IONA

Artix:

Artix for J2EE

Version 4.1, September 2006

Making Software Work Together™

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work
Together, Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2006 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: September 20, 2006

Contents

List of Figures

Preface

Part | Introduction

Chapter 1 Introduction
J2EE Connector Architecture Overview
System-Level Contracts
Common Client Interface
Artix J2EE Connector Overview
Artix Servlet Container Support
Artix Concepts

Part II Using Artix in a J2EE Application Server

Chapter 2 Getting Started with Artix J2EE Connector
Introduction
Running the Hello World Demo on JBoss
Running the Hello World Demo on WebLogic
Running the Hello World Demo on WebSphere

Chapter 3 Exposing a Web Service to a J2EE Application
Introduction
Mapping the WSDL to Java
Writing your J2EE Application
Connection Management API Definition
Using the Connection Management API
Packaging your Application

19
20
22
23
24
27
28

31
32
33
37
41

45
46
48
49
50
51
55

CONTENTS

Chapter 4 Exposing a J2EE Application as a Web Service
Introduction
Mapping the WSDL to Java
Implementing a Stateless Session Bean
Configuring Inbound Connections

Chapter 5 Deploying Artix J2EE Connector
Setting the Artix Environment
Deploying to JBoss
Deploying to WebLogic
Deploying to WebSphere

Chapter 6 Transactions
Transactions Overview
Local Transactions
Global Transactions
Outbound Global Transactions
Inbound Global Transactions

Chapter 7 Security
Outbound Security
Configuring Outbound Security
Credentials Mapping
Configuring Credentials Mapping in JBoss
Inbound Security
Configuring Inbound Security
Securing the Target EJB
Configuring JAAS Login Module
Configuring EJB Create Username and Password
Configuring a Secure Transport

Part Ill Using Artix in a Servlet Container

Chapter 8 Exposing Artix Web Services from a Servlet Container

Introduction
Configuring Servlet Container to Run an Artix Application

59
60
62
63
65

69
70
72
75
78

81
82
85
90
91
94

97

98
101
102
104
107
110
111
113
115
117

121
122
125

CONTENTS

Building an Artix Application 130
Mapping the WSDL to Java 131
Writing the Implementation Class 133
Developing an Artix Java Plug-in 134
Configuring Artix to Use Your Plug-in 138

Building and Deploying your Web Application 141

Part IV Reference Information

Chapter 9 Artix J2EE Connector Configuration Properties 147
Configuration Properties 148
ArtixInstallDir 149
ArtixLicenseFile 150

LoglLevel 151
ConfigurationDomain 152
ConfigurationScope 153
EJBServicePropertiesURL 154
EJBServicePropertiesPollInterval 155
MonitorEJBServiceProperties 156
JAASLoginConfigName 157
JAASLoginUserName 158
JAASLoginPassword 159

Setting Configuration Property Values 160
Setting Configuration Property Values in JBoss 161

Setting Configuration Property Values in Weblogic 162

Setting Configuration Property Values in WebSphere 163

Index 165

CONTENTS

List of Figures

Figure 1: J2EE Connector Architecture Component Structure 21
Figure 2: Connecting J2EE Applications to Web services using Artix J2EE Connector 25
Figure 3: Hello World Demo Running 36
Figure 4: Artix J2EE Connector Participating in Local Transactions 86
Figure 5: Artix J2EE Connector in an Outbound Global Transaction 91
Figure 6: Artix J2EE Connector in an Inbound Global Transaction 94
Figure 7: Artix J2EE Connector Propagating Credentials with Outbound Connections 98
Figure 8: Artix J2EE Connector Propagating Credentials with Inbound Connections 108
Figure 9: Exposing Artix Web Service from a Servlet Container 123

Figure 10: Classloader Configuration 128

LIST OF FIGURES

Preface

What is Covered in this Guide

This book describes how to use Artix in a J2EE application server
environment and how to use Artix in a servlet container environment.

Who Should Read this Guide

This guide is aimed at J2EE application programmers who want to use Artix
to develop and deploy distributed J2EE applications that are Web service
enabled.

To use the Artix for J2EE guide, although you do not need an in depth
knowledge of Artix concepts, WSDL and Web services, you do need to be
familiar with these topics. The following guides are a good place to start if
you are not already familiar with Artix concepts, WSDL and Web Services:
® Getting Started with Artix

® Designing Artix Solutions

In addition, the following may provide useful background information:

® Understanding Web Services: XML, WSDL, SOAP, and UDDI, written
by Eric Newcomer, published by Addison Wesley, ISBN
0-201-75081-3.

® Understanding SOA with Web Services, written by Eric Newcomer
and Greg Lomow, published by Addison Wesley, ISBN
0-321-18086-0.

® The W3C XML Schema page at: www.w3.org/XML/Schema.

® The W3C WSDL specification at: www.w3.org/TR/wsdl.

http://www.w3.org/XML/Schema
http://www.w3.org/TR/wsdl

PREFACE

10

Organization of this Guide
This guide is divided into the following parts:

Part I, Introduction, which gives an overview of the J2EE Connector

Architecture, the Artix J2EE Connector, and the Artix servlet container

support.

Part I, Using Artix in a J2EE Application Server, which describes:

i. Getting started with the Artix J2EE Connector by running a simple
demo.

ii. Exposing a Web service to a J2EE application

iii. Exposing a J2EE application as a Web service

iv. Deploying Artix J2EE Connector

v. Using transactions with the Artix J2EE Connector

vi. Artix J2EE Connector security

Part Ill, Using Artix in a Servlet Container, which describes how to

expose Artix Web services from a servlet container environment.

Part IV, Reference Information, which provides details of the

configuration properties supported by the Artix J2EE Connector.

Glossary of Terms, which explains the terminology used in this book.

Index

The Artix Library

The Artix documentation library is organized in the following sections:

Getting Started

Designing Artix Solutions

Configuring and Managing Artix Solutions
Using Artix Services

Integrating Artix Solutions

Integrating with Management Systems
Reference

Artix Orchestration

Getting Started

The books in this section provide you with a background for working with
Artix. They describe many of the concepts and technologies used by Artix.
They include:

PREFACE

Release Notes contains release-specific information about Artix.
Installation Guide describes the prerequisites for installing Artix and the
procedures for installing Artix on supported systems.

Getting Started with Artix describes basic Artix and WSDL concepts.
Using Artix Designer describes how to use Artix Designer to build Artix
solutions.

Artix Technical Use Cases provides a number of step-by-step examples
of building common Artix solutions.

Designing Artix Solutions

The books in this section go into greater depth about using Artix to solve
real-world problems. They describe how to build service-oriented
architectures with Artix and how Artix uses WSDL to define services:

Building Service-Oriented Infrastructures with Artix provides an
overview of service-oriented architectures and describes how they can
be implemented using Artix.

Writing Artix Contracts describes the components of an Artix contract.
Special attention is paid to the WSDL extensions used to define
Artix-specific payload formats and transports.

Developing Artix Solutions
The books in this section how to use the Artix APIs to build new services:

Developing Artix Applications in C++ discusses the technical aspects
of programming applications using the C++ API.

Developing Advanced Artix Plug-ins in C+ + discusses the technical
aspects of implementing advanced plug-ins (for example, interceptors)
using the C++ APL.

Developing Artix Applications in Java discusses the technical aspects
of programming applications using the Java API.

Configuring and Managing Artix Solutions
This section includes:

Configuring and Deploying Artix Solutions explains how to set up your
Artix environment and how to configure and deploy Artix services.
Managing Artix Solutions with JMX explains how to monitor and
manage an Artix runtime using Java Management Extensions.

11

../release_notes/index.htm
../install_guide/index.htm
../getting_started/index.htm
../designer/index.htm
../cookbook/index.htm
../soa/index.htm
../contract/index.htm
../prog_guide/index.htm
../plugin_guide/index.htm
../java_pguide/index.htm
../deploy/index.htm
../jmx_mgmt/index.htm

PREFACE

12

Using Artix Services

The books in this section describe how to use the services provided with

Artix:

® Artix Router Guide explains how to integrate services using the Artix
router.

® Artix Locator Guide explains how clients can find services using the
Artix locator.

® Artix Session Manager Guide explains how to manage client sessions
using the Artix session manager.

® Artix Transactions Guide, C++ explains how to enable Artix C+ +
applications to participate in transacted operations.

® Artix Transactions Guide, Java explains how to enable Artix Java
applications to participate in transacted operations.

® Artix Security Guide explains how to use the security features in Artix.

Integrating Artix Solutions

The books in this section describe how to integrate Artix solutions with other

middleware technologies.

® Artix for CORBA provides information on using Artix in a CORBA
environment.

® Artix for J2EE provides information on using Artix to integrate with
J2EE applications.

For details on integrating with Microsoft's .NET technology, see the
documentation for Artix Connect.

Integrating with Management Systems

The books in this section describe how to integrate Artix solutions with a

range of enterprise and SOA management systems. They include:

* IBM Tivoli Integration Guide explains how to integrate Artix with the
IBM Tivoli enterprise management system.

® BMC Patrol Integration Guide explains how to integrate Artix with the
BMC Patrol enterprise management system.

¢ CA-WSDM Integration Guide explains how to integrate Artix with the
CA-WSDM SOA management system.

® AmberPoint Integration Guide explains how to integrate Artix with the
AmberPoint SOA management system.

../routing/index.htm
../locator_guide/index.htm
../session_mgr/index.htm
../transactions_cxx/index.htm
../transactions_java/index.htm
../security/index.htm
../corba_ws/index.htm
../j2ee/index.htm
../tivoli/index.htm
../bmc/index.htm
../ca_wsdm/index.htm
../amberpoint/index.htm

PREFACE

Reference

These books provide detailed reference information about specific Artix
APls, WSDL extensions, configuration variables, command-line tools, and
terms. The reference documentation includes:

® Artix Command Line Reference
® Artix Configuration Reference

® Artix WSDL Extension Reference
® Artix Java API Reference

® Artix C++ API Reference

® Artix .NET API Reference

® Artix Glossary

Artix Orchestration

These books describe the Artix support for Business Process Execution
Language (BPEL), which is available as an add-on to Artix. These books
include:

® Artix Orchestration Release Notes

® Artix Orchestration Installation Guide

® Understanding Artix Orchestration

® Artix Orchestration Administration Console Help.

Getting the Latest Version

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Artix Library

You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right, for example:

http://www.iona.com/support/docs/artix/4.0/index.xml

13

../command_ref/index.htm
../config_ref/index.htm
../wsdl_ref/index.htm
../javadoc/index.html
../cppdoc/index.html
../ndoc/index.html
../glossary/index.htm
../orch_relnotes/index.htm
../orch_install/index.htm
../orch_intro/index.htm
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/4.0/index.xml
../orch_admin/index.htm

PREFACE

14

You can also search within a particular book. To search within a HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Artix Online Help

Artix Designer and Artix Orchestration Designer include comprehensive

online help, providing:

® Step-by-step instructions on how to perform important tasks

® Afull search feature

® Context-sensitive help for each screen

There are two ways that you can access the online help:

® Select Help|Help Contents from the menu bar. The help appears in
the contents panel of the Eclipse help browser.

® Press F1 for context-sensitive help.

In addition, there are a number of cheat sheets that guide you through the

most important functionality in Artix Designer and Artix Orchestration
Designer. To access these, select Help|Cheat Sheets.

Artix Glossary

The Artix Glossary is a comprehensive reference of Artix terms. It provides

quick definitions of the main Artix components and concepts. All terms are
defined in the context of the development and deployment of Web services
using Artix.

Additional Resources

The IONA Knowledge Base contains helpful articles written by IONA experts
about Artix and other products.

The IONA Update Center contains the latest releases and patches for IONA
products.

If you need help with this or any other IONA product, go to IONA Online
Support.

Comments, corrections, and suggestions on IONA documentation can be
sent to docs-support@iona.com .

http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml
../glossary/index.htm

PREFACE

Document Conventions

Typographical conventions

This book uses the following typographical conventions:

Fixed width

Fixed width italic

Italic

Bold

Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the IT Bus::AnyType
class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/YourUserName

Italic words in normal text represent emphasis and
introduce new terms.

Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.

15

PREFACE

Keying Conventions
This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, the command prompt is not shown.

o

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the MS-DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

() Braces enclose a list from which you must choose an
item in format and syntax descriptions.

In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File| Open).

16

Part |

Introduction

In this part This part contains the following chapters:

Introduction page 19

17

18

In this chapter

CHAPTER 1

Introduction

Artix can be used in a J2EE application server environment
and a servlet container environment. Using the Artix J2EE
Connector, developers can easily connect their J2EE
applications to Artix Web services and expose their J2EE
applications as Artix Web services from within their chosen
J2EE application server. In addition, Artix Web services can
be exposed from serviet container. This chapter introduces the
Artix J2EE Connector and the J2EE Connector Architecture on
which it is implemented. This chapter also introduces Artix
servlet container support and points you to resources that
explain Artix concepts, WSDL and Web services.

This chapter discusses the following topics:

J2EE Connector Architecture Overview page 20
Artix J2EE Connector Overview page 24
Artix Servlet Container Support page 27
Artix Concepts page 28

19

CHAPTER 1 | Introduction

J2EE Connector Architecture Overview

Overview The J2EE Connector Architecture is part of the Java 2 Platform, Enterprise
Editions (J2EE) 1.3 specification. It outlines a standard architecture for
enabling J2EE applications to access resources in diverse Enterprise
Information Systems (EISs). The goal is to standardize access to
non-relational resources in the same way the JDBC API standardizes access
to relational data.

The J2EE Connector Architecture is implemented in a J2EE application
server and an EIS-specific resource adapter. The EIS resource adapter plugs
into the J2EE application server and provides a system library specific to,
and connectivity to, that EIS.

In this section This section introduces the J2EE Connector Architecture. The following
topics are covered:

® Graphical representation
® System-Level Contracts
® Common Client Interface

More information For more information on the J2EE Connector Architecture and to view the
specification itself, visit Sun Microsystems’ website (http://java.sun.com).

20

http://java.sun.com

Graphical representation

J2EE Connector Architecture Overview

Figure 1 shows the components defined by the J2EE Connector
Architecture.

Figure 1: J2EE Connector Architecture Component Structure

JZ2EE 1.3 \ I
o Applicat
App lication Server Container-component 1'-':‘E.'f"II:'.::‘E:'l:l:.'l'tlI

contract

such °
Connection as EJB
Pooling l -
Common Client
Transaction Interface (CCI)
Manager Resource
Adapter

Security System contracts such
Manager & Connection as Artix WD
management J2EE Connector

#» Transaction N
management EIS-specific
* Security interface
management .
Enterprise
Information
System

21

CHAPTER 1 | Introduction

System-Level Contracts

Overview

Connection management

Transaction management

Security management

22

The J2EE Connector Architecture defines system-level contracts that are
implemented by the J2EE application server and the EIS resource adapter.
The following system-level contracts are specified in version 1.0 of the J2EE
Connector Architecture:

® Connection management

® Transaction management

® Security management

The connection management contract provides a consistent application
programming model for enabling a J2EE application to connect to an EIS,
and for allowing a J2EE application server to pool such connections. It
facilitates a scalable and efficient environment that can support a large
number of components requiring access to an EIS.

The transaction management contract defines the scope of transactional
integration between a J2EE application server and an EIS that supports
transactional access. It defines three levels of transaction support—no
transactions, local transactions, and global or XA transactions.

The security management contract allows a J2EE application to access an

EIS in a secure environment. This reduces security threats to the EIS and

protects valuable information resources managed by the EIS. Mechanisms

that can be used to protect an EIS against security threats include:

® |dentification and authentication of principals (human users) to verify
that they are who they say they are.

® Authorization and access control to determine whether a principal is
allowed to access the EIS.

® Transport-level security to protect communications between the J2EE
application server and the EIS.

J2EE Connector Architecture Overview

Common Client Interface

Overview

The Common Client Interface (CCl) defines a common application
programming model to allow application components and tools to interact
with resource adapters. It is independent of any specific EIS. It is a low-level
APl and is similar to other J2EE interfaces such as the Java Database
Connectivity (JDBC) interface.

23

CHAPTER 1 | Introduction

Artix J2EE Connector Overview

Overview

In this section

24

The Artix J2EE Connector is a J2EE Connector Architecture resource
adapter. It enables you to expose Artix Web services to your J2EE
applications and allows you to expose your J2EE applications as Artix Web
services.

The term Web services is used here to include SOAP over HTTP based
services and any service that has been exposed as a Web service by Artix.
Artix uses Web Services Definition Language (WSDL) contracts to expose
services. The Artix J2EE Connector can use the Artix WSDL files to
transparently connect your J2EE applications over multiple transports to any
Artix-enabled back-end service. This includes HTTP, CORBA, IIOP, IBM
WebSphere MQ, Java Messaging Service (JMS), BEA Tuxedo, and TIBCO
Rendezvous.

To use the Artix J2EE Connector you do not need an in depth knowledge of
Artix, WSDL or Web services. However, it would help if you were familiar
with Artix and its approach to Web services. The guides listed under the
Getting Started subsection of the Preface are a good place to start.

This section provides a high-level overview of Artix J2EE Connector's
components and how it can be used to manage both outbound and inbound
Web service connections, security and transactions for your J2EE
applications. The following topics are covered:

® Graphical representation

® Artix J2EE Connector RAR file

® Artix J2EE Connector deployment descriptor file
® Connection management

® Security management

Graphical representation

Artix J2EE Connector RAR file

Artix J2EE Connector deployment
descriptor file

Artix J2EE Connector Overview

Figure 2 illustrates at a high-level how the Artix J2EE Connector can be
used to expose a Web service to a J2EE application. It acts as a bridge
between J2EE and SOAP over HTTP Web services. This is the simplest
example. It also illustrates that the Artix J2EE Connector can be used as a
bridge between J2EE and a CORBA server that has been exposed as a Web
service by Artix.

Figure 2: Connecting J2EE Applications to Web services using Artix
J2EE Connector

CORBA Server

_ [, Artix™
J2EE
Connector

Web Service

?"'m
Og
4.%/’;;?“--‘

J2EE 1.3
Application @
Server

The Artix J2EE Connector resource adapter is packaged as a standard J2EE
Connector Architecture resource adapter archive (RAR) file, artix.rar. The
artix.rar file contains all the classes that Artix J2EE Connector needs to
manage the connections between J2EE applications and Artix Web services.
The Artix J2EE Connector uses the Java Native Interface (JNI) to access
core Artix functionality. The relevant native code libraries are accessed from
the Artix installation as needed at runtime.

The Artix J2EE Connector’s deployment descriptor file, ra.xm1, contains
information about Artix J2EE Connector’s resource implementation,
configuration properties, transaction and security support. It describes the
capabilities of the resource adapter and provides a deployer with enough
information to properly configure the resource adapter in an application
server environment. An application server relies on the information in the

25

CHAPTER 1 | Introduction

Connection management

Security management

Transaction management

26

deployment descriptor to know how to interact properly with the resource
adapter. The deployment descriptor is contained in the Artix J2EE Connector
RAR file, artix.rar.

