclusive table lock. Other sessions cannot access the table until the relocation
is complete.

Embedded Usage

You can specify tablename and locationname using host string variables.

6-68 QUEL Reference Guide

Replace

Considerations

Example

Replace

Syntax

Description

m You must own the specified table.

m Locationname must exist, and the database must have been extended to
that location.

The following example relocates the table “employee” to the area defined as
the “remote_loc” location.

relocate employee to remote_loc

QUEL EQUEL KME

Replaces values of columns in a table.

[#+#] [repeat] replace range_variable (target_list) [where qual]

The replace statement updates the values of the columns specified in the
target_list for all rows in the table that satisfy the where clause. Only columns
to be modified need appear in the target_list. To set a nullable column to null,
specify the keyword null.

The replace statement also has a param version; the param function replaces
the list of column names and expressions in the target list. Param statements
are not supported in all host languages. For more information, see the
Embedded QUEL Companion Guide.

Chapter 6: QUEL and EQUEL Statements 6-69

Replace

You can reduce the overhead of frequently executed replace statements by
specifying repeat replace. The repeat keyword directs the DBMS Server to
encode and save its execution plan when the replace is first executed. This
encoding can account for significant performance improvements on
subsequent executions of the same replace. (If the repeat option is specified,
program variables which appear on the right hand side of an equals sign (=)
must be preceded by the @ sign.)

Embedded Usage

You can use host variables to specify range variables, column names, and
expressions (including expressions that use null indicator variables). You can
use a host string variable to specify the where clause (useful in conjunction
with the forms system query mode when your application must construct
queries from user-specified parameters).

Considerations
m Only the owner of a table or a user with replace permission on the table
can replace values.
m The replace statement fires any rules defined on the specified table that is
fired by an equivalent SQL update statement. Rules are part of the
Knowledge Management Extension. For more information, see the SQL
Reference Guide.
m If the table was created with no duplicate rows allowed, you cannot
execute a replace that creates a duplicate row.
m If the row update violates an integrity constraint, the update is not
performed.
m Do not mix explicitly declared range variables with default range variables.
Mixing range variables results in a disjoint query, which can seriously
corrupt your data. For details, see Range.
Examples
The following examples provide details.
Example 1

The following example replaces the name and salary of the employee whose
ID number is specified by the variable “numvar”:

range of e is employee

replace e (empname = namevar,
salary = salvar:indvar)

where e.empnum = numvar

6-70 QUEL Reference Guide

Replace Cursor

Example 2

A param version of the above. This version uses a dynamically created where
clause, specified in a host string variable:

addresses (1) address_of (namevar)
addresses(2) = address_of(salvar)

addresses(3) address_of (indvar)

target_1ist = "empname = %c, salary = %f4:%i2"
replace e (param (target_list, addresses))
where wherevar

Example 3

The following example gives all employees who work for Smith a 10% raise:
range of e is employee, m is employee, d is dept

replace e(salary=1.1*e.salary) where e.dept=d.dno and
d.mgr=m.eno and m.ename="*smith*"

Example 4
The following example replaces Jones’ salary with null:

range of e is employee
replace e (salary=null) where e.ename="jones"

Example 5

Do not do this! This disjoint query changes all rows (because “e” and
“employee” are separate range variables):

Wrong:

range of e is employee
replace e (salary=3500) where employee.ename="jones"

Replace Cursor

QUEL EQUEL KME

Updates values of columns in a single row in a table.

Chapter 6: QUEL and EQUEL Statements 6-71

Replace Cursor

Syntax

#3# replace cursor cursor_name (target_list)

Description

The replace cursor statement updates the values in the row currently pointed
to by cursor_name. If the cursor is not pointing to a row, (for example, after
an open cursor or a delete cursor statement), the DBMS Server displays an
error message. If the row the cursor is pointing to has been deleted from the
underlying database table (as the result of a non-cursor delete, for example),
no row is updated. Replace cursor does not advance the cursor.

There are two update modes:

m Deferred mode

Updates take effect when the cursor is closed. There can be only one
cursor open in deferred mode at a time.

m Direct mode

Updates are performed immediately. If you are using direct mode, avoid
performing updates or deletes that change the order of rows because the
sequence in which the cursor returns rows is affected.

If your application issues two cursor replace statements without advancing the
cursor before the second (using retrieve cursor):

m A direct update mode cursor updates the same row twice

m A deferred update mode cursor does not perform the second update; an

error message is issued

The cursor specified in the replace cursor must be open. The columns in the
target list must have been declared for update and must be updatable. For
example, you cannot update derived columns. See Declaring a Cursor.

If your host language supports the param version of the target list, see the
Embedded QUEL Companion Guide for details.

Embedded Usage

You can use host language variables to specify cursor_name, column names,
and constant expressions in the target list or the entire target list.

6-72 QUEL Reference Guide

Retrieve

Examples

Retrieve

Syntax

This example gives all employees except employee number 150 a 30% raise:

range of e is employee

declare cursor cursorl for

retrieve (e.empname, e.empnum, sal = e.salary)
where e.empnum <> 150

for update of (salary)

loop until no more rows
retrieve cursor cursorl (namevar, numvar, salvar)

/* last row? */
inquire_ingres (thatsall = endquery)
7f thatsall = @ then
if salvar < 30,000 then
replace cursor cursorl (salary = salvar * 1.3)

end if
end if
end loop
QUEL EQUEL KME
* *

Retrieve rows from a table.

Interactive QUEL syntax:

retrieve [[into] tablename] [unique]
(target_list) [where gual]

[sort [by] columnname [:sortorder] {, columnname [:sortorder]}]
[order [by] columnname [:sortorder] {,columnname[:sortorder]}]

[with with_clause]

Chapter é6: QUEL and EQUEL Statements 6-73

Refrieve

Description

The with clause is valid only when retrieving into a table. The with clause
consists of the keyword with followed by a comma-separated list of one or
more of the following options:

structure=storage structure name
key=(column list)

[no]journaling

[no]duplicates
location=/ocationame
fillfactor=1...100%

minpages=(>0)

maxpages=(>0)
nonleaffill=1...100%
leaffill/indexfill=1...100%
maxindexfill=ignored
allocation=(>0) (only for retrieve into)
extend=(>0) (only for retrieve into)

Embedded QUEL syntax, to retrieve into host variables:

[repeat] retrieve [unique] (variable=result_expression
{, variable = result_expression})

[where qgual] [sort [by] result_column {, result_column}]
[{

program code

3]

The retrieve statement fetches all rows that satisfy the criteria specified in the
where clause, and optionally stores the rows in a new table. To retrieve all
columns from a table, specify tablename.all.

If you are using interactive QUEL, you can display the results; if you are using
embedded QUEL (EQUEL), you can store the resulting rows in host language
variables, enabling your application program to process the rows.

To store the results of the retrieve in a new table, specify into tablename. (In
interactive QUEL, if you do not specify into tablename, the result is displayed.)
A table with this name (owned by the user) must not already exist. The
current user is the owner of the new table.

The new table’s column names are specified in the target_list result column
names. If the source column has a simple default defined, the result column
inherits the default. For details about column defaults, see the create table
statement description in the SQL Reference Guide.

6-74 QUEL Reference Guide

Retrieve

The default structure for tablename is cheap (compressed heap); if sort by is
specified, the default structure is cheapsort. You can override the default
structure using the set ret_into statement, described in this chapter, or the
with structure clause. You can specify the characteristics of the new table
using the optional with clause. For details about these parameters, see Modify.

Locationname specifies the location where the table is to be created. The
location must exist, and the database must have been extended to the
corresponding area. If no location is specified, the default location for the
database is assumed.

To remove duplicate rows from the result, specify the keyword unique. If you
specify unique, rows are sorted on all the columns in the target_list (beginning
with the first column) and duplicate rows are removed from the result.

To sort a table without removing duplicate rows, specify order by. To sort and
remove duplicate rows, specify sort by. (Order by and sort by are mutually
exclusive options.

Retrieve unique with an order by clause is functionally equivalent to retrieve
with a sort by clause.) By default, rows are sorted in ascending order. You can
override this default by specifying a sortorder of descending (or d) in the sort
by or order by clause.

When you use the sort by or order by clause, you must specify the column
name that appears in the result table. For example, the following two retrieve
statements produce the same results: the first one sorts by base table column
“ename”, and the second assigns “"ename” to the result column “person” and
sorts by “person”.

retrieve (e.ename, e.dept) sort by ename
retrieve (person=e.ename, e.dept) sort by person

However,

retrieve (person=e.ename, e.dept) sort by ename

is incorrect: the result column is “person”, but the sort clause incorrectly
specifies the base table column “ename”.

Retrievals in Embedded QUEL

To retrieve a single row, omit the code block (enclosed in curly braces) that
follows the retrieve statement. If more than one row fulfills the where clause
of the query, the DBMS Server returns a single row, though not necessarily
the first qualifying row.

Chapter 6: QUEL and EQUEL Statements 6-75

Refrieve

Embedded Usage

To retrieve a set of rows, you must create a retrieve loop. To create a retrieve
loop, follow the retrieve statement with a block of code enclosed in curly
braces. The code block can contain a mixture of host language and EQUEL
statements.

Within the retrieve loop code block, your application must not issue any other
statements that access the database-this causes a runtime error. To see how
rows and tables can be manipulated and updated while data is being retrieved,
see Data Manipulation with Cursors in the "Embedded QUEL” chapter.

To abort a retrieve loop, use the endretrieve statement. The endretrieve
statement must be within the block delimited by curly braces. Do not use a
host language goto statement or return statement to exit the loop: exiting a
loop using a goto or return causes the next EQUEL statement that accesses
the database to fail, and the DBMS Server displays a message indicating that
database statements cannot be nested within a retrieve loop.

To find out how many rows have been retrieved, use the inquire_ingres
statement with the rowcount parameter. Used within the retrieve loop,
rowcount indicates the number of rows retrieved so far. Placed immediately
following the loop, it indicates the total number of rows retrieved. After a non-
looped retrieve, inquire_ingres(rowcount) returns the number of rows that met
the where clause.

The results of the retrieval are assigned to the specified host variables. If no
rows are retrieved, the contents of the host variables remains unchanged. You
must use numeric variables to receive numeric results and string variables to
receive string results. Each result variable can be associated with an indicator
variable to detect null data. For more information, see Indicator Variables in
the "Embedded QUEL" chapter.

You can reduce the overhead required by frequently executed retrieve
statements by specifying repeat retrieve. The repeat keyword directs the
DBMS Server to encode the retrieve and save its execution plan when it is first
executed. This encoding can improve performance on subsequent executions
of the same retrieve.

You can use host variables to specify target_list expressions, including range
variables, table names, column names, and numeric or character expressions.
Host variables can be used to specify expressions in the where clause, or the
complete where clause.

If a result column name is the same as the name of a host variable, you must
dereference the column name by preceding it with a pound sign (#).

The EQUEL preprocessor does not validate the syntax of the with clause.

6-76 QUEL Reference Guide

Retrieve

Considerations

Examples

Example 1

If repeat is specified, program variables which change each time the query is
executed and which appear on the right hand side of an equals sign (=) must
be preceded by the @ sign. Result variables must not be marked in this way.
Variables (including @ variables) cannot be changed within a retrieve loop.

m Only the table’s owner and users with retrieve permission can retrieve
from a table.

m (Interactive) The format in which columns are displayed can be defined
when the Terminal Monitor connects to the database. For details, see the
quel command description in the Command Reference Guide.

m (Interactive) Retrieve displays non-printing and control characters in a
manner similar to the way they are specified in string constants. For
example, carriage return is printed as “\r” and the “bell” character (octal
value 7) is printed as "\007"”. The retrieve statement leaves enough space
in each text column to accommodate the declared length of the column. If
there are control characters in a text string, it is possible that the number
of characters printed are greater than the width of the column, and the
printed columns do not line up.

m The retrieve statement also has a param version for greater flexibility at
runtime. Param statements are not supported in all host languages. For
more information, see the Embedded QUEL Companion Guide.

