IONA

Artix:

Developing Artix Applications

in Java
Version 4.1, September 2006

Making Software Work Together™

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work
Together, Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2006 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: November 13, 2006

Contents

List of Figures
List of Tables

Preface
What is Covered in this Book
Who Should Read this Book
How to Use this Book
The Artix Library
Getting the Latest Version
Searching the Artix Library
Artix Online Help
Artix Glossary
Additional Resources
Document Conventions

Part | Fundamentals of Artix Programming

Chapter 1 The Artix Java Development Model
Separating Transport Details from Application Logic
Representing Services in Artix Contracts
Mapping from an Artix Contract to Java

Generating Java Code
Mapping Contract Elements to Java
Java Package Naming

Chapter 2 Developing Artix Consumers
Generating the Stub Code
Writing the Consumer Code
Initializing an Artix Bus
Creating a Service Proxy Using the JAX-RPC Method

11

13

15
15
15
15
16
19
19
19
20
20
20

25
26
28
30
31
36
39

41
42
45
46
47

CONTENTS

Creating a Service Proxy Using Artix APls
Shutting Down the Artix Bus
Full Consumer Code
Setting Connection Attributes Using the Stub Interface
Creating a Service Proxy Using UDDI
Building an Artix Consumer

Chapter 3 Developing Artix Services

Generating the Skeleton Code

Developing a Service Implementation

Developing a Container Based Service
Generating Starting Point Code
Implementing the Service’s Plug-in Class
Implementing the Service’s Activator Class

Developing a Standalone Service

Servant Registration
Static Servant Registration
Transient Servant Registration

Servant Threading Models

Building an Artix Service

Chapter 4 Finding Contracts and References at Runtime
Finding Initial References
Finding Artix Contracts

Chapter 5 Things to Consider when Developing Artix Applications
Getting a Bus
Class Loading

Chapter 6 Handling Artix Generated Exceptions
Generic Exception Handling
Overview of Fault Exceptions
Processing Fault Exceptions
Throwing Fault Exceptions
Using the SOAP Binding

49
51
52
54
58
61

63
65
68
70
71
72
76
81
85
86
87
89
93

95
97
99

101
102
103

107
108
110
111
114
116

Chapter 7 Working with Artix Data Types

XMLSchema Elements

Using XMLSchema Simple Types
Atomic Type Mapping
Special Atomics Type Mappings
Defining Simple Types by Restriction
Using Enumerations
Using Lists
Using XMLSchema Unions

Using XMLSchema Complex Types
Sequence and All Complex Types
Choice Complex Types
Attributes
Undeclared Attributes
Nesting Complex Types
Deriving a Complex Type from a Simple Type
Deriving a Complex Type from a Complex Type
Occurrence Constraints
Using Model Groups

Using XMLSchema any Elements

SOAP Arrays

Holder Classes

Using SOAP with Attachments

Unsupported XMLSchema Constructs

Chapter 8 Creating User-Defined Exceptions
Describing User-defined Exceptions in an Artix Contract
How Artix Generates Java User-defined Exceptions
Working with User-defined Exceptions in Artix Applications

Chapter 9 Using Substitution Groups
Substitution Groups in XML Schema
Using Substitution Groups with Artix
Widget Vendor Example
Widget Server
Widget Client

CONTENTS

119
120
121
122
125
127
132
138
141
145
146
151
155
163
167
177
181
185
197
202
210
214
218
223

225
226
228
231

233
234
238
248
250
254

CONTENTS

Chapter 10 Working with Artix Type Factories
Introduction to Type Factories
Registering Type Factories
Getting Type Information From Type Factories

Chapter 11 Working with XMLSchema anyTypes
Introduction to Working with XMLSchema anyTypes
Setting anyType Values
Retrieving Data from anyTypes

Chapter 12 Using Endpoint References
Introduction to Endpoint References
Endpoint Reference Basic Concepts
Using Endpoint References in Artix Contracts
Creating Endpoint References
Instantiating Service Proxies Using an Endpoint Reference
Using Endpoint References in a Factory Pattern
Bank Service Contract
Bank Service Implementation
Bank Service Client
Using Endpoint References to Implement Callbacks
The Accounting Contract
The Accounting Client
The Accounting Server
Migration Scenarios

Chapter 13 Using Native XML
Populating Artix Objects with XML
Converting Artix Objects Into XML
Converting References into XML

Chapter 14 Using Message Contexts
Understanding Message Contexts in Artix
Getting the Context Registry
Getting the MessageContext Object for a Thread
Working with JAX-RPC MessageContext Objects
Working with lonaMessageContext Objects

257
258
260
263

267
268
270
272

277
278
279
282
285
288
290
291
296
300
303
304
310
315
318

321
322
325
328

329
330
334
336
339
345

CONTENTS

How Properties are Stored in Artix Message Contexts 346
Setting a Property into an Artix Message Context 348
Working with Properties from an Artix Message Context 351
Special Artix Properties 353
Chapter 15 Sending Message Headers 355
Defining Context Data Types 357
Registering Context Types 359
Registering a Context for Use as a SOAP Header 360
Registering a Context for Use as a CORBA Header 362

SOAP Header Example 364
The Contract 365
Generating the Classes for the Header 367

The Client 368

The Service 371
Chapter 16 Working with Transport Attributes 375
How Artix Stores Transport Attributes 376
Getting Transport Attributes from an Artix Context 378
Setting Configuration Attributes 381
Using the Standard Contexts 382

Using the Configuration Context 383
Setting HTTP Attributes 385
Client-side Configuration 386
Server-side Configuration 395
Setting the Server's Endpoint URL 405
Setting CORBA Attributes 407
Setting WebSphere MQ Attributes 409
Working with Connection Attributes 410
Working with MQ Message Descriptor Attributes 414
Setting JMS Attributes 423
Using JMS Message Headers and Properties 424

Using Client-side JMS Attributes 428

Using Server-side JMS Attributes 430
Setting JMS Broker Security Information 432
Setting FTP Attributes 434
Setting FTP Connection Policies 435
Setting the Connection Credentials 439

CONTENTS

Setting the Coordination Policies
Setting i18n Attributes

Part Il Advanced Artix Programming

Chapter 17 Using Persistent Datastores
Introduction to Artix Persistent Datastores
Creating a Persistent Datastore

Creating Persistent Maps
Creating Persistent Lists
Working with Data in a Persistent Datastore
Using Persistent Maps
Using Persistent Lists
Supporting High-Availability
Configuring Artix to Use Persistent Datastores

Chapter 18 Using the Call Interface for Dynamic Invocations
DIl and the Call Interface
Building Invocations using the Call Interface
Printer Service Demo

Chapter 19 Instrumenting a Service
Overview of Artix Instrumentation
Using the JMX APIs
Using the Artix ManagedComponent Interface
Implementing the Instrumentation Class
Implementing the Support Class
Creating and Removing your Instrumentation

Chapter 20 Developing Plug-Ins
Understanding the Artix Plug-in Model
Extending the BusPlugln Class
Implementing the BusPluginFactory Interface
Configuring Artix to Load a Plug-in

441
444

449
450
455
458
462
464
465
469
473
478

479
480
482
484

487
488
491
495
496
500
504

507
508
511
514
516

Chapter 21 Writing Handlers

Handlers: An Introduction

Developing Request-Level Handlers

Developing Message-Level Handlers

Implementing a Handler as a Plug-in
Creating the Handler Plug-in
Creating a Handler Factory

Handling Errors and Exceptions
Handling Errors when Processing Requests
Handling Errors when Processing Responses
Throwing User Faults
Processing Fault Messages

Configuring Endpoints to Use Handlers

Chapter 22 Manipulating Messages in a Handler
Working with Operation Parameters
Working with SOAP Messages
Manipulating Messages as a Binary Stream

Chapter 23 Developing Custom Artix Transports
Developing a Transport: The Big Picture
Making a Schema for the Transport Attributes
Developing and Registering the Transport Factory
Creating a Transport Factory
Transport Policies
Registering and Unregistering a Transport Factory
Developing the Client Transport
Developing the Server Transport
Activating a Server Transport
Processing Requests
Shutting Down a Server Transport
Using your Custom Transport

Chapter 24 Configuring Artix Plug-Ins
Understanding Artix Configuration
Adding Custom Configuration for a Plug-in

CONTENTS

519
520
523
526
529
530
533
537
538
540
541
543
545

549
550
555
558

561
562
564
568
569
572
575
577
585
587
592
600
602

605
606
610

CONTENTS

Chapter 25 Using Artix Classloader Environments 613
Class Loading: An Overview 614
Artix’s Classloader Hierarchy 617
Using Artix’s Classloader Environment 621

Index 627

10

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure b5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:

Figure 19

SinglelnstanceServant

SerializedServant

PerlnvocationServant

Classloader Firewall

Artix Message Context Hierarchy

Overview of the Message Context Mechanism
Contexts Passed Along Request/Reply Chain
The Artix Persistence Mechanism

Artix Service Cluster

Artix Persistent Datastores

Default Artix MBean Structure

Loading a Plug-In

Initializing a Plug-In

The Life of a Message

Handler Levels

Classloader Chain

Default Classloader Hierarchy

Artix Bus Classloader Chain

: Artix Plug-In Classloader Chain

90

91

92
103
330
332
347
450
451
452
488
509
510
520
521
615
615
617
619

11

LIST OF FIGURES

12

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:

Table 11

Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 26:

discover-source values for the Classloader Firewall
Binding Support for Artix Exceptions
FaultException Fields

Simple Schema Type to Primitive Java Type Mapping
simple Schema Type to Java Wrapper Class Mapping
Effects of length Facet on XMLSchema Types
Effects of minLength Facet on XMLSchema Types
Effects of maxLength Facet on XMLSchema Types
List Type Facets

Group Children

: Attributes for an any

MIME Type Mappings

anyType Setter Methods for Primitive Types
Methods for Extracting Primitives from AnyType
Artix Context Properties

Configuration Context QNames

Configuration Context Classes

Outgoing HTTP Client Attributes

Incoming HTTP Client Attributes

Outgoing HTTP Server Attributes

Incoming HTTP Server Attributes

MQ Connection Attributes Context Properties
Transactional Values

MQ Message Attributes Context Properties
CorrelationStyle Values

Delivery Values

104
108
110
122
126
129
130
130
138
197
202
218
270
273
339
378
379
387
393
396
401
410
412
414
417
418

13

LIST OF TABLES

Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:
Table 42:

14

Format Values

ReportOption Values

JMS Header Attributes
ConnectionMode Values
Unsupported Service Methods
Unsupported ServiceFactory Methods
Configuration Map Properties
SOAPMessageContext Methods
SOAPMessage Elements

Method for Transport Factory
Transport Threading Models
Threading Resource Policy Values
ClientTransport Methods
ServerTransport Methods

activate() Responsibilities by Threading Policies
discover-source values for the Classloader Firewall

419
421
424
435
480
481
536
555
556
569
572
574
577
585
588
623

Preface

What is Covered in this Book

Developing Artix Applications in Java discusses the main aspects of
developing transport-independent services and service consumers using
Java stub and Java skeleton code generated by Artix. This book covers:

® how to access the Artix bus
® how to use generated data types
® how to create user defined exceptions

® how to access the header information for the transports supported by
Artix.

Who Should Read this Book

Developing Artix Applications in Java is intended for Artix Java
programmers. In addition to a knowledge of Java, this guide assumes that
the reader is familiar with the basics of WSDL and XML schemas. Some
knowledge of Artix concepts would be helpful, but is not required.

How to Use this Book

If you are new to using Artix to develop Java applications, Chapter 1
provides an overview of the benefits of using Artix and how Artix generates
Java code from an Artix contract.

If you are interested in the basics of writing an Artix-enabled consumer,
Chapter 2 describes the steps to implement a consumer using
Artix-generated code.

15

PREFACE

16

If you are interested in the basics of writing an Artix-enabled service,
Chapter 3 describes the steps to implement a service using Artix-generated
code. It also includes details about the threading models used by Java Artix
services.

Chapter 4 and Chapter 5 extend the discussion of building Artix
applications. They discuss methods for discovering Artix contracts, getting
access to an Artix bus, and class loading issues that may be encountered
when using Artix.

If you need help understanding how to work with the classes generated to
represent complex data types, Chapter 7 gives detailed description of how
all of the XMLSchema data types in an Artix contract are mapped into Java
code. It also contains details and examples on using the generated Java
code.

If you want to create user-defined exceptions, Chapter 8 explains how to
describe a user-defined exception in an Artix contract and how exceptions
are mapped into Java code by Artix.

The remainder of the book discusses advanced programming features of the
Artix Java APIs such as handlers, persistence, and transactions. The
chapters assume familiarity with the basic material covered in chapters 1
through 5. In addition, they assume a basic understanding of distributed
system development.

The Artix Library

The Artix documentation library is organized in the following sections:
® Getting Started

® Designing Artix Solutions

® Configuring and Managing Artix Solutions

® Using Artix Services

® Integrating Artix Solutions

® |Integrating with Management Systems

® Reference

® Artix Orchestration

Getting Started

The books in this section provide you with a background for working with
Artix. They describe many of the concepts and technologies used by Artix.
They include:

PREFACE

Release Notes contains release-specific information about Artix.
Installation Guide describes the prerequisites for installing Artix and the
procedures for installing Artix on supported systems.

Getting Started with Artix describes basic Artix and WSDL concepts.
Using Artix Designer describes how to use Artix Designer to build Artix
solutions.

Artix Technical Use Cases provides a number of step-by-step examples
of building common Artix solutions.

Designing Artix Solutions

The books in this section go into greater depth about using Artix to solve
real-world problems. They describe how to build service-oriented
architectures with Artix and how Artix uses WSDL to define services:

Building Service-Oriented Infrastructures with Artix provides an
overview of service-oriented architectures and describes how they can
be implemented using Artix.

Writing Artix Contracts describes the components of an Artix contract.
Special attention is paid to the WSDL extensions used to define
Artix-specific payload formats and transports.

Developing Artix Solutions
The books in this section how to use the Artix APIs to build new services:

Developing Artix Applications in C++ discusses the technical aspects
of programming applications using the C++ API.

Developing Advanced Artix Plug-ins in C+ + discusses the technical
aspects of implementing advanced plug-ins (for example, interceptors)
using the C++ API.

Developing Artix Applications in Java discusses the technical aspects
of programming applications using the Java API.

Configuring and Managing Artix Solutions
This section includes:

Configuring and Deploying Artix Solutions explains how to set up your
Artix environment and how to configure and deploy Artix services.
Managing Artix Solutions with JMX explains how to monitor and
manage an Artix runtime using Java Management Extensions.

17

../release_notes/index.htm
../install_guide/index.htm
../getting_started/index.htm
../designer/index.htm
../cookbook/index.htm
../soa/index.htm
../contract/index.htm
../prog_guide/index.htm
../plugin_guide/index.htm
../java_pguide/index.htm
../deploy/index.htm
../jmx_mgmt/index.htm

PREFACE

18

Using Artix Services

The books in this section describe how to use the services provided with

Artix:

® Artix Router Guide explains how to integrate services using the Artix
router.

® Artix Locator Guide explains how clients can find services using the
Artix locator.

® Artix Session Manager Guide explains how to manage client sessions
using the Artix session manager.

® Artix Transactions Guide, C++ explains how to enable Artix C+ +
applications to participate in transacted operations.

® Artix Transactions Guide, Java explains how to enable Artix Java
applications to participate in transacted operations.

® Artix Security Guide explains how to use the security features in Artix.

Integrating Artix Solutions

The books in this section describe how to integrate Artix solutions with other

middleware technologies.

® Artix for CORBA provides information on using Artix in a CORBA
environment.

® Artix for J2EE provides information on using Artix to integrate with
J2EE applications.

For details on integrating with Microsoft's .NET technology, see the
documentation for Artix Connect.

Integrating with Management Systems

The books in this section describe how to integrate Artix solutions with a

range of enterprise and SOA management systems. They include:

® |BM Tivoli Integration Guide explains how to integrate Artix with the
IBM Tivoli enterprise management system.

® BMC Patrol Integration Guide explains how to integrate Artix with the
BMC Patrol enterprise management system.

® CA-WSDM Integration Guide explains how to integrate Artix with the
CA-WSDM SOA management system.

® AmberPoint Integration Guide explains how to integrate Artix with the
AmberPoint SOA management system.

../routing/index.htm
../locator_guide/index.htm
../session_mgr/index.htm
../transactions_cxx/index.htm
../transactions_java/index.htm
../security/index.htm
../corba_ws/index.htm
../j2ee/index.htm
../tivoli/index.htm
../bmc/index.htm
../ca_wsdm/index.htm
../amberpoint/index.htm

PREFACE

Reference

These books provide detailed reference information about specific Artix
APIls, WSDL extensions, configuration variables, command-line tools, and
terms. The reference documentation includes:

® Artix Command Line Reference
® Artix Configuration Reference

® Artix WSDL Extension Reference
® Artix Java API Reference

® Artix C++ API Reference

® Artix .NET API Reference

® Artix Glossary

Artix Orchestration

These books describe the Artix support for Business Process Execution
Language (BPEL), which is available as an add-on to Artix. These books
include:

® Artix Orchestration Release Notes

® Artix Orchestration Installation Guide

® Understanding Artix Orchestration

® Artix Orchestration Administration Console Help.

Getting the Latest Version

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Artix Library

You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right, for example:

http://www.iona.com/support/docs/artix/4.0/index.xml

19

../command_ref/index.htm
../config_ref/index.htm
../wsdl_ref/index.htm
../javadoc/index.html
../cppdoc/index.html
../ndoc/index.html
../glossary/index.htm
../orch_relnotes/index.htm
../orch_install/index.htm
../orch_intro/index.htm
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/4.0/index.xml
../orch_admin/index.htm

PREFACE

20

You can also search within a particular book. To search within a HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Artix Online Help

Artix Designer and Artix Orchestration Designer include comprehensive

online help, providing:

® Step-by-step instructions on how to perform important tasks

® Afull search feature

® Context-sensitive help for each screen

There are two ways that you can access the online help:

® Select Help|Help Contents from the menu bar. The help appears in
the contents panel of the Eclipse help browser.

® Press F1 for context-sensitive help.

In addition, there are a number of cheat sheets that guide you through the

most important functionality in Artix Designer and Artix Orchestration
Designer. To access these, select Help|Cheat Sheets.

Artix Glossary

The Artix Glossary is a comprehensive reference of Artix terms. It provides

quick definitions of the main Artix components and concepts. All terms are
defined in the context of the development and deployment of Web services
using Artix.

Additional Resources

The IONA Knowledge Base contains helpful articles written by IONA experts
about Artix and other products.

The IONA Update Center contains the latest releases and patches for IONA
products.

If you need help with this or any other IONA product, go to IONA Online
Support.

Comments, corrections, and suggestions on IONA documentation can be
sent to docs-support@iona.com .

Document Conventions
This book uses the following typographical and keying conventions

http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml
../glossary/index.htm

PREFACE

Typographical conventions

This book uses the following typographical conventions:

Fixed width

Fixed width italic

[talic

Bold

Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the corBa: :Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/YourUserName

Italic words in normal text represent emphasis and
new terms.

Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes (for example, the User Preferences
dialog.)

21

PREFACE

Keying conventions
This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

S A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell

prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[1 Brackets enclose optional items in format and syntax
descriptions.

() Braces enclose a list from which you must choose an
item in format and syntax descriptions.

In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).

22

Part |

Fundamentals of Artix
Programming

In this part This part contains the following chapters:
The Artix Java Development Model page 25
Developing Artix Consumers page 41
Developing Artix Services page 63
Finding Contracts and References at Runtime page 95

Things to Consider when Developing Artix Applications page 101

Handling Artix Generated Exceptions page 107
Working with Artix Data Types page 119
Creating User-Defined Exceptions page 225
Using Substitution Groups page 233
Working with Artix Type Factories page 257
Working with XMLSchema anyTypes page 267
Using Endpoint References page 277

23

24

Using Native XML page 321
Using Message Contexts page 329
Sending Message Headers page 355
Working with Transport Attributes page 375

In this chapter

CHAPTER 1

The Artix Java
Development
Model

The Artix development tools generate JAX-RPC compliant Java
code from WSDL-based Artix contracts. Using the generated
code, you can develop transport-independent applications.

This chapter discusses the following topics:

Separating Transport Details from Application Logic page 26
Representing Services in Artix Contracts page 28
Mapping from an Artix Contract to Java page 30

25

CHAPTER 1 | The Artix Java Development Model

Separating Transport Details from Application

Logic

Overview

Dividing the logical and physical

26

One of the main benefits of using Artix to develop applications is that it
removes the network protocol details, message transport details, and
payload format details from the business of developing application logic.
Artix enables developers to write robust applications using standard Java
APIs and leaves the nitty-gritty of the messaging mechanics up to the
system administrators or system architects.

Unlike CORBA or J2EE, however, Artix does not provide this abstraction
from the transport details by dictating the type of messaging system over
which the application works. It makes the application capable of using any
number of transports and payload formats. In addition, Artix allows
applications in the same system to interoperate across multiple messaging
protocols.

Artix achieves this separation of the logical part of an application from the
physical details of how data is passed by describing applications using Web
Services Description Language (WSDL) as the basis for Artix contracts. Artix
contracts are XML documents that describe applications in two sections:

Logical:

The logical section of an Artix contract defines the abstract data types used
by the application, the logical operations exposed by the application, and
the messages passed by those operations.

Physical:

The physical section of an Artix contract defines how the messages used by
the application are mapped for transport across the network and how the
application’s port is configured. For example, the physical section of the
contract would be where it is made explicit that an application will use
SOAP over HTTP to expose its operations.

The Artix bus

Separating Transport Details from Application Logic

The Artix bus is a library that provides the layer of abstraction to liberate the
application logic from the transport once the code is generated. The bus
reads the transport details from the physical section of the Artix contract,
loads the appropriate payload and transport plug-ins, and handles the
mapping of the data onto and off the wire.

The bus also provides access to the message headers so you can add
payload-specific information to the data if you wish. In addition, it provides
access to the transport details to allow dynamic configuration of transports.

27

CHAPTER 1 | The Artix Java Development Model

Representing Services in Artix Contracts

Overview

Data types

Messages

Operations

28

Services, which are a collection of operations exposed by an endpoint, are
described in the logical section of an Artix contract using a portType
element. When defining a service in an Artix contract, you break it down into
three parts: the complex data types used in the messages, the messages
used by the operations, and the collection of operations that make up the
service.

Complex data types, such as arrays, structures, and enumerations, are
described in an Artix contract using XMLSchema. The descriptions are
contained within the WSDL types element. The data type descriptions
represent the logical structure of the data. For example, an array of integers
could be described as shown in Example 1.

Example 1: Array Description

<complexType name="ArrayOfInt'">
<sequence>
<element maxOccurs="unbounded" minOccurs="0" name="item"
type="xsd:int"/>
</sequence>
</complexType>

The described types are used to define the message parts used by the
service.

In an Artix contract messages represent the data passed to and received
from a remote system in the execution of an operation. Messages are
described using the message element and consist of one or more part
elements. Each message part represents an argument in an operation’s
parameter list or a piece of data returned as part of an exception.

In an Artix contract logical services are described using the portType
element and consist of one or more operation elements. Each operation
element describes an operation that is to be exposed over the network.

Representing Services in Artix Contracts

Operations are defined by the messages which are passed to and from the
remote system when the operation is invoked. In an Artix contract, each
operation is allowed to have one input message, one output message, and
any number of fault messages. It does not need to have any of these
elements. An input message describes the parameter list passed into the
operation. An output message describes the return value, and the output
parameters of the operation. A fault message describes an exception that
the operation can throw. For example, a Java method with the signature
long myOp (char cl, char c2), would be described as shown in Example 2.

Example 2: Operation Description

<message name="inMessage">
<part name="cl" type="xsd:char" />
<part name="c2" type="xsd:char" />
</message>
<message name="outMessage'">
<part name="returnvVal" type="xsd:int" />
</message>
<portType name="myService">
<operation name="myOp">
<input message="inMessage" name="in" />
<output message="outMessage" name="out" />
</operation>
</portType>

29

CHAPTER 1 | The Artix Java Development Model

Mapping from an Artix Contract to Java

Overview

In this section

30

Artix maps the WSDL-based Artix contract description of a service into Java
service skeletons and consumer stubs following the JAX-RPC specification.
This allows application developers to implement the service’s logic using
standard Java and be assured that the service will be interoperable with a
wide range of other services.

This section discusses the following topics:

Generating Java Code page 31
Mapping Contract Elements to Java page 36
Java Package Naming page 39

Mapping from an Artix Contract to Java

Generating Java Code

Overview

Generated files

Generating code using Artix
Designer

The Artix development tools include a utility to generate service skeleton and
consumer stub code from an Artix contract. In addition, Artix maps WSDL
types to Java classes using the mapping described in the JAX-RPC
specification.

The Artix code generator produces a number of files from the Artix contract.
They are named according to the port name specified when the code was
generated. The files include:

® portTypeName.java defines the Java interface that both the client and
server implement.

® portTypeNameImpl.java defines the class used to implement the
server.

d portTypeNameServer.java isa simple main class for the server.

® portTypeNameTypeFactory.java defines the type factories used by
Artix to support the complex types used by the service.

d portTypeNameDemo . java isa simple main class for a client.

In addition to these files, the code generator also creates a class for each
named schema type defined in the Artix contract. These files are named
according to the type name they are given in the contract and contain the
helper functions needed to use the data types. The naming convention for
the helper type functions conforms to the JAX-RPC specification. For more
information on using these generated data types see “Working with Artix
Data Types” on page 119.

Artix Designer includes a full Java IDE and can generate Artix starting point
code for you. These capabilities combined with Artix Designer's WSDL
editing capabilities, make it an end-to-end service development tool.

To generate Artix code inside Artix Designer need to do the following:
1. Create a launch configuration for your service.
2. Run the code generator from the Artix Tools dialog.

31

CHAPTER 1 | The Artix Java Development Model

Generating code from the
command line

32

If you make changes to the contract from which your code is generated, you
can regenerate the starting point code. Artix Designer will preserve any work
you have done to the code. So, if you have implemented one of the
operations in your contract and then add a new logical operation to the
contract, you can regenerate the code. Your implementation code will be
preserved and the starting point code for the new operation will be added.

You generate code at the command line using the command:

wsdltojava [-e service:port] [-b binding] [-1 portTypel
[-d output dir][-p [namespace=]package]
[-impl] [-server] [-client] [-plugin] [-servlet]
[-types] [-call] [-interface] [-sample] [-all] [-ant]
[-datahandlers] [-merge] [-deployable]
[-nexclude namespace [=package]]
[-ninclude namespace [=package]] [-L file] [-ser]
[-q] [-h] [-V] artix-contract

You must specify the location of a valid Artix contract for the code generator
to work. The default behavior of wsdltojava is to generate all of the java
code needed to develop a client and server. You can also supply the
following optional parameters to control the portions of the code generated:

-e service:port Specifies the name of the service, and optionally
the port, for which the tool will generate code.
The default is to use the first service listed in the
contract. Specifying multiple services results in
the generation of code for all the named
service/port combinations. If no port is given, all
ports defined in a service will be activated.

-b binding Specifies the name of the binding to use when
generating code. The default is to use the first
binding listed in the contract.

-i portType Specifies the name of a portType for which code
will be generated. You can specify this flag for
each portType for which you want code
generated. The default is to use the first portType
in the contract.

-d output dir

Mapping from an Artix Contract to Java

Specifies the directory to which the generated
code is written. The default is the current working
directory.

-p [namespace=]package Specifies the name of the Java package to use for

—-impl

—server

-client

-plugin

-servlet

—-types

-call

-interface

-sample

-all

—ant

the generated code. You can optionally map a
WSDL namespace to a particular package name if
your contract has more than one namespace.

Generates the skeleton class for implementing the
server defined by the contract.

Generates a simple main class for the server.

Generates only the Java interface and code
needed to implement the complex types defined
by the contract. This flag is equivalent to
specifying -interface -types.

Generate a bus plug-in with the appropriate
servant registration code for the generated service
implementation. When using this flag, the server
mainline does not include code for registering the
servant with the bus.

Generates a bus plug-in with the additional
information needed to deploy it as a servlet. For
more information see Artix for J2EE.

Generates the code to implement the complex
types defined by the contract.

Generates a sample client the uses the ca11
interface to invoke on the remote service. For
more information see “Using the Call Interface for
Dynamic Invocations” on page 479.

Generates the Java interface for the service.

Generates a sample client that can be used to test
your Java server.

Generates code for all portTypes in the contract.

Generate an ant build target for the generated
code.

33

../j2ee/index.htm

CHAPTER 1 | The Artix Java Development Model

Warning messages

34

-datahandlers

-merge

-deployable

-nexclude

When a service uses SOAP w/ attachments as its
payload format, generate code that uses
javax.activation.DataHandler instead of the
standard Java classes specified in the JAX-RPC
specification. For more information see “Using
SOAP with Attachments” on page 218 and
Understanding Artix Contracts.

Merge any user changes into the generated code.

Generate a deployment descriptor to deploy the
generated plug-in into an Artix container. For
more information see Configuring and Deploying
Solutions.

Instructs the code generator to skip the specified

namespace [=package] XMLSchema namespace when generating code.

-ninclude

You can optionally specify a package name to use
for the types that are not generated.

Instructs the code generator to generate code for

namespace [=package] the specified XMLSchema namespace. You can

-L file

—ser

optionally specify a package name to use for the
types in the specified namespace.

Specifies the location of your Artix license file. The
default behavior is to check

IT PRODUCT DIR\etc\license.txt

Specifies that the generated classes for data types
defined in the contract will be serializable (i.e.
they will implement java.io.Serializable).

Specifies that the tool runs in quiet mode. No
output will be shown on the console. This
includes error messages.

Specifies that the tool will display a usage
message.

Specifies that the tool runs in verbose mode.

If you generate code from a WSDL file that contains multiple portType
elements, multiple bindings, multiple services, or multiple ports wsdltojava
will generate a warning message informing you that it is using the first

../contract/index.htm
../deploy/index.htm
../deploy/index.htm

Mapping from an Artix Contract to Java

instance of each to use for generating code. If you use the command line
flags to specify which instances to use, the warning message is not
displayed.

35

CHAPTER 1 | The Artix Java Development Model

Mapping Contract Elements to Java

portTypes

36

For each portType element in an Artix contract, a Java interface that
extends java.rmi.Remote is generated. The name of the generated interface
is taken from the name attribute of the portType element. The interface’s
name will be identical to the portType elements’s name unless the
portType element’s name ends in PortType. In this case, the pPortType will
be stripped off the interface’s name.

The generated interface will contain each of the operations of the portType
to which the portType element is bound. For example, the contract shown
in Example 3 will generate an interface, sportscenter, containing one
operation, update.

Example 3: SportsCenter Port

<message name='"scoreRequest'>
<part name="teamName" type="xsd:string" />
</message>
<message name="scoreReply'">
<part name="score" type="xsd:int" />
</message>
<portType name="sportsCenterPortType'>
<operation name="update">
<input message="scoreRequest" name="request" />
<ouput message="scoreReply" name="reply" />
</operation>
</portType>
<binding name="scoreBinding" type="tns:sportsCenterPortType">

<service name="sportsService">
<port name="sportsCenterPort" binding="tns:scoreBinding">

Operations

Message parts

Mapping from an Artix Contract to Java

The generated Java interface is shown in Example 4.
Example 4: SportsCenter Interface

//Java
public interface sportsCenter extends java.rmi.Remote
{
int update (String teamName)
throws java.rmi.RemoteException;

Every operation element in a contract generates a Java method within the
interface defined for the operation element’s portType. The generated
method’s name is taken from the operation element’s name attribute.
operation elements with the same name attribute will generate overloaded
Java methods in the interface.

All generated Java methods throw a java.rmi.RemoteException exception.
In addition, all fault elements listed as part of the operation create an
exception to the generated Java method.

The message parts of the operation’s input and output elements are
mapped as parameters in the generated method’s signature. The order of
the mapped parameters can be specified using the operation element’s
parameterOrder attribute. If this attribute is used, it must list all of the parts
of the input message. The message parts listed in the parameterorder
attribute will be placed in the generated method’s signature in the order
specified. Unlisted message parts will be placed in the method signature
according to the order the parts are specified in the message elements of the
contract. The first unlisted output message part is mapped to the generated
method’s return type. The parameter names are taken from the part
element’s name attribute. If the parameterorder attribute is not specified,
input message parts are listed before output message parts. Message parts
that are listed in both the input and output messages are considered inout
parameters and are listed only according to their position in the input
message.

All in-out and output message parts, except the part mapped to the return
value of the generated method, are passed using Java Holder classes. For
the XML primitive types, the Java Holder class used is the standard Java
Holder class, defined in javax.xml.rpc.holders package, for the

37

CHAPTER 1 | The Artix Java Development Model

38

appropriate Java type. For complex types defined in the contract, the code
generator will generate the appropriate Holder classes. For more
information on data type mapping, see “Working with Artix Data Types” on
page 119.

For example, the contract fragment shown in Example 5 would result in an
operation, final, with a return type of string and a parameter list that
contains two input parameters and two output parameters.

Example 5: SportsFinal Port

<message name="scoreRequest">
<part name="teaml" type="xsd:string" />
<part name="team2" type="xsd:string" />
</message>
<message name="scoreReply'">
<part name="winTeam" type="xsd:string" />
<part name="teamlscore" type="xsd:int" />
<part name="team2score" type="xsd:int" />
</message>
<portType name="sportsFinalPortType">
<operation name="finalScore">
<input message="scoreRequest" name="request" />
<ouput message="scoreReply" name="reply" />
</operation>
</portType>
<binding name="scoreBinding" type="tns:sportsFinalPortType">

<service name="sportsService">
<port name="sportsFinalPort" binding="tns:scoreBinding">

The generated Java interface is shown in Example 6.

Example 6: SportsFinal Interface

//Java
public interface sportsFinal extends java.rmi.Remote
{
String finalScore (String teaml, String team2,
IntHolder teamlscore, IntHolder team2score)
throws java.rmi.RemoteException;

Mapping from an Artix Contract to Java

Java Package Naming

Artix packages

Generated type packages

Java packages

The Artix bus object which provides the transport and payload format
independence in Artix is defined in the com.iona.jbus package. You will
need to import this package and all of its subpackages into all Artix Java
applications.

The generated types are generated into a single package which must be
imported for any methods using them. By default, the package name will be
mapped from the target namespace of the schema describing the types. The
default package name is created following the algorithm specified in the
JAXB specification. The mapping algorithm follows four basic steps:

1. The leading http:// or urn:// are stripped off the namespace.

2. If the first string in the namespace is a valid internet domain, for
example it ends in .com or .gov, the leading www. is stripped off the
string, and the two remaining components are flipped.

3. If the final string in the namespace ends with a file extension of the
pattern .xxx or .xx, the extension is stripped.

4. The remaining strings in the namespace are appended to the resulting
string and separated by dots.

5. All letters are made lowercase.

For example, the XML namespace

http://www.widgetVendor.com/types/widgetTypes.xsd would be mapped
to the Java package name com.widgetvendor.types.widgettypes.

Artix applications require a number of standard Java packages. These
include:

javax.xml.namespace.QName provides the functionality to work with the
XML QNames used to specify services.

javax.xml.rpc.* provides the APIs used to implement Artix Java clients. This
package is not needed by server code.

39

CHAPTER 1 | The Artix Java Development Model

java.io.* provides system input and output through data streams,
serialization and the file system.

java.net.* provides the classes need to for communicating over a network.
These classes are key to Artix applications that act as Web services.

40

In this chapter

CHAPTER 2

Developing Artix

Consumers

Artix generates stub code that provides a developer with a
simple model to develop consumers that can interact with

services over a number of protocols.

This chapter discusses the following topics:

Generating the Stub Code page 42
Writing the Consumer Code page 45
Setting Connection Attributes Using the Stub Interface page 54
Creating a Service Proxy Using UDDI page b8
Building an Artix Consumer page 61

41

CHAPTER 2 | Developing Artix Consumers

Generating the Stub Code

Overview

Generating code from the
command line

Optional flags

42

The Artix Java code generator generates the stub code needed to develop a
consumer from an Artix contract. In addition, the code generator creates
Java classes for the complex types defined in the contract using the
mapping described in the JAX-RPC specification.

You generate consumer code at the command line using the following
command:

wsdltojava -client artix-contract

You must specify the location of a valid Artix contract for the code generator
to work. The -client flag tells the code generator to generate the classes
needed to develop a consumer from the specified contract.

You can also supply the following optional parameters to control what code
is generated:

-e service:port Specifies the name of the service, and optionally
the port, for which the tool will generate code.
The default is to use the first service listed in the
contract. Specifying multiple services results in
the generation of code for all the named
service/port combinations. If no port is given, all
ports defined in a service will be activated.

-b binding Specifies the name of the binding to use when
generating code. The default is to use the first
binding listed in the contract.

-i portType Specifies the name of a portType for which code
will be generated. You can specify this flag for
each portType for which you want code
generated. The default is to use the first portType
in the contract.

-d output dir Specifies the directory to which the generated
code is written. The default is the current working
directory.

Generating the Stub Code

-p [namespace=]package Specifies the name of the Java package to use for

-call

-all

—ant

-datahandlers

-merge

-nexclude

the generated code. You can optionally map a
WSDL namespace to a particular package name if
your contract has more than one namespace.

Generates a consumer the uses the cal1 interface
to invoke on the remote service. For more
information see “Using the Call Interface for
Dynamic Invocations” on page 479.

Generates code for all portTypes in the contract.

Generate an ant build target for the generated
code.

When a service uses SOAP w/ attachments as its
payload format, generate code that uses
javax.activation.DataHandler instead of the
standard Java classes specified in the JAX-RPC
specification. For more information see “Using
SOAP with Attachments” on page 218 and
Understanding Artix Contracts.

Merge any user changes into the generated code.
Instructs the code generator to skip the specified

namespace [=package] XMLSchema namespace when generating code.

-ninclude

You can optionally specify a package name to use
for the types that are not generated.

Instructs the code generator to generate code for

namespace [=package] the specified XMLSchema namespace. You can

-L file

—ser

-quiet

-verbose

optionally specify a package name to use for the
types in the specified namespace.

