IONA

Artix:

Artix for CORBA

Version 4.1, September 2006

Making Software Work Together™

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2006 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: September 27, 2006

Contents

List of Figures
Preface

Chapter 1 Introduction to CORBA Web Services

Artix Architecture

Integrating a CORBA Server with Web Services
Accessing the CORBA Server through a Standalone Router
Accessing the CORBA Server through an Embedded Router
Replacing the WS Client by an Artix Client
Replacing the CORBA Server by an Artix Server

Integrating a CORBA Client with Web Services
Accessing the WS Server through a Standalone Router
Replacing the CORBA Client by an Artix Client
Replacing the WS Server by an Artix Server

Chapter 2 Exposing a Web Service as a CORBA Service
Converting WSDL to IDL
Exposing an Artix Web Service as a CORBA Service
Exposing a Non-Artix Web Service as a CORBA Service
Standalone CORBA-to-SOAP Router Scenario
Configuring and Running a Standalone CORBA-to-SOAP Router
Using an Orbix 3.3 Client to Access an Artix Server
High Performance Java CORBA Binding

Chapter 3 Exposing a CORBA Service as a Web Service
Converting IDL to WSDL
Embedding Artix in a CORBA Service
Embedded Router Scenario
Embedding a Router in the CORBA Server
Exposing an Orbix 3.3 or Non-Orbix Service as a Web Service
Standalone SOAP-to-CORBA Router Scenario
Configuring and Running a Standalone SOAP-to-CORBA Router

17
18
22
23
24
25
26
27
28
29
30

31
32
35
39
40
41
47
50

51
52
61
62
64
68
69
71

CONTENTS

Chapter 4 CORBA-to-CORBA Routing
Bypassing the Router
Basic Bypass Scenario
Bypass with Failover Scenario
Bypass with Load Balancing Scenario

Chapter 5 Integrating the CORBA Naming Service with Artix
How an Artix Client Resolves a Name
How an Artix Server Binds a Name
Artix Client Integrated with a CORBA Server
CORBA Server Implementation
Artix Client Configuration

Chapter 6 Advanced CORBA Port Configuration
Configuring Fixed Ports and Long-Lived IORs
CORBA Timeout Policies
Retrying Invocations and Rebinding

Chapter 7 Artix IDL-to-WSDL Mapping
Introducing CORBA Type Mapping
IDL Primitive Type Mapping
IDL Complex Type Mapping

IDL enum Type

IDL struct Type

IDL union Type

IDL sequence Types

IDL array Types

IDL exception Types

IDL typedef Expressions

IDL Module and Interface Mapping

Chapter 8 Artix WSDL-to-IDL Mapping
Simple Types
Atomic Types
String Type
Date and Time Types
Duration Type

75
76
77
81
84

87
88
92
95
96
99

101
102
108
110

113
114
115
119
120
122
124
128
130
132
135
136

141
142
143
146
149
151

Deriving Simple Types by Restriction
List Type
Unsupported Simple Types
Complex Types
Sequence Complex Types
Choice Complex Types
All Complex Types
Attributes
Nesting Complex Types
Deriving a Complex Type from a Simple Type

Deriving a Complex Type from a Complex Type

Arrays
Wildcarding Types
Occurrence Constraints
Nillable Types
Recursive Types
Endpoint References
Default Endpoint Reference Mapping
Custom Endpoint Reference Mapping
Mapping to IDL Modules

Chapter 9 Monitoring GIOP Message Content

Introduction to GIOP Snoop
Configuring GIOP Snoop
GIOP Snoop Output

Appendix A Configuring a CORBA Binding
Appendix B Configuring a CORBA Port

Appendix C CORBA Utilities in Artix

Generating a CORBA Binding
Converting WSDL to OMG IDL
Converting OMG IDL to WSDL

Appendix D Mapping CORBA Exceptions

Mapping from CORBA System Exceptions

CONTENTS

152
154
156
157
158
159
160
161
163
165
167
170
173
174
176
179
182
183
188
195

199
200
201
204

209

215

221
222
223
224

229
230

CONTENTS

Mapping from Fault Categories 232
Mapping of Completion Status 233
Index 235

List of Figures

Figure 1: Artix Application with Multiple Bindings and Transports 18
Figure 2: Example of a SOAP/HTTP-to-CORBA Router 20
Figure 3: WS Client Accesses CORBA Server through Standalone Router 23
Figure 4: WS Client Accesses CORBA Server through Embedded Router 24
Figure 5: Replacing the WS Client by an Artix Client 25
Figure 6: Replacing the CORBA Server by an Artix Server 26
Figure 7: Client Accesses the WS Server through a Standalone Router 28
Figure 8: Replacing the CORBA Client by an Artix Client 29
Figure 9: Replacing the WS Server by an Artix Server 30
Figure 10: Standalone Artix Router 40
Figure 11: Artix Router Embedded in a CORBA Server 62
Figure 12: Standalone Artix Router 69
Figure 13: Basic Bypass Routing Scenario 77
Figure 14: Bypass Routing with Failover Scenario 81
Figure 15: Bypass Routing with Load Balancing Scenario 84
Figure 16: Artix Client Resolving a Name from the Naming Service 88
Figure 17: Artix Server Binding a Name to the Naming Service 92

Figure 18: Allowed Inheritance Relationships for Complex Types 167

LIST OF FIGURES

Preface

What is Covered in This Book

This book describes a variety of different CORBA integration scenarios and
explains how to use the Artix command-line tools to generate or modify
WSDL contracts and IDL interfaces as required. Details of Artix
programming, however, do not fall within the scope of this book.

Who Should Read This Book

This book is aimed at engineers already familiar with CORBA technology
who need to integrate Web services applications with CORBA.

The Artix Library

The Artix documentation library is organized in the following sections:
® QGetting Started

® Designing Artix Solutions

® Configuring and Managing Artix Solutions

® Using Artix Services

® Integrating Artix Solutions

® |ntegrating with Management Systems

® Reference

® Artix Orchestration

Getting Started

The books in this section provide you with a background for working with
Artix. They describe many of the concepts and technologies used by Artix.
They include:

® Release Notes contains release-specific information about Artix.

../release_notes/index.htm

PREFACE

10

Installation Guide describes the prerequisites for installing Artix and the
procedures for installing Artix on supported systems.

Getting Started with Artix describes basic Artix and WSDL concepts.
Using Artix Designer describes how to use Artix Designer to build Artix
solutions.

Artix Technical Use Cases provides a number of step-by-step examples
of building common Artix solutions.

Designing Artix Solutions

The books in this section go into greater depth about using Artix to solve
real-world problems. They describe how to build service-oriented
architectures with Artix and how Artix uses WSDL to define services:

Building Service-Oriented Infrastructures with Artix provides an
overview of service-oriented architectures and describes how they can
be implemented using Artix.

Writing Artix Contracts describes the components of an Artix contract.
Special attention is paid to the WSDL extensions used to define
Artix-specific payload formats and transports.

Developing Artix Solutions
The books in this section how to use the Artix APIs to build new services:

Developing Artix Applications in C++ discusses the technical aspects
of programming applications using the C++ API.

Developing Advanced Artix Plug-ins in C++ discusses the technical
aspects of implementing advanced plug-ins (for example, interceptors)
using the C++ APL.

Developing Artix Applications in Java discusses the technical aspects
of programming applications using the Java API.

Configuring and Managing Artix Solutions
This section includes:

Configuring and Managing Artix Solutions explains how to set up your
Artix environment and how to configure and deploy Artix services.
Managing Artix Solutions with JMX explains how to monitor and
manage an Artix runtime using Java Management Extensions.

../install_guide/index.htm
../getting_started/index.htm
../designer/index.htm
../cookbook/index.htm
../soa/index.htm
../contract/index.htm
../prog_guide/index.htm
../plugin_guide/index.htm
../java_pguide/index.htm
../deploy/index.htm
../jmx_mgmt/index.htm

PREFACE

Using Artix Services

The books in this section describe how to use the services provided with

Artix:

® Artix Router Guide explains how to integrate services using the Artix
router.

® Artix Locator Guide explains how clients can find services using the
Artix locator.

® Artix Session Manager Guide explains how to manage client sessions
using the Artix session manager.

® Artix Transactions Guide, C++ explains how to enable Artix C+ +
applications to participate in transacted operations.

® Artix Transactions Guide, Java explains how to enable Artix Java
applications to participate in transacted operations.

® Artix Security Guide explains how to use the security features in Artix.

Integrating Artix Solutions

The books in this section describe how to integrate Artix solutions with other

middleware technologies.

® Artix for CORBA provides information on using Artix in a CORBA
environment.

® Artix for J2EE provides information on using Artix to integrate with
J2EE applications.

For details on integrating with Microsoft's .NET technology, see the
documentation for Artix Connect.

Integrating with Management Systems

The books in this section describe how to integrate Artix solutions with a

range of enterprise and SOA management systems. They include:

® |BM Tivoli Integration Guide explains how to integrate Artix with the
IBM Tivoli enterprise management system.

® BMC Patrol Integration Guide explains how to integrate Artix with the
BMC Patrol enterprise management system.

® CA-WSDM Integration Guide explains how to integrate Artix with the
CA-WSDM SOA management system.

® AmberPoint Integration Guide explains how to integrate Artix with the
AmberPoint SOA management system.

11

../routing/index.htm
../locator_guide/index.htm
../session_mgr/index.htm
../transactions_cxx/index.htm
../transactions_java/index.htm
../security/index.htm
../corba_ws/index.htm
../j2ee/index.htm
../tivoli/index.htm
../bmc/index.htm
../ca_wsdm/index.htm
../amberpoint/index.htm

PREFACE

Reference

These books provide detailed reference information about specific Artix
APIls, WSDL extensions, configuration variables, command-line tools, and
terms. The reference documentation includes:

® Artix Command Line Reference

® Artix Configuration Reference

® Artix WSDL Extension Reference

® Artix Java API Reference

® Artix C++ API Reference

® Artix .NET API Reference

® Artix Glossary

Artix Orchestration

These books describe the Artix support for Business Execution Process
Language (BEPL), which is available as an add-on to Artix. These books
include:

® Artix Orchestration Release Notes

® Artix Orchestration Installation Guide

® Understanding Artix Orchestration

® Artix Orchestration Administration Console Help.

Getting the Latest Version

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Artix Library

You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right, for example:

http://www.iona.com/support/docs/artix/4.0/index.xml

12

../command_ref/index.htm
../config_ref/index.htm
../wsdl_ref/index.htm
../javadoc/index.html
../cppdoc/index.html
../ndoc/index.html
../glossary/index.htm
../orch_relnotes/index.htm
../orch_install/index.htm
../orch_intro/index.htm
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/4.0/index.xml
../orch_admin/index.htm

PREFACE

You can also search within a particular book. To search within a HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Artix Online Help

Artix Designer and Artix Orchestration Designer include comprehensive

online help, providing:

® Step-by-step instructions on how to perform important tasks

® Afull search feature

® Context-sensitive help for each screen

There are two ways that you can access the online help:

® Select Help|Help Contents from the menu bar. The help appears in
the contents panel of the Eclipse help browser.

® Press F1 for context-sensitive help.

In addition, there are a number of cheat sheets that guide you through the

most important functionality in Artix Designer and Artix Orchestration
Designer. To access these, select Help|Cheat Sheets.

Artix Glossary

The Artix Glossary is a comprehensive reference of Artix terms. It provides
quick definitions of the main Artix components and concepts. All terms are
defined in the context of the development and deployment of Web services
using Artix.

Additional Resources

The IONA Knowledge Base (http://www.iona.com/support/knowledge_base/
index.xml) contains helpful articles written by IONA experts about Artix and
other products.

The IONA Update Center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products.

If you need help with this or any other IONA product, go to IONA Online
Support (http://www.iona.com/support/index.xml).

Comments, corrections, and suggestions on IONA documentation can be
sent to docs-support@iona.com .

13

http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml
../glossary/index.htm

PREFACE

Document Conventions

Typographical conventions
This book uses the following typographical conventions:

Fixed width

Fixed width italic

Italic

Bold

14

Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the 1T _Bus: :AnyType
class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

o

% cd /users/YourUserName

Italic words in normal text represent emphasis and
introduce new terms.

Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.

Keying Conventions

PREFACE

This book uses the following keying conventions:

No prompt

o

When a command’s format is the same for multiple
platforms, the command prompt is not shown.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the MS-DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File| Open).

15

PREFACE

16

In this chapter

CHAPTER 1

Introduction to
CORBA Web
Services

Artix provides a flexible framework for bridging between
CORBA and Web Services domains. Several different
approaches can be used to integrate a CORBA application into
a Web Services domain and this introduction provides a brief
overview of some typical integration scenarios.

This chapter discusses the following topics:

Artix Architecture page 18
Integrating a CORBA Server with Web Services page 22
Integrating a CORBA Client with Web Services page 27

17

CHAPTER 1 | Introduction to CORBA Web Services

Artix Architecture

Overview

WSDL contract

18

The key feature of the Artix architecture is that it supports multiple
communication protocols. With the help of the plug-in development APIs,
moreover, it is possible to extend Artix to support any custom protocol.

Figure 1 illustrates this multi-protocol support, showing an Artix application
that is capable of sending or receiving operation invocations over three
different protocols: SOAP/MQ, SOAP/HTTP, and IIOP.

Figure 1: Artix Application with Multiple Bindings and Transports

Application ©<—

[Artix Stubs J

Servant object

SOAP CORBA ~<—— Bindings

HTTP ‘ MQ GIOP <—— Transports

1]

SOAP/
HTTP SOAP/MQ 1IOP

The Web Services Definition Language (WSDL) contract plays a central role
in Artix. It defines the interfaces (or port types) and operations for a Web
service. In this respect, the WSDL contract is analogous to an IDL interface
in CORBA. However, WSDL contracts contain more than just interface
definitions. The main elements of a WSDL contract are as follows:

® Port types—a port type is analogous to an IDL interface. It defines
remotely callable operations that have parameters and return values.

® Bindings—a binding describes how to encode all of the operations and
data types associated with a particular port type. A binding is specific
to a particular protocol—for example, SOAP or CORBA.

Servant object

Artix stubs

Bindings

Transports

Artix Architecture

® Port definitions—a port contains endpoint data that enables clients to
locate and connect to a remote server. For example, a CORBA port
might contain stringified IOR data.

An Artix servant provides the implementation of a port type (analogously to
the way in which an Orbix servant provides the implementation of an IDL
interface). The servant class is implemented using the appropriate language
mapping (an IONA proprietary mapping for C++ or a standard JAX-RPC
mapping for Java).

The Artix stub contains the code that is needed to encode and decode the
messages received and sent by an Artix application. Artix provides
command-line tools to generate the stub code from WSDL, as follows:

® wsdltocpp command—generates C+ + stub code from WSDL.
® wsdltojava command—generates Java stub code from WSDL.

A binding is a particular kind of encoding for operations and data types (for
example, CORBA or SOAP). Support for a binding is enabled by loading the
relevant plug-in (for example, the soap plug-in for SOAP, or the ws_orb
plug-in for CORBA, and so on).

In addition to loading the relevant plug-in, you must also provide an XML
description of the binding in the WSDL contract. Artix provides tools that
will generate the binding for you automatically; there is no need to write
them by hand.

A transport is responsible for sending and receiving messages over a specific
transport protocol (for example, HTTP or MQ-Series). Support for a transport
is enabled by loading the relevant plug-in (for example, the mg plug-in for
MQ-Series, or the at_nttp plug-in for HTTP).

In Artix, transports are closely associated with port definitions. For example,
if you include either a <http-conf:client/> Or @ <http-conf:server/> tag
within the scope of a port element, this indicates that the port uses the
HTTP transport.

19

CHAPTER 1 | Introduction to CORBA Web Services

Artix routers

Artix container

Router plug-in

20

An Artix router is used to bridge operation invocations between different
communication protocols. Figure 2 shows an example of a
SOAP/HTTP-to-CORBA router. This router translates incoming SOAP/HTTP
request messages into outgoing 110OP request messages. On the reply cycle,
the router translates incoming 11OP reply messages into outgoing
SOAP/HTTP reply messages.

Figure 2: Example of a SOAP/HTTP-to-CORBA Router

Artix Container

[Route;plug-in }

1
1
CORBA

Gl@)P

The Artix container, it_container, is an application that can be used to run
any of the standard Artix services. The functionality of the container is
determined by the plug-ins it loads at runtime.

By loading the router plug-in (along with the requisite binding and
transport plug-ins) the container is configured to run as a standalone router.

The router plug-in implements a general-purpose protocol bridge. Messages
that arrive on one port are sent out on another port.

For example, the router plug-in shown in Figure 2 on page 20 receives
request messages over the SOAP/HTTP protocol and forwards the request
message out again over the IIOP protocol.

Artix Architecture

To configure a router, you need to specify which ports are connected to
which other ports. Use the ns1:route element to connect a source port to a

destination port. For example:

Routes

<nsl:route name="route 0">
<nsl:source service="tns: <SourceService >

port="<SourcePort>"/>
<nsl:destination service="tns:<DestinationService>"
port="<DestinationPort>"/>

</nsl:route>

21

CHAPTER 1 | Introduction to CORBA Web Services

Integrating a CORBA Server with Web
Services

Overview This section considers the problem of a legacy CORBA server that is to be
opened up to Web services applications. Artix supports a variety of solutions
to this integration problem, which are briefly described in the following
subsections.

In this section This section contains the following subsections:

Accessing the CORBA Server through a Standalone Router page 23

Accessing the CORBA Server through an Embedded Router page 24

Replacing the WS Client by an Artix Client page 25

Replacing the CORBA Server by an Artix Server page 26

22

Integrating a CORBA Server with Web Services

Accessing the CORBA Server through a Standalone Router

Overview One of the simplest ways to integrate a WS client with a CORBA server is to
deploy a standalone router to act as a bridge between them. This approach
can be used in any system.

Figure 3 shows a CORBA server that is accessible through a standalone

router. The router is responsible for mapping incoming SOAP/HTTP requests
into outgoing IIOP requests.

Figure 3: WS Client Accesses CORBA Server through Standalone Router

CORBA IOP port| ~orBA
. » O—
Client |—> Server

SOAP/HTTP port
po Standalone

O_
Router
SOAP/HTTP-to-CORBA

WS
Client

Advantages and disadvantages This scenario offers the following advantages:
® Compatible with any CORBA server.
® Compatible with any WS client.
® Non-intrusive—no changes need be made either to the client or to the
server.

And the following disadvantage:

® Loss of performance—every operation invocation that passes through

the router consists of two remote invocations (client-to-router followed
by router-to-server).

23

CHAPTER 1 | Introduction to CORBA Web Services

Accessing the CORBA Server through an Embedded Router

Overview

Advantages and disadvantages

24

If the CORBA server is implemented using an Orbix 6.x product, it is usually
possible to embed the Artix router directly into the Orbix executable. This
approach yields significant performance gains.

Figure 4 shows an example of a CORBA server that is accessible through an
embedded router. The router is responsible for mapping incoming
SOAP/HTTP requests into colocated 11OP requests.

Figure 4: WS Client Accesses CORBA Server through Embedded Router

IIOP 11OP port
» O—
CORBA CORBA Server
Client Embedded
Router
SOAP/HTTP port

SOAP/HTTP

WS
Client

This scenario offers the following advantages:

® Compatible with Orbix 6.x implementations of the CORBA server.

® Compatible with any WS client.

® No changes need be made to the WS client.

® The CORBA server must be reconfigured, but remains otherwise
unchanged.

And the following disadvantage:

® Moderate performance—this scenario is more efficient than using a

standalone router, but is not as efficient as some other scenarios.

Integrating a CORBA Server with Web Services

Replacing the WS Client by an Artix Client

Overview

Advantages and disadvantages

If you have not implemented the WS client yet, you could implement it using
Artix. An Artix client offers great flexibility, because it can communicate
through multiple protocols, including I10P and SOAP/HTTP.

Figure 5 shows an example of a CORBA server that is accessed by an Artix
client and a CORBA client. The Artix client is configured to talk directly to
the CORBA server using the 110P protocol.

Figure 5: Replacing the WS Client by an Artix Client

CORBA liop oPport| ~5RBA
) » O—
Client — » Server
1oP
Artix
Client

This scenario offers the following advantages:

® Compatible with any CORBA server.

® No changes need be made to the CORBA server.
® Performance is optimized.

® Artix client offers flexibility for future integration.
And the following disadvantage:

® If you have already implemented the WS client, you would have to
re-write it to use the Artix APIs.

25

CHAPTER 1 | Introduction to CORBA Web Services

Replacing the CORBA Server by an Artix Server

Overview

Advantages and disadvantages

26

If you want to exploit the full power of the Artix product, you might find it
worthwhile to replace the CORBA server by re-implementing it as an Artix
server. Because Artix supports multiple protocols, an Artix server can easily
support present and future integration requirements.

Figure 6 shows an example of an Artix server that is accessed by a WS
client and a CORBA client. The Artix server is configured to accept requests
both from CORBA clients and WS clients.

Figure 6: Replacing the CORBA Server by an Artix Server

loP I LOP port
CORBA " Artix
Client Server
SOAP/HTTP port
SOAP/HTTP
WS
Client

This scenario offers the following advantages:
® Compatible with any WS client.
® No changes need be made to the WS client.

® Performance is optimized.
Artix server offers flexibility for future integration.

And the following disadvantage:

You must re-implement the CORBA server as an Artix server.

Integrating a CORBA Client with Web Services

Integrating a CORBA Client with Web Services

Overview This section considers the problem of CORBA client that needs to access a

Web services server. Artix supports a variety of solutions to this integration
problem, which are briefly described in the following subsections.

In this section This section contains the following subsections:

Accessing the WS Server through a Standalone Router page 28
Replacing the CORBA Client by an Artix Client page 29
Replacing the WS Server by an Artix Server page 30

27

CHAPTER 1 | Introduction to CORBA Web Services

Accessing the WS Server through a Standalone Router

Overview A relatively simple way to integrate a CORBA client with a WS server is to
deploy a standalone router to act as a bridge between them. This approach

can be used in any system.

Figure 7 shows a WS server that is accessible through a standalone router.
The router is responsible for mapping incoming [IOP requests into outgoing

SOAP/HTTP requests.

Figure 7: Client Accesses the WS Server through a Standalone Router

WS SOAP/H‘ETP port| s
Client > Server
11OP port
Standalone
Router
CORBA loP P port| ~5RBA
. » O—
Client Server
Advantages and disadvantages This scenario offers the following advantages:

® Compatible with any WS server.
® Compatible with any CORBA client.

server.

And the following disadvantage:

Non-intrusive—no changes need be made either to the client or to the

Loss of performance—every operation invocation that passes through
the router consists of two remote invocations (client-to-router followed

by router-to-server). This has a noticeable impact on performance.

28

Integrating a CORBA Client with Web Services

Replacing the CORBA Client by an Artix Client

Overview To exploit the full power of the Artix product, you might find it worthwhile to

replace the CORBA client by re-implementing it as an Artix client. The Artix

client can then communicate using a wide variety of protocols, including
IIOP and SOAP/HTTP.

Figure 8 shows an example of a WS server that is accessed by an Artix
client and a WS client. The Artix client is configured to talk directly to the
WS server using the SOAP/HTTP protocol.

Figure 8: Replacing the CORBA Client by an Artix Client

SOAP/HTTP port
ws P

WS
Client — Server

SOAP/HTTP

’ 11OP port
Artix s

o o coron
en lloP erver

Advantages and disadvantages This scenario offers the following advantages:

® Compatible with any WS server.

® No changes need be made to the WS server.
® Performance is optimized.

® Artix client offers flexibility for future integration.

And the following disadvantage:

® You must re-implement the CORBA client as an Artix client.

29

CHAPTER 1 | Introduction to CORBA Web Services

Replacing the WS Server by an Artix Server

Overview

Advantages and disadvantages

30

If you want to exploit the full power of the Artix product, you might find it
worthwhile to replace the WS server by re-implementing it as an Artix
server. Because Artix supports multiple protocols, an Artix server can easily
support present and future integration requirements.

Figure 9 shows an example of an Artix server that is accessed by a WS
client and a CORBA client. The Artix server is configured to accept requests
both from CORBA clients and WS clients.

Figure 9: Replacing the WS Server by an Artix Server

SOAP/HTTP port
ws >C Artix
Client _ Server
» O
11OP port
Iop
CORBA OP Pt coRBA
. » O—
Client llop Server

This scenario offers the following advantages:
® Compatible with any CORBA client.

® No changes need be made to the CORBA client.

® Performance is optimized.

® Artix server offers flexibility for future integration.

And the following disadvantage:

If you have already implemented the WS server using a third-party
product, you would have to re-write it as an Artix server.

In this chapter

CHAPTER 2

Exposing a Web

Service as a

CORBA Service

This chapter describes how to expose a Web service as a
CORBA service using Artix. If the Web Service is implemented

using Artix, it is relatively easy to integrate with CORBA; if

implemented using a third-party product, integration is made

possible using Artix routers.

This chapter discusses the following topics:

Converting WSDL to IDL page 32
Exposing an Artix Web Service as a CORBA Service page 35
Exposing a Non-Artix Web Service as a CORBA Service page 39
Using an Orbix 3.3 Client to Access an Artix Server page 47
High Performance Java CORBA Binding page 50

31

CHAPTER 2 | Exposing a Web Service as a CORBA Service

Converting WSDL to IDL

Overview

Add CORBA bindings to WSDL

32

To convert a WSDL contract to an equivalent OMG IDL interface (or
interfaces), perform the following steps:

1.
2.
3.

Add CORBA bindings to WSDL.
Add CORBA endpoints to WSDL.
Generate the IDL.

Generate a CORBA binding for each port type that you want to expose as an
IDL interface:

If you want to expose a single WSDL port type from the WSDL file,
<WSDLFile> .wsd1, enter the following command:

> wsdltocorba -corba -i <PortTypeName> <WSDLFile> .wsdl
Where <PortTypeName> refers to the name attribute of an existing
portType element. This command generates a new WSDL file,
<WSDLFile> -corba.wsdl.

If you want to expose multiple WSDL port types, you must run the
wsdltocorba command iteratively, once for each port type. For
example:

> wsdltocorba -corba -i <PortType_A > -o <WSDLFile>01.wsdl
<WSDLFile> .wsdl

> wsdltocorba -corba -i <PortType B> -o <WSDLFile>02.wsdl
<WSDLFile>01.wsdl

> wsdltocorba -corba -i <P0rtType_C> -o <WSDLFile>03.wsdl
<WSDLFile>o02.wsdl

Where the -o flag is used to specify the name of the output file at each
stage. Rename the last file in the sequence to
<WSDLFile> -corba.wsdl.

Converting WSDL to IDL

Add CORBA endpoints to WSDL It is not strictly necessary to add CORBA endpoints to the WSDL at this
stage (that is, prior to generating the IDL), but it is convenient to make these
modifications to the WSDL contract now.

To add the CORBA endpoints, open the <WSDLFile> -corba.wsdl file
generated in the previous step and add a service element for each of the
port types you want to expose. For example, a simple CORBA endpoint that
is associated with the <CORBABinding> binding could have the following
form:

<definitions name="" targetNamespace="..."

xmlns : corba="http://schemas.iona.com/bindings/corba"
“e>

<service name="<CORBAServiceName> ">
<port binding="tns:<CORBABinding>" name="<CORBAPortName> ">
<corba:address location="file:///greeter.ior"/>
</port>
</services>
</definitions>

The value of the 1ocation attribute in the corba:address element can be

specified as one of the following URL types:

® File URL—to configure the Artix server to write an IOR to a file as it
starts up, specify the 1ocation attribute as follows:
location="file:///<DirPath>/<IORFile> .ior"
On Windows platforms, the URL format can indicate a particular
drive—for example the c: drive—as follows:
location="file:///C:/<DirPath>/<IORFile> .ior"

Note: It is usually simplest to specify the file name using an
absolute path. If you specify the file name using a relative path, the
location is taken to be relative to the directory the Artix process is
started in, not relative to the containing WSDL file.

® corbaname URL—to configure the Artix server to bind an object
reference in the CORBA naming service, specify the location attribute
as follows:

location="corbaname:rir:/NameService#StringNamen

33

CHAPTER 2 | Exposing a Web Service as a CORBA Service

Generate the IDL

34

Where StringName is a name in the CORBA naming service. For more
details, see “How an Artix Client Resolves a Name” on page 88.

Placeholder IOR—is appropriate for IORs created dynamically at
runtime (for example, IORs created by factory objects). In this case,
you should use the special placeholder value, 10r:, for the location
attribute, as follows:

location="IOR:"

Artix then uses the enclosing service element as a template for
transient object references.

Note: It is also possible to add a CORBA endpoint to the WSDL contract
using the wsdltoservice command line tool. For details of this command,
see the Command Line Reference document.

Generate an IDL interface for each port type, as follows:

To generate IDL for a single port type, select the relevant CORBA
binding, <CORBABinding>, from the WSDL and enter the following
command:

> wsdltocorba -idl -b <CORBABiInding>
<WSDLFile> -corba.wsdl

The output from this command is written to an IDL file,
<WSDLFile> -corba.idl. If you want to change the name of the IDL
output file, you can use the -o </DLFileName> option.

To generate IDL for multiple port types, you must run the wsditocorba
command once for each port type. After generating all of the IDL
interfaces individually, you would typically concatenate the output files
into a single IDL file.

Exposing an Artix Web Service as a CORBA Service

Exposing an Artix Web Service as a
CORBA Service

Overview It is relatively straightforward to expose an Artix Web service as a CORBA
service. Essentially, you must add the configuration of the relevant CORBA
bindings to the WSDL contract and ensure that the requisite CORBA
plug-ins are loaded into the Artix application.

In detail, the steps for exposing an Artix service as a CORBA service are as
follows:

1. Convert WSDL to IDL.

2. Write code to activate the CORBA endpoints.
3. Re-build the Artix server.

4. Configure the Artix server.

Convert WSDL to IDL Follow the instructions in “Converting WSDL to IDL” on page 32 to convert
your WSDL contract to IDL. The output from this step consists of two files,
as follows:

® Modified WSDL file—the WSDL contract is modified to include
CORBA bindings and CORBA endpoints. The Artix server needs the
modified contract to expose the service over CORBA.