You should not change the settings in the Artix J2EE Connector deployment
descriptor file. When deploying the Artix J2EE Connector, you can set the
configuration properties to suit your environment using your J2EE
application server's deployment tools. The configuration property values for
your environment are not stored in the read-only deployment descriptor,
ra.xml. Instead, your application server stores them separately in its own
copy or representation of the deployment descriptor. The application server
configured deployment descriptor properties override the entries in the
ra.xml file.

The Artix J2EE Connector manages both outbound and inbound Artix Web
service connections. To run a simple demo, see “Getting Started with Artix
J2EE Connector” on page 31.

For more information on how to use the Artix J2EE Connector to manage
outbound connections, see “Exposing a Web Service to a J2EE Application”
on page 45.

For more information on how to use the Artix J2EE Connector to manage
inbound connections, see “Exposing a J2EE Application as a Web Service”
on page 59.

The Artix J2EE Connector supports credentials propagation. It propagates
username and password credentials with outbound and inbound Artix Web
service requests.

For more information on using security with the Artix J2EE Connector, see
“Security” on page 97.

The Artix J2EE Connector supports local and global (XA) transactions, as
specified by the J2EE Connector Architecture.

For more information on using transactions with the Artix J2EE Connector,
see “Transactions” on page 81.

Artix Servlet Container Support

Artix Servlet Container Support

Overview

More information

You can expose Artix Web services from a servlet container. You can expose
Artix Web services from a servlet container. Artix provides the serviet
component of the Web service. It provides a basic servlet, the
ArtixServlet.class, and a servlet transport plug-in, which you can use to
route HTTP requests to the servlet to Artix. You must write the Web service
implementation class and generate an Artix Java plug-in. The Artix Java
plug-in is required to create an instance of your Web service implementation
and register it with the Artix bus.

Client applications use the information in the WSDL file to initialize a proxy
to the Web service. Client applications can invoke on the Web services
through the HTTP port assigned to the servlet container or using any of the
transports supported by Artix.

For more information on how to expose Artix Web services from a servlet
container, see “Exposing Artix Web Services from a Servlet Container” on
page 121.

27

CHAPTER 1 | Introduction

Artix Concepts

Overview To use Artix in a J2EE application server or a servlet container environment,
you do not need an in depth knowledge of Artix concepts, WSDL and Web
services. In fact, for a simple application, everything that you need to get up
and running is provided in this guide. However, if you are developing a
complex application, you may need to be more familiar with Artix concepts,
WSDL, Web services, and Service Oriented Architectures (SOA). The
following will help provide you with the background information that you
need:

® Other Artix guides
® Artix glossary
® Other resources

Other Artix guides The Artix guides listed in Preface under “Getting Started” on page 10 and
“Designing Artix Solutions” on page 11 contain useful introductory material
on Artix technology, WSDL, Web services and SOA.

Artix glossary The Artix library also includes a comprehensive glossary that explains the
terminology used in this guide and in the rest of the Artix guides.

Other resources The following also provide useful background information:

® Understanding Web Services: XML, WSDL, SOAP, and UDDI, written
by Eric Newcomer, published by Addison Wesley, ISBN
0-201-75081-3.

® Understanding SOA with Web Services, written by Eric Newcomer
and Greg Lomow, published by Addison Wesley, ISBN
0-321-18086-0.

® The W3C XML Schema page at: www.w3.org/XML/Schema.

® The W3C WSDL specification at: www.w3.org/TR/wsdl.

28

http://www.w3.org/XML/Schema
http://www.w3.org/TR/wsdl
../glossary/index.htm

Part ||

Using Artix in a J2EE
Application Server

In this part This part contains the following chapters:
Getting Started with Artix J2EE Connector page 31
Exposing a Web Service to a J2EE Application page 45
Exposing a J2EE Application as a Web Service page 59
Deploying Artix J2EE Connector page 69
Transactions page 81
Security page 97

29

30

In this chapter

CHAPTER 2

Getting Started
with Artix J2EE
Connector

This chapter focuses on getting started with the Artix J2EE
Connector. It walks you through a simple Hello World demo
that shows you how to use the Artix J2EE Connector to connect
a servlet, which is deployed in a J2EE application server, to a
SOAP over HTTP Web service. JBoss, Weblogic, and
WebSphere are used as example J2EE application servers.

This chapter contains the following sections:

Introduction page 32
Running the Hello World Demo on JBoss page 33
Running the Hello World Demo on WebLogic page 37
Running the Hello World Demo on WebSphere page 41

31

CHAPTER 2 | Getting Started with Artix J2EE Connector

Introduction

Overview

Demo location

WSDL file location

32

This chapter is based on running the Artix J2EE Hello wWorld demo. It
shows how you use the Artix J2EE Connector to connect a servlet deployed
in a J2EE application server to a SOAP over HTTP Artix Web service.

The demo can be found in:

ArtixInstallDir/artix/Version/demos/j2ee/hello world soap http

The Artix Web service WSDL file, hello world.wsdl, used to build both the
client J2EE application and the Artix server for this demo can be found in:

ArtixInstallDir/artix/Version/demos/basic/hello world soap http/
etc

Running the Hello World Demo on JBoss

Running the Hello World Demo on JBoss

Overview

Set Artix environment

Start the JBoss server

Deploy the Artix J2EE Connector
to JBoss

To run the Hello world demo on JBoss, complete the following steps:

Step

Action

1

Set Artix environment

Start the JBoss server

Deploy the Artix J2EE Connector to JBoss

Configure the connection factory

Build the demo

Deploy the Hello World application to JBoss

Start the back-end Artix server

| N OO W DN

Run the Hello World demo

You must set the Artix environment before running JBoss or building the
demo. See “Setting the Artix Environment” on page 70 for more detail.

Start the JBoss server by running the following command from your
JBossHome/bin directory:

(Windows) run.bat
(UNIX) run.sh

To deploy the Artix J2EE Connector to JBoss, copy the Artix J2EE Connector
RAR file, artix.rar, from your

ArtixInstallDir/lib/artix/j2ee/4.0

directory, to your JBoss deployment directory:

JBossHome/server/default/deploy

33

CHAPTER 2 | Getting Started with Artix J2EE Connector

Configure the connection factory

Build the demo

34

Connection factory configuration details are contained in the JBoss-specific
Artix J2EE Connector deployment descriptor file, cractoryName-ds.xmi file.
This demo provides a deployment descriptor for use with JBoss 4. To
configure the connection factory, copy the artixj2ee 1 5-ds.xml file from
your

ArtixInstallDir/artix/Version/demos/j2ee
/hello world soap http/etc

directory, to your JBoss deployment directory:

JBossHome/server/default/deploy

Build the Bello world demo from the
ArtixInstallDir/artix/Version/demos/j2ee/hello world soap http
directory by running the following command:

(Windows) > ant

(Unix) % ant

The ant utility is a Java-based build tool. It is bundled with Artix. The
build.xml file located in the demo directory contains the instructions for
building the Hello world application, in an XML format that is understood
by the ant utility. For more information about ant, see
http://ant.apache.org/.

http://ant.apache.org/
http://ant.apache.org/

Deploy the Hello World
application to JBoss

Start the back-end Artix server

Run the Hello World demo

Running the Hello World Demo on JBoss

To deploy the Hello world application to JBoss, copy the Hello World
application WAR file, helloworld.war, from your

ArtixInstallDir/artix/Version/demos/j2ee
/hello world soap http/j2ee archives

directory, to your JBoss deployment directory:

JBossHome/server/default/deploy

You can use either the Artix Java server or the Artix C++ server from the
Artix basic Hello World demo as the back-end server in this example. It is
located in:

ArtixInstallDir/artix/Version/demos/basic
/hello world soap http

In either case, you must compile the server before you can start it. For more
information on how to compile and start the back-end Artix server, see the
README. txt file located in the basic/hello world soap http demo
directory.

The Hello World demo presents a servlet view of the Hel1o Worid Web

service. If JBoss is running under its default URI, and assuming that the

application server is running on the same machine as the web browser, the

servlet is available on JBoss at the following URI:
http://localhost:8080/helloworld/rundemo.do

The Hello World demo is displayed as shown in Figure 3:

35

36

CHAPTER 2 | Getting Started with Artix J2EE Connector

Figure 3: Hello World Demo Running

Fle Edit View Favorites Tools Help

eBack' © - B @0|,@5&arch %Favon’ts @ Meda ®|8'&Dﬂ

r= @(ﬁo | Lnks ™

ptions

sgefank T 6 blocked 2] Auitoril | O

2EE Artix Connect Demo
Operation:
® sayHi

Ogeetie

Hello from Artix

ng Softwore Work Together™

Running the Hello World Demo on WebLogic

Running the Hello World Demo on WebLogic

Overview

Add Artix J2EE Connector API
JAR to WebLogic’s classpath

To run the Hello World demo on WebLlogic, complete the following steps:

Step Action

1 | Add Artix J2EE Connector APl JAR to WebLogic's classpath

Set Artix environment

Start the WebLogic server

Configure the connection factory

Deploy Artix J2EE Connector to WebLogic

Build the demo

Deploy the Hello World application to WebLogic

Start the back-end Artix server

Ol N[O | W] DN

Run the Hello World demo

WebLogic uses independent classloaders for each connection factory. The
Artix J2EE Connector's API classes must be available to the application’s
classloader and to the resource adapter's classloader. This can lead to the
problem of sharing classes across classloaders.

To prevent such class sharing problems, place the shared API classes on
WebLogic's crasspaTH. You can do this by appending the Artix J2EE
Connector APl JAR file, artixj2ee.jar, to Weblogic's cLasspatH or to your
global cLasspaTa environment variable. The artixj2ee.jar file is located
In:

ArtixInstallDir/lib/artix/j2ee/Version

Alternatively, you can update WeblLogic's start scripts. See the WebLogic
documentation for details.

37

CHAPTER 2 | Getting Started with Artix J2EE Connector

Set Artix environment

Start the WebLogic server

Configure the connection factory

Deploy Artix J2EE Connector to
WebLogic

38

You must set the Artix environment before running WebLogic or building the
demo. See “Setting the Artix Environment” on page 70 for more detail.

Start the WebLogic server by running the following command from your
BEA Home/user projects/domains/mydomain directory:

startWebLogic.cmd

Connection factory details are contained in the WebLogic-specific Artix J2EE
Connector deployment descriptor, weblogic-ra.xml. Weblogic expects to
find this file in the Artix J2EE Connector's RAR file, artix.rar. To configure
the connection factory, you must add the weblogic-ra.xml file to the
artix.rar file prior to deploying the RAR file. The Hello World demo build
file, build.xml, references an ant target that does this for you. Run the ant
target as follows from the
ArtixInstallDir/artix/Version/demos/j2ee/hello world soap http
directory:

(Windows) > ant prepare.rar.to.deploy

(UNIX) & ant prepare.rar.to.deploy

The ant utility is a Java-based build tool. It is bundled with Artix. The
prepare.rar.to.deploy target makes a copy of the artix.rar file, extracts
the contents, adds the weblogic-ra.xml file and rebuilds the RAR file. The
rebuilt artix.rar file is placed in the j2ee-archives directory of the demo.
The ant target is defined in the common.xm1 file, which is located in the
ArtixInstallDir/artix/Version/demos directory.

For more details about ant, see http://ant.apache.org/.

To deploy the Artix J2EE Connector to Weblogic, copy the Artix J2EE
Connector RAR file, artix.rar, from your

ArtixInstallDir/artix/Version/demos/j2ee/hello world soap http/
j2ee-archives

directory, to your WeblLogic auto-deployment directory:

WebLogic 8

BEA Home/user projects/domains/mydomain/applications

http://ant.apache.org/

Build the demo

Deploy the Hello World
application to WebLogic

Start the back-end Artix server

Running the Hello World Demo on WebLogic

WebLogic 9

BEA Home/user projects/domains/mydomain/autodeploy

Note: If you are running WebLogic in production mode (with
auto-deployment disabled), refer to the WebLogic documentation for
instructions on deploying a J2EE Connector Architecture resource adapter
or connector from the administration web console.

Build the Bello world demo from the
ArtixInstallDir/artix/Version/demos/j2ee/hello world soap http
directory by running the following command:

(Windows) > ant

(Unix) ¢ ant

To deploy the Hello World application to WebLogic, copy the Hello World
application WAR file, helloworld.war, from your

ArtixInstallDir/artix/Version/demos/j2ee
/hello world soap http/j2ee archives

directory, to your WebLogic auto-deployment directory:
WebLogic 8

BEA Home/user projects/domains/mydomain/applications

WebLogic 9

BEA Home/user projects/domains/mydomain/autodeploy

You can use either the Artix Java server or the Artix C+ + server from the
Artix basic Hello World demo as the back-end server in this example. It is
located in:

ArtixInstallDir/artix/Version/demos/basic
/hello world soap http

In either case, you must compile the server before you can start it. For more
information on how to compile and start the back-end Artix server, see the
ReEADME . txt file located in the basic/hello world soap http demo
directory.

39

CHAPTER 2 | Getting Started with Artix J2EE Connector

Run the Hello World demo

40

The Hello World demo presents a servlet view of the Hello World Web
service. The servlet is available on WebLogic's host in the /helloworld
context. If WebLogic is running under its default URI, and assuming that the
application server is running on the same machine as the web browser, the
servlet is available on WebLogic at the following URI:

http://localhost:7001/helloworld/rundemo.do
The Hello World demo is displayed as shown in Figure 3 on page 36.

Running the Hello World Demo on WebSphere

Running the Hello World Demo on WebSphere

Overview

Set Artix environment

Start the WebSphere server

Deploy the Artix J2EE Connector
to WebSphere

To run the Hello World demo on WebSphere, complete the following steps:

Step Action

1 | Set Artix environment

Start the WebSphere server

Deploy the Artix J2EE Connector to WebSphere

Build the demo

Deploy the Hello World application to WebSphere

Start the back-end Artix server

N| OOl dlW DN

Run the Hello World demo

You must set the Artix environment before running WebSphere. See “Setting
the Artix Environment” on page 70 for more detail.

Start the WebSphere server by running the following command from your
WebSphereHome/bin directory:

(Windows) startServer.bat serverl

(UNIX) startServer.sh serverl

To deploy the Artix J2EE Connector run the following Jython script, which
deploys the Artix J2EE Connector and creates a connection factory:

On Windows:

WebSphereHome\bin\wsadmin.bat -lang jython -f
ArtixInstallDir\artix\Version\demos\j2ee\hello world soap http\
etc\rardeploy.py

nodeName ArtixInstallDir\lib\artix\j2ee\Version\artix.rar

41

CHAPTER 2 | Getting Started with Artix J2EE Connector

Build the demo

Deploy the Hello World
application to WebSphere

42

On UNIX:

WebSphereHome/bin/wsadmin.sh -lang jython -f
ArtixInstallDir/artix/Version/demos/j2ee/hello world soap http/

etc/rardeploy.py
<nodeName> ArtixInstallDir/lib/artix/j2ee/Version/artix.rar

For more information on Jython, see www.jython.org.

Alternatively, you can use the WebSphere Administrative Console to deploy
the Artix J2EE Connector. Please refer to the WebSphere documentation for
details on how to deploy a J2EE Connector Architecture resource adapter.

Build the Bello wWorld demo from the
ArtixInstallDir/artix/Version/demos/j2ee/hello world soap http
directory by running the following command:

(Windows) > ant

(Unix) & ant
The ant utility is a Java-based build tool. It is bundled with Artix. The
build.xml file located in the demo directory contains the instructions for
building the Hel1lo World application, in an XML format that is understood
by the ant utility. For more information about ant, see
http://ant.apache.org/.

To deploy the Hello World application, run the following Jython script:
On Windows:

WebSphereHome\bin\wsadmin.bat -lang jython -f
ArtixInstallDir\artix\Version\demos\j2ee\hello world soap http\
etc\appdeploy.py

nodeName serverName ArtixInstallDir\artix\Version\demos\j2ee\
hello world soap http\j2ee-archives\helloworld.war

On UNIX:

WebSphereHome/bin/wsadmin.sh -lang jython -f
ArtixInstallDir/artix/Version/demos/j2ee/hello world soap http/
etc/appdeploy.py

nodeName serverName ArtixInstallDir/artix/Version/demos/j2ee/
hello world soap http/j2ee-archives/helloworld.war

http://www.jython.org/
http://ant.apache.org/
http://ant.apache.org/

Start the back-end Artix server

Run the Hello World demo

Running the Hello World Demo on WebSphere

Alternatively, you can use the WebSphere Administrative Console to deploy
the Hello World application. Please refer to the WebSphere documentation
for details on how to deploy applications.

You can use either the Artix Java server or the Artix C++ server from the
Artix basic Hello World demo as the back-end server in this example. It is
located in:

ArtixInstallDir/artix/Version/demos/basic
/hello world soap http

In either case, you must compile the server before you can start it. For more
information on how to compile and start the back-end Artix server, see the
README. txt file located in the basic/hello world soap http demo
directory.

The Hello World demo presents a servlet view of the Hello Worid Web
service. The servlet is available on your WebSphere host in the helloworid
context. If WebSphere is running under its default URI, and assuming that
the application server is running on the same machine as the web browser,
the servlet is available on WebSphere at the following URI:

http://localhost:9080/helloworld/rundemo.do
The Hello World demo is displayed as shown in Figure 3 on page 36.

43

CHAPTER 2 | Getting Started with Artix J2EE Connector

44

In this chapter

CHAPTER 3

Exposing a Web
Service to a J2EE
Application

You can use the Artix J2EE Connector to connect your J2EE
applications to Web services. This chapter walks you through
the steps involved.

This chapter discusses the following topics:

Introduction page 46
Mapping the WSDL to Java page 48
Writing your J2EE Application page 49
Packaging your Application page b5

45

CHAPTER 3 | Exposing a Web Service to a J2EE Application

Introduction

Overview

Implementation steps

46

This section outlines how you expose a Web service to your J2EE
application using the Artix J2EE Connector. The following topics are
covered:

® Implementation steps

® How it works

® Demo

The following is a high-level view of the steps that you need to complete to
connect your J2EE application to a Web service using the Artix J2EE
Connector. It assumes that the Web service WSDL file already exists. If,
however, you need to develop a WSDL file, please refer to the
Understanding Artix Contracts guide.

Step Action

1 | Obtain a copy of, or details of the location of, the WSDL file for
the Web service to which you want to connect.

2 | Map the WSDL file to Java to obtain the Java interfaces that
you will use when writing your application. Artix provides a
wsdltojava command-line utility that does this for you. The
Artix WSDL-to-Java mapping is based on the JAX-RPC
standard.

3 | Write your application.

4 | Package your application.

5 | Deploy the your application and the Artix J2EE Connector to
your J2EE application server.

The rest of this chapter describes steps 1 to 4 in detail. For deployment
details, see “Deploying Artix J2EE Connector” on page 69.

../contract/index.htm

How it works

Demo

Introduction

The Artix J2EE Connector is provided with a Java JAX-RPC style interface
that represents the Web service and the location of a WSDL file that
describes the Web service. The getConnection () operation on the Artix
J2EE Connector connection factory, returns a proxy that implements the
Java JAX-RPC interface. When the application invokes an operation on the
returned proxy, the Artix J2EE Connector uses the information in the
corresponding WSDL file to determine the appropriate binding information
for the Web service. The binding information describes the low-level details
around access to the Web service, the protocol address and wire format.
Typically this is SOAP over HTTP, but it can be fixed format over JMS, CDR
over IIOP, or any one of the many transports that Artix supports. The Artix
J2EE Connector uses Artix to invoke on the Web service using the
appropriate binding.