Specifies the location of your Artix license file. The
default behavior is to check
IT PRODUCT DIR\etc\license.txt.

Specifies that the generated classes for data types
defined in the contract will be serializable (i.e.
they will implement java.io.Serializable).

Specifies that the tool runs in quiet mode.
Specifies that the tool runs in verbose mode.

43

../contract/index.htm

CHAPTER 2 | Developing Artix Consumers

Generated files

Warning messages

44

The Artix code generator produces the following files from when you

generate code for a consumer:

® portTypeName.java defines the Java interface that the consumer’s
service proxy implements.

® portTypeNameTypeFactory.java defines the type factories used by
Artix to support the complex types used by the service.

® portTypeNameClient.java iS @ simple main class for a consumer.

In addition, the code generator creates a class for each named schema type

defined in the Artix contract. For more information on using these generated
data types see “Working with Artix Data Types” on page 119.

If you generate code from a WSDL file that contains multiple portType
elements, multiple bindings, multiple services, or multiple ports wsdltojava
will generate a warning message informing you that it is using the first
instance of each to use for generating code. If you use the command line
flags to specify which instances to use, the warning message is not
displayed.

Writing the Consumer Code

Writing the Consumer Code

Overview

In this section

Artix consumers are implemented using dynamic proxies as described in the
JAX-RPC 1.1 specification. The interface used to create the proxy class is
defined in the generated file PortName.java. The only Artix-specific code
needed by an Artix consumer initializes and shuts down the Artix bus.

An Artix consumer needs to do four basic things:

1. Initialize an instance of the Artix bus.

2. Instantiate one or more service proxies.

3. Invoke one or more operations on the service proxies.

4. Shut-down the Artix bus instance used by the consumer.

This section discusses the following topics:

Initializing an Artix Bus page 46
Creating a Service Proxy Using the JAX-RPC Method page 47
Creating a Service Proxy Using Artix APls page 49
Shutting Down the Artix Bus page b1
Full Consumer Code page b2

45

CHAPTER 2 | Developing Artix Consumers

Initializing an Artix Bus

Overview

Bus.init()

Example

46

The Artix bus manages the service proxy used to contact remote services. It
also manages the invocation of any handlers used by the consumer. Your
consumer code must initialize an instance of the Artix bus before you can
register a service proxy and starting making requests on a remote service.

The Artix bus is initialized using com.iona.jbus.Bus.init (). The method
has the following signature:

static Bus init (String args([]);

Bus.init () takes the args parameter passed into the main as a required
parameter. Optionally, you can also pass in a second string that specifies
the name of the configuration scope from which the bus instance will read
its runtime configuration.

This will create a bus instance to host your service proxy, load the Artix
configuration information for your application, and load the required
plug-ins. Once the bus is initialized, you can create a service proxy and
register it with the bus. The bus will then take any invocations made on the
service proxy and turn them into requests on the remote service.

Example 7 shows code for initializing an instance of the Artix bus.
Example 7: Initializing an Artix Bus

public class HelloWorldClient
{

public static void main (String args[]) throws Exception
{

Bus bus = Bus.init (args);

Writing the Consumer Code

Creating a Service Proxy Using the JAX-RPC Method

Overview

Obtaining a ServiceFactory
instance

Creating a Service object

Artix consumers use dynamic proxies, as described in the JAX-RPC
specification, to make requests on remote services. Dynamic proxies are
created using the interface generated from your contract and the
javax.xml.rpc.Service interface. You need the oname of the service for
which you are creating the proxy, the oname of the endpoint the proxy will
use to contact the service, and the URL of the contract defining the service.

Once you have these three pieces of information, creating a dynamic proxy
requires three steps:

1. Obtain an instance of javax.xml.rpc.ServiceFactory.

Note: If your consumer is going to run inside of a J2EE container
you will need to set the JAX-RPC serviceFactory property to use the
IONA serviceFactory prior to getting the serviceFactory object.
You do this with the following code:

System.setProperty ("javax.xml.rpc.ServiceFactory",
"com.iona.jbus.JBusServiceFactory") ;

2. Use the serviceFactory to create a service object for the service to
which the proxy will connect.

3. Use the service object to instantiate the dynamic proxy.

To obtain an instance of the serviceFactory you call
ServiceFactory.newInstance () as shown in Example 8. This returns the
ServiceFactory. Only one is created per application and the same
ServiceFactory is returned for each successive call.

Example 8: Getting the ServiceFactory

ServiceFactory factory = ServiceFactory.newInstance () ;

A service object is created from the serviceFactory using
createService (). createService () takes two arguments:

® the URL of the contract defining the service.
® the service’s oName.

47

CHAPTER 2 | Developing Artix Consumers

Creating the dynamic proxy

48

Example 9 shows an example of creating a service object for a widget order
service.

Example 9: Creating a Service Object

QOName name

new QName ("http://widgetVendor.com/widgetOrders",
"orderWidgetsService") ;

String wsdlPath = "http://widgetVendor.com/widgets.wsdl";
URL wsdlLocation = new File (wsdlPath) .toURL() ;

Service service = factory.createService (wsdlLocation, name);

The dynamic proxy is created using the service objects’ getPort () method.
getPort () takes two arguments:

® the gname of the endpoint with which the proxy contacts the service.

the name of the generated Java interface in portName.java with
.class appended. For example, if the generated interface’s name is
HelloWorld, this argument would be HelloWorld.class.

As shown in Example 10, getport () returns an instance of
java.rmi.Remote that must be cast to the generated interface.

Example 10: Creating the Dynamic Proxy
OName portName = new QName ("","orderWidgetsPort");

WidgetOrder proxy = (WidgetOrder)service.getPort (portName,
WidgetOrder.class);

Writing the Consumer Code

Creating a Service Proxy Using Artix APlIs

Overview

createClient()

Example

While the Artix Java APIs use dynamic proxies as specified by JAX-RPC, you
may not always be able to use the JAX-RPC specified method for creating a
service proxy. Artix provides a method for creating service proxies that
bypasses the steps outlined in the JAX-RPC specification.

You can create service proxies using the bus’ createClient () method.
createClient () takes the URL of the service’s contract, the QName of the
service, the name of the port the proxy will use to connect to the service,
and the Java c1ass representing the service's remote interface and returns a
JAX-RPC style dynamic proxy for the service if it is successful.
createClient ()'s signature is shown in Example 11.

Example 11: Bus.createClient()
Remote Bus.createClient (URL wsdlUrl, QName serviceName,

String portName, Class interfaceClass)
throws BusException

Example 12 shows the code for creating a service proxy using

createClient ().
Example 12: Creating a Service Proxy using createClient()

QName name = new QName ("http://www.buystuff.com",
"RegisterService");

String portName = new String("RegisterPort");

String wsdlPath = "file:/./resister.wsdl";
URL wsdlURL = new File (wsdlPath) .toURL() ;

// Bus bus obtained earlier

Register proxy = bus.createClient (wsdlURL, name, portName,
Register.class);

49

CHAPTER 2 | Developing Artix Consumers

The code in Example 12 does the following:

1. Creates the oname for the service from the contract defining the
application. In this example, the service, RegisterService, is defined
in the namespace http:\\www.buystuff.com.

2. Creates a string to hold the name of the port element defining the
transport the proxy will use to contact the service. In this example, the
transport details are defined in a port element named RegisterPort.

3. Creates a urL specifying where the service’s contract can be located. In
this example, the contract, register.wsdl, is located in the client’s
directory.

4. Calls createclient () with the correct parameters to create a service
proxy for the Register service.

50

Writing the Consumer Code

Shutting Down the Artix Bus

Overview

Bus.shutdown()

Example

The Artix bus created to host a consumer’s service proxy and handle the
marshalling of requests and responses uses a number of resources. To
ensure that all of the resources allocated by the bus is cleaned up, the bus
needs to be properly shut down before the consumer application exits.

You shutdown a bus using its shutdown () method. This method takes one
boolean argument that determines how the method returns control to the
calling object. If you pass in true, shutdown () will block until the bus
instance has finished processing all requests and has fully shutdown. If you
pass in false, shutdown () returns immediately. It is advisable to pass true
to shutdown () to ensure that the bus is fully shutdown before exiting.

Example 13 shows code for initializing an instance of the Artix bus.
Example 13: Shutting Down an Artix Bus

public class HelloWorldClient
{

public static void main (String args[]) throws Exception
{

Bus bus = Bus.init (args);
bus.shutdown (1) ;

}
}

51

CHAPTER 2 | Developing Artix Consumers

Full Consumer Code

The code An Artix consumer developed to access HelloWorldService Will look similar
to Example 14.

Example 14: HelloWorld Consumer Code

//Java

import java.util.*;
import java.io.*;
import java.net.*;
import java.rmi.*;

import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;

public class HelloWorldClient
{

public static void main (String args[]) throws Exception
{
1 Bus bus = Bus.init (args);
2 QName name = new QName ("http://iona.com/HelloWorld",
"HelloWorldService") ;
3 QOName portName = new QName ("","HelloWorldPort") ;
4 String wsdlPath = "file:/./HelloWorld.wsdl";

URL wsdlLocation = new File (wsdlPath) .toURL() ;

5 ServiceFactory factory = ServiceFactory.newInstance () ;
6 Service service = factory.createService (wsdlLocation, name);
7 HelloWorld proxy = (HelloWorld)service.getPort (portName,

HelloWorld.class);
8 String string out;

string out = proxy.sayHi () ;
System.out.println(string out);

52

The explanation

Writing the Consumer Code

Example 14: HelloWorld Consumer Code

bus.shutdown (true) ;

}

The code does the following:

1.
2.
3.

The com.iona.jbus.Bus.init () function initializes the bus.
Creates the service's QName.

Creates the gname of the endpoint through which the proxy will contact
the service.

Creates the URL of the contract defining the service.
The newInstance () function returns the serviceFactory.

The createservice () function instantiates the service from which the
dynamic proxy is created.

The getport () function returns a dynamic proxy to the HelloWorld
service. getPort () returns an instance of java.rmi.Remote that must
be cast to the interface defining the service.

Makes a call on the proxy to request service.
Shuts down the bus.

53

CHAPTER 2 | Developing Artix Consumers

Setting Connection Attributes Using the Stub
Interface

Overview The JAX-RPC specification lists four standard properties to which a service
proxy’s stub interface provides access. Artix provides support for setting
three of them:

® Username
® Password
® Endpoint Address

Currently, Artix only supports setting these properties for HTTP connections.

The Stub interface As required by the JAX-RPC specification, all Artix proxies implement the
javax.xml.rpc.Stub interface. This interface provides access to a number
of low-level properties used in connecting the proxy to the service
implementation. To access these low-level properties the Stub interface has
two methods:

® getProperty() returns the value of the specified property.
® setProperty() allows you to set the value of the specified property.

Getting a Stub object Because all Artix proxies implement the stub interface, you can simply cast
an Artix proxy to a stub object. Example 15 shows code getting a stub
object from an Artix proxy.

Example 15: Casting a Client Proxy to a Stub

//Java
import javax.xml.rpc.*;

// client proxy, client, created earlier
Stub clientStub = (Stub) client;

54

Setting the username property

Setting the password property

Setting Connection Attributes Using the Stub Interface

One of the standard properties specified in the JAX-RPC specification is the
javax.xml.rpc.security.auth.username property. It is used to set a
username for use in basic authentication systems. Artix uses this property to
set the HTTP transport’s UserName property.

To set the username property using the client’s stub interface do the

following:

1. Get a stub object by casting your service proxy to a stub as shown in
Example 15 on page 54.

2. Create a string containing the username for the value of the property.
Call _setproperty () on the stub specifying Stub.USERNAME PROPERTY
as the property name and the string created in step 2 as the value of
the property.

Example 16 on page 55 shows code for setting the username for a client.
Example 16: Setting the Username Property on a Stub

//Java
import javax.xml.rpc*

// Service proxy, secClient, obtained earlier

Stub secStub = (Stub)secClient;

String userName = new String("Smart");

secStub. setProperty (Stub.USERNAME PROPERTY, userName);

One of the standard properties specified in the JAX-RPC specification is the

javax.xml.rpc.security.auth.password property. It is used to set a

password for use in basic authentication systems. Artix uses this property to

set the HTTP transport’s password property.

To set the username property using the client’s stub interface do the

following:

1. Get a stub object by casting your service proxy to a stub as shown in
Example 15 on page 54.

2. Create a string containing the password for the value of the property.

Call _setProperty () on the stub specifying Stub.PASSWORD PROPERTY
as the property name and the string created in step 2 as the value of
the property.

55

CHAPTER 2 | Developing Artix Consumers

Setting the endpoint address

56

Example 17 on page 56 shows code for setting the password for a client.
Example 17: Setting the Password Property on a Stub

//Java
import javax.xml.rpc*

// Service proxy, secClient, obtained earlier

Stub secStub = (Stub)secClient;

String password = new String("86");

secStub. setProperty (Stub.PASSWORD PROPERTY, password) ;

One of the standard properties specified in the JAX-RPC specification is the
javax.xml.rpc.service.endpoint.address property. It is used to set the
address for the target service. The property takes a string containing a valid
HTTP URL that points to a service implementing the interface supported by
the proxy.

You can only set this property before you invoke any of the service proxy’s

methods. Once the proxy makes a request on the remote service an HTTP

service connection is established between the consumer and the service.

Due to the multi-threaded nature of the Artix bus and the nature of HTTP

connections, this connection cannot be broken and reassigned to a new

endpoint. Attempts to reset the endpoint address property after invoking one
of the proxy’s methods will be ignored.

To set the endpoint address property using the consumer’s stub interface do

the following:

1. Get a stub object by casting your service proxy to a stub as shown in
Example 15 on page 54.

2. Create a string containing the target endpoint’s HTTP URL for the
value of the property.

3. Call _setproperty () on the stub specifying Stub.ENDPOIT PROPERTY
as the property name and the string created in step 2 as the value of
the property.

Example 17 on page 56 shows code for setting the endpoint address

property.

Setting Connection Attributes Using the Stub Interface

Example 18: Setting the Endpoint Address Property on a Stub

//Java
import javax.xml.rpc*

// Service proxy, secClient, obtained earlier
Stub secStub = (Stub)secClient;
String endpt = new
String ("http://control.silencecone.net/9986") ;
secStub. setProperty (Stub.ENDPOINT PROPERTY, endpt);

57

CHAPTER 2 | Developing Artix Consumers

Creating a Service Proxy Using UDDI

Overview

UDDI queries

58

You can create a service proxy by dynamically locating existing web services'
endpoints through a UDDI service. When an application does not have a
pointer or reference to an instance of a running web service, Artix can take a
service description then query a UDDI registry for an available service
instance. The UDDI registry returns endpoint information that Artix uses to
create a service proxy to invoke upon a specific instance of the service.

Artix uses UDDI query strings that take the form of a URL. The syntax for a
UDDI URL is shown in Example 19. The syntax adheres to the rules for URL
syntax described in RFC2396 (Uniform Resource Identifiers (URI): Generic
Syntax).

Example 19: UDD/ URL Syntax
uddi : UDDIRegistryEndptURL? query

UDDIRegistryEndptURL specifies the HTTP URL of the UDDI registry that
Artix is going to submit the query for a service endpoint. For example, you
could deploy a local UDDI registry at the address
http://localhost:9000/uddi/inquiryapi.

query i a string that Artix uses to look-up services in the UDDI registry. The
query string specifies the UDDI attributes and their coresponding values to
use in selecting an appropriate service from the registry. If more than one
service in the registry match the query, Artix uses the first one found to
create the service proxy. For example to return a widget ordering service,
you could use the query string tmodelname=widgetvendor.

Note: Currently, only the tmodelname attribute is supported by Artix.

Example 20 shows a complete UDDI URL.

Example 20: Artix UDDI URL

uddi:http://localhost:9000/uddi/inquiryapi?tmodelname=widgets

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt

Getting the service proxy

1

Creating a Service Proxy Using UDDI

Using a UDDI registry to look up a service’s endpoint information and using
the returned endpoint information to create a service proxy is simple in Artix.
The only change to your application code is the path used to specify your

contract location when creating the service object or when calling

createClient ().

In place of the location of an actual contract, you would use a UDDI URL to
locate the service’s contract. Artix will recognize the UDDI URL, query the

UDDI registry, retrieve the service’s endpoint information, and build the

service proxy under the covers. Example 21 shows an example of creating a

service proxy using UDDI.
Example 21: Creating a Service Proxy with UDDI

String query =

"uddi:http://localhost:9090/uddi/inquiry?tmodelname=collie";

URL wsdlURL;
try
{
wsdlURL= new URL (query) ;
} catch (java.net.MalformedURLException ex)

{
wsdlURL= new File (query) .toURL() ;

}

OName name = new QName ("http://dogLova.com/borderCollies",
"SOAPAccess") ;

ServiceFactory factory = ServiceFactory.newlInstance ()
Service = factory.createService (wsdlURL, name) ;
QOName port = new QName ("", "SOAPAccessPort");

Collie proxy = (Collie)service.getPort (port, Collie.class);

The code in Example 21 does the following:

1. Builds a UDDI URL to query the UDDI registry hosted at
localhost:9090 for services whose tmodelname iS collie.

2. Builds a oname for the service proxy.

Gets an instance of the serviceFactory.

59

CHAPTER 2 | Developing Artix Consumers

Configuring your application to
use UDDI support

60

4. Instantiates a new service object using the endpoint information
returned from the UDDI registry.

5. Builds a oname for the port that will be used to access the service.
Creates the service proxy.

The Artix UDDI support is provided by an Artix plug-in. To use the UDDI
features, you must configure your application to load the Java version of the
UDDI plug-in. To configure your application to load the UDDI plug-in do the
following:

1. Open artix.cfg in any text editor.

2. Locate the scope for your application, or create a new one for it.

3. Add java uddi proxy to the list of plug-ins in the java plugins list.
4. Add java to the list of plug-ins in the orb plugins list.

Example 22 shows a configuration fragment with the configuration to use
uDDI.

Example 22: UDDI Configuration

collieClient

{
orb plugins = ["java", "xmlfile log stream"];
java plugins = ["java uddi proxy"];

}

For more information on configuring Artix see Configuring and Deploying
Solutions.

../deploy/index.htm
../deploy/index.htm

Building an Artix Consumer

Building an Artix Consumer

Required jar files

Other jar files

Artix Java consumers require that the following Artix jar files are in your
classpath:

InstallDir\lib\artix\java runtime\3.0\it bus-api.jar
InstallDir\lib\artix\ws common\3.0\it wsdl.Jjar
InstallDir\lib\artix\ws common\3.0\it ws reflect.jar
InstallDir\lib\artix\ws common\3.0\it ws reflect types.jar
InstallDir\lib\common\ifc\1l.1\ifc.jar
InstallDir\lib\jaxrpc\jaxrpc\l.l\jaxrpc-api.jar

If your consumer uses SOAP with attachments, you will also need to include
InstallDir/lib/sun/activation/1.0.1/activation.jar On your
classpath.

If your consumer uses xsd:any, you will need to include
InstallDir/lib/ws_common/2.1/saaj-api.jar on your classpath.

61

CHAPTER 2 | Developing Artix Consumers

62

Overview

CHAPTER 3

Developing Artix
Services

Artix generates the starting point code needed to develop and
deploy protocol agnostic services.

Developing a service with Artix is a two step process The first step is to
implement the business logic for your service. Because Artix generates
JAX-RPC compliant code from your contracts, the implementation of your
service's business logic does not require much Artix specific knowledge.
Most of the code used will be standard Java code and manipulating the
objects generated to handle complex types. Artix does have a number of
proprietary APls that are used to support some of its more advanced
features.

The second step in developing an Artix service is to develop the code that
registers your service's implementation with the Artix bus. This step involves
some knowledge of Artix and how you intend to deploy your service. Artix
provides you with two models for developing and deploying a service:

® The Artix container model

® Standalone model

The Artix container model is the preferred method. When using the
container model you package your service as a plug-in that is deployed into
a light-weight Artix container. The Artix container can host and manage a

63

CHAPTER 3 | Developing Artix Services

number of services that use the same configuration scope. It provides a
remote management APIs for dynamically starting and stopping your
services.

The standalone deployment model requires that you develop your service as
a standalone Java application. You can also develop your standalone
application to host multiple services. However, this requires you to write the
Java code for this and to ensure that your application cleans up it resources
properly. The standalone model also does not provide the remote
management APIs.

In this chapter This chapter discusses the following topics:
Generating the Skeleton Code page 65
Developing a Service Implementation page 68
Developing a Container Based Service page 70
Developing a Standalone Service page 81
Servant Registration page 85
Servant Threading Models page 89
Building an Artix Service page 93

64

Generating the Skeleton Code

Generating the Skeleton Code

Overview The Artix development tools take an Artix contract and generate skeleton
code to use as a starting point for developing a service. In addition, Artix
maps WSDL types to Java classes using the mapping described in the
JAX-RPC specification.

Generating code from the You generate service skeleton code at the command line using the
command line command:

wsdltojava -impl -plugin -deployable artix-contract

You must specify the location of a valid Artix contract for the code generator

to work. The command line flags do the following:

® -impl instructs the code generator to create an empty implentation
class for the service.

® -plugin instructs the code generator to create the plug-in classes
needed to deploy the service into an Artix container.

® -deployable instructs the code generator to create a deployment
descriptor for deploying the service into an Artix container.

Optional parameters You can also supply the following optional parameters to control the
generated code:

-e service:port Specifies the name of the service, and optionally
the port, for which the tool will generate code.
The default is to use the first service listed in the
contract. Specifying multiple services results in
the generation of code for all the named
service/port combinations. If no port is given, all
ports defined in a service will be activated.

-b binding Specifies the name of the binding to use when
generating code. The default is to use the first
binding listed in the contract.

65

CHAPTER 3 | Developing Artix Services

66

-i portType

-d output dir

Specifies the name of a portType for which code
will be generated. You can specify this flag for
each portType for which you want code
generated. The default is to use the first portType
in the contract.

Specifies the directory to which the generated
code is written. The default is the current working
directory.

-p [namespace=]package Specifies the name of the Java package to use for

—server

—-types

-interface
-all

—-ant

-datahandlers

-merge

-nexclude

the generated code. You can optionally map a
WSDL namespace to a particular package name if
your contract has more than one namespace.

Generates a simple main class for the server. This
flag is used in place of -plugin and -deployable.
For more information see “Developing a
Standalone Service” on page 81.

Generates the code to implement the complex
types defined by the contract.

Generates the Java interface for the service.
Generates code for all portTypes in the contract.
Generate an ant build target for the generated
code.

When a service uses SOAP w/ attachments as its
payload format, generate code that uses
javax..activation.DataHandler instead of the
standard Java classes specified in the JAX-RPC
specification. For more information see “Using
SOAP with Attachments” on page 218 and
Understanding Artix Contracts.

Merge any user changes into the generated code.
Instructs the code generator to skip the specified

namespace [=package] XMLSchema namespace when generating code.

-ninclude

You can optionally specify a package name to use
for the types that are not generated.

Instructs the code generator to generate code for

namespace [=package] the specified XMLSchema namespace. You can

optionally specify a package name to use for the
types in the specified namespace.

../contract/index.htm

Generated files

Warning messages

Generating the Skeleton Code

-L file Specifies the location of your Artix license file. The
default behavior is to check
IT PRODUCT DIR\etc\license.txt.

-ser Specifies that the generated classes for data types
defined in the contract will be serializable (i.e.
they will implement java.io.Serializable).

-quiet Specifies that the tool runs in quiet mode.
-verbose Specifies that the tool runs in verbose mode.

The Artix code generator produces the following files from when you

generate code for a service:

® portTypeName.java defines the Java interface that both the service
implements.

® portTypeNameImpl.java defines the class used to implement the
service.

® portTypeNameServicePlugin includes code to register the appropriate
servant with the bus when the service is loaded into an Artix container.

® portTypeNameServicePluginFactory instantiates the generated
plug-in class for your service.

® portTypeNameTypeFactory.java defines the type factories used by
Artix to support the complex types used by the service.

In addition to these files, the code generator also creates a class for each
named schema type defined in the Artix contract. These files are named
according to the type name they are given in the contract and contain the
helper functions needed to use the data types. The naming convention for
the helper type functions conforms to the JAX-RPC specification. For more
information on using these generated data types see “Working with Artix
Data Types” on page 119.

If you generate code from a WSDL file that contains multiple portType
elements, multiple bindings, multiple services, or multiple ports wsdltojava
will generate a warning message informing you that it is using the first
instance of each to use for generating code. If you use the command line
flags to specify which instances to use, the warning message is not
displayed.

67

CHAPTER 3 | Developing Artix Services

Developing a Service Implementation

Generating the server The Artix code generation utility, wsd1tojava, will generate an
implementation class implementation class for your service when passed the -imp1 command
flag.

Note: If your contract specifies any derived types or complex types you
will also need to generate the code for supporting those types by specifying
the -types flag.

Generated code The service implementation class code consists of two files:
PortName.java contains the interface implemented by the service.
PortNamelmpl.java contains the class definition for the service’s

implementation class. It also contains empty shells for the methods that
implement the operations defined in the contract.

Completing the server You must provide the logic for the operations specified in the contract that

implementation defines the service. To do this you edit the empty methods provided in
PortNameImpl.java. A generated implementation class for a contract
defining a service with two operations, sayHi and greetMe, would resemble
Example 23. Only the code portions highlighted in bold (in the bodies of the
greetMe () and sayHi () methods) must be inserted by the programmer.

Example 23: /mplementation of the HelloWorld PortType in the Server
// Java

import java.net.*;
import java.rmi.*;

68

Developing a Service Implementation

Example 23: /mplementation of the HelloWorld PortType in the Server
public class HelloWorldImpl {

/**
* greetMe
*
* @param: stringParam0 (String)
* @return: String
*/
public String greetMe (String stringParam0O) {
System.out.println("HelloWorld.greetMe() called with
message: "+stringParamO) ;
return "Hello Artix User: "+stringParam0;

/**
* sayHi
*
* @return: String
Y
public String sayHi() {
System.out.println("HelloWorld.sayHi () called");
return "Greetings from the Artix HelloWorld Server";

69

CHAPTER 3 | Developing Artix Services

Developing a Container Based Service

Overview

In this section

70

The recommended method for deploying Artix services is to use the Artix
container. This enables you to dynamically deploy, start, and stop your
services using the container's remote interfaces. It also means that you can
deploy multiple services into a single process.

Note: All of the services deployed into an Artix container will share one
configuration scope.

To enable your services to be deployable into an Artix container you need to
do the following:

1. Generate the starting point code for your service.

2. Implement the busInit () and busShutdown () methods in the
generated plug-in class.

3. Implement the activateService () and deactivateService ()
methods in the generated servant activator class.

4. Complete the deployment descriptor for your service.

This section discusses the following topics:

Generating Starting Point Code page 71
Implementing the Service's Plug-in Class page 72
Implementing the Service’s Activator Class page 76

Developing a Container Based Service

Generating Starting Point Code

Overview

The wsdltojava flags

The generated implementations

The wsdltojava tool, or the Artix Designer, will generate all the code you
need to deploy your service into an Artix container. The generated classes
provide basic implementations for all of the required methods. However, you
may wish to modify the code for more advanced applications.

The -plugin and -deployable flags instruct the wsdltojava tool will
generate the starting point code for a service to deploy into an Artix
container. The -p1lugin flag instructs the code generator to generate the
following additional classes:

® portTypeNameServicePlugin contains the code used by the bus when
it loads the service plug-in.

® portTypeNameServicePluginFactory contains the code to instantiate
the generated plug-in class for your service.

® portTypeNameServiceActivator contains the code to activate and
deactivate the service.

The -deployable flag instructs the code generator to generate a deployment

descriptor named portTypeName.xml. The deployment descriptor is used by
the Artix container to load your service.

The generated code provides a default implementation for all of the required
methods. The default implementation includes the code needed to register
and activate a single instance of a single service. It does not perform any
resource initialization beyond the creation of the service instance.

If you want your service plug-in to load multiple services you will need to
modify the businit () method of the generated plug-in class. You may also
need to add additional code to initialize and clean up any resources needed
by the services loaded by the plug-n.

71

CHAPTER 3 | Developing Artix Services

Implementing the Service’s Plug-in Class

Overview All Artix plug-ins have two classes. The first class,
portTypeNameServicePluginFactory, iS a factory used by Artix to create
instances of the plug-in as needed. This class is fully implemented when
you generate Artix starting point code for a container deployed service. You
do not need to edit it. For more information see “Implementing the
BusPluglnFactory Interface” on page 514
The second class, portTypeNameServicePlugin, is used by Artix to load
your service's implementation, register it with the Artix bus, and instantiate
any resources needed by the service. It is also used by the bus at shutdown
to clean up any resources used by your service. The generated
implementation of this class is sufficient for most services, however you may
need to modify it.

When modifying the plug-in you will change two methods:

® buslnit() is called by Artix when the plug-in is loaded. It is where you
instantiate a servant for your service and register it with the bus.

® busShutdown() is called by Artix at shutdown. It is where you clean up
any resources used by your service.

Implementing buslnit() busInit () is responsible for loading all the resources needed by service.
This includes creating and registering the service activator that loads and
unload the servant that hosts the service's implementaiton. To implement
busInit () for your service you need to do four things:

1. Get an instance of the Artix bus.
2. Create an instance of your service's activator class.
3. Register the service’s activator with the bus.

4. Call activateservice () to load the servant for your service.

Getting an instance of the Artix bus

In order to register your servant with Artix, you need an instance of the Artix
bus. The BusPlugin class, which your service's plug-in extends, has a
method, getBus (), that returns the instance of the bus loading the plug-in.
getBus () takes no arguments and returns a Bus object.

72

Developing a Container Based Service

Instantiating a service activator

The creator for the generated service activator takes two arguments:

® the location of the service's contract.

® the bus that hosts the plug-in.

The default implementation of busTnit () passes the hard coded location of
the contract used to generate the service plug-in. Using a hard coded
location for a contract limits the flexibility of your service plug-in. You should

update your plug-in to use one of the methods outlined in “Finding Artix
Contracts” on page 99.

Registering a service activator

You register a service activator with the bus using the bus’
registerServiceActivator () method. The signature for
registerServiceActivator () is shown in Example 24.

Example 24: registerServiceActivator()

public abstract boolean registerServiceActivator (QName serviceName, ServiceActivator sa)
throws BusException;

The gName passed into registerServiceActivator () is used by the bus to
determine when to use this particular service activator object. It should be
the same QName as that used to register the servants.

For more information on service activators see “Implementing the Service's
Activator Class” on page 76.
Calling activateService()

activateService () is @ method implemented by the service activator. It is
responsible for instantiating a servant for your service and registering the
servant with the bus. For more information on activateservice () see
“Implementing the Service's Activator Class” on page 76.

73

CHAPTER 3 | Developing Artix Services

74

Example

Example 25 shows a busInit () method used in implementing the
SOAPService service to be deployed in an Artix container.

Example 25: businit()

import java.net.URL;
import javax.xml.namespace.QName;

import com.iona.jbus.Bus;
import com.iona.jbus.ServiceActivator;
import com.iona.jbus.BusConstants;

import com.iona.jbus.BusException;
import com.iona.jbus.BusPlugln;

public class SOAPServicePlugin extends BusPlugIn

{

private ServiceActivator serviceActivator;

public void busInit () throws BusException

{
Bus bus = getBus();

QName serviceName = new
OName ("http://www.iona.com/hello world soap http",
"SOAPService") ;

String wsdl = bus.getServiceWSDL (serviceName) ;

serviceActivator = new SOAPServiceServiceActivator (wsdl,
bus) ;

bus.registerServiceActivator (serviceName, serviceActivator);

serviceActivator.activateService (serviceName) ;

Implementing busShutdown()

Developing a Container Based Service

busShutdown () is called by Artix when the service is stopped or the Artix
container is shutdown. It is where you would place code to clean up after
your service. Typically busShutdown () needs to perform two tasks:

1.

Call deactivateservice () on the service's activator to clean up the
servant used by the service.

Call dereigisterserviceActivator () to remove the service activator
from the bus’ registry.

Example 26 shows the default implementation of busshutdown () for the
SOAPService plug-in.

Example 26: busShutdown()

public void busShutdown () throws BusException

{

Bus bus = getBus();
QOName serviceName = new
QOName ("http://www.iona.com/hello world soap http",
"SOAPService") ;

serviceActivator.deactivateService (serviceName) ;

bus.deregisterServiceActivator (serviceName) ;

75

CHAPTER 3 | Developing Artix Services

Implementing the Service’s Activator Class

Overview The service activator class provides the entry point for creating and
registering servants. In general, this class is used to manage the lifecycle of
an Artix service. If the relevant member functions of the service activator
class are properly implemented, it should be possible to deactivate and then
re-activate a service without needing to shut down the entire service plug-in.

Service activator functions The service plug-in class provides two methods that control the lifecycle of

an Artix service, as follows:

® activateService ()—a method called either from within busInit () or
whenever the it _container admin -deploy command is executed.
The purpose of activateService () is to perform all of the
housekeeping tasks necessary to start up an Artix service, including the
creation of a servant object and the registration of that servant object
with the bus.

® deactivateService ()—a method called either from within
busShutdown () Of whenever the it container admin -removeservice
command is executed.
The purpose of deactivateService () is to perform all of the
housekeeping tasks necessary to shut down an Artix service, including
deregistration of the service and deletion of the associated servant
object.

Related container administration The lifecycle functions provided by the service activator class are closely
commands related to the following it container admin commands:
® it container admin -deploy—the effect of issuing this command
depends on whether this is the first or subsequent deployment, as
follows:

s First deployment—Iload and initialize the service plug-in. The
container calls busInit (), which is normally programmed to call
activateService () for each of the WSDL services.

76

activateService()

Developing a Container Based Service

+ Subsequent deployment (re-deploy)—activate any inactive
services. The container calls activateService () on each of the
registered service activators, but only if the service is currently
inactive. The container does not call busInit () in this case.

Note: Artix does not currently provide an administration command
that re-activates a single service at a time. The -deploy command
re-activates all of the inactive services from the specified plug-in.

® it container admin -removeservice—de-activate a specific service.
When you issue the -removeservice command, the container calls
deactivateService (), but only if the specified service is currently
active.

For more details about the it container admin command-line utility, see
Configuring and Deploying Artix Solutions.

activateService () is called either from busInit () or whenever the

it _container admin -deploy command is issued. It is the appropriate
place to put the code that creates and registers servants. Registering a
servant is a two step process:

1. Create a servant for your service.
2. Register the service with the bus.

Creating a servant for your service implementation

Artix wraps service implementation objects in a servant object that allows
the bus to manage the object. To create a com.iona.jbus.Servant for your
service implementation you create an instance of a singleInstanceServant
as shown in Example 27. The creator for @ singleInstanceServant USES
the following three items:

® the path of the WSDL file describing the service interface

® aninstance of your implementation object

® aninstance of an initialized Artix bus.

77

../deploy/index.htm

CHAPTER 3 | Developing Artix Services

78

Example 27 shows the code to create a servant for the Hellowor1d service.
Example 27: Creating a Servant

//Java
Servant servant =
new SingleInstanceServant (new HelloWorldImpl (),
"./HelloWorld.wsdl", bus);

For more details see “Servant Threading Models” on page 89.

Registering a servant

After creating the servant, you register it with the bus so that it can begin
listening for requests. Servants are registered using the bus’
registerServant () method. This registers the servant with a fixed address
that is read from the contract associated with the service. The signature for
registerServant () is shown in Example 28.

Example 28: registerServant()

void registerServant (Servant servant,
QName serviceName,
String portName)
throws BusException

In addition to the servant, registerservant () takes the service’s QName as
specified in the service's contract. You can also supply the name of the
WSDL port you on which you want the servant activated. If no port name is
given, the servant is activated on all ports.

For more details about servant registration see “Servant Registration” on
page 85.

deactivateService()

Developing a Container Based Service

Example

Example 29 shows an implementation of activateservice () that registers
a Greeter servant, thereby associating it with the soapservice WSDL
service.

Example 29: Sample Implementation of activate_service()

public void activateService (QName serviceName)
throws BusException

{

Servant servant = new SingleInstanceServant (new GreeterImpl (),
theWsdlLocation,
theBus) ;

theBus.registerServant (servant, serviceName) ;

In this example, it is assumed that the service activator instance was
registered as shown in Example 25 on page 74—that is, the service
activator instance is registered only against the soapservice WSDL service.
Hence, it follows that the activateservice () method shown in Example 29
will only be called when serviceName equals the soapPservice QName.

Advanced applications might choose to register a service activator instance
against several different services. In that case, you would need to examine
the service QName, serviceName, in order to decide which servant to
activate.

deactivateService () is called either by busshutdown () or whenever the
it container admin -removeservice command is issued. It is the
appropriate place to deregister the servant for your service. This is done by
using the bus’' removeservant () method.

Example 30 shows an implementation of deactivateservice () that
deregisters and deletes the Greeter servant that was registered by

activateService ().

79

CHAPTER 3 | Developing Artix Services

Example 30: Sample Implementation of deactivate_service()

public void deactivateService (QName serviceName)
{
try
{
theBus. removeServant (serviceName) ;

}

catch (BusException ex) {}

}

80

Developing a Standalone Service

Developing a Standalone Service

Overview

Generating the service main()

Writing the main()

Initializing the bus

If you decide that you want to deploy your service as a standalone Java
application, Artix can generate a server class that contains a main ().
Developing a service as a standalone service requires that you register your
service implementation, or implementations, with the Artix bus in the
applications main (). It also requires that you must specifically initialize the
Artix bus and then start the bus.

Your standalone service will require a dedicated configuration scope.
However, it will not require a deployment descriptor.

You can use wsdltojava to generate a service main () by using the -server
flag as shown in Example 31.

Example 31: Generating a Standalone service
wsdltojava -server -—-impl widgets.wsdl

The -server flag is used in place of the -plugin and the -deployable flags.
It instructs the code generator to create a class containing a main (). The
generated main () will contain the basic code needed to register the service
implementation with the bus. The main () shown in Example 34 on page 83
was generated using wsdltojava.

