

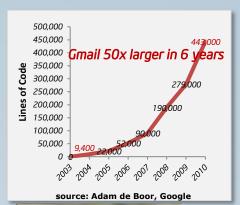
针对HTML5应用的Web Runtime 优化实践

丁俊勇 英特尔软件和服务事业部 资深软件架构师 jonathan.ding@intel.com

免责声明

- 本文件中所包含之信息仅用于本次讲演之目的,并不构成对英特尔产品(及相关服务)性能、质量的全面、准确的表述、担保及保证
- 本文件中所包含信息的著作权归属于英特尔公司。除 非得到特别授权,任何人不得随意复制、散发、或未 经授权将该文件用于其他商业或非商业目的
- Intel和Intel logo是英特尔在美国和/或其他国家的商标
- 本文件中所涉及的非英特尔商标为其他公司之财产
- Copyright © 2013 Intel Corporation. All rights reserved

议程


- · 回顾IDF'12 《优化HTML5引擎,提升用户体验》
 - -优化的重要性
 - -优化的一般策略
- · 案例探讨: 什么是好的Workload
- · **案例探讨**: Workload的测量与分析
- · 案例探讨: 针对Workload的优化

回顾 - Web的性能优化至关重要

(intel®)

- 用户体验的全方位增强 ← 离不 开性能的全面提升
 - Gmail客户端: 六年50倍代码行
 - Mozilla示例: JavaScript视频分析
 - 视频音频,图片,3D,特效变换等
 - 游戏,工作,娱乐,新闻,教育等
 - 可媲美本地(native)程序的使用方式

Video analysis inside browser (src)

Chrome Web Store 开放两星期内:

- 1.5million 下载
- 2200+应用
- 10,500 扩展和主题
- 广泛涵盖教育、商业、游戏、社交、视频、阅读等 Keith Dsouza on Techie Buzz (src)

远程服务

应用程序

Web引擎

操作系统

硬件平台

JavaScript引擎

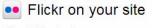
Layout引擎

渲染引擎

- Web性能与平台整体密切相关
 - 软硬件、客户端云端协调作用
 - 本地(native)组件起重要作用
- Web引擎是其中最关键组件之一

回顾 - 优化策略探讨

- 优秀的workload 源于生活, 高于生活
 - 有的放矢 → 选择有代表性的用例
 - 无法测量,则无法优化 → 构建workload
- 系统的全方位的测量
- 深入的多方面的分析,发现提升的机会
- 设计合适的方案,并正确有效的实现
- 从长远和大处进一步发掘优化的潜力



Workload原则

- 源于生活
 - 典型
 - 重要
- 高于生活
 - 可测量: 定义并实现指标
 - 可再现
 - 减少差异: 多次测量,不同测量者
 - 标准化测量规则:电源管理 选项,设备测试方向,屏幕 亮度,是否外接电源...
 - 易用性
 - 易于安装,配置
 - 自动化
 - 是否开源
 - 是否可扩展

The Flickr badge

Create a dynamic badge to display your Flickr photos on your website.

he slideshow

You can also embed a slideshow on your site. Just click the "share" link when you're in Slideshow mode to grab a link.

» Slideshow FAQ

src: Flickr

Photoshop Express Editor

Does your photo need a que, and touch up imperfections. Do you need a creativit Focus or Sketch filter, a Pop Color or distortion effections... the list of enhancements goes on, and the Fexpress Editor never changes your original photo.

Dodge and burn, crystallize, and pixelate

Adjust exposure in specific photo areas, get great c and even create stained-glass or pixelation effects.

LEARN MORE →
START THE EDITOR ■

src: Adobe

Workload案例 - MyAlbum

MyAlbum - SlideShow

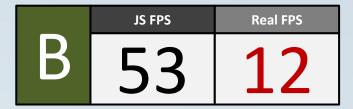
MyAlbum - FancyShow

MyAlbum - Editor src: Intel

- 9个相册,即(JPG,PNG,GIF)x(大,中,小)
- 每个相册含150张图片
- 自动轮流加载并显示每张图片
- 每次执行两轮,分别按原大小显示和全屏显示
- 最终运行结果定义为 M —
- 建议执行3次以上,最终结果取中位值

- M = GeoMean (N(原大小显示), N(全屏显示))
- N(x) = GeoMean(T(jpg),T(png),T(gif))
- T(x) = GeoMean(E(大), E(中), E(小))
- E(x) = Average(t(1), t(2), t(3))
- t = m 载并显示完对应相册的时间 / 150