® IDL file—an IDL file is generated from the modified WSDL. CORBA
clients use this IDL file to access the CORBA service exposed by the
Artix server.

35

CHAPTER 2 | Exposing a Web Service as a CORBA Service

Write code to activate the CORBA In the main function of your application source code, add some code to
endpoints activate the CORBA endpoints. For example, given the following service
element in the WSDL contract:

<definitions name="" targetNamespace="< TargetNameSpace>"

xmlns:corba="http://schemas.iona.com/bindings/corba"
e

<service name="<CORBAServiceName> ">
<port binding="tns:<CORBABInding>" name="<CORBAPortName> ">
<corba:address location="..."/>
</port>
</service>
</definitions>

You can activate all of the ports in the <CORBAServiceName> service by
registering a servant, as follows:

// C++
IT Bus::QName m_service gname("", "<CORBAServiceName>",
n<TargetNameSpace> ")

m_bus () ->register servant (

m_servant, // Service implementation
n<WSDLFile> .wsdl", // WSDL file location
m_service gname // Service QName

)5

Where m_servant is an object that implements a WSDL port type. This
could be the very same object that is registered with other protocols, such
as SOAP/HTTP, or it could be a new instance of the service. The second
argument, <WSDLFile> .wsd1, gives the location of the modified WSDL
contract. In this example, it is assumed that the WSDL contract is stored in
the same directory as the application executable.

Note: For more details about activating service endpoints and registering
servants, see the “Artix Programming Considerations” chapter from
Developing Artix Applications in C++.

36

Re-build the Artix server

Configure the Artix server

Exposing an Artix Web Service as a CORBA Service

Before re-building the Artix server executable, you must regenerate the Artix
stub files from the modified WSDL contract. In particular, you must ensure
that C++ code is generated for each of the newly-defined CORBA bindings.

After regenerating the stub files, you can re-build the Artix server.

The Artix server must be configured to load the requisite CORBA plug-ins.
Example 1 shows how to modify the Artix configuration scope,
artix srvr with corba binding, to enable the CORBA bindings.

Example 1: Artix Configuration Required for a CORBA Binding
Artix Configuration File

artix srvr with corba binding {

Modified configuration required for a CORBA binding:

#

orb plugins = [..., "iiop profile", "giop", "iiop",
"ws_orb"];

binding:client_binding list =

["OTS+POA Coloc", "POA Coloc","OTS+GIOP+IIOP", "GIOP+IIOP"];

plugins:iiop profile:shlib name = "it iiop profile";
plugins:giop:shlib name = "it giop";
plugins:iiop:shlib name = "it iiop";
plugins:ws_orb:shlib name = "it_ws orb";

Da

The preceding Artix configuration can be explained as follows:
1. Edit the ORB plug-ins list, adding the plug-ins needed to support
CORBA bindings. The following additional plug-ins are needed:
. iiop profile, giop, and iiop plug-ins—provide support for the
Internet Inter-ORB Protocol (I110P), which is used by CORBA.

¢+ ws_orb plug-in—enables the Artix application to send and receive
CORBA messages.

2. You should ensure that the binding:client binding list (either
within this scope or in the nearest enclosing scope) includes bindings
with the crop+110P protocol combination. The client binding list shown
here is a typical default setting.

37

CHAPTER 2 | Exposing a Web Service as a CORBA Service

38

For each of the additional plug-ins you must specify the root name of
the shared library (or DLL on Windows) that contains the plug-in code.
The requisite plugins: <plugin_name> :shlib name entries can be
copied from the root scope of the Artix configuration file, artix.cfg.
You can optionally specify additional configuration settings for the
plug-ins at this point (see the Artix Configuration Reference for more
details).

Exposing a Non-Artix Web Service as a CORBA Service

Exposing a Non-Artix Web Service as a
CORBA Service

If you want to expose a non-Artix Web service as a CORBA service, you

Overview
must deploy a standalone Artix router that acts as a bridge between CORBA
clients and the Web services server.

In this section This section contains the following subsections:

Standalone CORBA-to-SOAP Router Scenario page 40

Configuring and Running a Standalone CORBA-to-SOAP Router
page 41

39

CHAPTER 2 | Exposing a Web Service as a CORBA Service

Standalone CORBA-to-SOAP Router Scenario

Overview

Container

Modifications to CORBA server

Elements required for this
scenario

40

Figure 10 shows an overview of a standalone CORBA-to-SOAP router. In
this scenario, the router is packaged as a standalone application, which acts
as a bridge between the CORBA client and the Web services server. The
standalone router is responsible for converting incoming CORBA requests
into outgoing requests on the Web services server. Replies from the Web
services server are converted into CORBA replies by the router and sent back
to the client.

Figure 10: Standalone Artix Router

11OP port SOAP/HTTP
CO‘RBA Standalone port WS
Client Router Server

IDL

=
2]
g
9

Config

Pyl
5
c
=4
@
)
(@]
o)
3
=
Q
Q

Client Contract Router Configuration

The Artix container, it_container, is an executable that can be used to run
any of the standard Artix services. The functionality of the container is
determined by the plug-ins it loads at runtime.

In this scenario, the container is configured to load the router plug-in (along
with some other plug-ins) so that it functions as a standalone router.

When using a standalone Artix router, no modifications need be made to the
CORBA server.

The following elements are required to implement this scenario:
® DL interface for clients.

® WSDL contract for the standalone router.

® Artix configuration file for the standalone router.

Exposing a Non-Artix Web Service as a CORBA Service

Configuring and Running a Standalone CORBA-to-SOAP Router

Overview

Convert WSDL to IDL

Generate the router.wsdl file

This section describes how to configure and run a standalone router that
acts as a bridge between CORBA clients and a SOAP/HTTP Web services
server. The following steps are described:

1. Convert WSDL to IDL.

2. Generate the router.wsdl file.
3. Create the Artix configuration.
4

Run the standalone router.

Follow the instructions in “Converting WSDL to IDL” on page 32 to convert
your WSDL contract to IDL and to generate CORBA bindings and CORBA
endpoints in the WSDL contract. The output from this step is a modified
WSDL file, <WSDLFile> .wsd1, and an IDL file.

To generate the router.wsdl file, you need to augment the
<WSDLFile> .wsd1 file from the previous step. Specifically, you must add
the requisite bindings and endpoints for the second leg of the route, which
goes from the router to the SOAP Web service.
1. Generate CORBA bindings and CORBA endpoints—if you followed the
steps in “Converting WSDL to IDL” on page 32, the
<WSDLFile> .wsd1 file already contains the relevant CORBA bindings
and CORBA endpoints.

2. Generate SOAP bindings—generate a SOAP binding for each port type
that is exposed as an IDL interface. The router acts like a SOAP client
with respect to the SOAP Web services server.

If the router needs to access a single WSDL port type, generate a
SOAP binding with the following command:

> wsdltosoap -i <PortTypeName> -b <BindingName>
<WSDLFile> .wsdl

Where <PortTypeName> refers to the name attribute of an existing
portType element and <BindingName > is the name to be given to the
newly generated SOAP binding. This command generates a new WSDL
file, <WSDLFile> -soap.wsdl.

41

CHAPTER 2 | Exposing a Web Service as a CORBA Service

<definitions name="" targetNamespace="...

If the router needs to access multiple WSDL port types, you must run
the wsdltosoap command iteratively, once for each port type. For
example:

> wsdltosoap -i <PortType A> -b <Binding A>
-o <WSDLFile>01.wsdl <WSDLFile> .wsdl

> wsdltosoap -i <PortType_ B> -b <Binding B>
-o <WSDLFile>02.wsdl <WSDLFile>01.wsdl

> wsdltosoap -i <PortType C> -b <Binding C>
-o <WSDLFile>03.wsdl <WSDLFile>o02.wsdl

Where the -o <FileName> flag specifies the name of the output file.
At the end of this step, rename the WSDL file to router.wsdi.

3. Add SOAP endpoints—add a service element for each of the port
types you want to expose. For example, a simple SOAP endpoint could
have the following form:

"

xmlns : soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"

o>

<service name="<SOAPServiceName>">
<port binding="tns:<SOAPBinding>" name="<SOAPPortName> ">
<soap:address location="http://localhost:9000"/>
<http-conf:client/>
<http-conf:server/>
</port>
</service>

</definitions>

42

In the preceding example, you must add a line that defines the

http-conf namespace prefix in the <definitionss> tag.

The most important setting in the SOAP port is the 1ocation attribute

of the soap:address element, which can be set to one of the following

HTTP URLs:

. Explicit HTTP URL—if a particular service is provided at a fixed
address, you can specify the <hostname> and <port> values
explicitly.

location="http://<hostname> :<port>

Exposing a Non-Artix Web Service as a CORBA Service

¢+ Placeholder HTTP URL—if a service is created dynamically at
runtime, you should specify a transient HTTP URL, as follows:
location="http://localhost:0
At runtime, the placeholder URL is replaced by an explicit
address. Artix then treats the enclosing service element as a
template, allowing multiple transient services to be created at
runtime.

Note: It is also possible to add a SOAP endpoint to the WSDL
contract using the wsdltoservice command line tool. For details of
this command, see the Command Line Reference document.

4. Add a route for each exposed port type—for each port type, you need
to set up a route to translate incoming CORBA requests into outgoing
SOAP requests. For example, the following route definition instructs
the router to map incoming CORBA request messages to a SOAP/HTTP
endpoint.

<definitions name="" targetNamespace="TargetNamespaceURI"

xmlns: tns="TargetNamespaceUR/"
xmlns:nsl="http://schemas.iona.com/routing"

. >

<nsl:route name="route 0">
<nsl:source service="tns: <CORBAServiceName>n
port="<CORBAPortName>m/>
<nsl:destination service="tns:<SOAPServiceName>n
port="<SOAPPortName>n/>

</nsl:route>
</definitions>

In the preceding example, you must add a line that defines the ns1
namespace prefix in the <definitions> tag.

The ns1:source element identifies the CORBA endpoint in the router
that receives incoming requests from a client. The ns1:destination

43

CHAPTER 2 | Exposing a Web Service as a CORBA Service

element identifies the SOAP/HTTP endpoint in the Orbix server to
which outgoing requests are routed.

Note: Generally, when defining routes, if the 1ocation of the source
endpoint is a placeholder, the 1ocation of the destination endpoint
should also be a placeholder.

5. Check that you have added all the namespaces that you need—for a
typical CORBA to SOAP/HTTP route, you typically need to add the
following namespaces (in addition to the namespaces already
generated by default):

<definitions name="" targetNamespace="TargetNamespaceURI"

xmlns: tns="TargetNamespaceUR/"
xmlns:nsl="http://schemas.iona.com/routing"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
xmlns:wsa="http://www.w3.0rg/2005/08/addressing"

e >

</definitions>

Create the Artix configuration Example 2 shows a suitable configuration for a standalone router that maps
incoming CORBA requests to outgoing SOAP/HTTP requests.

Example 2: Artix Configuration Suitable for a Standalone Artix Router
Artix Configuration File

1 # Global configuration scope

standalone router {
Configuration for standalone router:

#

2 orb plugins = ["xmlfile log stream", "iiop profile", "giop",
"iiop", "ws_orb", "soap", "at http", "routing"];

3 plugins:routing:wsdl url="../../etc/router.wsdl";

4 plugins:ws_orb:shlib name = "it_ws orb";
plugins:soap:shlib name = "it_ soap";

plugins:http:shlib name = "it http";

44

Exposing a Non-Artix Web Service as a CORBA Service

Example 2: Artix Configuration Suitable for a Standalone Artix Router

plugins:at_http:shlib name = "it at http";
plugins:routing:shlib name = "it routing";

Uncomment these lines for interoperability with Orbix 3.3
#policies:giop:interop policy:negotiate transmission codeset

= "false";
#policies:giop:interop policy:send principal = "true";
#policies:giop:interop policy:send locate request = "false";

preceding Artix configuration can be explained as follows:

The basic configuration settings needed by the Artix container process

are inherited from the global configuration scope.

Edit the ORB plug-ins, adding the requisite Artix plug-ins to the list. In

this example, the following plug-ins are needed:

¢ xmlfile log stream plug-in—enables logging to an XML file.

. iiop profile, giop, and iiop plug-ins—enables the [IOP
protocol (used by CORBA).

¢+ ws_orb plug-in—enables the router to send and receive CORBA
messages.

. soap plug-in—enables the router to send and receive SOAP
messages.

s+ at_http plug-in—enables the router to send and receive
messages over the HTTP transport.

. routing plug-in—contains the core of the Artix router.

If you plan to use other bindings and transports, you might need to add

some other Artix plug-ins instead.

The plugins:routing:wsdl url setting specifies the location of the

router WSDL contract (see “Converting WSDL to IDL” on page 32).

The URL can be a relative filename (as here) or a general file: URL.

To load the Artix plug-ins, you must specify the root name of the

shared library (or DLL on Windows) that contains the plug-in code. The

requisite plugins: <plugin_name> :shlib_name entries can be copied

from the root scope of the Artix configuration file, artix.cfgq.

45

CHAPTER 2 | Exposing a Web Service as a CORBA Service

You can also specify additional plug-in configuration settings at this
point (see the Artix Configuration Reference for more details).

5. If the router needs to integrate with Orbix 3.3 CORBA clients, you
should uncomment these lines to enable interoperability. For more
details about these configuration settings, see the Artix Configuration
Reference.

Note: These interoperability settings might also be useful for
integrating with other third-party ORB products. See the Artix
Configuration Reference for more details.

Run the standalone router Run the standalone router by invoking the container, it _container, passing
the router's ORB name as a command-line parameter (the ORB name is
identical to the name of the router’s configuration scope).

For example, to run the router configured in Example 2 on page 44, enter
the following at a command prompt:

it container -ORBname standalone router

46

Using an Orbix 3.3 Client to Access an Artix Server

Using an Orbix 3.3 Client to Access an

Artix Server

Overview

Incompatible #pragma macros

Data type compatibility

This section gives a summary of the problems that might occur when you try
to compile an Artix-generated IDL file (generated by the wsdltocorba tool)
using the Orbix 3.3 IDL compiler.

Because the Orbix 3.3 product was designed to conform to the CORBA 2.1
specification (which is an earlier version of the CORBA specification than
that used for Artix) there are some differences between the conventions used
in Orbix 3.3 IDL files and the conventions used in Artix IDL files.

Note: The following list of issues is not necessarily exhaustive. This
section summarizes only those interoperability issues known about at the
time of writing.

The following #pragma macros which appear in some standard Artix IDL files
are incompatible with Orbix 3.3 and will cause the Orbix 3.3 IDL compiler
to report an error:

#pragma IT SystemSpecification
#pragma IT BeginCBESpecific

Most of the IDL data types generated by the Artix wsdltocorba tool are
compatible with Orbix 3.3. But there are some exceptions. The following
WSDL data types require workarounds in order to interoperate with the
Orbix 3.3 product:

® xsd:dateType type mapping to the TimeBase::UtcT IDL type.

® Complex type derived from a simple type.

® Recursive types.

47

CHAPTER 2 | Exposing a Web Service as a CORBA Service

xsd:dateType type mapping tothe Artix uses the TimeBase: :UtcT type to represent the xsd:dateTime XML
TimeBase::UtcT IDL type schema type. To support the TimeBase: : UtcT type, Artix-generated IDL files
contain the following #include statement:
#include <omg/TimeBase.idls>
A problem arises, however, when the Orbix 3.3 IDL compiler attempts to
compile the TimeBase. id1 file, because the TimeBase.id1 file includes
#pragma Macros that are incompatible with the Orbix 3.3 IDL compiler. To
fix this problem, perform the following steps:
1. Make a copy of the TimeBase.id1 file (the original of this file can be
found in the ArtixInstallDir/artix/Version/idl/omg directory).

2. Edit the copied file to delete the following #pragma macros:
#pragma IT SystemSpecification

#pragma IT BeginCBESpecific AllJava "e@\
@module TimeBase=org.omg"

3. Edit the #include statement in the main IDL file, to point at the
modified copy of the TimeBase.id1 file.

Complex type derived from a A problem arises with XML schema complex types that are defined by
simple type derivation from a simple type. For example, consider the following schema
type, Document, that adds a string attribute to a simple string type:

<xsd:complexType name="Document">
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="ID" type="xsd:string"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

When the wsdltocorba utility maps this schema type to IDL, it generates
the following struct:

// IDL
struct Document {
string nil ID;
string simpleTypeValue;

It

48

Using an Orbix 3.3 Client to Access an Artix Server

When this IDL sample is passed to the Orbix 3.3 compiler, it fails to compile
because the Orbix 3.3 compiler does not allow identifiers that begin with
the _ (underscore) character.

To work around this problem, you can manually edit the CORBA binding in
the WSDL file, replacing _simpleTypevalue by simpleTypevalue (removing
the underscore character). For example, for the Document data type, the
CORBA binding defines the following mapping by default:

<corba:struct name="Document" repositoryID="IDL:Document:1.0"
type="s:Document" >
<corba:member idltype="nsl:string nil" name="ID"/>
<corba:member idltype="corba:string"
name="_simpleTypeValue"/>
</corba:struct>

To modify the mapping in this case, simply replace _simpleTypevalue by
simpleTypevalue in the preceding code fragment.

Recursive types The IDL mapping for recursive XML schema types requires the use of
forward declared structs in IDL. The forward declared struct is a relatively
recent addition to IDL syntax and is not supported by Orbix 3.3. Hence,
recursive types are incompatible with Orbix 3.3 clients.

For more details about XML schema recursive types, see “Recursive Types”
on page 179.

49

CHAPTER 2 | Exposing a Web Service as a CORBA Service

High Performance Java CORBA Binding

Overview

Enabling the binding

Location of demonstration

50

You can use an alternative Java CORBA binding, offering improved
performance, in Artix server applications.

To enable the Java CORBA binding, set the java.corba.service.enabled
system property to true, in either of the following ways:

® By passing the following command line argument:
-Djava.corba.service.enabled=true

® By making the following API call in the application:
System.setProperty ("java.corba.service.enabled", "true");

Alternatively, if you are using multiple buses, you can enable the binding for
an individual bus by passing the properties to Bus.init (), as follows:

Hashtable props = new Hashtable() ;
props.setProperty("java.corba.service.enabled", "true");
Bus.init (args, props) ;

For an example of the new Java CORBA binding, see the CDR over IIOP
demonstration in demos/transports/cdr _over iiop.

In this chapter

CHAPTER 3

Exposing a CORBA
Service as a Web
Service

This chapter describes how to expose a CORBA service as a
Web service using Artix. Different approaches can be taken,
depending on whether the back-end CORBA service is
implemented using the Orbix 6 product, the Orbix 3.3 product
or some other third-party ORB product.

This chapter discusses the following topics:

Converting IDL to WSDL page 52

Embedding Artix in a CORBA Service page 61

Exposing an Orbix 3.3 or Non-Orbix Service as a Web Service page 68

51

CHAPTER 3 | Exposing a CORBA Service as a Web Service

Converting IDL to WSDL

Overview

WSDL contract files

Contents of the router contract

Generate the router contract

52

The first step in exposing a CORBA server as a Web service is to convert the
CORBA server's IDL into a WSDL contract. For all of the examples presented
in this chapter, the following assumptions are made:

® The server's IDL does not feature callbacks.

® Web service clients use the SOAP/HTTP protocol.

This subsection describes how to generate the following two WSDL files:

® router.wsdl file—deployed along with the embedded router and the
Orbix server, the router.wsdl file contains all of the router information
required to map incoming SOAP requests to outgoing CORBA requests.

® client.wsdl file—contains all of the information required by Web
services clients to make SOAP/HTTP invocations on the router.

Given that the router has to be capable of routing incoming SOAP requests
to outgoing CORBA requests, the router generally must contain the following
elements:

® Port types.

® CORBA bindings.

® SOAP bindings.

®* CORBA endpoints.

® SOAP/HTTP endpoints.

® Routes from SOAP/HTTP endpoints to CORBA endpoints.

To generate a router contract from a given IDL file, </DLFile> .id1, perform
the following steps:

1. Generate WSDL from the IDL file—at a command-line prompt, enter:
> idltowsdl <IDLFile> .id1

This command generates a WSDL file, </DLFile> .wsd1, which
contains the following:

¢+ XSD schema types, generated from the IDL data types.

Converting IDL to WSDL

¢+ portType elements—a port type for each IDL interface in the
source.

¢+ binding elements—a CORBA binding for each port type.

¢ service elements—a CORBA endpoint for each port type

You might need to specify additional flags to the idltowsdl command

utility. Some of the more commonly required options are:

-r <ref_schema> specifies the location of the endpoint
references schema. The schema file, wsaddressing.xsd, is
located in the ArtixInstallDir/artix/Version /schemas directory
and on the Internet. The references schema is needed whenever
you generate WSDL from IDL that uses object references.

-a <corba_address> specifies a default value for the 1ocation
attribute in the corba:address elements.

-unwrap generates doc/literal unwrapped style of WSDL.
-usetypes generates rpc/literal style of WSDL.

-3 specifies Orbix 3.3 compatibility mode. Use this option if the
IDL file you are converting stems from a legacy Orbix 3.3
application. See “Orbix 3 legacy compatibility” on page 227 for
more details.

The default style of WSDL generated by the idltowsdl utility is

doc/literal wrapped.

Edit the corba:address elements for each CORBA endpoint—for each

CORBA endpoint, you have to specify the location of a CORBA object

reference.

Using your favorite text editor, open the </DLFile> .wsd1 file generated

in the previous step. Replace the dummy setting, location="...", in

each of the corba:address elements, by one of the following location

URL settings:

. File URL—if the Orbix server writes an IOR to a file as it starts up,
you specify the 1ocation attribute as follows:
location="file:///<DirPath>/<IORFile> .ior"

On Windows platforms, the URL format can indicate a particular
drive—for example the c: drive—as follows:

53

CHAPTER 3 | Exposing a CORBA Service as a Web Service

location="file:///C:/<DirPath>/<IORFile> .ior"

Note: It is usually simplest to specify the file name using an
absolute path. If you specify the file name using a relative path, the
location is taken to be relative to the directory the Artix process is
started in, not relative to the containing WSDL file.

¢+ corbaname URL—allows you to retrieve an object reference from
the CORBA naming service. This setting has the following format:
location="corbaname:rir:/NameService#StringNamer
Where StringName is a name in the CORBA naming service. For
more details, see “How an Artix Client Resolves a Name” on
page 88.

o Stringified IOR—if you know that the Orbix server's IOR is not
going to change for some time, you can paste the stringified IOR
directly into the location attribute, as follows:
location="IOR:000000..."

¢+ Placeholder IOR—is appropriate for IORs created dynamically at
runtime (for example, I0Rs created by factory objects). In this
case, you should use the special placeholder value, 10r:, for the
location attribute, as follows:

location="IOR:"

Artix uses the enclosing service element as a template for
transient object references.

For example, if your Orbix server writes an IOR to the file,
/tmp/app_iors/hello world service.ior, you can use it to specify
the endpoint location as follows:

<service name="HelloWorldCORBAService">
<port binding="tns:HelloWorldCORBABinding" name="HelloWorldCORBAPort">
<corba:address location="file:///tmp/app iors/hello world service.ior"/>
</port>
</service>

3. Generate SOAP bindings—generate a SOAP binding for each port type
that you want to expose as a Web service. If you want to expose a
single WSDL port type, enter the following command:

54

Converting IDL to WSDL

> wsdltosoap -i <PortTypeName> -b <BindingName>
<IDLFile> .wsdl

Where <PortTypeName> refers to the name attribute of an existing
portType element and <BindingName > is the name to be given to the
newly generated SOAP binding. This command generates a new WSDL
file, <IDLFile> -soap.wsdl.

If you want to expose multiple WSDL port types, you must run the
wsdltosoap command iteratively, once for each port type. For example:
> wsdltosoap -i <PortType A> -b <Binding A>

-o <IDLFile>01.wsdl <IDLFile> .wsdl
> wsdltosoap -i <PortType B> -b <Binding B>

-o <IDLFile>o02.wsdl <IDLFile>01.wsdl
> wsdltosoap -i <PortType C> -b <Binding C>

-o <IDLFile>03.wsdl <IDLFile>o02.wsdl

Where the -o <FileName> flag specifies the name of the output file.
At the end of this step, rename the WSDL file to router.wsdl.

4. Add SOAP endpoints—add a service element for each of the port
types you want to expose. For example, a simple SOAP endpoint could
have the following form:

<definitions name="" targetNamespace="..."

xmlns: soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
- e>

<service name="<SOAPServiceName> ">
<port binding="tns:<SOAPBinding>" name="<SOAPPortName>">
<soap:address location="http://localhost:9000"/>
<http-conf:client/>
<http-conf:server/>
</port>
</service>
</definitions>

In the preceding example, you must add a line that defines the
http-conf namespace prefix in the <definitionss tag.

The most important setting in the SOAP port is the 1ocation attribute
of the soap:address element, which can be set to one of the following
HTTP URLs:

55

CHAPTER 3 | Exposing a CORBA Service as a Web Service

¢ Explicit HTTP URL—if a particular service is meant to listen on a
fixed address, you can specify the <hostname> and <port>
values explicitly.
location="http://<hostname> :<port>

. Placeholder HTTP URL—if a service is meant to be created
dynamically at runtime, you should specify a transient HTTP
URL, as follows:

location="http://localhost:0

At runtime, the placeholder URL is replaced by an explicit
address when the service is created. Artix treats the enclosing
service element as a template, allowing multiple transient
services to be created at runtime.

Note: It is also possible to add a SOAP endpoint to the WSDL
contract using the wsdltoservice command line tool. For details of
this command, see the Command Line Reference document.

5. Add a route for each exposed port type—for each port type, you need
to set up a route to translate incoming SOAP requests into outgoing
CORBA requests. For example, the following route definition instructs
the router to map incoming SOAP/HTTP request messages to a CORBA
endpoint.

<definitions name="" targetNamespace="TargetNamespaceURI"

xmlns: tns="TargetNamespaceUR/"
xmlns:nsl="http://schemas.iona.com/routing"
.

<nsl:route name="route 0">
<nsl:source service="tns: <SOAPServiceName>n
port="<SOAPPortName>"/>
<nsl:destination service="tns:<CORBAServiceName>n
port="<CORBAPortName>n"/>
</nsl:route>
</definitions>

In the preceding example, you must add a line that defines the ns1
namespace prefix in the <definitions> tag.

56

Converting IDL to WSDL

The ns1:source element identifies the SOAP/HTTP endpoint in the
router that receives incoming requests from a client. The
nsl:destination element identifies the CORBA endpoint in the Orbix
server to which outgoing requests are routed.

Note: Generally, when defining routes, if the location of the source
endpoint is a placeholder, the location of the destination endpoint
should also be a placeholder.

Check that you have added all the namespaces that you need—for a
typical SOAP/HTTP to CORBA route, you typically need to add the
following namespaces (in addition to the namespaces already
generated by default):

<definitions name="" targetNamespace="TargetNamespaceUR/"

>.<r;1ins :tns="TargetNamespaceUR|"

xmlns:nsl="http://schemas.iona.com/routing"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
xmlns:wsa="http://www.w3.0rg/2005/08/addressing"

. >

</definitions>

Include the WS-Addressing schema (if required)—if your IDL passes
any object references (for example, as parameters or return values), the
corresponding WSDL contract needs to include the WS-Addressing
schema to represent the object references.

57

CHAPTER 3 | Exposing a CORBA Service as a Web Service

For example, assuming that the wsaddressing.xsd schema file is
stored in the same directory as router.wsdl, you can include the
WS-Addressing schema in the router contract as follows:

<definitions name="" targetNamespace="TargetNamespaceURI"

.>

<types>
<schema targetNamespace="..." ...>
<import namespace="http://www.w3.org/2005/08/addressing"
schemalocation="wsaddressing.xsd"/>
</schema>
</types>
</definitions>
The original copy of the wsaddressing.xsd schema file is located in the
ArtixInstallDir/artix/Version /schemas directory.
router.wsdl file contents For example, if the router contract contains a single port type, the contents

of router.wsdl would have the following outline:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="" targetNamespace="TargetNamespaceUR/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns: corba="http://schemas.iona.com/bindings/corba"
xmlns:corbatm="http://schemas.iona.com/typemap/corba/cdr over ii
op.idl"
xmlns:wsa="http://www.w3.0rg/2005/08/addressing"
xmlns: soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu
ration"
xmlns:nsl="http://schemas.iona.com/routing"
xmlns: tns="TargetNamespaceUR/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://schemas.iona.com/idltypes/cdr over iiop.idl"s
<types>
</types>
<message name="..."/>

<portType name="<PortTypeName>">

</portType>

58

Converting IDL to WSDL

<binding name="<CORBABindingName> "
type="tns: <PortTypeName> ">

</bi1;aing>

<binding name="<SOAPBindingName >
type="tns: <PortTypeName> ">

</bi1:1<.i:|:.ng>

<service name="<CORBAServiceName>">

</seJ;'\;ice>

<service name="<SOAPServiceName>">

</se]l:'\.fice>

<nsl:route name="route 0">
<nsl:source service="tns: <SOAPServiceName >
port="<SOAPPortName>" />
<nsl:destination service="tns:<CORBAServiceName>"
port="<CORBAPortName>"/>
</nsl:route>
</definitions>

Generate the client contract The client WSDL contract is a modified copy of the router contract
containing only those details of the contract that are relevant to the client.
To generate the client contract, perform the following steps:

1. Copy the router.wsdl file to client.wsdl.

2. Edit the client.wsdi file to remove redundant elements. That is, you
should remove the following:

+ CORBA binding elements.
. CORBA service elements.
. route elements.