The main () of a standalone service must do four things before it can process
requests:

1. Initialize the Artix bus.

2. Create a servant for the service implementation.

3. Register the server implementation with the Artix bus.
4. Start the Artix bus.

The Artix bus is initialized using com.iona.jbus.Bus.init (). The method
has the following signature:

static Bus init (String argsl[]);

81

CHAPTER 3 | Developing Artix Services

Creating a servant for your service
implementation

82

init () takes the args parameter passed into the main as a required
parameter. Optionally, you can also pass in a second string that specifies
the name of the configuration scope from which the bus instance will read
its runtime configuration.

This will create a bus instance to host your service, load the Artix
configuration information for your application, and load the required
plug-ins.

Before the bus can begin processing requests made on your service, you
must register the servant object that implements your service’s business
logic with the bus. Registering the implementation object’s servant with the
bus allows the bus to create instances of the implementation object as it
processes requests.

Artix wraps service implementation objects in a servant object that allows
the bus to manage the object. To create a com.iona.jbus.Servant for your
service implementation you create an instance of a singleInstanceServant
as shown in Example 32. The creator for a singleInstanceServant USES
the following:

® aninstance of your implementation object

® the path of the WSDL file describing the service interface

® aninstance of an initialized Artix bus.

Example 32 shows the code to create a servant for the HellowWorld service.
Example 32: Creating a Servant

//Java
Servant servant =
new SingleInstanceServant (new HelloWorldImpl (),
"./HelloWorld.wsdl", bus);

For more details see “Servant Threading Models” on page 89.

Registering a servant

Starting the bus

Completed server main()

Developing a Standalone Service

After creating the servant, you register it with the bus so that it can begin
listening for requests. Servants are registered using the bus’
registerServant () method. This registers the servant with a fixed address
that is read from the contract associated with the service. The signature for
registerServant () is shown in Example 33.

Example 33: registerServant()

void registerServant (Servant servant,
QOName serviceName,
String portName)
throws BusException

In addition to the servant, registerservant () takes the service’s QName as
specified in the service’s contract. You can also supply the name of the
WSDL port you on which you want the servant activated. If no port name is
given, the servant is activated on all ports.

For more details about servant registration see “Servant Registration” on
page 85

After the bus is initialized and the service implementation is registered with
it, the bus is ready to listen for requests and pass them to the servant for
processing. To start the bus, you use the bus’ run() method. Once the bus
is started, it retains control of the process until it is shut down. The service's
main () Will be blocked until run () returns.

Example 34 shows the main () for a standalone service.
Example 34: Server main()

// Java
import com.iona.jbus.*;
import javax.xml.namespace.QName;

public class Server

{
public static void main(String args[])
throws Exception

{

83

CHAPTER 3 | Developing Artix Services

84

Example 34: Server main()

// Initialize the Artix bus
Bus bus = Bus.init (args);

// Register the Servant
QName name = new QName ("http://xmlbus.com/HelloWorld",
"HelloWorldService") ;
Servant servant =
new SingleInstanceServant (new HelloWorldImpl (),

"./HelloWorld.wsdl",
bus) ;

bus.registerServant (servant, name, "HelloWorldPort");

// Start the Bus
bus.run();

Servant Registration

Servant Registration

Overview

In this section

In order to make a service accessible to remote client’s, you must register its
associated servant with a bus instance. Once the servant is registered with
the bus instance the service is activated and begins listening for requests.

When a servant is instantiated in Java it is associated with the logical
portion of an Artix contract. It is a Java instance of the interfaced defined in
a WSDL portType element. At this point, a Java servant has no knowledge
of the physical details of the service which it implements.

The servant is associated with the physical details of the service when it is
registered with an instance of the Artix bus. At this point the servant is tied
to the physical details defined by the WSDL port element defining the
message format and transport used by the service.

Artix provides two methods for registering a servant:

Static registration ties the servant to a port element in the physical contract
defining the service.

Transient registration ties the servant to a cloned service element.

This section discusses the following topics:

Static Servant Registration page 86

Transient Servant Registration page 87

85

CHAPTER 3 | Developing Artix Services

Static Servant Registration

Overview

Registering

Example

86

When a servant is registered as a static servant it is linked to a port element
that is read from the contract associated with the application. This means
that a static servant is restricted to using the details of a service element
appearing in the service’s contract.

Static servants are useful when a bus instance is only going to host a single
instance of a servant. They are also useful when using references and you do
not want to use the WSDL publishing plug-in because consumers that have
a copy of the service’s contract have the servant’s port information.

You register a static servant using the bus’ registerservant () method. The
signature for registerservant () is shown in Example 33.

Example 35: registerServerFactory()

void registerServant (Servant servant,
QName serviceName,
String portName)
throws BusException

In addition to the servant instance, registerservant () takes the service's
QName as specified in the contract defining the service. You can also supply
the name of the WSDL port you on which you want the servant activated. If
no port name is given, the servant is activated on all ports. To register a
servant on more than one specific port, you can call registerServant ()
multiple times and specify a different port name on each call.

Example 36 shows the code for registering a static servant.
Example 36: Registering a Static Servant

QName name = new QName ("http://whoDunIt.com/Sleuth",
"SleuthService") ;
Servant servant = new SingleInstanceServant ("./sleuth.wsdl",
new SleuthImpl());
bus.registerServant (servant, name, "SleuthHTTPPort");

Servant Registration

Transient Servant Registration

Overview

Supported transports

Service templates

When a servant is registered as a transient servant, Artix clones a service

element from the service’s physical contract and links the transient servant

with the clone. This has the following effects:

® The transient servant’s physical details are based on an existing
service element that appears in the contract.

® The transient servant’'s QName is replaced by a dynamically generated,
unigue QName.

® The transient servant’s addressing information is replaced such that
each address is unique per-clone and per-port.

Transient servants are useful if the bus is going to be hosting a number of
instances of a servant such as when a service is a factory for other services.

While Artix will allow you to register any servant as transient, not all
transports support the notion of transience. Currently, the only transports
that can make use of transient servants are HTTP, CORBA, and [IOP
Tunnel.

When using transient servants in your application, your contract must

provide a service template for the servant. A service template is a service

element from which your transient servants will be cloned. When creating

the service template for transient servants adhere to the following:

® The service template must come before any actual service elements
defined in the contract. If you place your service templates after your
actual service elements, you may run into problems using the router.

® The port elements defined in the service element must use one of the
supported transports.

® The port elements defined in the service element must fully describe
the properties of the transport being used.

® The address specified for an HTTP endpoint must be specified using

host name:Q0.

87

CHAPTER 3 | Developing Artix Services

Registering

Transient servant QNames

Example

88

® The address specified for either a CORBA endpoint or a IIOP endpoint
must be ior:. Specifying any other address in the template will cause
the servants to have invalid IORs.

You register a transient servant using the bus’ registerTransientServant ()
method. The signature of registerTransientServant () is shown in
Example 37.

Example 37: registerTransientServant()

public abstract QOName registerTransientServant (Servant servant,
QName serviceName)
throws BusException;

In addition to the servant instance, registerTransientServant () takes the
service element’s QName as specified in the contract defining the service.
Unlike registerServant (), registerTransientServant () does not allow
you to specify a port element because the bus dynamically assigns a port to
the transient servant.

Because the newly created transient servant is cloned from the service
element whose QName was supplied, the new servant has a different
QName. The transient servant’'s QName is returned when you invoke
registerTransientServant (). The returned QName is the QName you use
when creating references for the transient servant or when destroying the
transient servant.

Example 38 shows the code for registering a transient servant.
Example 38: Registering a Transient Servant

QName name = new QName ("http://whoDunIt.com/Sleuth",
"SleuthService") ;
Servant servant = new SingleInstanceServant ("./sleuth.wsdl",
new SleuthImpl());
QOName transientName = bus.registerTransientServant (servant,
name) ;

Servant Threading Models

Servant Threading Models

Overview

Thread pool configuration

Single-instance multithreaded
servant

The Artix bus is a multi-threaded C++ application that uses a thread pool
to hand out threads. When using the Artix Java APIs, you can use the Artix
configuration file to control how the C++ core manages its threads. In
addition the Artix Java APIs provide three servant threading models to
handle requests from the bus. These models are:

® single-instance multithreaded

® serialized single-instance

® per-invocation

The bus’s thread pool is configured in your applications configuration scope.
This configuration scope is specified in the main Artix configuration file.

There are three configuration variables that are used to configure the bus’

thread pool:

® thread pool:initial threads sets the number of initial threads in
each port's thread pool.

® thread pool:low water mark Sets the minimum number of threads in
each service's thread pool.

® thread pool:high water mark Sets the maximum number of threads
allowed in each service's thread pool.

For a detailed discussion of Artix configuration see Configuring and
Deploying Artix Solutions.

The standard Artix servant is the singleInstanceServant. The
SingleInstanceServant provides a multi-threaded, single instance usage
model to the user. This means that all invocation threads for a given

89

../deploy/index.htm
../deploy/index.htm

CHAPTER 3 | Developing Artix Services

920

1 O Service]

endpoint access the same implementation object as shown in Figure 1 on
page 90. The singleInstanceServant provides no thread safety for the user

code.
attach () /detach () thread
C++ Runtime Java
— Work Queue 1 Thread Pool 1 | : :
o Port1|—»|R1 |R2|R3 T EAAT o e AV Servant |

o Port 2| —»| R1 |R2| R3 RN | SN A 7 ’

— Work Queue 2 Thread Pool 2 | !

Figure 1: SinglelnstanceServant

To instantiate a singleInstanceServant you need to provide an instance of
your implementation object, the path of the contract describing the service,
and an instance of an initialized Artix bus. Example 32 shows an example of
instantiating @ singleInstanceServant.

Example 39: Creating a SinglelnstnaceServant

//Java
Servant servant =
new SingleInstanceServant (new HelloImpl (),
"./hello.wsdl", bus);

Servant Threading Models

Serialized single-instance servant Artix provides a thread safe single-instance servant called a
SerializedServant. A SerializedServant ensures that all invocations are
routed to a single implementation object in a serialized manner as shown in
Figure 2 on page 91. Using a serializedServant is equivalent to using a
SingleInstanceServant Whose target object is completely synchronized.

attach () /detach () thread

C++ Runtime Java
b — Work Queue 1 Thread Pool 1
| od Port1|—|R1|[R2|R3 RN _'W Servant
5 L 2 |1 |
y O Service ' ! 4|_> :
' | odPort2|—|R1|R2|R3 RN _>W
E — Work Queue 2 Thread Pool 2 ‘

' ' '

Figure 2: SerializedServant

To instantiate a serializedservant you need to provide an instance of your
implementation object, the path of the contract describing the service, and
an instance of an initialized Artix bus. Example 32 shows an example of
instantiating a serializedServant.

Example 40: Creating a SerializedServant

//Java
Servant servant = new SerializedServant (new HelloImpl (),
"./hello.wsdl", bus);

Per-invocation servant In addition to the multithreaded single instance servants, Artix provides a
per-invocation servant. This servant is implemented by the
PerInvocationServant Class. A PerInvocationServant guarantees that a

91

CHAPTER 3 | Developing Artix Services

separate instance of the implementation object will be used for each
invocation as shown in Figure 3 on page 92. This ensures thread safety, but
does not allow the implementation object to have any statefull information.

attach () /detach () thread

C++ Runtime Java
E — Work Queue 1 Thread Pool 1 “ ! create
| A ~OQ 1
i | oo Port1|—|R1|[R2|R3| |RN _'W destroy !

! ! - O (;create |
b destroy |

| O Service ! !

i ! ! O (create
, i | P 4

: o Port2|—| R1 |R2 |R3 N EAVAS s AU, destroy

! AN S AN - O (;create
: Work Queue 2 Thread Pool 2 | destroy

1
)

Figure 3: PerlnvocationServant

To use a PerInvocationServant, your implementation object must either
have a no-argument constructor, or implement the cloneable interface and
provide a clone () method. Like the other servants the
PerInvocationServant needs an instance of your implementation object,
the path of the contract describing the service, and an instance of an
initialized Artix bus when being instantiated. Example 41 shows the code
for instantiating a PerInvocationServant.

Example 41: Creating a PerlnvocationServant

//Java
Servant servant = new PerInvocationServant (new HelloImpl (),
"./hello.wsdl", bus);

92

Building an Artix Service

Building an Artix Service

Required jar files

Other jar files

Artix Java applications require that the following Artix jar files are in your
classpath:

InstallDir\lib\artix\java runtime\3.0\it bus-api.jar
InstallDir\lib\artix\ws common\3.0\it wsdl.Jjar
InstallDir\lib\artix\ws common\3.0\it ws reflect.jar
InstallDir\lib\artix\ws common\3.0\it ws reflect types.jar
InstallDir\lib\common\ifc\1.1\ifc.Jjar
InstallDir\lib\Jjaxrpc\jaxrpc\l.l\jaxrpc-api.jar

If your application uses SOAP with attachments, you will also need to
include Installbir/lib/sun/activation/1.0.1/activation.jar On your
classpath.

If your application uses xsd:any, you will need to include
InstallDir/lib/ws_common/2.1/saaj-api.jar on your classpath.

93

CHAPTER 3 | Developing Artix Services

94

Overview

CHAPTER 4

Finding Contracts
and References at
Runtime

Locating contracts at runtime is much more flexible than
specifying their location at development time.

When it comes to deploying applications in a real system, it is typically
inconvenient to hardcode the location of a contract in the application. It is
more practical to specify the location of basic resources, such as a contract,
at runtime—for example, by specifying the contract URL in configuration or
on the command line.

Artix simplifies the process of obtaining the following kinds of basic

resources: contracts and Artix references. The process is divided into two

independent steps:

1. Provide the basic resource—you can provide a contract or an Artix
reference in several different ways: by configuration, by specifying the
location on the command line, and so on.

2. Retrieve the basic resource—Java functions are provided to retrieve
WSDL services and Artix references, based on the qualified name
(QName) of the resource.

95

CHAPTER 4 | Finding Contracts and References at Runtime

In this chapter

96

This chapter discusses the following topics:

Finding Initial References

page 97

Finding Artix Contracts

page 99

Finding Initial References

Finding Initial References

Overview

Example of finding an initial
reference

An endpoint reference encapsulates the data required for creating a service
proxy to connect to an Artix endpoint (essentially, this data is identical to the
data contained in a WSDL service element). Once an application has a
reference to a service, it creates a service proxy by passing the reference to a
proxy constructor.

The Artix provides an API, Bus.resolveInitialEndpointReference (), for
finding initial references based on the QName of a WSDL service.

Note: The Artix 3.0.X APl Bus.resolveInitialReference () has been
deprecated in Artix 4.0. It is supported for backwards compatibility, but it
is recommended that you update clients to use the newer API.

Given that the bus has already loaded and parsed either an Artix reference
(or a contract) containing a service called soapservice in the namespace,
http://www.iona.com/hello world soap http, You can initialize a service
proxy, proxy, as shown in Example 42.

Example 42: Finding an Initial Reference
QName name = new
QName ("http://www.iona.com/hello world soap http",
"SOAPService") ;

EndpointReferenceType ref;

// Find the initial reference using the bootstrap service
ref = bus.resolveInitialEndpointReference (name) ;

// Create a proxy and use it
GreeterClient proxy = (GreeterClient)bus.CreateClient (
ref,

GreeterClient.class);

proxy.sayHi () ;

97

CHAPTER 4 | Finding Contracts and References at Runtime

Options for finding initial

references

98

Artix finds initial references from the following sources, in order of priority:

1.

Collocated service—if the client code that calls
resolvelInitialEndpointReference () is in the same process as the
specified service, resolveInitialEndpointReference () returns an
endpoint reference to the collocated service. This assumes that the
client and server code are using the same bus instance.

References specified on the command line—you can provide an initial
reference by specifying, on the command line, the location of a file
containing an XML instance of an endpoint reference. For example:

java bsServer -BUSinitial reference ../../etc/hello ref.xml

References specified in the configuration file—you can provide an
initial reference from the configuration file, either by specifying the
location of an endpoint reference file or by specifying the literal value of
an endpoint reference.

For more details, see Configuring and Deploying Artix Solutions.
Service in a contract—the service element in a contract contains
essentially the same data as an endpoint reference. Hence, if an
endpoint reference is not specified using one of the other methods,
Artix searches any loaded contracts to find the specified service.

The sources of contracts are the same as on the server side. The
mechanism for discovering references is, thus, effectively an extension
of the mechanism for discovering service contracts—see “Options for
finding contracts” on page 99.

../deploy/index.htm

Finding Artix Contracts

Finding Artix Contracts

Overview

Example of finding a contract

Options for finding contracts

An Artix contract is required to:
® register a servant with the bus.
® create a service proxy using the JAX-RPC service interface.

Registering a servant with the bus associates an implementation
(represented by a servant object) with a particular WSDL service. The
Service interface uses the information in a WSDL service to identify the
operations exposed by the service and to open the proper network
connection. The WSDL service must, therefore, be available from one of
the contracts discovered by Artix.

The Artix provides an API, Bus.getServiceWsDL (), for retrieving the contract
for a particular WSDL service. getServiceWsDL () takes the oName of the
service and returns a string representing the location of the corresponding
contract.

Given that the bus has already loaded and parsed a contract containing the
service, SOAPService, in the namespace,
http://www.iona.com/hello world soap http, you can find the WSDL
service element as shown in Example 43.

Example 43: Finding a Contract
QName name = new
QOName ("http://www.iona.com/hello world soap http",

"SOAPService") ;

// Find the WSDL contract using the bootstrap service
String wsdl = bus.getServiceWSDL (name) ;

Artix finds contracts from the following sources, in order of priority:

1. Contract specified on the command line—you can provide a contract
by specifying the location of the contract file on the command line. For
example:

java bsServer -BUSinitial contract ../../etc/hello.wsdl

99

CHAPTER 4 | Finding Contracts and References at Runtime

References

100

Contract specified in the configuration file—you can provide a
contract from the configuration file. For example:

Artix Configuration File

bus:gname alias:hello service =
"{http://www.iona.com/hello world soap http}SOAPService";

bus:initial contract:url:hello service =
"../../etc/hello.wsdl";

This associates a nickname, hello service, with the QName for the
SOAPService Service. The bus:initial contract:url:hello service
variable then specifies the location of the WSDL contract containing
this service.

For more details, see Configuring and Deploying Artix Solutions.
Contract directory specified on the command line—you can provide a
contract by specifying a contract directory on the command line. When
Artix looks for a particular WSDL service, it searches all of the WSDL
files in the specified directory. For example:

java bsServer -BUSservice contract dir ../../etc/

For more details, see Configuring and Deploying Artix Solutions.

Contract directory specified in the configuration file—you can provide
a contract by specifying a contract directory in the configuration file.
For example:

Artix Configuration File
bus:initial contract dir = [".", "../../etc"];

Stub WSDL shared library—Artix can retrieve a contract that has been
embedded in a shared library.

Currently, this mechanism is not publicly supported. However, it is
used internally by the following Artix services: Locator Service, Session
Manager Service, Peer Manager, and Container Service.

For more details about how to register servants, see “Servant Registration”
on page 85.

For more information on endpoint references see “Using Endpoint
References” on page 277.

../deploy/index.htm
../deploy/index.htm

In this chapter

CHAPTER 5

Things to Consider
when Developing
Artix Applications

Several areas must be considered when programming complex
Artix applications.

This chapter discusses the following topics:

Getting a Bus page 102

Class Loading page 103

101

CHAPTER 5 | Things to Consider when Developing Artix Applications

Getting a Bus

Overview

Inside a service implementation
object

From a client proxy

102

There are many instances where you need to get the default bus for an
application. These include working with contexts and generating references.
When you are in the mainline code of your application, you will have access
to the instance of the bus you initialized. However, inside the
implementation object of your service or in methods outside the scope of
your client application’s mainline you will need to perform additional steps
to get the bus.

If you are in a service's implementation object, you can use the code shown
in Example 44.

Example 44: Getting a Bus Reference Inside a Servant

com.iona.jbus.Bus bus = DispatchLocals.getCurrentBus();

If you have a client proxy object, you can use the JAX-RPC stub interface as
shown in Example 45.

Example 45: Getting a Bus Reference from a Client Proxy

Stub clientStub = (Stub)client;

com.iona.jbus.MessageContext context =

clientStub. getProperty(com.iona.jbus.MessageContext.ARTIX
MESSAGE CONTEXT) ;

com.iona.jbus.Bus bus = context.getTheBus () ;

Class Loading

Class Loading

Overview

How the classloader firewall
works

There may be occasions where the jars provided with Artix conflict with the
jars used in your environment. In particular, you may be using different
versions of the Xerces XML parser and Log4J. To handle such situations,
Artix provides a classloader firewall that isolates the Artix runtime
classloader from the application classloader and the system classloader.
This allows the Artix runtime to load the jars it needs and your application to
load your versions of any jars that conflict.

The classloader firewall provides a mechanism for you to hide the
application classloader’s jar files from the Artix runtime. It does this by
exposing a simple mechanism for you to create a set of positive filters
defining what classes loaded by the application classloader are visible to the
Artix runtime’s classloader and specifying the location from which the Artix
runtime classloader will load its classes. Any classes not matched by a
positive filter are blocked from the Artix runtime’s classloader and will only
be loaded from the locations specified in the firewall’s configuration file.
Figure 4 shows how the classloader firewall blocks off the Artix runtime.

APPLICATION JVM Classes match the
positive filters

Classes blocked by the
firewall and loaded from
the configured set of jars

Classes loaded from
the system classpath

Figure 4: Classloader Firewall

103

CHAPTER 5 | Things to Consider when Developing Artix Applications

Configuring the firewall
classloader

Defining class filters

104

For example, in most cases you would create a positive filter allowing all of
the J2SE classes into the Artix runtime. However, you would not create a
positive filter for the Xerces classes if your applications use a different
version of Xerces than Artix does. Artix will need to load its own Xerces
classes in order to operate.

To use the classloader firewall with an Artix Java application do the

following:

1. Create afile called artix ce.xml and place it in your application’s
classpath.

2. Using the artix ce.xml file included with the Java firewall demo as a
template, define the filters to only allow the desired packages from the
Artix classloader to be visible to your application code.

3. Define the rules governing where the Artix classloader will look for
specific classes in the ce:loader element of artix ce.xml.

The classloader firewall, if it finds an artix_ce.xml file in the classpath,
assumes that all classes not specified by a positive filter are to be blocked
from the Artix runtime’s classloader. You define positive filters using one of
two ce:filter attributes: type="discover" and type="pattern".

Using type="discover”
The discover filter type specifies that the classloader will discover the filters

from the location specified in the discover-source attribute. Table 1 shows
the values for discover-source.

Table 1: discover-source values for the Classloader Firewall

Value Meaning

jre Discover the filters need to load all of the classes for the
currently running JRE. It is highly recommended that this
filter is included in your artix ce.xml definition.

Defining negative filters

Class Loading

Table 1: discover-source values for the Classloader Firewall

Value Meaning

jar Discover the filters to load all of the classes from the specified
jar file. Jar file locations can be given using relative or
absolute file names. For example to load all of the classes in
myApp.jar, you could define a filter like <ce:filter
type="discover"
discover-source="jar">.\myApp.jar</ce:filter>

jar-of Discover the filters needed to load specified resource. This
option makes it possible to discover the contents of jar files
which you know are reachable through the class loading
system, but which you do not know the actual location.
Resources can be classes, properties files, or HTML files. For
example to load the libraries for the EgBHome class, you could
use a filter like <ce:filter type="discover"
discover-source="jar-of">javax/ejb/EJBHome.class</ce:
filter>.

Using type="pattern”

The pattern filter type directly specifies a package pattern to be allowed
through the firewall from the application’s classloader. The syntax for
specifying package patterns is similar to the syntax used in Java import
statements. For example, to specify that all classes from javax.xml.rpc are
to be allowed through the firewall you could use a filter like <ce:filter
type="pattern">javax.xml.rpc.*</ce:filter>. You could also drop the
asterisk(*) and use the filter <ce:filter
type="pattern">javax.xml.rpc.</ce:filter>.

Occasionally a positive filter will allow classes that you want blocked from
the Artix runtime classloader to be visible through the firewall. This is
particularly true with com. iona.jbus. The Artix runtime needs to share a
number of resources from this package with the application code, but it also
needs to ensure that some of its resources are loaded from the Artix jar files.

To solve this problem the classloader firewall allows you to define negative
filters. To define a negative filter you use a value of negative-pattern for

the type attribute of the filter. This tells the firewall to block any resources
that match the pattern specified. For example, to block the system’s

105

CHAPTER 5 | Things to Consider when Developing Artix Applications

Specifying the location for loading
blocked resources

<ce:loader>

JAX-RPC classes from being loaded into the Artix runtime you could define a
filter like <ce:filter

type="negative-pattern">com.iona.jbus.jaxrpc.<\ce:filter>.

The location from which the Artix runtime classloader will load resources
blocked by the firewall are specified in the ce:1loader element of

artix ce.xml. Inside the loader definition, you use a number of
ce:location elements to specify the location of specific resources. These
locations can be either the relative or absolute pathnames of a jar file. You
can also specify a directory in which the classloader will search for the
required jar files.

For example, if all of your Artix specific jar files are stored in the location in
which they were installed you could use a loader element similar to
Example 46 to specify the proper Xerces and Log4J version to load into the
Artix runtime.

Example 46: Loader Definition to Load Xerces and Log4J

<ce:loaction>C:\IONA\lib\apache\jakarta-log4j\1l.2.6\1logdj.jar<\ce:loaction>
<ce:location>C:\IONA\lib\apache\xerces\2.5.0\xercesImpl.jar<\ce:location>

</ce:loader>

Examples

106

For an example of using the Artix classloader firewall see the java firewall
demo in the demos\basic folder of your Artix installation. The demo provides
an example of using the classloader firewall to shield the Artix runtime from
different versions of Xerces and Log4J.

CHAPTER 6

Handling Artix
(Generated
Exceptions

Artix supports the definition of user-defined exceptions using
the WSDL fault element. When mapped to Java, the fault
element is mapped to a throwable exception on the associated
Java method.

In this chapter This chapter discusses the following topics:
Generic Exception Handling page 108
Using the SOAP Binding page 116

107

CHAPTER 6 | Handling Artix Generated Exceptions

Generic Exception Handling

Overview By default, remote invocations in Java return a RemoteException when the
remote service throws an exception. This works fine when working with
other Java services. Artix, however, is designed to interact with services
developed on a number of platforms. It is unlikely that user defined
exceptions and RemoteException objects can cover all of the possible
exceptions.

To fix this limitation, Artix uses a class called

com.iona.jbus.FaultException to handle exceptions thrown by remote
endpoints.

Bindings and Artix exceptions Each binding supported by Artix handles Artix generated exceptions
differently. Some, such as SOAP and CORBA, have mappings that are
determined by standards. Others use proprietary mappings. Table 2
describes how each of the bindings handle Artix generated exceptions.

Table 2: Binding Support for Artix Exceptions

Binding Support

SOAP Artix runtime exceptions and user thrown
FaultException objects are mapped into
SOAPFaultException objects. For more information
see “Using the SOAP Binding” on page 116.

CORBA Artix runtime exceptions and user thrown
FaultException Objects are mapping into
corresponding CORBA exceptions. For more
information see Artix for CORBA.

Fixed Artix runtime exceptions and user thrown
FaultException objects are mapped into a fixed
record length message using a proprietary mapping.

Tagged Artix runtime exceptions and user thrown
FaultException objects are mapped into a tagged
message using a proprietary mapping.

108

../corba_ws/index.htm

Generic Exception Handling

Table 2: Binding Support for Artix Exceptions

Binding Support

TibMsg Artix runtime exceptions and user thrown
FaultException Objects are mapped into a TibMsg
using a proprietary mapping.

FML

XML Artix runtime exceptions and user thrown
FaultException Objects are not transmitted.

G2++ Artix runtime exceptions and user thrown

FaultException Objects are not transmitted.

In this section

When working with bindings that use proprietary mappings for exceptions,
Artix will transmit a message containing the exception back to the remote
endpoint. If the remote endpoint is developed using Artix, it will properly
decode the exception and behave as described in this section. If it is not
developed using Artix, it is responsible for decoding the message being
returned.

This section discusses the following topics:

Overview of Fault Exceptions page 110
Processing Fault Exceptions page 111
Throwing Fault Exceptions page 114

109

CHAPTER 6 | Handling Artix Generated Exceptions

Overview of Fault Exceptions

Overview

FaultException fields

FaultException inherits from RuntimeException and adds fields to hold the
information needed to support the range of exceptions that Artix can
encounter. Because they inherit from RuntimeException, FaultException
objects can be thrown by Artix code and will be processed properly by the
Artix runtime. You can also retirieve a FaultException object from the
RemoteException object caught from a remove invocation.

FaultException objects have four fields. These field are explained in
Table 3.

Table 3: FaultException Fields

Name Description
Message Specifies a detailed description of why the exception was thrown.
Category Specifies the category of the exception. For a full listing of the possible fault

categories see the FaultCatagory Javadoc.

Completion Status

Specifies the status of the invocation. For a full listing of the possible values see
the FaultCompletionStatus Javadoc.

Source

Specifies the type of endpoint that threw the exception. For a full listing of the
possible values see the FaultSource Javadoc.

Artix runtime exceptions

110

The Artix runtime has a number of implementation specific exception types
that can be thrown. Artix runtime exceptions that occur along the messaging
chain are not passed to the user code. Instead they are packaged into a
FaultException and passed back down the message chain. The binding
level and transport level code will package the exception into an appropriate
format and transmit it back to the remote endpoint.

Some Artix runtime exceptions are returned to the user-level code. You must
handle these exceptions. One method of handling them is to throw a user
defined exception as discussed in “Creating User-Defined Exceptions” on
page 225. Alternatively, you can throw your own FaultException as
discussed in “Throwing Fault Exceptions” on page 114.

http://www.iona.com/support/docs/artix/4.0/javadoc/com/iona/jbus/FaultCompletionStatus.html
http://www.iona.com/support/docs/artix/4.0/javadoc/com/iona/jbus/FaultCategory.html
http://www.iona.com/support/docs/artix/4.0/javadoc/com/iona/jbus/FaultSource.html

Generic Exception Handling

Processing Fault Exceptions

Overview

Procedure

Getting exception details from a
FaultException

In general, your applications will not catch FaultException. For local
method calls, they should catch the exceptions that are thrown by the local
method. For remote method calls, they should catch RemoteException as
specified by JAX-RPC. The FaultException is stored in the cause member
of the caught RemoteException.

To extract the FaultException do the following:
1. Catch the RemoteException.

2. Extract the cause of the RemoteException object using its getcause ()
method.

3. Check if the returned Throwable object is an instance of the
FaultException Class.

If it is, cast the Throwable object to a FaultException object.

5. Use the FaultException object's get methods to extract the
information about the exception.

FaultException objects have four getter methods, shown in Example 47, to
retrieve the information about the cause of the exception.

Example 47: FaultException Getter Methods

String getMessage ()

FaultCategory getCategory ()
FaultCompletionStatus getCompletionStatus ()
FaultSource getSource ()

111

CHAPTER 6 | Handling Artix Generated Exceptions

Evaluating the exception data The values returned by three of the methods are instances of an

enumeration. The easiest way to evaluate the values is to use the a static
instance of the appropriate class. For example, to decide how to proceed

based on the completion status you could use the code shown in
Example 48.

Example 48: Evaluating the Completion Status of a Fault Exception

FaultCompletionStatus fcs = fe.getCompletionStatus() ;

if (fcs.value() .equals (FaultCompletionStatus.YES)
{

// Operation completed
}
else
{
// Operation not completed

Example Example 49 shows code for catching and inspecting a FaultException.

Example 49: Catching a FaultException

try

{
Client client = (Client)service.getPort(...);
client.sayHi () ;

}

catch (RemoteException re)

{
Throwable t = re.getCause();

if (t instanceof FaultException)

{
FaultException fe = (FaultException) t;

FaultCategory fc = fe.getCategory() ;

if (fc.value() .equals (FaultCategory.TRANSIENT)
{

// a TRANSIENT system exception

112

Generic Exception Handling

Example 49: Catching a FaultException

FaultCompletionStatus fcs = fe.getCompletionStatus() ;
if (fcs.value() .equals (FaultCompletionStatus.YES)
{

// Operation completed

FaultSource fs = fe.getSource();
if (fs.value() .equals (FaultSource.UNKNOWN)
{

// The exception was thrown by an unidentified endpoint

113

CHAPTER 6 | Handling Artix Generated Exceptions

Throwing Fault Exceptions

Throwing a FaultException

Procedure

Instantiating a FaultException
object

114

Because FaultException extends RuntimeException, you can throw a
FaultException just as you would any other exception in your application
code. The Artix runtime will process the exception and populate the
message according to the binding and transport being used by the endpoint.
If the endpoint receiving the exception is an Artix endpoint, it will interpret
the FaultException and return it to the endpoint’s application logic as a
RemoteException. If the receiving endpoint is not an Artix endpoint, it will
need to have logic for interpreting the fault message that is transmitted.

To throw a FaultException from your code do the following:

1. Instantiate a FaultException object to hold the exception.
Set the exception's category field.

Set the exception's source field.

Set the exception's completion status field.

o &~ wN

Throw the exception.

The FaultException class' creator method, shown in Example 50, takes a
single string that is placed in the message field of the new object.

Example 50: FaultException Constructor
FaultException (String message)

While it is good practice to populate the message field with a message
describing the nature of the exception, it is not required.

None of the fields in the newly instantiated FaultException object will be
initialized. You will need to set values for each field independently.

Setting the FaultException
object's fields

Example

Generic Exception Handling

FaultException objects have three setter methods, shown in Example 51,
to populate the fields used to report details about the exception.

Example 51: FaultException Setter Methods
void setCategory (FaultCategory faultCategory)
void setCompletionStatus (FaultCompletionStatus faultStatus)

void setSource (FaultSource faultSource)

The values used to set the categories are defined as enumerations, so the
easiest way to set the values is to use the a static instance of the
appropriate class. For example to set the source field to unknown you could
use the code shown in Example 52.

Example 52: Setting the Source Field

fe.setSource(FaultSource. UNKNOWN);

Example 53 shows code for throwing a fault exception from an Artix service.
Example 53: Throwing a Fault Exception

FaultException fe = new FaultException ("Account has expired");
fe.setCategory (FaultCategory.TIMEOUT) ;

fe.setSource (FaultSource.SERVER) ;

fe.setCompletionStatus (FaultCompletionStatus.NO) ;

throw fe;

115

CHAPTER 6 | Handling Artix Generated Exceptions

Using the SOAP Binding

Overview

Catching exceptions

116

According to the JAX-RPC specification, exceptions are mapped to
soap: fault elements when using the SOAP binding and soap: fault
elements are mapped to either a RemoteException, a user defined
exception, or a soAPFaultException. Artix runtime exceptions and user
thrown FaultException objects are mapped to soAPFaultException
objects.

When using the SOAP binding, Artix applications need catch
SOAPFaultException objects. When a remote invocation results in a
returned exception, the Artix SOAP binding will either return a user defined
exception or a javax.xml.rpc.soap.SOAPFaultException object. If the
remote endpoint is implemented using Artix, a SOAPFaultException IS
returned when either:

® an Artix runtime exception occurred.
® the application code threw a FaultException object.

You can inspect the soaPFaultException object’s Faultstring field to
determine the cause of the exception. It contains the string from the
Message field of the FaultException that caused the soaPFaultException.

Example 54 shows code for catching a soaPFaultException and inspecting
its Faultstring field.

Example 54: Catching a SOAPFaultException

try
{
String returnval = impl.sayHi();
System.out.println ("Returned: "+returnval);
}
catch (SOAPFaultException sfe)
{
System.out.println ("Caught exception");
System.out.println("Fault String: "+sfe.getFaultString());
}

Throwing exceptions

More information

Using the SOAP Binding

When throwing exceptions from Artix applications using the SOAP binding,
you do not need to do anything special. You can throw a FaultException
object and the SOAP binding will map it into a soaPFaultException. In the
mapping the FaultException object’s Message field is mapped to the
SOAPFaultException Object’s FaultString field.

You can also throw soaPFaultException object directly.

For more information on soaPFaultException objects see the
SOAPFaul tException Javadoc.

117

http://java.sun.com/j2ee/1.4/docs/api/javax/xml/rpc/soap/SOAPFaultException.html

CHAPTER 6 | Handling Artix Generated Exceptions

118

In this chapter

CHAPTER 7

Working with Artix
Data Types

Artix maps XMLSchema data types in an Artix contract into
Java data types. For XMLSchema simple types the mapping is
a one-to-one mapping to Java primitive types. For complex
types, Artix follows the JAX-RPC specification for mapping
complex types into Java objects.

This chapter discusses the following topics:

XMLSchema Elements page 120
Using XMLSchema Simple Types page 121
Using XMLSchema Complex Types page 145
Using XMLSchema any Elements page 202
SOAP Arrays page 210
Holder Classes page 214
Using SOAP with Attachments page 218
Unsupported XMLSchema Constructs page 223

119

CHAPTER 7 | Working with Artix Data Types

XMLSchema Elements

Schema elements

Java mapping

120

Elements in XMLSchema represent an instance of an element in an XML
document generated from the schema. At their most basic, an element
consists of a single element element. Global element elements have two
attributes:

® name specifies the name of the element as it will appear in an XML
document.

® type specifies the type of the element. The type can be any
XMLSchema primitive type or any named complex type defined in the
contract.

In addition to name and type, global elements have one other commonly
used optional attributes: nillable. This attribute specifies if an element can
be left out of a document entirely. If nillable is set to true, the element
can be omitted from any document generated using the schema.

An element can also define its own type. Elements defined this way have an
in-line type definition. In-line types are specified using either a complexType
element or a simpleType element. Once you specify if the type of data is
complex or simple, you can define any type of data needed using the tools
available for each type of data. In-line type definitions are discouraged,
because they are not reusable.

Artix does not generate special classes for element elements unless they
have an in-line type definition. For in-line type definitions Artix follows the
same rules for code generation as described for a type definition. The
mappings between XMLSchema types and Java classes is described in the
following sections of this chapter.

Because Artix does not generate classes specifically for elements some of
the attributes of XMLSchema elements are not supported. In particular, the
attribute "abstract=true" is not recognized by Artix. If you specify that an
element is abstract and give it an in-line type definition, Artix will still
generate a class to support the defined type.