In addition, the proxy supports a close () operation. This is used when the
application is finished with the Web service. The close () operation returns
the proxy to the application server's connection pool so it can be reused by
other components.

The examples used in this chapter are taken from the J2EE Hello World
demo, which can be found in:

ArtixInstallDir/artix/Version/demos/j2ee/hello world soap http

If you want to run this demo, see “Getting Started with Artix J2EE
Connector” on page 31 or the rREaDME. txt file in the demo directory.

47

CHAPTER 3 | Exposing a Web Service to a J2EE Application

Mapping the WSDL to Java

Overview

Syntax of wsdltojava command

Example

More information

48

The Artix development tools include a wsdltojava command-line utility that
you can use to generate Java interfaces from the WSDL file. Artix maps
WSDL types to Java using the mapping described in the JAX-RPC
specification.

To generate Java interfaces from a WSDL file, run the following command:
wsdltojava -d [output dir] -interface -p package wsdl contract

The parameters shown above are defined as follows:

-d [output_dir] Specifies the directory to which the generated code is
written. The default is the current working directory.

-interface Generates the Java interface for the service.

-p <[wsdl Specifies the name of the Java package to use for the
namespace =] generated code. You can optionally map a WSDL
Package namespace to a particular package name if your contract
Name>

has more than one namespace.

wsdl_contract Specifies the WSDL file from which the Java code is
being generated.

For example, the following wsdltojava command was used to generate the
Greeter.java interface class that is provided in the J2EE Hello wWorld
demo:

wsdltojava -d src -interface -p demo.ejb hello world.wsdl
The hello world.wsdl file can be found in:

ArtixInstallDir/artix/Version/demos/basic/hello world soap http/
SiE@

For more information on the wsditojava command-line utility, see the
Developing Artix Applications in Java manual.

Writing your J2EE Application

Writing your J2EE Application

Overview

In this section

The Artix J2EE Connector connection management API allows you to get a
connection from your J2EE application to a Web service. The Artix J2EE
Connector API usage pattern is consistent with general connection
management in J2EE. This section provides an overview of the Artix J2EE
Connector connection management interfaces and outlines typical usage
scenarios.

This section covers the following topics:

Connection Management API Definition page 50

Using the Connection Management API page 51

49

CHAPTER 3 | Exposing a Web Service to a J2EE Application

Connection Management API Definition

Overview

ArtixConnectionFactory

Connection

Javadoc

50

The Artix J2EE Connector connection management API is packaged in

com. iona.connector and consists of two interfaces—
ArtixConnectionFactory and Connection. This subsection gives a brief
description of each and points you to the Javadoc for more information. The
following topics are covered:

® ArtixConnectionFactory

¢ Connection

® Javadoc

The ArtixConnectionFactory interface provides the methods to create a
Connection that represents a Web service defined by the supplied
parameters. The ArtixConnectionFactory interface is the type returned
from an environment naming context lookup of the Artix J2EE Connector by
a J2EE component.

The connection interface provides a handle to a connection managed by the
J2EE application server. It is the super interface of the Web service proxy
returned by ArtixConnectionFactory. It allows the caller to return the proxy
to the application server's pool when it is no longer needed. The returned
proxy also implements the interface supplied as an argument to

getConnection ().

For more detail on the Artix J2EE Connector API, see the Artix Javadoc.

../javadoc/index.html

Writing your J2EE Application

Using the Connection Management API

Overview The Artix J2EE Connector ArtixConnectionFactory interface has several
method signatures that you can use. This allows you to use the
ArtixConnectionFactory interface in a way that best suits your
environment. This subsection outlines the possible usage scenarios. The
following topic are covered:
® Hardcoding WSDL location details in your application
® Providing WSDL location details at runtime
® Omitting the port name parameter
® Configuring Artix to locate the WSDL at runtime
® Accessing the Artix bus directly
® More detail on Artix J2EE Connector API

Hardcoding WSDL location details The following example code is taken from the Hello World demo used in

in your application “Getting Started with Artix J2EE Connector” on page 31. It had been
simplified to make it easier to read. It demonstrates how the WSDL location
details can be hardcoded in your application:

Example 1: Hello World servlet
Context ctx = new InitialContext();
1 ArtixConnectionFactory factory =
(ArtixConnectionFactory)ctx.lookup ("java:comp/env/eis/

ArtixConnector") ;

2 URL wsdlLocation = getClass().getResource("/hello_world.wsdl");

3 QName serviceName = new
OName ("http://www.iona.com/hello world soap http",
"SOAPService") ;

4 QOName portName = new QName ("","SoapPort") ;

5 Greeter greeter = (Greeter) factory.getConnection (Greeter.class,

wsdlLocation, serviceName, portName);
6 greeter.sayHi () ;

7 ((Connection)greeter) .close() ;

51

CHAPTER 3 | Exposing a Web Service to a J2EE Application

Providing WSDL location details
at runtime

52

The code in Example 1 can be explained as follows:

1.
2.

Retrieve the connection factory from JNDI.

Determine the WSDL location URL from the classpath using the JVM
runtime. The WSDL file must be available on the classpath for this to
work.

Create a oname that identifies which service in the WSDL file to use.
Create a oName that identifies which port in the WSDL file to use.

Invoke on the connection factory to create a connection to the Web
service and return a proxy.

Invoke on the service.

Close the connection to the service and return to the application server
connection pool.

The following example code shows the same code, but in this case the
WSDL file is located by the runtime using Artix:

Example 2: Hello World serviet

Context ctx = new InitialContext();

ArtixConnectionFactory factory =

(ArtixConnectionFactory)ctx.lookup ("java:comp/env/eis/
ArtixConnector") ;

QName serviceName = new

QName ("http://www.iona.com/hello world soap http",
"SOAPService") ;

QOName portName = new QName ("", "SoapPort") ;

Greeter greeter = (Greeter) factory.getConnection (Greeter.class,

serviceName, portName) ;

greeter.sayHi () ;

((Connection)greeter) .close () ;

Omitting the port name parameter

Configuring Artix to locate the
WSDL at runtime

Accessing the Artix bus directly

Writing your J2EE Application

The code in Example 2 can be explained as follows:
1. Retrieve the connection factory from JNDI.

2. Create a oname that identifies which service in the WSDL contract to
use. This is used by the Artix runtime to locate the WSDL contract. See
Configuring Artix to locate the WSDL at runtime for more detail.

3. Create a oname that identifies which port in the WSDL contract to use.

4. Invoke on the connection factory to create a connection to the Web
service and return a proxy.

5. Invoke on the service.
Close the connection to the service.

The ArtixConnectionFactory APl also allows you to omit the port name
parameter. You can drop the port name parameter if the WSDL file only
defines one port or the first port defined in a WSDL file that has a number of
port definitions is the port that you want to use.

There are several ways in which Artix can find WSDL files and endpoint
references at runtime. For more detail, see the Accessing Contracts and
References chapter in the Configuring and Deploying Artix Solutions guide.

Note: One way that Artix uses find WSDL files and endpoint references is
the command line. This approach is not appropriate for the Artix J2EE
Connector.

If you need to access the Artix bus directly, you must use the
com.iona.connector.ArtixConnectionFaCtory.getBus()IﬂethOd.FOf
example, you might need to access the bus context registry or create a
reference. Example 3 shows how to use the
ArtixConnectionFactory.getBus()rﬂethOd.

Example 3: Using ArtixConnectionFactory.getBus()

Context ctx = new InitialContext () ;
ArtixConnectionFactory factory =
(ArtixConnectionFactory)ctx.lookup (EIS JNDI NAME) ;
Bus bus = (Bus) factory.getBus() ;

ContextRegistry registry = bus.getContextRegistry() ;

53

../deploy/index.htm

CHAPTER 3 | Exposing a Web Service to a J2EE Application

More detail on Artix J2EE
Connector API

54

The code shown in Example 3 can be explained as follows:
1. Retrieve the connection factory from JNDI.
2. Cast the connection factory to com.iona.jbus.Bus.

3. Call getContextRegistry () on the returned bus to get a reference to
the context registry. The com.iona.jbus.ContextRegistry object
manages all of the context objects for the application.

For more information on message contexts, see the Using Message Contexts
chapter in the Developing Artix Applications in Java guide.

Note: If you are using WebLogic, you must ensure that the bus, and any
dependencies that it might have, are available to the classloader that loads
the application. The easiest way to do this is add the Artix Java runtime
JAR,

ArtixInstallDir/lib/artix/java runtime/4.0/java runtime-rt.jar,
to WebLogic's system classpath.

For more detail on the Artix J2EE Connector API, see the Artix Javadoc.

../javadoc/index.html
../java_pguide/index.htm

Packaging your Application

Packaging your Application

Overview When packaging and deploying your J2EE application you must declare the

resource reference used in your code in your application deployment
descriptor and map that resource reference to a resource. In addition, you
need to package the Web service interface classes with your application.

In this section This section describes the following:

® Declaring the resource reference
Mapping the resource reference

Packaging Web service interface classes

Note: The example deployment descriptors shown here are taken from

the Hel1lo World demo, which is used in “Getting Started with Artix J2EE
Connector” on page 31.

Declaring the resource reference You must declare the resource reference used in your code in your

application deployment descriptor, ejb-jar.xml Or web.xml, by adding a
resource-ref tag. For example, in the Hello World demo, the
helloworld.war file contains a web.xml file that includes the following:

<resource-ref>

<res-ref-name>eis/ArtixConnector</res-ref-name>
<res-type>com.iona.connector.ArtixConnectionFactory
</res-type>
<res-auth>Container</res-auth>

</resource-ref>

Mapping the resource reference You must map the resource reference used in your code to the resource.

How you do this is dependent on the application server that you are using.
For example, if you are using JBoss, you must add a resource-ref tag to

55

CHAPTER 3 | Exposing a Web Service to a J2EE Application

Packaging Web service interface
classes

56

the application server deployment descriptor file, jboss.xml. For example,
in the gello world demo, the helloworld.war file contains a
jboss-web.xml file that includes the following:

<jboss-web>

<resource-ref>
<res-ref-name>eis/ArtixConnector</res-ref-name>
<res-type>com. iona.connector.ArtixConnectionFactory</res-type>
<jndi-name>java:/ArtixConnector</jndi-name>

</resource-ref>

</jboss-web>

The jndi-name of the resource-ref element binds the resource reference to
the connection factory that has been previously declared.

Similarly, if you are using WebLogic, you need to add
reference-descriptor tag to the application server deployment file,
weblogic.xml. For example, in the Hello World demo, the helloworld.war
file contains @ weblogic.xml file that includes the following:

<weblogic-web-app>
<reference-descriptor>
<resource-description>
<res-ref-name>eis/ArtixConnector</res-ref-name>
<jndi-name>ArtixConnector</jndi-name>
</resource-description>
</reference-descriptor>
</weblogic-web-app>

If you are using WebSphere, you can use the WebSphere Administrative
Console to map the resource reference to the resource while deploying the
Artix J2EE Connector. Please refer to the WebSphere documentation for
details.

You must package the interface classes that you generated from the Web
service WSDL file with your J2EE application module when you are
packaging and deploying it. If the WSDL file contains complex types, the
wsdltojava utility will also produce helper classes. These also need to be
packaged with your J2EE application module.

More information

Packaging your Application

It is important to package these files in the appropriate location in your J2EE
application module. For example, the helloworld.war file deployed in the
Hello World demo described in “Getting Started with Artix J2EE Connector”
on page 31, the interface classes are packaged in the WEB-INF/classes
directory.

Please refer to the J2EE specification and your J2EE vendor documentation
for more information on application packaging and deployment.

57

CHAPTER 3 | Exposing a Web Service to a J2EE Application

58

In this chapter

CHAPTER 4

Exposing a J2EE
Application as a
Web Service

You can expose your J2EE application as a Web service using
the Artix J2EE Connector.

This chapter discusses the following topics:

Introduction page 60
Mapping the WSDL to Java page 62
Implementing a Stateless Session Bean page 63
Configuring Inbound Connections page 65

59

CHAPTER 4 | Exposing a J2EE Application as a Web Service

Introduction

Overview

Implementation steps

60

This section outlines how you expose a J2EE application as a Web service
using the Artix J2EE Connector. The following topics are covered:

® Implementation steps
® How it works
® Demo

The following is a high-level view of the steps that you need to complete to
expose your J2EE application as a Web service using the Artix J2EE
Connector. It assumes that the Web service WSDL file already exists. If,
however, you need to develop a WSDL file, please refer to the
Understanding Artix Contracts guide.

Step Action

1 | Obtain a copy of, or details of the location of, the WSDL file
that defines the Web service that your application will
implement.

2 | Map the WSDL file to Java to obtain the Java interfaces that
you will use when writing your application. Artix provides a
wsdltojava command-line utility that does this for you. The
Artix WSDL-to-Java mapping is based on the JAX-RPC
standard.

3 | Implement a stateless session bean (SLSB) whose remote
interface extends the JAX-RPC interface generated by the
wsdltojava utility.

4 | Configure the Artix J2EE Connector for inbound connections by
using an ejb_servants.properties file.

5 | Deploy the Artix J2EE Connector and your application to your
J2EE application server.

The rest of this chapter describes steps 1 to 4 in more detail. For
deployment information, see “Deploying Artix J2EE Connector” on page 69.

../contract/index.htm

How it works

Demo

Introduction

Your J2EE application must provide an end point to which the Artix J2EE
Connector can dispatch incoming requests. This endpoint is a stateless
session bean (SLSB). The SLSB implements a method for each service/port
operation defined in the WSDL contract. The signature for each method is
as defined by the JAX-RPC mapping.

For each port, the Artix J2EE Connector creates a servant and registers it
with the Artix bus. A servant is an object that implements the service/port
operations specified in the WSDL file. The port is mapped to the SLSB by it
JNDI name. Each servant is given a JNDI name for the SLSB home on
which to receive the request. The port-to-JNDI mapping is specified in an
external properties file, ejb_servants.properties.

On receiving a request, the servant resolves the SLSB home object from
JNDI and creates an instance of the bean. The servant forwards the request
to the SLSB and passes return types or exceptions to the Artix runtime and
from there to the client.

The examples used in this chapter are taken from the Inbound Connection
demo, which can be found in:

ArtixInstallDir/artix/Version/demos/j2ee/inbound connection

If you want to run this demo, see the rREADME. txt file in the demo directory.

61

CHAPTER 4 | Exposing a J2EE Application as a Web Service

Mapping the WSDL to Java

Overview

Syntax of wsdltojava command

Example

More information

62

The Artix development tools include a wsdltojava command-line utility that
you can use to generate Java interfaces from the WSDL file. Artix maps
WSDL types to Java using the mapping described in the JAX-RPC
specification.

To generate Java interfaces from a WSDL file, run the following command:
wsdltojava -d [output dir] -interface -p package wsdl contract

The parameters shown above are defined as follows:

-d [output_dir] Specifies the directory to which the generated code is
written. The default is the current working directory.

-interface Generates the Java interface for the service.

-p <[wsdl Specifies the name of the Java package to use for the
namespace =] generated code. You can optionally map a WSDL
Package namespace to a particular package name if your contract
Name>

has more than one namespace.

wsdl_contract Specifies the WSDL file from which the Java code is
being generated.

For example, the following wsd1tojava command was used to generate the
Greeter.java interface class that is provided in the Inbound Connection
demo:

wsdltojava -d src -interface -p demo.greeter hello world.wsdl
The hello world.wsdl file can be found in:

ArtixInstallDir/artix/Version/demos/basic/hello world soap http/
SiE@

For more information on the wsditojava command-line utility, see the
Developing Artix Applications in Java guide.

../java_pguide/index.htm

Implementing a Stateless Session Bean

Implementing a Stateless Session Bean

Overview

Generated Java interface

EJB remote interface definition

You must implement a stateless session bean (SLSB) whose remote
interface extends the interface that you generated from the WSDL file in the
previous section. As per the EJB specification, the SLSB implementation
must implement the methods defined in the remote interface. This section
shows, as an example, the SLSB used in the Inbound Connection demo,
including the:

® Generated Java interface
® EJB remote interface definition
® Stateless Session Bean example

The following example shows the Java interface, Greeter, which was
generated from the hello world.wsdl file in the Inbound Connection
demo:

Example 4: Greeter Interface
public interface Greeter extends java.rmi.Remote {
public String sayHi() throws RemoteException;

public String greetMe (String me) throws RemoteException;

The following EJB remote interface extends the Greeter interface:

Example 5: Greeter Remote Interface

public interface GreeterRemote extends EJBObject, Greeter ({

}

63

CHAPTER 4 | Exposing a J2EE Application as a Web Service

Stateless Session Bean example The following SLSB implements a method for each operation defined in the
hello world.wsdl file:

Example 6: Greeter Stateless Session Bean

public class GreeterBean implements SessionBean {

public String sayHi() throws RemoteException {...

}

public String greetMe (String user) throws RemoteException
{ooo

}

//rest of bean implementation goes here

64

Configuring Inbound Connections

Configuring Inbound Connections

Overview

In this section

Format of ejb_servants.properties

The Artix J2EE Connector creates a servant for each port defined in the
WSDL contract and registers it with the Artix bus. Each servant is given a
JNDI name for the SLSB home on which to receive the request. You must
configure the Artix J2EE Connector with the port-to-JNDI mapping so that it
can pass incoming Web service requests to your application. To do this, you
must create an ejb_servants.properties file that maps the port to the
JNDI name.

This section describes the format of the ejb_servants.properties file,
provides an example, and describes how to configure the Artix J2EE
Connector to find and monitor your ejb_servants.properties file. The
following topics are covered:

® Format of ejb_servants.properties

® Example

® Multiple entries

® Configuring the location and monitoring of ejb_servant.properties

The format of the ejb_servants.properties file is

jndi name={namespace}ServiceName, PortName@url to wsdl

jndi_name The configured JNDI name of the bean. This is the JNDI
name that an external client uses to contact the bean.

ServiceName The string form of the oname for the Artix service in the
WSDL file. The string form uses curly brackets for the
namespace and a plain string for the local part. Artix
listens on all configured ports for the service.

PortName The string form for the port name defined in the WSDL
file. This is an optional parameter and can be used to
specify a particular port. If it is not specified, Artix listens
on all ports.

65

CHAPTER 4 | Exposing a J2EE Application as a Web Service

Example

@url to wsdl The string form of a URL that identifies the WSDL file.
This is an optional parameter and does not need to be
used if Artix runtime has been configured to locate the
WSDL file (using the service oName).

For details on how to configure Artix to locate the WSDL
contract at runtime, see the Accessing Contracts and
References chapter in the Configuring and Deploying
Artix Solutions.

Artix includes a ejb_servants.properties file that you can use as a
template for your application. It is located in:

ArtixInstallDir/artix/Version/etc

The following shows the entry that is added to the
ejb_servants.properties file for the Inbound Connection demo:

GreeterBean={http://www.iona.com/hello world soap http}SOAPService@file:C:/IONA/artix/4.0 \
demos/j2ee/inbound connection/wsdl/hello world.wsdl

Multiple entries

Configuring the location and
monitoring of
ejb_servant.properties

66

Note: The contents must appear on one line.