The following examples provide details.

The following example illustrates the use of retrieve to look up the name and
salary of the employee number specified in host variable “numvar”. Note the
use of the null indicator variable with column “salary”:

range of e is employee

retrieve (namevar = e.empname,

salvar:indvar = e.salary)
where e.empnum = numvar

Chapter 6: QUEL and EQUEL Statements 6-77

Refrieve

Example 2

Example 3

Example 4

In the following example, the constant "Name:” is assigned to result column
“title”, and the content of the “empname” column is assigned to host variable
“namevar”:

range of e is employee
retrieve (title = "name: ", namevar = e.empname)
where e.empnum >= 148 and e.age = agevar

The following example illustrates the use of retrieve to print information from
the “employee” table for the employee whose number and name correspond to
“numvar” and “namevar”. Because this statement is issued many times (in a
subprogram, perhaps), it is formulated as a repeat query. The "@"” sign is
required on only those variables substituting for constant values:

repeat retrieve (empgrade = e.egrade,
empsal = e.salary)
where e.eno = @numvar and e.ename = @namevar

The following example illustrates the use of retrieve to scan an entire table
and generate a report. If an error occurs, the retrieve loop is aborted. No
database statements are allowed inside the retrieve loop (within the curly
braces).

Note the sort clause and the use of dereferenced variable names as result
column names in the sort by clause:

error = 0
range of e is employee
range of d is department

retrieve (empid = e.empnum, empname = e.#empname,
empage = e.eage, empsal = e.salary,
empdept = d.dname)
where e.edept = d.deptno
sort by #empdept, #empname
{
generate report of information
if error condition then
error = 1
endretrieve
end if
#t)
/* transferred here by completing the retrieval
or because the endretrieve statement was issued
#H */
if error =1
1inquire_ingres (countvar = rowcount)
print "error encountered after row", countvar
else
print "successful addition and reporting"”
end if

6-78 QUEL Reference Guide

Retrieve Cursor

Example 5

The following example illustrates the use of a string variable to specify the
where clause:

run forms in query mode
construct where_cond from user input on form
range of employee is e
retrieve (empname = e.#empname, empid = e.empnum,
empmgr = e.mgr) where where_cond
#{
load a table field with empname, empid, empmgr
)
display table field for browsing

Retrieve Cursor

QUEL EQUEL KME

Retrieves data into host variables using a cursor.

Syntax

#3# retrieve cursor cursor_name (variable
{, variable})

Description

The retrieve cursor statement advances the cursor one row and loads the
values specified in the retrieve clause of the declare cursor statement into the
specified host variables. The retrieve cursor statement is the only way to
advance a cursor.

Embedded Usage

You can specify cursor_name using a string constant or a host language
variable.

Considerations

m A retrieve cursor can only be issued if cursor_name has been declared and
is currently open.

Chapter 6: QUEL and EQUEL Statements 6-79

Retrieve Cursor

m There must be a one-to-one correspondence between variables specified in
the retrieve cursor target list and columns in the retrieve clause of the
declare cursor statement. The preprocessor generates a warning if there is
a mismatch between the cursor declaration and its use in a retrieve cursor
statement.

m The retrieve cursor statement also has a param version in some host
languages. For more information on param statements, see the Embedded
QUEL Companion Guide.

Examples

The following examples provide details.

Example 1

The following example illustrates typical use of retrieve cursor, with associated
cursor statements:

ename character_string(26)

age integer

declare cursor cursorl for

retrieve (employee.empname, employee.#age)

sort by empname

open cursor cursorl

loop until no more rows

retrieve cursor cursorl (ename, age)
print ename, age

end loop

close cursor cursorl

Example 2

A param version of the above:

addresses(1) address_of (name)
addresses(2) address_of (age)
target_list = "%c, %i4"

retrieve cursor cursorl

(param (target_list, addresses))

Example 3

The following example illustrates the use of an indicator variable in a retrieve
cursor statement:

retrieve cursor2 (name, salary:indicator_var)

6-80 QUEL Reference Guide

Save

Save

Syntax

Description

Embedded Usage

Considerations

Examples

QUEL EQUEL KME

Saves a base table until a specified date.

[##] save tablename until month day year

The save statement enables you to specify a table’s expiration date. The
verifydb command destroys expired tables. (Tables are not destroyed
automatically upon expiration.) Only the owner of a table can save that table.
By default, tables have no expiration date when created. To clear an expiration
date, omit the until clause. For example, save mytable clears any expiration
date from “mytable”.

Month must be an integer from 1 through 12 or the name of the month,

abbreviated or spelled out. Day must be the day of the month (1-31), and
year must be fully specified (for example, 1999 or 2003).

You can specify tablename using a host variable. You can specify the complete
date using a host variable, or specify the month as a (quoted or unquoted)
string and the day and year using integer literals or variables.

System tables have no expiration date.

The following examples provide details.

Chapter 6: QUEL and EQUEL Statements 6-81

Savepoint

Example 1

Example 2

Savepoint

Syntax

Description

The following example saves the “employee” table until December 31, 2003:
save employee until december 31 2003

The following example uses a variable to specify the expiration date:

save_date = "december 31 2003"
save employee until save_date

QUEL EQUEL KME

Declares a savepoint marker within a multi-query transaction.

[##] savepoint savepoint_name

The savepoint statement declares a savepoint within a multi-query transaction
(MQT). Savepoints are used in conjunction with the abort statement. Abort
allows you to specify a savepoint. An abort to that savepoint undoes all
updates performed between the savepoint and the abort statement.
Savepoint_name must be a valid, unquoted object name. Declaring a
savepoint closes any open cursors.

There is no limit to the number of savepoints that you can declare within an
MQT. You can use the same savepoint_name more than once. However, only
the most recently declared use of a savepoint_name is active within the MQT.
In other words, if you abort to a savepoint whose name is used more than
once, the transaction is backed out to the most recent use of the
savepoint_name.

All savepoints within a transaction are rendered inactive when the transaction
is terminated (either committed with end transaction, or aborted with abort or
by the system as the result of deadlock or timeout).

6-82 QUEL Reference Guide

Set

Example

Set

Syntax

For more information on transactions, see Transactions in the “Embedded
QUEL" chapter and Aborting Transactions in this chapter.

This example shows a typical use of the savepoint statement. During each loop
of the program, a savepoint is declared, enabling the program to back out
updates in the event of an error:

begin transaction
saveindex = 0
loop until finished processing
saveindex = saveindex + 1

savepoint saveindex
process data
if error condition then

abort to saveindex

saveindex = saveindex - 1

end if

end loop

end transaction

QUEL EQUEL KME

Sets a session option.

[##] set aggregate [no]project

[#4#] set joinop [no]timeout

[#4#] set journaling|nojournaling [on tablename]

[#+#] set lockmode session|on tablename where

[level = page|table|session|system]

[, readlock = nolock|shared|exclusive|session|system]
[, maxlocks = n|session|system]

[, timeout = n|session|system|nowait]

[##] set [no]printqry

[##] set [no]qep

Chapter 6: QUEL and EQUEL Statements 6-83

Set

Description

[##] set ret_into heap|cheap|heapsort|cheapsort|hash|
chash|isam|cisam|btree|cbtree

[##] set [no]logging
[#4#] set [no]optimizeonly

[##] set session with on_error = rollback
statement | transaction

[##] set update_rowcount changed | qualified

The following set options are part of the Knowledge Management Extension.
[##] set nomaxio | maxio value

[##] set nomaxrow | maxrow value

[##] set nomaxquery | maxquery value

The set statement specifies a runtime option for a single session (interactive or
embedded). The option remains in effect until the end of the session, or until
changed by another set statement.

Set Aggregate [No]project Option

Specifies whether the DBMS Server returns zero values for aggregate
functions that use the by clause. In the following example, if you specify the
project option, the DBMS Server returns a value for each department, zero for
those departments that have no employees earning over $10,000. If you
specify noproject, departments that have no employees earning over $10,000
are omitted:

count(emp.salary by emp.dept where emp.salary > 10000)

Set Joinop [No]timeout Option

This statement turns the optimizer’s timeout feature on and off. If timeout is
on (the default), the query optimizer stops checking query execution plans
when it believes that the best plan that it has found takes less time to execute
than the amount of time already spent searching for a plan. If you issue a set
joinop notimeout statement, the optimizer does not time out when checking
query execution plans.

6-84 QUEL Reference Guide

Set

This option is often used with the set gep option to ensure that the optimizer is
picking the best possible query plan.

The default is set joinop timeout.

Set [No]journaling Option

The set journaling|nojournaling statement sets the session default for the
create statement. If you specify set journaling, tables are created with
journaling unless you specify no journaling in the create statement. If you
specify set nojournaling, tables are created with journaling turned off, unless
you specify journaling in the create statement.

If you set journaling on an individual table, journaling for the specified table
begins at the next checkpoint. For more information about checkpoints, see
the Database Administrator Guide.

Set Lockmode Option

The set lockmode option allows you to specify a number of different types and
levels of locks. Valid values for set lockmode parameters are listed in the
following table:

Lockmode Description

level Specifies locking level as follows:
page Specifies locking at the level of the data page (subject to
escalation criteria as described below).
table Specifies table-level locking.
session Specifies the current default for your session.
system Specifies that the DBMS Server starts with page level locking,

unless it estimates that more than max/ocks pages are locked,
in which case, table level locking is used.

readlock Specifies lock mode for tables being read but not updated. You can specify any of the
following readlock modes:

nolock Specifies no locking when reading data.

shared Specifies the default mode of locking when reading data.

exclusive Specifies exclusive locking when reading data (useful in
“retrieve-for-update” processing within a multi-query
transaction).

session Specifies the session default readlock.

Chapter é6: QUEL and EQUEL Statements 6-85

Set

Lockmode Description

system Specifies the system readlock default.
maxlocks Specifies the number of locks at which locking escalates from page level to table
level. The number of locks available to you is dependent upon your system
configuration. The following are valid values for maxlocks:
n Specifies the number of page locks to allow before escalating to
table level locking. The default is 10; n must be greater than 0.
session Specifies the current maxlocks default for your session.
system Specifies the system default for maxlocks. If you specify page
level locking and the number of locks granted during a query
exceeds the system-wide lock limit or the operating system’s
locking resources are depleted, locking escalates to table level.
This escalation occurs automatically and is independent of the
user.
timeout Specifies the amount of time to wait for a lock. If the DBMS Server cannot grant the
lock request within the specified time, the query that requested the lock aborts. Valid
values for timeout are:
n Specifies the number of seconds to wait for a lock; to specify an
indefinite wait, set timeout to 0.
session Specifies the session default.
system Specifies the system timeout default.
nowait Specifies that when a lock request is made that cannot be
granted without incurring a wait, control is immediately
returned to the application that issued the request.
The system defaults for each of the parameters are listed in the following
table:
Parameter Default
level Dynamically determined by the DBMS Server
readlock Shared
maxlocks 50
timeout 0 (no timeout)
At the beginning of a session, the system defaults are in effect. If you override
them with other values using the set lockmode statement, you can revert back
to the system defaults by specifying system, or the session defaults by
specifying session.
6-86 QUEL Reference Guide

Set

The set lockmode statement cannot be issued within a transaction, except for
the following statement:

set lockmode ... with timeout=<n|session|system|nowait>

Set [No]printgry Option

The set printgry statement displays each query and its parameters as it is
passed to the DBMS Server for processing. Set noprintgry disables this
feature.

Set [No]gep Option

The set gep statement displays a summary of the query execution plan chosen
for each query by the optimizer. To disable this option, use set nogep. For a
discussion of query execution plans, see the Database Administrator Guide.