Using XMLSchema Simple Types

Using XMLSchema Simple Types

Overview Artix follows the JAX-RPC specification for mapping native XMLSchema
types into Java. In most cases, the mapping from an atomic XMLSchema
type is to a primitive Java type. However, some instances require a more
complex mapping.

In this section This section contains the following subsections:
Atomic Type Mapping page 122
Special Atomics Type Mappings page 125
Defining Simple Types by Restriction page 127
Using Enumerations page 132
Using Lists page 138
Using XMLSchema Unions page 141

121

CHAPTER 7 | Working with Artix Data Types

Atomic Type Mapping

Overview

Table of atomic type mappings

122

When a message part is described as being of one of the atomic
XMLSchema types, the generated parameter’s type will be of a
corresponding primitive Java type. For example, the message description
shown in Example 55 will cause a parameter, score, of type int to be
generated.

Example 55: Message Description Using a Simple Type
<message name="scoreResponse'">

<part name="score" type="xsd:int" />
</message>

The atomics type mappings are shown in Table 4.

Table 4: Simple Schema Type to Primitive Java Type Mapping

Schema Type Java Type

xsd:string java.lang.String

xsd:normalizedString java.lang.String

xsd:int int
xsd:unsignedInt long
xsd:long long

xsd:unsignedLong java.math.BigInteger

xsd:short short
xsd:unsignedShort int
xsd:float float
xsd:double double
xsd:boolean boolean
xsd:byte byte

Using XMLSchema Simple Types

Table 4: Simple Schema Type to Primitive Java Type Mapping

Schema Type Java Type
xsd:unsignedByte byte
xsd:integer java.math.BigInteger
xsd:positiveInteger java.math.BigInteger
xsd:negativeInteger java.math.BigInteger
xsd:nonPositiveInteger java.math.BigInteger
xsd:nonNegativeInteger java.math.BigInteger
xsd:decimal java.math.BigDecimal
xsd:dateTime java.util.Calendar
xsd:time java.util.Calendar
xsd:date java.util.Calandar
xsd:QName javax.xml.namespace.QName
xsd:base64Binary bytel]
xsd:hexBinary bytel[]
xsd:ID java.lang.String
xsd:token java.lang.String
xsd:language java.lang.String
xsd:Name java.lang.String
xsd:NCName java.lang.String
x5d :NMTOKEN java.lang.String
xsd:anySimpleType java.lang.String
xsd:anyURI java.net.URI
xsd:gYear java.lang.String
xsd:gMonth java.lang.String

123

CHAPTER 7 | Working with Artix Data Types

Atomic type validation

124

Table 4: Simple Schema Type to Primitive Java Type Mapping

Schema Type Java Type

xsd:gDay java.lang.String

xsd:gYearMonth java.lang.String

xsd:gMonthDay

java.lang.String

Artix Java validates XMLSchema atomic types when they are passed to the
bus for writing to the wire. This means that when you are working with data
elements that are mapped from XMLSchema atomics types you should take
care to ensure that they conform to the restrictions of the XMLSchema type.
For example, the Java APIs would allow you to set a value of -10 into a data
element that is mapped to an xsd:positiveInteger. However, when the

bus attempted to write out the message containing that data element, the
bus would throw an exception.

Using XMLSchema Simple Types

Special Atomics Type Mappings

Overview Mapping XMLSchema atomic types to Java primitives does not work for all
possible data descriptions in an Artix contract. Several cases require that an
XMLSchema atomics type is mapped to the Java primitive's corresponding
wrapper type. These cases include:
® an element element with its nillable attribute set to true as shown in
Example 56.

Example 56: Nillable Element
<element name="finned" type="xsd:boolean" nillable="true" />

® an element element with its minoccurs attribute set to 0 and its
maxOccurs attribute set to 1 or its maxoccurs attribute not specified as
shown in Example 57.

Example 57: minOccurs set to Zero
<element name="plane" type="xsd:string" minOccurs="0" />

® an attribute element with its use attribute set to optional, or not
specified, and having neither its default attribute nor its fixed
attribute specified as shown in Example 58.

Example 58: Optional Attribute Description

<element name="date">
<complexType>
<sequence/>
<attribute name="calType" type="xsd:string"
use="optional" />
</complexType>
</element>

Mappings Table 5 shows how XMLSchema simple types are mapped into Java
wrapper classes in these special cases.

125

CHAPTER 7 | Working with Artix Data Types

Table 5: simple Schema Type to Java Wrapper Class Mapping

Schema Type Java Type
xsd:int java.lang.Integer
xsd:long java.lang.Long
xsd:short java.lang.Short
xsd:float java.lang.Float
xsd:double java.lang.Double
xsd:boolean java.lang.Boolean
xsd:byte java.lang.Byte
xsd:unsignedByte java.lang.Short
xsd:unsignedShort java.lang.Integer
xsd:unsignedInt java.lang.Long
xsd:unsignedLong java.math.BigInteger
xsd:duration java.lang.String

126

Using XMLSchema Simple Types

Defining Simple Types by Restriction

Overview

Procedure

Describing a simple type in
XMLSchema

XMLSchema allows you to create simple types by deriving a new type from
another primitive type or simple type. Simple types are described in the
type> section of an Artix contract using a simpleType element.

The new types are described by restricting the base type with one or more of
a number of facets. These facets limit the possible valid values that can be
stored in the new type. For example, you could define a simple type, ssn,
which is a string of exactly 9 characters. Each of the primitive XMLSchema
types has their own set of optional facets. Artix does not enforce the use of
all the possible facets. However, to ensure interoperability, your service
should enforce any restrictions described in the contract.

To define your own simple type do the following:

1. Determine the base type for your new simple type.

2. Based on the available facets for the chosen base type, determine what
restrictions define the new type.

3. Using the syntax shown in this section, enter the appropriate
simpleType element into the types section of your contract.

Example 59 shows the syntax for describing a simple type.

Example 59: Simple Type Syntax

<simpleType name="typeName">
<restriction base="baseType">
<facet value="value"/>
<facet value="value"/>

</restriction>
</simpleType>

The type description is enclosed in a simpleType element and identified by
the value of the name attribute. The base type from which the new simple
type is being defined is specified by the base attribute of the restriction

127

CHAPTER 7 | Working with Artix Data Types

Mapping simple types to Java

128

element. Each facet element is specified within the restriction element.
The available facets and their valid setting depends on the base type. For
example, xsd:string has six facets including:

length
minLength
maxLength
pattern

whitespace

Example 60 shows an example of a simple type, ssn, which represents a
social security number. The resulting type will be a string of the form
XXX-XX-XXXX. <SSN>032-43-9876<SSN> is a valid value, but
<SSN>032439876</SSN> is not valid.

Example 60: SSN Simple Type Description

<simpleType name="SSN">
<restriction base="xsd:string">
<pattern value="\d{3}-\d{2}-\d{4}" />
</restriction>
</simpleType>

Artix maps user-defined simple types to the Java type of the simple type’s
base type. So, any message using the simple type ssn, shown in

Example 60, would be mapped to a string because the base type of ssn is
xsd:string. For example, the contract fragment shown in Example 61
would result in a Java method, creditInfo (), which took a parameter,
socNum, Of String

Example 61: Credit Request with Simple Types

<message name="creditRequest">
<part name="socNum" type="SSN" />
</message>

<portType name="creditAgent">
<operation name="creditInfo">
<input message="tns:creditRequest" name="credRec" />
<output message="tns:creditReport" name="credRep" />
</operation>
</portType>

Enforced facets

Using XMLSchema Simple Types

Because this mapping does not place any restrictions on the values placed a
variable that is mapped from a simple type and Artix does not enforce all
facets, you should ensure that your application logic enforces the restrictions
described in the contract for maximum interoperability.

For the facets that Artix does enforce, no special code is generated. Instead,
the enforcement is done by the Artix core. Therefore, the Artix user level
code will allow you to set invalid values into a restricted simple type.
However, when the Artix core attempts to parse the message, it will throw a
runtime exception and refuse to process the message.

Artix enforces the following facets:
length
The 1ength facet is a non-negative integer that works with a number of

primitive types. Table 6 describes the effects of the 1ength facet on
supported XMLSchema types.

Table 6: Effects of length Facet on XMLSchema Types

Restricted Type Effect

xsd:string The string must have the specified number of
characters.

xsd:anyURL The URL must have the specified number of
characters.

xsd:list The list must have the specified number of
elements.

xsd:hexBinary The value must have the specified number of
octets (8-bits).

xsd:base64Binary The value must have the specified number of
octets (8-bits).

129

CHAPTER 7 | Working with Artix Data Types

minLength

The minLength facet is a non-negative integer that works with a number of
primitive types. Table 7 describes the effects of the minLength facet on
supported XMLSchema types.

Table 7: Effects of minLength Facet on XMLSchema Types

Restricted Type Effect

xsd:string The string must have at least the specified
number of characters.

xsd:anyURL The URL must have at least the specified
number of characters.

xsd:list The list must have at least the specified
number of elements.

xsd:hexBinary The value must have at least the specified
number of octets (8-bits).

xsd:base64Binary The value must have at least the specified
number of octets (8-bits).

maxLength

The maxLength facet is a non-negative integer that works with a number of
primitive types. Table 8 describes the effects of the maxr.ength facet on
supported XMLSchema types.

Table 8: Effects of maxLength Facet on XMLSchema Types

Restricted Type Effect

xsd:string The string must have no more than the
specified number of characters.

xsd:anyURL The URL must have no more than the specified
number of characters.

xsd:list The list must have no more than the specified
number of elements.

xsd:hexBinary The value must have no more than the
specified number of octets (8-bits).

130

Unenforced facets

Using XMLSchema Simple Types

Table 8: Effects of maxLength Facet on XMLSchema Types

Restricted Type Effect

xsd:base64Binary The value must have no more than the
specified number of octets (8-bits).

enumeration

For more information on the enumeration facet, read “Using Enumerations”
on page 132.

Artix does not enforce the following facets:

pattern
whiteSpace
maxInclusive
maxExclusive
minInclusive
minExclusive
totalDigits
fractionDigits

131

CHAPTER 7 | Working with Artix Data Types

Using Enumerations

Overview In XMLSchema, enumerations are described by derivation of a simple type
using the syntax shown in Example 62.

Example 62: Syntax for an Enumeration

<simpleType name="EnumName">
<restriction base="EnumType">
<enumeration value="CaselValue" />
<enumeration value="CaseZValue" />

<enumeration value="CaseNValue" />
</restriction>
</simpleType>

EnumName Specifies the name of the enumeration type. EnumType specifies
the type of the case values. casenvalue, where nis any number one or
greater, specifies the value for each specific case of the enumeration. An
enumerated type can have any number of case values, but because it is
derived from a simple type, only one of the case values is valid at a time.

For example, an XML document with an element defined by the
enumeration widgetsize, shown in Example 63, would be valid if it were
<widgetSize>big</widgetSize>, but not if it were
<widgetSize>big,mungo</widgetSize>

Example 63: widgetSize Enumeration

<simpleType name="widgetSize">
<restriction base="xsd:string">
<enumeration value="big"/>
<enumeration value="large"/>
<enumeration value="mungo"/>
<enumeration value="gargantuan"/>
</restriction>
</simpleType>

132

Mapping to a Java class

Using XMLSchema Simple Types

Artix maps enumerations to a Java class whose name is taken from the
schema type’s name attribute. So Artix would generate a class, widgetSize,
to represent the widgetsize enumeration.

Note: If the enumeration is an anonymous type nested inside of a
complex type, the naming of the generated Java class follows the same
pattern as laid out in “Nesting with Anonymous Types” on page 172.

The generated class contains two static public data members for each
possible case value. One, _caseNvalue, holds the data value of the
enumeration instance. The other, casenvalue, holds an instance of the class
associated with the data value. The generated class also contains four
public methods:

fromValue() returns the representative static instance of the class based on
the value specified. The specified value must be of the enumeration’s type
and be a valid value for the enumeration. If an invalid value is specified an
exception is thrown.

fromString() returns the representative static instance of the class based on
a string value. The value inside the string must be a valid value for the
enumeration or an exception will be thrown.

getValue() returns the value for the class instance on which it is called.

toString() returns a stringified representation of the class instance on which
it is called.

For example Artix would generate the class, widgetsize, shown in
Example 64, to represent the enumeration, widgetsize, shown in
Example 63 on page 132.

Example 64: WidgetSize Class

// Java
public class WidgetSize

{
public static final String TARGET NAMESPACE =
"http://widgetVendor.com/types/widgetTypes";

133

CHAPTER 7 | Working with Artix Data Types

134

Example 64: WidgetSize Class

private final

public
public

public
public

public
public

public
public

static
static

static
static

static
static

static
static

String _val;

final String big = "big";

final WidgetSize big = new WidgetSize (big);
final String large = "large";

final WidgetSize large = new WidgetSize(large);
final String mungo = "mungo";

final WidgetSize mungo = new WidgetSize (_mungo);
final String gargantuan = "gargantuan";

final WidgetSize gargantuan = new

WidgetSize (_gargantuan) ;

protected WidgetSize (String value)

{

_val

}

= value;

public String getValue ()

{

return val;

}i

Using XMLSchema Simple Types

Example 64: WidgetSize Class

public static WidgetSize fromvValue (String value)
{

if (value.equals("big"))

{

return big;

}

if (value.equals ("large"))

{

return large;
if (value.equals ("mungo"))

return mungo;
}
if (value.equals ("gargantuan"))
{
return gargantuan;
}
throw new IllegalArgumentException ("Invalid enumeration
value: "+value);

bi

public static WidgetSize fromString (String value)
{

if (value.equals("big"))

{

return big;
if (value.equals ("large"))

return large;
}
if (value.equals ("mungo"))
{
return mungo;
}
if (value.equals ("gargantuan"))
{
return gargantuan;
}
throw new IllegalArgumentException ("Invalid enumeration
value: "+value);
bi

135

CHAPTER 7 | Working with Artix Data Types

Working with enumerations in
Java

136

Example 64: WidgetSize Class

public String toString ()
{

return ""+ val;

}

Unlike the classes generated to represent complex types, the Java classes
generated to represent enumerations do not need to be specifically
instantiated, nor do they provide setter methods. Instead, you use the
fromvalue () Or fromString () methods on the class to get a reference to
one of the static members of the enumeration. Once you have the reference
to your desired member, you use the getvalue () method on that member to
determine the value for the member.

If you were working with the widgetsize enumeration, shown in

Example 63 on page 132, to build an ordering system, you would need a
way to enter the size of the widget you wanted to order and then store that
choice as part of the order. Example 65 shows a simple text entry method
for getting the proper member of the enumeration using fromvalue (),

Example 65: Using fromValue() to Get a Member of an Enumeration

// Java
temp = new String();
WidgetSize ordered size;

// Get the type of widgets to order
System.out.println("What size widgets do you want?");
System.out.println ("Big") ;

System.out.println ("Large") ;

System.out.println ("Mungo") ;

System.out.println ("Gargantuan") ;

temp = inputBuffer.readLine();

ordered size = WidgetSize.fromValue (temp) ;

Because the value used to define the cases of the enumeration is a string,
fromvalue () takes a string and returns the member based on the value of
the string. In this example, fromstring() is interchangeable with
fromvalue (). However, if the value of the enumeration were integers,
fromvalue () would take an int.

Using XMLSchema Simple Types

To print the bill you will need to display the size of the widgets ordered. To
get the value of the ordered widgets, you could use the getvalue () method
to retrieve the value of the enumeration or you could use the tostring ()
method to return the value as a string. Example 66 uses getvalue () to
return the value of the enumeration retrieved in Example 65 on page 136

Example 66: Using getValue()
// Java

String sizeVal = ordered size.getValue();
System.out.println ("You ordered "+sizeVal+" sized widgets.");

137

CHAPTER 7 | Working with Artix Data Types

Using Lists

Overview

Defining list types in XMLSchema

138

XMLSchema supports a mechanism for defining data types that are a list of
space separated simple types. An example of an element, simpleList, using
a list type is shown in Example 67.

Example 67: List Type Example
<simpleList>apple orange kiwi mango lemon lime<\simpleList>

In Java code list types are mapped into arrays.

XMLSchema list types are simple types and as such are defined using a
simpleType element. The most common syntax used to define a list type is
shown in Example 68.

Example 68: Syntax for List Types

<simpleType name="1istType">
<list itemType="atomicType">
<facet value="value"/>
<facet value="value"/>

</iiét>
</simpleType>
The value given for atomicType defines the type of the elements in the list. It

can only be one of the built in XMLSchema atomic types, like xsd:int or
xsd:string, Or a user-defined simple type that is not a list.

In addition to defining the type of elements listed in the list type, you can
also use facets to further constrain the properties of the list type. Table 9
shows the facets used by list types.

Table 9: List Type Facets

Facet Effect

length Defines the number of elements in an instance of the
list type.

Using XMLSchema Simple Types

Table 9: List Type Facets

Facet Effect

minLength Defines the minimum number of elements allowed in
an instance of the list type.

maxLength Defines the maximum number of elements allowed in
an instance of the list type.

enumeration Defines the allowable values for elements in an
instance of the list type.

pattern Defines the lexical form of the elements in an instance
of the list type. Patterns are defined using regular
expressions.

For example, the definition for the simpleList element shown in
Example 67 on page 138, is shown in Example 69.

Example 69: Definition for simpleList

<simpleType name="simpleListType">
<list itemType="string"/>
</simpleType>
<element name="simpleList" type="simpleListType"/>

In addition to the syntax shown in Example 68 on page 138 you can also
define a list type using the less common syntax shown in Example 70.

Example 70: Alternate Syntax for List Types

<simpleType name="1istType">
<list>
<simpleType>
<restriction base="atomicType">
<facet value="value"/>
<facet value="value"/>

</restriction>
</simpleType>

</list>
</simpleType>

139

CHAPTER 7 | Working with Artix Data Types

Mapping of list types in Java

140

List types are mapped to Java arrays and do not cause a new class to be
generated to represent them. Instead, any message part that was specified
in the Artix contract as being of type 1istType or any element of another
complex type that was of type 1istType in the Artix contract would be
mapped to an array of the type specified by the itemType attribute.

For example, the list type, stringList, shown in Example 71 defines a list
of strings that must have at least two elements and no more than six
elements. The itemType attribute specifies the type of the list elements,
xsd:string. The facets minLength and maxLength Set the size constraints on
the list.

Example 71: Definition of stringList

<simpleType name="stringList">
<list itemType="xsd:string">
<minLength value="2" />
<maxLength value="6"/>
</list>
</simpleType>

Any message part of type stringList and any complex type element of type
stringList would be mapped to string[]. So the contract fragment shown
in Example 72, would result in the generation a Java method
celebWasher () that took a parameter, badrang, of type string[].

Example 72: Operation Using a List

<message name="badLang">
<part name="statement" type="stringList" />
</message>
<portType name="censor">
<operation name="celebWasher">
<input message="badLang" name="badLang" />
</operation>
</portType>

Using XMLSchema Simple Types

Using XMLSchema Unions

Overview

In XMLSchema, a union is a construct that allows you to describe a type
whose data can be of a number of simple types. For example, you could
define a type whose value could be either the integer 1 or the string first.

XMLSchema unions are simple types, defined using a simpleType element.
They contain at least one union element that define the member types of
the union. The member types of the union are the valid types of data that
can be stored in an instance of the union. You define them using the
memberTypes attribute of the union element. memberTypes contains a list of
one or more defined simple type names. Example 73 shows the definition of
a union that can store either an integer or a string.

Example 73: Simple Union Type

<simpleType name="orderNumUnion">
<union memberTypes="xsd:string xsd:int" />
</simpleType>

In addition to specifying named types to be a member type of a union, you
can also define anonymous simple types to be a member type of a union.
This is done by adding the anonymous type definition inside of the union
tag. Example 74 shows an example of a union containing an anonymous
member type restricting the possible values of a valid integer to 1 through
10.

Example 74: Union with an Anonymous Member Type

<simpleType name="restrictedOrderNumUnion'">
<union memberTypes="xsd:string">
<simpleType>
<restriction base="xsd:int">
<minInclusive value="1" />
<maxInclusive value="10" />
</restriction>
</simpleType>
</union>
</simpleType>

141

CHAPTER 7 | Working with Artix Data Types

Mapping to Java class

142

Artix maps unions to a Java class whose name is taken from the schema
type’s name attribute. So Artix would generate a class, orderNumUnion, to
represent the orderNumUnion union.

Note: If the union contains an anonymous enumerated type, the nested
type will result in a generated class whose name begins with the name of
the union and ends with the name of the base simple type. See “Using
Enumerations” on page 132

The Java mapping of XMLSchema unions is very similar to that used in
mapping choice complex types. See “Choice Complex Types” on page 151.
The generated class would contain a getter method, a setter method and an
isSet method for each member type in the union. For example,
orderNumUnion, shown in Example 73 on page 141, would result in the
generated class shown in Example 75.

Example 75: Java Class for a Union

public class OrderNumUnion

{
private String discriminator;
private String string;
private int int

public String getString()
{
return (String)string;

}

public setString(String val)
{
this.string = val;
__discriminator = "string"

}

Working with unions in Java

Using XMLSchema Simple Types

Example 75: Java Class for a Union

public boolean isSetString()
{
if (_ discriminator != null &&
__discriminator.eqgauls ("string"))

{

return true;

return false;

}

public get int()
{
return (int) int;

}

public set int (int val)

{
this. int = val;
__discriminator = " int";

}

public boolean isSet int ()

{
if (_ discriminator != null && discriminator.eqauls(" int"))
{

return true;

return false;

}

public toString()
{

When working with unions in Java it is important to remember that in
XMLSchema only one of the member types can be valid at a time. This
means that in an Artix Java application, while it is possible for both
elements of the generated class can have valid data in them, only the last
element on which set was called will be transmitted across the wire. For

143

CHAPTER 7 | Working with Artix Data Types

144

example, if you called set_int () and then called setstring(), both
elements in orderNumunion would have valid data, but the discriminator
would be set to the string member and that is the only value Artix will
consider valid. If you transmitted the object, the receiving application would
only receive the data stored in the string member.

Receiving union types in Artix is a little more complicated. When using
bindings that pass information as XML documents, like SOAP, Artix will
follow the validation rules described in the XMLSchema specification for
determining the value of the union. So, if the xsi:type is written by the
sending application, Artix will use that to determine the valid member
element of the union. If the xsi:type is not written by the sending
application, Artix will use the order in which the member types are specified
in the type definition to determine the valid member type. For example, if an
Artix application using a SOAP binding receives an element of type
OrderNumUnion and the xsi:type is not written out by the sending
application, the data will be treated as a string because xsd:string is first
in the member type list.

Using XMLSchema Complex Types

Using XMLSchema Complex Types

Overview

In this section

Complex types are described in the types section of an Artix contract.
Typically, they are described in XMLSchema using a complexType element.
In contrast to simple types, complex types can contain multiple elements

and have attributes.

Complex types are generated into Java objects according to the mapping
specified in the JAX-RPC specification. Each generated object has a default
constructor, methods for setting and getting values from the object, and a

method for stiringifying the object.

This section contains the following subsections:

Sequence and All Complex Types page 146
Choice Complex Types page 151
Attributes page 155
Undeclared Attributes page 163
Nesting Complex Types page 167
Deriving a Complex Type from a Simple Type page 177
Deriving a Complex Type from a Complex Type page 181
Occurrence Constraints page 185
Using Model Groups page 197

145

CHAPTER 7 | Working with Artix Data Types

Sequence and All Complex Types

Overview

Mapping to Java

146

Complex types often describe basic structures that contain a number of
fields or elements. XMLSchema provides two mechanisms for describing a
structure. One method is to describe the structure inside of a sequence
element. The other is to describe the structure inside of an a11 element.
Both methods of describing a structure result in the same generated Java
classes.

The difference between using sequence and all is in how the elements of
the structure are passed on the wire. When a structure is described using
sequence, the elements are passed on the wire in the exact order they are
specified in the contract. When the structure is described using a11, the
elements of the structure can be passed on the wire in any order.

Note: You can define a complex type without using sequence, all, or
choice. However, the type can only contain attributes.

A complex type described with sequence or with a11 is mapped to a Java
class whose name is derived from the name attribute of the complexType
element in the contract from which the type is generated. As specified in the
JAX-RPC specification, the generated class has a getter and setter method
for each element described in the type. The individual elements of the
complex type are mapped to private variables within the generated class.

The generated setter methods are named by prepending set onto the name
of the element as given in the contract. They take a single parameter of the
type of the element and have no return value. For example, if a complex
type contained the element shown in Example 76, the generated setter
method would have the signature void setName (String val).

Example 76: Element Name Description

<complexType name="Address">
<all>
<element name="Name" type="xsd:string" />
</all>
</complexType>

The maxOccurs attribute

Using XMLSchema Complex Types

The generated getter methods are named by prepending get onto the name
of the element as given in the contract. They take no parameters and return
the value of the specified element. For example, the generated getter
method for the element described in Example 76 would have the signature
String getName ().

Elements of xsd:boolean are an exception to the above mapping. For
elements of type xsd:boolean, the getter methods name is prepended with
is. For example if an element is defined as <element name="in"
type="xsd:boolean /> the generated getter method would be boolean

isIn().

Note: If the name of the element begins with a lowercase letter, the
getter and setter methods will capitalize the first letter of the element
name before prepending get or set.

In addition to the getter and setter methods, Artix also generates a
tosString () method for each complex type. The tostring () method returns
a string containing a labeled list of the values for each element in the class.

Any elements whose maxOccurs attribute is set to a value greater than one or
set to unbounded, results in the generation of a Java array to contain the
value of the element. For example, the element described in Example 77
would result in the generation of a private variable, cbservedspeed,of type
float[].

Example 77: Element with MaxOccurs Greater than One

<complexType name="drugTestResults">
<sequence>
<element name="observedSpeed" type="xsd:float"
maxOccurs="unbounded" />

</sequence>
</complexType>

147

CHAPTER 7 | Working with Artix Data Types

The getter and setter methods for cbservedspeed are shown in Example 78.
Example 78: observedSpeed Getter and Setter Methods

// Java
public class drugTestResults
{

private float[] observedSpeed;

void setObservedSpeed (float[] val);
float[] getObservedSpeed() ;

Example Suppose you had a contract with the complex type, monsterstats, shown in
Example 79.

Example 79: monsterStats Description

<complexType name="monsterStats">
<all>
<element name="name" type="xsd:string" />
<element name="weight" type="xsd:long" />
<element name="origin" type="xsd:string" />
<element name="strength" type="xsd:float" />
<element name="specialAttack" type="xsd:string"
maxOccurs="3" />
</all>
</complexType>

The Java class generated to support monsterstats would be similar to
Example 80.

148

Using XMLSchema Complex Types

Example 80: monsterStats Java Class

// Java
public class monsterStats
{
public static final String TARGET NAMESPACE =
"http://monsterBootCamp.com/types/monsterTypes";

private String name;

private long weight;

private String origin;

private float strength;

private String[] specialAttack;

public void setName (String wval)
{
name=val;
}
public String getName ()
{

return name;

public void setWeight (long val)
{
weight=val;
}
public long getWeight ()
{

return weight;

public void setOrigin(String wval)
{
origin=val;
}
String getOrigin ()
{

return origin;

149

CHAPTER 7 | Working with Artix Data Types

150

Example 80: monsterStats Java Class

public void setStrength (float wval)
{
strength=val;
}
public float getStrength ()
{

return strength;

public void setSpecialAttack (String[] val)
{
specialAttack=val;
}
public String[] getSpecialAttack ()
{

return specialAttack;

public String toString ()
{
StringBuffer buffer = new StringBuffer();
if (name !'= null) {
buffer.append ("name: "+name+"\n");
}
if (weight != null) {
buffer.append ("weight: "+weight+"\n");
}
if (origin != null) {
buffer.append ("origin: "+origin+"\n");
}
if (strength != null) {
buffer.append ("strength: "+strength+"\n");
}
if (specialAttack != null) {

buffer.append ("specialAttack: "+specialAttack+"\n");

}

return buffer.toString() ;

Using XMLSchema Complex Types

Choice Complex Types

Overview

Mapping to Java

XMLSchema allows you to describe a complex type that may contain any
one of a number of elements. This is done using a choice element as part of
the complex type description. When elements are contained within a choice
element, only one of the elements will be transmitted across the wire.

Like complex types described with a sequence element or with an a11
element, complex types described with a choice element are mapped to a
Java class with getter and setter methods for each possible element inside
the choice element. In addition, the generated Java class for a choice
complex type includes an additional element, discriminator, to hold the
discriminator and a method for each element to determine if it is the current
valid value for the choice. For each element in the choice, a method
isSetelem name() is generated. If the element is the currently valid value,
its isset method returns true. If not, the method returns faise.

The discriminator is set in each of the complex type elements’ setter
methods. This means that while any of the elements in the Java object
representing the complex type may contain valid data, the discriminator
points to the last element whose value was set. As stated in the Web
services specification only the element to which the discriminator is set will
be placed on the wire by a server. For Artix developers this has two
implications:
1. Artix servers will only write out the value for the last element set on an
object representing a choice complex type.

2. When Artix clients receive an object representing a choice complex
type, only the element pointed to by the discriminator will contain valid
data.

151

CHAPTER 7 | Working with Artix Data Types

Example Suppose you had a contract with the complex type, terrainreport, shown
in Example 81.

Example 81: terrainReport Description

<complexType name="terrainReport">
<choice>
<element name="water" type="xsd:float" />
<element name="pier" type="xsd:short" />
<element name="street" type="xsd:long" />
</choice>
</complexType>

The Java class generated to represent terrainreport would be similar to
Example 82.

Example 82: terrainReport Java Class

// Java
public class TerrainReport
{
public static final String TARGET NAMESPACE =
"http://GlobeStrollers.com";

private String discriminator;
private float water;

private short pier;
private long street;

152

Using XMLSchema Complex Types

Example 82: terrainReport Java Class

public void setWater (float _v)
{
this.water= v;
_discriminator="water"’
}
public float getWater()
{
return water;
}
public boolean isSetWater ()
{
if(_ discriminator != null &&
__discriminator.equals ("water")) {
return true;

}

return false;

public void setPier (short v)

{
this.pier= v;
_discriminator="pier";

}

public short getPier ()

{
return pier;

}

public boolean isSetPier ()

{
if(_ discriminator != null &&

__discriminator.equals ("pier")) {

return true;

}

return false;

153

CHAPTER 7 | Working with Artix Data Types

Example 82: terrainReport Java Class

public void setStreet(long _v)
{
this.street= v;
_discriminator="street";
}
public long getStreet ()
{
return street;
}
public boolean isSetStreet ()
{
if(_ discriminator != null &&
__discriminator.equals ("street")) {
return true;

}

return false;

public void _setToNoMember ()
{
__discriminator = null;

}

public String toString ()
{
StringBuffer buffer = new StringBuffer();
if (water != null) {
buffer.append ("water: "+water+"\n");
}
if (pier != null) {
buffer.append ("pier: "+pier+"\n");
}
if (street != null) {
buffer.append ("street: "+street+"\n");
}

return buffer.toString() ;

154

Using XMLSchema Complex Types

Attributes

Overview

Describing an attribute in
XMLSchema

Artix supports the use of attribute elements and attributeGroup elements
within the scope of a complexType element. When defining structures for an
XML document attribute declarations provide a means of adding information
to be specified within the tag, not the value that the tag contains. For
example, when describing the XML element <value
currency="euro">410<\value> in XMLSchema currency would be
described using an attribute element as shown in Example 83 on

page 156.

The attributeGroup element allows you to define a group of reusable
attributes that can be referenced by all complex types defined by the
schema. For example, if you are defining a series of elements that all use
the attributes catagory and pubbate, you could define an attribute group
with these attributes and reference them in all the elements that use them.
This is shown in Example 86 on page 157.

When describing data types for use in developing application logic,
attributes are treated as elements of a structure. For each attribute
declaration contained within a complex type description, an element is
generated in the class for the attribute along with the appropriate getter and
setter methods. The application code must respect the use attribute of the
attribute, but the generated Java code does not enforce this behavior.

An XMLSchema attribute element has one required attribute, name, that is
used to identify the attribute. It also has four optional attributes:

use Specifies if the attribute is required, optional, or
prohibited.
type Specifies the type of value the attribute can take. If it is

not used the schema type of the attribute must be
defined in-line.

default Specifies a default value to use for the attribute. It is only
used when the attribute definition’s use attribute is set to
optional.

fixed Specifies a fixed value to use for the attribute. It is only
used when the attribute definition’s use attribute is set to
optional.

155

CHAPTER 7 | Working with Artix Data Types

Example 83 shows an attribute element defining an attribute, currency,
whose value is a string.

Example 83: XMLSchema for value

<element name="value'">
<complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:integer">
<xsd:attribute name="currency" type="xsd:string"
use="required" />
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>

If the type attribute is omitted from the attribute element, the format of
the data must be described in-line. Example 84 shows an attribute
element for an attribute, catagory, that can take the values autobiography,

non-fiction, Or fiction.

Example 84: Attribute with an In-Line Data Description
<attribute name="category" use="required">
<simpleType>
<restriction base="xsd:string">
<enumeration value="autobiography"/>
<enumeration value="non-fiction"/>
<enumeration value="fiction"/>
</restriction>
</simpleType>
</attribute>

156

Using XMLSchema Complex Types

Example 85 shows an alternate description of the catagory attribute using
the type attribute.

Example 85: Category Attribute Using the type Attribute

<simpleType name="catagoryType">
<restriction base="xsd:string">
<enumeration value="autobiography"/>
<enumeration value="non-fiction"/>
<enumeration value="fiction"/>
</restriction>
</simpleType>
<complexType name="attributed">

<attribute name="category" type="catagoryType" use="required">
</complexType>

Describing an attribute group in Using an attribute group in a complex type definition is a two step process.

XMLSchema The first step is to define the attribute group itself. An attribute group is
defined using an attributeGroup element with a number of attribute child
elements. When defining an attribute group, attributeGroup requires a
name attribute that defines the string used to refer to the attribute group. The
attribute children elements define the members of the attribute group and
are specified as shown in “Describing an attribute in XMLSchema” on
page 155. Example 86 shows the description of the attribute group
catalogIndecies. The attribute group has two members. catagory is of the
type defined in Example 85 on page 157. pubbate is of the native
XMLSchema type dateTime and is required.

Example 86: Attribute Group Definition

<attributeGroup name="catalogIndices">
<attribute name="catagory" type="catagoryType" />
<attribute name="pubDate" type="dateTime" use="required" />
</attributeGroup>

The second step is using an attribute group is to use the attribute group in
the definition of a complex type. You use attribute groups in complex type
definitions by using the attributeGroup element with the ref attribute. The
value of the ref attribute is the name given the attribute group that you
want to use as part of the type definition. For example if you wanted to use

157

CHAPTER 7 | Working with Artix Data Types

the attribute group catalogIndecies in the complex type dvdType, you
would use <attributeGroup ref="catalogIndecies" /> as shown in
Example 87.

Example 87: Complex Type with an Attribute Group

<complexType name="dvdType">
<sequence>
<element name="title" type="xsd:string" />
<element name="director" type="xsd:string" />
<element name="numCopies" type="xsd:int" />

</sequence>
<attributeGroup ref="catalogIndecies" />
</complexType>
Mapping to Java Attributes are mapped to elements in the generated Java class for a complex

type. For each attribute element in a complex type definition, a
corresponding element, along with getter and setter methods, will be added
to the generated Java class for the type. For example, a contract with the
complex type shown in Example 88 would generate a class with three sets
of getter/setter methods.

Example 88: techDoc Description

<complexType name="techDoc">
<all>
<element name="product" type="xsd:string" />
<element name="version" type="xsd:short" />
<all>
<attribute name="usefullness" type="xsd:float" use="optional"
default="0.01" />
</complexType>

158

Using XMLSchema Complex Types

The Java class generated to represent it would be similar to Example 89.
Example 89: techDoc Java Class

// Java
public class TechDoc
{
public static final String TARGET NAMESPACE =
"http://www.docUSA.org/usability";

private String product;
private short version;
private Float usefullness = new Float (0.01);

public void setProduct (String val)
{
product=val;
}
public String getProdcut ()
{

return product;

public void setVersion (short wval)
{
version=val;
}
public short getVersion ()
{

return version;

public void setUsefullness (Float val)
{
usefullness=val;
}
public Float getUsefullness ()
{

return usefullness;

159

CHAPTER 7 | Working with Artix Data Types

160

Example 89: techDoc Java Class

public String toString ()

{

StringBuffer buffer = new StringBuffer();

if (prudcut != null) {
buffer.append ("product: "+product+"\n");

}

if (version != null) {
buffer.append ("version: "+version+"\n");

}

if (usefullness != null) {
buffer.append ("usefullness: "+usefullness+"\n");

}

return buffer.toString();

}

Attribute groups are mapped into Java as if the members of the group were
explicitly used in the type definition. If your attribute group has three
members, and it is used in a complex type, the generated class for that type
will include an element, along with the getter and setter methods, for each
member of the attribute group. For example, the complex type defined in
Example 87, Artix would generate a class that contained the members
catagory and pubDate to support the members of the attribute group used
in the definition as shown in.

Example 90: dvdType Java Class

// Java

public class Dvd

{
private
private
private
private
private

String title;
String director;
short numCopies;
Catagory catagory;
Calendar pubDate;

Using XMLSchema Complex Types

Example 90: dvdType Java Class

public void setTitle (String val)
{
title=val;
}
public String getTitle ()
{

return title;

public void setDirector (String val)

{
director=val;
}
public String getDirector ()
{

return director;

public void setNumCopies (short wval)
{
numCopies=val;
}
public short getNumCopies ()
{

return numCopies;

public void setCatagory (Catagory val)
{
catagory=val;
}
public Catagory getCatagory ()
{

return catagory;

public void setPubData (Calendar val)

{
pubDate=val;

}
public Calendar getPubDate ()

{

return pubDate;

161

CHAPTER 7 | Working with Artix Data Types

Example 90: dvdType Java Class

public String toString ()
{

}

162

Using XMLSchema Complex Types

Undeclared Attributes

Overview

Defining in XMLSchema

XMLSchema has a mechanism that allows you to leave a place holder for an
arbitrary attribute in a complex type definition. Using this mechanism, you
could define a complex type that can have any attribute. For example, you
could create a type that defines the elements <robot name="epsilon" />,
<robot age="10000" />, Of <robot type="weevil" /> Without specifying
the three attributes. This can be particularly useful when you need to
provide for a bit of flexibility in your data.