You can include more than one entry in an ejb_servants.properties file if,
for example, you want to deploy multiple J2EE applications as Web services
targets.

By default, the Artix J2EE Connector is configured to find the

ejb_servants.properties file in:

ArtixInstallDir/artix/Version/etc

If you store your ejb_servants.properties file in a different location, you
must set the EJBServicePropertiesURL configuration property to specify
that location. See “EJBServicePropertiesURL” on page 154 for details.

In addition, by default, the Artix J2EE Connector is configured to check the
ejb_servants.properties file for updates at 30 second intervals. This
behavior can be altered by changing the default settings of the

../deploy/index.htm
../deploy/index.htm

Configuring Inbound Connections

MonitorEJBServiceProperties and EJBServicePropertiesPollInterval
configuration properties. See “MonitorEJBServiceProperties” on page 156
and “EJBServicePropertiesPollinterval” on page 155 for more detail.

67

CHAPTER 4 | Exposing a J2EE Application as a Web Service

68

In this chapter

CHAPTER 5

Deploying Artix
J2EE Connector

How you deploy the Artix J2EE Connector is dependent on the J2EE
application server that you are using. In all cases, however, you must set the
Artix environment before running your application server. This chapter
outlines how to do this and highlights some important points when
deploying to JBoss, WebLogic and WebSphere.

For more detailed deployment information, please refer to your J2EE
application server documentation.

This chapter discusses the following topics:

Setting the Artix Environment page 70
Deploying to JBoss page 72
Deploying to WebLogic page 75
Deploying to WebSphere page 78

69

CHAPTER 5 | Deploying Artix J2EE Connector

Setting the Artix Environment

Overview The Artix shared libraries must be available to the Artix J2EE Connector. To
set the Artix environment, you must do either run the artix env script or
append the Artix shared library directory to the system environment variable.

Run the artix_env script Run the artix env script located in your
ArtixInstallDir/artix/Version/bin directory

For more information on the artix env script, see the getting started
chapter in the Configuring and Deploying Artix Solutions guide.

Append Artix shared library If you do not want to run the artix_env script, you must instead append the
directory to system environment Artix shared library directory to your system environment variable as follows:

variable .
Windows

set PATH=%PATH%; ArtixInstallDir\bin
UNIX

1D LIBRARY PATH=ArtixInstallDir/shlib:ArtixInstallDir/shlib/
default:SLD LIBRARY PATH

On HP-UX set sHLIB PATH as follows:

SHLIB PATH=ArtixInstallDir/shlib:ArtixInstallDir/shlib/
default:$SHLIB PATH

Artix J2EE Connector classloader The Artix J2EE Connector uses a classloader firewall to isolate classes used

firewall by Artix and classes used by the application server. If, for example, the
application server requires Xerces 2.4 and Artix requires Xerces 2.5, the
classloader firewall allows both versions to exist. You do not need to do
anything with this classloader firewall. If, however, you are interested in
finding out more about Artix classloader firewalls:

70

../deploy/index.htm

Setting the Artix Environment

The Artix J2EE Connector classloader firewall configuration file,
artix_j2ee ce.xml, is located in the following directory of your Artix
installation:

InstallDir/artix/Version/etc

See the Things to Consider when Developing Artix Applications
chapter, in the Developing Artix Applications in Java guide.

71

../java_pguide/index.htm

CHAPTER 5 | Deploying Artix J2EE Connector

Deploying to JBoss

Overview This section gives an overview of how to deploy the Artix J2EE Connector to
JBoss and points you to a demo that walks you through deployment and
shows you a running application. It also provides you with an example of a
JBoss-specific Artix J2EE Connector deployment descriptor file.

In addition, to enable JBoss to make the Artix J2EE Connector available to
your application, you must include an entry in the application deployment
descriptor that binds the resource reference to the resource. This section
provides with an example of such an entry. The following topics are covered:
® Deployment steps

® Run the Hello World demo

® Example CFactoryName-ds.xml deployment descriptor

® Example application-specific deployment descriptor

® More detail

Deployment steps To deploy the Artix J2EE Connector to JBoss, complete the following steps:

Step Action

1 | Set the Artix environment before running JBoss.

See “Setting the Artix Environment” on page 70 for more detail.

2 | Copy the Artix J2EE Connector’'s RAR file, artix.rar, from the
ArtixInstallDir/lib/artix/j2ee/4.0 directory, to your
JBoss deployment directory, typically:
JBossHome/server/default/deploy

3 | Copy a JBoss-specific Artix J2EE Connector deployment
descriptor file, cFactoryName-ds.xml, to your JBoss
deployment directory: JBossHome/server/default/deploy

This file is required to configure the Artix J2EE Connector
connection factories. For more details, see Example
CFactoryName-ds.xml deployment descriptor.

72

Deploying to JBoss

Run the Hello World demo To deploy the Artix J2EE Connector and an example application to JBoss,
see “Running the Hello World Demo on JBoss” on page 33.

Example CFactoryName-ds.xml The JBoss-specific Artix J2EE Connector deployment descriptor,

deployment descriptor CFactoryName-ds .xml, defines the connection factories associated with the
Artix J2EE Connector, any dependencies it might have on other services, the
JNDI name under which it is registered, and the value of the configuration
properties that need to be defined for the connection factories.

The Artix J2EE Hello wWorld demo provides an example of such a
deployment descriptor, artixj2ee 1 5-ds.xml, for use with JBoss 4:

<?xml version="1.0" encoding="UTF-8" 2>
<!DOCTYPE connection-factories (View Source for full
doctype...)>
<connection-factories>
<no-tx-connection-factory>
<jndi-name>ArtixConnector</jndi-name>
<rar-name>artix.rar</rar-name>
<connection-definition>
com. iona.connector.ArtixConnectionFactory
</connection-definition>
</no-tx-connection-factory>
</connection-factories>

Example application-specific JBoss also requires an application-specific deployment descriptor to bind
deployment descriptor the resource reference to the resource; that is, to make the Artix J2EE
Connector available to the application.

The following example deployment descriptor, jboss-web.xml, is used in
the Hello World demo to make the Artix J2EE Connector available to the
Hello World application:

<jboss-web>
<resource-ref>
<res-ref-name>eis/ArtixConnector</res-ref-name>
<res-type>com.iona.connector.ArtixConnectionFactory
</res-type>
<jndi-name>java: /ArtixConnector</jndi-name>
</resource-ref>
</jboss-web>

73

CHAPTER 5 | Deploying Artix J2EE Connector

More detail

74

The jndi-name of the resource-ref element binds the resource reference to
the connection factory that has been previously deployed.

When deploying your application, copy it and an application-specific
deployment descriptor file to your JBoss deployment directory:

JBossHome/server/default/deploy.

For more detailed deployment information, please refer to the JBoss
documentation.

Deploying to WebLogic

Deploying to WebLogic

Overview

Assumption

Class sharing between resource
adapters and applications

This section gives an overview of how to deploy the Artix J2EE Connector to
WebLogic and points you to a demo that walks you through deployment and
shows you a running application. It also highlights how you can avoid
having to duplicate the Artix J2EE Connector’'s APl JAR when you are
deploying the Artix J2EE Connector to WebLogic. The following topics are
covered:

® Assumption

® C(Class sharing between resource adapters and applications

® Deployment steps

® Configuring the connection factory

® Example weblogic-ra.xml

® Run the Hello World demo

® More information

The information presented in this section is based on the assumption that
you are using Weblogic Server version 8.1 Service Pack 3 or higher.

WeblLogic uses independent classloaders for each connection factory. The
Artix J2EE Connector's API classes must be available to the application’s
classloader and to the resource adapter’s classloader. This can lead to the
problem of sharing classes across classloaders.

To prevent such class sharing problems, place the shared API classes on
Weblogic's crasspaTa. You can do this by appending the Artix J2EE
Connector APl JAR file, artixj2ee.jar, to Weblogic's cr.asspaTH or to your
global crasspaTh environment variable. The artixj2ee.jar file is located
n:

ArtixInstallDir/lib/artix/j2ee/4.0

75

CHAPTER 5 | Deploying Artix J2EE Connector

Deployment steps

Configuring the connection factory

76

To deploy the Artix J2EE Connector to WebLogic, complete the following

steps:

1. Set the Artix environment before running WebLogic. See “Setting the
Artix Environment” on page 70 for more detail.

2. Configure the connection factory. See Configuring the connection
factory for more detail.

3. Deploy Artix J2EE Connector to WebLogic by copying the artix.rar
file that you configured in step 2, to your Weblogic auto-deployment
directory:

WebLogic 8

BEA Home/user projects/domains/mydomain/applications

WebLogic 9

BEA Home/user projects/domains/mydomain/autodeploy

Connection factory details are contained in the WebLogic-specific Artix J2EE

Connector deployment descriptor, weblogic-ra.xml. Weblogic expects to

find this file in the Artix J2EE Connector's RAR file, artix.rar. To configure

the connection factory, you must add the weblogic-ra.xml file to the

artix.rar file prior to deploying the RAR file. To do this:

1. Make a copy of the artix.rar file and place it in the directory that
contains the META-INF\weblogic-ra.xml subdirectory. The artix.rar
file is located in:

ArtixInstallDir/lib/artix/j2ee/4.0

2. Run the following JAR utility from the directory to which you have
copied the artix.rar file:

jar uvf artix.rar META-INF/weblogic-ra.xml

The jar uvf utility extracts the contents of the artix.rar file, adds the
weblogic-ra.xml file to the META-INF directory of the archive file and
rebuilds artix.rar

Example weblogic-ra.xml

Run the Hello World demo

More information

Deploying to WebLogic

The WebLogic-specific Artix J2EE Connector deployment descriptor,
weblogic-ra.xml, defines the connection factories associated with the Artix
J2EE Connector, any dependencies it might have on other services, the
JNDI name under which it is registered, and the value of the configuration
properties that need to be defined for the connection factories.

The following example weblogic-ra.xml file is used to deploy the Artix J2EE
Connector in the Hello World demo:

<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE weblogic-connection-factory-dd ...>
<weblogic-connection-factory-dd>
<connection-factory-name>ArtixConnector
</connection-factory-name>
<jndi-name>ArtixConnector</jndi-name>
</weblogic-connection-factory-dd>

To deploy the Artix J2EE Connector and an example application to
WebLogic, see “Running the Hello World Demo on WebLogic” on page 37.

For more detailed deployment information, please refer to the WebLogic
documentation.

77

CHAPTER 5 | Deploying Artix J2EE Connector

Deploying to WebSphere

Overview

Deployment steps

78

This section gives an overview of how to deploy the Artix J2EE Connector to
WebSphere and points you to a demo that walks you through deployment
and shows you a running application. The following topics are covered:

® Deployment steps

® Run the Hello World demo

® More information

To deploy the Artix J2EE Connector to WebSphere:

1. Set the Artix environment before running WebSphere. See “Setting the
Artix Environment” on page 70 for more detail.

2. Run the following Jython script to deploy the Artix J2EE Connector and
create a connection factory:

On Windows:

WebSphereHome\bin\wsadmin.bat -lang jython -f
ArtixInstallDir\artix\Version\demos\j2ee\hello world soap http\
etc\rardeploy.py

<nodeName> ArtixInstallDir\\lib\\artix\\j2ee\\Version\\artix.rar

On UNIX:

WebSphereHome/bin/wsadmin.sh -lang jython -f
ArtixInstallDir/artix/Version/demos/j2ee/hello world soap http/
etc/rardeploy.py

<nodeName> ArtixInstallDir/lib/artix/j2ee/Version/artix.rar

Alternatively, you can use the WebSphere Administrative Console to deploy
the Artix J2EE Connector.

Note: On WebSphere 6.0.x a client-view jar for the target EJB(s) must
be available to the application server.

Run the Hello World demo

More information

Deploying to WebSphere

To deploy the Artix J2EE Connector and an example application to
WebSphere, see “Running the Hello World Demo on WebSphere” on
page 41.

For more detailed deployment information, please refer to the WebSphere
documentation.

For more information on Jython, see www.jython.org.

79

http://www.jython.org/

CHAPTER 5 | Deploying Artix J2EE Connector

80

In this chapter

CHAPTER 6

Transactions

Transaction support is an essential part of any enterprise
application architecture. The Artix J2EE Connector supports
local and global (XA) transactions as specified by the J2EE
Connector Architecture.

This chapter covers the following topics:

Transactions Overview page 82
Local Transactions page 85
Global Transactions page 90

Note: Transaction support is not available in all editions of Artix. Please
check the conditions of your Artix license to see whether your installation
supports transactions.

81

CHAPTER 6 | Transactions

Transactions Overview

What is a transaction?

Example

82

A transaction is a single unit of work that can contain several programming
steps. When a transaction executes, each step must complete successfully
to ensure data integrity. If one step in a transaction fails, all of the steps in
that transaction must rol/l back. As a result, data that the transaction was
attempting to modify remains unaffected by the failure. If all the steps
succeed, the transaction commits and all data modifications resulting from
the transaction become permanent.

Non-transactional software processes can sometimes proceed and
sometimes fail, and sometimes fail after only half completing their task. This
can be a disaster for certain applications. The most common example is a
bank fund transfer: imagine a failed software call that debited one account
but failed to credit another. A transactional process, on the other hand, is
secure and reliable because it is guaranteed to succeed or fail in a
completely controlled way.

The classical example of a transaction is that of funds transfer in a banking

application. This involves two operations: a debit of one account and a

credit of another. To combine these operations into a single unit of work, the

following properties are required:

® |If the debit operation fails, the credit operation should fail, and
vice-versa; that is, they should both work or both fail.

® The system goes through an inconsistent state during the process
(between the debit and the credit). This inconsistent state should be
hidden from other parts of the application.

® The committed results of the whole operation should be permanently
stored.

ACID properties

Transaction managers

Two-phase commit

Transactions Overview

Every transaction must obey what is known as the ACID properties:

Atomic All of the operations in a transaction must be
performed successfully for the transaction to be
successful. Data modifications are either all
committed or aborted (rolled back) when the
transaction completes.

Consistent A transaction is a unit of work that takes a system
from one consistent state to another.

Isolated While a transaction is executing, its partial results
are hidden from other entities accessing the
system.

Durable The results of a transaction are persistent and can

be recovered after a system or media failure.

Most resource managers, for example databases and message queues,
support native transactions. If, however, an application requires two or more
resource managers to be part of the same transaction, then a third-party
transaction manager is needed to coordinate the transaction and to ensure
that the ACID properties of the transaction are maintained.

The application uses the transaction manager to create the transaction.
Each resource manager accessed during the transaction becomes a
participant in the transaction. When the application completes the
transaction, either with a commit or rollback request, the transaction
manager communicates with each resource manager.

When there are two or more participants involved in a transaction the

transaction manager uses a two-phase-commit (2PC) protocol to ensure

that all participants agree on the final outcome of the transaction despite

any failures that may occur. Briefly the 2PC protocol works as follows:

® Inthe first phase, the transaction manager sends a prepare message to
each participant. Each participant responds to this message with a
vote indicating whether the transaction should be committed or rolled
back.

83

CHAPTER 6 | Transactions

One-phase commit

Artix transaction support

84

® The transaction manager collects all the prepare votes and makes a
decision on the outcome of the transaction. If all participants voted to
commit, the transaction can commit. However, if a least one
participant voted to rollback, the transaction is rolled back. This
completes the first phase.

® In the second phase, the transaction manager sends either commit or
rollback messages to each participant.

If there is only one participant in the transaction the transaction manager
can use a one-phase commit (1PC) protocol instead of the 2PC protocol
which can be expensive in terms or the number of messages sent and the
data that must be logged. The 1PC protocol essentially delegates the
transaction completion to the single resource manager.

The Artix J2EE Connector’s transaction support is built over Artix transaction
support. Artix supports distributed transactions using the following
protocols:

® CORBA binding over IIOP.

® SOAP binding over any compatible transport.

The underlying transaction system used by Artix can be replaced within a
pluggable framework. Currently, the following transaction systems are
supported:

® OTS Lite.

® OTS Encina.

® WS-AtomicTransactions (WS-AT).

For more information on the transaction systems supported by Artix, see the
Artix Transactions Guide, Java Edition.

Note: Transaction support is not available in all editions of Artix. Please
check the conditions of your Artix license to see whether your installation
supports transactions.

../transactions_java/index.htm

Local Transactions

Local Transactions

Overview

How local transaction support
works

Local transaction demo

A local transaction is defined as a transaction that is managed internally by
a resource manager, such as the Artix J2EE Connector. An external
transaction manager is not involved in the coordination of such transactions.

The Artix J2EE Connector supports local transactions as specified by the
J2EE Connector Architecture (J2CA) LocalTransaction interface. It
supports the begin (), commit () and rollback() transaction demarcation
methods. When the Artix J2EE Connector is used in the context of a local
transaction, it propagates a transaction with every invocation.

This section discusses how the Artix J2EE Connector’s local transaction
support works, using the J2EE local transaction demo as an example.

The Artix J2EE Connector’s local transaction support is based on the local
transaction contract defined in the J2CA specification. For more information
on this contract, see the J2CA specification on Sun Microsystems’ website
(http://java.sun.com/j2ee/connector/download.html).

The runtime use of the local transaction contract is at the discretion of the
J2EE application server and is transparent to the J2EE application.

Artix includes a simple demo that shows the Artix J2EE Connector
participating in a local transaction. It is located in the following directory of
your Artix installation:

InstallDir/artix/Version/demos/j2ee/local transactions

To run the demo, follow the instructions in the REaDME . txt file located in the
demo directory.

85

http://java.sun.com/j2ee/connector/download.html

CHAPTER 6 | Transactions

Graphical representation Figure 4 graphically represents what is happening in the J2EE local
transaction demo:

Figure 4: Artix J2EE Connector Participating in Local Transactions

Artix Server

| . I
'—1- Artixe A
J2EE = -
""" Connectnr"'é"* —
Resource

J2EE
Application Transaction
Server System

1. The servlet calls ut.begin () to initiate a transaction.

2. Within the transaction, the servlet calls one or more of the WSDL
operations on the remote server, using the Artix J2EE Connector. The
WSDL operations are transactional, requiring updates to a persistent
resource.

3. The servlet calls ut.commit () to make permanent any changes caused
during the transaction. Note that the servlet could, alternatively, call
ut.rollback() to abort the transaction. This scenario is also shown in
the demo.

4. The transaction system performs the commit phase by sending a
notification to the server that it should perform a one-phase commit.