You could also optionally remove some of the redundant namespace
definitions, such as corba, corbatm, and nsi.

client.wsdl file contents For example, if the client contract contains a single port type, the contents
of client.wsdl would have the following outline:

59

CHAPTER 3 | Exposing a CORBA Service as a Web Service

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="" targetNamespace="TargetNamespaceUR/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:corba="http://schemas.iona.com/bindings/corba"
xmlns:corbatm="http://schemas.iona.com/typemap/corba/cdr over ii
op.idl"
xmlns:wsa="http://www.w3.0rg/2005/08/addressing"
xmlns: soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu
ration"
xmlns:nsl="http://schemas.iona.com/routing"
xmlns: tns="TargetNamespaceUR/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://schemas.iona.com/idltypes/cdr over iiop.idl"s
<types>
</types>
<message name="..."/>
<portType name="<PortTypeName>">
</portType>
<binding name="<SOAPBindingName>n
type="tns: <PortTypeName> ">
</binding>
<service name="<SOAPServiceName> ">

</service>
</definitions>

60

Embedding Artix in a CORBA Service

Embedding Artix in a CORBA Service

Overview

In this section

If you want to expose an Orbix 6 CORBA server as a Web service, you have
the option of embedding Artix directly in the CORBA server.

This embedding is possible because Artix and Orbix are both built using the
same framework: |IONA’s Adaptive Runtime Technology (ART). Using the
ART framework, it is possible to run Artix and Orbix in the same process just
by loading the appropriate set of plug-ins needed by each product.

This section contains the following subsections:

Embedded Router Scenario page 62

Embedding a Router in the CORBA Server page 64

61

CHAPTER 3 | Exposing a CORBA Service as a Web Service

Embedded Router Scenario

Overview Figure 11 shows an overview of an Artix router embedded in a CORBA
server. In this scenario, the CORBA service is exposed as a Web service that
supports SOAP over HTTP. The embedded router is responsible for
converting incoming SOAP/HTTP requests into colocated requests on the
CORBA server. Any replies from the CORBA server are then converted into
SOAP/HTTP replies by the router and sent back to the client.

Note: Embedding an Artix router is an option that is only available to
Orbix 6 based CORBA applications. In general, the most straightforward
way to build these applications is to use the Orbix libraries included with
the Artix product. If you need to link with libraries taken directly from an
Orbix distribution, you must take care to ensure that these libraries are
binary compatible with Artix.

Figure 11: Artix Router Embedded in a CORBA Server

Artix Orbix 6
I K I
1IOP
A4
Web Services SOAPHTTP CORBA
. » Embedded Router
Client Server
wsbL Generate bt
e — <_ __________________ e —
Router Contract Target Contract

62

Modifications to CORBA server

Elements required for this
scenario

Embedding Artix in a CORBA Service

The following changes must be made to the CORBA server to embed the
Artix router:

® Code changes—No.
® Re-compilation—No.

® Configuration—modify the Orbix configuration file.

The following elements are required to implement this scenario:
® WSDL contract for clients.

® WSDL contract for the embedded router.
Modified Orbix configuration file for the CORBA server.

63

CHAPTER 3 | Exposing a CORBA Service as a Web Service

Embedding a Router in the CORBA Server

Overview

Convert IDL to WSDL

Deploy the requisite WSDL files

Edit the Artix configuration

64

This section describes how to embed a router in a CORBA server. The
embedded router enables the CORBA server to receive requests from a
SOAP/HTTP Web services client. The following steps are described:

® Convert IDL to WSDL.
® Deploy the requisite WSDL files.
® Edit the Artix configuration.

Use the Artix utilities to generate two WSDL files, router.wsdl and
client.wsdl, from the CORBA server’s IDL interface. For details of how to
convert the IDL file to WSDL, see “Converting IDL to WSDL"” on page 52.

Deploy the following WSDL files on the CORBA server host:

® router.wsdl—the router contract, which describes the route for
converting SOAP/HTTP requests into CORBA requests.

® ywsaddressing.xsd—the schema that defines the
wsa: EndpointReferenceType data type, which Artix uses to represent
object references.
The WS-Addressing schema is usually (but not always) required on the
server side. If your IDL does not pass object endpoint references as

parameters or return values, however, you do not need to deploy this
file.

Given that your CORBA server is configured by a particular configuration
SCOpE, orbix srvr with embeded router, Example 3 shows how to modify
the server configuration to embed an Artix router.

Example 3: Artix Configuration Suitable for an Embedded Artix Router

Artix Configuration File

orbix srvr with embedded router {

Modified configuration required for embedded router:

Embedding Artix in a CORBA Service

Example 3: Artix Configuration Suitable for an Embedded Artix Router

Da

#

orb plugins = [..., "ws _orb", "soap", "at http", "routing",
"bus loader"] ;

binding:client binding list = ["OTS+GIOP+IIOP", "GIOP+IIOP"];
plugins:routing:wsdl url="../../etc/router.wsdl";
plugins:ws_orb:shlib name = "it_ws orb";
plugins:soap:shlib name = "it soap";

plugins:http:shlib name = "it http";
plugins:at_http:shlib name = "it at http";
plugins:routing:shlib name = "it routing";
plugins:bus loader:shlib name = "it bus loader";

share variables with internal orb = "false";

The preceding Artix configuration can be explained as follows:
1.

Edit the ORB plug-ins, adding the requisite Artix plug-ins to the list. In
this example, the following plug-ins are needed:

¢+ ws_orb plug-in—enables the router to send and receive CORBA
messages.

¢+ soap plug-in—enables the router to send and receive SOAP
messages.

s+ at_http plug-in—enables the router to send and receive
messages over the HTTP transport.

. routing plug-in—contains the core of the Artix router.

s bus_loader plug-in—triggers the Artix Bus initialization step. This
plug-in is needed only when you are loading Artix plug-ins into a
non-Artix application.

Note: In Artix 3.0, Artix plug-ins were refactored to cleanly separate
the ORB initialization step from the Artix Bus initialization step.
Usually, in an Artix application, IT Bus::init () triggers the Bus
initialization step. In this example, however, the CORBA server never
calls IT Bus::init (). Therefore, the bus loader plug-in is needed to
finish the initialization of the Artix plug-ins.

65

CHAPTER 3 | Exposing a CORBA Service as a Web Service

66

If you plan to use other bindings and transports, you might need to add
some other Artix plug-ins instead.

The Artix embedded router is not compatible with the poa coloc
interceptor. Therefore you must edit the server's
binding:client binding list entry to remove any bindings
containing the poa_coloc interceptor.
For example, if the client binding list is defined as follows:
binding:client binding list =

["OTS+POA Coloc", "POA Coloc", "OTS+GIOP+IIOP", "GIOP+IIOP"] ;
You would replace it with the following list:

binding:client binding list = ["OTS+GIOP+IIOP","GIOP+IIOP"];

Note: If the binding:client binding list variable does not
appear explicitly in the server's configuration scope, try to find it in
the next enclosing scope (or the scope that is nearest to the server's
configuration scope) and copy it into the server's scope.

If you do not purge the poa_coloc entries from the client binding list,
clients that attempt to access the server through the router will receive
a CORBA: : UNKNOWN exception.

The plugins:routing:wsdl_url setting specifies the location of the
router WSDL contract (see “Converting IDL to WSDL"” on page 52).
The URL can be a relative filename (as here) or a general file: URL.
In order for Orbix to load the Artix plug-ins, for each plug-in you must
specify the root name of the shared library (or DLL on Windows) that
contains the plug-in code. The requisite

plugins: <plugin_name> :shlib name entries can be copied from the
root scope of the Artix configuration file, artix.cfg.

You can also specify additional configuration settings for the Artix
plug-ins at this point (see the Artix Configuration Reference for more
details).

In certain circumstances, Orbix creates an internal ORB instance (for
example, during initialization). To prevent the settings from the current
scope being used by the internal ORBs—specifically, to prevent the
internal ORB from loading Artix plug-ins—you should set the

share variables with internal orb configuration variable to false.

Embedding Artix in a CORBA Service

67

CHAPTER 3 | Exposing a CORBA Service as a Web Service

Exposing an Orbix 3.3 or Non-Orbix Service as
a Web Service

Overview If you want to expose an Orbix 3.3 or non-Orbix CORBA server as a Web
service, it is generally necessary to deploy a standalone Artix router that acts
as a bridge between Web services clients and the CORBA server. Using a
standalone router is a non-intrusive integration approach that should work
with any CORBA back-end.

In this section This section contains the following subsections:

Standalone SOAP-to-CORBA Router Scenario page 69

Configuring and Running a Standalone SOAP-to-CORBA Router
page 71

68

Exposing an Orbix 3.3 or Non-Orbix Service as a Web Service

Standalone SOAP-to-CORBA Router Scenario

Overview

Container

Modifications to CORBA server

Figure 12 shows an overview of a standalone router. In this scenario, the
router is packaged as a standalone application, which acts as a bridge
between the Web services client and the CORBA server. The standalone
router is responsible for converting incoming SOAP/HTTP requests into
outgoing requests on the CORBA server. Replies from the CORBA server are
converted into SOAP/HTTP replies by the router and sent back to the client.

Figure 12: Standalone Artix Router

Artix Orbix 3.3
I
Web Services SOAP/HTTP o CORBA
- » Standalone Router >
Client Server
WSDL Generate b
Router Contract Target Contract

The Artix container, it _container, is an application that can be used to run
any of the standard Artix services. The functionality of the container is
determined by the plug-ins it loads at runtime.

In this scenario, the container is configured to load the router plug-in (along
with some other plug-ins) so that it functions as a standalone router.

When using a standalone Artix router, no modifications need be made to the
CORBA server.

69

70

CHAPTER 3 | Exposing a CORBA Service as a Web Service

Elements required for this The following elements are required to implement this scenario:
scenario

® WSDL contract for clients.
WSDL contract for the standalone router.
Artix configuration file for the standalone router.

Exposing an Orbix 3.3 or Non-Orbix Service as a Web Service

Configuring and Running a Standalone SOAP-to-CORBA Router

Overview This section describes how to configure and run a standalone router that
acts as a bridge between a SOAP/HTTP Web services client and a CORBA
server. The following steps are described:

® Convert IDL to WSDL.

® Deploy the requisite WSDL files.
® Create the Artix configuration.

® Run the standalone router.

Convert IDL to WSDL Use the Artix utilities to generate two WSDL files, router.wsdl and
client.wsdl, from the CORBA server's IDL interface. For details, see
“Converting IDL to WSDL” on page 52.

Deploy the requisite WSDL files Deploy the following WSDL files on the standalone router host:

® router.wsdl—the router contract, which describes the route for
converting SOAP/HTTP requests into CORBA requests.

® wsaddressing.xsd—the schema that defines the
wsa : EndpointReferenceType data type, which Artix uses to represent
object references.
The WS-Addressing schema is usually (but not always) required on the
server side. If your IDL does not pass object references as parameters
or return values, however, you do not need to deploy this file.

Create the Artix configuration Example 4 shows a suitable configuration for a standalone router that maps
incoming SOAP/HTTP requests to outgoing CORBA requests.

Example 4: Artix Configuration Suitable for a Standalone Artix Router

Artix Configuration File

standalone router
Configuration for standalone router:

#
1 orb plugins = ["xmlfile log stream", "iiop profile", "giop",
"iiop", "ws_orb", "soap", "at_ http", "routing"];

71

CHAPTER 3 | Exposing a CORBA Service as a Web Service

72

Example 4: Artix Configuration Suitable for a Standalone Artix Router

It

plugins:routing:wsdl url="../../etc/router.wsdl";
plugins:ws_orb:shlib name = "it ws orb";
plugins:soap:shlib name = "it soap";

plugins:http:shlib name = "it http";
plugins:at_http:shlib name = "it at http";
plugins:routing:shlib name = "it routing";

Uncomment these lines for interoperability with Orbix 3.3
#policies:giop:interop policy:negotiate transmission codeset

= "false";
#policies:giop:interop policy:send principal = "true";
#policies:giop:interop policy:send locate request = "false";

The preceding Artix configuration can be explained as follows:
1.

Edit the ORB plug-ins, adding the requisite Artix plug-ins to the list. In
this example, the following plug-ins are needed:

¢ xmlfile log stream plug-in—enables logging to an XML file.

. iiop profile, giop, and iiop plug-ins—enables the IIOP
protocol (used by CORBA).

s+ ws_orb plug-in—enables the router to send and receive CORBA
messages.

. soap plug-in—enables the router to send and receive SOAP
messages.

¢ at_http plug-in—enables the router to send and receive
messages over the HTTP transport.

¢+ routing plug-in—contains the core of the Artix router.

If you plan to use other bindings and transports, you might need to add

some other Artix plug-ins instead.

The plugins:routing:wsdl url setting specifies the location of the
router WSDL contract (see “Converting IDL to WSDL"” on page 52).
The URL can be a relative filename (as here) or a general file: URL.

Run the standalone router

Exposing an Orbix 3.3 or Non-Orbix Service as a Web Service

3. To load the Artix plug-ins, you must specify the root name of the
shared library (or DLL on Windows) that contains the plug-in code. The
requisite plugins: <plugin_name>:shlib name entries can be copied
from the root scope of the Artix configuration file, artix.cfg.

You can also specify additional plug-in configuration settings at this
point (see the Artix Configuration Reference for more details).

4. If the router needs to integrate with an Orbix 3.3 CORBA server, you
should uncomment these lines to enable interoperability. For more
details about these configuration settings, see the Artix Configuration
Reference.

Note: These interoperability settings might also be useful for
integrating with other third-party ORB products. See the Artix
Configuration Reference for more details.

Run the standalone router by invoking the container, it _container, passing
the router's ORB name as a command-line parameter (the ORB name is
identical to the name of the router’s configuration scope).

For example, to run the router configured in Example 4 on page 71, enter
the following at a command prompt:

it_container -ORBname standalone router

73

CHAPTER 3 | Exposing a CORBA Service as a Web Service

74

In this chapter

CHAPTER 4

CORBA-to-CORBA
Routing

This chapter describes some special routing options that are
available when the source endpoint and the destination
endpoint in a route are both based on the CORBA binding.

This chapter discusses the following topics:

Bypassing the Router page 76

75

CHAPTER 4 | CORBA-to-CORBA Routing

Bypassing the Router

Overview

In this section

76

Specifically for the CORBA binding, the Artix router supports an option to
redirect incoming client connections so that the clients connect directly to
the target server, bypassing the router. This option is only available, if both
the client and the target server are CORBA-based. Bypassing the router
enables you to achieve optimum efficiency for a CORBA-to-CORBA route,
but this option also has some interactions with other router features.

This section contains the following subsections:

Basic Bypass Scenario page 77
Bypass with Failover Scenario page 81
Bypass with Load Balancing Scenario page 84

Bypassing the Router

Basic Bypass Scenario

Overview Bypass routing is a CORBA-specific feature that exploits the /ocation
forwarding feature of the General Inter-ORB Protocol (GIOP). Location
forwarding is based on specific GIOP message types, which enable CORBA
services to redirect incoming connections to alternative destinations.
Figure 13 gives an overview of a basic bypass routing scenario.

Figure 13: Basic Bypass Routing Scenario

CORBAPortOnRouter

CORBA @ \

O— Router

Client ----------<--
@
CORBAPort
CORBA
@ Server
Scenario steps The basic bypass routing scenario shown in Figure 13 can be described as
follows:
1. The CORBA client sends a GIOP request message to the
CORBAPortOnRouter endpoint.
2. The router sends a location forward reply (a special reply type defined

by GIOP), which contains the interoperable object reference (IOR) for
the destination endpoint on the target server.

Note: Internally, the router converts the address of the destination
endpoint to an IOR using the CORBA: :ORB: : string to object ()
function. This affects the semantics of connection establishment.

For example, if the destination endpoint is specified as a corbaname
URL, the router would implicitly resolve the name to an IOR (by
contacting a CORBA naming service) before sending the location
forward reply.

77

CHAPTER 4 | CORBA-to-CORBA Routing

Interactions with other features

Effect on pass-through

Effect on security

78

3. The CORBA client uses the received IOR to open a connection directly
to the destination endpoint on the target server. The client now sends
its request messages directly to the destination endpoint on the target.

Note: This step might also involve sending an additional location
forward message. For example, if the destination endpoint is an Orbix
server with a plain text key plug-in, the server might need to look
up the incoming object key in the plain text key plug-in’s registry
to obtain the complete IOR. This IOR would then be sent back to the
client inside a location forward reply.

Bypass routing interacts with various other router features, as follows:
® Effect on pass-through.

® Effect on security.

® Incompatibility with fanout.

® Incompatibility with content-based routing.

® Incompatibility with transport attributes.

® Unsuitability for connection concentrator.

Bypass routing and pass-through routing can be enabled simultaneously. If
the route is CORBA only (that is, the binding types for the source and
destination endpoints are both CORBA), bypass routing takes priority. For
non-CORBA binding types, pass-through routing is used.

When bypass routing is enabled, you must ensure that the CORBA client is
appropriately configured for opening a secure connection directly to the
destination endpoint.

It is important also to understand that the router does not provide any
protection for the destination endpoint. The CORBA server on the far side of
the router must be independently capable of enforcing the level of security
that it requires.

Incompatibility with fanout

Incompatibility with
content-based routing

Incompatibility with transport
attributes

Unsuitability for connection
concentrator

Bypassing the Router

Bypass routing is not compatible with fanout routes (which can be enabled
by setting the multiRroute attribute to fanout in the routing:route
element). A fanout route denotes a route where each incoming request
message propagates to multiple recipients on the destination side of the
route.

If fanout is enabled, the router would ignore the bypass setting and
implement fanout instead.

Bypass routing is not compatible with content-based routing (which can be
configured using the routing:query element in the router contract).

If content-based routing is enabled, the router would ignore the bypass
setting and implement content-based routing instead.

Bypass routing is not compatible with routes defined using transport
attributes (which can be configured using the routing:transportAttribute
element in the router contract). Transport attributes enable you to specify a
route based on the values set in the transport attributes in the message
headers.

If transport attributes based routing is enabled, the router would ignore the
bypass setting and implement transport attributes based routing instead.

A connection concentrator is a deployment pattern, where multiple clients
connect to the same source endpoint on a router, but there is only a single
connection from the router to the destination endpoint. This pattern enables
you to reduce the number of connections made to the destination endpoint.

It does not make sense to use the bypass feature with a connection
concentrator, because all of the client connections would end up going
directly to the destination endpoint.

79

CHAPTER 4 | CORBA-to-CORBA Routing

To enable router bypass, add the following setting to the router's
configuration:

Configuring router bypass

Artix Configuration File
bypass_router

{

plugins:routing:use bypass = "true";

It

The default is false.

Example 5 shows an example of a basic bypass route that listens for
connection attempts on the corBaPortonrouter endpoint and then forwards

the connections on to the corrarort endpoint.

Sample route

Example 5: Sample Bypass Route
<definitions name="" targetNamespace="TargetNamespaceUR/"

xmlns: tns="TargetNamespaceUR/"
xmlns:nsl="http://schemas.iona.com/routing"

. >

<nsl:route name="pass through route">
<nsl:source service="tns:CORBAServiceOnRouter"

port="CORBAPortOnRouter" />
<nsl:destination service="tns:CORBAService"
port="CORBAPort"/>
</nsl:route>
</definitions>

80

Bypassing the Router

Bypass with Failover Scenario

Overview Bypass routing can be combined with the router failover feature (which can
be enabled by setting multiroute t0 failover in the routing:route
element). In this case, failover support requires cooperation between the
CORBA client and the router. Figure 14 gives an overview of a bypass

routing with failover scenario.

Figure 14: Bypass Routing with Failover Scenario

CORBAPortOnRouter
@ \ CORBAPort_03
CO_RBA Router CORBA
Client --------- @ -- @ Server
CORBAPort 01 CORBA Server
Server crashes!
@CORBéiort_O2 CORBA
Server
Scenario steps The bypass routing scenario shown in Figure 14 can be described as
follows:

1. The CORBA client sends a GIOP request message to the

CORBAPortOnRouter endpoint.

2. The router sends a location forward reply, which contains the IOR for
one of the destination endpoints in the failover cluster—for example,

CORBAPort_01.

3. The CORBA client uses the received IOR to open a connection directly
to the corBaPort 01 destination endpoint.

81

CHAPTER 4 | CORBA-to-CORBA Routing

Configuring bypass with failover

Sample route

82

4. If the target server crashes, the CORBA client transparently falls back
to the corBAPortonrouter endpoint.

5. The router again sends a location forward reply, which contains the
IOR for another of the destination endpoints in the failover cluster—for
example, CORBAPort 02.

6. The CORBA client uses the received IOR to open a connection directly
to the corBarort 02 destination endpoint.

To enable bypass routing with failover, add the following setting to the
router's configuration:

Artix Configuration File
bypass router

{

plugins:routing:use bypass = "true";

It

Example 6 shows an example of a bypass route with failover enabled. There
are three alternative destination endpoints in this failover cluster:
CORBAPort 01, CORBAPort 02, and CORBAPort 03.The multiRoute attribute
must be set to failover.

Bypassing the Router

Example 6: Sample Bypass Route with Failover
<definitions name="" targetNamespace="TargetNamespaceURI"

xmlns: tns="TargetNamespaceUR/"
xmlns:nsl="http://schemas.iona.com/routing"
o>

<nsl:route name="pass through route"
multiRoute="failover">
<nsl:source service="tns:CORBAServiceOnRouter"
port="CORBAPortOnRouter" />
<nsl:destination service="tns:CORBAService 01"
port="CORBAPort 01"/>
<nsl:destination service="tns:CORBAService 02"
port="CORBAPort 02"/>
<nsl:destination service="tns:CORBAService 03"
port="CORBAPort 03"/>
</nsl:route>
</definitions>

83

CHAPTER 4 | CORBA-to-CORBA Routing

Bypass with Load Balancing Scenario

Overview

84

Bypass routing can be combined with the router load balancing feature

(which can be enabled by setting multiroute t0 loadBalance in the

routing:route element). When load balancing is combined with bypass

routing, the router has the following characteristics:

® Incoming client connections are load-balanced using a round-robin
algorithm.

® Load balancing is implemented per-connection rather than
per-operation. That is, once a client is assigned to a particular
destination endpoint, it sends all of its requests to that endpoint.

® Failover is also supported in load balancing scenario. That is, if a
server fails, the client is forwarded on to the next healthy server in the
cluster (just as in the failover scenario).

Figure 15 gives an overview of a bypass routing with load balancing
scenario.

Figure 15: Bypass Routing with Load Balancing Scenario

CORBAPortOnRouter

@ \ CORBAPort_03
CO-RBA Router CORBA
Client (4------ @---- Server
CORBA {- @CQRBAPO“—“ CORBA
Client [Server

CORBAPort_02

CORBA

Server

Scenario steps

Configuring bypass with load
balancing

Bypassing the Router

The bypass routing scenario shown in Figure 15 can be described as

follows:

1. The first CORBA client sends a GIOP request message to the
CORBAPortOnRouter endpoint.

2. The router sends a location forward reply, which contains the IOR for
one of the destination endpoints in the load balancing cluster—for
example, CORBAPort 01.

3. The first CORBA client uses the received IOR to open a connection
directly to the corraPort 01 destination endpoint.

4. The second CORBA client sends a GIOP request message to the
CORBAPortOnRouter endpoint.

5. The router sends a location forward reply, which contains the IOR for
the next destination endpoint in the load balancing cluster—for
example, coreaport 02. The router load balancing uses a round-robin
algorithm to assign destination endpoints to successive clients.

6. The second CORBA client uses the received IOR to open a connection

directly to the corraPort 02 destination endpoint.

To enable bypass routing with load balancing, add the following setting to
the router’s configuration:

Artix Configuration File

bypass router

{

It

plugins:routing:use bypass = "true";

85

CHAPTER 4 | CORBA-to-CORBA Routing

Sample route Example 7 shows an example of a bypass route with load balancing
enabled. There are three alternative destination endpoints in the load
balancing cluster: corBAPort 01, CORBAPort 02, and CORBAPort 03. The
multiRoute attribute must be set to loadralance.

Example 7: Sample Bypass Route with Load Balancing
<definitions name="" targetNamespace="TargetNamespaceUR/"

xmlns: tns="TargetNamespaceUR/"
xmlns:nsl="http://schemas.iona.com/routing"
o>

<nsl:route name="pass through route"
multiRoute="loadBalance">
<nsl:source service="tns:CORBAServiceOnRouter"
port="CORBAPortOnRouter" />
<nsl:destination service="tns:CORBAService 01"
port="CORBAPort 01"/>
<nsl:destination service="tns:CORBAService 02"
port="CORBAPort 02"/>
<nsl:destination service="tns:CORBAService 03"
port="CORBAPort 03"/>
</nsl:route>
</definitions>

86

In this chapter

CHAPTER 5

Integrating the
CORBA Naming
Service with Artix

In a mixed Artix/CORBA system, it is often necessary for an
Artix application to retrieve an object reference from the
CORBA Naming Service. Artix supports a relatively simple
configuration option for binding a name to or resolving a name
from the CORBA Naming Service: simply set the location
attribute of <corba:address> to be a corbaname URL.

This chapter discusses the following topics:

How an Artix Client Resolves a Name page 88
How an Artix Server Binds a Name page 92
Artix Client Integrated with a CORBA Server page 95

87

CHAPTER 5 | Integrating the CORBA Naming Service with Artix

How an Artix Client Resolves a Name

Overview

88

Figure 16 shows a typical scenario where an Artix client might need to

resolve a name from the CORBA Naming Service. The Artix client, which is
configured to have a corba binding, connects to a pure CORBA server using

the CORBA Naming Service.

To configure the client to resolve the name, you need to specify a corbaname
URL in the corba:address element within a service. No programming is

required. There are, however, some prerequisites settings in the Artix

configuration file that are also required in order to enable the client to find

the CORBA Naming Service.

Figure 16: Artix Client Resolving a Name from the Naming Service

CORBA
Server

Orbix 6.x COR.BA
Naming
Locator .
Service
<hostname>: <port>l (L
(?Iirgr):t T 11OP port
» O—
Iop @

Resolving steps for Orbix 6.x

Prerequisites

Artix Configuration File
artix client of Orbix 6 {

How an Artix Client Resolves a Name

Artix performs the following steps to resolve a name in the Orbix 6.x CORBA
Naming Service (as shown in Figure 16):

Step Action

1 | The Artix client sends a GIOP LocateRequest message to the
Orbix locator, whose hostname and port is specified in the Artix
configuration file. The LocateRequest reply gives the location of
the CORBA Naming Service.

2 | The Artix client contacts the CORBA Naming Service to resolve
the name specified in the WSDL corba:address element.

3 | The object reference returned from the naming service is used
to contact the CORBA server.

Before configuring the client’'s WSDL contract to resolve a name from the
CORBA Naming Service, you must edit the Artix configuration file to provide
some details about the remote naming service. The configuration settings
depend on the kind of ORB you are interoperating with, as follows:

Interoperating with Orbix 6.x, ASP 5.x

In your Artix configuration file,

ArtixlnstallDir/artix/Version /etc/domains/artix.cfg, add the following
lines to the configuration scope used by the Artix client:

initial references:NameService:reference = "corbaloc:: <hostname> : <pOI’t> /NameService";
url resolvers:corbaname:plugin="naming resolver";
plugins:naming resolver:shlib name="it naming";

I

89

CHAPTER 5 | Integrating the CORBA Naming Service with Artix

Artix Configuration File
artix client or Orbix 33 {

Where <hostname> : <port> is the host and port where the Orbix locator
service is running. By default, Orbix 6.x configures the locator <port> to be
3075, but you might need to check the plugins:locator:iiop:port setting
in your Orbix 6.x configuration file if you are not sure of the value.

Note: The Orbix locator service is responsible for keeping track of running
Orbix services. It is completely unrelated to the Artix locator service.

Interoperating with Orbix 3.3

In your Artix configuration file,

ArtixInstallDir/artix/Version /etc/domains/artix.cfg, add the following
lines to the configuration scope used by the Artix client:

initial references:NameService:reference = "IOR:000000 "

policies:giop:interop policy:negotiate transmission codeset = "false";
policies:giop:interop policy:send principal = "true";
policies:giop:interop policy:send locate request = "false";

Ik

90

The stringified IOR shown in the preceding example, 10r:000000. .., can be
obtained from the 3.3.x Naming Service by starting the NS with the -1
<filename > switch and copying the IOR from the <filename> into the
configuration file. When using the 1or: format, you do not need to load the
naming resolver plug-in (the naming resolver is needed only to resolve
corbaloc URLS).

Interoperating with other ORBs

Generally, the approach used for interoperating with Orbix 3.3 (initializing
initial references:NameService:reference with the value of the naming
service's IOR) should work for just about any third-party ORB product. You
might need to modify some of the GIOP interoperability policies, however.
For more details, consult the Artix Configuration Reference.

How an Artix Client Resolves a Name

Configure the WSDL service To configure an Artix client to resolve a name in the CORBA Naming

Service, use the corbaname URL format in the <corba:address> tag, as
follows:

<service name="CORBAService">
<port binding="tns:CORBABInding" name="CORBAPort">
<corba:address location="corbaname:rir:/NameService#StringName" />
</port>
</service>

Where StringName is the name that you want to resolve, specified in the
standard CORBA Naming Service string format. For example, if you have a
name with id equal to ArtixTest and kind equal to obj, contained within a
naming context with id equal to Foo and kind equal to ctx, the corbaname
URL would be expressed as:
corbaname:rir:/NameService#fFoo.ctx/ArtixTest .obj

In other words, the general format of a string name is as follows:
<id>[.<kind>]/<id>[.<kind>]/. ..

91

CHAPTER 5 | Integrating the CORBA Naming Service with Artix

How an Artix Server Binds a Name

Overview

92

Figure 17 shows a typical scenario where an Artix server might need to bind
a name to the CORBA Naming Service. In the context of the CORBA Naming
Service, binding a name means that the server advertises the location of a

CORBA object by storing an object reference against a name in the naming
service.

To configure the server to bind the name, you need to specify a corbaname
URL in the corba:address element within a service (exactly the same
configuration as an Artix client). When the Artix server activates the
<services Or <ports, by registering with the Artix Bus, the runtime
automatically binds the name in the naming service.