Set Ret_into Option

The set ret_into statement sets the storage structure for tables created by
retrieve into statements that do not specify the with structure clause.

For example, this first sequence of statements:

set ret_into hash
retrieve into temp (id = ...)

does the same as this second sequence of statements:

retrieve into temp (id = ...)
modify temp to hash

Both examples create table “temp” as hash. For all table types except heap
and cheap, the table is automatically indexed on the first column. (The default
storage structure for a table created by the retrieve into statement is cheap.)

Set [No]logging Option

To suspend transaction logging for the current session, issue the set nologging
statement; to resume logging, issue the set logging statement. To issue this
statement, you must be the DBA of the database to which your session is
connected.

Chapter 6: QUEL and EQUEL Statements 6-87

Set

Suspending transaction logging can improve the performance of large batch
updates. However, use set nologging with extreme caution, and consider
checkpointing the database before suspending logging. Be advised that, when
transaction logging is suspended:

m The abort statement has no effect.

m Any error (including errors resulting from a database statement, forced
abort, deadlock, or timeout) leaves the database in an unknown state.

Set [No]optimizeonly Option

Set [No]Jmaxio Option

This statement specifies whether query execution halts after the optimization
phase. To halt execution after the query has been optimized, specify set
optimizeonly; to continue query execution after the query is optimized, specify
set nooptimizeonly. To view query execution plans (QEP’s) without executing a
query, use set optimizeonly in conjunction with set gep.

This statement is part of the Knowledge Management Extension.

The set maxio statement restricts the estimated number of I/O operations that
can be used by one query. Value must be less than or equal to query_io_limit.
If you issue a set homaxio statement, the maximum number of I/O operations
is set to query_io_limit.

Set [Nolmaxrow Option

This statement is part of the Knowledge Management Extension.

The set maxrow statement restricts the estimated number of rows that can be
returned by one query. Value must not exceed query_row_limit. If you issue a
set nomaxrow statement, the allowed number of rows is set to
query_row_limit.

Set [Nolmaxquery Option

The set maxquery statement is an alias for the set maxio statement, discussed
above.

6-88 QUEL Reference Guide

Set

Session With On_error Option

The set session with on_error statement enables you to specify how
transaction errors are handled in the current session. To direct the DBMS
Server to roll back the effects of the entire current transaction if an error
occurs, specify rollback transaction. To rollback only the current statement
(the default), specify rollback statement. To determine the current status of
transaction error handling, issue the retrieve (x=dbmsinfo("on_error_state"))
statement.

Specifying rollback transaction reduces logging overhead, and can help
performance; the performance gain is offset by the fact that, if an error
occurs, the entire transaction is rolled back, not the single statement that
caused the error.

The following errors always roll back the current transaction, regardless of the
current transaction error-handling setting:

m Deadlock

m Forced abort

m Lock quota exceeded

To determine if a transaction was aborted as the result of a database
statement error, issue the retrieve (x=dbmsinfo("transaction_state"))

statement. If the error aborted the transaction, this statement returns 0,
indicating that the application is currently not in a transaction.

You cannot issue the set session with on_error statement from within a
database procedure or multi-query transaction.

Update_rowcount Option

The set update_rowcount statement specifies the nature of the value returned
by the inquire_ingres(rowcount) statement. Valid options are:

m Changed
Inquire_ingres(rowcount) returns the number of rows changed by the last
query.

m Qualified

Inquire_ingres(rowcount) returns the number of rows that qualified for
change by the last query.

Chapter 6: QUEL and EQUEL Statements 6-89

Set

Examples

Example 1

Qualified is the default setting, for example, for the following table:

columnl column2 column3
Jones 000 green
Smith 000 green
Smith 000 green

and for the following query:

replace test_table (columnl = "Jones")
where column2 = 000 and column3 = "green";

The DBMS Server, for reasons of efficiency, does not actually update the first
row, because its “column1” already contains “Jones.” However, the row does
qualify for updating by the query. For the preceding query, if the
update_rowcount option is set to changed, inquire_ingres(rowcount) returns 2
(the number of rows actually changed), but if the update_rowcount option is
set to qualified, inquire_ingres(rowcount) returns 3 (the number of rows that
qualified to be changed).

To determine the setting for the update_rowcount option, issue the retrieve
(dbmsinfo(x="'update_rowcnt')) statement.

The following examples provide details.

The following example illustrates the use of the set statement to create three
tables with journaling enabled and one without:

set journaling

create withlogl (...)

retrieve into withlog2 (...)

set nojournaling

create withlog3 (...) with journaling
create nologl (...)

6-90 QUEL Reference Guide

Set_ingres

Example 2
The following example creates a few tables with different structures:
retrieve into a (...) /* heap */
set ret_into hash
retrieve into b (id = ...) /* hash on key id */
retrieve into ¢ (id = ...) sort by id
/* heap, sorted on id */
set ret_into heap
retrieve into d (id = ...) /* heap again */
Example 3
The following example illustrates the setting of lockmode parameters for the
session and for a specific table:
set lockmode session where level = page,
readlock = nolock, maxlocks = 50, timeout = 10
set lockmode on employee where level = table,
readlock = exclusive, maxlocks = session, timeout = 0
Example 4

The following example resets your session default locking characteristics to the
system defaults:

set lockmode session where level = system,
readlock = system, maxlocks = system, timeout = system

Set_ingres

QUEL EQUEL KME

Enables or disables various runtime attributes.

Syntax

#i# set_ingres (object = value {, object = value})

Chapter 6: QUEL and EQUEL Statements 6-91

Set_ingres

Description
The set_ingres statement allows your application program to:
m Enable or disable debugging features
m Specify the number of rows the DBMS Server prefetches when retrieving
rows using cursors
m Specify whether the DBMS Server aborts or continues a session when
certain errors occur
The set_ingres statement overrides any settings of II_EMBED_SET. For more
information about II_EMBED_SET, see the System Administrator Guide. You
must terminate the set_ingres statement according to the rules of your host
language.
The following are valid parameters for the set_ingres statement (SQL-specific
parameters are omitted):
Parameter Data Type Description
prefetchrows integer Specifies the number of rows the DBMS Server
prefetches when retrieving data using cursors.
Valid arguments are:
0: (default) the DBMS Server determines the
number of rows to prefetch.
1: Disables prefetching; each row is
fetched individually.
n: (positive integer) Specifies the
number of rows the DBMS Server
prefetches.
printgry integer Turns the printqry debugging feature on or off.
As the application executes, printgry prints query
text and timing information to the file
“iiprtgry.log” in the current directory. Specify 1
to turn printgry on, 0 to turn printgry off.
gryfile string Specifies an alternate text file to which the DBMS
Server writes query information. The default
filename is “iiprtqry.log”. To enable this feature,
use the set_ingres printqry option.
If you omit a directory or path specification, the
file is created in the current default directory.
6-92 QUEL Reference Guide

Set_ingres

Parameter

Data Type

Description

printgca

integer

Turns the printgca debugging feature on or off.
As the application executes, printgca prints
communications messages to the file
“iiprintgca.log” in the current directory. Specify 1
to turn printgca on, 0 to turn printgca off.

gcafile

string

Specifies an alternate text file to which the DBMS
Server writes GCA information. The default
filename is “iiprtgca.log”. To enable this feature,
use the set_ingres printgca option.

If you omit a directory or path specification, the
file is created in the current default directory.

printtrace

integer

Enables or disables trapping of DBMS Server
trace messages to a text file (iiprttrc.log, in the
current directory). Specify 1 to enable trapping
of trace output, 0 to disable trapping.

trcfile

string

Specifies an alternate text file to which the DBMS
Server writes tracepoint information. The default
filename is “iiprttrc.log”. To enable this feature,
use the set_ingres printtrace option.

If you omit a directory or path specification, the
file is created in the current default directory.

programquit

integer

Specifies whether the session aborts on the
following errors:

* An application issues a query but is not
connected to a database, or

= The DBMS Server fails, or

= Communications services fail.

Specify 1 to abort on these conditions, 0 to
continue.

savequery

integer

Enables or disables saving of the text of the last
query issued. Specify 1 to enable, 0 to disable.
To obtain the text of the last query, you must
issue the inquire_ingres(query=querytext)
statement. To determine whether saving is
enabled, use the
inquire_ingres(status=savequery) statement.

errorno

integer

Sets the value of the error return variable
errorno.

Chapter 6: QUEL and EQUEL Statements 6-93

Appendix A: Keywords

The following table lists Ingres keywords and indicates the contexts in which
they are reserved. This list enables you to avoid assigning object names that
conflict with reserved words.

Note: The keywords in this list do not necessarily correspond to supported
features. Some words are reserved for future or internal use, and some words

are reserved to provide backward compatibility with older features.

In the following table, the column headings have the following meanings:

ISQL Interactive SQL. These keywords are reserved by the DBMS.

ESQL Embedded SQL. These keywords are reserved by the SQL
preprocessors.

IQUEL Interactive QUEL. These keywords are reserved by the DBMS.

EQUEL Embedded QUEL. These keywords are reserved by the QUEL
preprocessors.

4GL Ingres 4GL. These keywords are reserved in the context of

SQL or QUEL in 4GL routines.

Note: The ESQL and EQUEL preprocessors also reserve forms statements.
Forms statements are described in the Forms-based Application Development
Tools User Guide.

Single Keywords

Keywords are listed in the following table:

SQL QUEL
Reserved in: ISQL ESQL 4GL IQUEL EQUEL 4GL
abort * * * * * *
activate * *
add * * *
addform * *
after * *

Appendix A: Keywords A-1

Single Keywords

Reserved in:

SQL
ISQL

ESQL 4GL

QUEL
IQUEL

EQUEL

4GL

all

alter

and

any

append

array

as

asc

at

authorization

avg

avgu

before

begin

between

breakdisplay

by

byref

call

callframe

callproc

cascade

check

clear

clearrow

close

column

command

comment

A-2 QUEL Reference Guide

Single Keywords

SQL QUEL
Reserved in: ISQL ESQL 4GL IQUEL EQUEL 4GL
commit * *
connect *
constraint * * *
continue * *
copy * * * * * *
count * * * * *
countu * * *
create *x *x 3 3 X X
current * *
current_user *
cursor * *
datahandler *
declare * * * *
default * * * *
define * * *
de|ete kS *x ES 3 X X
deleterow * * * *
desc *
describe * *
descriptor *
destroy * * *
direct * *
disable * *
disconnect *
display * * * *
distinct * * *
distribute *
dO X X ES
down * *

Appendix A: Keywords A-3

Single Keywords

Reserved in:

SQL
ISQL

ESQL 4GL

QUEL
IQUEL EQUEL 4GL

drop

else

elseif

enable

end

end-exec

enddata

enddisplay

endfor

endforms

endif

endloop

endrepeat

endretrieve

endselect

endwhile

escape

exclude

excluding

execute

exists

exit

fetch

field

finalize

first

for

foreign

formdata

A-4 QUEL Reference Guide

Single Keywords

SQL QUEL
Reserved in: ISQL ESQL 4GL IQUEL EQUEL 4GL
forminit * *
forms * *
from k3 kS X £ b3 k3
full * * *
get *
getform * *
getoper * *
getrow * *
global * * *
goto *
grant * * *
granted * * *
group * * *
having * * *
help * * *
help_forms * *
help_frs * *
helpfile * * * *
identified * *
iimessage * *
iiprintf * *
iiprompt * *
iistatement *
immediate * * * *
import *
in 3 X kS £ 3
include * *
index * * * * * *