86

Demo code example

1

10
11

12

14
15

16

Local Transactions

Example 7 is taken from the local transaction demo servlet code. Sections of
the code have been omitted for clarity:

Example 7: Local Transaction Demo Code

InitialContext ic = new InitialContext();
ut = (UserTransaction)
ic.lookup ("java:comp/UserTransaction") ;
ArtixConnectionFactory factory = (ArtixConnectionFactory)
ic.lookup (EIS_JNDI_NAME) ;

Data data = ...
ut.begin() ;
URL wsdlLocation =
getClass () .getResource ("/soap_tx demo.wsdl") ;
QName serviceName = new
QOName ("http://www.iona.com/transaction demo", "DataServiceA");

QOName portName = new QName ("", "DataSOAPPort") ;

data = (Data) factory.getConnection (Data.class, wsdlLocation,
serviceName, portName) ;

int readValue = data.read();

data.write (readvalue + 1);

readValue = data.read();
ut.commit () ;

((Connection)data) .close() ;

ut.begin() ;
data = (Data) factory.getConnection (Data.class, wsdlLocation,
serviceName, portName) ;

data.write (readvalue + 1);
readValue = data.read();

ut.rollback() ;
readValue = data.read();

((Connection)data) .close() ;

87

CHAPTER 6 | Transactions

88

The code shown in Example 7 on page 87 can be explained as follows:

1. Resolves an ArtixConnectionFactory for the Artix J2EE Connector
resource adapter, a user transaction and data reference.

2. Begins a transaction.

Determines the WSDL location URL from the classpath using the JVM

runtime.

4. Creates a gName that identifies which service in the WSDL file the client

wants to use.

5. Creates a oname that identifies which port in the WSDL file the client

wants to use.

6. Creates a connection object using the ArtixConnectionFactory and

casts the connection to the pata interface.

7. Reads the data value from the Artix server. Adds "1" to the data value
and reads the value from the server again. When you run the demo the
values are printed to the screen and you can see the data value being

increased by one.
Commits the transaction.
9. Closes the connection.

10. Begins another transaction.

11. Creates a connection object using the ArtixConnectionFactory and

casts the connection to the pata interface.
12. Reads the data value from the server and adds "1".
13. Reads the new data value from the server.
14. Rolls back the transaction.

15. Reads the data value from the server. This confirms that the
transaction did not go ahead and "1" was not added to the original
value read from the server.

16. Closes the connection.

Configuring local transactions

Local Transactions

The Artix J2EE Connector is configured out of the box to support no
transactions—the Artix J2EE Connector deployment descriptor file, ra.xmi,
specifies NoTransaction. To configure the Artix J2EE Connector to
participate in local transactions you must change the transaction support
element in the ra.xml t0 LocalTransaction by:

1. Making sure the Artix environment is set. See “Setting the Artix
Environment” on page 70 for more detail.

2. Running one of the following ant tasks, depending on whether your
J2EE application server supports J2CA 1.0 or 1.5:

J2CA 1.0
Windows:

> ant $IT _ARTIX VER DIR%\etc\j2ee\build.xml ra.dd.10.local
UNIX:
ant -f $IT ARTIX VER DIR/etc/j2ee/build.xml ra.dd.10.local

J2CA 1.5
Windows:

> ant %IT ARTIX VER DIR%\etc\j2ee\build.xml ra.dd.l15.local
UNIX:
ant -f $IT ARTIX VER DIR/etc/j2ee/build.xml ra.dd.15.local

The ant utility is a Java-based build tool. It is bundled with Artix. The
ant target is defined in the build.xm1 file, which is located in the
ArtixInstallDir/artix/Version/etc/j2ee directory. For more
information about ant, see http://ant.apache.org/.

89

http://ant.apache.org/

CHAPTER 6 | Transactions

Global Transactions

Overview

In this section

90

A global transaction is one in which two or more resources are involved and
an external transaction manager is needed to coordinate the updates to both
resource managers. The Artix J2EE Connector supports global transactions
for both outbound and inbound transactional invocations. That is, the Artix
J2EE Connector supports outbound transactional invocations from a J2EE
application to an Artix Web service, as well as supporting inbound
transactional invocations to a J2EE application that has been exposed as a
Web service by Artix.

The Artix J2EE Connector supports global transactions via the xarResource
interface as specified by the J2CA specification. For more information, see
the J2CA specification available on Sun Microsystems’ website
(http://java.sun.com/j2ee/connector/download.html).

This section includes the following subsections:

Outbound Global Transactions page 91

Inbound Global Transactions page 94

http://java.sun.com/j2ee/connector/download.html

Global Transactions

Outbound Global Transactions

Overview The application server manages the process of enlisting the Artix J2EE
Connector in a global transaction when appropriate. The Artix J2EE
Connector uses Artix to begin a subordinate transaction, which it exposes to
the application server through the javax.transactions.xa.xAResource
interface. When the application server completes its transaction, Artix
completes the subordinate transaction.

Graphical representation Figure 5 shows the Artix J2EE Connector participating in an outbound
global transaction.

Figure 5: Artix J2EE Connector in an Outbound Global Transaction

J2EE
Application
Server
XA Resource 1

ey,
E Art|><w _> (A)
l | JPEELE ')

. Connector

Artix Server
e

EJB
v

JDBC XA

XA Resource 2 XA Plug-in

\ Database

Association between superiorand There is an association between the subordinate transaction created by Artix
subordinate transactions and the superior application server transaction. The XID of the superior
transaction is replicated in the subordinate transaction. This means that

91

CHAPTER 6 | Transactions

Code example

92

operations issued under the control of the subordinate transaction share the
global and branch transaction identifiers with the Artix J2EE Connector. This
is important when the components taking part in a transaction need to have
visibility of data during a global transaction.

Example 8 shows a simple Java code example in which the Artix J2EE
Connector is used in a transaction together with an EJB. Error handling has
been omitted for clarity.

Example 8: Using the Artix J2EE Connector in a Global Transaction
ArtixConnectionFactory cf = ...

MyDataBeanHome beanHome = ...

UserTransaction ut = ...

ut.begin();

ArtixConnection conn = cf.getConnection (DataAccess.class);
DataAccess Data = (DataAccess) conn;

MyDataBean beanData = beanHome.create(...);
beanData.doTransactionalWork () ;
Data.doAdditionalDependentTransactionalWork () ;

ut.commit () ;

conn.close() ;

1. Resolve an ArtixConnectionFactory for the Artix J2EE Connector
resource adapter, a bean and a user transaction reference.

2. Begin a transaction.

3. Create an ArtixConnection object using the ArtixConnectionFactory.

4. Cast the artixConnection to an application-specific Java interface, in
this case pataAccess.

5. Make a transactional invocation on your EJB

6. Make a transactional invocation on the data object.

7. Commit the transaction.

8. Close the ArtixConnection.

Configuring outbound global
transaction support

Global Transactions

The Artix J2EE Connector is configured out of the box as a J2CA 1.0
capable connector that supports no transactions—the Artix J2EE Connector
deployment descriptor file, ra.xm1, to specifies NoTransaction. To configure
the Artix J2EE Connector to participate in outbound global transactions you
must change the transaction support element in the ra.xml to
XATransaction by:

1.

Making sure the Artix environment is set. See “Setting the Artix
Environment” on page 70 for more detail.

Running one of the following ant tasks, depending on whether your
J2EE application server supports J2CA 1.0 or 1.5:

J2CA 1.0
Windows:

> ant -f $IT ARTIX VER DIR%\etc\j2ee\build.xml ra.dd.10.xa
UNIX:
ant -f $IT ARTIX VER DIR/etc/j2ee/build.xml ra.dd.10.xa

J2CA 1.5
Windows:

> ant —-f $IT ARTIX VER DIR%\etc\j2ee\build.xml ra.dd.15.xa
UNIX:

ant —-f $IT ARTIX VER DIR/etc/j2ee/build.xml ra.dd.l5.xa

The ant utility is a Java-based build tool. It is bundled with Artix. The ant
target is defined in the build.xmi file, which is located in the
ArtixInstallDir/artix/Version/etc/j2ee directory. For more information
about ant, see http://ant.apache.org/.

93

http://ant.apache.org/

CHAPTER 6 | Transactions

Inbound Global Transactions

Overview

Graphical representation

94

J2CA 1.5 specifies a contract between an application server and a resource
adapter that allows a resource adapter to propagate an inbound transaction
to the application server, so that the application server and subsequent
participants can do work as part of the inbound transaction. For more detail
about this contract, see “Transaction Inflow” chapter of the J2CA 1.5
specification.

The Artix J2EE Connector uses this functionality when it exposes an EJB
deployed in a J2CA 1.5 capable application server as an Artix service. It
wraps the xaTerminator instance provided by the application server in an
XAResource object that is enlisted with the Artix transaction manager. This
allows the application server to participate in a transaction that originates
from an Artix client, and that is managed by an Artix transaction manager.

Figure 6 shows the Artix J2EE Connector participating in an inbound global
transaction.

Figure 6: Artix J2EE Connector in an Inbound Global Transaction

.\
Artixm Client
\ J2EE \

Connector

Artix
1 J2ZEE
Application Server

XA Transa :tinﬂ—

Server

http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html

Configuring inbound global
transaction support

Global Transactions

The Artix J2EE Connector is configured out of the box as a J2CA 1.0
capable connector that supports no transactions—the Artix J2EE Connector
deployment descriptor file, ra.xmi1, specifies the J2CA 1.0 specification and
NoTransaction. To configure the Artix J2EE Connector to participate in
global transactions you must change the J2CA specification element and the
transaction support element in the ra.xml to 1.5 and xaTransaction
respectively. You can do this by:
1. Making sure the Artix environment is set. See “Setting the Artix
Environment” on page 52 for more detail.

2. Running the following ant task:
Windows:
> ant -f $IT ARTIX VER DIR%\etc\j2ee\build.xml ra.dd.15.xa
UNIX:
ant —-f $IT ARTIX VER DIR/etc/j2ee/build.xml ra.dd.l5.xa

The ant utility is a Java-based build tool. It is bundled with Artix. The ant
target is defined in the build.xmi file, which is located in the
ArtixInstallDir/artix/Version/etc/j2ee directory. For more information
about ant, see http://ant.apache.org/.

95

http://ant.apache.org/

CHAPTER 6 | Transactions

96

In this chapter

CHAPTER 7

Security

The Artix J2EE Connector supports credentials propagation. It
propagates username and password details along with
outbound and inbound Web service requests.

This chapter discusses the following topics:

Outbound Security page 98

Configuring Outbound Security page 101
Inbound Security page 107
Configuring Inbound Security page 110
Configuring a Secure Transport page 117

97

CHAPTER 7 | Security

Outbound Security

Overview

In this section

Graphical representation

98

The Artix J2EE Connector is configured by default to support the
propagation of a username and password with Web service requests from
the J2EE domain to Artix Web services. The identity is used by Artix on the
server side to authenticate the Web service operation.

This section gives a high-level overview of how the Artix J2EE Connector
outbound security works. The following topics are covered:

® Graphical representation
® Scenario description
® How it works

Figure 7 illustrates a scenario in which the Artix J2EE Connector propagates
username and password credentials with outbound connections:

Figure 7: Artix J2EE Connector Propagating Credentials with Outbound
Connections

\
Securit e =,
B e e, o [

0 H]
Artix :
0 J2EE Service
= Connector
|:_[| EJB/f —

Serviet/JSP |)

U
Ser J2EE [
Application Server

Outbound Security

Scenario description The scenario shown in Figure 7 can be described as follows:

Stage Description

1 | The user logs in to the J2EE application and is authenticated.
The J2EE authenticated user invokes on the EJB/Servlet/JSP.

2 | The EJB/Servlet/JSP invokes on the Artix J2EE Connector to get
a connection to a Web service.

3 | The J2EE application server maps the J2EE authenticated user
to an appropriate subject for the Artix J2EE Connector. This is
known as credentials or principal mapping.

4 | The Artix J2EE Connector makes a remote invocation on the
Web service and transmits the mapped username and
password credentials with the request over a secured transport.

How it works The Artix J2EE Connector security support details are contained in its
deployment descriptor, ra.xm1, as follows:

Example 9: Artix J2EE Connector ra.xml file fragment

<authentication-mechanism>

<authentication-mechanism-type>BasicPassword
</authentication-mechanism-type>
<credential-interface>javax.resource.security.
PasswordCredential

</credential-interface>

</authentication-mechanism>

1.

Specifies that the Artix J2EE Connector supports username and
password-based authentication.

Specifies the interface that the Artix J2EE Connector supports for the
representation of the credentials. The
javax.resource.security.PasswordCredential interface specmesto
the application server that it should pass a subject containing a
PasswordCredential that includes a username and a password to the
Artix J2EE Connector.

929

CHAPTER 7 | Security

100

These entries are defined in the J2EE Connector Architecture specification.
For more information, see the specification on Sun Microsystems’ website
(http://java.sun.com).

When you deploy the Artix J2EE Connector to your J2EE application server,
the authentication-mechanism entry in the deployment descriptor indicates
to the application server that the connector supports container-managed
sign-on. When an application requests that the Artix J2EE Connector create
a new connection, the application server passes any security information
associated with that application or user in a subject that contains a
PasswordCredential. The contents of the PasswordCredential are
controlled by the application server, based on credentials or principal
mapping configuration.

The Artix J2EE Connector uses the PasswordCredential to set the Artix bus
security context using the Artix context API. It sets the WSSE username and
password token. It ensures that the credentials associated with a connection
are passed to Artix before each request. How the credentials are propagated
over the transport is specific to an Artix binding, and is specified in the
WSDL contract. Artix can be configured to send the credentials as a SOAP
header or as a HTTP header. For more information, see the Artix Security
guide.

../security_guide/index.htm
http://java.sun.com

Configuring Outbound Security

Configuring Outbound Security

Overview

In this section

The Artix J2EE Connector is configured by default to support credentials
propagation with outbound connections. You must, however, configure your
application server to pass the J2EE authenticated username and password
to the Artix J2EE Connector with each call to the connector’s getConnection
method. This is known as credentials or principal mapping. If you do not
configure your application server with credentials mapping, a nu11 subject
will be passed to the Artix J2EE Connector with each call to getConnection
and the Artix J2EE Connector will not propagate a username and password
with Web service requests.

How you configure credentials mapping is specific to the J2EE application
server that you are using. This section gives a brief description of credentials
mapping. JBoss is used in an example of how to configure credentials
mapping. The following topics are covered:

® Credentials Mapping
® Configuring Credentials Mapping in JBoss

101

CHAPTER 7 | Security

Credentials Mapping

Overview

In this subsection

Credentials passed as is

102

When a J2EE Connector Architecture connection factory is configured to
perform container managed sign-on, the application server must be
configured to map the caller principal to a resource principal. The
application server creates a subject instance that contains the configured
security domain credentials of the back-end resource. The subject returned
by a credential or principal mapping contains a PasswordCredential that
represents the caller identity for the back-end resource. The application
server automatically passes the subject to the J2EE Connector Architecture
resource adapter with each call to the resource adapter's getConnection
method.

This subsection gives a brief description of the types of credentials mapping.
Please refer to your application server documentation for exact details of
how to preform credentials mapping. The following topics are covered:

® Credentials passed as is
® Many-to-one mapping
® One-to-one mapping

In the simplest case, the application server is configured to pass the caller's
credentials as is to the resource adapter. For example, if the username is
Bob and the password is BobsPassword, then Bob and BobsPassword are
passed to the resource adapter.

Configuring Outbound Security

For a many-to-one credentials mapping, the application server is configured
to map all callers’ credentials to single username and password for the

resource adapter. For example:

Many-to-one mapping

Table 1: Many-to-One Mapping

One-to-one mapping

Caller Credentials Resource Credentials

(Username/Password) (Username/Password)
Bob/BobsPassword Artix/ArtixPassword
Tom/TomsPassword Artix/ArtixPassword
Jane/JanesPassword Artix/ArtixPassword

For a one-to-one credentials mapping, the application server is configured to
map the each caller's credentials to a username and password that uniquely

identifies them for the resource adapter. For example:

Table 2: One-to-One Mapping

Caller Credentials Resource Credentials

(Username/Password) (Username/Password)

Bob/BobsPassword BobArtix/BobsArtixPassword
Tom/TomsPassword TomArtix/TomsArtixPassword
Jane/JanesPassword JaneArtix/JanesArtixPassword

This is the most complex type of credentials mapping and most application
servers delegate the mapping to a security provider, such as JAAS or LDAP.

CHAPTER 7 | Security

Configuring Credentials Mapping in JBoss

Overview JBoss uses a Java Authentication and Authorization Service (JAAS) to do
credentials or principal mapping. JBoss JAAS configuration details are
contained in the JBoss JAAS configuration file, 1ogin-config.xml.

In this subsection This subsection gives an overview of JAAS and tells you how to configure
credentials mapping in JBoss. The following topics are covered:

® Java Authentication and Authorization Service (JAAS)
® Configuring credentials mapping

® Example JBoss login-config.xml

® Example Artix J2EE Connector deployment descriptor
® More information

Java Authentication and JAAS provides an API that represents an extensible authentication and

Authorization Service (JAAS) authorization service. The API allows components to remain independent
from underlying authentication technologies. The sequence of operations
that occur when an authorization attempt is made are dependent on
configuration, but remain hidden to the application component.

For more information on JAAS and to see the Javadoc, see Sun
Microsystem'’s website: http://java.sun.com/products/jaas/overview.html

Configuring credentials mapping To configure credentials mapping in JBoss, you must:

1. Add an application-policy element to the JBoss JAAS login
configuration file, 1ogin-config.xml, and specify that it will be used
by the Artix J2EE Connector.

2. Indicate to the Artix J2EE Connector that it must use the security
domain specified by the application policy. To do this, you must add a
security domain element that specifies the application-policy name
that you used in the 1ogin-conf.xmi file, to the Artix J2EE Connector
deployment descriptor, CFactoryName-ds . xml

104

http://java.sun.com/products/jaas/overview.html

Configuring Outbound Security

Example JBoss login-config.xml For example, the following JBoss 1ogin-config.xml file shows an
application policy that specifies that the calleridentity configuration is to
be used by the Artix J2EE Connector:

Example 10: JBoss login-config.xml fragment

<?xml version='1.0'?>

<!DOCTYPE policy PUBLIC
"-//JBoss//DTD JBOSS Security Config 4.0//EN"
"http://www.jboss.org/j2ee/dtd/security config.dtd">

<policy>...
1 <application-policy name="calleridentity">
<authentication>
<login-module code =
2 "org.jboss.resource.security.CallerIdentityLoginModule"
flag ="required">
3 <module-option name = "managedConnectionFactoryName">

jboss. jca:service=NoTxCM, name=ArtixConnector
</module-option>
4 <module-option name =
"userName">dummy user</module-option>
<module-option name =
"password">dummy password</module-option>
</login-module>
</authentication>
</application-policy>
</policy>

The entries in this JBoss 1login-config.xml file can be explained as follows:

1. Specifies an application-policy element called calleridentity.

2. Specifies that the JBoss caller identity login module will be used. This
login module implementation simply copies the supplied username
and password pair as is into a PasswordCredential. For example, if
the username is Bob and the password is BobsPassword, then Bob and
BobsPassword Will be propagated to the Artix J2EE Connector.

3. The managedConnectionFactoryName module option ties this
configuration to a particular deployed connectionFactory instance of
the Artix J2EE Connector.

4. The dummy user and dummy password elements indicate the default
credentials that should be used in the absence of an existing
authenticated user.