Figure 17: Artix Server Binding a Name to the Naming Service

. CORBA
Orbix 6.x ;
Naming
Locator .
Service

<hostname>: <port>l l

CORBA T Artix
Client Server
11OP port

How an Artix Server Binds a Name

Binding steps for Orbix 6.x Artix performs the following steps to bind a name in the Orbix 6.x CORBA
Naming Service (as shown in Figure 17):

Step Action

1 | The Artix server sends a GIOP LocateRequest message to the
Orbix locator, whose hostname and port is specified in the Artix
configuration file. The LocateRequest reply gives the location of
the CORBA Naming Service.

2 | The Artix server contacts the CORBA Naming Service to bind
the name specified in the WSDL corba:address element.

Prerequisites The prerequisites for an Artix server that binds a name to the CORBA
Naming Service are identical to the prerequisites for an Artix client that
resolves a name—see “Prerequisites” on page 89 for details.

Configure the WSDL service To configure an Artix server to bind a name in the CORBA Naming Service,
use the corbaname URL format in the <corba:addresss> tag, as follows:

<service name="CORBAService">
<port binding="tns:CORBABInding" name="CORBAPort">
<corba:address location="corbaname:rir:/NameService#StringName />
</port>
</service>

Where StringName is the name that you want to resolve, specified in the
standard CORBA Naming Service string format.

This is identical to the configuration for an Artix client, but the server treats
this configuration setting differently. When an Artix server activates a service
containing a corbaname URL, the server automatically binds the given
StringName into the CORBA naming service.

93

CHAPTER 5 | Integrating the CORBA Naming Service with Artix

Binding semantics

94

The automatic binding performed by an Artix server when it encounters a
corbaname URL has the following characteristics:

The binding operation has the semantics of the

CosNaming: :NamingContext : :rebind () |DL operation. That is, the
bind operation either creates a new binding or clobbers an existing
binding of the same name.

If some of the naming contexts in the StringName compound name do
not yet exist in the naming service, the Artix server does not create the
missing contexts.

For example, if you try to bind a StringName with the value
Foo/Bar/SomeName Where neither the Foo nor Foo/Bar naming contexts
exist yet, the Artix server will not bind the given name. You would need
to create the naming contexts manually prior to running the Artix server
(for example, in Orbix 6.x you could issue the command itadmin ns
newnc NameContext).

Artix Client Integrated with a CORBA Server

Artix Client Integrated with a CORBA Server

Overview

In this section

This section presents an example scenario of an Artix client integrated with
a CORBA server, where the client obtains a CORBA object reference through
the CORBA Naming Service.

In summary, the scenario works as follows:
[)

A CORBA Naming Service from an ORB product (presumed to be Orbix
6.x) is assumed to be running.

As the CORBA server starts up, it uses the cosNaming: :NamingContext
IDL interface to bind a name to the naming service.

When the Artix client starts up, the Artix runtime reads the client’s
WSDL contract, extracts a corbaname URL and contacts the naming
service to resolve the corbaname URL.

This section contains the following subsections:

CORBA Server Implementation page 96

Artix Client Configuration page 99

95

CHAPTER 5 | Integrating the CORBA Naming Service with Artix

CORBA Server Implementation

Overview The code example in this subsection shows you how a server binds a name
to the root naming context of the CORBA Naming Service. This shows how a
CORBA programmer can use the standard cosNaming: :NamingContext |IDL
interface to bind a name.

Note: This is a pure CORBA example; there is no Artix programming
involved here.

CORBA server main function Example 8 shows part of the main() function for a CORBA server that
registers a name in the CORBA Naming Service. The lines of code shown in
bold bind the name, artixTest, to the root naming context.

Example 8: CORBA Server that Register a Name in the Naming Service

// C++
#include <omg/CosNaming.hh>

int main(int argc, char* argv[])

{

IT TerminationHandler::set_signal handler (sig_handler) ;

try
{
cout << "Initializing the ORB" << endl;
global orb = CORBA::ORB_init (argc, argv);
CORBA: :Object var poa obj =
global orb->resolve initial references ("RootPOA") ;
PortableServer: :POA var root poa =
PortableServer: :POA: :_narrow (poa_obj) ;
assert (!CORBA: :is nil (root_poa)) ;

cout << "Creating objects" << endl;
HWImplementation hw_ servant;

PortableServer: :ObjectId var hw oid =
root_poa->activate object (&hw_servant) ;

96

Artix Client Integrated with a CORBA Server

Example 8: CORBA Server that Register a Name in the Naming Service

CORBA: :Object_var ref=

root poa->create reference with id(

}

hw_oid,
_tc HelloWorld->id()
)i

// Use the simple NamingContext interface
CosNaming: :NamingContext var rootContext;

// Get a reference to the Root Naming Context.
CORBA: :Object var objVar;
objVar = global orb->resolve initial references(
"NameService"
);
rootContext = CosNaming::NamingContext:: narrow(cbjVar) ;

if (CORBA::is nil (rootContext.in()))
cerr << " narrow returned nil" << endl;
return 1;

CosNaming: :Name var tmpName = new CosNaming: :Name (1) ;
tmpName->length (1) ;

tmpName [0] .id = CORBA::string dup ("ArtixTest");
tmpName [0] .kind = CORBA::string dup("");
rootContext->rebind (tmpName, ref);

// Activate the POA Manager to allow requests to arrive
PortableServer: :POAManager var poa manager =

root poa->the POAManager () ;
poa_manager->activate() ;

// Give control to the ORB
//

global orb->run() ;

return 0;

catch (CORBA::Exception& e)

{
}

cout << "Error occurred: " << e << endl;

return 1;

97

CHAPTER 5 | Integrating the CORBA Naming Service with Artix

Demonstration code

98

If you want to run this CORBA server code in a real example, you could use
the following demonstration as a starting point:
ArtixinstallDir/axrtix/Version /demos/transports/cdr_over iiop/corba

In the server subdirectory, there is an existing server.cxx mainline file that
publishes the IOR by saving to a file. To change the server to use the
naming service, you can replace the existing server main () function with the
code shown in Example 8 on page 96.

Note the following points:

® Remember to add the include line, #include <omg/CosNaming.hhs, at
the start of the server.cxx file.

¢ Edit the server makefile, adding the it naming library to the link list.
For example, on Windows you would add it naming.1lib to the link
list.

® You need a separate ORB product (for example, Orbix) to run the
CORBA Naming Service. The Artix product does not include a CORBA
Naming Service.

Artix Client Integrated with a CORBA Server

Artix Client Configuration

Overview

Demonstration configuration

Artix configuration file

Artix Configuration File

This subsection shows how to configure an Artix client to fetch an object
reference from the CORBA Naming Service.

The configuration files referred to in this subsection are taken from the
odr_over_iiop demonstration and located in the following directory:

ArtixInstallDir/artix/Version /demos/transports/cdr_over iiop/etc

The corresponding client application requires no modification. You can
choose to run either a C+ + version of the client:

cdr over iiop/cxx/client
Or a Java version of the client:

cdr _over iiop/java/client

Example 9 shows the Artix configuration required for the Artix client to
interoperate with the Orbix 6.x naming service.

Example 9: Artix Configuration for Interoperating with Orbix 6 Naming

include "../../../../../etc/domains/artix.cfg";

demos {
cdr over iiop {
orb plugins = ["xmlfile log stream", "iiop profile", "giop", "iiop", "ws orb"];
initial references:NameService:reference = "corbaloc::localhost:3075/NameService";
url resolvers:corbaname:plugin = "naming resolver";
plugins:naming resolver:shlib name = "it naming";
corba {

orb plugins = ["iiop profile", "giop", "iiop"l;

}i

To configure the cdr_over iiop demonstration, edit the

cdr over iiop/etc/cdr over iiop.cfg file, inserting the three lines
highlighted in bold in Example 9 on page 99. You might need to modify the

99

CHAPTER 5 | Integrating the CORBA Naming Service with Artix

value of the hostname and port—this example assumes that the Orbix
locator service is running on the same host as the client, 1ocalhost, and
listening on the default port, 307s.

Note: The configuration shown in Example 9 on page 99 is specific to
the Orbix 6.x naming service. If you use a different ORB product, you
might have to set this configuration differently—see “Prerequisites” on
page 89 for more details.

WSDL contract You also need to edit the client's WSDL contract, specifying the location
attribute of the corba:address element using a corbaname URL.
Example 10 shows the modifications you need to make to the
corba:address element in the cdr_over iiop/etc/cdr over iiop.wsdl
contract file.

Example 10: CORBA Address Specified as a corbaname URL

<definitions name="cdr over iiop" targetNamespace="http://www.iona.com/cdr over iiop"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:corba="http://schemas.iona.com/bindings/corba"
xmlns:corbatm="http://www.iona.com/cdr over iiop"
.o

<service name="HelloWorldService">
<port binding="corbatm:HelloWorldBinding" name="HelloWorldPort">
<corba:address location="corbaname:rir:/NameService#ArtixTest"/>
</port>
</service>
</definitions>

When the client starts up, the Artix runtime automatically retrieves the

CORBA object reference by resolving the name, artixTest, in the scope of
the root naming context.

100

In this chapter

CHAPTER 6

Advanced CORBA
Port Configuration

This chapter describes some advanced configuration options
for customizing a CORBA port on an Artix server.

This chapter discusses the following topics:

Configuring Fixed Ports and Long-Lived I0Rs page 102
CORBA Timeout Policies page 108
Retrying Invocations and Rebinding page 110

101

CHAPTER 6 | Advanced CORBA Port Configuration

Configuring Fixed Ports and Long-Lived IORs

Overview

Transient service

102

Artix provides a corba:policy element that enables you to customize

certain CORBA-specific policies for a WSDL service that acts as a CORBA

endpoint. Essentially, the corba:policy element makes it possible to enable

the following features on a CORBA endpoint:

® Fixed IP port—the WSDL service listens on the same IP port all the
time. This is useful, for example, if the available range of IP ports is
restricted or if the service must be accessible through a firewall.

® [ong-lived interoperable object references (IORs)—the IOR remains
valid even after the server is stopped and restarted.

You can configure a WSDL service to behave in one of the following ways:
® Transient service.
® Direct persistent service.

By default, a CORBA endpoint is automatically configured to be transient. A
transient service generates I0Rs with the following characteristics:

® Randomly-assigned IP port—the IP port is assigned by the underlying
operating system. Hence, the port is generally different each time the
Artix server is run.

® Short-lived IORs—the CORBA binding generates IORs in such a way

that they are guaranteed to become invalid when the server is stopped
and restarted.

Note: In this context, transient is a CORBA concept which refers to the
TRANSIENT Value of the pPortableServer: :LifespanPolicy. This notion of
transience should not be confused with the Artix notion of transience,
which is concerned with registering transient servants. The two concepts
are completely different.

Configuring Fixed Ports and Long-Lived IORs

Direct persistent service You can optionally configure a CORBA endpoint to be direct persistent. A
direct persistent service generates I0Rs with the following characteristics:

Fixed IP port—you can explicitly assign the IP port by configuration.

Hence, the IP port remains the same each time the Artix server is run.

Long-lived IORs—the CORBA binding generates IORs in such a way

that they remain valid even when the server is stopped and restarted.

All of the addressing information embedded in the IOR must remain

constant, in particular:

s+ IP port is fixed—the WSDL service must be configured to listen
on a fixed IP port.

¢+ POA name is fixed—the POA name is a CORBA-specific
construct that identifies an endpoint.

¢+ Object ID in IOR is fixed—the Object ID is a CORBA-specific
construct that identifies a particular object in a given POA
instance.

¢+ POA is persistent—a prerequisite for generating long-lived IORs is
that the POA must have a life span policy value of PERSISTENT.

103

CHAPTER 6 | Advanced CORBA Port Configuration

Configuring a service to be direct To configure an Artix service to be direct persistent, you must edit both the
persistent WSDL file and the Artix configuration file.

Editing the WSDL file

Artix enables you to set direct persistence attributes in WSDL by adding a
corba:policy element to the WSDL service, as shown in Example 11.

Example 11: Setting Direct Persistence Attributes in WSDL
<definitions name="" targetNamespace="..."

xmlns:corba="http://schemas.iona.com/bindings/corba"
e >

;_;x::rvice name="CORBAServiceName" >
<port binding="tns:CORBABInding"
name="CORBAPortName" >

<corba:address location="file:///greeter.ior"/>
<corba:policy persistent="true"

poaname:“F QPN
serviceid="Object/D» />
</port>
</service>
</definitions>

The corba:policy attributes from Example 11 can be explained as follows:

® persistent attribute—by setting this attribute to true, you configure
the CORBA binding to generate persistent IORs (that is, IORs that
continue to be valid even after the Artix server is stopped and
restarted). The default value is false.

Note: In CORBA terms, this is equivalent to setting the
PortableServer: :LifespanPolicy policy {0 PERSISTENT.

® poaname attribute—in CORBA terminology, a POA is an object that
groups CORBA objects together (a kind of container for CORBA
objects). It is necessary to set the POA name here, because the POA
name is embedded in the generated I0Rs. The generated I0Rs would

104

Configuring Fixed Ports and Long-Lived IORs

not be long-lived, unless the POA name remains constant. By default,
a POA name is automatically generated with the value,
{ServiceNamespace }ServiceLocalPart#PortName.

Note: The POA name, FQPN, is a fully-qualified POA name. In
practice, however, you can only set a simple POA name. Artix
currently does not provide a way of creating a POA name hierarchy.

® serviceid attribute—in CORBA terminology, this attribute specifies an
Object ID for a CORBA object. It is necessary to set the Object ID here,
because the Object ID is embedded in the server-generated IOR. The
Object ID must have a constant value in order for the IOR to be
long-lived. By default, the underlying POA would generate a random
value for the Object ID.

Artix currently allows you to set only one Object ID for each port.

Note: The serviceid attribute also implicitly sets the
PortableServer: : IdAssignmentPolicy policy to user 1p. If the
serviceid attribute is not set, the

PortableServer: : IdAssignmentPolicy policy defaults to sysTem 1D.

Editing the Artix configuration file

To complete the configuration of direct persistence, you must also set some
configuration variables in the relevant scope of the Artix configuration file.
For example, if your Artix server uses the artix_server configuration scope,
you would add the configuration variables as shown in Example 12.

Example 12: Setting Direct Persistence Configuration Variables
Artix Configuration File
ahlét;ix_server {

i)t;;:FQPN :direct persistent="true";

poa:FQPN :well known address="WKA prefix»;

WKA _prefix:iiop:port="/P_Port»;
It

105

CHAPTER 6 | Advanced CORBA Port Configuration

Fixed port configuration variables

106

The configuration variables from Example 12 can be explained as follows:

® poa:FQPN:direct persistent variable—you must set this variable to
true, which configures the CORBA binding to receive direct
connections from Orbix clients. You should substitute FQPN with the
POA name from the poaname attribute in the WSDL (see Example 11
on page 104).

Note: In CORBA terms, this is equivalent to setting the

IT PortableServer::PersistenceModePolicy policy to

DIRECT PERSISTENCE. The alternative policy value,

INDIRECT PERSISTENCE, is not compatible with Artix, because it
would require connections to be routed through the Orbix locator
service, which is not part of the Artix product.

® poa:FQPN:well known address variable—this variable defines a
prefix, WKA_prefix, which forms part of the variable names that
configure a fixed port for the WSDL service. You should substitute
FQPN with the POA name from the poaname attribute in the WSDL.

® WKA_prefix:iiop:port variable—this variable configures a fixed IP
port for the WSDL service associated with WKA_prefix.

The following 110OP configuration variables can be set for a CORBA endpoint

that uses the WKA_prefix prefix:

WKA _prefix:iiop:host = "host";
Specifies the hostname, host, to publish in the IIOP profile of
server-generated |IORs. This variable is potentially useful for
multi-homed hosts, because it enables you to specify which network
card the client should attempt to connect to.

WKA_prefix:iiop:port = "port";
Specifies the fixed IP port, port, on which the server listens for
incoming [IOP/TLS messages. This port value is also published in the
IIOP profile of generated I0Rs.

WKA _prefix:iiop:listen addr = "host";
Restricts the IIOP/TLS listening point to listen only on the specified
address, host. It is generally used on multi-homed hosts to limit
incoming connections to a particular network interface. The default is
to listen on 0.0.0.0 (which represents every network card on the host).

Secure fixed port configuration
variables

Configuring Fixed Ports and Long-Lived IORs

Additionally, the following secure fixed port configuration variables can be
set for a CORBA endpoint that uses the WKA_prefix prefix:

WKA prefix:iiop tls:host

WKA_prefix:iiop tls:port

WKA_prefix:iiop tls:listen addr

These configuration variables function analogously to their insecure
counterparts.

Note: These secure configuration variables will have no effect, unless the
iiop tls plug-in is also loaded. It is strongly recommended that you read
the Artix Security Guide for details of how to configure IIOP/TLS security.

107

CHAPTER 6 | Advanced CORBA Port Configuration

CORBA Timeout Policies

Overview

Example

Timeout policies

108

Artix servers that expose a CORBA endpoint can be configured to use
CORBA-specific timeout policies. The timeout policies described here affect
GIOP transports (for example, the [IOP or IIOP/TLS transports), but do not
have any affect on non-CORBA transports.

To use the timeout policies, add the relevant configuration variables to the
Artix server's configuration scope in the Artix configuration file. For example,
for an Artix server that uses the artix server configuration scope, you can
set the CORBA relative roundtrip timeout as follows:

Artix Configuration File

artix server {
Limit total time for an invocation to 2 seconds
(including time for connection and binding establishment) .
policies:relative roundtrip timeout = "2000";

You can configure the following CORBA timeout policies in your Artix
configuration file:
policies:relative binding exclusive request timeout
Limits the amount of time allowed to deliver a request, exclusive of
binding attempts. Request delivery is considered complete when the
last fragment of the GIOP request is sent over the wire to the target
object. This policy’s value is set in millisecond units.
policies:relative binding exclusive roundtrip timeout
Limits the amount of time allowed to deliver a request and receive its
reply, exclusive of binding attempts. The countdown begins
immediately after a binding is obtained for the invocation. This policy’s
value is set in millisecond units.
policies:relative connection creation timeout
Specifies how much time is allowed to resolve each address in an IOR,
within each binding iteration. Defaults to 8 seconds.

CORBA Timeout Policies

An IOR can have several Tac_INTERNET 10P (IIOP transport) profiles,
each with one or more addresses, while each address can resolve
through DNS to multiple IP addresses.
This policy applies to each IP address within an IOR. Each attempt to
resolve an IP address is regarded as a separate attempt to create a
connection. The policy’s value is set in millisecond units.
policies:relative request timeout
Specifies how much time is allowed to deliver a request. Request
delivery is considered complete when the last fragment of the GIOP
request is sent over the wire to the target object. The timeout-specified
period includes any delay in establishing a binding. This policy type is
useful to a client that only needs to limit request delivery time. Set this
policy’s value in millisecond units.
No default is set for this policy; if it is not set, request delivery has
unlimited time to complete.
policies:relative roundtrip timeout
Specifies how much time is allowed to deliver a request and its reply.
Set this policy’s value in millisecond units. No default is set for this
policy; if it is not set, a request has unlimited time to complete.
The timeout countdown begins with the request invocation, and
includes the following activities:

+ Marshalling in/inout parameters
+ Any delay in transparently establishing a binding

If the request times out before the client receives the last fragment of
reply data, all received reply data is discarded. In some cases, the
client might attempt to cancel the request by sending a GIOP
CancelRequest Message.

109

CHAPTER 6 | Advanced CORBA Port Configuration

Retrying Invocations and Rebinding

Overview

Retrying invocations

110

Artix lets you configure CORBA policies that customize invocation retries
and reconnection. The policies can be grouped into the following categories:

® Retrying invocations.
® Rebinding.

The following configuration variables determine how the CORBA binding
deals with requests that raise the corea: : TRANSTENT exception with a
completion status of compLETED No. In terms of an [IOP connection, a
TRANSIENT exception is raised if an error occurred before or during an
attempt to write to or connect to a socket.
policies:invocation retry:backoff ratio
Specifies the degree to which delays between invocation retries
increase from one retry to the next. Defaults to 2.
policies:invocation retry:initial retry delay
Specifies the amount of time, in milliseconds, between the first and
second retries. Defaults to 100.

Note: The delay between the initial invocation and first retry is
always o.

policies:invocation retry:max forwards
Specifies the number of times an invocation message can be
forwarded. Defaults to 20. To specify unlimited forwards, set to -1.
policies:invocation retry:max retries
Specifies the number of transparent reinvocations attempted on receipt
of a TRansIENT exception. Defaults to 5.

Rebinding

Retrying Invocations and Rebinding

The following configuration variables determine how the CORBA binding
deals with requests that raise the corea: :comm_FATILURE exception with a
completion status of compLETED NoO. In terms of an [IOP connection, a
COMM_FAILURE exception is raised with a completion status of coMpLETED No,
if the connection went down.
policies:rebind policy
Specifies the default value for the rebind policy. Can be one of the
following:

. TRANSPARENT (default)
¢+ NO REBIND
¢ NO_RECONNECT

policies:invocation retry:max rebinds
Specifies the number of transparent rebinds attempted on receipt of a
coMM FAILURE exception. Defaults to 5.

Note: This setting is valid only if the effective
policies:rebind policy value iS TRANSPARENT; otherwise, no
rebinding occurs.

111

CHAPTER 6 | Advanced CORBA Port Configuration

112

In this appendix

CHAPTER 7

Artix IDL-to-WSDL
Mapping

This chapter describes how the Artix IDL-to-WSDL compiler
maps OMG IDL types to WSDL types and how the WSDL types
are then mapped to C++ and Java.

This appendix discusses the following topics:

Introducing CORBA Type Mapping page 114
IDL Primitive Type Mapping page 115
IDL Complex Type Mapping page 119
IDL Module and Interface Mapping page 136

113

CHAPTER 7 | Artix IDL-to-WSDL Mapping

Introducing CORBA Type Mapping

Overview To ensure that messages are converted into the proper format for a CORBA
application to understand, Artix contracts need to unambiguously describe
how data is mapped to CORBA data types.

For primitive types, the mapping is straightforward. However, complex types
such as structures, arrays, and exceptions require more detailed
descriptions.

Unsupported types The following CORBA types are not supported:
® Value types
®* Boxed values
® Local interfaces
® Abstract interfaces
® Forward-declared interfaces

114

IDL Primitive Type Mapping

IDL Primitive Type Mapping

Mapping chart Most primitive IDL types are directly mapped to primitive XML Schema
types. Table 1 lists the mappings for the supported IDL primitive types.
Table 1: Primitive Type Mapping for CORBA Plug-in
IDL Type XML Schema Type | CORBA Binding Artix C++ Type Artix Java Type
Type
any xsd:anyType corba:any IT Bus::AnyHolder com. iona.webservices
.reflect.types.AnyTy
pe
boolean xsd:boolean corba:boolean IT Bus::Boolean boolean
char xsd:byte corba:char IT Bus::Byte byte
string xsd:string corba:string IT Bus::String java.lang.String
wchar xsd:string corba:wchar IT Bus::String java.lang.String
wstring xsd:string corba:wstring IT Bus::String java.lang.String
short xsd:short corba:short IT Bus::Short short
long xsd:int corba:long IT Bus::Int int
long long xsd:long corba:longlong IT Bus::Long long
unsigned short | xsd:unsignedShort corba:ushort IT Bus::UShort int
unsigned long xsd:unsignedInt corba:ulong IT Bus::Ulnt long
unsigned long xsd:unsignedLong corba:ulonglong IT Bus::ULong java.math.BigInteger
long
float xsd:float corba:float IT Bus::Float float
double xsd:double corba:double IT Bus::Double double
long double Not Supported Not Supported Not Supported Not Supported
octet xsd:unsignedByte corba:octet IT Bus::UByte short
fixed xsd:decimal corba:fixed IT Bus::Decimal java.math.BigDecimal

115

CHAPTER 7 | Artix IDL-to-WSDL Mapping

Table 1:

Primitive Type Mapping for CORBA Plug-in

enceType

dpointReferenceTy
pe

IDL Type XML Schema Type | CORBA Binding Artix C++ Type Artix Java Type
Type
Object wsa:EndpointRefer corba:object WS _Addressing: :En

TimeBase: :UtcT

xsd:dateTime?

corba:dateTime

IT Bus::DateTime

java.util.Calendar

a. The mapping between xsd:dateTime and TimeBase:UtcT is only partial. For the restrictions see “Unsupported
time/date values” on page 116

Unsupported types

Unsupported time/date values

String type

116

Artix does not support the CORBA long double type.

The following xsd:dateTime values cannot be mapped to TimeBase: :UtcT:

Values with a local time zone. Local time is treated as a O UTC time

zone offset.

Values prior to 15 October 1582.
Values greater than approximately 30,000 A.D.

The following TimeBase: :UtcT values cannot be mapped to xsd:dateTime:

Values with a non-zero inacclo or inacchi.

Values with a time zone offset that is not divisible by 30 minutes.

Values with time zone offsets greater than 14:30 or less than -14:30.

Values with greater than millisecond accuracy.

Values with years greater than 9999.

The IDL-to-WSDL mapping for strings is ambiguous, because the string,
wchar, and wstring IDL types all map to the same type, xsd:string. This
ambiguity can be resolved, however, because the generated WSDL records
the original IDL type in the CORBA binding description (that is, within the
scope of the <wsdl:binding> </wsdl:bindings tags). Hence, whenever an
xsd:string is sent over a CORBA binding, it is automatically converted
back to the original IDL type (string, wchar, Or wstring).

IDL Primitive Type Mapping

Fixed type The mapping of fixed is a special case. Although fixed maps directly to the
xsd:decimal type, Artix must store additional mapping information in order
to support round-trip conversion between WSDL and IDL. Therefore, Artix
records the details of the IDL fixed mapping in a corba:fixed element
(within the scope of the corba :typeMapping element). For example, the
mapping of a fixed<6, 2> type might be recorded as follows:

<corba:typeMapping ... >
<corba:fixed digits="6"
scale="2"
name="SampleTypes.Money"
repositoryID="1IDL:SampleTypes/Money:1.0"
type="xsd:decimal"/>
</corba: typeMapping>

Example The mapping of primitive types is handled in the CORBA binding section of
the Artix contract. For example, consider an input message that has a part,
score, that is described as an xsd:int as shown in Example 13.

Example 13: WSDL Operation Definition

<message name="runsScored">
<part name="score"/>
</message>
<portType ...>
<operation name="getRuns">
<input message="tns:runsScored" name="runsScored"/>
</operation>
</portType>

It is described in the CORBA binding as shown in Example 14.
Example 14: Example CORBA Binding

<binding ...>
<operation name="getRuns">
<corba:operation name="getRuns">
<corba:param name="score" mode="in" idltype="corba:long"/>
</corba:operation>
<input/>
<output/>
</operation>
</binding>

117

CHAPTER 7 | Artix IDL-to-WSDL Mapping

The IDL is shown in Example 15.
Example 15: getRuns IDL

// IDL
void getRuns (in score) ;

118

IDL Complex Type Mapping

IDL Complex Type Mapping

Overview This section describes how the complex IDL data types are mapped to
WSDL.

In this section This section contains the following subsections:
IDL enum Type page 120
IDL struct Type page 122
IDL union Type page 124
IDL sequence Types page 128
IDL array Types page 130
IDL exception Types page 132
IDL typedef Expressions page 135

119

CHAPTER 7 | Artix IDL-to-WSDL Mapping

IDL enum Type

Overview An IDL enumeration maps to an XML string with enumeration facets. The
mapped enumeration is a simple type derived by restriction from the
xsd:string type.

IDL example Consider the following definition of an IDL enum type, SampleTypes: : Shape:

// IDL
module SampleTypes {
enum Shape { Square, Circle, Triangle };

It

WSDL mapping The IDL-to-WSDL compiler maps the sampleTypes: : Shape enum to a WSDL
restricted simple type, sampleTypes.Shape, as follows:

<xsd:simpleType name="SampleTypes.Shape">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Square"/>
<xsd:enumeration value="Circle"/>
<xsd:enumeration value="Triangle"/>
</xsd:restriction>
</xsd:simpleType>

CORBA type mapping To support round-trip conversion between WSDL and IDL, Artix records the
details of the enumeration type mapping in a corba:enum element (within
the scope of the corba: typeMapping element), as follows:

<corba:typeMapping ... >
<corba:enum name="SampleTypes.Shape"
repositoryID="IDL:SampleTypes/Shape:1.0"
type="xsdl:SampleTypes.Shape">
<corba:enumerator value="Square"/>
<corba:enumerator value="Circle"/>
<corba:enumerator value="Triangle"/>
</corba: enum>

</corba: typeMapping>

120

IDL Complex Type Mapping

C++ mapping The WSDL-to-C+ + compiler maps the sampleTypes.Shape type to a C++
class, sampleTypes_Shape, as follows:

// C++
class SampleTypes Shape : public IT Bus::AnySimpleType
{
public:
SampleTypes_Shape () ;
SampleTypes Shape (const IT Bus::String & value) ;

void set value(const IT Bus::String & value);
const IT Bus::String & get_value() const;

Da

The value of the enumeration type can be accessed and modified using the
get_value() and set_value () member functions.

Java mapping The WSDL-to-Java compiler maps the sampleTypes.Shape type to a Java
class, sampleTypesShape, as follows:

// Java
package com.iona.schemas.idltypes.sampletypes idl;

public class SampleTypesShape

{

public String getValue() { ... };

public static
com. iona.schemas.idltypes.sampletypes idl.SampleTypesShape
fromString (String value) { ... };

public String toString() { ... }

To create a new sampleTypesShape object, call the fromstring () method
with the value argument equal to square, Circle, Or Triangle. Either the
getvalue () method or the tostring() method can be used to access the
value.

121

CHAPTER 7 | Artix IDL-to-WSDL Mapping

IDL struct Type

Overview An IDL structure maps to an xsd:sequence type. Each field in the IDL
structure maps to an element in the sequence.