Appendix A: Keywords A-5

Single Keywords

SQL QUEL
Reserved in: ISQL ESQL 4GL IQUEL EQUEL 4GL
indicator *
ingres *
initial_user *
initialize * * * *
inittable * * * *
inner * * *
inquire_equel *
inquire_forms * *
inquire_frs * *
inquire_ingres * * * *
inquire_sql * *
insert * * *
insertrow * * * *
integrity * * * *
into 3 X kS *x b3 3
iS b3 X kS *x b3 3
join * *
key * * * *
leave *
left * * *
level * * * *
like * *
loadtable * * * *
local *
max 3 kS £ ES b3
menuitem * *
message * * * * *
min 3 X kS £ 3
mode * *

A-6 QUEL Reference Guide

Single Keywords

SQL QUEL
Reserved in: ISQL ESQL 4GL IQUEL EQUEL 4GL
module *
move *
natural * *
next * *
noecho * *
not X kS *x b3
notrim * *
nU“ b3 X LS ES ES
Of 3 kS kS ES b3 X
on k3 kS ES £ k3
only * *
open * * *
option *
or X kS *x 3
Order kS *x 3 3 X kS
out *
param *
permit * * * *
prepare * *
preserve * *
primary * * *
print * * *
printscreen * * * *
privileges *
procedure * * * *
prompt * * * *
public * *
putform * *

Appendix A: Keywords

A-7

Single Keywords

SQL QUEL
Reserved in: ISQL ESQL 4GL IQUEL EQUEL 4GL
putoper * *
putrow * *
qualification * *
raise * *
range * * *
redisplay * * * *
references * * *
referencing * *
register * * * * * *
relocate * * * * * *
remove * * * * *
rename *
repeat * * * * *
repeated * *
replace * * *
replicate *
restrict * *
result * *
resume * * * *
retrieve * * *
return * * *
revoke * * *
right * * *
role * * *
rollback * * *
row * *
rows * *
run * *
save * * * * * *

A-8 QUEL Reference Guide

Single Keywords

SQL QUEL
Reserved in: ISQL ESQL 4GL IQUEL EQUEL 4GL
savepoint * * * * * *
schema * *
screen * * * *
scroll * * * *
scrolldown * *
scrollup * *
section *
select * * *
session * *
session_user *
Set kS £ £ 3 k3 kS
set_4dl * *
set_equel *
set_forms * *
set_frs * *
set_ingres * * * *
set_sql * *
sleep * * * *
some * * *
sor‘t kS X *x
sql *
stop *
submenu * *
substring * *
sum X kS ES ES b3
sumu * * *
system * *
system_maint * * * *

ained

Appendix A: Keywords A-9

Single Keywords

SQL QUEL
Reserved in: ISQL ESQL 4GL IQUEL EQUEL 4GL
system_user *
table * *
tabledata * *
temporary * *
then * * * *
to * * * * *
type *
union * * *
unique * * * * * *
unloadtable * * * *
Unt” k3 X X £ 3 k3
up * *
update * * * *
user * * *
using * *
validate * * * *
validrow * * * *
values * * *
VieW k3 X kS £
when * *
whenever *
Where * % * * * *
while * *
work * *

A-10 QUEL Reference Guide

Double Keywords

Double Keywords

Double keywords are listed in the following table:

Double Keyword SQL QUEL

Reserved in: IsQL ESQL 4GL IQUEL EQUEL 4GL
after field * *
alter group * * x

alter location * * *

alter role * * *

alter security_audit * * *

alter table * * *

alter user * * *

array of *

before field * *
begin transaction * * * * * *
by user * *

call on *

call procedure *

class of *

close cursor * * *

comment on * * *

connect to *

copy table *

create dbevent * * *

create group * *

create integrity * *

create link * *

create location * * *

create permit * *

create procedure *

create role * * *

Appendix A: Keywords A-11

Double Keywords

Double Keyword SQL
Reserved in: ISQL

ESQL 4GL

QUEL
IQUEL

EQUEL

4GL

create rule *

create security_alarm *

create synonym *

create user *

create view *

current installation

define cursor

declare cursor

define integrity

define link

define location

define permit

define qry

define query

define view

delete cursor

destroy integrity

destroy link

destroy permit

destroy table

destroy view

direct connect

direct disconnect

direct execute

disable security_audit *

disconnect current

display submenu

drop dbevent *

drop group *

A-12 QUEL Reference Guide

Double Keywords

Double Keyword SQL QUEL
Reserved in: ISQL ESQL 4GL IQUEL EQUEL 4GL
drop integrity * *

drop link * * *

drop location * * *

drop permit * *

drop procedure *

drop role * * *

drop rule * * *

drop security_alarm * * *

drop synonym * * *

drop user * * *

drop view * *

enable security_audit * * *

end transaction * * * * * *
exec sql *

execute immediate *

execute on *

execute procedure *

foreign key *

for deferred * *
for direct * *
for readonly * *
for retrieve *
for update *
from group * *

from role * *

from user * *

full join * *

get data *

get dbevent * *

Appendix A: Keywords A-13

Double Keywords

Double Keyword

Reserved in:

SQL
ISQL

QUEL
ESQL 4GL IQUEL EQUEL 4GL

global temporary

help comment

help integrity

help permit

help table

help view

identified by

inner join

is null

left join

modify table

not like

not null

on commit

on current

on database

on dbevent

on location

on procedure

only where

open cursor

order by

primary key

procedure returning

put data

raise dbevent

raise error

register dbevent

register table

A-14 QUEL Reference Guide

Double Keywords

Double Keyword SQL QUEL

Reserved in: ISQL ESQL 4GL IQUEL EQUEL 4GL
register view * *
remove dbevent * * *

remove table *
remove view * *
replace cursor * * * *
resume entry * *
resume menu * *
resume next * *
retrieve cursor * * *

right join * *

run submenu * *
session group *

session role *

session user *

set aggregate * *

set autocommit * *

set cpufactor * *

set date_format * *

set ddl_concurrency *

set decimal * *

set io_trace * *

set jcpufactor *

set joinop * *

set journaling * *

set lock_trace * *

set lockmode * *

set logdbevents *

set log_trace * *

set logging * *

Appendix A: Keywords A-15

Double Keywords

Double Keyword

Reserved in:

SQL
ISQL

ESQL

4GL

QUEL
IQUEL

EQUEL

4GL

set maxcost

*

set maxcpu

*

set maxio

set maxpage

set maxquery

set maxrow

set money_format

set money_prec

set noio_trace

set nojoinop

set nojournaling

set nolock_trace

set nologdbevents

set nolog_trace

set nologging

set nomaxcost

set nomaxcpu

set nomaxio

set nomaxpage

set nomaxquery

set nomaxrow

set nooptimizeonly

set noprintdbevents

set noprintgry

set noprintrules

set nogep

set norules

set nosql

set nostatistics

A-16 QUEL Reference Guide

ISO SQL

Double Keyword SQL QUEL
Reserved in: ISQL ESQL 4GL IQUEL EQUEL 4GL
set notrace * *
set optimizeonly * *
set printdbevents *

set printgry * *
set gep * *
set result_structure * *
set ret_into * *
set rules *

set session * *
set sql *
set statistics * *
set trace * *
set work *

system user *

to group * *

to role * *

to user * *

user authorization

with null

with short_remark

ISO SQlL

The following keywords are ISO standard keywords that are not currently
reserved in Ingres/SQL or Ingres/Embedded SQL. Use these as reserved words
to ensure compatibility with other implementations of SQL.

absolute except output
action exception overlaps
allocate exec pad

Appendix A: Keywords A-17

ISO SQL

alter external partial

are extract position
asc false precision
assertion first prior

bit float privileges
bit_length found read

both get real
cascaded go relative
case hour second
cast identity size
catalog initially smallint
char input space
character insensitive sql
char_length int sqlcode
character_length integer sqlerror
coalesce intersects substring
collate interval then
collation isolation time
connection language timestamp
constraints last timezone_hour
convert leading timezone_minute
corresponding level trailing
cross lower transaction
current_date match translate
current_time minute translation
current_timestamp module trim

date month true

day names unknown
deallocate national upper

dec nchar usage
decimal no value
deferrable nullif varchar
deferred numeric varying

A-18 QUEL Reference Guide

ISO SQL

desc
diagnostics
domain
double

else

octet_length
only

option
nchar

outer

work
write
year

zone

Appendix A: Keywords

A-19

Appendix B: Terminal Monitor

The Terminal Monitor allows you to interactively enter, edit, and execute
individual queries or files containing several queries. This appendix describes
the commands you use to perform queries from the Terminal Monitor.

You can also perform interactive queries using QBF (Query-By-Forms). For
information about QBF, see Character-based Querying and Reporting Tools
User Guide.

Accessing the Terminal Monitor

To invoke the Terminal Monitor, type quel at the operating system prompt. For
information about the quel command line flags, see the quel command
description in the Command Reference Guide.

Query Buffer

Once you have entered the Terminal Monitor, each query that you type is
placed in a query buffer. The queries are executed when you type the
execution command (\go). The results of your query are displayed on your
terminal. For example,

retrieve (employee.name) where employee.city = "San
Francisco"\g

In addition to entering queries, you can:
m Edit the queries
m Print the queries

m Write the queries to a file

Appendix B: Terminal Monitor B-1

Terminal Monitor Commands

After a \go command, the query buffer is cleared if another query is typed in,
unless a command that affects the query buffer is typed first. Commands that
retain the query buffer contents are:

\append or \a
\edit or \e
\print or \p
\bell

\nobell

\eval or \v
\[no]macro

For example, typing

help parts
\go
print parts

results in the query buffer containing

print parts

whereas, typing

help parts
\go

\print
print parts

results in the query buffer containing
help parts

print parts

You can override this feature by executing the \append command before you
execute the \go command or by specifying the -a flag when you issue the quel
command to begin your session.

Terminal Monitor Commands

The Terminal Monitor commands are the commands that you use to
manipulate the contents of the query buffer or your environment. Unlike the
QUEL statements that you type into the Terminal Monitor, these commands
are executed as soon as you press the Return key.

You must precede all of the Terminal Monitor commands with a backslash (\).
If you want to enter a backslash literally, you must precede it with another
backslash and enclose the pair in quotes. For example, the following statement
inserts a backslash into the test table:

append to testtable (name="James T. Smith\\n")\g

B-2

QUEL Reference Guide

Terminal Monitor Commands

Some Terminal Monitor commands accept a file name as an argument. These
commands must appear alone on a single line; the Terminal Monitor interprets
all characters appearing on the line after such commands as a file name.
Those Terminal Monitor commands that do not accept arguments can be
stacked on a single line. For example,

\date\go\date

returns the date and time before and after execution of the current query

buffer.

The following table lists the Terminal Monitor commands:

Command

Description

\r or \reset

Erases the entire query (reset the query buffer). The
former contents of the buffer are lost and cannot be
retrieved.

\p or \print

Prints the current query. The contents of the buffer are
printed on the user’s terminal.

\I or \list

Prints the current query as it appears after macro
processing. All side effects of macro processing (such as
macro definition) occurs. \list clears the query buffer; use
\eval to process macros without clearing the query buffer.

\eval or \v

Processes macros in the query buffer and replaces the
query buffer with the result. Similar to \list, but the result
is placed in the query buffer instead of being displayed on
the terminal.

\e or \ed or \edit
or \editor
[filename]

Invokes a text editor (designated by the startup file). Use
the appropriate editor command to return to the Terminal
Monitor. If no file name is given, the current contents of
the query buffer are sent to the editor, and upon return,
the query buffer is replaced with the edited query. If a file
name is given, the query buffer is written to that file. On
exit from the editor, the file contains the edited query, but
the query buffer remains unchanged.

\g or \go

Processes the current query. The contents of the buffer
are transmitted to the DBMS Server and run.

\a or \append

Appends to the query buffer. Typing \append after
completion of a query overrides the auto-clear feature and
guarantees that the query buffer is not reset until it is
executed again.

\time or \date

Prints out the current time and date.

\s or \sh or \shell

Escape to the operating system.