105

CHAPTER 7 | Security

Example Artix J2EE Connector For example, the following JBoss 4 artixj2ee 1 5-ds.xml file fragment
deployment descriptor specifies to the Artix J2EE Connector that it must use the calleridentity
configuration, as defined in the JBoss 1ogin-conf.xm1 file:

<?xml version="1.0" encoding="UTF-8"72>
<connection-factories>
<no-tx-connection-factory>
<jndi-name>ArtixConnector</jndi-name>
<security-domain>calleridentity</security-domain>
<rar-name>artix.rar</rar-name>
<connection-definition>com.iona.connector.
ArtixConnectionFactory</connection-definition>

</no-tx-connection-factory>
</connection-factories>

More information For more information on how to configure credentials mapping for a J2EE
Connector Architecture resource adapter in JBoss, please refer to the JBoss
documentation.

106

Inbound Security

Inbound Security

Overview

In this section

Exposing a J2EE application as a
Web service

The Artix J2EE Connector can be configured to support J2EE authentication
for inbound communications. The username and password propagated with
a Web service request can be used to authenticate against the J2EE
application server before the request is dispatched to the EJB. The principal
identified by the propagated username and password pair must correspond
to a J2EE user that has sufficient privileges to execute the requested
operation on the EJB.

This section gives a high-level overview of how the Artix J2EE Connector
inbound security works. The following topics are covered:

® Exposing a J2EE application as a Web service

® Graphical representation

® Scenario description

® How it works

To understand how the Artix J2EE Connector supports inbound security, you
must first understand how the Artix J2EE Connector exposes a J2EE
application as a Web service. For details, see “Exposing a J2EE Application
as a Web Service” on page 59.

107

CHAPTER 7 | Security

Graphical representation Figure 8 illustrates a scenario in which the Artix J2EE Connector propagates
username and password credentials with inbound connections:

Figure 8: Artix J2EE Connector Propagating Credentials with Inbound
Connections

o ri \ ™
FE u:cn.:n q:‘rr (1 Web

Artixe Saryl
ervice

e JZEE
Client
Stateless PP Connector
Session Bean 9

JZ2EE II
Application Server

Scenario description The scenario shown in Figure 8 can be described as follows:

Stage Description

1 | An Artix Web service client invokes on the Web service and
sends a username and password over HTTPS. The Artix J2EE
Connector uses the Artix context API to obtain the username
and password from the Artix bus security context. How these
are propagated over the transport are specific to an Artix
binding and are specified in the WSDL contract.

2 | The Artix J2EE Connector uses JAAS to perform a login to the
application server.

3 | The Artix J2EE Connector uses a JAAS subject doas () method
to invoke on the target EJB.

108

How it works

Inbound Security

The Artix J2EE Connector uses JAAS to login to the application server. It
uses a JAAS configuration that identifies a login module that authenticates
against the application server. It uses a JAAS subject doas () method to
invoke on the target EJB. The doas () method ensures that the calling thread
has the appropriate access control information. Using JAAS allows the Artix
J2EE Connector to remain application server independent.

109

CHAPTER 7 | Security

Configuring Inbound Security

Overview To configure inbound security you must secure your EJB; configure the Artix
J2EE Connector to enable it to login to your application server; and
configure the Artix J2EE Connector with a username and password that
identify the principal that will be used to create the EJB.

In this section This section walks you through these configuration steps. The following
topics are covered:

® Securing the Target EJB
® Configuring JAAS Login Module
® Configuring EJB Create Username and Password

110

Configuring Inbound Security

Securing the Target EJB

Overview

Example EJB deployment
descriptor

JBoss example

You must secure the EJB using J2EE access controls. That is, you must
specify method permissions in the assembly descriptor element of your EJB
deployment descriptor, ejb-jar.xml. This subsection provides an example
of such a deployment descriptor. The following topics are covered:

® Example EJB deployment descriptor

® JBoss example

® More information

For example, the following EJB deployment descriptor file fragment declares
a role called "BobsRole" that can access all GreeterBean methods:

Example 11: GreeterBean ejb-jar.xml file fragment

<assembly-descriptor>
<security-role>
<role-name>BobsRole</role-name>
</security-role>
<method-permission>
<role-name>BobsRole</role-name>
<method>
<ejb-name>GreeterBean</ejb-name>
<method-name>*</method-name>
</method>
</method-permission>
</assembly-descriptor>

JBoss uses JAAS for application server authentication. The corresponding
deployment descriptor, jboss.xm1, must be augmented to include a
security-domain element that identities the JAAS configuration that
contains the relevant concrete role definitions.

111

CHAPTER 7 | Security

For example, the following jboss.xmi file fragment specifies the security
domain as follows:

<jboss>
<security-domain>java:jaas/other</security-domain>
<enterprise-beans>
<session>
<ejb-name>GreeterBean</ejb-name>

More information For more detail, please refer to your application server documentation.

112

Configuring Inbound Security

Configuring JAAS Login Module

Overview

In this subsection

JAAS configuration in JBoss

Setting JAASLoginConfigName in
JBoss

The Artix J2EE Connector uses JAAS to login to the application server. It
needs, however, to know which JAAS configuration name it should use in
the login procedure. To configure the Artix J2EE Connector to login to your
application server, you must set the JaAsLoginConfigName configuration
property to the JAAS configuration name that will be used to locate the
appropriate JAAS login module. The configuration name is passed as an
argument to the constructor of a
javax.security.auth.login.LoginContext that is subsequently used by
the Artix J2EE Connector to login to the application server.

How JAAS is configured is specific to the application server you are using.
This subsection uses JBoss as an example application server to describe
how to configure the Artix J2EE Connector with JAAS login module details.
The following topics are covered:

® JAAS configuration in JBoss

® Setting JAASLoginConfigName in JBoss

® More information

JAAS is configured in JBoss through the JBoss 1ogin-config.xml JAAS
configuration file. This file contains application-policy elements that
describe the different configurations. Each application-policy element
contains a series of login modules that are used to implement
authentication. The Artix J2EE Connector needs to use the preconfigured
"client-login™ application-policy entry. This entry specifies a login module
that enables the application server to authenticate and verify that the Artix
J2EE Connector supplied username and password correspond to a valid
J2EE principal. This is required because the Artix J2EE Connector
dispatches to an EJB that is protected by J2EE access controls.

To configure the Artix J2EE Connector with details of the JBoss JAAS
configuration name that it should use in the JAAS login procedure, set the
JAASLoginConfigName configuration property to client-login in the Artix
J2EE Connector deployment descriptor, cractory-ds.xml.

113

CHAPTER 7 | Security

For example, in JBoss 4, you set it as follows in the artixj2ee 1 5-ds.xml
file:

<?xml version="1.0" encoding="UTF-8"7?>
<connection-factories>
<no-tx-connection-factory>
<jndi-name>ArtixConnector</jndi-name>

<config-property name="JAASLoginConfigName"
type="java.lang.String">client-login</config-property>

</no-tx-connection-factory>
</connection-factories>

More information For more information on how JAAS is configured in your application server
and for information on how to set J2EE Connector Architecture resource
adapter configuration properties, please refer to your application server
documentation.

For more information on the JaasLoginConfigName configuration property,
see “JAASLoginConfigName” on page 157.

114

Configuring Inbound Security

Configuring EJB Create Username and Password

Overview

In this subsection

Configuration properties

The Artix J2EE Connector must create an instance of this target EJB to
determine the method arguments that must be read from an Artix transport.
Security information propagated with a request is not available until the
read is complete. As a result, the Artix J2EE Connector does not have
sufficient dynamic security information available at the point when
EJBHome.ejbCreate is called. The Artix J2EE Connector must, therefore, be
statically configured with a username and password pair that it can use to
login to the application server to execute the create method.

This subsection gives details of the configuration properties that you must
set. It uses JBoss as an example application server to describe how to
configure the Artix J2EE Connector with a username and password pair that
it can use to login to the application server to execute the create method.
The following topics are covered:

® Configuration properties

® Setting JAASLoginUserName and JAASLoginPassword in JBoss

® More information

The Artix J2EE Connector supports the JaasLoginUserName and
JAASLoginPassword configuration properties to allow this static
configuration. The values of username and password must identify a valid
J2EE user that has the appropriate privileges to execute the EJBHome . create
method of the target EJB. Even if the target EJB is configured to allow
unchecked access to the create method, a valid J2EE identity must be
configured for the Artix J2EE Connector to allow the JAAS login to proceed.

115

CHAPTER 7 | Security

Setting JAASLoginUserName and
JAASLoginPassword in JBoss

More information

116

The following example shows a fragment of a JBoss Artix J2EE Connector
deployment descriptor, artixj2ee 1 5-ds.xml, Which sets the username
and password properties to artix:

Example 12: Setting JAASLoginUserName and JAASLoginPassword in
JBoss

<?xml version="1.0" encoding="UTF-8"?>
<connection-factories>
<no-tx-connection-factory>
<jndi-name>ArtixConnector</jndi-name>

<config-property name="JAASLoginUserName"
type="java.lang.String">artix</config-property>
<config-property name="JAASLoginPassword"
type="java.lang.String">artix</config-property>

</no-tx-connection-factory>
</connection-factories>

For more information on how JAAS is configured in your application server
and for information on how to set J2EE Connector Architecture resource
adapter configuration properties, please refer to your application server
documentation.

For more information on the JaastoginUserName configuration property, see
“JAASLoginUserName” on page 158.

For more information on JaasLoginPassword configuration property, see
“JAASLoginPassword” on page 159.

Configuring a Secure Transport

Configuring a Secure Transport

Overview

More information

To protect the integrity of the username and password, which is in plain
text, the transport needs to be secure. For example, if you are using HTTP,
you should configure it to use SSL/TLS security (a combination usually
referred to as HTTPS). The SSL/TLS technology allows communication over
a secured connection. In this secure connection, the data that is being sent
is encrypted before being sent, then decrypted upon receipt and prior to
processing.

For information on how to configure a secure transport, see the Artix
Security Guide.

117

../security_guide/index.htm
../security_guide/index.htm

CHAPTER 7 | Security

118

Part 11|

Using Artix in a Servlet
Container

In this part This part contains the following chapters:

Exposing Artix Web Services from a Servlet Container page 121

119

120

In this chapter

CHAPTER 8

Exposing Artix
Web Services from
a Servlet Container

You can expose Artix Web services from a servlet container.
Client applications can invoke on the Web services through
the HTTP port assigned to the servlet container or using any
of the transports supported by Artix. This chapter walks you
through the typical steps involved.

This chapter discusses the following topics:

Introduction page 122

Configuring Servlet Container to Run an Artix Application page 125

Building an Artix Application page 130

Building and Deploying your Web Application page 141

121

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container

Introduction

Overview

In this section

Implementation steps

122

Artix provides the servlet component of the Web service. It provides a basic
servlet, the Artixservlet.class, and a servlet transport plug-in, which you
can use to route HTTP requests to the servlet onto Artix. These components
are written in Java and are compiled and archived in a JAR file,

it artix servlet.jar, which is located in:

ArtixInstallDir/lib/artix/java runtime/4.0

You must write the Web service implementation class and an Artix Java
plug-in. The Artix Java plug-in is required to create an instance of your Web
service implementation and register it with the Artix bus.

This section outlines the steps you must complete to develop and deploy an
Artix Web service to a servlet container. The following topics are covered:

® Implementation steps

® Graphical representation
® How it works

® Demo

The following is a high-level view of the steps that you need to complete to
expose your Web service from a servlet container. It assumes that the Web
service WSDL file already exists. If, however, you need to develop a WSDL
file, please refer to the Understanding Artix Contracts guide.

Step Action

1 | Configure your servlet container so that it can run Artix
applications.

2 | Build an Artix Web service application. This includes
generating an Artix Java plug-in.

../contract/index.htm

Graphical representation

How it works

Introduction

Step Action

application, and the Web service WSDL file

3 | Build a Web application WAR file that includes the Artix
servlet, the Artix servlet transport plug-in, your application, its
deployment descriptor web.xm1, the Artix Java plug-in for your

4 | Deploy the WAR file to your servlet container.

The rest of this chapter describes these steps in more detail.

Figure 9 graphically illustrates how you can expose an Artix Web service

from a servlet container.

Figure 9: Exposing Artix Web Service from a Servlet Container

Servlet Engine (e.g. Tomcat)

Web Application WAR

Artix Serviet

:E# Artix Plug-ins /
Web
Service B WSDL

™| B wetm

A
v\ @;@°
B WG
:.W:‘QV
Artix Runtime ~

™

Client
Application(s)

The Artix servlet initializes an Artix bus within its init () method. It uses the
bus initialization parameters that you provide in the Web service
deployment descriptor file, web.xm1. During initialization, the Artix bus
loads the servlet transport plug-in and the Artix Java plug-in that you have
created for your application. The role of the Artix Java plug-in is to create an
instance of the Web service and register it with the Artix bus. In essence, it

associates an Artix servant with a WSDL port.

123

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container

Demo

124

Client applications use the information in the Web service WSDL file to
initialize a proxy to the target Web service. Client requests can be sent to the
servlet container TCP/IP port or to any port that is defined in the WSDL
contract, using any of the transports supported by Artix, and are processed
by the Artix Web service.

Some of the examples used in this chapter are taken from the serviet
Container demo, which can be found in:

ArtixInstallDir/artix/Version/demos/j2ee/servlet container

If you want to run this demo, see the rReEaDME. txt file in the demo directory.

Configuring Servlet Container to Run an Artix Application

Configuring Servlet Container to Run an Artix

Application

Overview

Setting the Artix Environment

N =

Before you can deploy an Artix Web service to your servlet container, you
must configure the servlet container so that it can run Artix applications.
How you do this is dependent on the servlet container that you are using.
This section highlights the key configuration steps that you must complete
and uses Tomcat and WebLogic as example servlet containers. The
following topics are covered:

® Setting the Artix Environment
® Make certain Artix JAR files available to your application
® Configuring the Artix classloader firewall

You must set the Artix environment before starting the servlet container.

Tomcat

To set the Artix environment on Tomcat, create and run a local environment
script as shown in Example 13—it is the script used in the serviet
Container demo:

Example 13: Script for Setting the Artix Environment on Tomcat

call "..\..\..\..\bin\artix env.bat";

set IT DOMAIN NAME=tomcat

set IT CONFIG DOMAINS DIR=%$IT PRODUCT DIR%\artix\4.0\demos\j2ee\
servlet container\etc

set CLASSPATH=%CLASSPATHS; .

1. Call the Artix environment script, artix_env. It is located in the
ArtixInstallDir/artix/Version/bin directory.

2. Reset the value of 1T povMaIN NaME to specify the name of the
configuration domain that Artix should use.

125

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container

126

B WN =

3. Reset the value of I1T_conrFIG DoMAINS DIR to the location of the
configuration file.

Note: Alternatively you can specify a domain name and configuration
directory in your web application deployment descriptor file, web.xml. See
“Example web.xml file” on page 142 for more detail.

For more information on artix env, see the getting started chapter in the
Configuring and Deploying Artix Solutions guide.

WebLogic
To set the Artix environment on WebLogic, create and run a local
environment script as follows:

Example 14: Script for Setting the Artix Environment on WebLogic

@REM Configure for Artix

set PATH=ArtixInstallDir\bin;%PATH%

set IT DOMAIN NAME=weblogic

set ITiLICENSEiFILE=ArtixInstallDir\etc\licenses.txt

set IT CONFIG DOMAINS DIR=ArtixInstallDir\artix\4.0\demos\j2ee\
servlet container\etc

set CLASSPATH=
ArtixInstallDir\lib\common\classloading\l.2\classloading.jar;
ArtixInstallDir\IONA\lib\common\concurrency\l.2\concurrency.jar;
ArtixInstallDir\lib\common\ifc\1.2\ifc.jar;
ArtixInstallDir\lib\artix\java runtime\4.0\it bus-api.jar;
ArtixInstallDir\lib\ws_common\reflect\1.2\

it ws reflect types.jar;
ArtixInstallDir\lib\jaxrpc\jaxrpc\l.1l\jaxrpc-api.jar;
ArtixInstallDir\lib\apache\xerces\2.5.0\xercesImpl.jar
ArtixInstallDir\lib\sun\saaj\l.2.1\saaj-api.jar
ArtixInstallDir\artix\4.0\demos\j2ee\servlet container\tomcat\
shared\classes;

$CLASSPATHS

1. Adds the Artix bin directories to the patH. The bin directory contains
all of the Artix runtime libraries, which are required by each Artix
process.

2. Sets 1T poMaIN NaME, Which specifies the name of the configuration
domain used by Artix to locate its configuration.

3. Sets 1T rLICENSE FILE, which specifies the location of your Artix
license file. The default value is artixInstallpir\etc\licenses.txt.

../deploy/index.htm

Make certain Artix JAR files
available to your application

Configuring Servlet Container to Run an Artix Application

Sets IT CONFIG DOMAINS DIR, which specifies the directory where Artix
searches for its configuration files. Together, 1T poMAIN NaME (2
above) and IT CONFIG DOMAINS DIR identify the name and location of
the configuration file.

Adds the required Artix JAR files to the cr.asspaTH. Note that you must
substitute ArtixInstal1Dir with details of your Artix installation
directory; for example, c:\1ONA.

Adds the location of the artix ce.xm1 file to the cLasspaTH. Note that
you can place the artix_ce.xml file in any convenient location, as long
as you ensure that the location is on the cLasspaTH

Note: The crasspaTH entry should appear on one line.

The following Artix JAR files must be available to your servlet container so
that they can be used by all Artix applications:

° ArtixInstallDir/lib/common/classloading/1.2/classloading.jar
hd ArtixInstallDir/lib/common/concurrency/1.2/concurrency.jar
® ArtixInstallDir/lib/common/ifc/1.2/ifc.jar
® ArtixInstallDir/lib/jaxrpc/jaxrpc/l.1l/jaxrpc-api.jar
® ArtixInstallDir/lib/artix/java runtime/4.0/it bus-api.jar
® ArtixInstallDir/lib/ws_common/reflect/1.2/
it ws reflect types.jar
hd ArtixInstallDir/lib/sun/saaj/1.2.1/saaj-api.jar
Tomcat

If you are using Tomcat, copy these files to your
TomcatInstallDir/shared/1ib directory. The demo build script provided
with the serviet container demo, copies these files for you.

WebLogic
If you are using WebLogic, the script that you created and ran to set the

Artix environment places the Artix JARs on the crasspaTa. You do not need
to anything else at this stage.

Note: Do not place the Artix JAR files in your Web application’s 1ib
directory.

127

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container

Configuring the Artix classloader
firewall

128

Artix requires third-party JAR files that could conflict with different versions
of the same JARs required by other servlet container applications. To avoid
such issues, you must use of the Artix classloader firewall. The Artix
classloader firewall loads specific JARs required by Artix.

Figure 10 shows the classloader configuration. The arrows point to the
parent classloader in each case; for example, the Tomcat shared classloader
is the parent classloader for the Web application/servlet classloader and the
Artix firewall classloader. This setup allows the web application classloader
and the Artix classloader to share public classes. It isolates the web
application classloader from the Artix classloader, which loads JARs specific
to the Artix runtime. With this configuration, the web application classloader
which is loading the user code is not polluted with JARs that are needed
only by Artix.