IDL example Consider the following definition of an IDL struct type,
SampleTypes: : SampleStruct

// IDL
module SampleTypes {
struct SampleStruct {
string theString;
long thelong;
e
ha

WSDL mapping The IDL-to-WSDL compiler maps the sampleTypes: : SampleStruct struct to
an XML schema sequence complex type, sampleTypes.SampleStruct, as
follows:

<xsd:complexType name="SampleTypes.SampleStruct">
<xsd:sequence>
<xsd:element name="theString" type="xsd:string"/>
<xsd:element name="theLong" type="xsd:int"/>
</xsd:sequence>
</xsd:complexType>

CORBA type mapping To support round-trip conversion between WSDL and IDL, Artix records the
details of the structure type mapping in a corba:struct element (within the
scope of the corba:typeMapping element), as follows:

<corba:typeMapping ... >
<corba:struct name="SampleTypes.SampleStruct"
repositoryID="IDL:SampleTypes/SampleStruct:1.0"
type="xsdl:SampleTypes.SampleStruct">
<corba:member idltype="corba:string" name="theString"/>
<corba:member idltype="corba:long" name="theLong"/>
</corba:struct>
</corba: typeMapping>

122

C++ mapping

Java mapping

IDL Complex Type Mapping

The WSDL-to-C+ + compiler maps the sampleTypes.SampleStruct type to
a C++ class, sampleTypes SampleStruct, as follows:

// C++

class SampleTypes SampleStruct : public
IT Bus::SequenceComplexType

{

public:
SampleTypes_SampleStruct () ;
SampleTypes SampleStruct (const SampleTypes SampleStructé&

copy) ;

const IT Bus::String & gettheString() const;
IT Bus::String & gettheString() ;
void settheString(const IT Bus::String & val);

const IT Bus::Int & gettheLong() const;
IT Bus::Int & gettheLong() ;
void setthelong(const IT Bus::Int & val);

Da

The members of the struct can be accessed and modified using the
getStructMember () and setStructMember () pairs of functions.

The WSDL-to-Java compiler maps the sampleTypes.Samplestruct type to a
Java class, sampleTypesSampleStruct, as follows:

// Java
package com.iona.schemas.idltypes.sampletypes idl;

public class SampleTypesSampleStruct

{

public String getTheString() { ... }
public void setTheString(String val) { ... }

public int getTheLong() { ... }
public void setThelong(int val) { ... }

public String toString() { ... }

}

The members of the struct can be accessed and modified using the
getStructMember () and setStructMember () pairs of methods.

123

CHAPTER 7 | Artix IDL-to-WSDL Mapping

IDL union Type

Overview

IDL example

WSDL mapping

124

Unions are particularly difficult to describe using the XML schema
framework. In the logical data type descriptions, the difficulty is how to
describe the union without losing the relationship between the members of
the union and the discriminator used to select the members. The easiest
method is to describe a union using an xsd:choice and list the members in
the specified order. The OMG'’s proposed method is to describe the union as
an xsd:sequence containing one element for the discriminator and an
xsd:choice to describe the members of the union. However, neither of
these methods can accurately describe all the possible permutations of a
CORBA union.

Consider the following definition of an IDL union type, sampleTypes: : Poly:

// IDL
module SampleTypes {
union Poly switch (short)
{
case 0O:
string StringCase0;
case 1:
case 2:
float FloatCaseland2;
default:
long caseDef;

The IDL-to-WSDL compiler generates two alternative mappings for the IDL

union type:

® Mapping to xsd:choice—the name of this type is sampleTypes.Poly.
By default, Artix uses the xsd:choice type as the representation of the
union throughout the contract.

® Mapping to xsd:sequence—the name of this type is obtained by
prepending omg_ to the basic type name, giving
SampleTypes._omg_ Poly.

IDL Complex Type Mapping

The two alternative mappings for the union type are, as follows:

<complexType name='"SampleTypes.Poly">
<choice>
<element name="StringCase0" type="string"/>
<element name="FloatCaseland2" type="float"/>
<element name="caseDef" type="int"/>
</choice>
</complexType>

<complexType name="SampleTypes. omg Poly">
<sequence>
<element maxOccurs="1" minOccurs="1" name="discriminator"
type="short"/>
<choice maxOccurs="1" minOccurs="0">
<element name="StringCase0" type="string"/>
<element name="FloatCaseland2" type="float"/>
<element name="caseDef" type="int"/>
</choice>
</sequence>
</complexType>

CORBA type mapping To support round-trip conversion between WSDL and IDL, Artix records the
details of the union type mapping in a corba:union element (within the
scope of the corba: typeMapping element), as follows:

<corba:typeMapping ... >
<corba:union discriminator="corba:short"
name="SampleTypes.Poly"
repositoryID="IDL:SampleTypes/Poly:1.0"
type="xsdl:SampleTypes.Poly">
<corba:unionbranch idltype="corba:string"
name="StringCase0" >
<corba:case label="0"/>
</corba:unionbranch>
<corba:unionbranch idltype="corba:float"
name="FloatCaseland2">
<corba:case label="1"/>
<corba:case label="2"/>
</corba:unionbranch>
<corba:unionbranch default="true"
idltype="corba:long"
name="caseDef" />
</corba:union>
</corba: typeMapping>

125

CHAPTER 7 | Artix IDL-to-WSDL Mapping

C+ + mapping The WSDL-to-C+ + compiler maps the sampleTypes.Poly type to a C+ +
class, sampleTypes Poly, as follows:

// C++
class SampleTypes Poly : public IT Bus::ChoiceComplexType

{

public:

IT Bus::String & getStringCaseO() ;
const IT Bus::String & getStringCase0O() const;
void setStringCaseO (const IT Bus::String & val);

IT Bus::Float getFloatCaseland?2 () ;
const IT Bus::Float getFloatCaseland2 () const;
void setFloatCaseland2 (const IT Bus::Float val) ;

IT Bus::Int getcaseDef () ;
const IT Bus::Int getcaseDef () const;
void setcaseDef (const IT Bus::Int val);

enum PolyDiscriminator

{

StringCase0_enum,

FloatCaseland2 enum,

caseDef enum,

SampleTypes_Poly MAXLONG=-1
} m discriminator;

PolyDiscriminator get discriminator() const { ... }
IT Bus::UInt get discriminator as uint() const { ... }

De

The value of the union can be modified and accessed using the
getUnionMember () and setUnionMember () pairs of functions. The union
discriminator can be accessed through the get_discriminator() and
get_discriminator as uint () functions.

126

IDL Complex Type Mapping

Java mapping

The WSDL-to-Java compiler maps the sampleTypes.Poly type to a Java

class, sampleTypesPoly, as follows:

// Java

package com.iona.schemas.idltypes.sampletypes idl;

public class SampleTypesPoly

{
public
public
public

public
public
public

public
public
public

public

public

}

String getStringCase0() { ... }
void setStringCase0 (String val) { ... }
boolean isSetStringCase0O() { ... }

float getFloatCaseland2() { ... }

void setFloatCaseland2 (float val) { ... }
boolean isSetFloatCaseland2() { ... }

int getCaseDef () { ... }

void setCaseDef (int val) { ... }

boolean isSetCaseDef() { ... }

javax.xml.namespace.QName getQName() { ... }

String toString() { ... }

The contents of the union can be accessed and modified using the
getUnionMember () and setUnionMember () pairs of methods. The
setUnionMember () method implicitly sets the discriminator value.

127

CHAPTER 7 | Artix IDL-to-WSDL Mapping

IDL sequence Types

Overview An IDL sequence maps to a sequence containing a single element that has
minOccurs equal to zero and maxoccurs equal to the sequence’s upper
bound (maxoccurs equals unbounded, for an unbounded sequence).

IDL example Consider the following definition of an IDL unbounded sequence type,
SampleTypes: : SeqOfStruct:

// IDL
module SampleTypes {
typedef sequence< SampleStruct > SeqOfStruct;

It

WSDL mapping The IDL-to-WSDL compiler maps the sampleTypes: : SeqofStruct Sequence
to a WSDL sequence type with occurrence constraints,
SampleTypes.SerfStruct,anO”OWS:

<xsd:complexType name="SampleTypes.SeqOfStruct">
<xsd:sequence>
<xsd:element name="item"
type="xsdl:SampleTypes.SampleStruct"
minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

CORBA type mapping To support round-trip conversion between WSDL and IDL, Artix records the
details of the IDL sequence type mapping in a corba:sequence element
(within the scope of the corba:typeMapping element), as follows:

<corba:typeMapping ... >
<corba:sequence bound="0"
elemtype="corbatm: SampleTypes.SampleStruct"
name="SampleTypes.SeqOfStruct"
repositoryID="IDL:SampleTypes/SeqOfStruct:1.0"
type="xsdl :SampleTypes.SeqOfStruct" />
</corba: typeMapping>

128

IDL Complex Type Mapping

C++ mapping The WSDL-to-C+ + compiler maps the sampleTypes.SeqofStruct type to a
C++ class, sampleTypes Seqofstruct, as follows:

class SampleTypes SeqOfStruct : public
IT Bus::ArrayT<SampleTypes SampleStruct,
&SampleTypes SeqOfStruct item gname, 0, -1>

{

public:
be

The sampleTypes Seqgofstruct class is an Artix C++ array type (based on
the 1T _vector template). Hence, the array class has an API similar to the
std: :vector type from the C++ Standard Template Library.

Note: IDL bounded sequences map in a similar way to normal IDL
sequences, except that the 1T Bus: :ArrayT base class uses the bounds
specified in the IDL.

Java mapping The WSDL-to-Java compiler maps the sampleTypes.SeqofStruct type to a
Java class, sampleTypesSampleStruct, as follows:

// Java
package com.iona.schemas.idltypes.sampletypes idl;

public class SampleTypesSeqOfStruct

{

public SampleTypesSampleStruct[] getItem() { ... }

public void setItem(SampleTypesSampleStruct[] val) { ... }
public javax.xml.namespace.QName getQName() { ... }
public String toString() { ... }

The sampleTypessamplestruct type behaves like an array holder type. The
getItem() and setItem() methods enable you to retrieve and set an array
of sampleTypeSampleStruct items.

129

CHAPTER 7 | Artix IDL-to-WSDL Mapping

IDL array Types

Overview An IDL array maps to a sequence containing a single element that sets both
minOccurs and maxoccurs equal to the array bound.

IDL example Consider the following definition of an IDL union type,
SampleTypes: :ArrOf Struct:

// IDL
module SampleTypes {
typedef SampleStruct ArrOfStruct [10] ;

It

WSDL mapping The IDL-to-WSDL compiler maps the sampleTypes: :Arrofstruct array to a
WSDL sequence type with occurrence constraints,
SampleTypes.ArrOfStruct,anO”OWS:

<xsd:complexType name="SampleTypes.ArrOfStruct">
<xsd:sequence>
<xsd:element name="item"
type="xsdl:SampleTypes.SampleStruct"
minOccurs="10" maxOccurs="10"/>
</xsd:sequence>
</xsd:complexType>

CORBA type mapping To support round-trip conversion between WSDL and IDL, Artix records the
details of the IDL array type mapping in a corba:array element (within the
scope of the corba:typeMapping element), as follows:

<corba:typeMapping ... >
<corba:array bound="10"
elemtype="corbatm: SampleTypes.SampleStruct"
name="SampleTypes.ArrOfStruct"
repositoryID="1IDL:SampleTypes/ArrOfStruct:1.0"
type="xsdl :SampleTypes.ArrOfStruct"/>
</corba: typeMapping>

130

C++ mapping

Java mapping

IDL Complex Type Mapping

The WSDL-to-C+ + compiler maps the sampleTypes.Arrofstruct type to a
C++ class, sampleTypes Arrofstruct, as follows:

class SampleTypes ArrOfStruct : public
IT Bus::ArrayT<SampleTypes SampleStruct,
&SampleTypes ArrOfStruct item gname, 10, 10>

{
It

The sampleTypes Arrofstruct class is an Artix C++ array type (based on
the 1T vector template). The array class has an API similar to the

std: :vector type from the C++ Standard Template Library, except that the
size of the vector is restricted to the specified array length, 10.

The WSDL-to-Java compiler maps the sampleTypes.Arrofstruct type to a
Java class, sampleTypesArrofstruct, as follows:

// Java
package com.iona.schemas.idltypes.sampletypes idl;

public class SampleTypesArrOfStruct

{

public SampleTypesSampleStruct[] getItem() { ... }

public void setItem(SampleTypesSampleStruct[] val) { ... }
public javax.xml.namespace.QName getQName() { ... }
public String toString() { ... }

The sampleTypesarrofstruct type behaves like an array holder type. The
getItem() and setItem() methods enable you to retrieve and set an array
of sampleTypeSampleStruct items.

131

CHAPTER 7 | Artix IDL-to-WSDL Mapping

IDL exception Types

Overview An IDL exception type maps to an xsd: sequence type and to an exception
message. Each field in the IDL exception maps to an element in the

xsd:sequence.

IDL example Consider the following definition of an IDL exception type,

SampleTypes: :GenericException:

// IDL
module SampleTypes {
exception GenericExc {
string reason;

b

WSDL mapping The IDL-to-WSDL compiler maps the sampleTypes: :GenericExc exception
to a WSDL sequence type, SampleTypes.GenericExc, and to a WSDL fault
message, exception.SampleTypes.GenericExc, as follows:

<xsd:complexType name="SampleTypes.GenericExc">
<xsd:sequence>
<xsd:element name="reason" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

<xsd:element name="SampleTypes.GenericExc"
type="xsdl:SampleTypes.GenericExc" />

<message name="SampleTypes.GenericExc">
<part element="xsdl:SampleTypes.GenericExc"
name="exception"/>
</message>

132

CORBA type mapping

C++ mapping

IDL Complex Type Mapping

To support round-trip conversion between WSDL and IDL, Artix records the
details of the IDL exception type mapping in a corba:exception element
(within the scope of the corba:typeMapping element), as follows:

<corba:typeMapping ... >
<corba:exception name="SampleTypes.GenericExc"
repositoryID="IDL:SampleTypes/GenericExc:1.0"
type="xsdl:SampleTypes.GenericExc" >
<corba:member idltype="corba:string" name="reason"/>
</corba:exception>
</corba: typeMapping>

The WSDL-to-C+ + compiler maps the sampleTypes.GenericExc type and
SampleTypes . GenericExc message type to the C++ classes,

SampleTypes_GenericExc and SampleTypes_GenericExcException, as
follows:

// C++

class SampleTypes GenericExc : public
IT Bus::SequenceComplexType

{

public:
SampleTypes GenericExc () ;

const IT Bus::String & getreason() const;
IT Bus::String & getreason() ;
void setreason(const IT Bus::String & val);

b

class SampleTypes GenericExcException
: public IT Bus::UserFaultException,
public IT Bus::Rethrowable<SampleTypes GenericExcExceptions>

{
public:
SampleTypes GenericExcException() ;

const SampleTypes GenericExc & getexception() const;

SampleTypes GenericExc & getexception() ;
void setexception (const SampleTypes GenericExc & val) ;

133

CHAPTER 7 | Artix IDL-to-WSDL Mapping

Java mapping The WSDL-to-Java compiler maps the sampleTypes.GenericExc message
type to a Java class, sampleTypesGenericExc_ Exception, as follows:

// Java
package com.iona.schemas.idltypes.sampletypes idl;

public class SampleTypesGenericExc Exception extends Exception
{

public SampleTypesGenericExc Exception (String reason) {
public SampleTypesGenericExc Exception() { ... }

public String getReason() { ... }
public void setReason(String val) { ... }

public javax.xml.namespace.QName getQName() { ... }
public String toString() { ... }

The exception members can be accessed and modified using the
getExceptionMember () and setExceptionMember () pairs of methods.

134

IDL Complex Type Mapping

IDL typedef Expressions

Overview If a type is aliased in IDL, using a typedef expression, Artix simply replaces
the type alias with the original type when mapping to WSDL.

Note: The typedef that defines an IDL sequence or an IDL array is treated
as a special case, with a specific C++ class or Java class being generated
to represent the sequence or array type.

IDL example Consider the following IDL typedef that defines an alias of a float,
SampleTypes::FloatAlias,and an alias of a struct
SampleTypes: : SampleStruct

// IDL
module SampleTypes {
typedef float FloatAlias;
typedef SampleStruct SampleStructAlias;

CORBA type mapping To support round-trip conversion between WSDL and IDL, Artix records the
details of each IDL alias mapping in a corba:alias element (within the
scope of the corba: typeMapping element), as follows:

<corba:typeMapping ... >
<corba:alias basetype="corba:float"
name="SampleTypes.FloatAlias"
repositoryID="IDL:SampleTypes/FloatAlias:1.0"
type="xsd:float"/>
<corba:alias basetype="corbatm:SampleTypes.SampleStruct"
name="SampleTypes.SampleStructAlias"
repositoryID="IDL:SampleTypes/SampleStructAlias:1.0"
type="xsdl :SampleTypes.SampleStruct"/>
</corba: typeMapping>

WSDL mapping The IDL-to-WSDL compiler maps the sampleTypes: :FloatAlias type alias
directly to the type, xsd:float and the sampleTypes: :SampleStructAlias
type alias directly to the type, sampleTypes.SampleStruct.

135

CHAPTER 7 | Artix IDL-to-WSDL Mapping

IDL Module and Interface Mapping

Overview

Module mapping

Interface mapping

136

This section describes the Artix C++ mapping for the following IDL
constructs:

® Module mapping.

® |nterface mapping.

® Object reference mapping.
® Operation mapping.

® Attribute mapping.

An IDL identifier appearing within the scope of an IDL module,
ModuleName : :Identifier, maps to a C++ identifier of the form
ModuleName _Identifier. That is, the IDL scoping operator, ::, maps to an
underscore, _, in C++.

Although IDL modules do not map to namespaces under the Artix C++
mapping, it is possible nevertheless to put generated C++ code into a
namespace using the -n switch to the WSDL-to-C+ + compiler.

For example, if you pass a namespace, TEsT, to the WSDL-to-C++ -n
switch, the ModuleName : :Identifier IDL identifier would map to
TEST: : ModuleName_Identifier.

An IDL interface, InterfaceName, maps to a C+ + class of the same name,
InterfaceName. If the interface is defined in the scope of a module, that is
ModuleName : :InterfaceName, the interface maps to the

ModuleName _InterfaceName C++ class.

If an IDL data type, TypeName, is defined within the scope of an IDL
interface, that is ModuleName : :InterfaceName : : TypeName, the type
maps to the ModuleName _InterfaceName_TypeName C++ class.

Object reference mapping

Nil object reference

IDL Module and Interface Mapping

When an IDL interface is used as an operation parameter or return type, it is
mapped to the ws_Addressing: : EndpointReferenceType C++ type.

For example, consider an operation, get_foo (), that returns a reference to a
Foo interface as follows:

// IDL
interface Foo {};

interface Bar {
Foo get foo() ;

be
The get_foo () IDL operation then maps to the following C++ function:

// C++
void get foo(

WS Addressing: :EndpointReferenceType & var return
) IT_THROW DECL((IT Bus::Exception)) ;

Note that this mapping is qualitatively different from the OMG IDL-to-C+ +
mapping. In the Artix mapping, the get_foo () operation does not return a
pointer to a Foo proxy object. Instead, you must construct the Foo proxy
object in a separate step, by passing the

WS_Addressing: :EndpointReferenceType Object into the Fooclient
constructor.

A CORBA nil object reference maps to an empty endpoint reference.
Conventionally, the address of an empty endpoint reference is represented
by the following URI:

http://www.w3.0rg/2005/08/addressing/none

137

CHAPTER 7 | Artix IDL-to-WSDL Mapping

Operation mapping Example 16 shows two IDL operations defined within the
SampleTypes: : Foo interface. The first operation is a regular IDL operation,
test_op (), and the second operation is a oneway operation,

test oneway ().
Example 16: Example IDL Operations

// IDL
module SampleTypes {

interface Foo {

SampleStruct test op(
in SampleStruct in struct,
inout SampleStruct inout struct,
out SampleStruct out_struct

) raises (GenericExc);

oneway void test oneway(in string in str);
o

The operations from the preceding IDL, Example 16 on page 138, map to
C++ as shown in Example 17,

Example 17: Mapping IDL Operations to C++

// C++
class SampleTypes Foo

{

public:

1 virtual void test op(
const TEST::SampleTypes SampleStruct & in struct,
TEST: : SampleTypes SampleStruct & inout struct,
TEST: : SampleTypes SampleStruct & var return,
TEST: : SampleTypes_SampleStruct & out_struct
) IT_THROW DECL((IT Bus::Exception)) = 0;

2 virtual void test oneway (
const IT Bus::String & in str
) IT_THROW_DECL((IT_Bus::Exception))

]
o

Da

138

Attribute mapping

IDL Module and Interface Mapping

The preceding C+ + operation signatures can be explained as follows:

1. The C++ mapping of an IDL operation always has the return type
void. If a return value is defined in IDL, it is mapped as an out
parameter, var_return.

The order of parameters in the C++ function signature, test_op(), is

determined as follows:

¢ First, the in and inout parameters appear in the same order as in
IDL, ignoring the out parameters.

+ Next, the return value appears as the parameter, var_return
(with the same semantics as an out parameter).

. Finally, the out parameters appear in the same order as in IDL,
ignoring the in and inout parameters.

2. The C++ mapping of an IDL oneway operation is straightforward,
because a oneway operation can have only in parameters and a void
return type.

Example 18 shows two IDL attributes defined within the sampleTypes: :Foo
interface. The first attribute is readable and writable, str attr, and the
second attribute is readonly, struct_attr.

Example 18: Example IDL Attributes

// IDL
module SampleTypes {

interface Foo {
attribute string str attr;
readonly attribute SampleStruct struct attr;

I
}i

139

CHAPTER 7 | Artix IDL-to-WSDL Mapping

The attributes from the preceding IDL, Example 18 on page 139, map to
C++ as shown in Example 19,

Example 19: Mapping IDL Attributes to C+ +

// C++
class SampleTypes Foo

{
public:

1 virtual void get str attr(
IT Bus::String & var_ return
) IT_THROW DECL((IT Bus::Exception)) = 0;

virtual void set str attr(
const IT Bus::String & _arg

) IT_THROW DECL((IT Bus::Exception)) = 0;
2 virtual void get struct_attr(
TEST: : SampleTypes_SampleStruct & var return
) IT THROW DECL((IT Bus::Exception)) = 0;

Da

The preceding C+ + attribute signatures can be explained as follows:

1. Anormal IDL attribute, AttributeName, maps to a pair of accessor and
modifier functions in C++, get_AttributeName (),
_set_AttributeName ().

2. An IDL readonly attribute, AttributeName, maps to a single accessor
function in C++4, get_AttributeName ().

140

CHAPTER 8

Artix WSDL-to-IDL
Mapping

This chapter describes how the Artix WSDL-to-IDL compiler
maps WSDL types to OMG IDL types.

In this chapter This chapter discusses the following topics:
Simple Types page 142
Complex Types page 157
Wildcarding Types page 173
Occurrence Constraints page 174
Nillable Types page 176
Recursive Types page 179
Endpoint References page 182
Mapping to IDL Modules page 195

141

CHAPTER 8 | Artix WSDL-to-IDL Mapping

Simple Types

Overview

In this section

142

This section describes the mapping of simple WSDL types to IDL.

This section contains the following subsections:

Atomic Types page 143
String Type page 146
Date and Time Types page 149
Duration Type page 151
Deriving Simple Types by Restriction page 152
List Type page 154
Unsupported Simple Types page 156

Simple Types

Atomic Types

soapenc atomic types

Table of XSD atomic types

Artix maps the soapenc:string type to the string IDL type (where the
soapenc hamespace prefix is identified with the
http://schemas.xmlsoap.org/soap/encoding/ Nnamespace).

Table 2 shows how the XSD schema atomic types map to IDL.

Table 2: XSD Schema Simple Types Mapping to IDL

XSD Schema Type IDL Type
xsd:boolean boolean
xsd:byte char
xsd:unsignedByte octet
xsd:short short

xsd:unsignedShort

unsigned short

xsd:int

long

xsd:unsignedInt

unsigned long

xsd:long

long long

xsd:unsignedLong

unsigned long long

xsd:float float

xsd:double double
xsd:string string
xsd:normalizedString string
xsd: token string
xsd: language string
xsd : NMTOKEN string

143

CHAPTER 8 | Artix WSDL-to-IDL Mapping

144

Table 2: XSD Schema Simple Types Mapping to IDL
XSD Schema Type IDL Type

xsd : NMTOKENS Not supported
xsd :Name string
xsd :NCName string
xsd:ID string
xsd : QName string
xsd:dateTime TimeBase: :UtcT
xsd:date string
xsd:time string
xsd:gDay string
xsd:gMonth string
xsd:gMonthDay string
xsd:gYear string
xsd:gYearMonth string
xsd:duration string
xsd:decimal Typedef of fixed<31,6>
xsd:integer long long
xsd:positivelnteger unsigned long long
xsd:negativelnteger long long
xsd:nonPositiveInteger long long
xsd:nonNegativeInteger unsigned long long
xsd:base64Binary base64BinarySeq

(typedef of sequence<octets)

Simple Types

Table 2: XSD Schema Simple Types Mapping to IDL

XSD Schema Type IDL Type

xsd:hexBinary hexBinarySeq

(typedef of sequence<octets)

soapenc :base64 base64Seq

(typedef of sequence<octets)

xsd:ID Not supported.

145

CHAPTER 8 | Artix WSDL-to-IDL Mapping

String Type

Overview

soapenc string type

XSD string type

Default CORBA binding

<definitions ... >

Artix can map strings both from the soapenc schema and from the XSD
schema, as follows:

® soapenc string type.
® XSD string type.

Artix maps the soapenc:string type to the string IDL type (where the
soapenc hamespace prefix is identified with the
http://schemas.xmlsoap.org/soap/encoding/ Na mespace).

By default, xsd:string maps to the ordinary IDL string type.

If you are planning to use international strings, however, you might want
xsd:string to map to the IDL wide string type, wstring, instead. The
wsdltocorba Utility does not provide an option to change the default
mapping, but you can easily alter the mapping by manually editing the
contents of the CORBA <binding> tag in the WSDL.

Consider, for example, how to add a CORBA binding to the Greeter port
type (see the hello world.wsdl file located in
ArtixiInstallDir/artix/Version /demos/basic/hello world soap http/etc).
You can add a CORBA binding by entering the following command:

> wsdltocorba -corba -i Greeter hello world.wsdl

The WSDL output from this command, hello world-corba.wsdl, includes
a new CORBA binding, GreeterCcorBABinding, as shown in Example 20.
The contents of this binding element essentially determine the
WSDL-to-CORBA mapping for the port type. Some parameters and return
types in the binding are declared to have an idltype attribute of
corba:string, Which means they map to the IDL string type.

Example 20: Default CORBA Binding Generated by wsdltocorba

<binding name="GreeterCORBABinding" type="tns:Greeter">

146

Simple Types

Example 20: Default CORBA Binding Generated by wsdltocorba

<corba:binding repositoryID="IDL:Greeter:1.0"/>
<operation name="sayHi">
<corba:operation name="sayHi">
<corba:return idltype="corba:string" name="theResponse"/>
</corba:operation>
<input name="sayHiRequest"/>
<output name="sayHiResponse"/>
</operation>
<operation name="greetMe">
<corba:operation name="greetMe'>
<corba:param idltype="corba:string" mode="in" name="me"/>
<corba:return idltype="corba:string" name="theResponse"/>
</corba:operation>
<input name="greetMeRequest"/>
<output name="greetMeResponse"/>

</operation>
</binding>
</definitions>
Manually modified CORBA To alter the WSDL-to-IDL string mapping, replace some or all of the
binding instances of corba:string by corba:wstring. Example 21 shows the result
of replacing all instances of corba:string by corba:wstring.
Example 21: Manually Modified CORBA Binding
<definitions ... >

<binding name="GreeterCORBABinding" type="tns:Greeter">
<corba:binding repositoryID="IDL:Greeter:1.0"/>
<operation name="sayHi">
<corba:operation name="sayHi">
<corba:return idltype="corba:wstring" name="theResponse"/>
</corba:operation>
<input name="sayHiRequest"/>
<output name="sayHiResponse"/>
</operation>
<operation name="greetMe">
<corba:operation name="greetMe">
<corba:param idltype="corba:wstring" mode="in" name="me"/>
<corba:return idltype="corba:wstring" name="theResponse"/>
</corba:operation>
<input name="greetMeRequest"/>
<output name="greetMeResponse"/>

147

CHAPTER 8 | Artix WSDL-to-IDL Mapping

</operation>
</binding>
</definitions>

Generated IDL

148

Example 21: Manually Modified CORBA Binding

Example 22 shows the IDL that would be generated from the modified
CORBA binding in Example 21 on page 147.

Example 22: /DL Generated from the Modified CORBA Binding

// IDL

interface Greeter
wstring sayHi ()
e

i
wstring greetMe (in wstring me) ;

he
To generate this IDL interface, you would enter the following command:

> wsdltocorba -idl -b GreeterCORBABinding hello world-corba.wsdl

Simple Types

Date and Time Types

Overview

TimeBase:: UtcT type

The WSDL-to-IDL compiler maps the xsd:dateTime type to the
TimeBase: :UtcT IDL type

Note: The mapping is subject to certain restrictions, as detailed below.

The TimeBase: :UtcT type, which holds a UTC time value, is defined in the
OMG’s CORBA Time Service specification. Example 23 shows the definition
of utcT in the TimeBase module.

Example 23: Definition of the TimeBase IDL Module

// IDL
module TimeBase

{

typedef unsigned long long TimeT;
typedef TimeT InaccuracyT;
typedef short TAfT;

struct UtcT
TimeT time;
unsigned long inacclo;
unsigned short inacchi;
TAfT tdf;

s

struct IntervalT

TimeT lower bound;

TimeT upper bound;

s

149

CHAPTER 8 | Artix WSDL-to-IDL Mapping

Unsupported time/date values The following xsd:dateTime values cannot be mapped to TimeBase: : UtcT:

® Values with a local time zone. Local time is treated as a O UTC time
zone offset.

® Values prior to 15 October 1582.
® Values greater than approximately 30,000 A.D.
The following TimeBase: :UtcT values cannot be mapped to xsd:dateTime:
® Values with a non-zero inacclo oOr inacchi.
® Values with a time zone offset that is not divisible by 30 minutes.
® Values with time zone offsets greater than 14:30 or less than -14:30.
® Values with greater than millisecond accuracy.
® Values with years greater than 9999.