Appendix B: Terminal Monitor B-3

Terminal Monitor Commands

Command Description
UNIX Type Ctrl-D to return to the Terminal Monitor. ®
VMS Type logout to return to the Terminal Monitor. ™
\qg or \quit Exits the Terminal Monitor.
\cd or \chdir Changes the working directory of the monitor to the
dir_name specified directory.

\i or \include or
\read filename

Reads the named file into the query buffer. Backslash
characters in the file are processed as they are read.

\w or \write
filename

Writes the contents of the query buffer to the specified
file.

\branch

Transfers control within an \include file. See Branching.

\script [filename]

Writes/stops writing the subsequent QUEL statements and
their results to the specified file. If no file name is
supplied with the \script command, output is logged to a
file called “script.ing” in the current directory.

The \script command toggles between logging and not
logging your session to a file. If you supply a filename on
the \script command that terminates logging to a file, the
filename is ignored. You can use this command to save
result tables from QUEL statements for output. The \script
command in no way impedes the terminal output of your
session.

\bell and \nobell

Tells the Terminal Monitor to include (\bell) or not to
include (\nobell) a bell (Ctrl-G) with the continue or go
prompt. The default is \nobell.

\mark Sets a label for \branch.
\macro and Enables/disables macro definition. The default is
\nomacro \nomacro.

\continue and
\nocontinue

Tells the Terminal Monitor to continue statement
processing on error or not to continue (nocontinue). In
either case, the error message is displayed. You can
abbreviate the command to \co (\continue) or \noco
(\nocontinue).

The default action is to continue. You can use this
command to change that behavior. You can also change
the default by setting II_TM_ON_ERROR. For information
about II_TM_ON_ERROR, see the System Administrator
Guide.

QUEL Reference Guide

Messages and Prompts

Messages and Prompts

The Terminal Monitor has a variety of messages to keep you informed of its
status and that of the query buffer.

When you log in, the Terminal Monitor prints a login message that tells the
version humber and the login time. Following that message, the dayfile
appears.

When the Terminal Monitor is ready to accept input and the query buffer is
empty, the message go appears. The message continue appears instead, if
there is something in the query buffer.

The prompt >editor indicates that you are in the text editor.

Character Input and Output

When you input non-printable ASCII characters through the Terminal Monitor,
the Terminal Monitor maps these characters to blanks. Whenever this occurs,
the Terminal Monitor displays the following message:

Non-printing character nnn converted to blank
where nnn is replaced with the actual character.

For example, if you enter the following statement:

append to test (coll = "~La")\g

the Terminal Monitor converts the ~L to a blank before sending it to the DBMS
Server and displays the message described above.

On output, if the data type is char or varchar, any binary data are shown as
octal numbers (\000, \035, etc.). Any backslashes in data of the char or
varchar type are displayed as double backslashes. For example, if you append
the following to the “test” table:

append to test (coll = "\\a")\g

when you retrieve that value, you see:
\\a

but what is actually stored in the table is:
\a

Appendix B: Terminal Monitor B-5

Help

Help

Branching

Restrictions

VMS

When you are working in the Terminal Monitor, you can obtain on-line help
using the help statement. This statement provides information about a variety
of QUEL statements and features. For details, see Help in the "QUEL and
EQUEL Statements” chapter.

The \branch and \mark commands permit arbitrary branching within an
\include file. \mark must be followed with a label. Follow \branch with a label
to indicate unconditional branch. To indicate conditional branch, follow \branch
with an expression preceded by a question mark (?) and followed by a label.
The branch is taken if the expression is greater than zero. For example,
consider the following Terminal Monitor command:

\branch ?{ifsame;@{read Enter data:};a;1;0}=1 valueok

This command relies heavily on Terminal Monitor macros. Reading outward
from the inside, the {read} macro writes “Enter data:” on the screen and
accepts input from the terminal. {read} is preceded with an “@" sign, because
it must be pre-scanned in this expression. See Parameter Prescan.

The result of the {read} macro, that is, what is typed at the terminal,
becomes the first string in an {ifsame} macro. The {ifsame} macro compares
what is entered to “a”. If "a” is entered, the value of {ifsame} is 1. If anything
other than “a” is entered, the value of {ifsame} is 0. If the result of this
nesting of system macros is 1, the Terminal Monitor branches to label
“valueok” (that is, if the letter “a” is entered at the terminal).

The expressions usable in \branch statements are somewhat restricted. The
following operators are defined in the usual way: +, -, *, /, >, >=, <, <=, |=
and =. The left unary operator ! can be used to indicate logical negation.
There cannot be spaces in the expression because a space terminates the
expression.

Ctrl-Y and Ctrl-C must not be used while you are escaped to an editor or
VMS. VMS does not signal these events to the initiating process. The only
exception is if the editor catches Ctrl-C for its own use. @

B-6 QUEL Reference Guide

Terminal Monitor Macros

Terminal Monitor Macros

Basic Concepts

The Terminal Monitor macro facility enables you to tailor the QUEL language to
your needs. The macro facility allows strings of text to be removed from the
query buffer and replaced with other text. Built-in macros allow you to change
environment variables. To enable the macro feature you must issue the
\macro command within the Terminal Monitor. By default the Terminal Monitor
macro facility is disabled.

All macros are defined as two parts: the template part and the replacement
part. The template part establishes a symbol that, when encountered in the
Terminal Monitor workspace, signals the Terminal Monitor to invoke the
symbol’s definition. When a macro is encountered, the template part is
removed and replaced with the replacement part.

For example, the template ret, when read by the Terminal Monitor, causes the
corresponding definition of ret to be invoked. If the replacement part of the ret
macro is retrieve, all instances of the word ret in the query text are replaced
with the word retrieve. For example: part and the replacement part. The
template part is replaced at execution time by the replacement part. For
example, the following macro definition specifies the macro template ret is to
be replaced by the QUEL retrieve statement:

{define; ret; retrieve}

After you define the ret macro, QUEL replaces the macro ret with retrieve. For
example, if you issue the following statement:

ret (p.all)

the Terminal Monitor expands the ret macro as follows:

retrieve (p.all)

Macros accept parameters, specified as single letters (or digits) preceded by a
dollar sign, such as $2 or $k. For example, the template get $1 enables the
get macro to accept a single parameter. If the get macro is defined as:

retrieve (p.all) where p.pnum = $1

typing get 35 retrieves all information about part number 35.

Appendix B: Terminal Monitor B-7

Terminal Monitor Macros

Defining Macros

Macro Evaluation

To create your own macros, use the Terminal Monitor {define} macro. The
basic form of this command is:

{define; $t; $r}

where $t and $r are the template and replacement parts of the macro,
respectively.

The Terminal Monitor contains a macro processor that substitutes the
replacement part of the macro for the template part.

For example, the following macro enables you to shorten range statements:

{define; rg $v $r; range of $v is $r}

This macro causes the word rg, followed by the next two words, to be
removed and replaced by the words range of, followed by the first word that
followed rg, followed by the word is, followed by the second word that followed
rg:

rg p parts

is expanded to:

range of p is parts

When you enter a define statement at your terminal, it is not processed
immediately; macro processing occurs when the query buffer is evaluated. The
Terminal Monitor commands \go, \list and \eval evaluate the workspace. \go
sends the results to the database for execution, \list prints them on your
terminal, and \eval puts the result back into the workspace.

The usual process for defining macros requires that you type the following
commands:
{define . . . }

\eval
\reset

The \reset command assures that the workspace is emptied before you enter
the next query.

You can use the \eval and \list commands to test a macro invocation before
executing it explicitly (with the \g). For example, to test the rg macro above,
type:

rg e emp
\1

B-8 QUEL Reference Guide

Terminal Monitor Macros

Quoting

Backslashes

The Terminal Monitor types:

range of e is emp
The range statement is not executed.

Similarly, the \eval (or \v for short) command replaces the macro version with
the expanded range statement although the command is not executed. In the
case of macro expansion with \eval or \v, to execute the range statement,
type:

\g

Sometimes text strings must be passed through the macro processor without
being processed. In such cases the grave accent mark and apostrophe (* and ')
must surround the literal text. For example, to pass the word ret through
without converting it to retrieve type:

‘ret’

If you want to enter more than one word for substitution into a macro
parameter, you must quote the parameter. For example, if you define a
macro:

{define; r $1 $2; retrieve ($1) where $2}

and invoke it with the query:

r ‘p.name, weight = p.qoh*p.stk’ ‘p.cntl0’
\1

the query is evaluated as:

retrieve (p.name, weight = p.goh*p.stk) where p.cntl0@

To disallow the special meaning of characters, precede them with the
backslash character (\). For example, an accent mark can be included in a
quoted parameter by preceding it with a backslash:

here is a \’quoted\’ string

evaluates to:

here is a ’quoted’ string

To enter a real backslash, use two backslashes.

Appendix B: Terminal Monitor B-9

Terminal Monitor Macros

To continue a macro definition to another line, terminate the line with a
backslash. For example:

{define;~get~$n;~retrieve~(e.all)~~\
where~e.name~ = "$n"}

You must enter two blanks before the backslash that continues the macro
definition to the second line, and you must not enter a blank after that
backslash. In other words, to continue the macro definition to the next line,
enter four keystrokes: blank, blank, backslash, RETURN.

More on Parameters

System Macros

Parameters need not be limited to the word that follows. For example, in the
template descriptor for {define},

{define; $t; $r}

the $t parameter ends at the first semicolon, and the $r parameter ends at the
first right curly brace. In general, the character that follows the parameter
specifier terminates the parameter. If this character is a space, tab, newline or
the end of the template, one word or one string appropriately surrounded (*
and ') is collected.

There is one important exception to this general rule: because system macros
(described below) are always surrounded by curly braces, the macro processor
requires them to be properly nested. Thus, in the macro definition:

{define; x; {type enter dat-}}

the first right curly brace closes the type rather than the define.

The macro processor contains several other macros built into it. In the
following descriptions, some of the parameter specifiers are marked with two
dollar signs rather than one. This feature is discussed in the Parameter
Prescan section.

System Macro Description

{define; $$t; $$r} Defines a macro as discussed above. Special
processing, which is discussed in a later section,
occurs on the template part.

B-10 QUEL Reference Guide

Terminal Monitor Macros

System Macro

Description

{rawdefine; $$t; $$r}

Another form of {define}, where the special
processing does not take place. This is rarely used but
is seen when listing macros with the \I| command,
because the DBMS Server converts all {define}
statements into their corresponding {rawdefine} form.

{remove; $$n}

Removes all macros beginning with name $n. For
example, typing:

{define; get part $n; ...}
{define; getemp $x; ...}

defines two macros that start with “get.”
Typing:
{remove; get}

removes both of the get macros. Typing {remove; get
part} removes only the first macro.

{type $%s} Types $s onto the terminal.

{read $$s} Types $s and reads a line from the terminal. The
typed line acts as the replacement text for the macro.

{readcount} Contains the number of characters read in the most

recent {read} or {readdefine}.

A Ctrl-Z (VMS) or Ctrl-D (UNIX) (end of file) becomes
-1, a single newline becomes zero, and so forth, so
that the number accurately reflects printing
characters.

{readdefine; $$n,
$$s%

Also types $s and reads a line, but it further creates a
macro called $n, which is set to the line entered at the
terminal. This lets you set aside a line for further
processing. The replacement text for {readdefine} is
the count of the number of characters in the line.
{readcount} is also defined with this humber.

{ifsame; $%a, $$b, $t;
$f}

Compares the strings $a and $b. If they match
precisely, the replacement text becomes $t; otherwise
it becomes $f.

{ifeq; $%a; $$b, $t;
$f}

Similar to {ifsame}, but the comparison is numeric.

{ifgt; $%a; $$b, $t;
$f}

Like {ifeq}, but the test is for $a strictly greater than
$b.