Undeclared attributes are defined in XMLSchema using the anyattribute
element. It can be used wherever an attribute element can be used. The
anyAttribute element has no attributes as shown in Example 91.

Example 91: Complex Type with an Undeclared Attribute

<complexType name="arbitter">
<sequence>
<element name="name" type="xsd:string" />
<element name="rate" type="xsd:float" />
</sequence>
<anyAttribute />
</complexType>

The defined type, arbitter, has two elements and can have one attribute of
any type. The elements <officer
rank="12"><name>...</name><rate>...</rate></officer>, <lawyer
type="divorce"><name>...</name><rate>...</rate></lawyer>, and
<judge><name>. ..</name><rate>...</rate></judge> can all be generated
from the complex type arbitter.

Note: The anyattribute element is not support for complex types with
an all element.

163

CHAPTER 7 | Working with Artix Data Types

Mapping to Java When a complex type containing an anyaAttribute element is mapped to
Java, Artix adds a member called otheraAttributes to the generated class.
otherAttributes is Of type java.util.Map and as with all other attributes it
has a getter method and a setter method. Example 92 shows the class
generated for the complex type defined in Example 91.

Example 92: Class for a Complex Type with an Undeclared Attribute

package com.iona.schemas.types.cattypes;
import java.util.Map;

public class Arbitter
{
public static final String TARGET NAMESPACE =
"http://schemas.iona.com/types";

public static final javax.xml.namespace.QName ONAME = new

javax.xml.namespace.QName ("http://schemas.iona.com/types",
"arbitter");

private String name;
private float rate;
private Map otherAttributes;

public String getName ()
{

return name;

public void setName (String val)
{

this.name = val;

public float getRate()
{

return rate;

public void setRate (float wval)
{

this.rate = val;

164

Setting undeclared attributes

Using XMLSchema Complex Types

Example 92: Class for a Complex Type with an Undeclared Attribute

public Map getOtherAttributes ()
{

return otherAttributes;

public void setOtherAttributes (Map val)

{
this.otherAttributes = val;

public javax.xml.namespace.QName _getQName ()
{
return QNAME;

public String toString()
{

The otherAttributes member of the generated class expects to be

populated with a HashMap object. The map is keyed using QNames. You can
set the keys using either the standard javax.xml.namespace.QName object or

the Artix specific com.iona.common.util.oName object. Once you have
created and populated the hash map, you can set the otherattributes

member using the setotherattributes () method as shown in Example 93.

Example 93: Setting Values for Undeclared Attributes
judge = new Arbitter();
otherAtts = new HashMap() ;

QOName atl

new QName ("test.iona.com", "house");

QName at2 = new QName ("test.iona.com", "veteran");

otherAtts.put (atl, "Cape");
otherAtts.put (at2, "false");

judge.setOtherAttributes (otherAtts) ;

165

CHAPTER 7 | Working with Artix Data Types

Inspecting undeclared attributes

166

The code in Example 93 does the following:

1. Creates a new HashMap object to hold the undeclared attributes.
2. Creates gname objects for each of the attribute names.

3. Puts two attributes into the hash map.

4. Sets the otherattributes member of the object using its

setOtherAttributes () method.

Any changes to the hash map will be reflected in the value of the
otherAttributes member once it is set.

You retrieve the hash map holding undeclared attributes using the
getOtherAttributes () method. getotherAttributes () returns a Java Map
object that is keyed using com. iona.common.util.QName object. Example 94
shows code for checking the value of an undeclared attribute.

Example 94: Checking the Values for an Undeclared Attribute
import com.iona.common.util.QName;

// object judge populated earlier
Map otherAttrs = judge.getOtherAttributes();

QName atKey = new QName ("test.iona.com", "house");

String houseType = (String)otherAttrs.get (atKey) ;

The code in Example 94 does the following:

1. Imports the Artix specific oName class.

2. Retrieves the Map object containing the undeclared attributes.
3. Creates a oname object for the desired attribute.

4. Gets the value from the hash map.

Using XMLSchema Complex Types

Nesting Complex Types

Overview

Nesting with Named Types

XMLSchema allows you to define complex types that contain elements of a
complex type through a process called nesting. There are two ways of
nesting complex types:

® Nesting with Named Types
® Nesting with Anonymous Types

When you nest with a named type your element declaration is the same as
when the element was of a primitive type. The name of the complex type
that describes the element’s data is placed in the element’s type attribute as
shown in Example 95.

Example 95: Nesting with a Named Type

<complexType name="tweetyBird">
<sequence>
<element name="caged" type="xsd:boolean" />
<element name="granny proximity" type="xsd:int" />
</sequence>
</complexType>
<complexType name="sylvesterState">
<sequence>
<element name="hunger" type="xsd:int" />
<element name="food" type="tweetyBird" />
</sequence>
</complexType>

The complex type sylvesterState includes an element, food, of type
tweetyBird. The advantage of using named types is that tweetyBird can be
reused as either a standalone complex type or nested in another complex
type description.

Artix will generate a class for each of the named types. The type containing
the nested type will contain an element of the Java type generated for its
class. For example, the type defined in Example 95 will result in the
generation of two types:TweetyBird and SylvesterState. The generated
type sylvesterstate will contain an element food that is of type
TweetyBird.

167

CHAPTER 7 | Working with Artix Data Types

Example using named nested
types

168

If you had an application using the complex type shown in Example 95 on
page 167 your application would include two classes to support it,
TweetyBird and SylvesterState.

Example 96 shows the generated Java class for tweetyBird.
Example 96: TweetyBird Class

//Java
public class TweetyBird
{
public static final String TARGET NAMESPACE =
"http://toonville.org/foodstuffs";

private boolean caged;
private int granny proximity;

public boolean isCaged()
{

return caged;

public void setCaged (boolean val)
{

caged=val;

public int getGranny proximity ()
{
return granny proximity;

}

public void setGranny proximity(int val)
{
granny proximity=val;

}

Using XMLSchema Complex Types

Example 96: TweetyBird Class

public String toString()
{
StringBuffer buffer = new StringBuffer();

if (caged != null) {

buffer.append ("caged: "+caged+"\n");
}
if (granny proximity != null) {

buffer.append ("granny proximity: "+granny proximity+"\n");
}

return buffer.toString();

The generated class for sylvesterstate, shown in Example 97, has one
element, food, that is an instance of TweetyBird.

Example 97: SylvesterState Class

//Java

public class SylvesterState
{

public static final String TARGET NAMESPACE =
"http://toonville.org/cats";

private int hunger;
private TweetyBird food;

public int getHunger ()
{

return hunger;

public void setHunger (int val)
{

hunger=val;

169

CHAPTER 7 | Working with Artix Data Types

Example 97: SylvesterState Class

public TweetyBird getFood ()
{

return food;

public void setFood (TweetyBird val)
{

food=val;

public String toString ()

{
StringBuffer buffer = new StringBuffer();

if (caged !'= null) {
buffer.append ("hunger: "+hunger+"\n");
}
if (granny proximity != null) ({
buffer.append ("food: "+food+"\n");

}
return buffer.toString();

When you set the value of sylvesterState.food, you must pass a valid
TweetyBird object to setFood (). Also, when you get the value of
SylvesterState.food, you are returned a TweetyBird object which has its
own getter and setter methods. Example 98 shows an example of using the
nested type sylvesterState in Java.

Example 98: Working with Nested Complex Types

// Java
1 SylvesterState hunter = new SylvesterState();
hunter. setHunger (25) ;

2 TweetyBird prey = new TweetyBird();
prey.setCaged (false) ;

prey.setGranny proximity (0);

3 hunter.setFood (prey) ;

170

Using XMLSchema Complex Types

Example 98: Working with Nested Complex Types

System.out.println ("The cat is this hungry:
"+hunter.getHunger ()) ;

System.out.println("The food is caged:
"+hunter.getFood () .isCaged()) ;

TweetyBird outPrey = hunter.getFood() ;

System.out.println ("Granny is this many feet away:
"+outPrey.getGranny proximity());

The code in Example 98 does the following:

1. Instantiates a new sylvesterstate object and sets its hunger element
to 25.

2. Instantiates a new TweetyBird object and sets its values.
Sets the food element on hunter.

4. Prints out the value of the hunger element and the value of the food
element’s caged element.

5. Gets the food element, assigns it to outPrey then prints out the
granny proximity element.

171

CHAPTER 7 | Working with Artix Data Types

Nesting with Anonymous Types

Example using anonymous nested
types

172

When you nest with an anonymous type, the element declaration for the
nested complex type does not have a type attribute. Instead, the element’s
type description is provided as part of the element’s declaration.

Example 99 shows a description of sylvesterState using an anonymous
type.

Example 99: Nesting with an Anonymous Type

<complexType name="sylvesterState">
<sequence>
<element name="hunger" type="xsd:int" />
<element name="food">
<complexType>
<sequence>
<element name="caged" type="xsd:boolean" />
<element name="granny proximity" type="xsd:int" />
</sequence>
</complexType>
</element>
</sequence>
</complexType>

In this example, the food element of sylvesterstate still contains a caged
sub-element and a granny proximity sub-element. However, the complex
type used to describe food cannot be re-used.

When you use anonymous nested complex types, Artix generates a single
class for the named complex type. The nested complex type is mapped to a
public class that is internal to the generated class. The internal class will be
given the name of the element for which it is generated. For example, the
type defined in Example 99 would result in the generated class
SylvesterState. The generated class sylvesterstate contains a public
class named sylvesterState.Food to represent the food element.

If you had an application using the complex type shown in Example 96 on
page 168 your application would include the class sylvesterstate to
support it.

Using XMLSchema Complex Types

The generated class for sylvesterstate, shown in Example 100, contains
an internal class sylvesterState.Food. The element food is an instance of
SylvesterState.Food.

Example 100: Sy/vesterState Class

package com.iona.schemas.types.anoncattypes;
import java.util.Arrays;

public class SylvesterState
{
public static final String TARGET NAMESPACE =
"http://schemas.iona.com/types/anonCatTypes";

private int hunger;
private Food food;

public int getHunger ()
{

return hunger;

public void setHunger (int val)
{

this.hunger = val;

public Food getFood ()
{

return food;

public void setFood (Food val)
{
this.food = val;

173

CHAPTER 7 | Working with Artix Data Types

Example 100: Sy/vesterState Class

public String toString ()
{
StringBuffer buffer = new StringBuffer();
buffer.append ("hunger: "+hunger+"\n");
if (food !'= null)
{
buffer.append ("food: "+food+"\n");

return buffer.toString();

public static class Food

{
public static final String TARGET NAMESPACE =
"http://schemas.iona.com/types/anonCatTypes";

private boolean caged;
private int granny proximity;

public boolean isCaged()
{

return caged;

public void setCaged (boolean val)
{

this.caged = val;

public int getGranny proximity ()
{
return granny proximity;

}

public void setGranny proximity (int val)
{
this.granny proximity = val;

}

174

Using XMLSchema Complex Types

Example 100: Syl/vesterState Class

public String toString()

{
StringBuffer buffer = new StringBuffer();
buffer.append ("caged: "+caged+"\n");
buffer.append ("granny proximity: "+granny proximity+"\n");
return buffer.toString();

When you set the value of sylvesterState. food, you must pass a valid
SylvesterState.Food object to setFood (). Also, when you get the value of
SylvesterState.food, you are returned a sylvesterState.Food Object
which has its own getter and setter methods. Example 98 shows an
example of using the nested type sylvesterstate in Java.

Example 101: Working with Nested Complex Types

// Java
SylvesterState hunter = new SylvesterState();
hunter.setHunger (25) ;

SylvesterState.Food prey = new SylvesterState.Food() ;
prey.setCaged (false) ;
prey.setGranny proximity(0);

hunter.setFood (prey) ;

System.out.println ("The cat is this hungry:
"+hunter.getHunger ()) ;

System.out.println ("The food is caged:
"+hunter.getFood () .isCaged()) ;

SylvesterState.Food outPrey = hunter.getFood() ;
System.out.println ("Granny is this many feet away:
"+outPrey.getGranny proximity());

The code in Example 98 does the following:

1. Instantiates a new sylvesterstate object and sets its hunger element
to 25.

2. Instantiates a new sylvesterState.Food object and sets its values.

Sets the food element on hunter.

175

CHAPTER 7 | Working with Artix Data Types

4. Prints out the value of the hunger element and the value of the food
element’s caged element.
5. Gets the food element, assigns it to outPrey then prints out the

granny proximity element.

176

Using XMLSchema Complex Types

Deriving a Complex Type from a Simple Type

Overview Artix supports derivation of a complex type from a simple type. A simple
type has, by definition, neither sub-elements nor attributes. Hence, one of
the main reasons for deriving a complex type from a simple type is to add
attributes to the simple type.

There are two ways of deriving a complex type from a simple type:
® by extension
® by restriction

Derivation by extension Example 102 shows an example of a complex type, internationalPrice,
derived by extension from the xsd:decimal simple type to include a
currency attribute.

Example 102: Deriving a Complex Type from a Simple Type by Extension

<complexType name="internationalPrice">
<simpleContent>
<extension base="xsd:decimal">
<attribute name="currency" type="xsd:string"/>
</extension>
</simpleContent>
</complexType>

The simpleContent element indicates that the new type does not contain
any sub-elements and the extension element defines the derivation by
extension from xsd:decimal.

177

CHAPTER 7 | Working with Artix Data Types

Derivation by restriction

Java mapping

178

Example 103 shows an example of a complex type, idType, that is derived
by restriction from an xsd:string. The defined type must have a value that
is ten characters in length. In addition, idType has an attribute called

expires.
Example 103: complexType derived from a simpleType using Restriction

<complexType name="idType">
<simpleContent>
<restriction base="xsd:string">
<length value="10" />
</restriction>
</simpleContent>
<attribute name="expires" type="xsd:dateTime" />
</complexType>

As is Example 102 the simplecontent element signals that the new type
does not contain any children. However, the definition uses a restriction
element to constrain the possible values used in the new type. The
attribute element adds the attribute to the new type.

A complex type derived from a simple type is mapped to a Java class. The
generated class will contain an element, value, of the simple type from
which the complex type is derived. The class will also have a get_value ()
and a set_value() method. In addition, the generated class will have an
element, and the associated getter and setter methods, for each attribute
that extends the simple type.

When a complex type is derived by restriction the generated set_value ()
method will enforce the following facets:

o length

® maxLength

® nminlength

If you attempt to set an invalid value, set value () will throw a
RuntimeException. For more information on the effects of the facets see
X-REF.

Example

Using XMLSchema Complex Types

Example 104 shows the generated Java class representing the idType
complex type from Example 103.

Example 104: idType Java Class

//Java
public class IdType
{

public static final String TARGET NAMESPACE = "tracking.gov";

private String value;
private static final BigInteger length = new BigInteger ("10");
private Calendar expires;

public String get value ()
{
return value;

}

public void set value(String val)
{
BigInteger reallength = new
BigInteger (String.valueOf (val.length()));
if (reallength.compareTo (length) == 0)
{
_value = val;
return;
}
throw new RuntimeException ("Invalid length value in
org.soapinterop.xsd.IdType") ;
}

public Calendar getExpires ()
{

return expires;

public void setExpires(Calendar val)
{

this.expires = val;

179

CHAPTER 7 | Working with Artix Data Types

180

Example 104: idType Java Class

}

public javax.xml.namespace.QName getQName ()
{

return QNAME;
}

public String toString()
{
StringBuffer buffer = new StringBuffer();

if (_value != null)
{
buffer.append (" value : " + value + H\mT) g
}
if (expires != null)
{
buffer.append ("expires : " + expires + "\n");

}

return buffer.toString();

The simple type value (that is, the value enclosed between the <idType>
and </idType> tags) is accessed and modified by the get value () and
set_value () methods. The set value () method, due to the inclusion of the
length facet, checks to ensure that the value is the proper length. The value
of the expires attribute is accessed and modified using the getExpires ()
and setExpires () methods.

Using XMLSchema Complex Types

Deriving a Complex Type from a Complex Type

Overview

Schema syntax

Extending a complex type

Using XMLSchema, you can derive new complex types by extending or
restricting other complex types using the complexContent element. When
generating the Java class to represent the derived complex type, Artix
extends the base type’s class. In this way, the Artix-generated Java code
preserves the inheritance hierarchy intended in the XMLSchema.

You derive complex types from other complex types by using the
complexContent element and either the extension or the restriction
element. The complexContent element specifies that the included data
description includes more than one field. The extension element and the
restriction element, which are part of the complexContent definition,
specifies the base type being modified to create the new type. The base type
is specified by the pase attribute.

Within the extension element, you define the additional fields that make up
the new type. All elements that are allowed in a complex type description
are allowable as part of the new type’s definition. For example, you could
add an anonymous enumeration to the new type, or you could use the
choice element to specify that only one of the new fields is to be valid at a
time.

Example 105 shows an XMLSchema fragment that defines two complex
types, widgetOrderInfo and widgetOrderBillInfo. widgetOrderBillInfo
is derived by extending widgetorderInfo to include two new fields,
orderNumber and amtDue.

Example 105: Deriving a Complex Type by Extension

<complexType name="widgetOrderInfo">
<sequence>
<element name="amount" type="xsd:decimal"/>
<element name="order date" type="xsd:dateTime"/>
<element name="type" type="xsdl:widgetSize"/>
<element name="shippingAddress" type="xsdl:Address"/>
</sequence>
<attribute name="rush" type="xsd:QName" use="optional" />
</complexType>

181

CHAPTER 7 | Working with Artix Data Types

Restricting a complex type

182

Example 105: Deriving a Complex Type by Extension

<complexType name="widgetOrderBillInfo'">
<complexContent>
<extension base="xsdl:widgetOrderInfo">
<sequence>
<element name="amtDue" type="xsd:boolean"/>
<element name="orderNumber" type="xsd:string"/>
</sequence>
</extension>
</complexContent>
</complexType>

Within the restriction element you must list all of the elements and
attributes of the base type. For each element you can add restrictive
attributes to the definition. For example, you could add a maxoccurs
attribute to an element to limit the number of times it can occur. You could
also use the fixed attribute to force on or more of the elements to have
predetermined values.

Example 106 shows an example of defining a complex type by restricting
another complex type. The redefined type, wallawallaaddress, can only be
used for addresses in Walla Walla, Washington because the values for city,
state, and zipCode have been fixed.

Example 106: Defining a Complex Type by Restriction

<complexType name="Address">
<sequence>
<element name="name" type="xsd:string"/>
<element name="street" type="xsd:short" maxOccurs="3"/>
<element name="city" type="xsd:string"/>
<element name="state" type="xsd:string"/>
<element name="zipCode" type="xsd:string"/>
</sequence>
</complexType>

Generated Java code

Using XMLSchema Complex Types

Example 106: Defining a Complex Type by Restriction

<complexType name="wallawallaAddress">
<complexContent>
<restriction base="xsdl:Address">
<sequence>
<element name="name" type="xsd:string"/>
<element name="street" type="xsd:short" maxOccurs="3"/>
<element name="city" type="xsd:string"
fixed="WallaWalla"/>
<element name="state" type="xsd:string" fixed="WA" />
<element name="zipCode" type="xsd:string"fixed="99362" />
</sequence>
</restriction>
</complexContent>
</complexType>

As with all complex types defined in a contract, Artix generates a class to
represent complex types derived from another complex type. When the
complex type is derived from another complex type, the generated class
extends the base class generated to support the base complex type in the
contract.

When the new complex type is derived by extension, the generated class will
include getter and setter methods for all of the added elements and
attributes. The new methods will be generated according to the same
mappings as all other elements.

When the new complex type is derived by restriction, the generated class
will have no new getter or setter methods. It will simply redefine the Artix
specific information needed to marshal and unmarshal the data.

Note: Artix does not enforce the restriction defined in the contract. It is up
to you to ensure that your application logic enforces them.

For example, the schema in Example 105 on page 181 would result in the
generation of two Java classes, widgetOrderInfo and
WidgetBillOrderInfo. WidgetOrderBillInfo would extend
WidgetOrderInfo because widgetOrderBillInfo is derived by extension
from widgetorderInfo. Example 107 shows the generated class for
widgetOrderBillInfo.

183

CHAPTER 7 | Working with Artix Data Types

Example 107: WidgetOrderBillInfo

// Java
public class WidgetOrderBillInfo extends WidgetOrderInfo
{
public static final String TARGET NAMESPACE =
"http://widgetVendor.com/types/widgetTypes";

private boolean amtDue;
private String orderNumber;

public boolean isAmtDue ()
{

return amtDue;

public void setAmtDue (boolean val)
{

this.amtDue = val;

public String getOrderNumber ()
{

return orderNumber;

public void setOrderNumber (String wval)
{
this.orderNumber = val;

public String toString()
{
StringBuffer buffer = new StringBuffer (super.toString());
buffer.append ("amtDue: "+amtDue+"\n");
if (orderNumber != null)
{
buffer.append ("orderNumber: "+orderNumber+"\n") ;
}

return buffer.toString();

184

Using XMLSchema Complex Types

Occurrence Constraints

Overview

The sequence element

XMLSchema allows you to specify the occurrence constraints on three
different XMLSchema elements that make up a complex type definition:

® The sequence element
® The choice element
® The element element

You can specify that a sequence of elements is to occur multiple times by
setting the element’s minoccurs and maxoccurs attributes. The minoccurs
attribute specifies the minimum number of times the sequence must occur
in an instance of the defined complex type. The maxoccurs attribute
specifies the upper limit for how many times the sequence can occur in an
instance of the defined complex type. Example 110 shows the definition of
a sequence type, cultureInfo, with sequence occurrence constraints. The
choice type overall can be repeated O to 2 times.

Example 108: Sequence with Occurrence Constraints

<complexType name="CultureInfo">
<sequence minOccurs="0" maxOccurs="2">
<element name="Name" type="string"/>
<element name="Lcid" type="int"/>
</sequence>
</complexType>

Mapping to Java

When a sequence with occurrence constraints is mapped into Java it looks

very similar to a vanilla sequence. Each element still has a getter and setter

methods. However, these methods all take an additional parameter, index,

that specifies which instance of the sequence is being referenced. In

addition, Artix generates a new internal sequence, TypeName Insternal,

and four new functions to cope with the multiple occurrences of the type:

® setsize() allows you to specify how many times the sequence
occurs.

® getsize() returns the number of time the sequence occurs.

185

CHAPTER 7 | Working with Artix Data Types

® setTypeName Internal () allows to set an instance of the sequence
into one of the occurences.

® getTypeName internal () returns the instance of the sequence stored
at the specified index.

Example 109 shows an outline of the Java class generated for the type
defined in Example 108.

Example 109: Java Class for Sequence with Occurrence Constraints

public class CultureInfo

{

private CultureInfo Internal[] cultureInfo Internal;

public int getSize() {
if (null != cultureInfo Internal) ({
return cultureInfo Internal.length;

}

return 0;

186

Using XMLSchema Complex Types

Example 109: Java Class for Sequence with Occurrence Constraints

public void setSize(int sz) {
CulturelInfo.CultureInfo Internal[] temp = new
CultureInfo.CultureInfo Internal([sz];
if (null != cultureInfo Internal) ({
if (sz <= culturelnfo Internal.length) ({
for (int x = 0; x < sz; x++) {

temp[x] = culturelInfo Internal [x];
}
} else {
for (int x = 0; x < cultureInfo Internal.length;
x++) |
temp[x] = cultureInfo Internal[x];
}
for (int x = cultureInfo Internal.length; x < sz;
x++) |

temp[x] = new
CultureInfo.CultureInfo Internal();
}
}
} else {
for (int x = 0; x < sz; x++) {
temp[x] = new CultureInfo.CultureInfo Internal ();

}

cultureInfo Internal = temp;

public void
_setCulturelInfo Internal (CultureInfo.CultureInfo Internal
val, int indx) {

this.cultureInfo Internal([indx] = val;

public CulturelInfo.CultureInfo Internal
_getCulturelInfo Internal (int indx) {
return cultureInfo Internal[indx];

public void setName (java.lang.String val, int indx) {
this.cultureInfo Internal[indx] .setName (val);

187

CHAPTER 7 | Working with Artix Data Types

Example 109: Java Class for Sequence with Occurrence Constraints

public int getLcid(int indx) {
return cultureInfo Internal[indx].getLcid();

public void setLcid(int val, int indx) {
this.cultureInfo Internal[indx].setLcid(val);

public String toString() {
StringBuffer buffer = new StringBuffer();

if (culturelInfo Internal != null) {
buffer.append ("cultureInfo Internal : " +
java.util.Arrays.asList (cultureInfo Internal) .toString() +

H\nﬂ) ,.
}
return buffer.toString() ;

public static class CultureInfo Internal {

private String name;
private int lcid;

public String getName () {
return name;

public void setName (String val) {
this.name = val;

public int getLcid() {
return lcid;

public void setLcid(int val) {
this.lcid = val;

188

The choice element

Using XMLSchema Complex Types

Example 109: Java Class for Sequence with Occurrence Constraints

public String toString() {
StringBuffer buffer = new StringBuffer () ;

if (name !'= null) {

buffer.append("name : " + name + "\n");
}
buffer.append("lcid : " + lcid + "\n");

return buffer.toString() ;

A choice type can also be defined with occurrence constraints.You specify
these occurrence constraints on an element by setting the element’s
minOccurs and maxOccurs attributes. The minoccurs attribute specifies the
minimum number of times the choice must occur in an instance of the
defined complex type. The maxoccurs attribute specifies the upper limit for
how many times the choice type can occur in an instance of the defined
complex type. Example 110 shows the definition of a choice type,
ClubEvent, With choice occurrence constraints. The choice type overall can
be repeated O to unbounded times.

Example 110: Choice Occurrence Constraints

<complexType name="ClubEvent">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="MemberName" type="xsd:string"/>
<element name="GuestName" type="xsd:string"/>
</choice>
</complexType>

Mapping to Java

When a choice type with occurrence constraints is mapped into Java it looks
very similar to a vanilla choice type. Each element still has a getter a setter
and an isset method. However, these methods all take an additional
parameter, index, that specifies which instance of the choice type is being
referenced. In addition, Artix generates a new internal choice type,
TypeName Insternal, and four new functions to cope with the multiple
occurrences of the type:

189

CHAPTER 7 | Working with Artix Data Types

190

® setsize() allows you to specify how many times the choice type
occurs.

® getsize() returns the number of occurences of the choice type.

® setTypeName Internal () allows to set an instance of the choice type
into one of the occurences.

® getTypeName internal () returns the instance of the choice type
stored at the specified index.

Example 111 shows an outline of the Java class generated for the type
defined in Example 110.

Example 111: Java Class for Choice with Occurrence Constraints

public class ClubEvent
{

private String _ discriminator;
private ClubEvent Internal[] clubEvent Internal;

public int getSize()

{
if (null != clubEvent Internal)
{

return clubEvent Internal.length;

}

return 0;

Using XMLSchema Complex Types

Example 111: Java Class for Choice with Occurrence Constraints

public void setSize(int sz)

{
ClubEvent.ClubEvent Internal[] temp = new
ClubEvent.ClubEvent Internal[sz];
if (null != clubEvent Internal)

{
if (sz <= clubEvent Internal.length)
{
for (int x = 0; X < s2z; X++)
{

temp[x] = clubEvent Internal[x];

}

else

{

for (int x = 0; x < clubEvent Internal.length; x++)

{

temp[x] = clubEvent Internal[x];

}

for (int x = clubEvent Internal.length; x < sz; x++)

{
temp[x] = new ClubEvent.ClubEvent Internal();

}

else

{

for (int x = 0; x < sz; xt+)

{
temp[x] = new ClubEvent.ClubEvent Internal();

}

clubEvent Internal = temp;

}
public void _setClubEvent Internal (
ClubEvent.ClubEvent Internal val,

int indx)

this.clubEvent Internal[indx] = val;

}

191

CHAPTER 7 | Working with Artix Data Types

Example 111: Java Class for Choice with Occurrence Constraints

public ClubEvent.ClubEvent Internal _getClubEvent Internal (
int indx)

return clubEvent Internal [indx];

}

public java.lang.String getMemberName (int indx)

{
return clubEvent Internal [indx].getMemberName () ;

}

public void setMemberName (java.lang.String val, int indx)

{

this.clubEvent Internal [indx].setMemberName (val) ;

}

public boolean isSetMemberName (int indx)

{

return clubEvent Internal [indx].isSetMemberName () ;

}

public java.lang.String getGuestName (int indx)
{

return clubEvent Internal [indx].getGuestName () ;

}

public void setGuestName (java.lang.String val, int indx)

{

this.clubEvent Internal [indx].setGuestName (val) ;

}

public boolean isSetGuestName (int indx)

{

return clubEvent Internal [indx].isSetGuestName () ;

}

192

Using XMLSchema Complex Types

Example 111: Java Class for Choice with Occurrence Constraints

public String toString() {
StringBuffer buffer = new StringBuffer () ;
if (clubEvent Internal != null) {

buffer.append ("clubEvent Internal : " +
java.util.Arrays.asList (clubEvent Internal) .toString() +
ll\nll) ,.

}
if (_ discriminator != null) {

buffer.append ("Discriminator : " + discriminator +

ll\nll) ;

}

return buffer.toString();

public static class ClubEvent Internal {
private String discriminator;

private String memberName;
private String guestName;

public String getMemberName () {
return (String)memberName;

public void setMemberName (String val) {
this.memberName = val;
__ discriminator = "memberName";

public boolean isSetMemberName () {
if(_ discriminator != null &&
__discriminator.equals ("memberName")) {
return true;
}

return false;

193

CHAPTER 7 | Working with Artix Data Types

Example 111: Java Class for Choice with Occurrence Constraints

public String getGuestName () {
return (String)guestName;

public void setGuestName (String val) {
this.guestName = val;
__discriminator = "guestName";

public boolean isSetGuestName () {
if (_ discriminator != null &&
__discriminator.equals ("guestName")) {
return true;
}

return false;

public String toString() {
StringBuffer buffer = new StringBuffer();

if (memberName != null) ({
buffer.append ("memberName : " + memberName +
"\n") ;
}
if (guestName != null) ({
buffer.append ("guestName : " + guestName + "\n");
}
if (_ discriminator != null) ({
buffer.append ("Discriminator : " + discriminator
+ "\n");
}
return buffer.toString() ;
}
}
}
The element element You can set minimum and the maximum number of times that an element

in a complex type can occur. You specify these occurrence constraints on an
element by setting the element’s minoccurs and maxoccurs attributes. The
minOccurs attribute specifies the minimum number of times the element

must occur. The maxoccurs attribute specifies the upper limit for how many

194

Using XMLSchema Complex Types

times the element can occur. For example, if an element, 1ives, were to
occur at least twice and no more than nine times in a complex type it would
be described as shown in Example 112.

Example 112: Occurrence Constraints Setting

<complexType name="houseCat">
<all>
<element name="name" type="xsd:string" />
<element name="lives" type="xsd:short" minOccurs="2"
maxOccurs="9" />
</all>
</complexType>

Given the description in Example 112, a valid housecat element would
have a single name and at least two 1ives. However, a valid houseCat
element could not have more than nine lives.

Note: When a sequence schema contains a single element definition and
this element defines occurrence constraints, it is treated as an array. See
“SOAP Arrays” on page 210.

Mapping to Java

When a complex type contains an element with its maxoccurs attribute set
to a value greater than one, the element is mapped to an array of the
corresponding Java type. Because XMLSchema requires that the maxoccurs
attribute of an element is set to a value equal to or greater than the value of
the element’s minoccurs, the code generator will generate a warning if the
minOccurs attribute is set without a maxoccurs attribute. So all valid
elements with an occurrence constraint will be mapped into an array.

Example

For example, the complex type, housecat, shown in Example 112 will be
mapped to the Java class Housecat shown in Example 113.

Example 113: HouseCat Java Class

// Java

public class HouseCat

{
private String name;
private short[] lives;

195

CHAPTER 7 | Working with Artix Data Types

Example 113: HouseCat Java Class

public void setName (String val)
{
name=val;
{
public String getName ()
{

return name;

}

public void setLives (short[] val)
{
lives=val;
{
public short[] getLives ()
{

return lives;

}

public String toString ()

{
StringBuffer buffer = new StringBuffer();

if (name !'= null)

{

buffer.append ("name: "+name+"\n");

}

if (lives != null)

buffer.append("lives: "+lives+"\n");

}
return buffer.toString();

The generated code does not force you to obey the min and the max
occurrence rules from the contract, but your application code should be sure
to obey the contract rules. Attempting to send too few or too many
occurrences of an element across the wire will create unpredictable results.

196

Using XMLSchema Complex Types

Using Model Groups

Overview XMLSchema model groups are a convenient shortcut that enables you to
reference a group of elements from a user-defined complex type.For
example, you could define a group of elements that are common to several
types in your application and then reference the group repeatedly. Model
groups are defined using the group element and are similar to complex type
definitions. The mapping of model groups to Java is also similar to the
mapping for complex types.

Defining a model group in You define a model group in XMLSchema using the group element with the

XMLSchema name attribute. The value of name is a string that is used to refer to the group
throughout the schema. group, like complexType, can have either sequence,
all, Of choice as its immediate child element. Table 10 shows how the
choice of child element affects the behavior of the elements in the group.

Table 10: Group Children

Child Effect

sequence All the members of the group must
be present and are transmitted in

the exact order they appear in the
definition.

all All of the members of the group
must appear no more than once
and their order in unimportant.

choice No more than one member of the
group can appear.

Inside the child element, you define the members of the group using

element elements. For each member of the group, you specify one element.
Group members can use any of the standard attributes for element including
minOccurs and maxOccurs. S0, if your group has three elements and one of

197

CHAPTER 7 | Working with Artix Data Types

Using a model group in a type
definition

198

them can occur up to three times, you would define a group with three
element elements, one of which would use maxoccurs="3". Example 114
shows a model group with three elements.

Example 114: Model Group

<group name="passenger">
<sequence>
<element name="name" type="xsd:string" />
<element name="clubNum" type="xsd:long" />

<element name="seatPref" type="xsd:string" maxOccurs="3" />
</sequence>

</group>

Once a model group has been defined, you can use it as part of a complex
type definition. To use a model group in a complex type definition, you use
the group element with the rer attribute. The value of ref is the name given
to the group when it was defined. For example, to use the group defined in

Example 114 you would use <group ref="tns:passenger" /> as shown in
Example 115.

Example 115: Complex Type with a Model Group

<complexType name="reservation">
<sequence>
<group ref="tns:passenger" />
<element name="origin" type="xsd:string" />
<element name="destination" type="xsd:string" />
<element name="fltNum" type="xsd:long" />
</sequence>
</complexType>

When a model group is used in a type definition, the group becomes a
member of the type. So an instance of reservation would have four
members. The first of which would be passenger and have the members
defined by the group in Example 114 as shown in Example 116.

Example 116: Instance of a Type with a Group

<reservation>

Mapping to Java

Using XMLSchema Complex Types

Example 116: /nstance of a Type with a Group

<passenger>
<name>A. Smart</name>
<clubNum>99</clubNum>
<seatPref>islel</seatPref>
</passenger>
<origin>LAX</origin>
<destination>FRA</destination>
<f1tNum>34567</f1tNum>
</reservation>

Artix maps model groups to Java classes using the same mapping used for
complex types. For example, Artix would generate a Java class called
Passenger to represent the group passenger defined in Example 114 on
page 198. The generated class would have three members, one for each
member of the group, and the associated getter and setter methods as
shown in Example 117.

Example 117: Class for a Group

public class Passenger

{
private String name;
private long clubNum;
private String[] seatPref;

public String getName ()
{

return name;

public void setName (String val)
{

this.name = val;

199

CHAPTER 7 | Working with Artix Data Types

200

Example 117: Class for a Group

public long getClubNum ()
{

return clubNum;

}

public void setClubNum(long val)
{

this.clubNum = val;

}

public String[] getSeatPref ()
{
return seatPref;

}

public void setSeatPref (String[] val)
{
this.seatPref = val;
}
}

If the group definition used choice, the Artix generated class would also
include methods for determining which member of the group was valid. See
“Using XMLSchema Complex Types” on page 145 for a detailed discussion
of the mapping.

When Artix encounters a group in a complex type definition it maps the
group to a class member of the type generated for the group’s definition. For
example, the generated class for reservation, defined in Example 115 on
page 198, would include a member of type Passenger as shown in
Example 118.

Example 118: Type with a Group

public class Reservation

{
private Passenger passenger;
private String origin;
private String destination;
private long fltNum;

Using XMLSchema Complex Types

Example 118: Type with a Group

public Passenger getPassenger ()

{

return passenger;

}

public void setPassenger (Passenger val)

{

this.passenger = val;

public String getOrigin ()
{

return origin;

public void setOrigin(String wval)
{

this.origin = val;

}

201

CHAPTER 7 | Working with Artix Data Types

Using XMLSchema any Elements

Overview An XMLSchema any is a special element used to denote that an element’s
contents are undefined. An element defined using any can contain any XML
data. When mapped to Java, an any element is mapped to a SOAPElement
as called for in the JAX-RPC specification.

Describing an any in the contract Example 119 shows the syntax for defining an element as an any in an Artix
contract.

Example 119: Syntax of an any

<any [maxOccurs = max] [minOccurs = min]

[namespace = ((##any | ##other) | List of (anyURI |
(#f#targetNamespace | ##local)))]
[processContents = (lax | skip | strict)] />

Table 11 explains the details of the optional attributes.

Table 11: Attributes for an any

Attribute Explanation

maxOccurs Specifies the maximum number of times the
element can occur. Default is 1.

minOccurs Specifies the minimum number of times the
element must occur. Default is 1.

202

Using XMLSchema any Elements

Table 11: Attributes for an any

Attribute

Explanation

namespace

Specifies how to determine the namespace to use
when validating the contents of the any. Valid
entries are:

##any(default) specifies that the contents of the
any can be from any namespace.

##other specifies that the contents of the any can
be from any namespace but the target namespace.

list of URIs specifies that the contents of the any

are from one of the listed namespaces in the space

delimited list. The list can contain two special

values:

® ##local which correspondes to an empty
namespace.