150

Simple Types

Duration Type

Overview

Lexical representation

The WSDL-to-IDL compiler maps the xsd:duration type to the string IDL
type.

A duration represents an interval of time measured in years, months, days,
hours, minutes, and seconds. This type is needed for representing the sort of
time intervals that commonly appear in business and legal documents.

The lexical representation of a positive time duration is as follows:
P<years>Y<months>M<days>DT<hours>H<minutessM<seconds>S

Where <yearss, <months>, <days>, <hours>, and <minutes> are
non-negative integers and <seconds> is a non-negative decimal. The
<seconds> field can have an arbitrary number of decimal digits, but Artix
considers the digits only up to millisecond precision. The p, v, M, D, T, H, M,
and s separator characters must all be upper case. The T is the date/time
seperator. To represent a negative time duration, you can add a minus sign,
-, in front of the p character.

Here are some examples:

P2Y6M10DT12H20M15S
-P1YOMODTOHOMO.001S

You can abbreviate the duration string by omitting any fields that are equal
to zero. You must omit the date/time seperator, T, if and only if all of the
time fields are absent. For example, p1y would represent one year.

151

CHAPTER 8 | Artix WSDL-to-IDL Mapping

Deriving Simple Types by Restriction

Overview Most derived simple types are mapped as if they had been declared to be
the base type. For example, XSD types derived from xsd:string are treated
as if they were declared as xsd:string and are therefore mapped to the IDL
string type.
Exceptionally, derived simple types declared using the <enumeration> facet
are treated as a special case: enumerated simple types are mapped to an
IDL enum type.

Unchecked facets The following facets can be used, but are not checked at runtime:
® length

® minlLength

® maxLength
pattern
enumeration
whiteSpace
maxInclusive
maxExclusive
minInclusive
minExclusive

® totalDigits

fractionDigits

Checked facets The following facets are supported and checked at runtime:

® enumeration

152

Simple Types

Example with a maxLength facet The following example shows how you can use the <maxlL.engths facet to
define a string whose length is limited to 100 characters:

<xsd:simpleType name="Stringl00">
<xsd:restriction base="xsd:string">
<xsd:maxLength value="100"/>
</xsd:restriction>
</xsd:simpleType>

The WSDL-to-IDL mapping maps this string100 type to the string type.

Example with enumeration facets The following example shows how to define an enumerated type,
ColorEnum, USing the <enumerations facet:

<xsd:simpleType name="ColorEnum">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="RED"/>
<xsd:enumeration value="GREEN"/>
<xsd:enumeration value="BLUE"/>
</xsd:restriction>
</xsd:simpleType>

The WSDL-to-IDL mapping maps this colorEnum type to the following IDL
enum type.

// IDL

enum ColorEnum {
RED,
GREEN,
BLUE

Da

153

CHAPTER 8 | Artix WSDL-to-IDL Mapping

List Type

Overview

Lists defined using itemType

Lists defined by derivation

154

An xsd:1ist type maps to an IDL sequence type,
sequence<MappedElementType >, where MappedElementType is the IDL
type representing the list elements.

There are two styles of list declaration, both of which are supported in Artix:
® Lists defined using itemType.
® Lists defined by derivation.

Where the list element type is a schema atomic type, you can define the list
type using the itemType attribute. For example, a list of strings can be
defined as follows:

<xsd:simpleType name="StringList">
<xsd:list itemType="xsd:string"/>
</xsd:simpleType>

This maps to the following IDL type:

// IDL
typedef sequence<string> StringList;

Where the list element type is derived from a schema atomic type (by the
application of various restricting facets), you can define the list type using a
restriction element. For example, you can define a list of restricted
integers as follows:

<xsd:simpleType name="IntList">
<xsd:list>
<xsd:simpleType>
<xsd:restriction base="xsd:int">
<xsd:maxInclusive value="1000"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:list>
</xsd:simpleType>

Simple Types

This maps to the following IDL type:

// IDL
typedef sequence<long> IntList;

155

CHAPTER 8 | Artix WSDL-to-IDL Mapping

Unsupported Simple Types

Overview This subsection lists the XSD simple types that are not supported by the
wsdltocorba mapping utility.

Unsupported types The following XSD simple types are not supported by the WSDL-to-IDL
mapping:
xsd:ENTITY
xsd: ENTITIES
xsd: IDREF
xsd: IDREFS
xsd : NMTOKENS
xsd : NOTATION
xsd:union

156

Complex Types

Complex Types

Overview This section describes the mapping of complex WSDL types to IDL.

In this section This section contains the following subsections:
Sequence Complex Types page 158
Choice Complex Types page 159
All Complex Types page 160
Attributes page 161
Nesting Complex Types page 163
Deriving a Complex Type from a Simple Type page 165
Deriving a Complex Type from a Complex Type page 167
Arrays page 170

157

CHAPTER 8 | Artix WSDL-to-IDL Mapping

Sequence Complex Types

Overview The XSD sequence complex type maps to an IDL struct type, where each
element of the original sequence maps to a member of the IDL struct.

Occurrence constraints The WSDL-to-IDL mapping does not support occurrence constraints on the
sequence element. If minoccurs or maxOccurs attribute settings appear in
the sequence element, they are ignored by the WSDL-to-IDL compiler.

On the other hand, elements appearing within the sequence element can
define occurrence constraints—see “Arrays” on page 170.

WSDL example Example 24 shows an XSD sequence type with three simple elements.
Example 24: Definition of a Sequence Complex Type in WSDL

<xsd:complexType name="SimpleStruct">
<xsd:sequence>
<xsd:element name="varFloat" type="xsd:float"/>
<xsd:element name="varInt" type="xsd:int"/>
<xsd:element name="varString" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

IDL mapping Example 25 shows the result of mapping the simplestruct type (from the
preceding Example 24) to IDL.

Example 25: Mapping of SimpleStruct to IDL

// IDL

struct SimpleStruct {
float varFloat;
long varInt;
string varString;

It

158

Complex Types

Choice Complex Types

Overview The XSD choice complex type maps to an IDL union type, where each
element of the original choice maps to a member of the IDL union.

Occurrence constraints Artix does not support occurrence constraints on the choice element.

WSDL example Example 26 shows an XSD choice type with three elements.
Example 26: Definition of a Choice Complex Type in WSDL

<xsd:complexType name="SimpleChoice">
<xsd:choice>
<xsd:element name="varFloat" type="xsd:float"/>
<xsd:element name="varInt" type="xsd:int"/>
<xsd:element name="varString" type="xsd:string"/>
</xsd:choice>
</xsd:complexType>

IDL mapping Example 27 shows the result of mapping the simplechoice type (from the
preceding Example 26) to IDL.

Example 27: Mapping of SimpleChoice to IDL

// IDL
union SimpleChoice switch (long) {
case 0:
float varFloat;
case 1:
long varInt;
case 2:
string varString;

159

CHAPTER 8 | Artix WSDL-to-IDL Mapping

All Complex Types

Overview

Occurrence constraints

WSDL example

IDL mapping

160

The XSD all complex type maps to an IDL struct type, where each element
of the original all maps to a member of the IDL struct.

Artix does not support occurrence constraints on the a11 element.

Example 28 shows an XSD all type with three simple elements.
Example 28: Definition of an All Complex Type in WSDL

<xsd:complexType name="SimpleAll">
<xsd:all>
<xsd:element name="varFloat" type="xsd:float"/>
<xsd:element name="varInt" type="xsd:int"/>
<xsd:element name="varString" type="xsd:string"/>
</xsd:all>
</xsd:complexType>

Example 29 shows the result of mapping the simpleall type (from the
preceding Example 28) to IDL.

Example 29: Mapping of SimpleAll to IDL

// IDL

struct SimpleAll {
float varFloat;
long varInt;
string varString;

Da

Complex Types

Attributes

Overview

Attribute use

Attributes of a sequence type or of an all type map to additional members of
an IDL struct. The type representing an attribute in IDL is defined as a
nillable type (see “Nillable Types” on page 176 for details). This makes it
possible for attributes to be treated as optional.

Attributes can be declared within the scope of the xsd: complexType
element. Hence, you can include attributes in the definitions of an all type, a
sequence type, and a choice type.

Note: Attributes of a choice type are currently not supported by the
WSDL-to-IDL mapping.

The declaration of an attribute in a complex type has the following syntax:

<xsd:complexType name="TypeName">
<xsd:attribute name="AtfrName" type="AttrType"
use="[optional | required|prohibited]/"/>

</xsd:complexType>

The use attribute setting is ignored by the WSDL-to-IDL mapping.

Because attributes are declared as nillable types in IDL, the attributes are
effectively optional by default. If the attribute use is defined as required or
prohibited, however, it is up to the developer to enforce these conditions.

161

CHAPTER 8 | Artix WSDL-to-IDL Mapping

WSDL example

IDL mapping

162

Example 30 shows an XSD sequence type, which is declared to have two
attributes, varattrstring and varAttrIntOptional.

Example 30: Definition of a Complex Type with Attributes in WSDL

<xsd:complexType name="SimpleStructWithAttributes">
<xsd: sequence>
<xsd:element name="varFloat" type="xsd:float"/>
<xsd:element name="varInt" type="xsd:int"/>
<xsd:element name="varString" type="xsd:string"/>
</xsd:sequence>
<xsd:attribute name="varAttrString" type="xsd:string"/>
<xsd:attribute name="varAttrIntOptional" type="xsd:int"
use="optional"/>
</xsd:complexType>

Example 31 shows the result of mapping the simpleStructwithAttributes
type (from the preceding Example 30) to IDL.

Example 31: Mapping of SimpleStructWithAttributes to IDL

// IDL
union string nil switch (boolean) {
case TRUE:
string value;
b
union long nil switch(boolean) {
case TRUE:
long value;

Da

struct SimpleStructWithAttributes {
string nil varAttrString;
long nil varAttrIntOptional;
float varFloat;
long varInt;
string varString;

Complex Types

Nesting Complex Types

Overview

Avoiding anonymous types

WSDL example

It is possible to nest complex types within each other. When mapped to IDL,
the nested complex types map to a nested hierarchy of structs, where each
instance of a nested type is declared as a member of another struct.

In general, it is recommended that you name types that are nested inside
other types, instead of using anonymous types. This results in simpler code
when the types are mapped to IDL.

Note: The WSDL-to-IDL mapping has only limited supported for mapping
anonymous type, which does not work in all cases.

Example 32 shows the definition of a nested sequence type, Nestedstruct,
which contains another sequence type, simplesStruct, as an element.

Example 32: Definition of a Nested Type in WSDL

<xsd:complexType name="SimpleStruct">
<xsd:sequence>
<xsd:element name="varFloat" type="xsd:float"/>
<xsd:element name="varInt" type="xsd:int"/>
<xsd:element name="varString" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="NestedStruct'">
<xsd:sequence>
<xsd:element name="varString" type="xsd:string"/>
<xsd:element name="varInt" type="xsd:int"/>
<xsd:element name="varFloat" type="xsd:float"/>
<xsd:element name="varStruct" type="tns:SimpleStruct"/>
</xsd:sequence>
</xsd:complexType>

163

CHAPTER 8 | Artix WSDL-to-IDL Mapping

IDL mapping Example 33 shows the result of mapping the Nestedstruct type (from the
preceding Example 32) to IDL.

Example 33: Mapping of NestedStruct to IDL

// IDL

struct SimpleStruct {
float varFloat;
long varInt;
string varString;

Da

struct NestedStruct {
string varString;
long varInt;
float varFloat;
SimpleStruct varStruct;

164

Complex Types

Deriving a Complex Type from a Simple Type

Overview

Derivation by restriction

IDL mapping of restricted type

A complex type derived from a simple type maps to an IDL struct type with
a member, simpleTypevValue, to hold the value of the simple type. Any
attributes defined by the derived type are represented as nillable members
of the struct (see “Attributes” on page 161 for more details).

The following kinds of derivation are supported:
® Derivation by restriction.
® Derivation by extension.

Example 34 shows an example of a complex type, orderNumber, derived by
restriction from the xsd:decimal simple type. The new type is restricted to
have values less than 1,000,000.

Example 34: Complex Type Derived by Restriction from a Simple Type

<xsd:complexType name="OrderNumber">
<xsd:simpleContent>
<xsd:restriction base="xsd:decimal">
<xsd:maxExclusive value="1000000"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>

Example 35 shows the result of mapping the orderNumber type (from the
preceding Example 34) to IDL. The _simpleTypevalue struct member
represents the simple type value.

Example 35: Mapping of OrderNumber to IDL

// IDL
typedef fixed<31l, 6> fixed 1;

struct OrderNumber {

fixed 1 simpleTypeValue;

It

165

CHAPTER 8 | Artix WSDL-to-IDL Mapping

Derivation by extension

IDL mapping of extended type

166

Example 36 shows an example of a complex type, InternationalPrice,
derived by extension from the xsd:decimal simple type. The new type is
extended to include a currency attribute.

Example 36: Complex Type Derived by Extension from a Simple Type

<xsd:complexType name="InternationalPrice">
<xsd:simpleContent>
<xsd:extension base="xsd:decimal">
<xsd:attribute name="currency" type="xsd:string"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

Example 37 shows the result of mapping the InternationalPrice type
(from the preceding Example 36) to IDL. In addition to the
_simpleTypevalue member, representing the simple type, there is a
currency member of string nil type, representing the currency attribute.

Example 37: Mapping of InternationalPrice to IDL

// IDL
union string nil switch(boolean) {
case TRUE:
string value;
ha

typedef fixed<31l, 6> fixed 1;

struct InternationalPrice {
string nil currency;
fixed 1 _simpleTypeValue;

It

Complex Types

Deriving a Complex Type from a Complex Type

Overview

Allowed inheritance relationships

Artix supports derivation of a complex type from a complex type, for which
the following kinds of derivation are possible:

® Derivation by restriction.
® Derivation by extension.

Figure 18 shows the inheritance relationships allowed between complex
types. All of these inheritance relationships are supported by the
WSDL-to-IDL mapping, including cross-inheritance. For example, a
sequence can derive from a choice, a choice from an all, an all from a
choice, and so on.

Figure 18: Allowed Inheritance Relationships for Complex Types

Sequence Choice All

Sequence Choice All

167

CHAPTER 8 | Artix WSDL-to-IDL Mapping

IDL mapping

WSDL example

168

Artix maps schema derived types to an IDL struct (irrespective of whether
the schema derived type is a sequence, a choice, or an all). The generated
IDL struct always contains the following two members:

® The base member—holds an instance of the base type, BaseType. The
name of this member is BaseType f.

® The extension member—holds an instance of the extension type. The
name of this member obeys the following naming convention (where
DerivedType is the name of the derived type in XML):

s+ sequence extension—the name is DerivedTypesequencestruct _f.
¢+ choice extension—the name is DerivedTypechoiceType f.
+ all extension—the name is DerivedTypeallstruct f.

In addition, if the derived type defines attributes, they are mapped directly
to members of the IDL struct.

Example 38 shows the definition of a derived type that is obtained by
extending a sequence type (base type) with a choice type (extension type).

Example 38: XML Example of a Choice Type Derived from a Struct Type

// Base type.
<xsd:complexType name="SimpleStruct">
<xsd:sequence>
<xsd:element name="varFloat" type="xsd:float"/>
<xsd:element name="varInt" type="xsd:int"/>
<xsd:element name="varString" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

// Derived type.
<xsd:complexType name="DerivedChoice BaseStruct'>
<xsd:complexContent mixed="false">
<xsd:extension base="s:SimpleStruct">
<xsd:choicex>
<xsd:element name="varStringExt"
type="xsd:string"/>
<xsd:element name="varFloatExt" type="xsd:float"/>
</xsd:choice>
<xsd:attribute name="attrString" type="xsd:string"/>
</xsd:extension>
</xsd:complexContent >

Mapped example

Complex Types

Example 38: XML Example of a Choice Type Derived from a Struct Type

</xsd:complexType>

The preceding DerivedChoice Basestruct schema type maps to an IDL

struct, DerivedChoice Basestruct, as shown in Example 39.
Example 39: /DL Mapping of the DerivedChoice_BaseStruct Type

// IDL

// Base type.

struct SimpleStruct {
float varFloat;
long varInt;
string varString;

b

// Extended part of derived type.
union DerivedChoice BaseStructChoiceType switch(long) {
case 0:
string varStringExt;
case 1:
float varFloatExt;

Da

// Derived type.
struct DerivedChoice BaseStruct {
string nil attrString;

SimpleStruct SimpleStruct f;
DerivedChoice BaseStructChoiceType
DerivedChoice BaseStructChoiceType f;

169

CHAPTER 8 | Artix WSDL-to-IDL Mapping

Arrays

Overview

Mapping arrays to IDL

170

An Artix array is a sequence complex type that satisfies the following special
conditions:

® The sequence complex type schema defines a single element only.

® The element definition has a maxoccurs attribute with a value greater
than 1.

Note: All elements implicitly have minoccurs=1 and maxoccurs=1, unless
specified otherwise.

Hence, an Artix array definition has the following general syntax:

<complexType name="ArrayName">
<sequence>
<element name="E/lemName" type="ElemType"
minOccurs="LowerBound" maxoccurs="UpperBound" />
</sequence>
</complexType>

The ElemType specifies the type of the array elements and the number of
elements in the array can be anywhere in the range LowerBound to
UpperBound.

The way Artix maps arrays to IDL depend on the values of the minoccurs
and maxOccurs attributes, as shown in Table 3.

Table 3: Array to IDL Mapping for Various Occurrence Constraints

Occurrence Constraints IDL Type
minOccurs="N" maxOccurs="/N" ArrayName[N]
minOccurs="N" maxOccurs="M" sequence<ElementType, M>
(with N < M)
maxOccurs="unbounded" sequence<ElementType >

Complex Types

Fixed array The following XSD schema shows the definition of an array, Fixedarray,
whose minoccurs and maxOccurs constraints are set to an identical, finite
value.

<xsd:complexType name="FixedArray">
<xsd:sequence>
<xsd:element maxOccurs="3" minOccurs="3"
name="item" type="xsd:int"/>
</xsd:sequence>
</xsd:complexType>

The preceding Fixedarray schema type maps to the following IDL array:

// IDL
typedef long FixedArray[3];

Bounded array The following XSD schema shows the definition of an array, Boundedarray,
whose minoccurs and maxoccurs constraints are finite and unequal.

<xsd:complexType name="BoundedArray">
<xsd:sequence>
<xsd:element maxOccurs="3" minOccurs="1"
name="item" type="xsd:float"/>
</xsd:sequence>
</xsd:complexType>

The preceding Boundedarray schema type maps to the following IDL
bounded sequence type:

// IDL
typedef sequence<float, 3> BoundedArray;

Unbounded array The following XSD schema shows the definition of an array,
UnboundedArray, Whose maxOccurs constraint is unbounded.

<xsd:complexType name="UnboundedArray">
<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="0"
name="item" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

171

CHAPTER 8 | Artix WSDL-to-IDL Mapping

The preceding Unboundedarray schema type maps to the following IDL
unbounded sequence type:

// IDL
typedef sequence<string> UnboundedArray;

Nested arrays The following XSD schema shows the definition of a nested array,
NestedAarray, Which is defined as an array whose elements are of
UnboundedArray type.

<xsd:complexType name="NestedArray">
<xsd: sequence>
<xsd:element maxOccurs="unbounded" minOccurs="0"
name="subarray" type="s:UnboundedArray"/>
</xsd:sequence>
</xsd:complexType>

The preceding Nestedarray schema type maps to the following IDL
unbounded sequence type:

// IDL
typedef sequence<UnboundedArray> NestedArray;

172

Wildcarding Types

Wildcarding Types

Overview

xsd:anyType example

The XML schema wildcarding types enable you to define XML types with
loosely defined characteristics. Table 4 shows how the XSD schema
wildcarding types map to IDL.

Table 4: XSD Schema Simple Types Mapping to IDL

XSD Schema Type IDL Type
xsd: anyURT string
xsd:anyType any
xsd:any Not supported

Consider an XSD sequence, anystruct, whose elements are declared to be
of xsd:anyType type, as shown in Example 40.

Example 40: AnyStruct Schema Type with xsd:anyType Members

<xsd:complexType name="AnyStruct'">
<xsd:sequence>
<xsd:element name="varAny 1" type="xsd:anyType"/>
<xsd:element name="varAny 2" type="xsd:anyType"/>
</xsd:sequence>
</xsd:complexType>

The preceding anystruct schema type maps to the IDL struct type shown in
Example 41.

Example 41: Mapping of AnyStruct Type to IDL
struct AnyStruct {
any varAny 1;

any varAny 2;

Da

173

CHAPTER 8 | Artix WSDL-to-IDL Mapping

Occurrence Constraints

Overview

Element occurrence constraints

Limitations

Mapping to IDL

174

Certain XML schema tags—for example, <element>, <sequences, <choice>
and <any>—can be declared to occur multiple times using occurrence
constraints. The occurrence constraints are specified by assigning integer
values (or the special value unbounded) to the minoccurs and maxoccurs
attributes.

The WSDL-to-IDL mapping currently supports only element occurrence
constraints (that is, minoccurs and maxoccurs attribute settings within the
<element> tag).

You define occurrence constraints on a schema element by setting the
minOccurs and maxoOccurs attributes for the element. Hence, the definition
of an element with occurrence constraints in an XML schema element has
the following form:

<element name="ElemName" type="ElemType" minOccurs="LowerBound"
maxOccurs="UpperBound" />

Note: When a sequence schema contains a single element definition and
this element defines occurrence constraints, it is treated as an array. See
“Arrays” on page 170.

In the current version of Artix, element occurrence constraints can be used
only within the following complex types:

® all complex types,
® sequence complex types.

Element occurrence constraints are not supported within the scope of the
following:

® choice complex types.

Given an <xsd:element name="ElemName" ... > element with occurrence
constraints, defined in an <xsd:sequences or an <xsd:alls tag, Artix defines
an ElemNamenarray type in IDL to represent the multiply occurring element.

Occurrence Constraints

The ElemNamenrray type is defined according to the rules in Table 3 on
page 170, which determine the mapped IDL type based on the values of the
minOccurs and maxOccurs attributes.

Example of element occurrence The following XSD schema shows the definition of an <xsd: sequences type,
constraints compoundArray, Which has two multiply occurring member elements.

<xsd:complexType name="CompoundArray">
<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="0"
name="arrayl" type="xsd:string"/>
<xsd:element maxOccurs="unbounded" minOccurs="0"
name="array2" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

The preceding compoundarray schema type maps to the following IDL
struct, compoundarray, which uses two generated array types, arraylarray
and array2Array, to represent the types of its member elements:

// IDL
typedef sequence<string> arraylArray;
typedef sequence<strings> array2Array;

struct CompoundArray {
arraylArray arrayl;
array2Array array2;

Da

175

CHAPTER 8 | Artix WSDL-to-IDL Mapping

Nillable Types

Overview

Nillable syntax

Mapping to IDL

Example

176

An element in an XML schema may be declared as nillable by setting the
nillable attribute equal to true. This is useful in cases where you would
like to have the option of transmitting no value for a type (for example, if you
would like to define an operation with optional parameters).

To declare an element as nillable, use the following syntax:
<element name="ElementName" type="ElementType" nillable="true"/>

The nillable="true" setting indicates that this as a nillable element. If the
nillable attribute is missing, the default is value is false.

If a given element of ElementType type is defined with nillable="true"
and ElementType maps to MappedType in IDL, Artix automatically
generates a union IDL type, MappedType nil, as follows:

// IDL
union MappedType nil switch (boolean) {
case TRUE:
MappedType value;

It

Artix uses this MappedType nil type to represent the type of the nillable
element in IDL (for example, where it appears as the member of a struct and
so on).

The following XSD schema shows the definition of an <xsd: sequences> type,
StructWithNillables, Which contains several nillable elements:

<xsd:complexType name="SimpleStruct">
<xsd: sequence>
<xsd:element name="varFloat" type="xsd:float"/>
<xsd:element name="varInt" type="xsd:int"/>
<xsd:element name="varString" type="xsd:string"/>
</xsd:sequence>
<xsd:attribute name="varAttrString" type="xsd:string"/>
</xsd:complexType>

Nillable Types

<xsd:complexType name="StructWithNillables">
<xsd:sequence>
<xsd:element name="varFloat" nillable="true"
type="xsd:float"/>
<xsd:element name="varInt" nillable="true"
type="xsd:int"/>
<xsd:element name="varString" nillable="true"
type="xsd:string"/>
<xsd:element name="varStruct" nillable="true"
type="s:SimpleStruct"/>
</xsd:sequence>
</xsd:complexType>

The preceding structwithNillables schema type maps to the IDL struct,
StructWithNillables, which uses generated nillable types, float nil,

long nil, string nil and simpleStruct nil, to represent the types of its
member elements:

// IDL
union float nil switch (boolean) {
case TRUE:
float value;
b
union long nil switch(boolean) {
case TRUE:
long value;
b
union string nil switch(boolean) {
case TRUE:
string value;

Da

struct SimpleStruct {
string nil varAttrString;
float varFloat;
long varInt;
string varString;
ha
union SimpleStruct nil switch(boolean) {
case TRUE:
SimpleStruct value;

b

177

CHAPTER 8 | Artix WSDL-to-IDL Mapping

struct StructWithNillables {
float nil varFloat;
long nil varInt;
string nil varString;
SimpleStruct nil varStruct;

178

Recursive Types

Recursive Types

Overview XML schema allows you to define recursive types and the WSDL-to-IDL
compiler is able to map these types into OMG IDL. The following kinds of
recursive type are considered here:

® Self-recursive types—a type that refers to itself within its own
definition.

Mutually-recursive types—for example, given two types, A and B, the
definition of A refers to B and the definition of B refers to A.

More complex recursions are also supported—for example, where A
refers to B refers to C refers to A (in shorthand, a2 -> B -> ¢ -> a).
Overlapping recursions are also supported—for example, 2 -> ¢ -> A
and A -> B -> C -> A at the same time.

Note: Mutual recursion does not work, however, in cases where the
recursive types are defined in separate IDL modules. See “Circular
references across modules” on page 197.

The IDL mapping of recursive types relies on the use of forward declarations
of IDL structs.

Note: Forward declaration of structs is a relatively new feature of the
OMG IDL syntax and might not be supported by all ORB products.

Complex types that can use The following complex XML schema types can be defined with recursion:

recursion i xsd: sequence,

® xsd:union,

® xsd:all.

179

CHAPTER 8 | Artix WSDL-to-IDL Mapping

XML schema example of Example 42 shows an example of a self-recursive sequence—that is, a
self-recursive type sequence type, Recurseq, that contains a reference to itself.

Example 42: XML Example of a Self-Recursive Type

<xsd:complexType name="RecurSeq">
<xsd: sequence>
<xsd:element name="value" type="xsd:long"/>
<xsd:element name="RecurSegs" type="s:RecurSeq"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

Note: In this example, it is important to set minoccurs equal to zero,
otherwise the recursion could never terminate.

IDL mapping of self-recursive type Example 43 shows how the self-recursive type, Recurseq, (from
Example 42 on page 180) maps to OMG IDL. This mapping uses a forward
declaration of the recurseq IDL struct to define the recursive type.

Example 43: /DL Mapping of a Self-Recursive Type

// IDL
struct RecurSeq;
typedef sequence<RecurSeq> RecurSegsArray;

struct RecurSeq {
long long value;
RecurSegsArray RecurSeds;

It

Note: Forward declaration of an OMG IDL struct is supported only by
Orbix version and later.

180

Recursive Types

XML schema example of Example 44 shows an example of two mutually-recursive sequence types,
mutually-recursive types MutualSeqga and MutualSegB. In this example, MutualsegB contains a
reference to Mutualseqa and MutualSega contains a reference to

MutualSegB.

Example 44: XML Example of Mutually-Recursive Types

<xsd:complexType name="MutualSegA">
<xsd:sequence>
<xsd:element name="valueA" type="xsd:long"/>
<xsd:element name="MutualSegBs" type="s:MutualSegB"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="MutualSegB">
<xsd:sequence>
<xsd:element name="OneMutualSegA" type="s:MutualSegA"/>

<xsd:element name="valueB" type="xsd:long"/>
</xsd:sequence>
</xsd:complexType>

IDL mapping of Example 45 shows how the mutually-recursive types, MutualSega and

mutually-recursive types MutualSegB (from Example 44 on page 181) map to OMG IDL. This
mapping uses forward declarations of the Mmutualseqa struct and the
MutualSegB struct, in order to define the recursive types.

Example 45: /DL Mapping of Mutually-Recursive Types

// IDL

struct MutualSegB;

struct MutualSedgA;

typedef sequence<MutualSegB> MutualSegBsArray;

struct MutualSegA {
long long valueA;
MutualSegBsArray MutualSegBs;
ha
struct MutualSegB {
MutualSegA OneMutualSedgA;
long long valueB;

It

181

CHAPTER 8 | Artix WSDL-to-IDL Mapping

Endpoint References

Overview

Endpoint reference type

WS-Addressing namespace

WS-Addressing schema import

In this section

182

Endpoint references provide a convenient way of encapsulating the location
of an Artix service, in a form that can be passed as a parameter or a return
value in a WSDL operation. In the special case where the endpoint reference
refers to a CORBA port, it is possible to map the endpoint reference to a
CORBA object reference. It is obviously not possible for a CORBA client to
use an object reference to connect to a non-CORBA service.

The endpoint reference type is defined by the WS-Addressing standard. In
Artix, the endpoint reference type is normally represented as

wsa : EndpointReferenceType.

Artix conventionally defines the namespace prefix, wsa, to represent the
WS-Addressing namespace:
http://www.w3.0rg/2005/08/addressing

To use endpoint references, you should define the wsa namespace prefix in
the definitions element of your WSDL contract.

In order to use endpoint references in a WSDL contract, you must also
import the WS-Addressing schema, using the following import statement:

<import namespace="http://www.w3.org/2005/08/addressing"
schemaLocation="WSAddressingURL" />

Where WSAddressingURL can either be the path to an .xsd file in the local
filesystem or a URL to retrieve the schema from a remote location.