Appendix B: Terminal Monitor B-11

Terminal Monitor Macros

System Macro Description

{substr; $$b; $%e; Returns the part of string $s between character

$$s} positions $b and $e, numbered from one. If $b or $e
is out of range, it is moved in range as much as
possible.

{dump; $$n} Returns the value of the macro (or macros) that

match $n, using the same algorithm as remove. The
{dump} macro produces a listing of macros in
{rawdefine} form.

Dump without arguments dumps all macros. This
macro works in conjunction with the \eval statement.

Special Characters

Certain characters are used internally; normally you do not even see them.
But they can appear in the output of a {dump} command and can sometimes
be used to create very intricate macros. \| matches any number of spaces,
tabs or newlines. It even matches zero, but only between words, as can occur
with punctuation. For example, \| matches the spot between the last
character of a word and a comma following it.

Character Description

\| Matches any number of spaces, tabs or newlines.

\N Matches exactly one space, tab or newline.

\& Matches exactly zero spaces, tabs or newlines, but only

between words.

Special {define} Processing

When you define a macro using {define}, special processing takes place. In
{define}, all sequences of spaces, tabs and newlines in the template, as well
as all “non-spaces” between words are turned into a single \| character. If the
template ends with a parameter, the \& character is added at the end.

If you want to match a real tab or newline, you can use \t or \n, respectively.
For example, a macro that reads an entire line and uses it as the name of an
employee is defined with:

{define; get $n\n; \~~~~ret (e.all) where e.name =

n"’}

B-12 QUEL Reference Guide

Terminal Monitor Macros

This macro can be used by typing:
get *Stan*

to get all information about everyone with a name that included “Stan.” You
can nest the ret macro inside the get macro as long as ret is previously
defined.

Parameter Prescan

Sometimes it is useful to “macro process” a parameter before using it in the
replacement part. This is particularly important when using certain built-in
macros.

For prescan to occur, the parameter must be specified in the template with
two dollar signs instead of one, and the actual parameter must begin with an
“at” sign (@), which is stripped off.

An example of prescan follows:
{define; typeit $%$s; {type $s}}

{define; line; this is text}

For example, the string:
typeit line

is replaced by:

line

However, the entry:
typeit @line

results in:

this is text

For another example of the use of prescan, see Special Macros.

Appendix B: Terminal Monitor B-13

Terminal Monitor Macros

Special Macros

The following special macros are used by the Terminal Monitor to control the
environment and to return results to the user:

Macro

Description

{begintrap}

Executed at the beginning of a query.

{endtrap}

Executed after the body of a query is passed to the
DBMS Server.

{continuetrap}

Executed after the query completes. The difference
between this and {endtrap?} is that {endtrap} occurs
after the query is submitted, but before the query
executes. {continuetrap}, on the other hand, is
executed after the query executes.

{editor}

VMS

Defines the on-line editor to use in the \edit
command.

To change the default vi editor to the ed editor,
enter:
{define;{editor};/bin/ed}

which invokes the ed editor in response to the \e
command. ®

To change the default (EDT) editor to the SOS
screen editor, enter:
{define; {editor};edit/sos}

which invokes the SOS editor in response to the \e
command. @

{shell}

Defines the pathname of a shell to use in the \shell
command.

{tuplecount}

Is set after every query (but before {continuetrap}

is sprung) to be the count of the number of rows
that satisfied the qualification of the query in a
retrieve, or the number of rows changed in an
update. It is not set for some utility functions (such
as define view). If multiple queries are run at once, it
is set to the number of rows that satisfied the last
query run.

For example, to print out the number of rows affected automatically after each
query, enter the following commands:

{define;~{begintrap};~{remove;~{tuplecount}}}

{define;~{continuetrap};

~ifsame;@{tuplecount};~{tuplecount};;~~\
~M{type~@{tuplecount}~tuples~touched}}}

B-14

QUEL Reference Guide

Appendix C: Calling Ingres Tools from
Embedded QUEL

Using the call statement, you can call Ingres tools or execute operating system
commands from within an embedded QUEL program. For additional
information about the call statement, see Call in the "QUEL and EQUEL
Statements” chapter.

To call an Ingres tool, the syntax is:

#i# call subsystem (database = dbname {, parameter = value});
To call the operating system, the syntax is:

call system (command = command._string)

You can specify parameters using (quoted or unquoted) strings or host string
variables. If there is no value for a particular parameter, use an empty string

).

Examples:

call gbf (database "empdb", table = "employee")
call rbf (database "empdb",

flags = "-s -mblock emptable")

call report (database = :dbvar, name = :namevar,
mode = :modevar)

call system (command = "mail")

Y/

In the third example, “dbvar”, “"namevar”, and “modevar” are host language
string variables.

Ingres Tools and Parameters

This section discusses the specific parameters and flags you can specify when
calling an Ingres tool.

When you call an Ingres tool, you can use the flags parameter to specify the
values of flags. You must separate the flags using spaces.

If a parameter does not accept an argument, you must specify a dummy
argument using empty quotes. For example, the silent parameter of the report
command does not accept an argument:

call report (database = "mydb", name = "employee",
silent = " ")

Appendix C: Calling Ingres Tools from Embedded QUEL C-1

Ingres Tools and Parameters

Report

The report command, which invokes the Report-Writer, accepts the following
parameters:

Parameter Description

file Equivalent to the -f flag. Directs the formatted report to the
specified file for output.

silent Equivalent to the -s flag. Suppresses status messages.

report Equivalent to the -r flag. Indicates that a report, rather
than a table, is being specified. The name of the report is
the value for this parameter.

style Equivalent to the -m flag. Indicates that a table, rather
than a report, is being specified. Optional values for this
parameter are column, wrap and block. The name of the
table is given as the value for the name parameter.

name Name of a table or view in the database for which a default
report is to be formatted.

param The list of parameters for the report. Each element in the
list must be of the form name = value

Name/value combinations must be separated by blanks or
tabs. The entire list must be enclosed within quotes. In
addition, if name is a character report parameter, value
must be enclosed in quotes. (Values of numeric report
parameters must not, however, be quoted.) The inner
quotes that surround value must be dereferenced according
to host language rules so that they can be passed through
to the report command. For example, assume that you
want to call the Report-Writer from within embedded QUEL
with the equivalent of this system-level command:

report newdb -r myrpt (bin="fO1"
wstation="ul"
type=12 sect=11)

C-2

QUEL Reference Guide

Ingres Tools and Parameters

Parameter

Description

The variables “bin” and “wstation” are character
parameters. The variables “type” and “sect” are nhumeric
parameters.

You can specify the parameters using a host string variable.
For example:

call report
(database = "newdb",
report = "myrpt",
param = :parmvar)

where “parmvar” contains

bin="f01" wstation="ul"
type=12 sect=11

Double quotes must surround the constant string values
within the variable. If your host language requires the
dereferencing of double quotes, be sure to do so, according
to the rules of your host language.

forcerep

Equivalent to the -h flag. Report-Writer outputs headers
and footers, even if no data is found for the report.

formfeed

Equivalent to the +b flag. Report-Writer forces formfeeds at
page breaks, overriding any settings in the report
formatting commands.

noformfeed

Equivalent to the -b flag. Report-Writer suppresses
formfeeds, overriding any settings in the report formatting
commands.

pagelength

Equivalent to the -v flag. Sets the page length, in lines, for
the report, overriding any .PL commands in the report.

brkfmt

Equivalent to the +t flag (default). If specified, breaks and
calculations for dates and numbers are based on the
displayed data, rather than the internal database values.

nobrkfmt

Equivalent to the -t flag. If specified, breaks and
calculations for dates and numbers are based on the
internal database values, rather than the displayed values.

flags

Can be used for any flags on the command line. Distinct
flags must be separated by a blank.

Appendix C: Calling Ingres Tools from Embedded QUEL C-3

Ingres Tools and Parameters

The sreport command accepts the following parameters:

Description

Name of a text file containing report formatting
commands for one or more reports.

Equivalent to the -s flag. Suppresses status messages.

Can be used for any flags on the command line. Distinct
flags must be separated by a blank.

Sreport
Parameter
file
silent
flags
RBF

The rbf command accepts the following parameters:

Parameter

Description

silent

Equivalent to the -s flag. Suppresses status messages.

report

Equivalent to the -r flag. Indicates that a report, rather
than a table, is being specified. The name of the report is
the value for this parameter.

style

Equivalent to the -m flag. Indicates that a table, rather

than a report, is being specified. Optional values for this
parameter are column, wrap and block The name of the
table is given as the value for the table parameter.

table

The name of a table or view for which a default report is
to be formatted.

emptycat

Equivalent to -e flag. If set, the Catalog form is displayed
empty, and the user can enter names directly.

flags

Can be used for any flags on the command line. Distinct
flags must be separated by a blank.

C-4 QUEL Reference Guide

Ingres Tools and Parameters

QBF

Vifred

The gbf command accepts the following parameters:

Parameter

Description

gbfname

Equivalent to the -f flag. Invoke QBF using the specified
gbfname. If the name is blank, start at Catalogs frame
for gbfnames.

joindef

Equivalent to the -j flag. Invoke QBF using the specified
JoinDef. If the name is blank, start at Catalogs frame for
JoinDefs.

tblifld

Equivalent to the -t flag. Invoke QBF on the specified
table, using a table field format to display the data. If
the name is blank, start at Catalogs frame for tables.

lookup

Equivalent to the -l flag. Invoke QBF using the specified
name. QBF looks up the name in the following order:
gbfname, JoinDefname, table name.

silent

Equivalent to the -s flag. Suppresses verbose messages.

mode

Equivalent to the -m flag. Enter QBF directly in the
specified mode. Possible values for this parameter are
retrieve, append, update or all.

table

Name of the table on which QBF is being invoked. This
parameter must be omitted if one of the joindef,
gbfname, tblfld or lookup parameters has been used.

emptycat

Equivalent to -e flag. If set, catalogs are displayed
empty, and the user can enter names directly.

flags

Can be used for any flags on the command line. Distinct
flags must be separated by a blank.

The vifred command accepts the following parameters:

Parameter Description

form Equivalent to the -f flag. Invoke VIFRED on the specified
form.

table Equivalent to the -t flag. Invoke VIFRED with a default

form for the specified table.

Appendix C: Calling Ingres Tools from Embedded QUEL C-5

Ingres Tools and Parameters

ABF

QUEL

IQUEL

Parameter Description

joindef Equivalent to the -j flag. Invoke VIFRED with a default
form for the specified JoinDef.

emptycat Equivalent to -e flag. If set, an empty Catalogs form is
displayed, and the user can enter names directly.

flags Can be used for any flags on the command line. Distinct
flags must be separated by a blank.

The abf command accepts the following parameters:

Parameter Description
application Name of the application.
flags Can be used for any flags on the command line. Distinct

flags must be separated by a blank.

The quel command to call the Terminal Monitor accepts the following
parameter:

Parameter Description
flags Specifies command line flags. Flags must be separated
by a blank.

The iquel command accepts the following parameter:

Parameter Description
flags Specifies command line flags. Flags must be separated
by a blank.

C-6 QUEL Reference Guide

Ingres Tools and Parameters

Ingmenu
The ingmenu command to invoke Ingres Menu accepts the following
parameter:
Parameter Description
flags Specifies command line flags. Flags must be separated
by a blank.
System

The system command accepts the following parameter:

Parameter Description

command Executes the operating system level command specified
by command_string. If command_string is null, empty,
or blank, and transfers the user to the operating system.