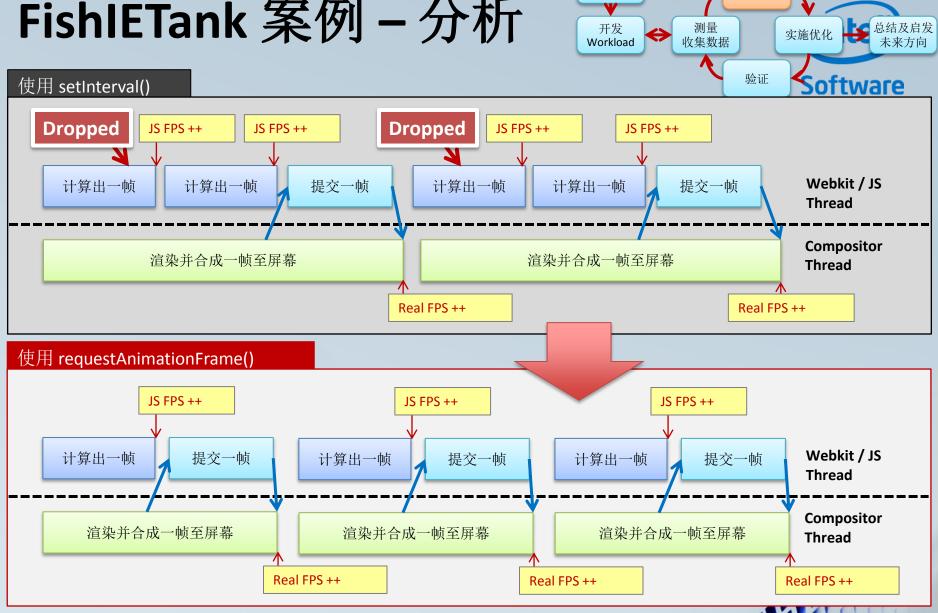
FishIETank 案例 - 测量



Microsoft FishlETank Benchmark (src)


```
function init() {
    // other code omitted here ...
    // start animation
    setInterval(function () { draw(); }, 16.7);
    // other code omitted here ...
}
function draw() {
    // other code omitted here ...
    // count one frame, and show FPS
    fpsMeter.Draw(fish.length);
    // other code omitted here ...
}
```

	JS FPS	Real FPS
A	39	25



用Chrome运行并查看报告的FPS A和B哪个设备的性能更好?

使用Chrome里的FPS Counter查看 现在哪个设备更好?

FishIETank 案例 – 分析

选择用

深入分析

SunSpider优化案例分享

Workload: 业界广泛认可的JavaScript性能基准测试

<u>测量分析:</u> 通过Profiling寻找热点,并分析JIT生成的汇编指令

- 某些子用例中IDIV(耗时操作)占用较多CPU
- IA上V8引擎对整数除法均生成IDIV指令

优化思路

- (右)移位指令在除数为2的整数幂时更高效

优化实现

- Optimize JIT的LIR层加入相关分析
- 生成优化的代码,并处理特殊情况

优化结果验证

- Intel Atom® 上个别子用例性能提高30%
- 贡献到upstream (<u>link</u>)

<u>未来优化思路</u>

- 相关优化可以应用到乘法, 求模等运算
- 针对非常量的乘数/除数的移位操作

```
function A(i,j) {
  return 1/((i+j)*(i+j+1)/2+i+1);
}

cmp eax, 0x80000000
  jne 0x178
  cmp ebx, 0xFFFFFFFF
  je 0x17ab3538    ;;; check for MinInt / -1
  cdq
  idiv ebx
  test edx, edx    ;;; check for the remainder
  jne 0x17ab3538
```

;;; check for the remainder

test dl, 0x1

ine 0x1c8

sar edx, 1

FishIETank优化案例分享

Workload: 业界广泛认可的HTML5 Canvas 2D 性能基准测试

<u>测量分析:</u> 通过tracing发现时序(pipeline)中的性能瓶颈

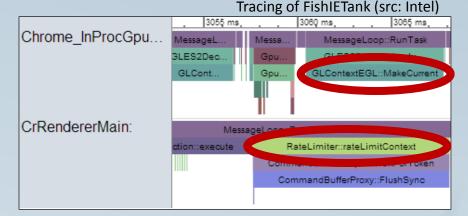
- GPU的延时导致整个时序延迟一个VSYNC间隔

- 大量时间用于GL Context之间的切换

优化思路

- 避免昂贵的GL Context切换

优化实现


- 创建虚拟的Context供程序逻辑使用
- 多个虚拟Context共享一个真实的Context
- 虚拟Context记录并处理自身状态变化
- 虚拟Context的切换不产生真实的切换

优化结果验证

- Intel Atom® 上性能提高超过20%
- upstream 完成实现(<u>link</u>)

未来优化思路

– Context切换时间因GPU而异。进一步做有针对性处理

总结

- · 性能优化对HTML应用至关重要
- · HTML5的优化通常从建立可靠的Workload开始
- 测量和分析帮助深入理解应用场景和浏览器内部流程
- 成功的优化是对前期所有工作的升华和进一步拓展

Intel将与业界一道,致力于不断提升HTML5的性能和体验

software.intel.com/html5