® ##targetNamespace Which corrensponds to the
tager namespace of the schema in which the
any is defined.

processContents

Specifies how the contents of the any are validated.
Valid entries are:

strict(default) specifies that the contents of the any
must be a valid and well-formed XML document.

skip specifies that no validation is done on the
contents of the any. The only constraint is that it
must be a well-formed XML element.

lax specifies that if there is an XMLSchema
definition available to validate the contents of the
any, then it must be valid. If there is no
XMLSchema definition available, then validation is
skipped.

203

CHAPTER 7 | Working with Artix Data Types

Mapping to Java

204

Example 120 shows the definition of a type, wildcard, that contains an
any. The contents of wildcard can be defined in any, or no, namespace and
the validation of the contents is only performed if there is schema available.

Example 120: Complex Type with an any

<complexType name="wildCard">
<sequence>
<any namespace="##any" processContents="lax" />
</sequence>
</complexType>

XMLSchema any elements are mapped to a Java element of type
javax.xml.soap.SOAPElement. The member is named any and it is given
associated setter and getter methods. If a complex type contains more than
one any element the additional any elements are named _any n, where n is
an integer starting at one. For example, if a complex type had two any
elements the generated Java type would have two
javax.xml.soap.SOAPElement members, any and any 1.

Example 121 shows the Java class generated for the complex type
wildCard, shown in Example 120 on page 204.

Example 121: Generated Java Class with an any

// Java
import java.util.*;
import javax.xml.soap.SOAPElement;

public class WildCard

{
public static final String TARGET NAMESPACE =
"http://packageTracking.com/types/packageTypes";

private javax.xml.soap.SOAPElement _any;

public javax.xml.soap.SOAPElement get any ()
{

return _any;

}

Parsing an any

Using XMLSchema any Elements

Example 121: Generated Java Class with an any

public void set any(javax.xml.soap.SOAPElement val)
{
this. any = val;

}

public String toString()
{
StringBuffer buffer = new StringBuffer();
if (_any != null) {
buffer.append (" any: "+ any+"\n");
}
return buffer.toString();
}
}

If the minoccurs or maxoccurs attribute of the any element are set, then the
Java element is mapped to an array of soaPE1ement. For example, if the any
element in wildcard had maxOccurs="4", the any member of the generated
Java class would be a javax.xml.soap.SOAPElement [].

The fact that an any element can hold any well-formed XML data makes it
very flexible. However, that flexibility requires that your application is
designed to handle all the possible contents of the any.

For most applications, the contents of the any will have a finite number of
forms and these are known at development time. For example, if your
application is retrieving student records from a college database it may
receive different records based on if the student is a graduate student or an
under graduate student. In cases where you know at development time the
possible contents of the any, you can query the any for the name of its root
element using SOAPElement .getElementName () and determine from the
returned javax.xml.soap.Name how to process the contents.

Note: Because the contents of the any is an XML document made up
entirely of text, you do not necessarily need to determine the form of the
data. You can still extract the contents using the soaPE1ement’s methods.

205

CHAPTER 7 | Working with Artix Data Types

Example 122 shows code for querying the any in wildcard for its element
name. Once the element is determined, the application uses the local part of
the name to determine how to process the contents of the any.

Example 122: Determining the Contents of an any

// Java
import java.util.*;
import javax.xml.soap.*;

WildCard dataHolder;

// Client proxy, proxy, instantiated earlier
dataHolder = proxy.getRecord() ;
SOAPElement studentRec=dataHolder.get any();

// Get the root element name of the returned record
Name recordType = studentRec.getElementName () ;

if (recordType.getLocalName () .equals ("gradRec"))
{

// process the data as a graduate student record
if (recordType.getLocalName () .equals ("ugradRec"))

// process the data as a graduate student record

}

You can parse the XML content of the any using the

SOAPElement .getChildElements () method. getChildElements () returns a
Java Iterator containing a list of javax.xml.soap.Node elements
representing the nodes of the XML document contained in the any. These
nodes will in turn either be soaPElement nodes or javax.xml.soap.Text
nodes which will require further parsing.

Example 123 shows code for extracting the data from an any containing a
housecat, defined in Example 112 on page 195.

Example 123: Parsing the Contents of an any
// Java
import java.util.*;

import javax.xml.soap.*;

WildCard dataHolder;

206

Using XMLSchema any Elements

Example 123: Parsing the Contents of an any

// Client proxy, proxy, instantiated earlier
dataHolder = proxy.getCat () ;
SOAPElement catHolder = dataHolder.get any();

// Get the XML node from the returned any
Iterator catIt = catHolder.getChildElements();

if (catIt.hasNext ())
{
System.out.println ("The cat’s name is
"+catIt.next () .getValue()) ;
}

else

{
System.out.println("Malformed houseCat: No elements.");
return (-1);

}

if (catIt.hasNext())

{
for (Node index=catIt.next(); (catIt.hasNext()):;

index=catIt.next ())

System.out.println ("The cat lived
"+index.getValue () +"years");
}

else

{
System.out.println ("Malformed houseCat: No lives.");
return(-1);

The code in Example 123 does the following:
1. Gets the data and extracts the any from it.
2. Gets the children elements of the any.

3. Checks if there are any children elements. If there are, print the name.
If not, print an error message.

4. Checks if there are any more children elements. If there are, iterate
through the list and print the lives. If not, print an error message.

207

CHAPTER 7 | Working with Artix Data Types

Putting content into an any

208

To get the value of the nodes, the code uses the getvalue () method of the
node. For a soaPElement node, getvalue () returns the value of the element
if it has one, or it returns the value of the first child element that has one.
For example, if the soaPE1ement contains the element <name>Joe</name>,
getvalue () returns Joe. If the soaPElement contains
<houseCat><name>Joe</name><lives>12</lives></houseCat>, getValue ()
returns Joe. For a Text node, getvalue () returns the text stored in the
node.

When adding content into an any, you build up the XML document
contained in the any from scratch. The soapPElement provides a number of
methods for adding attributes and elements. It has methods for setting the
value of the contained elements.

Example 124 shows the code for creating an any element containing the
XML document

<houseCat><name>Joe</name><lives>12</lives></houseCat>.
Example 124: Building an any

//Java
import java.util.*;
import javax.xml.soap.*;

SOAPElementFactory factory = SOAPElementFactory.newlnstance();
SOAPElement anyContent = factory.create ("houseCat");

SOAPElement tmp = anyContent.addChildElement ("name") ;
tmp.addTextNode ("Joe") ;

tmp = anyContent.addChildElement ("lives");
tmp.addTextNode ("12") ;

WildCard dataHolder = new WildCard() ;
dataHolder.set any();

The code in Example 124 does the following:
1. Gets an instance of the soaPElementFactory.

2. Creates a new soapPElement, using the factory, to hold the contents of
the any.

3. Adds the name child element and set its value.

More information

Using XMLSchema any Elements

4. Adds the 1ives child element and set its value.

5. Creates a new wildcard and set the any element to the newly created
SOAPElement.

For a detailed description of the classes used to represent and work with any
elements read the SOAP with Attachments API for Java™ (SAAJ) 1.2
specification.

209

http://java.sun.com/webservices/saaj/index.jsp

CHAPTER 7 | Working with Artix Data Types

SOAP Arrays

Overview

Syntax of a SOAP Array

210

SOAP encoded arrays support the definition of multi-dimensional arrays,
sparse arrays, and partially transmitted arrays. They are mapped directly to
Java arrays of the base type used to define the array.

SOAP arrays can be described by deriving from the soap-ENC:Array base
type using the wsdl:arrayType. The syntax for this is shown in
Example 125.

Example 125: Syntax for a SOAP Array derived using wsdl:arrayType

<complexType name="TypeName">
<complexContent>
<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:arrayType"
wsdl :arrayType="ElementType<ArrayBounds>"/>
</restriction>
</complexContent>
</complexType>

Using this syntax, Typename specifies the name of the newly-defined array
type. ElementType specifies the type of the elements in the array.
ArrayBounds Specifies the number of dimensions in the array. To specify a
single dimension array you would use [1; to specify a two-dimensional array
you would use either (1171 or [,].

SOAP Arrays

You can also describe a SOAP Array using a simple element as described in
the SOAP 1.1 specification. The syntax for this is shown in Example 126.

Example 126: Syntax for a SOAP Array derived using an Element

<complexType name="TypeName">
<complexContent>
<restriction base="SOAP-ENC:Array">
<sequence>
<element name="ElementName" type="ElementType"
maxOccurs="unbounded" />
</sequence>
</restriction>
</complexContent>
</complexType>

When using this syntax, the element’s maxoccurs attribute must always be
set t0 unbounded.

Java mapping SOAP arrays, like basic arrays, are mapped to Java arrays and do not cause
a new class to be generated to represent them. Instead, any message part
that was specified in the Artix contract as being of type arrayType or any
element of another complex type that was of type arrayType in the Artix
contract would be mapped to an array of the appropriate type.

For example, the SOAP Array, soapstrings, shown in Example 127 defines
a one-dimensional array of strings. The wsdl:arrayType attribute specifies
the type of the array elements, xsd:string, and the number of dimensions,
[1 implying one dimension.

Example 127: Definition of a SOAP Array

<complexType name="SOAPStrings">
<complexContent>
<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:arrayType"
wsdl:arrayType="xsd:string[]"/>
</restriction>
</complexContent>
</complexType>

211

CHAPTER 7 | Working with Artix Data Types

Multi-dimensional arrays

Sparse and partially transmitted
arrays

212

Any message part of type soapstrings and any complex type element of
type soapstrings would be mapped to string[]. So the contract fragment
shown in Example 128, would result in the generation a Java method
celebWasher () that took a parameter, badrang, of type string[].

Example 128: Operation Using an Array

<message name="badLang">
<part name="statement" type="SOAPStrings" />
</message>
<portType name="censor">
<operation name="celebWasher'">
<input message="badLang" name="badLang" />
</operation>
</portType>

Multi-dimensional arrays are also mapped to a Java array of the appropriate
type. In the case of a multi-dimensional array, the generated Java array
would have the same dimensions as the SOAP array. For example, if
SOAPStrings Were mapped to a two-dimensional array, as shown in
Example 129, the mapping of celebwWasher () would take a parameter,
badLang, of type string[][].

Example 129: Definition of a two-dimensional SOAP Array

<complexType name="SOAPStrings">
<complexContent>
<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:arrayType"
wsdl:arrayType="xsd:string[] []"/>
</restriction>
</complexContent>
</complexType>

Sparse and partially transmitted arrays are simply special cases of how an
array is populated. A sparse array is an array where not all of the elements
are set. For example, if you had an array, intarray[], of 10 integers and
only filled in intArray[1], intArray[6], and intArray[9], it would be
considered a sparse array.

SOAP Arrays

A partially transmitted array is an array where only a certain range of
elements are set. For example, if you had a two dimensional array,
hotMatrix[x] [y], and only put values in elements where 9 > x> 5 and 4
> y > 0, it would be considered a partially transmitted array.

Artix handles both of these cases automatically for you. However, due to
differences between Web service implementations, an Artix Java client may
receive a fully allocated array with only a few elements containing valid
data.

213

CHAPTER 7 | Working with Artix Data Types

Holder Classes

Overview

Working with holder classes

214

WSDL allows you to describe operations that have multiple output
parameters and operations that have in/out parameters. Because Java does
not support pass-by-reference, as C+ + does, the JAX-RPC 1.1 specification
prescribes the use of holder classes as a mechanism to support output and
infout parameters in Java. The holder classes for the Java primitives, and
their associated wrapper classes, are packaged in javax.xml.rpc.holders.
The names of the holder classes start with a capital letter and end with the
Holder postfix. The name of the holder class for 1ong is LongHolder. For
primitive wrapper classes, Wrapper is placed after the class name and before
Holder. For example, the holder class for Long is LongWrapperHolder.

For complex types, Artix generates holder classes to represent the complex
type when needed. The generated holder classes follows the same naming
convention as the primitive holder classes and implement the
javax.xml.rpc.holders.Holder interface. For example, the holder class for
a complex type, hand, would be HandHolder.

All holder classes provide the following:

® A public field named value of the mapped Java type. For example, a
HandHolder would have a value field of type Hand.

® A constructor that sets value to a default.

® A constructor that sets value to the value of the passed in parameter.

A holder class is used in the generated Java code when an operation
described in your Artix contract either has an output message with multiple
parts or when an operation’s input message and output message share a
part. For a part to be shared it must have the same name and type in both
messages. Example 130 shows an example of an operation that would
require holder classes in the generated Java code.

Example 130: Multiple Output Parts

<message name="incomingPackage">
<part name="ID" type="xsd:long" />
</message>

Holder Classes

Example 130: Multiple Output Parts

<message name="outgoingPackage">
<part name="rerouted" type="xsd:boolean" />
<part name="destination" type="xsd:string" />
</message>
<portType name="portal">
<operation name="router">
<input message="tns:incomingPackage" name="recieved" />
<output message="tns:outgoingPackage" name="shipped" />
</operation>
</portType>

Artix will use holder classes for the parameters of the Java method
generated to implement the operation, router, because the output message
has multiple parts. Example 131 shows the resulting Java method
signature.

Example 131:/nterface Using Holders

//Java
import java.net.*;
import java.rmi.*;

public interface portal extends java.rmi.Remote
{
public boolean router (long ID,
javax.xml.rpc.holders.StringHolder destination)
throws RemoteException;

The first part of the outgoingPackage message, rerouted, is mapped to a
boolean return value because it is the first part in the output message.
However, the second output message part, destination, is mapped to a
holder class because it has to be mapped into the method’s parameter list.

215

CHAPTER 7 | Working with Artix Data Types

216

An example of an application that implements the portal interface might be
one that determines if a package has reached its final destination. The
router method would check to see if it need to be forwarded to a new
destination and reset the destination appropriately. Example 132 shows
how a server might implement the router method.

Example 132: Portal Implementation

//Java
import java.net.*;
import java.rmi.*;

// The methods boolean belongsHere () and
// String getFinalDestination() are left
// for the reader to implement.

public class portalImpl
{

public boolean router (long ID,
javax.xml.rpc.holders.StringHolder destination)

if (belongsHere (ID))
{

return false;

destination.value = getFinalDestination (ID);
return true;

Example 133 shows a client calling router () on a portal service.
Example 133: Client Calling router()

//Java

StringHolder destination = new StringHolder();
long ID = 1232;

boolean continuing;

Holder Classes

Example 133: Client Calling router()

// proxy portalClient obtained earlier
continuing = portalClient.router (ID, destination);

if (continuing)
{
System.out.println ("Package "+ID+" is going to
"t+destination.value) ;

217

CHAPTER 7 | Working with Artix Data Types

Using SOAP with Attachments

Overview

JAX-RPC mappings

218

When a contract specifies that one or more of an operation’s messages are
being sent using SOAP with attachments, also called a MIME multi-part

related message, Artix treats the data being passed as an attachment
differently than it would normally. The JAX-RPC specification defines

specific Java data types to be used when using SOAP attachments. The data
mappings for the data passed as a SOAP attachment is derived from the

MIME type specified in the contract for the message part.

In addition, Artix support the use of javax.activation.DataHandler objects

for handling SOAP attachments. pataHandler objects provide a generic

means of dealing with the data passed as a SOAP attachment. They also
allow you to directly access the stream representation of the data sent as a

SOAP attachment.

When Artix generates code for an operation that has one or more of its

message bound to a SOAP with attachment payload format, it inspects the

binding to see which parts of the bound message are being sent as

attachments. For the message parts that are to be sent as attachments, it
disregards the data type mappings described in previous sections and maps
the corresponding method parameter based on the MIME type specified for
the part in the contract. Table 12 shows the mappings for the supported

MIME types.

Table 12: MIME Type Mappings

MIME Type Java Type
image/gif? java.awt.Image
image/jpeg java.awt.Image
text/plain java.lang.String
text/xml javax.xml.transform.Source
application/xml javax.xml.transform.Source
multipart/* javax.mail.internet.MimeMultipart

Using SOAP with Attachments

a. Artix only supports the decoding of images in the GIFF format. It does not
support the encoding of images into the GIFF format.

For example, the contract shown in Example 134 has one operation, store,
whose input message has three parts: a patient name, a patient ID number,
and a base64Binary buffer to hold an image. The input message is bound to
a SOAP message with attachments using the mime:multiPart element.

Example 134: Using SOAP with Attachments

<?xml version="1.0" encoding="UTF-8"7?>
<definitions name="XrayStorage"
targetNamespace="http://mediStor.org/x-rays"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://mediStor.org/x-rays"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<message name="storRequest'>
<part name="patientName" type="xsd:string" />
<part name="patientNumber" type="xsd:int" />
<part name="xRay" type="xsd:base64Binary"/>
</message>
<message name="storResponse">
<part name="success" type="xsd:boolean"/>
</message>
<portType name="xRayStorage">
<operation name="store">
<input message="tns:storRequest" name="storRequest"/>
<output message="tns:storResponse" name="storResponse"/>
</operation>
</portType>
<binding name="xRayStorageBinding" type="tns:xRayStorage">
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="store">
<soap:operation soapAction="" style="rpc"/>

219

CHAPTER 7 | Working with Artix Data Types

Example 134: Using SOAP with Attachments

<input name="storRequest'>
<mime:multipartRelated>
<mime:part name="bodyPart">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://mediStor.org/x-rays" use="encoded"/>
</mime:part>
<mime:part name="imageData'>
<mime:content part="xRay" type="image/jpeg"/>
</mime:part>
</mime:multipartRelated>
</input>
<output name="storResponse">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:AttachmentService" use="encoded"/>
</output>
</operation>
</binding>
<service name="xRayStorageService">
<port binding="tns:xRayStorageBinding" name="xRayStoragePort">
<soap:address location="http://localhost:9000"/>
</port>
</service>
</definitions>

The binding specifies that only one part of the message, the base64Binary
buffer, is to be passed as an attachment using the MIME type image/jpegq.
The other two parts of the message are to be passed in the SOAP body of

the message. If the operation were bound to a standard SOAP message, the

220

Using DataHandler objects

Using SOAP with Attachments

generated method would have a string parameter, an int parameter, and a
byte[] parameter. Instead the operation, store, is mapped as shown in
Example 135.

Example 135: Java for SOAP with Attachments

// Java
package org.medistor.x rays;

import java.net.*;
import java.rmi.*;

import java.lang.String;
import java.awt.Image;

public class XRayStorageImpl implements Jjava.rmi.Remote
{
public boolean store (String patientName,
int patientNumber,
java.awt.Image xRay) {
// User code goes in here.
return false;

Artix also provides the option to map SOAP attachments to
javax.activation.DataHandler objects. To have Artix map SOAP
attachments to pataHandler objects, use the -datahandlers flag when
running wsdltojava.

When using pataHander objects, Artix maps all SOAP attachments to a
DataHandler, SO the contract in Example 134 on page 219 would result in
the operation shown in Example 136 as opposed to the one shown in
Example 135 on page 221.

Example 136: SOAP Attachments Using DataHandler Objects

// Java
package org.medistor.x rays;

import java.net.*;
import java.rmi.*;

221

CHAPTER 7 | Working with Artix Data Types

222

Example 136: SOAP Attachments Using DataHandler Objects

import java.lang.String;
import javax.activation.DataHandler;

public class XRayStorageImpl implements Jjava.rmi.Remote

{
public boolean store(String patientName,
int patientNumber,
javax.activation.DataHandler xRay)

// User code goes in here.
return false;

}
}

Using pataHandler objects to manipulate SOAP attachments provides you
with greater control over the data being passed in the attachment. As
specified in the J2EE specification, pataHandler objects have methods that
allow you to manipulate the attachment data as either an object, an
InputStream, Of an OutputStream. In addition, pataHandler objects allow
you to query it for the MIME type for the data being passed in the
attachment. For more information on using pataHandler objects see the
J2EE API documentation at
http://java.sun.com/j2ee/1.4/docs/api/index.html.

Note: When creating pataHandler objects to be passed in a SOAP
attachment, ensure that the MIME type specified in the creator method
matches the MIME type specified in the contract.

http://java.sun.com/j2ee/1.4/docs/api/index.html

Unsupported XMLSchema Constructs

Unsupported XMLSchema Constructs

Unsupported built-in types

Unsupported simpleType features

Unsupported complexType
features

Unsupported attributes for
element

Unsupported attributes for
attribute

Unsupported group features

The following XMLSchema types are currently not supported by Artix:

xsd:NOTATION
xsd: IDREF
xsd: IDREFS
xsd:ENTITY
xsd:ENTITIES

The following are not supported when working with simpleType:
® The final attribute

The following are not supported when working with complexType:
® The mixed attribute

® The final attribute

® The block attribute

® The abstract attribute

o simpleContent With restriction

The following attributes are not supported for element:

final
block
fixed
default
abstract

The following attributes are not supported for attribute:
® global attributes

ref

d from

The following are not supported when working with group:

® minOccurs on local groups

223

CHAPTER 7 | Working with Artix Data Types

® maxOccurs 0On local groups
® allinside a group

Other unsupported XMLSchema The following XMLSchema elements are not supported:

elements xsd:redefine

xsd:notation
xsd:anySimpleType
xsd:unique
xsd:key
xsd:keyref
xsd:selector
xsd:field

id attribute The id attribute is not supported by Artix.

224

In this chapter

CHAPTER 8

Creating
User-Defined
Exceptions

Artix supports the definition of user-defined exceptions using
the WSDL fault element. When mapped to Java, the fault
element is mapped to a throwable exception on the associated
Java method.

This chapter discusses the following topics:

Describing User-defined Exceptions in an Artix Contract page 226

How Artix Generates Java User-defined Exceptions page 228

Working with User-defined Exceptions in Artix Applications page 231

225

CHAPTER 8 | Creating User-Defined Exceptions

Describing User-defined Exceptions in an Artix

Contract

Overview

Describing the exception message

226

Artix allows you to create user-defined exceptions that your service can
propagate back to its clients. As with any information that is exchanged
between a service and client in Artix, the exception must be described in the
Artix contract. Describing a user-defined exception in an Artix contract
involves the following:

® Describing the message that the exception will transmit.

® Associating the exception message to a specific operation.

® Describing how the exception message is bound to the payload format
used by the service.

This section will deal with the first two tasks involved in describing a

user-defined exception. The third task, describing the binding of the

exception to a payload format, is beyond the scope of this book. For

information on binding messages to specific payload formats in an Artix
contract read Understanding Artix Contracts.

Messages to be passed in a user-defined exception are described in the
same manner as the messages used as input or output messages for an
operation. The message is described using the message element. There are
no restrictions on the data types that can be passed as part of an exception
message or on the number of parts the message can contain.

Note: When using SOAP as your payload format, you are restricted to
using only a single part in your exception messages.

Example 137 shows a message description in an Artix contract.
Example 137: Message Description
<message name="notEnoughInventory">

<part name="numInventory" type="xsd:int" />
</message

../contract/index.htm

Associating the exception with an
operation

Describing User-defined Exceptions in an Artix Contract

For more information on describing a message in an Artix contract, read
Understanding Artix Contracts.

Once you have described the message that will be transmitted for your
user-defined exception, you need to associate it with an operation in the
contract. To do this you add a fault element to the operation’s description.
A fault element takes the same attributes as the input elements and
output elements. The message attribute specifies the message element
describing the data passed by the exception. The name attribute specifies the
name by which the exception will be referenced in the binding section of the
contract.

Example 138 shows an operation description that uses the message
described in Example 137 on page 226 as a user-defined exception.

Example 138: Operation with a User-defined Exception

<operation name="getWidgets">
<input message="tns:widgetSizeMessage" name="size" />
<output message="tns:widgetCostMessage" name="cost" />
<fault message="tns:notEnoughInventory" name="notEnough" />
</operation>

The operation described in Example 138, getwWidgets, takes one argument
denoting the size of the widgets to get from inventory and returns a message
stating the cost of the widgets. If the operation cannot get enough widgets,
it throws an exception, containing the number of available widgets, back to
the client.

227

../contract/index.htm

CHAPTER 8 | Creating User-Defined Exceptions

How Artix Generates Java User-defined

Exceptions

Overview

Mapping simple type exceptions

Mapping complex type exceptions

228

As specified in the JAX-RPC specification, fault messages describing a
user-defined exception in an Artix contract are mapped to a Java exception
class by the Artix code generator. The generated class extends the Java
Exception class so that it can be thrown.

When your exception message is of a simple type, as shown in

Example 137 on page 226, the generated type will have one private data
member of the type specified in the contract’'s message part to represent the
content of the message, a creation method that allows you to specify the
values of the data member, and the associated getter and setter methods for
the data member. In addition, the generated class will have a tostring ()
method.

The naming scheme for the generated exception class follows that for the
generated classes to represent a complex type. The name of the class will be
taken from the name attribute of the exception’s message description and
will always start with a capital letter.

When your exception message is of a user defined complex type, Artix will
generate an exception class whose name will be the name of the complex
type used in the fault message postfixed with Exception. For example, if
you had a fault defined as shown in Example 139, the generated exception
class would be named NumInventory Exception and would be located in
the same java package as the rest of the generated types.

Example 139: Complex Fault

<complexType name="numInventory">
<sequence>
<element name="numlLeft" type="xsd:int" />
<element name="size" type="xsd:string" />
</sequence>
</complexType>

Example

How Artix Generates Java User-defined Exceptions

Example 139: Complex Fault

<message name="badSize">
<part name="errorInfo" type="xsdl:numInventory" />
</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>
</operation>
</portType>

The generated exception class will be the same as the one generated for the
complex type. The only difference being that the exception class extends
Exception and is throwable. See “Working with Artix Data Types” on

page 119.

Example 140 shows the generated exception class for the fault message in
Example 137 on page 226.

Example 140: Generated Java Class

//Java
import java.util.*;

public class NotEnoughInventory extends Exception
{
public static final String TARGET NAMESPACE =
"http://widgetVendor.com/widgetOrderForm";

private int numInventory;
public NotEnoughInventory (int numInventory)
{

super () ;
this.numInventory = numInventory;

229

CHAPTER 8 | Creating User-Defined Exceptions

Example 140: Generated Java Class

public int getNumInventory ()

{

return numInventory;

public void setNumInventory (int val)

{

numInventory = val;

public String toString ()

{
StringBuffer buffer = new StringBuffer (super.toString());
if (size != null)

{

buffer.append ("numInventory: "+numInventory+"\n");

}
return buffer.toString();

The TARGET NaMESPACE member of the class is the target namespace
specified for the Artix contract. It will be the same for all classes generated
from a particular contract.

230

Working with User-defined Exceptions in Artix Applications

Working with User-defined Exceptions in Artix

Applications

Overview

Example

Because Artix generates a standard Java exception class for user-defined
exceptions, they are handled like any non-Artix exception in a Java
application. The implementation of the service can instantiate and throw
Artix user-defined exceptions if they encounter the need. The client invoking
the service, as long as it is a JAX-RPC compliant Java web service client or
an Artix C+ + client, will catch Artix user-defined exceptions like any other
exception. Once the exception is caught, the client can inspect the contents
using the standard methods.

Example 141 shows how a server implementing the getwidgets operation,
shown in Example 138 on page 227, might instantiate and throw a
NotEnoughInventory exception.

Example 141: Throwing a User-defined Exception
//Java

// checkInventory() is left for the reader to implement
// size and numOrdered are parameters passed into the operation
if (numOrdered > checkInventory (size))
{
throw NotEnoughInventory (checkInventory(size));

}

Example 142 shows how a client might catch and report the exception
thrown by the server.

Example 142: Catching a User-defined Exception
// Java

try

{

long cost = getWidgets (size, numOrdered) ;

}

231

CHAPTER 8 | Creating User-Defined Exceptions

Example 142: Catching a User-defined Exception

catch (NotEnoughInventory nei)
{
// get the value stored in the exception
int numInventory = nei.getNumInventory () ;
System.out.println ("The factory only has "+numInventory+
" widgets of size "+sizet".");

232

CHAPTER 9

Using Substitution
Groups

XMLSchema substitution groups allow you to define a group
of elements that can replace a top level, or head, element.

In this chapter This chapter discusses the following topics:
Substitution Groups in XML Schema page 234
Using Substitution Groups with Artix page 238
Widget Vendor Example page 248

233

CHAPTER 9 | Using Substitution Groups

Substitution Groups in XML Schema

Overview A substitution group is a feature of XML schema that allows you to specify
elements that can replace another element in documents generated from
that schema. The replaceable element is called the head element and must
be defined in the schema’s global scope. The elements of the substitution
group must be of the same type as the head element or a type that is
derived from the head element’s type.

In essence, a substitution group allows you to build a collection of elements
that can be specified using a generic element. For example, if you are
building an ordering system for a company that sells three types of widgets
you may define a generic widget element that contains a set of common
data for all three widget types. Then you could define a substitution group
that contains a more specific set of data for each type of widget. In your
contract you could then specify the generic widget element as a message
part instead of defining a specific ordering operation for each type of widget.
When the actual message is built, the message can then contain any of the
elements of the substitution group.

Syntax Substitution groups are defined using the substitutionGroup attribute of
the XMLSchema element element. The value of the substitutionGroup
attribute is the name of the element that the element being defined can
replace. For example if your head element was widget, then by adding the
attribute substitutionGroup="widget" to an element named woodwWidget
would specify that anywhere widget was used, you could substitute
woodWidget. This is shown in Example 143.

Example 143: Using a Substitution Group
<element name="widget" type="xsd:string" />

<element name="woodWidget" type="xsd:string"
substitutionGroup="widget" />

Type restrictions The elements of a substitution group must be of a similar type to the head
element of the group. This means that all the elements of the group must be
of the same type as the head element or of a type derived from the head

234

Substitution Groups in XML Schema

element’s type. For example, if the head element is of type xsd:int all
members of the substitution group must be of type xsd:int or of type
derived from xsd:int. You could also define a substitution group similar to
the one shown in Example 144 where the elements of the substitution
group are of types derived from the head element’s type.

Example 144: Substitution Group with Complex Types

<complexType name="widgetType'">
<sequence>
<element name="shape" type="xsd:string" />
<element name="color" type="xsd:string" />
</sequence>
</complexType>
<complexType name="woodWidgetType">
<complexContent>
<extension base="widgetType">
<sequence>
<element name="woodType" type="xsd:string" />
</sequence>
</extension>
</complexContent>
</complexType>
<complexType name="plasticWidgetType">
<complexContent>
<extension base="widgetType">
<sequence>
<element name="moldProcess" type="xsd:string" />
</sequence>
</extension>
</complexContent>
</complexType>
<element name="widget" type="widgetType" />
<element name="woodWidget" type="woodWidgetType"
substitutionGroup="widget" />
<element name="plasticWidget" type="plasticWidgetType"
substitutionGroup="widget" />
<complexType name="partType">
<sequence>
<element ref="widget" />
</sequence>
</complexType>
<element name="part" type="partType" />

235

CHAPTER 9 | Using Substitution Groups

Abstract head elements

236

The head element of the substitution group, widget, is defined as being of
type widgetType. Each element of the substitution group then extends
widgetType to include data specific to ordering the specific type of widget.

Based on the schema in Example 144 on page 235, the <part> elements in
Example 145 are valid.

Example 145: XML Document using a Substitution Group

<part>
<widget>
<shape>round</shape>
<color>blue</color>
</widget>
</part>
<part>
<plasticWidget>
<shape>round</shape>
<color>blue</color>
<moldProcess>sandCast</moldProcess>
</plasticWidget>
</part>
<part>
<woodWidget>
<shape>round</shape>
<color>blue</color>
<woodType>elm</woodType>
</woodWidget>
</part>

You can define an abstract head element that can never appear in a
document produced using your schema. Abstract head elements are similar
to abstract classes in Java in that they are used as the basis for defining
more specific implementations of a generic class. Abstract heads also
prevent the use of the generic element in the final product.

You declare an abstract head element using the abstract="true" attribute
of element element as shown in Example 146. Using this schema, a valid
review element could contain either a positiveComment element or a
negativeComment element, but not a comment element.

Example 146: Abstract Head Definition

<element name="comment" type="xsd:string" abstract="true" />

Substitution Groups in XML Schema

Example 146: Abstract Head Definition

<element name="positiveComment" type="xsd:string"
substitutionGroup="comment" />
<element name="negtiveComment" type="xsd:string"
substitutionGroup="comment" />
<element name="review'">
<complexContent>
<all>
<element name="custName" type="xsd:string" />
<element name="impression" ref="comment" />
</all>
</complexContent>
</element>

237

CHAPTER 9 | Using Substitution Groups

Using Substitution Groups with Artix

Overview

Using a substitution group as an
element of a complex type

238

Artix allows you to use substitution groups when defining Artix systems. The
bus properly validates messages that contain substitution groups provides a
Java mapping that makes using a substitution group easy. Artix maps
substitution groups into Java classes that extend the class used to represent
the head class. In addition, it adds special getter and setter methods to
complex types that reference members of substitution groups. Therefore,
your application code can reflect the element hierachy defined in the WSDL.

When you include the head element of a substitution group as an element in
a complex type, the Artix WSDL to Java code generator adds additional
methods to the generated class representing the complex type. These
methods are similar to the ones generated to support choice complex types.
They allow you to place one of the elements of the substitution group into
the object, query the object to determine which element of the substitution
group is present in the object, and get a type specific element of the
substitution group back from the object.

Slmilar to how Artix generates code for choice complex types, Artix
generates three methods for each element of a substitution group used in a
complex type. These methods are a setter method named setMemberName (),
a getter method named getMembername (), and a method to determine if the
element is the one being used by the object named issetMemberName ().
When setting a value into the object, you should use the element specific
methods to ensure that the Artix runtime handles the data correctly when
transmitting it across the wire.

Using Substitution Groups with Artix

For example, you could define a complex type named widgetorderinfo that
included an element defined using the widget element in Example 144 on
page 235. A possible definition widgetorderInfo is shown in Example 147.

Example 147: Complex Type with a Substitution Group

<complexType name="widgetOrderInfo">
<sequence>
<element name="amount" type="xsd:int"/>
<element ref="xsdl:widget"/>
<element name="shippingAddress" type="xsdl:Address"/>
</sequence>
<attribute name="rush" type="xsd:boolean" use="optional" />
</complexType>

Artix would generate the class shown in Example 148 to represent
widgetorderInfo. Unlike the other elements in the generated class, which
only have a getter and a setter method, the widget element results in the
generation of the methods setwidget (), getWidget (), isSetWidget (),
setWoodWidget (), getWoodWidget (), isSetWoodWidget (),
setPlasticWidget(),getPlasticWidget(),and isSetPlasticWidget()tO
handle the substitution group. However, like all of the other elements, the
widget element only results in one member of the generated class. This
member, widget, is of the type generated for the head element of the
substitution group, widgetType. This is possible because the types for each
member of the substitution group inherit from widgetType.

While, due to the inheritance rules in Java, you could use the generic
setWidget () and getwidget () methods to place any one of the substitution
group elements into the object, it is not advisable. Artix relies on the
discriminator that is set in the type specific setter methods to ensure that

239

CHAPTER 9 | Using Substitution Groups

messages are generated properly when they are sent on the wire. So setting
a PlasticWidget USINg setWidget () May produce unpredictable results in a
running system.

Example 148: Class for a Substitution Group

public class WidgetOrderInfo
{

private String discriminator widget;

private int amount;

private WidgetType widget;
private Address shippingAddress;
private Boolean rush;

public int getAmount () {
return amount;

public void setAmount (int val) {
this.amount = val;

public WidgetType getWidget () {
return widget;

public void setWidget (WidgetType val) {
this.widget = val;
__discriminator widget = "widget";

public boolean isSetWidget () {
if (_ discriminator widget != null &&
_ discriminator widget.equals("widget")) {
return true;
}

return false;

240

Using Substitution Groups with Artix

Example 148: Class for a Substitution Group

public WoodWidgetType getWoodWidget () {
return (WoodWidgetType)widget;

public void setWoodWidget (WoodWidgetType val) {
this.widget = val;
__discriminator widget = "woodWidget";

/**
* isSetWoodWidget
*
* @return: boolean
=
public boolean isSetWoodWidget () {
if (_ discriminator widget != null &&
__discriminator widget.equals ("woodWidget")) {
return true;
}

return false;

public PlasticWidgetType getPlasticWidget () {
return (PlasticWidgetType)widget;

public void setPlasticWidget (PlasticWidgetType val) {
this.widget = val;
__discriminator widget = "plasticWidget";

public boolean isSetPlasticWidget () {
if (_ discriminator widget != null &&
__discriminator widget.equals ("plasticWidget")) {
return true;

}

return false;

241

CHAPTER 9 | Using Substitution Groups

Example 148: Class for a Substitution Group

public Address getShippingAddress() {
return shippingAddress;

public void setShippingAddress (Address val) {
this.shippingAddress = val;

public Boolean isRush() {
return rush;

public void setRush (Boolean val) {
this.rush = val;

public String toString() {
StringBuffer buffer = new StringBuffer();
if (amount != null) {
buffer.append ("amount: "+amount+"\n");
}
if (widget != null) {
buffer.append ("widget: "+widget+"\n");
}
if (shippingAddress != null) {
buffer.append ("shippingAddress:
"+shippingAddress+"\n") ;
}
if (rush !'= null) {
buffer.append ("rush: "+rush+"\n");
}

return buffer.toString();

If the head element of the substitution group is declared abstract, the
generated class will not include the methods to support the head element.
So in Example 148, getwWidget (), setWidget (), and isSetWidget () would
not be generated.

Using a substitution group as an ~ When you use a substitution group as part of an operation’s message, the
argument to an operation Artix WSDL to Java code generator generates the method for the operation
normally. The message part that is a substitution group results in a

242

Using Substitution Groups with Artix

parameter of the head element’s type. For example, you could define the

operation shown in Example 149 that uses the substitution group defined in
Example 144 on page 235.

Example 149: Operation with a Substitution Group

<message name="widgetMessage'">

<part name="widgetPart" element="xsdl:widget" />
</message>

<message name="numWidgets">

<part name="numInventory" type="xsd:int" />
</message>

<portType name="orderWidgets'">
<operation name="checkWidgets">
<input message="tns:widgetMessage" name="request" />
<output message="tns:numWidgets" name="response" />
</operation>
</portType>

Artix would generate the interface shown in Example 150 to implement
orderWidgets. You could invoke on this operation by passing any of the
valid elements of the widget substitution group as a parameter.