Appendix C: Calling Ingres Tools from Embedded QUEL C-7

Index

as multiplication operator, 4-1
used with comparison operator, 4-23

- (minus sign)
as subtraction operator, 4-1
. (period), as decimal indicator, 3-15

/
I (exclamation point)
as comparison operator, 4-23 / (slash)
logical negation operator, B-6 as division operator, 4-1
comment indicator (with asterisk), 1-2,
3-2, 5-2

(number sign)
dereferencing, 5-4, 5-25, 6-25
object names, 3-1 : (colon), 5-5
statements, 5-2, 5-4

-~

S

? (question mark)
$ (dollar sign) used with comparison operator, 4-23
currency displays, 3-12
object names, 3-1
Terminal Monitor macros, B-7 @

(@ (at sign)

EQUEL, 5-27, 6-4

object names, 3-1

() (parentheses) variables and, 6-70, 6-77
logical operator grouping, 4-25
precedence of arithmetic operations, 4-1

\
*
\ (backslash)
dereference character, 4-24, B-9
* (asterisk) text match indicator, B-12

Index-1

absolute value, 4-12

addition, 4-1
_ (underscore) aggregate functions
object names, 3-1 described, 4-19
_time(), 4-18 and _
as logical operator, 4-25
any(), 4-20

| append statement, 5-6, 5-27, 6-3

appending
| (vertical bar),. as text match indicator, B-12 rows, 6-3

arithmetic
+ expressions, 4-1

operations, 4-6
operators, 4-1
+ (plus sign)

L assignment operations
as addition operator, 4-1

character string, 4-5
described, 4-4

= atan(), 4-12

avg(), 4-20
= (equals sign) avgu(), 4-20
as assignment operator, 4-2, 4-4
as comparison operator, 4-2, 4-23
B

begin transaction statement, 6-5
>\< (greater/less than symbol), 4-2 begintrap macro, B-14
binary operators, 4-1

blanks

A c data type, 3-4

char data type, 3-4
character data type, 4-23
comparisons, 4-23
flag separator, C-1

ABF (Applications-By-Forms)
invoking, C-6

abf (command)

valid parameters, C-6 Boolean expressions, 4-25

abort statement, 6-2 btree storage structure, 6-55

byte (data type)

aborting .
transactions, 5-16, 6-2, 6-89 described, 3-13
abs(), 4-12 byte varying (data type), 3-13

Index-2 QUEL Reference Guide

C

c(), 4-10
call (statement), C-1
call statement, 6-6

calling
Ingres tools, 6-6, C-1
operating system, 6-6, C-7

case, 4-14, 4-15
char(), 4-10

character data
assignment, 4-5
comparing, 3-4
converting, 5-3
description, 3-3

charextract(), 4-15
clauses, 4-25

close cursor statement, 6-8
columns, 6-22

columns (in tables), 5-7, 6-22
aggregate functions, 4-19
defaults, 6-22
derived, 6-72
maximum number, 6-23
sorting, 6-55
updating, 6-69, 6-71

commands, Terminal Monitor, B-3

comment indicator (with asterisk), 1-2

comments
QUEL, 3-2, 5-2

comparison operators, 4-23
computation, 4-13
concat(), 4-14

constants
now, 3-9
null, 3-17
today, 3-9

continuetrap macro, B-14

conventions

embedded QUEL code, 1-2
query languages, 1-1

conversion
character data, 4-5
host language, 5-3
numeric data, 4-7, 5-3
string/character data, 5-3

copy statement, 6-9

copying
error detection, 6-16
files to/from tables, 6-9

cos(), 4-13

count(), 4-20

countu(), 4-20

create table statement, 6-21

cursor
capabilities, 6-6
closing, 6-6, 6-8

declare cursor statement, 5-9, 6-24

deleting rows, 5-12
names, 6-25

open cursor statement, 5-10, 6-63

positioning, 5-13

replace cursor statement, 6-71

retrieve cursor statement, 5-11, 6-25,

6-79
retrieve loops vs., 5-15
updating rows, 5-12, 6-71

D

data
copying, 6-9
manipulating, 5-24

data types
byte, 3-13
byte varying, 3-13
character, 3-3
date, 3-7
described, 3-3
floating point, 3-7
host languages, 5-3
user-defined, 6-13

Index-3

varchar, 3-5 destroy statement, 6-37

database administrator (DBA) destroying
responsibilities, 6-31 indexes, 6-37, 6-47
database objects integrity constraints, 6-37
rules for naming, 3-1 tables, 6-37
9 views, 6-37
databases L .
aborting transactions, 6-2 disjoint queries, 6-34, 6-67, 6-70
accessing, 6-40, 6-48 disk
updating, 6-39 space used by Ingres, 6-23
date (data type), 3-16, 5-21 distributed databases
described, 3-7 creating tables, 6-23

display formats, 3-11 Distributed Option

date data type statement restrictions, 6-2
functions, 4-16

date(), 4-10
date_gmt(), 4-17

division, 4-1
DMY format for dates, 3-9

dow(), 4-10

date_part(), 4-17 dump macro, B-12

date_trunc(), 4-17 duplicates

dbmesinfo (function), 5-20 table rows, 6-23, 6-70
deadlock with unique (keyword), 6-75

causes, 5-18
handling, 5-18

declare cursor statement, 5-9, 6-24 E
defaults editor macro, B-14
column, 6-22
storage structures, 6-58 effective user, 3-17
define integrity statement, 6-29 end transaction statement, 5-16, 6-39
define macro, B-8, B-10 endquery statement, 6-50
define permit statement, 6-30 endretrieve statement, 6-38
define view statement, 6-32 endtrap macro, B-14
delete cursor statement, 6-35 EQUEL

calling Ingres tools, C-1

delete statement, 5-27, 6-33 calling operating system, C-1

deleting cautions, 5-18

rows, 5-12, 6-33, 6-35 code examples, 1-2

o . - data manipulation, 5-24
delimited identifiers, 3-2 deadlock handling, 5-18
dereferencing error handling, 2-2, 5-24

indicator, 5-4, 6-25 include statement, 5-4

Interactive QUEL vs, 2-2

derived columns, 6-72 keywords, 5-8

Index—4 QUEL Reference Guide

param statements, 5-8

run-time information, 5-20, 6-49
sample program, 5-3

statement syntax, 5-2

variables, 5-3, 6-79

EQUEL objects, 5-7

error handling, 6-16, 6-50

errorno flag, 6-50

errortext (constant), 6-50

exit statement, 6-40

exp(), 4-13

expiration date (tables), 6-23, 6-81
exponential function, 4-13
exponential notation, 3-16

exponentiation, 4-1

G

German format for dates, 3-8

gmt_timestamp(), 4-17

hash storage structure, 6-55
heap storage structure, 6-55
heapsort storage structure, 6-55
help statement, 6-41

hex(), 4-11

fields, 5-7

files
copying to/from, 6-9
external, 6-45

fillfactor, 6-47, 6-57
float4(), 4-11
float8(), 4-11

floating point
conversion, 4-7
data type, 3-7
literals, 3-16
range, 3-7

functions, 4-18
aggregate, 4-19
date, 4-16
scalar, 4-10
string, 4-13

ifeq macro, B-11

ifgt macro, B-11

ifnull (), 4-22

ifsame macro, B-11
II_DATE_FORMAT, 3-8
II_DECIMAL, 3-13, 3-15
II_MONEY_FORMAT, 3-13
II_MONEY_PREC, 3-13
II_TIMEZONE_NAME, 3-10
iiseterr, 5-24

include statement, 5-4, 6-45
index statement, 6-46

indexes
destroying, 6-37, 6-47
storage structure, 6-52

indicator variables, 5-5

ingmenu (command)
valid parameter, C-7

Ingres Menu
invoking, C-7

Index-5

Ingres statement, 6-48
inquire_ingres statement, 5-20, 6-49
inquire_sql statement, 6-50

int1(), 4-11

int2(), 4-11

int4(), 4-11

integrity, 6-70
constraints, 6-29
constraints and nulls, 3-18
define integrity statement, 6-29
destroying, 6-37

interval(), 4-18

iquel (command)
valid parameter, C-6

IQUEL (Interactive Query Language)
EQUEL vs, 2-2
invoking, C-6

is null (comparison operator), 4-24
isam storage structure, 6-55
ISO format for dates, 3-8

ISO standard
keywords, A-17

indicator for statement descriptions, 6-1

J

journaling
invoking, 6-23

K

key (clause)
indexes, 6-47

keywords
EQUEL, 5-8
ISO, A-17

Knowledge Management Extension
dbmsinfo statement, 5-23
help statement, 6-41

languages
host, 5-3

leaffill, 6-47
left(), 4-14
length(), 4-14
limits
float data type, 3-15

object names, 3-1

literals
numeric, 3-15
string, 3-15

locate(), 4-14

location (clause)
indexes, 6-47

locking, 6-29, 6-86

log(), 4-13

logarithmic function, 4-13
logarithms, 4-13

logical operators, 4-25

loops
retrieve, 5-24, 6-38, 6-76
terminating, 5-11, 5-24, 6-38

lowercase(), 4-14

M

macros
defining, B-8
special, B-14
system, B-10
Terminal Monitor, B-7

max(), 4-20

maxindexfill (clause), 6-47

Index—6 QUEL Reference Guide

maxlocks, 6-86

maxpages (clause), 6-47, 6-58
MDY format for dates, 3-9
min(), 4-20

minpages (clause), 6-47, 6-58
mod(), 4-13

modify statement, 6-52
modulo arithmetic, 4-13
money(), 4-11

multinational format for dates, 3-8
multiplication, 4-1

multi-query transactions (MQT), 5-11, 5-16,
6-2, 6-5, 6-39, 6-82

N

-numeric_overflow flag, 4-8

O

naming, 5-7, 6-22
restrictions and limits, 3-1

nonleaffill, 6-47

not
as logical operator, 4-25

notrim(), 4-15

now date constant, 3-9, 3-16
null constant, 3-16

null indicators, 5-5

null values, 4-24

nullability
ifnull function, 4-22
is null (predicate) and, 4-24
table columns, 3-17
with null (clause), 5-6

nulls, 3-16
aggregate functions, 3-18
integrity constraints, 3-18
QUEL, 3-17

numeric data type
converting, 5-3

open cursor statement, 5-10, 6-63

operating system
calling, C-7

operations
arithmetic, 4-6
assignment, 4-4

operators
arithmetic, 4-1
comparison, 4-2
logical, 4-25

or

as logical operator, 4-25

ownership
tables, 6-22
views, 6-32

pad(), 4-14

param statements
advantages, 5-8

parameters
prescanning, B-13
variable, 5-27

permits
define permit statement, 6-30
destroying, 6-37

prefetching, 6-50
rows, 6-91

print statement, 6-65

printing
tables, 6-65

programquit (constant), 6-51, 6-93

programs
source code, 6-45

Index—7

project (aggregate function), 4-21 valid parameters, C-2

restrictions
nulls and integrities, 3-19
object names, 3-1

Q

set session with on_error statement in

gbf (command) transactions, 6-89

valid parameters, C-5 retrieve cursor statement, 5-11, 6-25, 6-79
QBF (Query-By-Forms) retrieve statement, 5-8, 5-24, 6-73
invoking, C-5 repeat queries, 6-76
QUEL retrieving, 6-50
data types, 3-3 cursor, 5-11
rules for naming objects, 3-1 endretrieve statement, 6-38
statements/commands, 6-1 retrieve loop, 5-24, 6-38, 6-76
rows, 6-73

quel (command), C-6

valid parameter, C-6 sorting, 5-25

values into variables, 6-25, 6-76, 6-79

queries _
disjoint, 6-34, 6-67, 6-70 right(), 4-14
repeat, 5-27, 6-33, 6-70 rowcount (constant), 6-51, 6-76
rows (in tables), 6-50
R appending, 6-3
deleting, 5-12, 6-33, 6-35
duplicates, 6-23, 6-52, 6-70
range, 5-7 prefetching, 6-91
retrieving, 6-73
range statement, 6-66 sorting, 6-55
range variables, 5-7, 6-66 updating, 5-12, 6-71
rawdefine macro, B-11 rules, 6-4, 6-33
RBF (Report-By-Forms)
invoking, C-4 S

valid parameters, C-4

read macro, B-11
save statement, 6-81

readcount macro, B-11 .
savepoint statement, 6-82

readdefine macro, B-11

readlock, 6-85

savepoints, 5-18, 6-82

scalar functions, 4-10

relocate statement, 6-68 N
search conditions, 4-22, 4-25

remove macro, B-11 .