This section contains the following subsections:

Default Endpoint Reference Mapping page 183

Custom Endpoint Reference Mapping page 188

Endpoint References

Default Endpoint Reference Mapping

Overview

Using an endpoint reference type

Empty endpoint reference

WSDL example

By default, the endpoint reference type, wsa:EndpointReferenceType, Maps
to the IDL built-in type, object.

To use an endpoint reference in your contract, simply declare a parameter or
return value to be of wsa:EndpointReferenceType in an operation’s request
or reply message. For example, to declare the return value from a

create account operation to be an endpoint reference type, you would
define the operation’s request and reply messages as follows:

Example 46: Request and Reply Messages for create_account Operation

<message name='"create account'">

<part name="account name" type="xsd:string"/>
</message>
<message name='"create accountResponse">

<part name="return" type="wsa:EndpointReferenceType"/>
</message>

An empty endpoint reference is an endpoint reference that does not address
any endpoint. Conventionally, the address of an empty endpoint reference is
represented by the following URI:
http://www.w3.0rg/2005/08/addressing/none

Artix maps an empty endpoint reference to a CORBA nil object reference.

Example 47 shows how endpoint references are used in a bank WSDL
contract. The Bank service exposes two operations, create account and
get_account, Which return references to Account services. The returned
references are declared to be of endpoint reference type,

wsa: EndpointReferenceType (highlighted in bold font).

Example 47: Example Using Default Mapping of EndpointReferenceType

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns: soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.iona.com/bus/demos/bank"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

183

CHAPTER 8 | Artix WSDL-to-IDL Mapping

Example 47: Example Using Default Mapping of EndpointReferenceType

xmlns:xsdl="http://soapinterop.org/xsd"
xmlns:stub="http://schemas.iona.com/transports/stub"
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
xmlns:fixed="http://schemas.iona.com/bindings/fixed"
xmlns:iiop="http://schemas.iona.com/transports/iiop tunnel"
xmlns : corba="http://schemas. iona.com/bindings/corba"
xmlns:nsl="http://www.iona.com/corba/typemap/BasePortType.idl"
xmlns:wsa="http://www.w3.0rg/2005/08/addressing"
xmlns:mg="http://schemas.iona.com/transports/mqg"
xmlns:routing="http://schemas.iona.com/routing"
xmlns:msg="http://schemas.iona.com/port/messaging"
xmlns :bank="http://www.iona.com/bus/demos/bank"
targetNamespace="http://www.iona.com/bus/demos/bank"
name="BaseService" >

<types>

<schema elementFormDefault="qualified"
targetNamespace="http: //www.iona.com/bus/demos/bank"
xmlns="http://www.w3.0rg/2001/XMLSchema" >

<import namespace="http://www.w3.0rg/2005/08/addressing"
schemal.ocation="wsaddressing.xsd" />

<complexType name="AccountNames">
<sequence>
<element maxOccurs="unbounded" minOccurs="0" name="name" type="xsd:string"/>
</sequence>
</complexType>
</schema>
</types>

<message name:“list_accounts" />
<message name="list accountsResponse'>

<part name="return" type="bank:AccountNames"/>
</message>

<message name='"create account'">

<part name="account name" type="xsd:string"/>
</message>
<message name='"create accountResponse'>

<part name="return" type="wsa:EndpointReferenceType"/>
</message>

<message name="get account">

184

<types>

Endpoint References

Example 47: Example Using Default Mapping of EndpointReferenceType

xmlns:xsdl="http://soapinterop.org/xsd"
xmlns:stub="http://schemas.iona.com/transports/stub"
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
xmlns:fixed="http://schemas.iona.com/bindings/fixed"
xmlns:iiop="http://schemas.iona.com/transports/iiop tunnel"
xmlns : corba="http://schemas. iona.com/bindings/corba"
xmlns:nsl="http://www.iona.com/corba/typemap/BasePortType.idl"
xmlns:wsa="http://www.w3.0rg/2005/08/addressing"
xmlns:mg="http://schemas.iona.com/transports/mqg"
xmlns:routing="http://schemas.iona.com/routing"
xmlns:msg="http://schemas.iona.com/port/messaging"

xmlns :bank="http://www.iona.com/bus/demos/bank"
targetNamespace="http://www.iona.com/bus/demos/bank"
name="BaseService" >

<schema elementFormDefault="qualified"

targetNamespace="http: //www.iona.com/bus/demos/bank"
xmlns="http://www.w3.0rg/2001/XMLSchema" >

<import namespace="http://www.w3.0rg/2005/08/addressing"
schemal.ocation="wsaddressing.xsd" />

<complexType name="AccountNames">
<sequence>
<element maxOccurs="unbounded" minOccurs="0" name="name" type="xsd
</sequence>
</complexType>

</schema>

</types>

<message name:“list_accounts" />
<message name="list accountsResponse'>

<part name="return" type="bank:AccountNames"/>
</message>

<message name='"create account'">

<part name="account name" type="xsd:string"/>
</message>
<message name='"create accountResponse'>

<part name="return" type="wsa:EndpointReferenceType"/>
</message>

<message name="get account">

:string"/>

185

CHAPTER 8 | Artix WSDL-to-IDL Mapping

186

Example 47: Example Using Default Mapping of EndpointReferenceType

<part name="account name" type="xsd:string"/>
</message>
<message name="get accountResponse'>

<part name="return" type="wsa:EndpointReferenceType"/>
</message>

<message name="delete account"s>

<part name="account name" type="xsd:string"/>
</message>
<message name="delete accountResponse" />

<message name="get balance"/>
<message name="get balanceResponse'>

<part name="balance" type="xsd:float"/>
</message>

<message name="deposit">
<part name="addition" type="xsd:float"/>
</message>

<message name="depositResponse"/>

<portType name="Bank">

<operation name="list accounts"s>

<input name="list accounts" message="tns:create account"/>

<output name="list accountsResponse" message="tns:list accountsResponse"/>
</operation>

<operation name="create account"s>

<input name="create account" message="tns:create account"/>

<output name="create accountResponse" message='"tns:create accountResponse'"/>
</operation>

<operation name="get account"s>

<input name="get account" message:"tns:get_account"/>

<output name="get accountResponse" message='"tns:get accountResponse"/>
</operation>

<operation name="delete account">

<input name="delete account" message="tns:delete account"/>

<output name="delete accountResponse" message="tns:delete accountResponse"/>
</operation>

Endpoint References

Example 47: Example Using Default Mapping of EndpointReferenceType

</portType>
<portType name="Account">
<operation name="get balance">
<input name="get balance" message="tns:get balance"/>
<output name="get balanceResponse" message="tns:get balanceResponse"/>
</operation>
<operation name="deposit">
<input name="deposit" message="tns:deposit"/>
<output name="depositResponse" message="tns:depositResponse"/>
</operation>
</portType>

</definitions>

IDL mapping When the preceding WSDL contract (Example 47 on page 183) is mapped
to OMG IDL, the Bank operations are mapped as shown in Example 48.

Example 48: Bank Interface with Default Endpoint Reference Mapping

// IDL
interface Bank {
: :AccountNames
list_accounts (
in string account name
)i
Object
create account (
in string account name
)i
Object
get account (
in string account name
)i
void
delete account (
in string account name
)i

187

CHAPTER 8 | Artix WSDL-to-IDL Mapping

Custom Endpoint Reference Mapping

Overview

Annotation for a custom endpoint
reference mapping

188

Whereas in WSDL all endpoint references must be of the same type (that is,
wsa : EndpointReferenceType), in IDL object references are usually declared
as type specific. For example, if an IDL operation returns a reference to an
account, the return value is normally defined to be of account type, rather
than the generic object type.

To ensure that a WSDL endpoint reference maps to a type-specific object
reference in IDL, you can add an annotation to the WSDL contract.

To customize the mapping of an endpoint reference, you must modify the
parameters in an operation’s request or reply message to refer to a custom
element instead of referring to a wsa:EndpointReferenceType type. The
custom element must then be defined with an xsd:annotation element that
contains details of the custom mapping.

For example, Example 49 shows you how to define a reply message for the
create account operation from the Bank WSDL contract, such that the type
returned from create_account maps to Account in IDL.

Example 49: Annotation for Custom Mapping of Endpoint Reference

<types>
<schema ... >

<element name="AccountRef"
type="wsa:EndpointReferenceType">
<annotation>
<appinfo>corba:binding=AccountCORBABinding</appinfo>

</annotation>

</element>

</schema>
</types>

<message name="create account">

<part name="account name" type="xsd:string"/>
</message>
<message name='"create accountResponse">

<part element="bank:AccountRef" name="return"/>
</message>

Endpoint References

The annotation in the Accountref element is defined in order to map the
wsa: EndpointReferenceType t0 the Account interface. The setting in the
<appinfo> tag

corba:binding=BindingName

identifies an associated Account binding, rather than an account port type,
because the annotation applies specifically to the CORBA binding, not to all
bindings.

WSDL example Example 50 shows an example of a Bank WSDL contract that uses an

annotation to customize the mapping of the endpoint reference type.

Example 50: Example Using Custom Mapping of EndpointReferenceType

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

<types>

xmlns: soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.iona.com/bus/demos/bank"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://soapinterop.org/xsd"
xmlns:stub="http://schemas.iona.com/transports/stub"
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
xmlns:fixed="http://schemas.iona.com/bindings/fixed"
xmlns:iiop="http://schemas.iona.com/transports/iiop tunnel"
xmlns:corba="http://schemas.iona.com/bindings/corba"
xmlns:nsl="http://www.iona.com/corba/typemap/BasePortType.idl"
xmlns:wsa="http://www.w3.0rg/2005/08/addressing"
xmlns:mg="http://schemas.iona.com/transports/mq"
xmlns:routing="http://schemas.iona.com/routing"

xmlns :msg="http://schemas.iona.com/port /messaging"

xmlns :bank="http://www.iona.com/bus/demos/bank"
targetNamespace="http://www.iona.com/bus/demos/bank"
name="BaseService" >

<schema elementFormDefault="qualified"

targetNamespace="http://www.iona.com/bus/demos/bank"
xmlns="http://www.w3.0rg/2001/XMLSchema" >

<import namespace="http://www.w3.0rg/2005/08/addressing"
schemal.ocation="wsaddressing.xsd"/>

<complexType name="AccountNames">
<sequence>

189

CHAPTER 8 | Artix WSDL-to-IDL Mapping

Example 50: Example Using Custom Mapping of EndpointReferenceType

<element maxOccurs="unbounded" minOccurs="0" name="name" type="xsd:string"/>
</sequence>
</complexType>

<xsd:element name="AccountRef" type="wsa:EndpointReferenceType">
<xsd:annotation>
<xsd:appinfo>corba:binding=AccountCORBABinding</xsd:appinfo>
</xsd:annotation>
</xsd:element>
</schema>
</types>

<message name:"list_accounts" />
<message name="list accountsResponse'>

<part name="return" type="bank:AccountNames"/>
</message>

<message name='"create account'>

<part name="account name" type="xsd:string"/>
</message>
<message name='"create accountResponse'>

<part name="return" element="tns:AccountRef"/>
</message>

<message name='"get account">

<part name="account name" type="xsd:string"/>
</message>
<message name='"get_ accountResponse'>

<part name="return" element="tns:AccountRef"/>
</message>

<message name="delete account"s>

<part name="account name" type="xsd:string"/>
</message>
<message name="delete accountResponse" />

<message name="get balance"/>
<message name="get balanceResponse'>

<part name="balance" type="xsd:float"/>
</message>

<message name="deposit">

<part name="addition" type="xsd:float"/>
</message>

190

Endpoint References

Example 50: Example Using Custom Mapping of EndpointReferenceType

<message name="depositResponse"/>

<portType name="Bank">

<operation name="list accounts"s>

<input name="list accounts" message="tns:create account"/>

<output name="list accountsResponse" message="tns:list accountsResponse"/>
</operation>

<operation name="create account">

<input name="create account" message="tns:create account"/>

<output name='"create accountResponse" message='"tns:create accountResponse'"/>
</operation>

<operation name="get account'"s>

<input name="get account" message="tns:get account"/>

<output name="get accountResponse" message='"tns:get accountResponse"/>
</operation>

<operation name="delete account">

<input name="delete account" message="tns:delete account"/>

<output name="delete accountResponse" message="tns:delete accountResponse'"/>
</operation>

</portType>
<portType name="Account">
<operation name="get balance">
<input name="get balance" message="tns:get balance"/>
<output name="get balanceResponse" message="tns:get balanceResponse"/>
</operation>
<operation name="deposit"s>
<input name="deposit" message="tns:deposit"/>
<output name="depositResponse" message="tns:depositResponse"/>
</operation>
</portType>

</definitions>

191

CHAPTER 8 | Artix WSDL-to-IDL Mapping

Generating the IDL interfaces To generate IDL from the WSDL contract shown in Example 50 on
page 189, perform the following steps:

1.

192

Generate the CORBA binding for the Account interface, using the
following command:

wsdltocorba -corba -i Account -b AccountCORBABinding
bank.wsdl

Where the bank WSDL contract is stored in the file, bank.wsdl. The
output from this command is a new WSDL file, bank-corba.wsdl,
which includes the AccountCorBABinding binding.

Generate the CORBA binding for the Bank interface, using the
following command:

wsdltocorba -corba -i Bank -b BankCORBABinding
-0 bank-corba2.wsdl bank-corba.wsdl

The output from this command is a new WSDL file, bank-corba.wsdl,
which includes both the AccountcorBABinding binding and the
BankCORBABinding binding.

Note: The order in which these two commands are issued is
important, because the BankCorRBARinding binding references the
AccountCORBABinding binding.

Convert the WSDL contract with CORBA bindings into IDL, using the
following command:i

wsdltocorba -idl -b BankCORBABinding bank-corba2.wsdl

CORBA type mapping

<corba: typeMapping

Endpoint References

Example 51 shows the generated CORBA type mapping that results from
adding both the AccountCorBARinding and the BankCORRABinding into the
contract.

Example 51: CORBA Type Mapping with References

targetNamespace="http: //www.iona.com/bus/demos/bank/corba/typemap/">

<corba:object binding="" name="Object"

repositoryID="IDL:omg.org/CORBA/Object/1.0" type="wsa:EndpointReferenceType"/>
<corba:object binding="AccountCORBABinding" name="Account"

repositoryID="IDL:Account:1.0" type="wsa:EndpointReferenceType"/>

</corba: typeMapping>

IDL mapping

There are two entries because wsdltocorba was run twice on the same file.
The first CORBA object is generated from the first pass of wsdltocorba to
generate the CORBA binding for Account. Because wsdltocorba could not
find the binding specified in the annotation, it generated a generic object
reference. The second CORBA object, account, is generated by the second
pass when the binding for Bank was generated. On that pass, wsldtocorba
could inspect the binding for the account interface and generate a
type-specific object reference.

Example 52 shows the IDL generated for the aAccount and Bank interfaces.
Example 52: /DL Generated From Artix References
//IDL

interface Account
float
get_balance() ;
void
deposit (
in float addition
) 5

193

CHAPTER 8 | Artix WSDL-to-IDL Mapping

Example 52: /DL Generated From Artix References (Continued)

interface Bank {
: :AccountNames
list accounts (
in string account name
) g
: :Account
create_account (
in string account name
) g
: :Account
get_account (
in string account name
)i
void
delete account (
in string account name

)

194

Mapping to IDL Modules

Mapping to IDL Modules

Overview

Module mapping convention

If you want your generated IDL files to be organised into modules, you can
achieve this by applying the appropriate naming convention to the XML
schema types that appear in the WSDL contract. The following aspects of
IDL module mapping are discussed in this section:

® Module mapping convention.

® References across modules.

® Circular references across modules.

In order to indicate to the Artix WSDL-to-IDL compiler that you want a type
to appear inside an IDL module, give the type a local name with the
following compound format:

ModuleName_1 .ModuleName 2.ModuleName N .TypeName

Where Artix uses the period character, ., as a delimiter. ModuleName 1 to
ModuleName N are the names of a series of nested IDL modules and
TypeName is the unscoped type name in IDL.

For example, you can define an XML sequence type with the compound
name, ONE.Seqa, as follows:

<xsd:complexType name="ONE.SegA">
<xsd:sequence>
<xsd:element name="valueA" type="xsd:long"/>
</xsd:sequence>
</xsd:complexType>

When you map this data type to IDL, you obtain a module, onE, containing a
struct definition, seqa, as follows:

// IDL
module ONE {
struct SeqA {
long long valueA;
s
ha

195

CHAPTER 8 | Artix WSDL-to-IDL Mapping

References across modules It is also possible to make references across modules. That is, a type defined
in one module can use the elements or types defined in another module.

For example, you can define an XML sequence, oNE.Sega, which has a
member whose type is that of another sequence, ™o.segB, as follows:

<xsd:complexType name="ONE.SegA">
<xsd: sequence>
<xsd:element name="valueA" type="xsd:long"/>
<xsd:element name="segB" type="s:TWO.SeqgB"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="TWO.SegB">
<xsd:sequence>
<xsd:element name="valueB" type="xsd:long"/>
</xsd:sequence>
</xsd:complexType>

When you map the preceding types to IDL, the seqe member of the seqa
struct is of a type, ::Two: :SeqB, that is defined in the second module, as
follows:

// IDL
module ONE {
struct SeqA {
long long valueA;
::TWO: : SegB segB;
b
b
module TWO {
struct SegB {
long long valueB;
s
It

196

Mapping to IDL Modules

Circular references across Artix currently does not support the case where you have a chain of
modules references between modules that form a closed loop.

For example, the following XML schema fragment—where the oNE.Seqga
sequence references the Two. seqB sequence, which references the oNE. seqc
sequence—is not supported:

<xsd:complexType name="ONE.SegA">
<xsd:sequence>
<xsd:element name="valueA" type="xsd:long"/>
<xsd:element name="segB" type="s:TWO.SeqgB"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="TWO.SegB">
<xsd:sequence>
<xsd:element name="seqC" type="s:ONE.SeqC"/>
<xsd:element name="valueB" type="xsd:long"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ONE.SeqgC">
<xsd:sequence>
<xsd:element name="valueC" type="xsd:long"/>
</xsd:sequence>
</xsd:complexType>

If you map the preceding WSDL example to IDL, and then map the IDL to
C++, you obtain stub code that is not compilable (the IDL is missing a
forward reference to a struct).

197

CHAPTER 8 | Artix WSDL-to-IDL Mapping

198

CHAPTER 9

Monitoring GIOP
Message Content

Artix includes the GIOP Snoop tool for intercepting and
displaying GIOP message content.

WARNING: It is recommended that you avoid using this feature in secure
applications. The GIOP snoop plug-in can expose user names and

passwords.

In this chapter This chapter contains the following sections:
Introduction to GIOP Snoop page 200
Configuring GIOP Snoop page 201
GIOP Snoop Output page 204

199

CHAPTER 9 | Monitoring GIOP Message Content

Introduction to GIOP Snoop

Overview GIOP Snoop is a GIOP protocol level plug-in for intercepting and displaying
GIOP message content. This plug-in implements message level interceptors
that can participate in client and/or server side bindings over any
GIOP-based transport. The primary purposes of GIOP Snoop are to provide a
protocol level monitor and debug aid.

WARNING: It is recommended that you avoid using this feature in secure
applications. The GIOP snoop plug-in can expose user names and
passwords.

GIOP plug-ins The primary protocol for inter-ORB communications is the General
Inter-ORB Protocol (GIOP) as defined the CORBA Specification.

200

Configuring GIOP Snoop

Configuring GIOP Snoop

Overview

Loading the GIOP Snoop plug-in

GIOP Snoop can be configured for debugging in client, server, or both
depending on configuration. This section includes the following
configuration topics:

® Loading the GIOP Snoop plug-in.

® Client-side snooping.

® Server-side snooping.

® GIOP Snoop verbosity levels.

® Directing output to a file.

For either client or server configuration, the GIOP Snoop plug-in must be
included in the Orbix orb_plugins list (... denotes existing configured
settings):

orb plugins = [..., "giop snoop", ...];

In addition, the giop snoop plug-in must be located and loaded using the
following settings:

Artix Configuration File
plugins:giop snoop:shlib name = "it giop snoop";

201

CHAPTER 9 | Monitoring GIOP Message Content

Client-side snooping

Server-side snooping

GIOP Snoop verbosity levels

202

To enable client-side snooping, include the arop_snoop factory in the client
binding list. In this example, GIOP Snoop is enabled for 110P-specific
bindings:

binding:client binding list =
[..., "GIOP+GIOP_SNOOP+IIOP", ...];

To enable server-side snooping, include the gtop_snoop factory in the server
binding list.

plugins:giop:message server binding list =
[..., "GIOP_SNOOP+GIOP", ...];

You can use the following variable to control the GIOP Snoop verbosity level:
plugins:giop snoop:verbosity = "1";

The verbosity levels are as follows:

1 LOW

2 MEDIUM

3 HIGH

4 VERY HIGH

These verbosity levels are explained with examples in “GIOP Snoop Output”
on page 204.

Directing output to a file

Configuring GIOP Snoop

By default, output is directed to standard error (stderr). However, you can
specify an output file using the following configuration variable:

plugins:giop snoop:filename = "<some-file-path>";

A month/day/year time stamp is included in the output filename with the
following general format:

<filename>.MMDDYYYY

As a result, for a long running application, each day results in the creation of
a new log file. To enable administrators to control the size and content of
output files GIOP Snoop does not hold output files open. Instead, it opens
and then closes the file for each snoop message trace. This setting is
enabled with:

plugins:giop snoop:rolling file = "true";

WARNING: It is recommended that you avoid logging GIOP messages in
secure applications. The GIOP snoop plug-in can expose user names and
passwords.

203

CHAPTER 9 | Monitoring GIOP Message Content

GIOP Snoop Output

Overview

LOW verbosity client-side
snooping

204

The output shown in this section uses a simple example that shows
client-side output for a single binding and operation invocation. The client
establishes a client-side binding that involves a message interceptor chain
consisting of IIOP, GIOP Snoop, and GIOP. The client then connects to the
server and first sends a [LocateRequest] to the server to test if the target
object is reachable. When confirmed, a two-way invocation [Request] is
sent, and the server processes the request. When complete, the server
sends a [Reply] message back to the client.

Output detail varies depending on the configured verbosity level. With level
1 (row), only basic message type, direction, operation name and some GIOP
header information (version, and so on) is given. More detailed output is
possible, as described under the following examples.

An example of r.ow verbosity output is as follows:

[Conn:1] Out: (first for binding) [LocateRequest] MsgLen: 39 Reqld:
[Conn:1] In: (first for binding) [LocateReply] MsglLen: 8 RegId: 0
Locate status: OBJECT HERE
[Conn:1] Out: [Request] MsgLen: 60 RegId: 1 (two-way)
Operation (len 8) 'null op'
[Conn:1] In: [Reply] MsgLen: 12 ReqgId: 1
Reply status (0) NO_EXCEPTION

This example shows an initial conversation from the client-side perspective.
The client transmits a [LocateRequest] message to which it receives a
[LocateReply] indicates that the server supports the target object. It then
makes an invocation on the operation null op.

The conn indicates the logical connection. Because GIOP may be mapped to
multiple transports, there is no transport specific information visible to
interceptors above the transport (such as file descriptors) so each
connection is given a logical identifier. The first incoming and outgoing GIOP
message to pass through each connection are indicated by (first for
binding).

GIOP Snoop Output

The direction of the message is given (out for outgoing, 1n for incoming),
followed by the GIOP and message header contents. Specific information
includes the GIOP version (version 1.2 above), message length and a unique
request identifier (Reqzd), which associates [LocateRequest] messages
with their corresponding [LocateReply] messages. The (two-way) indicates
the operation is two way and a response (Reply) is expected. String lengths
such as len 8 specified for operation includes the trailing null.

MEDIUM verbosity client-side An example of MEDTUM Verbosity output is as follows:

snooping

16:

16

16:

16:

24:39 [Conn:1] Out: (first for binding) [LocateRequest] GIOP v1.2 Msglen: 39
Endian: big ReqgId: 0

Target Address (0: KeyAddr)

ObjKey (len 27) ':>.11........ N.Ac ... 0

:24:39 [Conn:1] In: (first for binding) [LocateReply] GIOP v1.2 Msglen: 8

Endian: big RegId: 0
Locate status: OBJECT HERE

24:39 [Conn:1] Out: [Request] GIOP v1.2 MsgLen: 60
Endian: big ReqgId: 1 (two-way)

Target Address (0: KeyAddr)

ObjKey (len 27) ':>.11........ \No B '

Operation (len 8) 'null op'

24:39 [Conn:1] In: [Replyl] GIOP v1.2 MsglLen: 12
Endian: big ReqgId: 1
Reply status (0) NO EXCEPTION

For MEDIUM verbosity output, extra information is provided. The addition of

time stamps (in hh:mm:ss) precedes each snoop line. The byte order of the
data is indicated (Endian) along with more detailed header information such
as the target address shown in this example. The target address is a GIOP

1.2 addition in place of the previous object key data.

205

CHAPTER 9 | Monitoring GIOP Message Content

HIGH verbosity client side The following is an example of nIcu verbosity output:
snooping

16:24:39 [Conn:1] Out: (first for binding) [LocateRequest] GIOP v1.2 Msglen: 39
Endian: big ReqgId: 0
Target Address (0: KeyAddr)
ObjKey (len 27) ':>.11l........... Ao, !
GIOP Hdr (len 12): [47] [49] [4£] [50] [01] [02] [00] [03] [00] [00] [00] [27]
Msg Hdr (len 39): [00] [00] [00] [00] [00] [00] [00] [00] [00] [00] [00] [1b] [3a] [3e]
[02] [31] [31] [oc] [00] [00] [00] [00] [00] [00] [0£] [05] [00] [00] [41] [ce6] [08] [00] [00] [00]
[00] [00] [00] [00] [00]
[---- end of message ----]

16:31:37 [Conn:1] In: (first for binding) [LocateReply] GIOP v1.2 Msglen: 8
Endian: big RegId: 0
Locate status: OBJECT HERE
GIOP Hdr (len 12): [47] [49] [4£] [50] [01] [02] [00] [04] [00] [00] [00] [08]
Msg Hdr (len 8): [00] [00] [00] [00] [00] [00] [00] [01]
[---- end of message ----]

16:31:37 [Conn:1] Out: [Request] GIOP v1.2 MsgLen: 60

Endian: big ReqgId: 1 (two-way)

Target Address (0: KeyAddr)

ObjKey (len 27) ':>.11........... Ao, '

Operation (len 8) 'null op'

No. of Service Contexts: 0

GIOP Hdr (len 12): [47] [49] [4£] [50] [01] [02] [00] [00] [00] [00] [00] [3c]

Msg Hdr (len 60): [00] [00] [00] [01] [03] [00] [00] [00] [00] [00] [00] [00] [00] [00]
[00] [1b] [3a] [3e] [02] [31] [31] [0c] [00] [00] [00] [00] [00] [00] [0£f] [05] [00] [00] [41] [cé]
[08] [00] [00] [00] [00] [00] [00] [00] [00] [00] [00] [00] [00] [08] [6e] [75] [6c] [6c] [5£] [6£]
[70] [00] [00] [00] [00] [00]

[---- end of message ----]

16:31:37 [Conn:1] In: [Reply] GIOP v1.2 MsgLen: 12
Endian: big ReqgId: 1
Reply status (0) NO EXCEPTION
No. of Service Contexts: 0
GIOP Hdr (len 12): [47] [49] [4£] [50] [01] [02] [00] [01] [00] [00] [00] [Oc]
Msg Hdr (len 12): [00] [00] [00] [01] [00] [00] [00] [00] [00] [00] [00] [00]
[---- end of message ----]

This level of verbosity includes all header data, such as service context data.
ASCII-hex pairs of GIOP header and message header content are given to
show the exact on-the-wire header values passing through the interceptor.
Messages are also separated showing inter-message boundaries.

206

VERY HIGH verbosity client side
snooping

GIOP Snoop Output

This is the highest verbosity level available. Displayed data includes nicu
level output and in addition the message body content is displayed. Because
the plug-in does not have access to IDL interface definitions, it does not
know the data types contained in the body (parameter values, return values
and so on) and simply provides ASCII-hex output. Body content display is
truncated to a maximum of 4 KB with no output given for an empty body.
Body content output follows the header output, for example:

GIOP Hdr (len 12): [47] [49] [4£f] [50] [01] [02] [00] [01] [00] [00] [00] [0c]
Msg Hdr (len 12): [00] [00] [00] [01] [00] [00
Msg Body (len <x>): <contents>

o
o
o
o
o
o
o
o
o

207

CHAPTER 9 | Monitoring GIOP Message Content

208

APPENDIX A

Configuring a
CORBA Binding

CORBA bindings are described using a variety of IONA-specific
WSDL elements within the WSDL binding element. In most
cases, the CORBA binding description is generated
automatically using the wsdltocorba utility. Usually, it is
unnecessary to modify generated CORBA bindings.

209

APPENDIX A | Configuring a CORBA Binding

Namespace

corba:binding element

corba:operation element

corba:param element

210

The WSDL extensions used to describe CORBA data mappings and CORBA
transport details are defined in the WSDL namespace

http://schemas. iona.com/bindings/corba. To use the CORBA extensions
you will need to include the following in the <definitions> tag of your
contract:

xmlns: corba="http://schemas.iona.com/bindings/corba"

The corba:binding element indicates that the binding is a CORBA binding.
This element has one required attribute: repositoryID. repositoryID
specifies the full type ID of the interface. The type ID is embedded in the
object’s IOR and therefore must conform to the IDs that are generated from
an IDL compiler. These are of the form:

IDL:module/interface:1.0

The corba:binding element also has an optional attribute, bases, that
specifies that the interface being bound inherits from another interface. The
value for bases is the type ID of the interface from which the bound
interface inherits. For example, the following IDL:

//IDL
interface clash{};
interface bad : clash{};

would produce the following corba:binding:

<corba:binding repositoryID="IDL:bad:1.0"
bases="IDL:clash:1.0"/>

The corba:operation element is an IONA-specific element of <operations
and describes the parts of the operation’s messages. <corba:operations
takes a single attribute, name, which duplicates the name given in

<operations.