Figure 10: Classloader Configuration

=
Tomcat Shared Classloader
| {loads Artix public JARs from shared)
A >

Firewall Classloader
(configured with artix_ce.xml)
L
Web Application/ A
Artix Classloader
{loads Artix runtime JARS)

Servlet Classloader

Configuring Servlet Container to Run an Artix Application

To enable the Artix classloader firewall, place an artix ce.xml file in a
shared location, where it can be detected by Artix. The Artix serviet
Container demo contains an artix ce.xml file that you can use for any
Artix application that you are deploying to a servlet container. It is located in
the following directory:

ArtixInstallDir/artix/Version/demos/j2ee/servlet container/
tomcat/shared/classes

Tomcat

If you are using Tomcat, copy this artix ce.xml file to your
TomcatInstallDir/shared/classes directory.

WebLogic
If you are using WebLogic, the script that you created and ran to set the

Artix environment places the location of the artix ce.xml file on the
cLassPATH. You do not need to anything else at this stage.

Note: Do not place the artix ce.xml file in your Web application’s
classes directory.

For more information on the Artix classloader firewall, see the Things to

Consider when Developing Artix Applications chapter, in the Developing
Artix Applications in Java guide.

129

../java_pguide/index.htm
../java_pguide/index.htm

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container

Building an Artix Application

Overview This section outlines the steps you must complete to build an Artix
application. It includes building an Artix Java plug-in for your application.
The role of the Artix Java plug-in is to create an instance of your Web service
implementation and register it with the Artix bus. The plug-in must be
deployed in your Web application WAR file along with the Web service
implementation code.

In this section This section describes the steps that you must complete to build an Artix
Web service application. The following topics are covered:

130

Mapping the WSDL to Java

Writing the Implementation Class
Developing an Artix Java Plug-in
Configuring Artix to Use Your Plug-in

Building an Artix Application

Mapping the WSDL to Java

Overview

Syntax of wsdltojava command

The Artix development tools include a wsd1tojava command-line utility that
you can use to generate Java code from the WSDL file. Artix maps WSDL
types to Java using the mapping described in the JAX-RPC specification.
This subsection covers the following topics:

® Syntax of wsdltojava command

® Example

® More information

To generate Java skeleton and plug-in code from a WSDL file, run the
following command:

wsdltojava -p package -d <output dir> -servlet wsdl contract

The parameters shown above are defined as follows:

-p <[wsdl Specifies the name of the Java package to use for the
namespace =] generated code. You can optionally map a WSDL
Package namespace to a particular package name if your contract
Name>

has more than one namespace. The —p flag is optional,
but is recommended.

-d <output_dir> Specifies the directory to which the generated code is
written. The default is the current working directory. The
-d parameter is optional.

-servlet Generates a bus plug-in with the appropriate servant
registration code for the generated service
implementation and the code required to allow the
plug-in to run in a servlet container environment.

wsdl_contract Specifies the WSDL contract from which the Java code is
being generated.

131

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container

Example

More information

132

For example, the following wsd1tojava command generates the Java files
required to expose the service described in the hello world.wsdl contract
in the servliet Container demo. The example shown is run from the
directory in which the hello world.wsdl file is stored:

wsdltojava -p servlet.plugin -d ..\java\servlet\src -servlet
hello world.wsdl

For more information on the wsdltojava command-line utility, see the
Developing Artix Applications in Java guide.

../java_pguide/index.htm

Building an Artix Application

Writing the Implementation Class

Overview

Example

You can use the skeleton class generated by the Artix wsdltojava utility as
the basis for writing your Web service implementation class. All you need to
do is add the business logic.

For example, the following GreeterImpl.java file is used to implement the
Web service in the servliet Container demo:

Example 15: Greeterlmpl.java

package servlet.plugin;

import java.lang.String;

import javax.xml.namespace.QName;

import com.iona.jbus.*;

public class GreeterImpl implements java.rmi.Remote {
public String sayHi() {

return "Hey Now!";

public String greetMe (String me) {
return "Hello " + me;

133

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container

Developing an Artix Java Plug-in

Overview

In this subsection

Generating the Artix Java plug-in
files

134

To make your application available to Artix, you must develop an Artix Java
plug-in for your application. The purpose of this plug-in is to create an
instance of your implementation class and register it with the Artix bus. The
code is similar to that of an Artix Java server mainline and it associates your
Web service implementation with a WSDL port.

This subsection provides an example plug-in that exposes an Artix Web
service over all of the ports defined in the WSDL contract. The following
topics are covered:

® Generating the Artix Java plug-in files

® Example of Artix Java plug-in

® Example of Artix Java plug-in factory

® Exposing a Web service over multiple transports

When you map the WSDL to Java, you must use the -serviet parameter to

generate the Artix Java plug-in code (see “Mapping the WSDL to Java” on

page 131 for more information). The following plug-in files are generated for

you:

® A plug-in class, which extends the Artix BusplugIn class to implement
your application logic.

® A plug-in factory class, which implements the Artix BusPluginFactory
interface to provide the methods used by the Artix bus to manage your
plug-in.

Example of Artix Java plug-in

Building an Artix Application

The code in Example 16 shows an Artix Java plug-in, called
SOAPServicePlugin. It was generated using the wsdltojava utility and the
hello world.wsdl contract located in:

ArtixInstallDir/artix/Version/demos/j2ee/servlet container/etc

Example 16: An Artix Java Plug-in—SOAPServicePlugin

package servlet.plugin;

import
import

import
import
import
import
import
import

public

java.net.URL;
javax.xml.namespace.QName;

com.iona.jbus.Bus;
com.iona.jbus.BusConstants;
com.iona.jbus.BusException;
com.iona.jbus.BusPlugIn;
com.iona.jbus.Servant;
com.iona.jbus.servants.SingleInstanceServant;

class SOAPServicePlugin extends BusPlugIn {

public SOAPServicePlugin (Bus bus) {

super (bus) ;

public void busInit () throws BusException {
Bus bus = getBus();

QName serviceName = new QName
("http://www.iona.com/servlet/plugin", "SOAPService") ;
bus.setProperty (BusConstants.ARTIX SERVLET SERVICE QONAME,
serviceName) ;

URL url = getClass() .getResource ("hello world.wsdl");
String wsdlLocation = url.toString();

Servant servant = new SingleInstanceServant (new
GreeterImpl (), wsdlLocation, bus);

bus.registerServant (servant, serviceName) ;

}

public void busShutdown () throws BusException{

}

135

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container

Example of Artix Java plug-in
factory

136

The code shown in Example 16 can be explained as follows:

1. The bus.setProperty property is set so that the servlet knows what
service is being exposed. The serviceName parameter is set the oName
of the service as defined in the WSDL file. You should only deploy one
Artix service per servlet. The servlet uses the value of this property to
get the correct WSDL when the doget () method is called on the
servlet.

2. Accesses the Web service WSDL file. Note that, in this example, the
WSDL file is located within the web application WAR file along with
the plug-in. You can, however, retrieve the WSDL file from any location
in which it is stored.

3. Creates an instance of the servant.

Registers the servant and activates all ports associated with the
service.

The code in Example 17 shows an Artix Java plug-in factory class, called
SOAPServicePluginFactory.

Example 17: Artix Java Plug-in Factory Implementation—
SOAPServicePluginFactory

package servlet.plugin

import com.iona.jbus.Bus;

import com.iona.jbus.BusPlugln;

import com.iona.jbus.BusPlugInFactory;
import com.iona.jbus.BusException;

public class SOAPServicePluginFactory implements
BusPlugInFactory {

public BusPlugIn createBusPlugIn (Bus bus) throws BusException{
return new SOAPServicePlugin (bus);

}

public void destroyBusPlugIn (BusPlugIn plugin) throws
BusException{

}

Exposing a Web service over
multiple transports

Building an Artix Application

The code shown in Example 17 can be explained as follows:

1. The createBusPlugIn() method creates an instance of the Artix Java
plug-in, soaPservicePluginFactory, and its associated resources, and
associates them with particular bus instances.

2. The destroyBusPlugIn() method destroys plug-in instances and frees
the resources associated with them.

You do not need to modify this code.

If you want to expose your service over transports other than HTTP, all you
need to do is add a port definition for the transport to the WSDL contract.
You do not need to change the code. Artix supports a number of transports,
including 1IOP, JMS, WebSphere MQ, TIBCO, and Tuxedo. You can use any
of these when deploying an Artix Web service into a servlet container. The
following WSDL extract, for example, defines two ports for the soapservice,
and specifies that clients should use HTTP to contact port1 and IIOP to
contact port2:

<wsdl:service name="SOAPService">
<wsdl:port binding="tns:Greeter SOAPBinding" name="Portl">
<soap:address location="http://localhost:9000"/>
<http-conf:client/>
<http-conf:server/>
</wsdl:port>
<wsdl:port binding="tns:GreeterCORBABinding" name="Port2">
<corba:address
location="file:../../greeter service.ior"/>
</wsdl:port>
</wsdl:service>

Both ports are activated when bus. registerServant (servant,
serviceName) is called, as shown in Example 16 on page 135.

137

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container

Configuring Artix to Use Your Plug-in

Overview You must configure Artix so that the Artix bus can load your plug-in. This
subsection describes the configuration entries that are required and provides
an example configuration file. The following topics are covered:

® Plug-in configuration
® Example configuration file
® More information

Plug-in configuration To enable the Artix bus to load your plug-in, add the following configuration
entries to your Artix configuration file:

Step Action

1 | Load the Java plug-in loader.

Artix Java plug-ins require the Artix bus to use a special Java
plug-in loader, java. You need to add this plug-in loader to the
orb plugins list.

2 | Specify your application-specific plug-in factory class and the
Artix servlet transport plug-in factory class.

To load a plug-in, the Artix bus needs to know which factory
class is used to create instances of the plug-in’s
implementation.

3 | Add your plug-in and the Artix servlet transport plug-in to the
java_plugins list that the Artix bus will load.

138

Example configuration file

1

o b

Building an Artix Application

The following is an example of the configuration file used to configure Artix
in the servlet Container demo. It defines two Artix configuration scopes:
demos.client and tests.servlet test

Example 18: Artix Configuration File—servlet container.cfg

include "../../../../etc/domains/artix.cfg";
demos {
servlet container {
client {
to see transport buffers, use this setting
#eventilog:filters = ["*=FATAL+ERROR+WARNING+INFO MED"];
orb plugins = ["xmlfile log stream"];
bi
}i
}i
tests {

#uncomment the following configuration entries to see Artix
message logging

#the log will be written into the Tomcat install directory

#event_log :filters=["*=FATAL+ERROR+WARNING+INFO MED"];

#plugins:soap:write xsi type="true";

servlet test
{
orb plugins = ["xmlfile log stream", "java"l;
java plugins = ["servlet transport", "servlet demo plugin"];

plugins:servlet transport:classname="com.iona.jbus.servlet.
transport.ServletTransportPlugInFactory";
plugins:servlet demo plugin:classname="servlet.plugin.
SOAPServicePluginFactory";

}i

1. Includes the artix.cfg file, which is the standard minimal Artix
configuration. It is generated by default when Artix is installed.

2. demos.client scope. This is the scope under which the C++ and Java

clients run in the servliet Container demo. This scope is not
essential—the client applications would run just as well under the
global scope in artix.cfgq.

139

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container

More information

140

3. tests.servlet test scope. This is the scope under which the Artix
servlet runs within the servlet container. This is essential. The
orb plugins and java plugins entries identify Artix plug-ins that need
to be loaded by the Artix bus.

4. Note that the Java plug-in loader, java, is included in the orb plugins
list.

5. Note that the serviet transport and servlet demo plugin is
included in the java_plugins list.

6. The servlet transport plug-in is part of Artix. This is contained in the
it _artix servlet.jar file and provides the integration between the
Artix servlet running in the servlet container and the Artix core. It
defines a new Artix transport that wraps the servlet container HTTP
stack. This enables Artix Web services to receive invocations on the
TCP/IP port used by servlet container.

Note: If you do not want to use the servlet container's HTTP stack, and
would prefer instead to use the Artix HTTP stack, do not add the
servlet transport plug-in to the list of plug-ins that you want the Artix
bus to load.

7. The servlet demo plugin is the Artix Web services implementation
written specifically for the serviet container demo. This is an
example of an application-specific Artix Java plug-in and contains the
demo application logic. This is equivalent to the Artix Java plug-in that
you must generate for your Web service application. Details of how to
write such a plug-in is described in the Developing an Artix Java
Plug-in subsection of this chapter.

For more detailed information on how to configure Artix plug-ins, see the
Configuring Artix Plug-ins chapter in the Developing Artix Applications in
Java guide.

../java_pguide/index.htm
../java_pguide/index.htm

Building and Deploying your Web Application

Building and Deploying your Web Application

Overview

In this section

Building a WAR file

To deploy your application to your servlet container, you must build an Web
Archive (WAR) file and deploy it to your servlet container. In addition, if you
want to use the servlet container HTTP port to receive messages, you must
deploy the Artix servlet transport and ensure that the Web service WSDL file
contains the URL on which the servlet will be deployed.

This section discusses the following topics:

Building a WAR file

Example web.xml file

Ensuring the URL assigned to servlet is same as in WSDL
Deploying the WAR file

Build a WAR file to include:

1.

A copy of the Artix supplied it_artix servlet.jar file in the
WEB-INF/1ib directory. This contains the artixServiet class and the
plug-in code that provides the integration between the servlet and the
servlet container's HTTP stack. You do not need to change this in any
way. It is located in:

ArtixInstallDir/lib/artix/java runtime/4.0

2.

Your Web service implementation class, your application-specific Artix
Java plug-in class, the plug-in factory class, and the Web service
WSDL file. If required, other classes generated by the wsditojava
command should also be included; for example, application-specific
types and the type factory.

You can either build an ApplicationSpecific.jar file to package all of
these files and include it in the weB-1NF/11b directory of your WAR file,
or place the files (including the class hierarchy) in the
WEB-INF/classes directory.

141

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container

Example web.xml file

142

3. A web.xml deployment descriptor file in the wes-1nF directory. You
must include an initialization parameter that the Artix servlet can use
when initializing the Artix bus. See Example web.xml file for more
detail.

When deploying an Artix Web service to your servlet container, you must
include an initialization parameter in your application web.xm1 deployment
descriptor file. It is used by the Artixserviet instance when initializing an
Artix bus and ensures that the bus is using the correct Artix configuration
scope.

For example, the following is used when deploying the servlet Container
demo:

Example 19: Serviet Container demo web.xml file

<?xml version="1.0" encoding="ISO-8859-1"7?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN"
"http://java.sun.com/dtd/web-app 2 3.dtd">
<web-app>
<display-name>Artix Servlet Test App</display-name>
<description></description>
<servlet>
<servlet-name>ArtixServlet</servlet-name>
<servlet-class>com.iona.jbus.servlet.ArtixServlet
</servlet-class>
<init-param>
<param-name>bus.init.parameters</param-name>
<param-value>-ORBid SomeUniqueString
-ORBname tests.servlet test</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>
<!-- Action Servlet Mapping -—>
<servlet-mapping>
<servlet-name>ArtixServlet</servlet-name>
<url-pattern>/artix servlet</url-pattern>
</servlet-mapping></web-app>

Ensuring the URL assigned to
servlet is same as in WSDL

Building and Deploying your Web Application

The code shown Example 19 can be explained as follows:

1. To make an Artix process run under a particular configuration scope,
you specify that scope using the -orRBname parameter. It specifies the
scope under which the Artix bus should run. In this case the
configuration scope is test.servlet test, Which has been defined in
the Artix configuration file used in the serviet Container demo. See
“Example configuration file” on page 139 to view the contents of this
file.

In addition, to run multiple Artix servlet applications in the same
servlet container, you need to distinguish one application’s bus from
another. To do this, set the -orBid parameter to a unique string for
each application.

Lastly, you could specify a particular domain name and configuration
directory by adding -OrRBdomain name and -ORBconfig domains dir
parameters and their values to the param-value entry. If you choose to
do so, you do not need to set these configuration entries in your
environment script.

In order for the servlet to use the servlet container's HTTP stack, you must
ensure that the URL and TCP/IP port number in the Web service WSDL file
is the same as that used to deploy the servlet. You can either change the
value in the WSDL file to match that of the servlet, or configure the servlet
container to use the URL and TCP/IP port number specified in the WSDL.

For example, in the servliet Container demo, the hello world.wsdl file
specifies the following URL and Tomcat is configured to use the same port:

<wsdl:service name="SOAPService">

<wsdl:port binding="tns:Greeter SOAPBinding" name="SoapPort">
<soap:address
location="http://localhost:9876/artix demo servlet/
artix servlet"/>

</wsdl:port>

</wsdl:service>

Note: If you choose not to use the servlet container’'s HTTP stack, and are
instead using the Artix HTTP stack, then you must ensure that the TCP/IP
port number used in the WSDL file is different from that used by the
servlet container.

143

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container

Deploying the WAR file

144

You must configure your servlet container to run Artix applications before
you deploy your WAR file. Please refer to “Configuring Servlet Container to
Run an Artix Application” on page 125 for more detail.

How you deploy your WAR file is dependent on the servlet container that
you are using. Please refer to you servlet container documentation for exact
details.

Part IV

Reference Information

In this part This part contains the following chapters:

Artix J2EE Connector Configuration Properties page 147

145

146

In this chapter

CHAPTER 9

Artix J2EE
Connector
Configuration
Properties

You do not have to configure the Artix J2EE Connector for basic
connection management. It is configured for you during the
Artix installation. You can, however, change the default
configuration settings to suit your environment using the
configuration properties detailed in this chapter. This chapter
also provides some basic information on how to set these
configuration properties in JBoss, WebLogic and WebSphere.

This chapter covers the following topics:

Configuration Properties page 148

Setting Configuration Property Values page 160

147

CHAPTER 9 | Artix J2EE Connector Configuration Properties

Configuration Properties

Overview

148

The Artix J2EE Connector supports the following configuration properties:.

ArtixInstallDir page 149
ArtixLicenseFile page 150
LogLevel page 151
ConfigurationDomain page 152
ConfigurationScope page 153
EJBServicePropertiesURL page 154
EJBServicePropertiesPollInterval page 155
MonitorEJBServiceProperties page 156
JAASLoginConfigName page 157
JAASLoginUserName page 158
JAASLoginPassword page 159

Configuration Properties

ArtixInstallDir

Overview The artixInstallbir configuration property specifies the Artix installation
directory. This is set be default when you install Artix.

Value The value of the ArtixInstallDir configuration property is a string
specifying the Artix installation directory.

The Artix J2EE Connector is configured by default with details of the
directory into which you installed Artix; for example:

C:\IONA\artix\4.0

Setting If you want to change the default setting, see “Setting Configuration Property
Values” on page 160.

149

CHAPTER 9 | Artix J2EE Connector Configuration Properties

ArtixLicenseFile

Overview

Value

Setting

150

The ArtixLicenseFile configuration property specifies the location of the
Artix license file. This is set to a default location when you install Artix. If,
however, you do not store your Artix license file in the default location, you
need to set the artixLicenseFile configuration property to specify the
location that you are using.

The value of the ArtixLicenseFile configuration property is a string
specifying the location of the Artix license file.