selecting current/system, 5-21
repeat queries, 6-33, 6-70, 6-76

set (aggregate)

replace cursor statement, 6-71 project/noproject, 4-21
replace statement, 5-27, 6-69 set statement, 6-83
report (command) set_ingres statement, 6-91

Index-8 QUEL Reference Guide

shell macro, B-14

shift (), 4-14

sin(), 4-13

single-query transactions (SQT), 5-17
size(), 4-14

sorting
columns, 6-55
retrieving, 5-25
rows, 6-55

soundex(), 4-15

source code
external files, 6-45

SQLCA (SQL Communications Area), 6-50,
6-51

sqrt(), 4-13
SQT (single-query transactions), 5-17
squeeze(), 4-15

sreport (command)
valid parameters, C-4

status information
obtaining, 5-20

storage structures, 6-47
default keys, 6-56
modifying, 6-52
sort order, 6-56

strings, 4-14
converting, 5-3
functions, 4-13
literals, 3-15
QUEL, 3-3

substr macro, B-12

subtraction, 4-1

sum(), 4-20

sumu(), 4-20

Sweden/Finland format for dates, 3-8
syntax, 5-2

system (command)
valid parameter, C-7

system macros, B-10

tables, 5-7
adding pages, 6-57
copying data to/from, 6-9
creating, 6-21
deleting all rows, 6-57
destroying, 6-37
expiration, 6-23, 6-81
indexes, 6-46
obtaining information about, 6-41
ownership, 6-22
printing, 6-65
relocating, 6-56, 6-57, 6-68
saving, 6-81
shrinking btree indexes, 6-56
size, 6-23
storage structure, 6-52
values loading, 6-69
virtual, 6-32

templates
Terminal Monitor macros, B-7

Terminal Monitor
calling, C-6
macros, B-7

Terminal Monitor commands, B-3
text(), 4-11

time, 4-18, 5-21
display format, 3-11
functions, 4-16

timeout, 5-18, 6-85, 6-86
today date constant, 3-9, 3-16
trailing, 4-14

transaction (constant), 6-51

transactions, 6-51
aborting, 5-16, 6-2
begin transaction statement, 6-5
beginning, 5-16, 6-5
cursor considerations, 5-11
defined, 5-16
end transaction statement, 5-16, 6-39

Index-9

ending, 5-16, 6-39

multi-query (MQT), 5-11, 5-16, 6-2, 6-5,

6-39, 6-82
savepoints, 5-18, 6-82
single-query (SQT), 5-17

trim(), 4-15
truncation, 4-17

truth functions, 4-25
tuplecount macro, B-14

type macro, B-11

unary operators, 4-1
unique (clause), 6-55
UNIX icon, 1-2

updating
databases, 6-39
rows in tables, 5-12, 6-71

uppercase(), 4-15
US format for dates, 3-8

user
effective user, 3-17

user constant, 3-16

user-defined abstract data types, 6-13

\'

varchar(), 4-12
variable declarations, 5-3

variables, 5-7
at sign (@), 5-27
colons, 5-5
declaring, 5-4

host language, 5-3, 6-79

null indicator, 5-5
parameters, 5-27
range, 6-66

referencing/dereferencing, 5-4
retrieving values into, 6-25, 6-76, 6-79

scope, 5-4
transferring data, 6-79

views
defining, 6-32
destroying, 6-37
ownership, 6-32

VIFRED
invoking, C-5

vifred (command)
valid parameters, C-5

VMS icon, 1-2

W

values
updating, 6-69, 6-71

varchar (data type), 3-5

where (clause), 4-25, 5-7

wild card characters, 4-23
help statement, 6-43

with (clause), 6-9

Y

YMD format for dates, 3-8

Index-10 QUEL Reference Guide

	Bookshelf
	QUEL Reference Guide
	Contents
	1: Introduction
	Audience
	Conventions

	2: Introduction to QUEL
	Interactive QUEL
	Embedded QUEL

	3: QUEL Data Types
	Object Names
	Access to Objects Created Through SQL
	Comment Delimiters
	Data Types
	Character Data Types
	Char Data Type
	C Data Type
	Varchar Data Type
	Text Data Type

	Numeric Data Types
	Integer Data Types
	Floating Point Data Types

	Date Data Type
	Absolute Date Input Formats
	Absolute Time Input Formats
	Combined Date and Time Input
	Date Interval Formats
	Time Interval Formats
	Date and Time Display Formats

	Money Data Type

	Binary Data Types
	Byte Data Type
	Byte Varying Data Type
	Storage Formats of Data Types

	Literals
	String Literals
	Numeric Literals
	Floating Point Literals

	QUEL Constants
	Nulls
	Nulls and Comparisons
	Nulls and Aggregate Functions
	Nulls and Integrity Constraints

	4: Elements of QUEL Statements
	Operators
	Arithmetic
	Comparison
	Logical

	Operations
	String Concatenation
	Assignment
	Character String
	Numeric
	Date
	Null

	Arithmetic
	Default Type Conversion
	Arithmetic Errors
	Arithmetic Operations on Dates

	Functions
	Scalar
	Data Type Conversion Functions
	Numeric

	String
	Date
	Using the Date_trunc
	Using the Date_part

	Aggregate
	Aggregate Functions Using the Where and By Clauses

	Ifnull

	Qualifications
	Comparison Operators
	Partial Match Specification
	Is Null Comparison
	Clauses
	Logical Operators
	General Qualification

	5: Embedded QUEL
	General Syntax of EQUEL Statements
	Basic Structure of EQUEL Programs
	Host Language Variables
	Variable Declaration
	Dereferencing Column Names
	Scope of Variables
	Include Statement
	Indicator Variables
	Retrieving Data Using Null Indicators
	Setting Values Using Null Indicators
	Detecting String Truncation Using Indicator Variables

	Variable Usage and Dynamic Operation of EQUEL Statements
	Param Statements

	Data Manipulation with Cursors
	Example of Cursor Processing
	Declaring a Cursor
	Opening and Closing Cursors
	Open Cursors and Transaction Processing
	Retrieving the Data
	Fetching Rows Inserted by Other Queries
	Using Cursors to Update Data
	Using Cursors to Delete Data
	Summary of Cursor Positioning
	Dynamically Specified Cursor Names
	Cursors and Retrieve Loops Compared

	Transactions
	Transaction Statements
	Defining Transactions
	Committing Transactions
	Aborting Transactions
	Savepoints and Partial Transaction Aborts
	Interrupt and Timeout Handling in Transactions
	Deadlock: Detection, Avoidance, and Handling

	Program Status Information
	The Inquire_ingres Statement
	The Dbmsinfo() Function

	Runtime Error Processing
	Retrieve Statement
	Using the Retrieve Statement Without a Loop
	Using the Sort Clause
	Other Data Manipulation Statements

	Repeat Queries

	6: QUEL and EQUEL Statements
	QUEL Release
	Statement Context
	Ingres Forms Statements
	Abort
	Syntax
	Description
	Embedded Usage
	Examples

	Append
	Syntax
	Description
	Embedded Usage
	Considerations
	Examples

	Begin Transaction
	Syntax
	Description
	Example

	Call
	Syntax
	Description
	Embedded Usage
	Examples

	Close Cursor
	Syntax
	Description
	Embedded Usage
	Example

	Copy
	Syntax
	Description
	Copy Statement Parameters
	Data File Format and Table Format

	Column Formats
	Storage Format
	Delimiters
	With Null Clause

	Filename Specification
	VMS File Types
	With Clause Options
	On_error Option
	Error_count Option
	Log Option
	With Rollback Option
	With Row_estimate Option

	Permissions
	Locking
	Restrictions and Considerations
	Examples
	Data File Format

	Create
	Syntax
	Description
	Embedded Usage
	Considerations
	Examples

	Declare Cursor
	Syntax
	Description
	Embedded Usage
	Considerations
	Examples

	Define Integrity
	Syntax
	Description
	Embedded Usage
	Examples

	Define Permit
	Syntax
	Description
	Example

	Define View
	Syntax
	Description
	Considerations
	Example

	Delete
	Syntax
	Description
	Embedded Usage
	Considerations
	Examples

	Delete Cursor
	Syntax
	Description
	Embedded Usage
	Considerations
	Example

	Destroy
	Syntax
	Description
	Embedded Usage
	Examples

	Endretrieve
	Syntax
	Description
	Example

	End Transaction
	Syntax
	Description
	Considerations
	Example

	Exit
	Syntax
	Description
	Considerations

	Help
	Syntax
	Description
	Wildcards and Help
	Permissions
	Examples

	Include
	Syntax
	Description
	Examples

	Index
	Syntax
	Description
	Embedded Usage
	Considerations
	Examples

	Ingres
	Syntax
	Description
	Embedded Usage
	Example

	Inquire_ingres
	Syntax
	Description
	Example

	Modify
	Syntax
	Description
	Storage Structure Specification
	Modify...to Merge Option
	Modify...to Relocate Option
	Modify...to Reorganize Option
	Modify...to Truncated Option
	Modify...to Add_extend Option
	With Clause Options
	Fillfactor, Minpages, and Maxpages Options
	Leaffill and Nonleaffill Options
	Allocation Option
	Extend Option
	Compression Option
	Location Option
	Unique_scope Option
	[No]persistence Option

	Embedded Usage
	Permissions
	Locking
	Examples

	Open Cursor
	Syntax
	Description
	Embedded Usage

	Print
	Syntax
	Description
	Examples

	Range
	Syntax
	Description
	Considerations
	Examples

	Relocate
	Syntax
	Description
	Embedded Usage
	Considerations
	Example

	Replace
	Syntax
	Description
	Embedded Usage
	Considerations
	Examples

	Replace Cursor
	Syntax
	Description
	Embedded Usage
	Examples

	Retrieve
	Syntax
	Description
	Retrievals in Embedded QUEL
	Embedded Usage
	Considerations
	Examples
	Example 3

	Retrieve Cursor
	Syntax
	Description
	Embedded Usage
	Considerations
	Examples

	Save
	Syntax
	Description
	Embedded Usage
	Considerations
	Examples

	Savepoint
	Syntax
	Description
	Example

	Set
	Syntax
	Description
	Set Aggregate [No]project Option
	Set Joinop [No]timeout Option
	Set [No]journaling Option
	Set Lockmode Option
	Set [No]printqry Option
	Set [No]qep Option
	Set Ret_into Option
	Set [No]logging Option
	Set [No]optimizeonly Option
	Set [No]maxio Option
	Set [No]maxrow Option
	Set [No]maxquery Option
	Session With On_error Option
	Update_rowcount Option

	Examples

	Set_ingres
	Syntax
	Description

	A: Keywords
	Single Keywords
	Double Keywords
	ISO SQL

	B: Terminal Monitor
	Accessing the Terminal Monitor
	Query Buffer
	Terminal Monitor Commands
	Messages and Prompts
	Character Input and Output
	Help
	Branching
	Restrictions
	Terminal Monitor Macros
	Basic Concepts
	Defining Macros
	Macro Evaluation
	Quoting
	Backslashes
	More on Parameters
	System Macros
	Special Characters
	Special {define} Processing
	Parameter Prescan
	Special Macros

	C: Calling Ingres Tools from Embedded QUEL
	Ingres Tools and Parameters
	Report
	Sreport
	RBF
	QBF
	Vifred
	ABF
	QUEL
	IQUEL
	Ingmenu
	System

	Index