The corba:param element is a member of <corba:operations. Each <part>
of the input and output messages specified in the logical operation, except
for the part representing the return value of the operation, must have a

corba:return element

corba:raises element

corresponding <corba:params. The parameter order defined in the binding
must match the order specified in the IDL definition of the operation.
<corba:param> has the following required attributes:

mode Specifies the direction of the parameter. The values
directly correspond to the IDL directions: in, inout, out.
Parameters set to in must be included in the input
message of the logical operation. Parameters set to out
must be included in the output message of the logical
operation. Parameters set to inout must appear in both
the input and output messages of the logical operation.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with corba: for primitive IDL types, and
corbatm: for complex data types, which are mapped out
in the corba:typeMapping portion of the contract.

name Specifies the name of the parameter as given in the
logical portion of the contract.

The corba:return element is a member of <corba:operation> and
specifies the return type, if any, of the operation. It only has two attributes:

name Specifies the name of the parameter as given in the
logical portion of the contract.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with corba: for primitive IDL types and
corbatm: for complex data types which are mapped out
in the corba:typeMapping portion of the contract.

The corba:raises element is @ member of <corba:operation> and
describes any exceptions the operation can raise. The exceptions are defined
as fault messages in the logical definition of the operation. Each fault
message must have a corresponding corba:raises element. The
corba:raises element has one required attribute, exception, which
specifies the type of data returned in the exception.

In addition to operations specified in <corba:operation> tags, within the
<operations block, each <operations in the binding must also specify
empty input and output elements as required by the WSDL specification.
The CORBA binding specification, however, does not use them.

211

APPENDIX A | Configuring a CORBA Binding

For each fault message defined in the logical description of the operation, a
corresponding fault element must be provided in the <operations, as
required by the WSDL specification. The name attribute of the fauit element
specifies the name of the schema type representing the data passed in the
fault message.

Example For example, a logical interface for a system to retrieve employee
information might look similar to personalInfolockup, Shown in
Example 53.

Example 53: personalinfo lookup port type

<message name="personalLookupRequest">
<part name="empId" type="xsd:int" />
<message />
<message name="personalLookupResponse">
<part name="return" element="xsdl:personalInfo" />
<message />
<message name="idNotFoundException">
<part name="exception" element="xsdl:idNotFound" />
<message />
<portType name="personalInfoLookup">
<operation name="lookup">
<input name="empID" message="personallookupRequest" />
<output name="return" message="personalLookupResponse" />
<fault name="exception" message="idNotFoundException" />
</ operation>

</ portType>

212

The CORBA binding for personalInfoLookup is shown in Example 54.
Example 54: personallnfoLookup CORBA Binding

<binding name="personalInfolLookupBinding" type="tns:personallInfolookup">
<corba:binding repositoryID="IDL:personalInfolookup:1.0"/>
<operation name="lookup">
<corba:operation name="lookup">
<corba:param name="empId" mode="in" idltype="corba:long"/>
<corba:return name="return" idltype="corbatm:personalInfo"/>
<corba:raises exception="corbatm:idNotFound"/>
</corba:operations>
<input/>
<output/>
<fault name="personalInfoLookup.idNotFound"/>
</operation>
</binding>

213

APPENDIX A | Configuring a CORBA Binding

214

APPENDIX B

Configuring a
CORBA Port

CORBA ports are described using the IONA-specific WSDL
elements, corba:address and corba:policy, within the WSDL
port element, to specify how a CORBA object is exposed.

215

APPENDIX B | Configuring a CORBA Port

Namespace

<definitions

Example 55 shows the namespace entries you need to add to the
definitions element of your contract to use the CORBA extensions.

Example 55: Artix CORBA Extension Namespaces

xmlns:iiop="http://schemas.iona.com/bindings/corba"

. >

corba:address element

216

The I0R of the CORBA object is specified using the corba:address element.
You have four options for specifying IORs in Artix contracts:

® Specify the objects IOR directly, by entering the object’s IOR directly
into the contract using the stringified IOR format:

IOR:22342....

® Specify a file location for the I0R, using the following syntax:

file:///file name

Note: The file specification requires three backslashes (///).

It is usually simplest to specify the file name using an absolute path. If you
specify the file name using a relative path, the location is taken to be

relative to the directory the Artix process is started in, not relative to the
containing WSDL file.

® Specify that the IOR is published to a CORBA name service, by
entering the object’'s name using the corbaname format:

corbaname:rir/NameService#object name

For more information on using the name service with Artix see
Deploying and Managing Artix Solutions.

Specify the I0OR using corbaloc, by specifying the port at which the
service exposes itself, using the corbaloc syntax.

corbaloc:iiop:host:port/service name

When using corbaloc, you must be sure to configure your service to
start up on the specified host and port.

corba:policy element Using the optional corba:policy element, you can describe a number of
POA polices the Artix service will use when creating the POA for connecting
to a CORBA application. These policies include:

® POA Name.

® Persistence.

® |D Assignment.

Setting these policies lets you exploit some of the enterprise features of
IONA'’s Orbix 6.x, such as load balancing and fault tolerance, when

deploying an Artix integration project. For information on using these
advanced CORBA features, see the Orbix documentation.

POA Name

By default, an Artix POA is created with the default name,
{ServiceNamespace}ServiceLocalPart#PortName. For example, if a
CORBA port is defined by the following WSDL fragment:

<definitions
xmlns:corbatm="http://iona.com/mycorbaservice" >

<service name="CorbaService">
<port binding="corbatm:CorbaBinding" name="CorbaPort">
<corba:address
location="file:../../hello world service.ior"/>
</port>
</service>

The unigue POA name automatically generated for this CORBA port is

{http://iona.com/mycorbaservice}CorbaService#CorbaPort.

217

APPENDIX B | Configuring a CORBA Port

Example

218

Alternatively, you can specify the POA name explicitly by setting the
poaname attribute, as follows:

<corba:policy poaname="poa name" />

When setting a POA name using the poaname attribute, it is your
responsibility to ensure that the POA name is unique. That is, the POA
name should not be shared between CORBA ports within a service or across
CORBA services.

Persistence

By default Artix POA’s have a persistence policy of false. To set the POA’s
persistence policy to true, use the following:

<corba:policy persistent="true" />

ID Assignment

By default Artix POAs are created with a sysTem 1D policy, meaning that
their ID is assigned by the ORB. To specify that the POA connecting a
specific object should use a user-assigned ID, use the following:

<corba:policy serviceid="POAid" />

This creates a POA with a user 1D policy and an object id of poaid.

For example, a CORBA port for the personal infoLookup binding would look
similar to Example 56:

Example 56: CORBA personallnfolLookup Port

<service name="personalInfoLookupService">
<port name="personalInfolookupPort"
binding="tns:personalInfolLookupBinding">
<corba:address location="file:///objref.ior" />
<corba:policy persistent="true" />
<corba:policy serviceid="personalInfolookup" />
</ ports>
</ services>

Artix expects the I0OR for the CORBA object to be located in a file called
objref.ior (relative to the directory in which the Artix process is started),
and creates a persistent POA with an object id of personalinfo to connect
the CORBA application.

219

APPENDIX B | Configuring a CORBA Port

220

In this chapter

APPENDIX C

CORBA Utilities in
Artix

Use the idltowsdl utility to convert OMG IDL to WSDL and use
the wsdltocorba utility to generate CORBA bindings and to
convert WSDL to OMG IDL.

This chapter discusses the following topics:

Generating a CORBA Binding page 222
Converting WSDL to OMG IDL page 223
Converting OMG IDL to WSDL page 224

221

APPENDIX C | CORBA Utilities in Artix

Generating a CORBA Binding

Overview The wsdltocorba utility can perform two distinct tasks:
® Generate a CORBA binding.
® Convert WSDL to OMG IDL.

This section discusses how to use the wsdltocorba utility to add a CORBA
binding to an existing WSDL contract.

WSDLTOCORBA

Synopsis wsdltocorba -corba -i port-type [-d directory] [-o filel
[-props namespace] [-?] [-v] [-verbose] wsdl file

Options The command has the following options:
-corba Instructs the tool to generate a CORBA binding for the

specified port type.
-i port-type Specifies the name of the port type being mapped to a
CORBA binding.

-d directory Specifies the directory into which the new WSDL file is
written.

-o file Specifies the name of the generated WSDL file. Defaults
10 wsdl file-corba.wsdl.

-props namespace Specifies the target namespace for the
corba : typeMapping element (an element that defines the
WSDL-to-IDL mappings for complex types).

-? Display detailed information about the options.

-v Display the version of the utility.

-verbose Write a detailed log to standard output while the utility is
running.

222

Converting WSDL to OMG IDL

Converting WSDL to OMG IDL

Overview

WSDLTOCORBA

Synopsis

Options

The wsdltocorba utility can perform two distinct tasks:
® Generate a CORBA binding.
® Convert WSDL to OMG IDL.

This section discusses how to use the wsditocorba utility to convert a
WSDL contract into an OMG IDL file.

wsdltocorba -idl -b binding [-d directory] [-o file] [-?] [-V]
[-verbose] wsdl file

The command has the following options:

-id1 Instructs the tool to generate an IDL file from the
specified binding.

-b binding Specifies the CORBA binding from which to generate IDL.

-d directory Specifies the directory into which the new IDL file is
written.

-o file Specifies the name of the generated IDL file. Defaults to
wsdl file.idl.

-? Display detailed information about the options.

-v Display the version of the utility.

-verbose Write a detailed log to standard output while the utility is
running.

223

APPENDIX C | CORBA Utilities in Artix

Converting OMG IDL to WSDL

Overview IONA’s IDL compiler supports several command line flags that specify how
to create a WSDL file from an IDL file. The default behavior of the tool is to
create WSDL file that uses wrapped doc/literal style messages. Wrapped
doc/literal style messages have a single part, defined using an element that
wraps all of the elements in the message.

IDLTOWSDL

Synopsis idltowsdl [-I idl-include-directory]* [-3] [-o output-directory
1 [-a corba-address 1 [-b] [-f corba-address-file] [-n
schema-import-file] [-s idl-sequence-type] [-w target-namespace
1 [-x schema-namespace 1 [-t type-map-namespace] [-useTypes]
[-unwrap] [-r reference-schema-file] [-L logical-wsdl-file]
[-P physical-wsdl-file] [-T schema-file-name] [-fasttrack 1 [
-interface interface-name] [-soapaddr soap-port-address 1 [
-qualified] [-inline] [-e xml-encoding-type 1 [-2 1 [-v 1 [
-verbose] IDLFile

Options The command has the following options:

-1 idl-include-directorySpecify a directory to be included in the search
path for the IDL preprocessor.

-3 Select parsing mode for compatibility with
legacy Orbix 3 IDL files.

-0 output-directory Specifies the directory into which the WSDL file
is written.

-a corba-address Specifies an absolute address through which the

object reference may be accessed. The
corba-address may be a relative or absolute
path to a file, or a corbaname URL

-b Specifies that bounded strings are to be treated
as unbounded. This eliminates the generation of
the special types for the bounded string.

224

-f corba-address-file

-n schema-import-file

-s 1idl-sequence-type

-w target-namespace

-x schema -namespace

-t type-map-namespace

-useTypes

-unwrap

Converting OMG IDL to WSDL

Specifies a file containing a string representation
of an object reference. The object reference is
placed in the corba:address element in the
<port> definition of the generated service. The
corba-address-file must exist when you run
the iditowsdl utility.

Specifies that a schema file,
schema-import-file, is to be included in the
generated contract by an import statement. This
option cannot be used with the -T option.

Specifies the XML schema type used to map the
IDL sequence<octets type. Valid values are
base64Binary Of hexBinary. The default is
base64Binary.

Specifies the namespace to use for the WSDL
targetNamespace. The default is
http://schemas.iona.com/idl/IDLFile.

Specifies the namespace to use for the Schema
targetNamespace. The default is
http://schemas.iona.com/idltypes/IDLFile.

Specifies the namespace to use for the CORBA
TypeMapping targetNamespace. The default is
http://schemas.iona.com/typemap/corba/IDL
File.

Generate rpc style messages. rpc style messages
have parts defined using XMLSchema types
instead of XML elements.

Generate unwrapped doc/literal messages.
Unwrapped messages have parts that represent
individual elements. Unlike wrapped messages,
unwrapped messages can have multiple parts
and are not allowed by the WS-I.

-r reference-schema-fileSpecify the pathname of the schema file

imported to define the wsa:EndpointReference
type. If the -r option is not given, the idl
compiler gets the schema file pathname from
the AddressingSchemalocation Setting in
etc/idl.cfg.

225

APPENDIX C | CORBA Utilities in Artix

226

-L logical-wsdl-file

-P physical-wsdl-filen

-T schema-file-name

-fasttrack

-interface
interface-name

-soapaddr

soap-port-address

-qualified

-inline

Specifies that the logical portion of the
generated WSDL specification into is written to
logical-wsdl-file. The logical-wsdl-file is
then imported into the default generated file.

Specifies that the physical portion of the

generated WSDL specification into is written to
physical-wsdl-file. The physical-wsdl-file
is then imported into the default generated file.

Specifies that the schema types are to be
generated into a separate file. The schema file is
included in the generated contract using an
import statement. This option cannot be used
with the -n option.

Provides a fast way of generating a router
contract for a router that converts incoming
SOAP/HTTP messages into CORBA invocations.

The -interface option must always be specified
when -fasttrack is used.

Used in combination with the -fasttrack
option to specify the IDL interface that is
exposed through the generated router contract.

Used in combination with the -fasttrack
option to specify the address of the generated
SOAP port. The address is specified in the
format most: Port.

Generate the schemas in the WSDL contract
with the elementFormpefault and
attributeFormbDefault attributes set to
qualified. This implies that elements and
attributes appearing in instance documents
must be explicitly qualified by a namespace.

Normally, when you specify a schema file using
the -n option, the schema is imported by a
generated xsd: import element, which sets the
schemaLocation attribute.

If you specify the -inline option, however, the
schema is included directly in the generated
WSDL contract and the generated xsd: import
element omits the schemaLocation attribute.

Orbix 3 legacy compatibility

Converting OMG IDL to WSDL

-e xml-encoding-type Use the specified WSDL encoding for the value

-?

-V

of the encoding attribute in the generated
<?xml ... ?>tag. The default is UTF-8.

Display detailed information about the options.
Display the version of the utility.

-verbose Write a detailed log to standard output while the

utility is running.

Note: The command line flag entries are case sensitive even on
Windows. Capitalization in your generated WSDL file must match the
capitalization used in the prewritten code.

To address some issues associated with Orbix 3 migration, the Artix IDL
compiler supports a -3 option, which causes the following behavior in the
idltowsdl utility:

Case sensitivity is activated—this means that name lookup during
parsing is case sensitive. While technically incorrect according to the
CORBA specification, some legacy IDL files might require case
sensitivity. The IDL compiler issues warnings, if case sensitivity rules
are broken.

New IDL keywords added since CORBA 2.3 (for example, factory and
local) are treated as ordinary identifiers, but warnings are issued.

If a different spelling of the keyword object is encountered (for
example, object, OBJECT, Or oBjEcT), it is treated as an identifier, and
a warning is issued.

All IDL is preprocessed with the additional flag

-DIT ORBIX3IDL_ COMPATIBILITY. This allows IDL definitions to make
use of this macro in #ifdefs to help with migration issues.

Unscoped types from the corea module—legacy IDL often uses
TypeCode as a global type, whereas the IDL specification requires it to
be properly scoped to the corea module. To deal with this issue, you
could use the following #ifdef to bring Typecode into global scope, if
required:

#ifdef IT ORBIX3IDL COMPATIBILITY
typedef CORBA: :TypeCode TypeCode;

227

APPENDIX C | CORBA Utilities in Artix

228

#endif

Note: Typecode originally was a global type in CORBA, but the
corea module was added around 1992/1993 to scope such types.)

Semicolons are tolerated in #include statements. The IDL compiler
removes the semicolons and issues a warning.

Opaque types—there are no easy migration solutions for opaque types.
The IDL compiler does not recognize the opaque keyword. If you have
legacy IDL that uses opaque types, you should consider migrating
them to something like a valuetype instead.

APPENDIX D

Mapping CORBA
Exceptions

To facilitate interoperability between CORBA applications and
Artix applications, Artix automatically maps between CORBA

system exceptions and Artix faults.

In this appendix This appendix discusses the following topics:

Mapping from CORBA System Exceptions page 230
Mapping from Fault Categories page 232
Mapping of Completion Status page 233

229

APPENDIX D | Mapping CORBA Exceptions

Mapping from CORBA System Exceptions

Overview When a CORBA system exception is returned from a CORBA server to an
Artix client, Artix automatically converts the CORBA system exception to a
fault category.

Map from CORBA system Table 5 shows how each of the major CORBA system exceptions map to
exceptions to fault categories Artix fault categories.

Table 5: Map from CORBA System Exceptions to Fault Categories

CORBA System Exception Fault Category
CORBA: :BAD CONTEXT IT Bus::FaultCategory: : INTERNAL
CORBA: :BAD INV_ORDER IT Bus::FaultCategory: : INTERNAL
CORBA: :BAD OPERATION IT Bus::FaultCategory::BAD OPERATION
CORBA: :BAD TYPECODE IT Bus::FaultCategory: :MARSHAL ERROR
CORBA: :BAD QOS IT Bus::FaultCategory: : INTERNAL
CORBA: : CODESET INCOMPATIBLE IT Bus::FaultCategory: :MARSHAL ERROR
CORBA: : COMM_FAILURE IT Bus::FaultCategory: :CONNECTION_ FAILURE
CORBA: :DATA CONVERSION IT Bus::FaultCategory: :MARSHAL ERROR
CORBA: : FREE_MEM IT Bus::FaultCategory: :MEMORY
CORBA: : IMP_LIMIT IT Bus::FaultCategory: : INTERNAL
CORBA: : INITIALIZE IT Bus::FaultCategory: : UNKNOWN
CORBA: : INTERNAL IT Bus::FaultCategory: : INTERNAL
CORBA: : INTF_REPOS IT Bus::FaultCategory: : INTERNAL
CORBA: : INV_FLAG IT Bus::FaultCategory: : INTERNAL
CORBA: : INV_IDENT IT Bus::FaultCategory: :NOT EXIST

230

Mapping from CORBA System Exceptions

Table 5: Map from CORBA System Exceptions to Fault Categories
CORBA System Exception Fault Category
CORBA: : INV_OBJREF IT Bus::FaultCategory::INVALID REFERENCE
CORBA: : INV_POLICY IT Bus::FaultCategory:: INTERNAL
CORBA: : INVALID TRANSACTION IT Bus::FaultCategory:: INTERNAL
CORBA: :MARSHAL IT Bus::FaultCategory::MARSHAL ERROR
CORBA: :NO_IMPLEMENT IT Bus::FaultCategory: :NOT IMPLEMENTED
CORBA: :NO_MEMORY IT Bus::FaultCategory: :MEMORY
CORBA: :NO_PERMISSION IT Bus::FaultCategory::NO PERMISSION
CORBA: :NO_RESOURCES IT Bus::FaultCategory:: INTERNAL
CORBA: :NO_RESPONSE IT Bus::FaultCategory:: INTERNAL
CORBA: :OBJ_ADAPTER IT Bus::FaultCategory:: INTERNAL
CORBA: :OBJECT NOT EXIST IT Bus::FaultCategory::NOT EXIST
CORBA: : PERSIST STORE IT Bus::FaultCategory:: INTERNAL
CORBA: : REBIND IT Bus::FaultCategory:: INTERNAL
CORBA: : TIMEOUT IT Bus::FaultCategory::TIMEOUT
CORBA: : TRANSACTION MODE IT Bus::FaultCategory:: INTERNAL
CORBA: : TRANSACTION REQUIRED IT Bus::FaultCategory:: INTERNAL
CORBA: : TRANSACTION ROLLEDBACK IT Bus::FaultCategory:: INTERNAL
CORBA: : TRANSACTION UNAVAILABLE IT Bus::FaultCategory:: INTERNAL
CORBA: : TRANSIENT IT Bus::FaultCategory::TRANSIENT

231

APPENDIX D | Mapping CORBA Exceptions

Mapping from

Overview

Map from CORBA system
exceptions to fault categories

Fault Categories

When a fault (that is, a built-in exception) is returned from an Artix server to
a CORBA client, Artix automatically converts the fault category to a CORBA
system exception.

Table 6 shows how each of the Artix fault categories map to major CORBA
system exceptions.

Table 6: Map from CORBA System Exceptions to Fault Categories
Fault Category CORBA System Exception
IT Bus::FaultCategory::BAD OPERATION CORBA: :BAD OPERATION
IT Bus::FaultCategory: :CONNECTION FAILURE CORBA: : COMM_FAILURE
IT Bus::FaultCategory: : INTERNAL CORBA: : INTERNAL
IT Bus::FaultCategory: :INVALID REFERENCE CORBA: : INV_OBJREF
IT Bus::FaultCategory: :LICENSE CORBA: :NO_IMPLEMENT
IT Bus::FaultCategory::MARSHAL ERROR CORBA: :MARSHAL
IT Bus::FaultCategory: :MEMORY CORBA: :NO_MEMORY
IT Bus::FaultCategory::NO_ PERMISSION CORBA: :NO_PERMISSION
IT Bus::FaultCategory::NOT EXIST CORBA: :OBJECT NOT EXIST
IT Bus::FaultCategory: :NOT IMPLEMENTED CORBA: :NO_IMPLEMENT
IT Bus::FaultCategory: :NOT UNDERSTOOD CORBA: :BAD PARAM
IT Bus::FaultCategory: :TIMEOUT CORBA: : TIMEOUT
IT Bus::FaultCategory: :TRANSIENT CORBA: : TRANSIENT
IT Bus::FaultCategory: : UNKNOWN CORBA: : INITIALIZE
IT Bus::FaultCategory::VERSION ERROR CORBA: :BAD PARAM

232

Mapping of Completion Status

Mapping of Completion Status

Overview The CORBA completion status flag and the Artix fault completion status flag
have exactly the same semantics and are thus effectively equivalent. In
other words, a YEs completion status implies that the remote operation
completed its work; a No completion status implies that the remote
operation was never called; and a MayBe completion status implies that it is
impossible to say whether or not the remote operation completed its work.

Completion status mapping Table 7 shows the mapping between CORBA completion status values and
fault completion status values.

Table 7: Completion Status Mapping

CORBA Completion Status Fault Completion Status
CORBA: : COMPLETED_YES IT Bus::FaultCompletionStatus: :YES
CORBA: : COMPLETED_NO IT Bus::FaultCompletionStatus: :NO
CORBA: : COMPLETED MAYBE IT Bus::FaultCompletionStatus::MAYBE

233

APPENDIX D | Mapping CORBA Exceptions

234

Index

A
Address specification
CORBA 216
anonymous types
avoiding 163
architecture, Artix overview 18
attributes
mapping 161

B

binding:client_binding_list configuration variable 37
bindings 19

boolean 143

bounded sequences 129

C
char 143
checked facets 152
complex types
deriving 167
nesting 163
containers 20
CORBA
enum type 120
exception type 132
sequence type 128
struct type 122, 124
typedef 135
union type 130
corba:address 216
corba:address element 33
corba:policy 217
CORBA bindings
generating 32
CORBA endpoints
generating 33
CORBA ports
generating 33

D

derivation
complex type from complex type 167

double 143

E

embedded router 24

ENTITIES 156

ENTITY 156

enumeration facet 152

enum type 120

exception handling
CORBA mapping 132

exception type 132

F
facets 152
checked 152
fixed 144
fixed ports
host 106
[IOP/TLS listen_addr 106
[IOP/TLS port 106
float 143
fractionDigits facet 152

G

get_discriminator() 126
get_discriminator_as_uint() 126
giop plug-in 37

GIOP Snoop 199

|

IDL
bounded sequences 129
enum type 120
exception type 132
object references 137
oneway operations 139
sequence type 128
struct type 122, 124
typedef 135
union type 130

IDL attributes
mapping to C++ 139

235

INDEX

IDL interfaces

mapping to C++ 136
IDL modules

mapping to C++ 136
IDL operations

mapping to C++ 138

minOccurs 174

N

nesting complex types 163
nillable types

syntax 176
parameter order 139 NO¥ATION 156
return value 139
IDL readonly attribute 140
IDREF 156 0
IDREFS 156 object references
[IOP/TLS mapping to C++ 137
host 106 occurrence constraints

[IOP/TLS listen_addr 106

overview of 174

[IOP/TLS port 106 octet 143
iiop plug-in 37 oneway operations
in IDL 139

iiop_profile plug-in 37

inheritance relationships
between complex types 167

inout parameters 139

in parameters 139

IOR specification 216

IT Bus::Boolean 173

it_container command 20

orb_plugins 201
out parameters 139

P
parameters

in IDL-to-C++ mapping 139
pattern facet 152

plugins:giop_snoop:filename 203

J plugins:giop_snoop:rolling_file 203
JAX-RPC mapping 19 plugins:giop_snoop:shlib_name 201

plugins:giop_snoop:verbosity 202
L ports 19

length facet 152
LocateReply 204
LocateRequest 204
long 143

long long 143

M
mapping
IDL attributes 139
IDL interfaces 136
IDL modules 136
IDL operations 138
maxExclusive facet 152
maxInclusive facet 152
maxLength facet 152
maxQOccurs 170, 174
minExclusive facet 152
mininclusive facet 152
minLength facet 152

236

activating 36
port types 18
protocol bridge 20

R
references
CORBA mapping 137
Reply 204
Request 204
router plug-in 20
routers 20
routes, configuring 21

S

sequence complex types
and arrays 170

sequence type 128

servant objects 19

servants

registering 36
short 143
Specifying POA policies 217
standalone router 23, 28
CORBA-to-SOAP 40
string 143, 144
struct type 122, 124
stub code 19
stub files 37

T
TimeBase::UtcT 144
totalDigits facet 152
transports 19
typedef 135

u

unions

logical description 124
union type 130
unsigned long 143
unsigned long long 143
unsigned short 143

INDEX

\\

Web Services Definition Language 18
whiteSpace facet 152
wildcarding types 173
WSDL
attributes 161
WSDL contract 18
WSDL facets 152
WSDL faults 132
wsdltocorba command
generating a CORBA binding 32
generating IDL 34
wsdltocpp command 19
WSDL-to-IDL conversion 32
wsdltojava command 19
wsdltoservice command 34
ws_orb plug-in 37

X
XML schema
wildcarding types 173
xsd:ENTITIES 156
xsd:ENTITY 156
xsd:IDREF 156
xsd:IDREFS 156
xsd:NOTATION 156

237

INDEX

238

	List of Figures
	Preface
	What is Covered in This Book
	Who Should Read This Book
	The Artix Library
	Getting the Latest Version
	Searching the Artix Library
	Artix Online Help
	Artix Glossary
	Additional Resources
	Document Conventions

	Introduction to CORBA Web Services
	Artix Architecture
	Integrating a CORBA Server with Web Services
	Accessing the CORBA Server through a Standalone Router
	Accessing the CORBA Server through an Embedded Router
	Replacing the WS Client by an Artix Client
	Replacing the CORBA Server by an Artix Server

	Integrating a CORBA Client with Web Services
	Accessing the WS Server through a Standalone Router
	Replacing the CORBA Client by an Artix Client
	Replacing the WS Server by an Artix Server

	Exposing a Web Service as a CORBA Service
	Converting WSDL to IDL
	Exposing an Artix Web Service as a CORBA Service
	Exposing a Non-Artix Web Service as a CORBA Service
	Standalone CORBA-to-SOAP Router Scenario
	Configuring and Running a Standalone CORBA-to-SOAP Router

	Using an Orbix 3.3 Client to Access an Artix Server
	High Performance Java CORBA Binding

	Exposing a CORBA Service as a Web Service
	Converting IDL to WSDL
	Embedding Artix in a CORBA Service
	Embedded Router Scenario
	Embedding a Router in the CORBA Server

	Exposing an Orbix 3.3 or Non-Orbix Service as a Web Service
	Standalone SOAP-to-CORBA Router Scenario
	Configuring and Running a Standalone SOAP-to-CORBA Router

	CORBA-to-CORBA Routing
	Bypassing the Router
	Basic Bypass Scenario
	Bypass with Failover Scenario
	Bypass with Load Balancing Scenario

	Integrating the CORBA Naming Service with Artix
	How an Artix Client Resolves a Name
	How an Artix Server Binds a Name
	Artix Client Integrated with a CORBA Server
	CORBA Server Implementation
	Artix Client Configuration

	Advanced CORBA Port Configuration
	Configuring Fixed Ports and Long-Lived IORs
	CORBA Timeout Policies
	Retrying Invocations and Rebinding

	Artix IDL-to-WSDL Mapping
	Introducing CORBA Type Mapping
	IDL Primitive Type Mapping
	IDL Complex Type Mapping
	IDL enum Type
	IDL struct Type
	IDL union Type
	IDL sequence Types
	IDL array Types
	IDL exception Types
	IDL typedef Expressions

	IDL Module and Interface Mapping

	Artix WSDL-to-IDL Mapping
	Simple Types
	Atomic Types
	String Type
	Date and Time Types
	Duration Type
	Deriving Simple Types by Restriction
	List Type
	Unsupported Simple Types

	Complex Types
	Sequence Complex Types
	Choice Complex Types
	All Complex Types
	Attributes
	Nesting Complex Types
	Deriving a Complex Type from a Simple Type
	Deriving a Complex Type from a Complex Type
	Arrays

	Wildcarding Types
	Occurrence Constraints
	Nillable Types
	Recursive Types
	Endpoint References
	Default Endpoint Reference Mapping
	Custom Endpoint Reference Mapping

	Mapping to IDL Modules

	Monitoring GIOP Message Content
	Introduction to GIOP Snoop
	Configuring GIOP Snoop
	GIOP Snoop Output

	Configuring a CORBA Binding
	Configuring a CORBA Port
	CORBA Utilities in Artix
	Generating a CORBA Binding
	Converting WSDL to OMG IDL
	Converting OMG IDL to WSDL

	Mapping CORBA Exceptions
	Mapping from CORBA System Exceptions
	Mapping from Fault Categories
	Mapping of Completion Status

	Index