The Artix J2EE Connector is set by default to specify the default location as:
InstallDir/etc/licenses.txt

where Installpir represents the directory in which you installed Artix. An
example could be:

C:/IONA/etc/licenses.txt

If you want to change the default setting, see “Setting Configuration Property
Values” on page 160.

Configuration Properties

LogLevel

Overview The LogLevel configuration property specifies the amount of logging that the
Artix J2EE Connector produces. The location of the logging output is
dependent on the J2EE application server.

Value The logging support levels from least to most verbose are:

DEBUG
INFO
WARN
ERROR
FATAL

The Artix J2EE Connector is configured by default to support the warn
logging level.

Setting If you want to change the default setting, see “Setting Configuration Property
Values” on page 160.

151

CHAPTER 9 | Artix J2EE Connector Configuration Properties

ConfigurationDomain

Overview

Value

Setting

152

The Artix J2EE Connector uses the Artix configuration file, artix.cfg, by
default. An alternative configuration domain can be specified by using the
ConfigurationDomain configuration property.

The value of the configurationbDomain configuration property is a string.

The Artix J2EE Connector is configured by default with the configuration
domain value of artix.

If you want to change the default setting, see “Setting Configuration Property
Values” on page 160.

Configuration Properties

ConfigurationScope

Overview The configurationScope configuration property specifies the Artix
configuration scope that the Artix J2EE Connector uses.

Value The value of the configurationscope configuration property is a string, with
the . (dot) character identifying nested configuration scopes.
The Artix J2EE Connector is configured by default with a configuration scope
of DEFAULT.

Setting If you want to change the default setting, see “Setting Configuration Property

Values” on page 160.

153

CHAPTER 9 | Artix J2EE Connector Configuration Properties

EJBServicePropertiesURL

Overview

Value

Setting

More detail

154

The EJBservicePropertiesURL configuration property specifies the location
from which the Artix J2EE Connector can retrieve the

ejb_servants.properties file.

By default, the Artix J2EE Connector is set to check this file for updates at
30 second intervals. This behavior is controlled by the
MonitorEJBServiceProperties and the
EJBServicePropertiesPollInterval configuration properties.

The value is a string that specifies a URL.

The Artix J2EE Connector is configured by default with the following file
URL:

file:ArtixInstallDir/artix/Version/etc/ejb_servants.properties

Note: If you want the Artix J2EE Connector to check the
ejb_servants.properties file for updates, the URL must be a file URL.

If you want to change the default setting, see “Setting Configuration Property
Values” on page 160.

For more detail on the ejb_servants.properties file, see “Configuring
Inbound Connections” on page 65.

For more detail on the MonitorEJBServiceProperties configuration
property, see “MonitorEJBServiceProperties” on page 156.

For more detail on the EJBServicePropertiesPollInterval configuration
property, see “EJBServicePropertiesPollInterval” on page 155.

Configuration Properties

EJBServicePropertiesPollinterval

Overview

Value

Setting

More detail

The EJBservicePropertiesPollInterval configuration property specifies
the refresh period that the Artix J2EE Connector uses to check the
ejb_servants.properties file for updates. It is dependent on the
MonitorEJBServiceProperties configuration property being set to TRUE.

The value is an integer and the default value is 30 seconds. This means
that, by default, the Artix J2EE Connector checks the
ejb_servant.properties file every 30 seconds for updates.

If you want to change the default setting, see “Setting Configuration Property
Values” on page 160.

For more detail on the ejb_servants.properties file, see “Configuring
Inbound Connections” on page 65.

For more detail on the MonitorEJBServiceProperties configuration
property, see “MonitorEJBServiceProperties” on page 156.

155

CHAPTER 9 | Artix J2EE Connector Configuration Properties

MonitorEJBServiceProperties

Overview

Value

Setting

More detail

156

The MonitorEJBserviceProperties configuration property controls whether
or not the Artix J2EE Connector checks the ejb_servants.properties file
for updates.

The value is a boolean and can be set to:

TRUE This is the default setting and enables the Artix J2EE
Connector to monitor the ejb_servants.properties file
for updates.

For this to work, the location of the
ejb_servants.properties file must be specified as a file
URL to the EJBservicePropertiesURL configuration
property.

FALSE The Artix J2EE Connector will check the
ejb_servants.properties file once on deployment to an
application server, but will not check for updates.

The Artix J2EE Connector is configured by default to TrRUE.

How often it checks the ejb_servants.properties file is set by the
EJBServicePropertiesPollInterval configuration property. The default
value of is every 30 seconds.

If you want to change the default setting, see “Setting Configuration Property
Values” on page 160.

For more detail on the ejb_servants.properties file, see “Configuring
Inbound Connections” on page 65.

For more detail on the EJBServicePropertiesURL configuration property,
see“EJBServicePropertiesURL” on page 154.

For more detail on the EJBServicePropertiesPollInterval configuration
property, see “EJBServicePropertiesPolllnterval” on page 155.

Configuration Properties

JAASLoginConfigName

Overview

Value

Setting

More detail

The JaasLoginConfigName configuration property is used to specify the
JAAS configuration name that the Artix J2EE Connector should use to login
to a J2EE application server for secure inbound connections. The
configuration name is passed as an argument to the constructor of a
javax.security.auth.login.LoginContext that the Artix J2EE Connector
uses to login to the application server.

The value is a string that specifies the JAAS security configuration name that
the Artix J2EE Connector uses to login to the application server.

The Artix J2EE Connector is configured by default to use a JAAS
configuration name of DEFAULT.

For information on how to set the JaasL.oginConfigName configuration
property, see “Setting Configuration Property Values” on page 160

For more detail on using the JaasLoginConfigName configuration property,
see “Configuring JAAS Login Module” on page 113.

157

CHAPTER 9 | Artix J2EE Connector Configuration Properties

JAASLoginUserName

Overview

Value

Setting

More detail

158

The JaasLoginUserName configuration property is used to identify a valid
J2EE username that has the appropriate privileges to execute the
EJBHome . create method of the target EJB for secure inbound connections.

The value is a string that specifies a valid J2EE username the Artix J2EE
Connector can use to create the target EJB for secure inbound connections.

The Artix J2EE Connector is configured by default to use a J2EE username
of DEFAULT.

For information on how to set the JaasL.oginUserName configuration
property, see “Setting Configuration Property Values” on page 160.

For more detail on using the JaasL.oginUserName configuration property, see
“Configuring EJB Create Username and Password” on page 115.

Configuration Properties

JAASLoginPassword

Overview The JaasLoginPassword configuration property is used to specify a
password that corresponds to a valid J2EE user that has the appropriate
privileges to execute the EJBHome . create method of the target EJB for
secure inbound connections.

Value The value is a string that specifies a valid password that the Artix J2EE
Connector can use to create the target EJB for secure inbound connections.

The Artix J2EE Connector is configured by default to use a J2EE user
password of DEFAULT.

Setting For information on how to set the Jaast.oginPassword configuration
property, see “Setting Configuration Property Values” on page 160.

More Detail For more detail on using the JaasLoginPassword configuration property, see
“Configuring EJB Create Username and Password” on page 115.

159

CHAPTER 9 | Artix J2EE Connector Configuration Properties

Setting Configuration Property Values

Overview Artix J2EE Connector configuration property values can be set at
deployment time. How you do this is specific to the J2EE application server
that you are using. This section provides details of how to set example Artix
J2EE Connector properties in JBoss, WebLogic and WebSphere. Please
consult your J2EE application server documentation for the most
appropriate way in which to set these values.

In this section The following topics are covered:
Setting Configuration Property Values in JBoss page 161
Setting Configuration Property Values in Weblogic page 162
Setting Configuration Property Values in WebSphere page 163

160

Setting Configuration Property Values

Setting Configuration Property Values in JBoss

Overview

Example

More information

JBoss provides J2EE Connector Architecture resource adapter factory
configuration through a cractoryName-ds.xml deployment descriptor file.
This is a separate file from the resource adapter RAR file. You need one
CFactoryName-ds.xml file per connection factory.

The following example artixj2ee 1 5-ds.xml JBoss 4 deployment
descriptor file specifies a value of 60 for the Artix J2EE Connector
EJBServicePropertiesPollInterval configuration property:

<connection-factories>
<no-tx-connection-factory>
<jndi-name>ArtixConnector</jndi-name>

<config-property name="EJBServicePropertiesPollInterval"
type="java.lang.Integer">60</config-property>

</no-tx-connection-factory>
</connection-factories>

The config-property element is used to specify a value for a configuration
property that is supported by the resource adapter being deployed.

For more information on the EJBServicePropertiesPollInterval
configuration property, see “EJBServicePropertiesPollInterval” on page 155.

For more information on how to set J2EE Connector Architecture resource
adapter configuration properties in JBoss, see the JBoss documentation.

161

CHAPTER 9 | Artix J2EE Connector Configuration Properties

Setting Configuration Property Values in WebLogic

Overview

Example

More information

162

WebLogic provides J2EE Connector Architecture resource adapter factory
configuration through the weblogic-ra.xml deployment descriptor file. This
file is typically included in the resource adapter RAR file. Although,
WebLogic 8.1 allows the location of the weblogic-ra.xml deployment
descriptor file to be specified by the deployment tool.

The following example weblogic-ra.xml deployment descriptor file specifies
a value of 60 for the Artix J2EE Connector
EJBServicePropertiesPollInterval configuration property:

<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE weblogic-connection-factory-dd PUBLIC
"-//BEA Systems, Inc.//DID WebLogic 8.1.0 Connector//EN"
"http://www.bea.com/servers/wls810/dtd/weblogic810-ra.dtd">
<weblogic-connection-factory-dd>
<connection-factory-name>ArtixConnector
</connection-factory-name>
<jndi-name>CORBAConnector</jndi-name>
<map-config-property>
<map-config-property-name>EJBServicePropertiesPollInterval
</map-config-property-name>
<map-config-property-value>60
</map-config-property-value>
</map-config-property>
</weblogic-connection-factory-dd>

The map-config-property element is used to specify a value for a
configuration property that is supported by the resource adapter being
deployed.

For more information on the EJBServicePropertiesPollInterval
configuration property, see “EJBServicePropertiesPolllnterval” on page 155.
For more information on how to set J2EE Connector Architecture resource

adapter configuration properties in Weblogic, see the WebLogic
documentation.

Setting Configuration Property Values

Setting Configuration Property Values in WebSphere

Overview

More information

WebSphere requires you to set J2EE Connector Architecture resource
adapter factory configuration using the WebSphere Administrative Console
GUI or the wsadmin command-line tool.

For more information on how to set J2EE Connector Architecture resource
adapter configuration properties in WebSphere, see the WebSphere
documentation.

163

CHAPTER 9 | Artix J2EE Connector Configuration Properties

164

Index

Numerics
1PC 84
2PC 83

A
ACID properties 83
API
connection management 49
application policy
adding to JBoss login-config.xml 105
client-login 113
configuring credentials mapping in JBoss 105
artix.cfg 139, 152
artix.rar
deploying to JBoss 72
deploying to WebLogic 75
deploying to WebSphere 78
Artix bus 61, 65, 100, 123
accessing directly 53
context registry 53
creating a reference 53
ArtixConnectionFactory 50
usage scenarios 51
ArtixConnectionFactory.getBus() 53
Artix environment
setting 70
artix_env script 70
Artix HTTP stack 140
ArtixInstallDir 149
artixj2ee_1_5-ds.xml 34, 161
artix_j2ee_ce.xml 71
artixj2ee-ds.xml 73
deploying to JBoss 72
example of 73
Artix Java plug-in 134
configuring 138
ArtixLicenseFile 150
Artix servlet transport 121, 122
it_artix_servlet.jar 141
Artix shared library
appending to system environment 70
authentication mechanism
BasicPassword 99

B

BasicPassword 99

BusPlugln
extending 135

BusPluglInFactory
extending 136

C
CFactoryName-ds.xml 34, 73, 161
example of 73
classloader firewall 128
client-login 113
configuration
inbound security 110
outbound security 101
ConfigurationDomain 152
configuration properties
ArtixInstallDir 149
ArtixLicenseFile 150
ConfigurationDomain 152
ConfigurationScope 153

EJBServicePropertiesPollinterval 67, 155

EJBServicePropertiesURL 66, 154
JAASLoginConfigName 157
JAASLoginPassword 159
JAASLoginUserName 158
LoglLevel 151
MonitorEJBServiceProperties 67, 156
setting in JBoss 161
setting in WebLogic 162
setting in WebSphere 163
ConfigurationScope 153
connection management 49
API 49
Artix J2EE Connector 26
interface definition 50
J2EE Connector Architecture 22
credentials mapping 101, 102
in JBoss 104
credentials propagation 97
outbound security 98

165

INDEX

D
-d 131
deployment
interface classes 56
to JBoss 72
to servlet container 141
to Tomcat 141
to WebLogic 75
to WebSphere 78

deployment descriptor 25, 142

E
EJB

securing 111
ejb_servants.properties file

configuring inbound connections 65

example of 66
format of 65
multiple entries 66

port-to-JNDI mapping 61, 65
EJBServicePropertiesPollInterval 67, 155
EJBServicePropertiesURL 66, 154

G

global transactions 90
configuring inbound 95
configuring outbound 93

H

Hello World demo
location of 32
running on JBoss 33
running on WebLogic 37
running on WebSphere 41
WSDL file 32

|

IIOP 137

inbound connections 59
configuring 65
demo 61

inbound security
configuring 110

initialization parameter 142

init param See initialization parameter

interface classes

166

packaging and deploying 55, 56, 141
it_artix_servlet.jar 141

J
J2EE application
writing 49, 63, 133
J2EE Connector Architecture 20
Common Client Interface, CCl 23
connection management 22
security management 22
system-level contracts 22
transaction management 22
JAAS 104
JAAS configuration name 113
JAASLoginConfigName 113, 157
JAAS login module 113
JAASLoginPassword 115, 159
setting in JBoss 116
JAASLoginUserName 115, 158
setting in JBoss 116
Java Authentication and Authorization Service 104
java_plugins 138, 140
javax.resource.security.PasswordCredential 99
javax.security.auth.login.LoginContext 113
JAX-RPC mapping 61
JBoss
4 deployment descriptor 34, 161
configuring property values in 161
credentials mapping 104
deploying to 72
jboss.xml 56
login-config.xml 105
mapping resource reference 56
principal mapping 104
running the Hello World demo on 33
JMS 137

L
local transactions 85
demo 85
demo code 87
login-config.xml 105, 113
Loglevel 151

M
MonitorEJBServiceProperties 67, 156

INDEX

(0] stateless session bean 61

one-phase commit 84 implementing 63

-ORBconfig_domains_dir 143

-ORBdomain_name 143 T

-ORBid 143 TIBCO 137

orb_plugins 138, 140 transaction management

OTS Encina 84 Artix J2EE Connector 26

OTS Lite 84 J2EE Connector Architecture 22

transaction managers 83

P transactions 81-88

-p 131 1PC definition 84

param_va|ue 143 2PC definition 83

principal mapping 101, 102 ACID properties of 83

in JBoss 104 configuring inbound global 95

configuring inbound XA 95

R configuring outbound global 93
configuring outbound XA 93

ra.xml 25

global transactions 90

local transactions 85

local transactions demo 85

local transactions demo code 87

RAR. See artix.rar
resource adapter archive file. See artix.rar
resource reference

declanng 55 one-phase commit 84
mapping 55 OTS Encina 84
OTS Lite 84
S two-phase commit 83
security WS-AtomicTransactions 84
configuring inbound 110 XA transactions 90
configuring outbound 101 Tuxedo 137
credentials mapping 101
credentials propagation 97 w
inbound 107 web.xml

outbound 98 deploying Web service in servlet container 142

printcipal mappingt101 initialization parameter 142
security managemen WebLogic

Artix J2EE Connector 26

J2EE Connector Architecture 22
-servlet 131
servlet container 121-144

Artix Java plug-in 134

configuring Artix Java plug-in 138 weblogic-ra.xml 162

demo 124
example Artix configuration file 139 Wgég?r?el?e()f 77

example of extending BusPlugin 135
example of extending BusPluglnFactory 136

graphical representation 123 mapping resource reference 56

”‘F‘”‘”g Ar_tix services in 121 running the Hello World demo on 41
using multiple transports or protocols 137 WebSphere MQ 137

SL.SB 61 . WS-AtomicTransactions 84
implementing 63

configuring property values in 162
deploying to 75

mapping resource reference 56
running the Hello World demo on 37
weblogic.xml 56

configuring property values in 163
deploying to 78

167

INDEX

WS-AT See WS-AtomicTransactions
wsdl_contract 131
WSDL location
configuring Artix to resolve at runtime 53
hardcoding 51
resolving at runtime 52
WSDL to Java
mapping 62
wsdltojava utility 48, 62

168

generating Java skeleton code 131
WSSE
username and password 100

X

XA transactions 90
configuring inbound 95
configuring outbound 93

	List of Figures
	Preface
	Part I—Introduction
	Introduction
	J2EE Connector Architecture Overview
	System-Level Contracts
	Common Client Interface

	Artix J2EE Connector Overview
	Artix Servlet Container Support
	Artix Concepts

	Part II—Using Artix in a J2EE Application Server
	Getting Started with Artix J2EE Connector
	Introduction
	Running the Hello World Demo on JBoss
	Running the Hello World Demo on WebLogic
	Running the Hello World Demo on WebSphere

	Exposing a Web Service to a J2EE Application
	Introduction
	Mapping the WSDL to Java
	Writing your J2EE Application
	Connection Management API Definition
	Using the Connection Management API

	Packaging your Application

	Exposing a J2EE Application as a Web Service
	Introduction
	Mapping the WSDL to Java
	Implementing a Stateless Session Bean
	Configuring Inbound Connections

	Deploying Artix J2EE Connector
	Setting the Artix Environment
	Deploying to JBoss
	Deploying to WebLogic
	Deploying to WebSphere

	Transactions
	Transactions Overview
	Local Transactions
	Global Transactions
	Outbound Global Transactions
	Inbound Global Transactions

	Security
	Outbound Security
	Configuring Outbound Security
	Credentials Mapping
	Configuring Credentials Mapping in JBoss

	Inbound Security
	Configuring Inbound Security
	Securing the Target EJB
	Configuring JAAS Login Module
	Configuring EJB Create Username and Password

	Configuring a Secure Transport

	Part III—Using Artix in a Servlet Container
	Exposing Artix Web Services from a Servlet Container
	Introduction
	Configuring Servlet Container to Run an Artix Application
	Building an Artix Application
	Mapping the WSDL to Java
	Writing the Implementation Class
	Developing an Artix Java Plug-in
	Configuring Artix to Use Your Plug-in

	Building and Deploying your Web Application

	Part IV—Reference Information
	Artix J2EE Connector Configuration Properties
	Configuration Properties
	ArtixInstallDir
	ArtixLicenseFile
	LogLevel
	ConfigurationDomain
	ConfigurationScope
	EJBServicePropertiesURL
	EJBServicePropertiesPollInterval
	MonitorEJBServiceProperties
	JAASLoginConfigName
	JAASLoginUserName
	JAASLoginPassword

	Setting Configuration Property Values
	Setting Configuration Property Values in JBoss
	Setting Configuration Property Values in WebLogic
	Setting Configuration Property Values in WebSphere

	Index