Example 150: orderWidgets Generated Code

public interface OrderWidgets extends java.rmi.Remote
{
public int checkWidgets (

com.widgetvendor.types.widgettypes.WidgetType widgetPart)
throws RemoteException;

}
Because Artix generates the same code for elements and types, Artix does

not enforce the abstract attribute when you use the head element of a
substitution group as a message part. If you want to ensure that the

243

CHAPTER 9 | Using Substitution Groups

244

abstract attribute is enforced you should define a new element that
includes a reference to the substitution group’s head element and use that in
place of the head element. This is shown in Example 151.

Example 151: Element Referring to a Substitution Group

<types ...>

<element name="widgetElement'>
<complexType>
<sequence>
<element ref="xsdl:widget" />
</sequence>
</complexType>
</element>
</types>
<message name="widgetMessage'">
<part name="request" element="xsdl:widgetElement" />
</message>
<message name="numWidgets'">
<part name="numInventory" type="xsd:int" />
</message>
<portType name="orderWidgets">
<operation name="checkWidgets'">
<input message="tns:widgetMessage" name="request" />
<output message="tns:numWidgets" name="response" />
</operation>
</portType>

Doing so will cause Artix to generate a new class for the element that
includes the appropriate methods for working with a substitution group. The
generated method will use the class generated for the new element. The
additional code generated to implement the contract fragment in

Example 151 is shown in Example 152. In this scenario, if the head
element is declared abstract the methods supporting it would not be
generated.

Using Substitution Groups with Artix

Example 152: Code for Element with a Substitution Group

public class WidgetElement
{

private String _ discriminator widget;
private WidgetType widget;

public WidgetType getWidget ()
{

return widget;

public void setWidget (WidgetType val)
{

this.widget = val;

_ discriminator widget = "widget";

public boolean isSetWidget ()
{
if (_ discriminator widget != null &&
_ discriminator widget.equals("widget")) {
return true;
}

return false;

245

CHAPTER 9 | Using Substitution Groups

Example 152: Code for Element with a Substitution Group

public WoodWidgetType getWoodWidget ()
{
return (WoodWidgetType)widget;

public void setWoodWidget (WoodWidgetType val)
{

this.widget = val;

_ discriminator widget = "woodWidget";

public boolean isSetWoodWidget ()
{
if (_ discriminator widget != null &&
__discriminator widget.equals ("woodWidget")) {
return true;
}

return false;

246

Using Substitution Groups with Artix

Example 152: Code for Element with a Substitution Group

public PlasticWidgetType getPlasticWidget ()
{
return (PlasticWidgetType)widget;

public void setPlasticWidget (PlasticWidgetType val)
{

this.widget = val;

__discriminator widget = "plasticWidget";

public boolean isSetPlasticWidget ()
{
if (_ discriminator widget != null &&
_ discriminator widget.equals("plasticWidget")) {
return true;
}

return false;

public String toString() {
StringBuffer buffer = new StringBuffer();
if (widget != null) {
buffer.append ("widget: "+widget+"\n");
}

return buffer.toString();

}
public interface OrderWidgets extends java.rmi.Remote
{

public int checkWidgets (

com.widgetvendor.types.widgettypes.WidgetElement widgetPart)
throws RemoteException;

247

CHAPTER 9 | Using Substitution Groups

Widget Vendor Example

Overview This section shows an example of substitution groups being used in Artix to
solve a real world application. A server and client are developed using the
widget substitution group defined in Example 144 on page 235. The
service offers two operations: checkiwidgets and placeWidgetOrder.
Example 153 shows the interface for the ordering service.

Example 153: Widget Ordering Interface

<message name="widgetOrder">
<part name="widgetOrderForm" type="xsdl:widgetOrderInfo"/>
</message>
<message name="widgetOrderBill">
<part name="widgetOrderConformation"
type="xsdl:widgetOrderBillInfo" />
</message>
<message name="widgetMessage'">
<part name="widgetPart" element="xsdl:widget" />
</message>
<message name="numWidgets">
<part name="numInventory" type="xsd:int" />
</message>
<portType name="orderWidgets'">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
</operation>
<operation name="checkWidgets">
<input message="tns:widgetMessage" name="request" />
<output message="tns:numWidgets" name="response" />
</operation>
</portType>

The type widgetorderForm is defined in Example 147 and
widgetOrderBillInfo extends widgetorderFormto include one extra field to
hold the final cost of the order.

Note: Because the example is to demonstrate the use of substitution
groups, some of the business logic is not shown.

248

placeWidgetOrder

checkWidgets

In this section

Widget Vendor Example

placeWidgetOrder takes a complex type containing the substituion group
and then returns a complex type that contains a complex type. This
operation demonstrates how one might go about using such a structure in a
Java implentation. Both the client and the server have to get and set
members of a substitution group.

checkWidgets is a simple operation that has a parameter that is a
substitution group. This operation demonstrates how to deal with individual
parameters that are members of a substitution group. The server must
properly determine which member of the substitution group was sent in the
request. The client must ensure that the parameter is a valid member of the
substitution group.

This section discusses the following topics:

Widget Server page 250

Widget Client page 254

249

CHAPTER 9 | Using Substitution Groups

Widget Server

Overview

// Java

The widget server implements the operations defined by the orderwidgets
interface shown in Example 153. The Artix WSDL to Java code generator
creates the implementation class shown in Example 154 for the interface.
Using this as a starting point, the following section implements each of the
defined operations. Note that some of the application logic is omitted for
clarity around the use of substitution groups.

Example 154: Widget Server Implementation Class

package com.widgetvendor.widgetorderform;

import com.widgetvendor.types
import com.widgetvendor.types
import com.widgetvendor.types

public class OrderWidgetsImpl
{

.widgettypes.WidgetOrderBillInfo;
.widgettypes.WidgetOrderInfo;
.widgettypes.WidgetType;

implements java.rmi.Remote

public com.widgetvendor.types.widgettypes.WidgetOrderBillInfo
placeWidgetOrder (com.widgetvendor. types.widgettypes.WidgetOrderInfo widgetOrderForm)

// User code goes in here.

return new com.widgetvendor.types.widgettypes.WidgetOrderBillInfo();

public int checkWidgets (com.widgetvendor.types.widgettypes.WidgetType widgetPart)

{

// User code goes in here.

return 0;

placeWidgetOrder

250

placeWidgetOrder () recieves an order in the form of a WidgetOrderInfo
object, processes the order, and returns a bill to the client in the form of a
WidgetOrderBillInfo object. The orders can be for either a plain widget, a
plastic widget, or a wooden widget. The type of widget ordered is

Widget Vendor Example

determined by what type of object is stored in widgetorderForm's widget
member. widget is a substitution group and can contain either a widget, a
WoodWidget, OF @ PlasticWidget.

The best way to determine the type of object stored in widgetOrderForm's
widget member is to use the issetelemname () methods. These methods are
generated by the Artix WSDL to Artix code generator to support the
identification of which element of a substitution group is being used and
return a boolean value. Using these methods, you can build a series of
if/then statements to determine what type of widget is being ordered and
process the order correctly. This is shown in Example 155.

Example 155: p/aceWidgetOrder()

//Java
public WidgetOrderBillInfo placeWidgetOrder (WidgetOrderInfo
widgetOrderForm)

WidgetOrderBillInfo bill = new WidgetOrderBillInfo ()

// Copy the shipping address and the number of widgets
// ordered from widgetOrderForm to bill

int numOrdered = widgetOrderForm.getAmount () ;

if (widgetOrderForm.isSetWidget ())

{
// Get the widget data from the order form
WidgetType order = widgetOrderForm.getWidget () ;

// Method buildWidget () is left for you to implement
buildwWidget (order, numOrdered) ;

// Add the amount of the bill and the widget info to bill
bill.setWidget (order) ;

float amtDue = numOrdered * 0.30;

bill.setAmountDue (amtDue) ;

251

CHAPTER 9 | Using Substitution Groups

Example 155: p/aceWidgetOrder()

else if (widgetOrderForm.isSetWoodWidget ())

{
// Get the widget data from the order form
WoodWidgetType order = widgetOrderForm.getWoodWidget () ;

// Method buildWoodWidget () is left for you to implement
buildWoodWidget (order, numOrdered) ;

// Add the amount of the bill and the widget info to bill
bill.setWoodWidget (order) ;

float amtDue = numOrdered * 0.85;

bill.setAmountDue (amtDue) ;

}
else if (widgetOrderForm.isSetPlasticWidget ())

{
// Get the widget data from the order form
PlasticWidgetType order = widgetOrderForm.getPlasticWidget () ;

// Method buildPlasticWidget () is left for you to implement
buildPlasticWidget (order, numOrdered) ;

// Add the amount of the bill and the widget info to bill
bill.setPlasticWidget (order) ;

float amtDue = numOrdered * 0.85;

bill.setAmountDue (amtDue) ;

return bill;

Once you have determined which type of widget is in the order, you use the
type specific getter method to extract the proper element of the substitution
group in the order. To set the widget member of the bill you use the type
specific setter methods to ensure that when the client gets the bill back it
can use the issetelemname () methods on the bill.

checkWidgets checkiWidgets () gets a widget description as a widgetType, checks the
inventory of widgets, and returns the number of widgets in stock. Due to the
way Artix generates code, the fact that the operation is defined using a
substitution group head element does not imply that you need to use any
Artix specific APIs. In fact, you can implement checkwidgets () using
standard Java code.

252

Widget Vendor Example

Because all of the types defining the different members of the substitution
group for widget extend widgetType, YOU Can use instanceof to determine

what type of widget was passed in and simply cast the argument

widgetPart into the more restrictive type if appropriate. Once you have the

proper type of object, you can check the inventory of the right kind of
widget.
A possible implementation is shown in Example 156.

Example 156: checkWidgets()

public int checkWidgets (WidgetType widgetPart)
{ if (widgetPart instanceof WidgetType)
{ return checkWidgetInventory (widgetType) ;
;lse if (widgetPart instanceof WoodWidgetType)
{ WoodWidgetType widget = (WoodWidgetType)widgetPart;
return checkWoodWidgetInventory (widget) ;
;lse if (widgetPart instanceof PlasticWidgetType)
{ PlasticWidgetType widget = (PlasticWidgetType)widgetPart;
return checkPlasticWidgetInventory (widget) ;
}

253

CHAPTER 9 | Using Substitution Groups

Widget Client

Overview

placeWidgetOrder

254

The widget client makes request on the widget server for orders or to check
inventory. To do so it must properly populate the data elements that are
defined using substitution groups. For example, to make an order the client
needs to use the type specific setter methods for the widget type it is
ordering.

To invoke placewidgetorder () the client needs to construct a widget order
that contains one element of the widget substitution group. When adding
the widget to the order, the client code should use the type specific setters
generated for each element of the substitution group to ensure that the Artix
runtime and the server can correctly process the order. For example, if an
order is being placed for a plastic widget, setPlasticwidget () should be
used to add the widget to the order.

Example 157 shows client code for setting the widget member of
WidgetOrderInfo.

Example 157: Setting a Substitution Group Member

//Java
InputStreamReader inReader = new InputStreamReader (System.in);
BufferedReader reader = new BufferedReader (inReader) ;

WidgetOrderInfo order = new WidgetOrderInfo();

System.out.println() ;

System.out.println("What color widgets do you want to order?");
String color = reader.readLine();

System.out.println() ;

System.out.println ("What shape widgets do you want to order?");
String shape = reader.readLine() ;

Widget Vendor Example

Example 157: Setting a Substitution Group Member

System.out.println
System.out.println
System.out.println
System.out.println
System.out.println
System.out.println

)i
"What type of widgets do you want to order?");
"l - Normal");

"2 - Wood");

"3 - Plastic");

"Selection [1-3]");

String selection = reader.readLine () ;
String trimmed = selection.trim();
char widgetType = trimmed.charAt (0);

switch (widgetType)

{

case 'l':

{

}

WidgetType widget = new WidgetType () ;
widget.setColor (color) ;
widget.setShape (shape) ;
order.setWidget (widget) ;

break;

case '2':

{

WoodWidgetType woodWidget = new WoodWidgetType () ;
woodWidget.setColor (color) ;
woodWidget . setShape (shape) ;

System.out.println() ;

System.out.println ("What type of wood are your widgets?");
String wood = reader.readLine () ;
woodWidget . setWoodType (wood) ;

order.setWoodWidget (woodWidget) ;
break;

255

CHAPTER 9 | Using Substitution Groups

Example 157: Setting a Substitution Group Member

case '3':

{
PlasticWidgetType plasticWidget = new PlasticWidgetType () ;
plasticWidget.setColor (color) ;
plasticWidget.setShape (shape) ;

System.out.println() ;

System.out.println ("What type of mold to use for your
widgets?");

String mold = reader.readLine() ;

plasticWidget.setMoldProcess (mold) ;

order.setPlasticWidget (plasticWidget) ;
break;
}
default :
System.out.println("Invaid Widget Selection!!");

checkWidgets Because substitution groups are made up of elements that are either of the
same type or of element whose type inherits from the type of the head
element, the client can invoke checkwidgets () without using any special
Artix code. When developing the logical to invoke checkWidgets () you can
pass in any element of the widget substitution group and the server side
implementation should be able to handle it correctly.

The only caveat is that Artix does not enforce abstract="true". It is up to
you to ensure that your code does not pass in the head element in this case.
This is particularly important when working with services that were not
developed using Artix.

256

CHAPTER 10

Working with Artix
Type Factories

Artix uses generated type factories to support a number of
advanced features including XMLSchema anyType support
and message contexts.

In this chapter This chapter discusses the following topics:
Introduction to Type Factories page 258
Registering Type Factories page 260
Getting Type Information From Type Factories page 263

257

CHAPTER 10 | Working with Artix Type Factories

Introduction to Type Factories

What are type factories? Artix type factories are generated classes that allow the Artix bus to
dynamically create instances of user defined types. They are used to support
Artix functionality that manipulate data using generic Java object instances
such as working with XMLSchema anyType instances, message contexts,
and SOAP headers.

Using type factories in your To use type factories in your Artix applications you need to do the following:
applications 1. Generate the type factories for all of the XMLSchema types and
XMLSchema elements used by your application.
2. Edit the WSDL path hard coded into the generated type factory to point
to the proper location of your application’s contract.
3. Register the type factories with the bus used by your application.
Once the type factories are registered with the bus, it will use the type
factories to create the proper holders for any data that needs them. In
addition, you can also use the functions on the type factories to get

information about the types used in your application or to dynamically
instantiate classes for your data types.

Generating type factories wsdltojava automatically generates a type factory for all user-defined types
in a contract when it generates the code for them. The type factory class is
named by postfixing TypeFactory onto the port type’s name. For example if
you generated Java code for a port type named packageDepot, the generated
type factory class would be packageDepotTypeFactory.

Additionally, you can pass wsdltojava an XMLSchema document that
defines types used by your application and it will generate the classes and
type factory for the defined types.

Each contract or XMLSchema document results in one type factory that
supports all of the types and elements defined by it. The generated type
factory will also support all of the types and elements defined by any
imported XMLSchema documents. So, if your application only uses the
complex types defined in its own contract you will only need to register one

258

Java packages for type factory
support

Introduction to Type Factories

type factory. However, if your application uses types defined in a second
XMLSchema document, you will need to generate and register the type
factory for those types also.

The generated type factories have a hard coded WSDL path. The WSDL
path in the generated type factory is an absolute path that points to the
location of the document from which the type factory was generated. If you
plan to move your application, you will need to edit this hard coded path.

When using type factories you must import the package

com.iona.webservices.reflect.types.TypeFactory.

259

CHAPTER 10 | Working with Artix Type Factories

Registering Type Factories

Overview

Procedure

Instantiating a type factory

260

Before the Artix bus can use the generated type factories, they must be
registered with the bus. This is done using the bus’ registerTypeFactory ()
method.

To register type factories with an application’s bus do the following:

1. Get a reference to the application’s bus as shown in “Getting a Bus” on
page 102.

2. Instantiate the type factories you wish to register with the client proxy
as shown in “Instantiating a type factory” on page 260.

3. Register the type factories using registerTypeFactory () on the Bus
object as shown in “Registering a type factory” on page 261.

The Artix Java code generator automatically generates a type factory for all
of the complex types and elements defined in a contract. The type factory
class is named by postfixing TypeFactory onto the port type's name. For
example if you generated Java code for a port type named packageDepot,
the generated type factory class would be PackageDepotTypeFactory.

You instantiate a type factory in the same manner as a typical Java object.
Its constructor takes no arguments. Example 158 shows the code to
instantiate the type factory for packagebepot.

Example 158: Instantiating a TypeFactory

//Java
PackageDepotTypeFactory factory = new PackageDepotTypeFactory () ;

Registering a type factory

Determining if type factories are
registered

Example

Registering Type Factories

You register a type factory with the bus using its registerTypeFactory ()
method. registerTypeFactory () takes an instance of a type factory as its
only argument. Example 159 shows code registering a type factory.

Example 159: Registering a Type Factory

//Java

// Bus bus and TypeFactory factory obtained above
bus.registerTypeFactory (factory) ;

To register multiple type factories with the bus, call registerTypeFactory ()
with each additional type factory. Subsequent calls add new type factories
to the list of registered type factories.

You can get a hash table of the type factories registered with a bus using
getTypeFactoryMap (). The returned hash table contains the oname for the
registered type factories and an arrayList of TypeFactory objects
containing all of the registered type factories. Example 160 shows code for
returning the hash table of registered type factories.

Example 160: Getting Hash Table of Registered Type Factories

//Java
HashMap factMap = bus.getTypeFactoryMap () ;

Example 161 shows an example of registering two type factories,
packageDepotTypeFactory and widgetsTypeFactory

Example 161: Registering Type Factories

//Java
import javax.xml.rpc.*;
import com.iona.webservices.reflect.types.*;

// Start the bus and create the Artix client proxy

Bus bus = Bus.init():;

packageDepotTypeFactory factl = new packageDepotTypeFactory () ;
widgetsTypeFactory facts = new widgetsTypeFactory();

261

CHAPTER 10 | Working with Artix Type Factories

262

Example 161: Registering Type Factories

3 Dbus.registerTypeFactory (factl);
bus.registerTypeFactory (fact2) ;

The code in Example 161 does the following:

1.
2.
3.

Initializes the bus.

Instantiates the type factory that will be registered.

Registers the type factories using registerTypeFactory (). The first
call registers the type factory for the types defined in the packageDepot
contract. The second call registers the factory for the types defined in
the widgets contract.

Getting Type Information From Type Factories

Getting Type Information From Type Factories

Overview

getSupportedNamespaces()

In most cases you will not need to do anything with the type factories once
they are registered. The bus automatically handles the creation of type
instances for dynamically created data.

However, you can use the type factory’s methods to get information about
the supported types or dynamically create instances of data types on your
own. TypeFactory objects have five methods that provide access to the
types supported by the factory. They are:

® getSupportedNamespaces()

® getSchemaType()

®* getJavaType()

® getJavaTypeForElement()

® getTypeResourcelLocation()

getSupportedNamespaces () returns an array of strings listing the
namespace URIs used in the schema for which the type factory was
generated. For example, if your type factory was generated from a contract
that contained the fragment shown in Example 162 a calling
getSupportedNamespaces () on the generated type factory would return an
array of strings containing a single entry:
http://packageTracking.com/packageTypes.

Example 162: WSDL Fragment

<?xml version="1.0" encoding="UTF-8"?>
<definitions ...>

263

CHAPTER 10 | Working with Artix Type Factories

getSchemaType()

264

Example 162: WSDL Fragment

<types>
<schema
targetNamespace="http://packageTracking.com/packageTypes
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<complexType name="packageInfo'">
<sequence>
<element name="id" type="xsd:string" />
<any namespace="##any" processContents="lax"
maxOccurs="4" />
<element name="size" type="xsdl:packageSize"/>
<element name="shippingAddress" type="xsdl:Address"/>
</sequence>
</complexType>

</éé£ema>

</types>

;éértType name="packageDepot">

</éé£tType>
</Aé£initions>
Example 163 shows code calling getSupportedNamespaces () .
Example 163: getSupportedNamespaces()
//Java

PackageDepotTypeFactory fact = new PackageDepotTypeFactory () ;
String[] typeNamespaces = fact.getSupportedNamespaces () ;

getSchemaType () returns the QName of the schema type for which the
specified class is generated. It takes a c1ass object for a generated type and
returns the QName given in the applications contract for the type which
resulted in the generated class.

For example, the contract fragment in Example 162 on page 263 would

cause a class called packageInfo to be generated to support the
XMLSchema complex type packageInfo. Calling getSchemaType () On an

getJavaType()

Getting Type Information From Type Factories

instance of packageDepotTypeFactory, as shown in Example 164, would
return a QName whose local part is packageInfo and whose namespace
URI is nttp://packageTracking.com/packageTypes.

Example 164: getSchemaType()
// Java

// PackageDepotTypeFactory fact obtained earlier
QOName typeName = fact.getSchemaType (PackageInfo.class);

getJavaType () returns the Java class object generated to support the
specified XMLSchema type. It takes the QName of an XMLSchema type
defined using a type element in the contract from which the type factory
was generated as an argument. Using the QName, getJavaType () finds the
Class object generated to support the XMLSchema type and returns an
instance of it.

For example, the code in Example 165 gets an instance of the generated
PackageInfo object by passing getJavaType () the QName of the
packageInfo XMLSchema type defined in Example 162 on page 263.

Example 165: getJavaType()
//Java

OName typeName = new
QName ("http://packageTracking.com/packageTypes",
"packageInfo") ;
// PackageDepotTypeFactory, fact, obtained earlier
Class typeClass = fact.getJavaType (typeName) ;
PackageInfo newPackage = typeClass.newlInstance();

The code in Example 165 does the following:

1. Creates the QName for the XMLSchema type.

2. Calls getgavaType () on the type factory to get the ciass object for the
XMLSchema type.

3. Uses the returned ciass object to create a new instance of

PackageInfo.

265

CHAPTER 10 | Working with Artix Type Factories

getJavaTypeForElement()

getTypeResourceLocation()

266

getJavaTypeForElement () returns the Java class object generated to
support the specified XMLSchema element. It takes the QName of an
XMLSchema element defined using an element element in the contract from
which the type factory was generated as an argument. Using the QName,
getJavaTypeForElement () finds the class object generated to support the
XMLSchema element and returns an instance of it.

getTypeResourceLocation () returns a string containing the location of the
contract, or XMLSchema document, for which the type factory was
generated.

In this chapter

CHAPTER 11

Working with
XMLSchema
anylypes

The XMLSchema anyType allows you to place a value of any
valid XMLSchema primitive or named complex type into a
message. This flexibility, however, adds some complexity to
your applications.

This chapter discusses the following topics:

Introduction to Working with XMLSchema anyTypes page 268
Setting anyType Values page 270
Retrieving Data from anyTypes page 272

267

CHAPTER 11 | Working with XMLSchema anyTypes

Introduction to Working with XMLSchema

anyTypes

XMLSchema anyType

Artix and anyType

Artix binding support

Using anyType in Java

268

The XMLSchema anyType is the root type for all XMLSchema types. All of
the primitives are derivatives of this type as are all user defined complex
types. As a result, elements defined as being anyType can contain data in
the form of any of the XMLSchema primitives as well as any complex type
defined in a schema document.

In Artix, an anyType can assume the value of any complex type defined
within the types section of an Artix contract. An anyType can also assume
the value of any XMLSchema primitive. For example, if your contract defines
the complex types joeFriday, samSpade, and mikeHammer, an anyType Used
as a message part in an operation can assume the value of an element of
type samspade or an element of type xsd:int. However, it could not assume
the value of an element of type aceventura because aceventura was not
defined in the contract.

Artix supports the use of messages containing parts of anyType using
payload formats that have a corresponding native construct such as the
CORBA any. Currently Artix allows using anyType with the following payload
formats:

® SOAP
® Pure XML
®* CORBA

When working with interfaces that use anyType parts in it messages, you
need to do a few extra things in developing your application. First, you must
register the generated type factory classes with the application’s bus. See
“Registering Type Factories” on page 260.

When using data stored in an anyType, you can also query the object to
determine its actual type before inspecting the data. Retrieving data from an
anyType is discussed in “Retrieving Data from anyTypes” on page 272.

Introduction to Working with XMLSchema anyTypes

Java packages for anyType When using anyType data and the type factories you must import the
support following:
b com.iona.webservices.reflect.types.AnyType

b com.iona.webservices.reflect.types.TypeFactory

269

CHAPTER 11 | Working with XMLSchema anyTypes

Setting anyType Values

Overview

Setting primitive data

In Artix Java xsd:anyType is mapped to
com.iona.webservices.reflect.types.AnyType. This class provides a
number of methods for setting the value of an anyType object. There are
setter methods for each of the supported primitive types. In addition, there
is an overloaded setter method for storing complex types in an anyType. This
method allows you to specify the gname for the schema type definition of the
content along with the data or you can simply supply the data and Artix will
attempt to determine the data’s schema type when the object is
transmitted.

The Artix anyType class provides methods for storing primitive data in an
anyType. The setter methods for the primitive types are listed in Table 13.
These methods automatically set the data type identifier to the appropriate
schema type when they store the data.

Table 13: anyType Setter Methods for Primitive Types

Method Java Type XMLSchema Type
setBoolean () boolean boolean
setByte () byte byte
setShort () short short
setInt () int int
setLong () long long
setFloat () float float
setDouble () double double
setString() string string
setShort () short short
setUByte () short ubyte
setUShort () int ushort

270

Setting anyType Values

Table 13: anyType Setter Methods for Primitive Types

Method Java Type XMLSchema Type
setUInt () long uint
setULong () BigInteger ulong
setDecimal () BigDecimal decimal

Setting complex type data

You set complex data into any anyType USing setType (). setType () can be
used in one of two ways. The first is to provide the gName of the XMLSchema
type describing the data to store in the anyType along with the data. Using
this method makes it easier to query the contents of anyType objects that
were created in the current application space because Artix does not set the
type identifier until after it sends the anyType across the wire. Example 166
shows code for storing a widgetSize in an anyType.

Example 166: Storing Complex Data and Specifying its Type

//Java

widgetSize size = widgetSize.big;

QName gn = new QName ("http://widgetVendor.com/types/",
"widgetSize") ;

AnyType aT =new AnyType () ;

aT.setType (gn, size);

The other way is to pass in null for the oname and the data value to store in
the anyType. When it encounters a null oName, Artix will determine the
XMLSchema type describing the data. From the receiving end this method
for storing data in an anyType is equivalent to the first method because Artix
identifies the content’s schema type when it transmits the data. However,
the application that stores the value will have no way to determine the data
type until it is used as part of a remote invocation. Example 167 shows
code for storing a widgetsSize in an anyType without providing its oName.

Example 167: Storing Complex Data without a QName
// Java
widgetSize size = widgetSize.big;

AnyType aT =new AnyType () ;
aT.setType (null, size);

271

CHAPTER 11 | Working with XMLSchema anyTypes

Retrieving Data from anyTypes

Overview

Determining the type of an
anyType

272

Because an anyType can assume the values of a number of different data
types, it is beneficial to be able to determine the type of the data stored in
an anyType before trying to use it. If you knew the value's type you could
cast the value into the proper Java type and work with it using standard
Java methods.

Artix’s Java implementation of anyType provides a mechanism for querying
the object to determine the schema type of its value. The type identifier is
either set when the value is stored in the anyType or if the type is not
specified when the value is set, Artix sets it when the data is transported
through the bus.

You can also use the standard Java getclass () method on the Java object

returned from AnyType.getObject () to get the Java class of the data stored
in the anyType.

The Artix Java anyType provides a method, getSchemaTypeName (), that
returns the oName of the schema type of the data stored in the anyType.
Example 168 gets the schema type of an anyType and prints it out to the
console.

Example 168: Using getSchemaTypeName()

// Java
import com.iona.webservices.relect.types.*;

AnyType blackBox;

// Client proxy, proxy, instantiated previously

blackBox = proxy.newBox() ;

QOName schemaType = blackBox.getSchemaTypeName () ;

System.out.println("The type for blackBox is defined in "
+schemaType.getNamespaceURI ()) ;

System.out.println ("blackBox is of type: "
+schemaType.getLocalPart ()) ;

Extracting primitive types from an
anyType

Retrieving Data from anyTypes

The data stored in an Artix anyType is a stored as a standard Java object,
so when the data is extracted you can use the standard getclass () method
on the returned object to determine its Java type.

The Artix anyType provides specific methods for extracting primitive types.

Table 14 lists the getter methods for the supported primitive types and the
local part of the schema type name returned by getSchemaType (). All of the
primitive types have http://www.w3.0org/2001/XMLSchema as their

namespace URI.

Table 14: Methods for Extracting Primitives from AnyType

Method Java Type Schema Type Name
getBoolean () boolean boolean
getByte () byte byte
getShort () short short
getInt () int int
getLong () long long
getFloat () float float
getDouble () double double
getString () String string
getUByte () short unsignedByte
getUShort () int unsignedShort
getUInt () long unsignedInt
getULong () BigInteger unsignedLong
getDecimal () BigDecimal decimal

273

CHAPTER 11 | Working with XMLSchema anyTypes

Extracting complex data from an
anyType

Example

274

The Artix anyType provides a generic method, getType (), that can be used
to extract complex data. getType () returns the data stored in the anyType as
a Java Object that you can then cast to the proper Java type. Example 169
shows an example of retrieving a widgetsize from an anyType.

Example 169: Extracting a Complex Type from an anyType

// Java
AnyType any;

// Client proxy, proxy, instantiated earlier
any = proxy.returnWidget () ;
widgetSize size = (widgetSize)any.getObject () ;

If you had an application that processed orders for computers. It may be
that your ordering system could receive orders for laptops and desktops.
Because the laptops and desktops are configured differently you've decided
that the orders will be sent using anyType elements that the client then
processes. You defined the types, laptoporder and desktopOrder, in the
namespace http://myAssemblyLine.com/systemTypes. Example 170
shows code for receiving the order from the server, querying the returned
AnyType t0 see what type of order it is, and then extracting the order from

the anyType.
Example 170: Working with anyTypes

// Java
import javax.xml.namespace.QName;
import com.iona.webservices.reflect.types.*;

AnyType anyOrder;

// Client proxy, proxy, instantiated earlier
anyOrder = proxy.getSystemOrder () ;

// Get the schema type of the returned order
QOName orderType = anyOrder.getSchemaType () ;

Retrieving Data from anyTypes

Example 170: Working with anyTypes

3 if (! (orderType.getNamespaceURI () .equals (
"http://myAssemblyLine.com/systemTypes"))

// handle the fact that the schema type is from the wrong
// namespace.

4 if (orderType.getLocalPart () .equals ("laptopOrder"))

LapTopOrder order = (LapTopOrder)anyOrder.getType () ;
buildLaptop (order) ;

}
5 if (orderType.getLocalPart ().equals ("desktopOrder"))

{
DeskTopOrder order = (DeskTopOrder)anyOrder.getType () ;
buildDesktop (order) ;

}

The code in Example 170 on page 274 does the following:
1. Populates anyorder.
Queries anyorder for its schema type information.

2
3. Checks the namespace of the returned type to ensure it correct.
4

Checks if anyorder is a laptoporder. If S0, cast anyorder into a
laptopOrder.

5. Checks if anyorder is @ desktopOrder. If s0, cast anyorder into a
desktopOrder.

275

CHAPTER 11 | Working with XMLSchema anyTypes

276

In this chapter

CHAPTER 12

Using Endpoint
References

An endpoint reference is a standardized means of representing
handles to Artix service instances. Because they can be passed
as message parts, endpoint references provide a convenient

and flexible way of identifying and locating specific services.

This chapter discusses the following topics:

Introduction to Endpoint References page 278
Using Endpoint References in a Factory Pattern page 290
Using Endpoint References to Implement Callbacks page 303
Migration Scenarios page 318

277

CHAPTER 12 | Using Endpoint References

Introduction to Endpoint References

Overview An Endpoint Reference is a Java object that encapsulates the addressing
information for an endpoint defined in a WSDL contract. They are generated
from the WS-Addressing endpoint reference schema type. Endpoint
references in Artix have the following features:
® The encapsulate the information stored in @ wsdl:service element.

They can be passed as a parameter of an operation.

They can be used to create service proxies for a service.

They are the building blocks for the Artix locator and the Artix session
manager.

They are transport neutral. An endpoint reference can be used to
represent any Artix service.

Note: In versions of Artix prior to 4.0, references were represented by the
proprietary Reference type. The Reference type has been deprecated and
replaced by WS-Addressing compliant endpoint references. For details of
the issues involved in migrating, see “Migration Scenarios” on page 318.

In this section This section discusses the following topics:
Endpoint Reference Basic Concepts page 279
Using Endpoint References in Artix Contracts page 282
Creating Endpoint References page 285
Instantiating Service Proxies Using an Endpoint Reference page 288

278

Introduction to Endpoint References

Endpoint Reference Basic Concepts

Overview

Contents of an endpoint reference

An endpoint reference is a Java object, derived from the XMLSchema
defined by the WS-Addressing standard. It contains all of the information
needed to contact a deployed Artix endpoint. It lists the endpoint’s address
and contains a copy of the service element from the endpoint’s contract.
The data contained in the reference provides an Artix client process with the
information needed to instantiate a service proxy to contact the referenced
endpoint.

Using endpoint references provides you with the ability to generate servants
on the fly and pass a client an endpoint reference to the newly instantiated
servant. It also provides you the ability to write applications that require
using a callback mechanism. In addition, the Artix locator and the Artix
session manager use endpoint references to supply applications with
pointers to the services which they are looking-up.

An endpoint reference encapsulates the following data:

® Endpoint Address—the addressing details needed to contact the

endpoint expressed as a IRI.

Reference Parameters—an optional list of properties used to connect

to the endpoint.

® Metadata—a WSDL document containing the service element
containing the endpoint’s port element. Because Artix associates
endpoint references with the service element of an Artix contract, the
service element included in the endpoint reference may contain
multiple port elements.

Note: The service element contained in the endpoint reference’s
metadata is derived from the service element in the endpoint’s physical
contract. If the endpoint reference is generated for a transient servant or for
an endpoint whose port element contains a dynamic URL, the service
element in the metadata will contain the live information.

279

CHAPTER 12 | Using Endpoint References

The schema definition of a
reference

Java mapping of an endpoint
reference

Endpoint references and the Artix
router

280

Like all types in Artix, the reference is defined in XMLSchema. The
XMLSchema defining a reference is located in the schema folder of your Artix
Installation and is called wsaddressing.xsd. It can also be found on-line at
http://www.w3.0rg/2005/08/addressing/ws-addr.xsd.

You will need to import the reference schema into the contract of any
application that uses endpoint references. It is required for Artix to properly
generate the Java code for operations using an endpoint reference as a
parameter and for the bus to properly marshal and unmarshal endpoint
references.

In Java an endpoint reference is mapped to a class called
com.iona.schemas.wsaddressing.EndpointReferenceType. This class is
provided in the libraries shipped with Artix. Applications that use endpoint
references must import this class.

When endpoint references are passed through the Artix router, the router
creates a service proxy for each endpoint reference. In this way it ensures
that messages are correctly delivered to the referenced service. However,
this creates two issues that must be considered:

Misconnected Proxies

Because transient servants are not associated with a fixed service, the router
must guess at which service element was used as the template to create
the servant. It chooses the first compatible service element it encounters in
the router’s contract. A compatible service element is one that uses the
same portType element as the template used to create the transient
servant.

If your contract contains a service element for a static service and a
service element for use as a template for transient services and they both
use the same portType element, the router will use the first one listed in the
contract. If the static service element is first, the router will create a proxy
that connects to the servant defined by that service element and not the
transient servant that is referenced. The result will be that all messages
directed to the transient servant will be silently forwarded to the wrong
servant.

http://www.w3.org/2005/08/addressing/ws-addr.xsd

Introduction to Endpoint References

To avoid this situation place all service templates in your router’s contract
before the static service elements. This will ensure that the router will
select the service template and create a proxy for the transient servant.

Router bloat

Because the router cannot know when a proxy is no longer needed, it cannot
reap any of the proxies it creates. Because of this, a router that handles a
large number of references may get quite bloated. To solve this problem
Artix includes a life-cycle service that allows you to configure a reaping
schedule for the router. For more information on using the life-cycle service
see Configuring and Deploying Artix Solutions.

281

../deploy/index.htm

CHAPTER 12 | Using Endpoint References

Using Endpoint References in Artix Contracts

Overview

Defining the wsa prefix

282

There are many cases where distributed applications need to exchange
contact information. For example, an endpoint may need to register a
callback object or a service may be acting as a factory for other services. In
cases where contact information is being exchanged, you will need to
include endpoint references in one or more of the logical messages defined
in your service's contract.

To use endpoint references in a service contract do the following:

1. Define a prefix, typically wsa, for the WS-Addressing schema used to
define endpoint references.

2. Import the WS-Addressing schema in the types element of your
contract.

3. Use the wsa:EndpointReferenceType in any logical data units or
logical messages that involve the exchange of contact information.

You define namespace prefixes in a contract’s definitions element. They
are used as shorthand for full namespace declarations throughout the body
of the contract. Commonly used prefixes include xsd for the namespace
under which XMLSchema elements are defined and soap for the namespace
under which SOAP elements are defined.

To define the wsa prefix and associate it with the namespace under which
the WS-Addressing EndpointReferenceType is defined you will need to add
the line shown in Example 171 to your contract’s definition element.

Example 171: Defining the wsa Prefix

<definintions ...
xmlns:wsa="http://www.w3.0rg/2005/08/addressing"
. >

The full namespace under which the WS-Addressing elements are defined is
http://www.w3.0rg/2005/08/addressing. Once this line is added to your
contract you will be able to use elements defined in the namespace by
prefixing the element name with wsa:.

Importing the schema

Introduction to Endpoint References

Before you can use the wsa:EndpointReferenceType in your contract, you
need to import the XMLSchema document defining it into your contract. You
import XMLSchema documents into your contract using an import element
as shown in Example 172.

Example 172: /mporting the WS-Addressing Schema

<import location="http://www.w3.0rg/2005/08/addressing/ws-addr.xsd"
namespace="http://www.w3.0rg/2005/08/addressing" />

Using the endpoint reference in a
message

The value of the 1ocation attribute is the location of the actual XMLSchema
document being imported. For the WS-Addressing XMLSchema document,
the most portable location is from
http://www.w3.0rg/2005/08/addressing/ws-addr.xsd. The value of the
namespace attribute should match the value of the prefix declaration in the
definitions element.

Once you've imported the XMLSchema document defining
wsa:EndpointReferenceType, YOU can use endpoint references as units of
data in your custom type definitions or as parts of a message. You add
endpoint references to custom types by adding an element that is of
wsa:EndpointReferenceType as shown in Example 173. The complex type
referenceHolder has two elements. serviceName is of type xsd:string.
serviceEndpoint i$ Of wsa:EndpointReferenceType and is used to hold and
endpoint reference.

Example 173: Using an Endpoint Reference in a Custom Type

<complexType name="referenceHolder">
<sequence>
<element name="serviceName" type="xsd:string" />
<element name="serviceEndpoint"
type="wsa:EndpointReferenceType" />
</complexType>

You can specify that an endpoint reference is part of a logical message
directly in one or more of the message element of a contract. To do so you
set the type attribute of one of the logical message’s part elements to
wsa:EndpointReferenceType. For example, the message defined in
Example 174 consists of only an endpoint reference.

283

CHAPTER 12 | Using Endpoint References

Example 174: Using an Endpoint Reference in a Logical Message

<message name="factoryRequest">
<part name="endpointInfo" type="wsa:EndpointReference" />
</message>

284

Introduction to Endpoint References

Creating a NULL Endpoint Reference

Overview

Procedure

Example

There may be cases where you want to create a NULL endpoint reference.
To do so you would instantiate an endpoint reference object and a URI

attribute object. You would set the attribute object to a NULL address and
then set the address of the endpoint reference to the NULL URI attribute.

To create a NULL endpoint reference do the following:
1. Instantiate an EndpointReferenceType Object.
2. Instantiate a urT object with a NULL address.

java.net.URI null addr = new
java.net.URI ("http://www.w3.0rg/2005/08/addressing/none") ;

3. Instantiate an AttributedURIType.

com.iona.schemas.wsaddressing.AttributedURIType uri null =
new com.iona.schemas.wsaddressing.AttributedURIType () ;

4, Set the AttributedURIType's value to the NULL URrz.
uri null.set value(null addr);

5. Set the EndpointReferenceType’s address field to the NULL
AttributedURIType.

ref.setAddress (uri null);

Example 175 shows the code for creating a NULL endpoint reference.

Example 175:Creating a NULL EPR

EndpointReferenceType ref = new EndpointReferenceType () ;
java.net.URI null addr = new

java.net.URI ("http://www.w3.0rg/2005/08/addressing/none") ;
AttributedURIType uri null = new AttributedURIType ();
uri null.set value(null addr);
ref.setAddress (uri null);

285

CHAPTER 12 | Using Endpoint References

Creating Endpoint References for a Service

Overview

Registering a servant

286

Endpoint references are created by a bus using the
createEndpointReference () method. Before a bus instance can create an
endpoint reference for a service, the servant implementing the service must
be registered with the bus. The process for creating an endpoint reference
for a service involves three steps:

1. Get a handle to a bus as shown in “Getting a Bus” on page 102.
2. Register the servant with the bus.
3. Create an endpoint reference using the service's oName.

Registering a service with the bus is a two step process. The first step is to
create an Artix servant instance for your service. Example 175 shows an
example of creating a servant for the widgetLoader service. The servant
contsructor requires the path of the contract defining the service, an
instance of the service's implementation class, and a bus instance.

Example 176: Creating a ServerFactoryBase

//Java
Servant servant =
new SinglelInstanceServant ("./Widgets.wsdl",
new WidgetLoaderImpl (), bus);

The second step in registering a service with the bus is to register the
servant with a bus instance. Servants can be registered as either static or
transient. A static servant is registered using Bus.registerServant () and
has a fixed port address that is defined in its contract. A transient servant is
registered using Bus.registerTransientServant (). A transient servant is a
clone of the service defined in the contract and each servant for a given
service will have a unique port number.

For a detailed discussion of registering servants, read “Servant Registration”
on page 85.

Creating the endpoint reference

Example

Introduction to Endpoint References

Once you have registered a service with the bus, you can create an endpoint
reference for it using the oName returned from the servant registration
method. Endpoint references are created using the bus’
createEndpointReference () method. Example 176 shows the signature for

createEndpointReference ().
Example 177: createEndpointReference()

//Java
EndpointReferenceType createEndpointReference (QName service);

The method takes in the oname of a registered service. For a static servant,
the service’s gName is the oname of the service from the WSDL contract. For a
transient servant, the oname of the service is returned when you register the
transient servant with the bus. Keeping track of the registered service's
oName When using endpoint references is particularly important when
working with transient servants. Because they are clones of a service, each
instance of a service registered with a transient servant will have a unique
oName that is generated by the bus.

Note: It is recommended that when your application is creating endpoint
references, it has the wsdl publish plugin loaded. If it is not, WSDL
location stored in the endpoint reference will be local to the application
creating the reference.

Example 177 shows the code for generating an endpoint reference for a
static instance of the c1ing service.

287

CHAPTER 12 | Using Endpoint References

Example 178: Creating an Endpoint Reference

//Java
import com.iona.jbus.*
com.iona.schemas.wsaddressing.EndpointReferenceType;

// Initialize a default bus
Bus bus = Bus.init();

// Register the servant

QName name = new QName ("http://www.static.com/Cling", "ClingService");

Servant servant = new SingleInstanceServant (new ClingImpl (), "./cling.wsdl", bus);
QOName clingName = bus.registerTransientServant (servant, name, "ClingPort");

// Generate the reference for the register Cling Service
EndpointReferenceType clingRef = bus.createEndpointReference (clingName) ;

288

Introduction to Endpoint References

Instantiating Service Proxies Using an Endpoint Reference

Overview

Getting a bus

Creating a service

Example

One of the primary uses of an endpoint reference is to create a service proxy
for connecting to the referenced service. The bus provides a method,
createClient (), that takes an endpoint reference and returns a JAX-RPC
style dynamic proxy for the referenced service.

Typically, you will receive an endpoint reference inside of a service's
implementation object and will not have access to the bus which is hosting
the current servant. In order to get a handle for a servant’s default bus you
would use code similar to that shown in Example 178.

Example 179: Getting a Bus Reference Inside a Servant

com.iona.jbus.Bus bus = DispatchLocals.getCurrentBus/() ;

To create a service proxy from an endpoint reference, you need three things:
® abus

® anendpoint reference

® the Java class representing the service's interface

You create service proxy from an endpoint reference by calling
createClient () on the servant’s default bus. createclient () takes an
endpoint reference to a service and the service's interface class as
parameters. If the call is successful, it returns a JAX-RPC style dynamic
proxy for the service referenced. createClient ()’s signature is shown in
Example 179.

Example 180: Bus.createClient()
Remote Bus.createClient (EndpointReferenceType epr,

Class interfaceClass)
throws BusException

Example 180 shows the code for creating a service proxy for the cling
service from an endpoint reference.

289

CHAPTER 12 | Using Endpoint References

Example 181: Creating a Service Proxy from and Endpoint Reference

// Java
com.iona.jbus.Bus bus = DispatchLocals.getCurrentBus () ;

// Endpoint reference clingRef obtained earlier
Cling clingProxy = bus.createClient (clingRef, Cling.class);

290

Using Endpoint References in a Factory Pattern

Using Endpoint References in a Factory
Pattern

Overview A common pattern for working with endpoint references is a factory pattern
where one object, a factory, creates endpoint references for other objects.
For example, you could develop a banking service that is responsible for
creating and managing accounts. It may have one operation, get_account,
that returns endpoint references to account objects that handle the more low
level operations for depositing or withdrawing money from an account. In
this instance, your bank implementation object is a factory for account
objects.

This section discusses how such a banking service could be developed. The
examples used are loosely based on the transient servant demo supplied
with Artix. It is located in the

demos/servant management/transient sevants folder of your Artix

installation.
In this section The following topics are discussed in this section:
Bank Service Contract page 291
Bank Service Implementation page 296
Bank Service Client page 300

291

CHAPTER 12 | Using Endpoint References

Bank Service Contract

Overview

Messages with endpoint
references

Bank interface

292

The contract defining the Bank service has several key elements that are
required for defining a service that uses endpoint references in a factory
pattern. The first thing to notice is that the contract imports the XMLSchema
definition for endpoint references. Also, it defines two interfaces: Bank and
Account. Bank defines an operation for returning endpoint references to an
Account. Also, both interfaces have fully described bindings and service
definitions.

For detailed information about Artix contracts read Understanding Artix
Contracts.

The Bank interface’s get _account operation returns an endpoint reference to
an account. The message definition for the response of these operations
have one part, return, that is of type wsa:EndpointReferenceType.
Example 181 shows the definition for a message that contains an endpoint
reference.

Example 182: Message with a Reference
<message name="bankResponse">

<part name="return" type="wsa:EndpointReferenceType" />
</message>

The portType element defining the Bank interface defines a single operation
named get_account. This operation takes a string as input and returns an
endpoint reference. Example 182 shows the portType element for the Bank
interface.

Example 183: Bank portType Element

<portType name="Bank'">
<operation name="get account">
<input name="acctName" message='"tns:accountName"/>
<output name="return" message="tns:bankResponse"/>
</operation>
</portType>

../contract/index.htm
../contract/index.htm

Account interface

Bank binding

Account binding

Transport definitions

Complete bank contract

Using Endpoint References in a Factory Pattern

The contract defining the service will also need to include a definition for the
Account interface. This interface can either be defined in a separate contract
that is imported or it can be defined in the same contract as the Bank
interface. The transient servant demo defines the Account interface in the
same contract.

While an endpoint reference can describe a service that uses any of the
bindings supported by Artix, they can only be sent using the SOAP binding
or the CORBA binding. When using the SOAP binding, you do not need to
anything special to send an Artix reference. The transient servant demo
supplied with Artix uses a SOAP binding.

The CORBA binding maps an endpoint reference into a generic CORBA
Object. You can do some additional work to create typed CORBA
references. For details on how endpoint references are mapped into a
CORBA binding see Artix for CORBA.

You will also need to add a binding for the referenced service, which in this
case is the Account interface. The binding for the referenced service can be
any one of the supported Artix bindings. The transient servant demo
supplied with Artix uses a SOAP binding for the Account interface.

References can be sent over any transport that supports SOAP or CORBA
messages. However, because in this example the servants used to service
Account objects will be transient, the account service must use either HTTP
or CORBA.

Example 183 shows the complete contract used for the code generated in
the following discussions about the factory pattern.

293

../corba_ws/index.htm

CHAPTER 12 | Using Endpoint References

Example 184: Bank Service Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.iona.com/bus/demos/bank"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:wsa="http://www.w3.0rg/2005/08/addressing"
xmlns:bank="http://www.iona.com/bus/demos/bank"
targetNamespace="http://www.iona.com/bus/demos/bank"
name="BankService">
<import location="http://www.w3.0rg/2005/08/addressing/ws—-addr.xsd"
namespace="http://www.w3.0rg/2005/08/addressing" />
<message name="accountName">
<part name="account name" type="xsd:string"/>
</message>
<message name="bankResponse'">
<part name="return" type="wsa:EndpointReferenceType"/>
</message>
<message name="get balance"/>
<message name="get balanceResponse">
<part name="balance" type="xsd:float"/>
</message>
<message name="deposit">
<part name="addition" type="xsd:float"/>
</message>
<message name="depositResponse"/>
<portType name="Bank">
<operation name="get account">
<input name="acctName" message="tns:accountName"/>
<output name="return" message="tns:bankResponse"/>
</operation>
</portType>
<portType name="Account">
<operation name="get balance">
<input name="get balance" message="tns:get balance"/>
<output name="get balanceResponse" message="tns:get balanceResponse"/>
</operation>
<operation name="deposit'>
<input name="deposit" message="tns:deposit"/>
<output name="depositResponse" message="tns:depositResponse" />
</operation>
</portType>

294

Using Endpoint References in a Factory Pattern

Example 184: Bank Service Contract

<binding name="BankBinding" type="tns:Bank">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="get account">
<soap:operation soapAction="http://www.iona.com/bus/demos/bank" style="rpc"/>
<input>
<soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank" />
</input>
<output>
<soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank" />
</output>
</operation>
</binding>
<binding name="AccountBinding" type="tns:Account">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="get balance">
<soap:operation soapAction="http://www.iona.com/bus/demos/bank" style="rpc"/>
<input>
<soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank" />
</input>
<output>
<soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank" />
</output>
</operation>
<operation name="deposit'>
<soap:operation soapAction="http://www.iona.com/bus/demos/bank" style="rpc"/>
<input>
<soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank" />
</input>
<output>
<soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank" />
</output>
</operation>
</binding>
<service name="BankService">
<port name="BankPort" binding="tns:BankBinding">
<soap:address location="http://localhost:0/BankService/BankPort/"/>
</port>
</service>

295

CHAPTER 12 | Using Endpoint References

Example 184: Bank Service Contract

<service name="AccountService">
<port name="AccountPort" binding="tns:AccountBinding">
<soap:address location="http://localhost:0" />
</port>
</service>
</definitions>

296

Using Endpoint References in a Factory Pattern

Bank Service Implementation

Overview

The bank service interface

The bank service implementation
object

The bank service is the factory for accounts in this example. Its operation,
get_account, returns endpoint references to accounts. get_account creates
a servant for an account and registers it as a transient servant. The accounts
are registered as transient servants to ensure that each new account is
exposed as a unique endpoint.

The bank service defined in the contract shown in Example 183 will result
in a generated interface called Bank. This interface extends
java.rmi.Remote and is used by clients to create proxies for the bank
service. While you generally do not need to edit this generated interface, you
do need to edit it when using endpoint references. You will need to add a
line to the generated interface that imports the EndpointReferenceType
class as shown by the bold line in Example 184.

Example 185: Bank Interface
import java.rmi.RemoteException;

import com.iona.schemas.wsaddressing.EndpointReferenceType;
public interface Bank extends java.rmi.Remote
{
public EndpointReferenceType get account (String account name)
throws RemoteException;

}

The bank service defined in the contract shown in Example 183 will result
in a generated implementation class called BankImp1. This object will
contain one method, get_account (), for which you will provide the logic.
You will also need to add an import for the EndpointReferenceType class.
The import statement is in bold to show that you need to manually add this
statement.

Note: For this example, BankImpl has a global data member, accounts,
that stores a table of the created accounts by their account name. The line
declaring accounts is in bold because you need to add it to the generated
file.

297

CHAPTER 12 | Using Endpoint References

get_account

298

Example 185 shows the generated BamkImp1 with accounts added.
Example 186: BankImpl

package com.iona.bus.demos.bank;

import java.net.*;
import java.rmi.*;

import java.lang.String;
import com.iona.schemas.wsaddressing.EndpointReferenceType;

public class BankImpl implements java.rmi.Remote
{
Hashtable accounts = new Hashtable() ;

public EndpointReferenceType get account (String account name)
{

return new
com. iona.schemas.wsaddressing.EndpointReferenceType () ;

}

The logical operation get _account is mapped to the get_account () method
in the bank service's implementation object. get account () does the
following:

1. Checks the table of accounts to see if one with the given name already
exists.

2. If one does exist, returns the endpoint reference to that account.
If no account with that name exists, it does the following:
i. creates a new AccountImpl object
ii. registers it as a transient servant with the bus.
iii. returns an endpoint reference to the new account.

The AccountImpl object is registered as a transient servant because
transient servants are guaranteed to have a unique port element in their
in-memory contract and that the endpoint reference created for each

Using Endpoint References in a Factory Pattern

AccountImpl object will point to the correct servant. When using static
servants, all endpoint references point to a single instance of the servant
object.

Note: When working with transient servants, you should ensure that the
WSDL publishing plug-in is loaded into the server process.

Once the AccountImpl object is registered with the bus, get_account ()
generates an endpoint reference for the new servant using

bus . createEndpointReference (). This is the endpoint reference that is
returned to the client. Using the returned endpoint reference, the client can
create a service proxy to access the new account instance.

Example 186 shows the fully implemented get account ().
Example 187: get account()

public EndpointReferenceType get account (String account name)
{
EndpointReferenceType ref =
(EndpointReferenceType) accounts.get (account name)

if (ref == null)

{
AccountImpl acct = new AccountImpl () ;
com. iona.jbus.Bus bus = DispatchLocals.getCurrentBus () ;
String contract = new String("./bank.wsdl");
Servant servant = new SingleInstanceServant (acct, contract,

bus) ;
QName name = new QName ("http://www.iona.com/bus/demos/bank",
"AccountService") ;

bus.registerTransientServant (servant, name);

ref = bus.createEndpointReference (name) ;

accounts.put (account name, ref);

}

return ref;

299

CHAPTER 12 | Using Endpoint References

300

The code in Example 186 does the following:

1.
2.

No ok~ w

Looks up the account name in the table of existing accounts.
Checks to see if an account was found. If a valid account was found
skip to step 9. If not, continue.

Creates a new AccountImpl for a new account.

Gets the bus for this bank servant.

Creates a new Artix servant for the new account.

Registers the new servant as a transient servant with the bus.

Creates an endpoint reference for the newly registered transient
servant.

Adds the new endpoint reference and account name to the table of
accounts.

Returns the endpoint reference to the client.

Using Endpoint References in a Factory Pattern

Bank Service Client

Overview

Requirements for building the
client

Client tasks

The client for the bank service requests accounts and then performs
operations on the returned accounts. In this case, the returned accounts are
also services implemented by remote Artix servants. Therefore, before the
client can invoke operations on the returned accounts, it must create service
proxies for them.

Endpoint references provide all of the information needed to contact a

remote service. They do not provide access to the contract defining the

remote service or the interface used to create the interface. Therefore, your

client application will need access to the following additional artifacts:

® the generated interface for the account service. This interface will be
generated into a file called Account.java by wsdltojava.

® acopy of the contract defining the account service. This contract
should be available from the endpoint.

Note: You will need to ensure that the server process has loaded the
WSDL publishing plug-in.

The client main in this example does four things:
1. Creates a service proxy for the bank service.
2. Invokes get_account () on the bank proxy.

3. Creates a service proxy for an account service using the returned
endpoint reference.

4. Invokes operations in the account service proxy.

The first two things that the client does are typical Artix client programming
steps. Any Artix client will instantiate a service proxy using a known contract
and then invoke operations on the proxy. The third task of the client is, for

this discussion, the interesting task.

Using the reference returned from get_account (), the client will use the
Bus.createClient () method to create a service proxy for an account
service. The version of Bus.createClient () used to create a service proxy
from an endpoint reference takes two parameters:

301

CHAPTER 12 | Using Endpoint References

® anendpoint reference
® the interface class for the referenced service

Example 187 shows the code for creating an account service proxy from an
endpoint reference.

Example 188: Creating an Account Service Proxy

acctProxy = bus.createClient (acctRef, Account);

Code for the client main() Example 188 shows the completed code for the bank client’s main line.
Example 189: Code for Bank Client

//Java

import java.util.*;
import java.io.*;
import java.net.*;
import java.rmi.*;

import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;
import com.iona.schemas.wsaddressing.EndpointReferenceType;

public class BankClient
{

public static void main (String args[]) throws Exception
{
1 Bus bus = Bus.init (args);
2 QName name = new QName ("http://www.iona.com/bus/demos/bank",
"BankService") ;
3 String portName = new String("BankPort");
4 String wsdlPath = "file:/./bank.wsdl";

URL wsdlURL = new File (wsdlPath) .toURL() ;

5 Bank bankProxy = bus.createClient (wsdlURL, name, portName,
Bank.class) ;

302

Using Endpoint References in a Factory Pattern

Example 189: Code for Bank Client

String account name;
System.out.println ("What is the name of the account?");
System.in.read (account name) ;

EndpointReferenceType acctRef =
bankProxy.get account (account name) ;

Account acctProxy = bus.createClient (acctRef, Account.class);

// Invoke operations on acctProxy

}

The code in Example 188 does the following:

1. Initializes the bus.

Creates the gname for the bank service.

Sets the port name for the bank service.

Sets the URL to the client’s copy of the bank service contract.

ok~ wb

Creates a service proxy for the bank service using

bus.createClient ().

)

Gets the name of the account.

Gets an endpoint reference for the desired account by invoking
get_account () on the bank service proxy.

8. Uses the returned endpoint reference to create an account service
Proxy using bus.createClient ().

303

CHAPTER 12 | Using Endpoint References

Using Endpoint References to Implement

Callbacks

Overview

In this section

304

Another common use for endpoint references is to create callbacks from a
service to a client. When creating a callback, the client creates a callback
service to receive notices and registers it, using an endpoint reference, with
the remote service. The remote service can then create a service proxy for
the client’s callback service and invoke its operations to update the client.

For example, an accounts receivable system may need to notify its clients
that it is closing the daily books and is not accepting new transactions until
the operation is complete. In this case, the clients would each have a
callback service with two operations, posting and done posting. The
accounts receivable system would invoke posting to notify the client that it
is not accepting new transactions. When it was done closing the books, the
accounts receivable system would then invoke done posting.

This section discusses the following topics:

The Accounting Contract page 304
The Accounting Client page 310
The Accounting Server page 315

Using Endpoint References to Implement Callbacks

The Accounting Contract

Overview

Messages with references

The callback’s interface

The contract for an application the uses a callback needs to include the
interface definition, binding definition, and service information for both the
service implemented by the server and the callback service implemented by
the client. When using callbacks the client essentially plays a dual role. It
implements a service, like a server process, and makes requests on a
service.

The Register interface’s register callback operation sends an endpoint
reference to a Notify service. The logical message definition for this
interaction has one part, ref, that is of type wsa:EndpointReferenceType as
shown in Example 189.

Example 190: Message with a Reference
<message name="regMessage'">

<part name="ref" type="wsa:EndpointReferenceType" />
</message>

The interface for the callback service can be as complex or simple as your
application requires. For this example, the callback service will only need
two operations. One operation informs the client that the accounts
receivable system is busy. The other operation informs the client that the
accounts receivable service is ready to receive new posts. Neither operation
requires input or output messages, but because WSDL requires at least one
input element or output element the interface definition includes a dummy
input message.

305

CHAPTER 12 | Using Endpoint References

Example 190 shows the portType element defining the callback service’s
interface.

Example 191: Callback Interface

<message name="callbackRequest" />
<portType name="Notify">
<operation name="posting'">
<input name="param" message="tns:callbackRequest" />
</operation>
<operation name="done posting">
<input name="param" message="tns:callbackRequest" />

</operation>
</portType>
Accounts receivable system’s The account receivable system’s interface needs one operation,
interface register callback, to register the client’s callback service and create a

proxy for it. In addition to the operation for registering the callback, the
account receivable system’s interface can have any number of logical
operations to represent the other functionality it exposes. In this example,
the accounts receivable system exposes three operations: deposit,
withdraw, and dailyPosting. The client shown in this example only invokes
desposit and withdraw. An administrative client would invoke
dailyPosting.

306

Bindings

Transport details

Contract

Using Endpoint References to Implement Callbacks

Example 191 shows the portType element defining the accounts receivable
system’s interface.

Example 192: Accounts Receivable Interface

<portType name="Register">
<operation name="register callback">
<input name="param" message="tns:refMessage" />
</operation>
<operation name="deposit">
<input name="amount" message="tns:amtMessage" />
<output name="return" message="tns:amtMessage" />
</operation>
<operation name="withdraw">
<input name="amount" message="tns:amtMessage" />
<output name="return" message="tns:amtMessage" />
</operation>
<operation name="dailyPosting">
<input name="date" message="tns:dateMessage" />
</operation>
</portType>

The callback service's interface can be bound to any of the message formats
supported by Artix. Because the account receivable system’s interface
includes an operation that has an endpoint reference as a parameter, it can
only be bound to a SOAP message or a CORBA message. In this example,
both interfaces are bound to SOAP messages.

Because both the callback’s implementation object and the accounts
receivable system’s implementation object are registered as static servants,
they can use any of the transports supported by Artix. In this example, HTTP
is used.

Example 192 shows the complete contract used for the code generated in
the following discussions about callbacks.

307

CHAPTER 12 | Using Endpoint References

Example 193: Callback Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.iona.com/bus/demos/callbacks"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:wsa="http://www.w3.0rg/2005/08/addressing"
targetNamespace="http://www.iona.com/bus/demos/callbacks"
name="BankService">
<import location="http://www.w3.0rg/2005/08/addressing/ws—-addr.xsd"
namespace="http://www.w3.0rg/2005/08/addressing" />
<message name="amtMessage'">
<part name="amount" type="xsd:float"/>
</message>
<message name="amtResponse">
<part name="return" type="xsd:float"/>
</message>
<message name="refMessage'">
<part name="ref" type="wsa:EndpointReferenceType"/>
</message>
<message name="dateMessage">
<part name="date" type="xsd:string"/>
</message>
<message name="callbackRequest" />
<portType name="Notify">
<operation name="posting'">
<input name="param" message="tns:callbackRequest" />
</operation>
<operation name="done posting">
<input name="param" message="tns:callbackRequest" />
</operation>
</portType>

308

Using Endpoint References to Implement Callbacks

Example 193: Callback Contract

<portType name="Register">
<operation name="register callback">
<input name="param" message="tns:refMessage" />
</operation>
<operation name="deposit'>
<input name="amount" message="tns:amtMessage" />
<output name="return" message="tns:amtResponse" />
</operation>
<operation name="withdraw">
<input name="amount" message="tns:amtMessage" />
<output name="return" message="tns:amtResponse" />
</operation>
<operation name="dailyPosting">
<input name="date" message="tns:dateMessage" />
</operation>
</portType>
<binding name="NotifyBinding" type="tns:Notify">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="posting">
<soap:operation soapAction="http://www.iona.com/bus/demos/callbacks" style="rpc"/>
<input>
<soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/callbacks"/>
</input>
</operation>
<operation name="done posting">
<soap:operation soapAction="http://www.iona.com/bus/demos/callbaks" style="rpc"/>
<input>
<soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/callbacks" />
</input>
</operation>
</binding>
<binding name="RegisterBinding" type="tns:Register">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="register callback">
<soap:operation soapAction="http://www.iona.com/bus/demos/callbacks" style="rpc"/>
<input>
<soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/callbacks" />
</input>
</operation>

309

CHAPTER 12 | Using Endpoint References

Example 193: Callback Contract

<operation name="deposit'>
<soap:operation soapAction="http://www.iona.com/bus/demos/callbacks" style="rpc"/>
<input>
<soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/callbacks"/>
</input>
<output>
<soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/callbacks"/>
</output>
</operation>
<operation name="withdraw">
<soap:operation soapAction="http://www.iona.com/bus/demos/callbacks" style="rpc"/>
<input>
<soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/callbacks"/>
</input>
<output>
<soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/callbacks" />
</output>
</operation>
<operation name="dailyPosting">
<soap:operation soapAction="http://www.iona.com/bus/demos/callbacks" style="rpc"/>
<input>
<soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/callbacks"/>
</input>
</operation>
</binding>
<service name="NotifyService">
<port name="NotifyPort" binding="tns:NotifyBinding">
<soap:address location="http://localhost:0"/>
</port>
</service>
<service name="RegisterService">
<port name="RegisterPort" binding="tns:RegisterBinding">
<soap:address location="http://localhost:0/RegisterService/RegisterPort/"/>
</port>
</service>
</definitions>

310

Using Endpoint References to Implement Callbacks

The Accounting Client

Overview

Callback implementation

A client that has a callback has two major parts to develop:

® The callback service's implementation object.

® The client's main () that performs the clients work.

When using a callback, the client’s main () will perform one additional task

that is normally only performed by servers. It will instantiate a servant for
the callback service and register it with the bus.

The callback service for this example is very simple. It has one static
member, busy, that is set to 1 when posting () is invoked and set to 0 when
done posting () is invoked. Using the instance of NotifyImpl registered
with the bus in the client’s main (), you can check the value of busy to see if
the register service is doing its daily posting and not accepting new
requests.

To avoid thread conflicts, the callback object’s methods are synchronized.
When the methods complete, they then notify all interested parties that
callback object has been modified. This notifies the client that the status
has been updated and it can stop waiting for the server.

Example 193 shows the code for the callback object.

Example 194: Callback Object

package com.iona.bus.demos.callbacks;

import java.net.*;
import java.rmi.*;

public class NotifyImpl implements java.rmi.Remote

{
public int busy = 0;

311

CHAPTER 12 | Using Endpoint References

Example 194: Callback Object

public void posting ()
{
synchronize (this)
{
busy = 1;
notifyAll();
}
}

public void done posting ()
{
synchronize (this)
{
busy = 0;
notifyAll();
}

The client main() The client main () in this example does six things:
1. Creates a service proxy for the rRegister service.
2. Creates a servant for the callback service.

3. Registers the callback service’s servant with the bus so that it can
receive requests.

Registers the callback service with the register service.
5. Invokes operations on the rRegister service.

Checks the callback service to see if the register service is posting.

312

Using Endpoint References to Implement Callbacks

Example 194 shows the code for client main ().

Example 195: Callback Client Main()

//Java
import java.util.*;

import java.io.*;
import java.net.*;
import java.rmi.*;

import javax.xml.namespace.QName;

import javax.xml.rpc.*;

import com.iona.jbus.Bus;
import com.iona.schemas.wsaddressing.EndpointReferenceType;

public class RegisterClient

{

public static void main (String args[]) throws Exception

{

char op;
Bus bus = Bus.init (args);

OName name = new
QName ("http://www.iona.com/bus/demos/callbacks",
"RegisterService");
String portName = new String("RegisterPort");

String wsdlPath = "file:/./resister.wsdl";
URL wsdlURL = new File (wsdlPath) .toURL() ;

Register registerProxy = bus.createClient (wsdlURL, name,
portName,

Register.class);

NotifyImpl notify = new NotifyImpl();

String contract = new String("./register.wsdl");

Servant servant = new SinglelnstanceServant (notify, contract,

bus) ;

QOName notifyName = new

OName ("http://www.iona.com/bus/demos/callbacks",

"NotifyService") ;

313

CHAPTER 12 | Using Endpoint References

10

11

314

Example 195: Callback Client Main()
bus.registerServant (servant, notifyName) ;

EndpointReferenceType ref =
bus.createEndpointReference (notifyName) ;

registerProxy.register callback (ref);
Float amount;
float balance;

String temp;

while (true)

synchronize (notify)
{
while (notify.busy == 1)
{
System.out.println ("The Server is posting. Please
wait.");
notify.wait();

System.out.println ("Choose an option:");
System.out.println("1l) Deposit") ;
System.out.println("2) Withdraw");
System.out.println("3) Exit");
System.in.read (op) ;

switch (op)
{
case '1':

System.out.println ("Amount to deposit?");
System.in.read (temp) ;
amount = new Float (temp) ;
balance = registerProxy.deposit (amount.floatValue()) ;
System.out.println ("New balance: "+balance) ;
break;

Using Endpoint References to Implement Callbacks

Example 195: Callback Client Main()

case '2':
System.out.println ("Amount to withdraw?");
System.in.read (temp) ;
amount = new Float (temp) ;
balance = registerProxy.withdraw (amount.floatValue()) ;
System.out.println ("New balance: "+balance);
break;
Case ’'3':
return;

}
}
}
The code in Example 194 does the following:
Initializes a bus for the client.
Creates a proxy for the Register service.
Creates an instance of NotifyImpl.
Creates a servant to wrap the callback service.
Registers the servant with the bus.
Creates an endpoint reference for the callback service.

No ok b

Registers the callback by invoking the register service's
register callback() operation.

8. Ensures that the callback implementation cannot be modified by other
threads before checking its state.

9. If the callback implementation’s busy flag is set to 1, then the server is
doing its daily posting and the client needs to wait.

10. Waits on the callback’s implementation. When the server changes the
value of busy, this call will stop blocking and the flag can be checked
again.

11. Makes requests on the rRegister Service.

315

CHAPTER 12 | Using Endpoint References

The Accounting Server

Overview

Servant registration

RegisterImpl

The server in this example also exhibits some hybrid behavior. The
register callback operation receives a reference to the client’s callback
service and creates a service proxy for it. In this example, the proxy is put
into an object-level data element and the dailyPosting operation invokes
the proxy's operations to inform the clients when the server is posting.

In this example, the code that instantiates the servant and registers it with
the bus is standard Artix code. For more information see “Developing a
Container Based Service” on page 70 or “Developing a Standalone Service”
on page 81.

The accounts receivable system’s implementation object, as generated by
wsdltojava, is called RegisterImpl. It has four methods:
registerﬁcallback(),dailyPosting(),deposit(),and withdraw ().
deposit () and withdraw () perform data requests for the client and they are
left for you to implement.

For the discussion of callbacks, only register callback() and
dailyPosting () are of interest. register callback() is responsible for
receiving the callback service’s endpoint reference and instantiating a proxy
for it. In this example, the proxy is stored in the objects notify member.
dailyPosting () then invokes the callback service's operations to inform the
client when the system is busy.

Example 195 shows the completed rRegisterImpl class. The code in bold is
added to the generated class by the user.

Example 196: Registerimpl

package com.iona.bus.demos.callbacks;

import
import
import
import
import

316

java.net.
Jjava.zrmi.

com.iona
com.iona

java.lang.String;

.schemas .wsaddressing.EndpointReferenceType;

Using Endpoint References to Implement Callbacks

Example 196: Registerimpl

public class RegisterImpl implements java.rmi.Remote
{
NotifyImpl notify;

public void register callback(com.iona.schemas.wsaddressing.EndpointReferenceType ref)
{

com. iona. jbus.Bus bus = DispatchLocals.getCurrentBus() ;

notify = bus.createClient(ref, Notify.class);
}

public float deposit (float ammount)
{
// User code goes in here.
return 0.0f;

public float withdraw(float ammount) {
// User code goes in here.
return 0.0f;

public void dailyPosting (String date)
{
notify.posting() ;

// User code goes in here.

notify.done posting() ;
}

register_callback() register callback() does the following:
1. Gets a handle on the bus hosting this servant.

2. Creates a proxy for the callback service using the endpoint reference
sent by the client.

317

CHAPTER 12 | Using Endpoint References

dailyPosting() dailyPosting () does the following:

1. Invokes the callback service’s posting operation to notify the client
that the system is busy.

2. Performs the tasks involved in closing the daily books and posting the
results. This logic is left to the user to implement.

3. When the daily posting tasks are complete, it invokes the callback
system'’s done posting operation to notify the client that the system is
ready to handle new requests.

318

Migration Scenarios

Migration Scenarios

Overview

Retaining proprietary references

Migrating to WS-Addressing

Mixing references types

With the release of Artix 4.0, Artix switched from using a proprietary
reference format to using the WS-Addressing endpoint reference format. If
you have existing applications that use the proprietary format, you should
consider migrating those applications to the WS-Addressing standard.

Artix 4.0 retains support for the proprietary reference format and the

associated APIls. This means the following:

® existing applications that use the proprietary format can simply be
recompiled with out changing the code.

® new services written using Artix 4.0 can interoperate with older
services if they are properly implemented. For more information see
“Mixing references types” on page 318.

Migrating your applications to use WS-Addressing endpoint references is a
straight process. You would need to do the following:

1. Add a prefix definition to your contract for the WS-Addressing
namespace.

2. Modify the import element in your contract to import the
WS-Addressing schema instead of the Artix reference schema.

3. Replace the reference:Reference type with the
wsa:EndpointReferenceType type.

Regenerate the stub and skeleton code for your applications.
5. Replace all instances of Reference with EndpointReferenceType.

Replace all instances of createReference () with

createEndpointReference ().

You can have applications that use both the proprietary references and the
WS-Addressing endpoint references. However, they do not share the same
wire format and are not interchangeable. If your application uses both

styles, you must ensure that operations using proprietary references use the

319

CHAPTER 12 | Using Endpoint References

old reference type and the older APIs on both the client-side and
service-side. If an operation expecting an Artix reference receives an
endpoint reference it will throw an exception.

The same is true of operations that use endpoint references. They cannot
process Artix references.

320

In this chapter

CHAPTER 13

Using Native XML

The Artix Java API provides a utility class that populates Artix
generated objects from an XML document. This utility class
will also convert Artix generated object back into a native XML
representation.

This chapter discusses the following topics:

Populating Artix Objects with XML page 322
Converting Artix Objects Into XML page 325
Converting References into XML page 328

321

CHAPTER 13 | Using Native XML

Populating Artix Objects with XML

Overview

Populating an object generated
from an XMLSchema type

322

You may have instances where the data your application is using input that
is already in XML. For example, your data may stored in a database that
stores information as XML or you are working with a word processing
document stored in the Oasis Open Document format. The problem them
becomes how to populate the objects used in your application with the XML
data.

Artix solves this problem by providing the utility class
com.iona.jbus.utils.XMLUtils. This class provides the overloaded static
method fromxmr () for populating objects using XML data. It uses the
XMLSchema definitions of the data the objects store to parse the XML data
and populate the elements in the object.

If the object you are populating is generated to represent an XMLSchema
type, you can use the simple form of fromxMmL (). The signature for this form
is shown in Example 196.

Example 196: fromXML() for Types

static Object fromXML (String xml, QOName name,
Class class, String path)

fromxML () returns an object that can be cast into the appropriate type. It
takes four arguments:

String xml Contains the XML data to populate the object.

QOName name Specifies the QName of the XMLSchema type from which
the object was generated.

Class class Specifies the c1ass object for the object to be populated.

String path Specifies the path to the contract or XMLSchema

document defining the data the object represents.

Populating an object generated
from an XMLSchema element

Populating Artix Objects with XML

If, for example, your application works with student records whose structure
is defined as an XMLSchema complex type called studentRec, and it reads
records from an XML database, the code for populating the object would be
similar to that shown in Example 197.

Example 197: Populating an Object from XML

FileInputStream file = new FileInputStream("test.xml");

byte record[256];
file.read (record);

String xmlRec = new String(record);

OName name = new QName ("schemas.com/tests/types",
"studentRec") ;

StudentRec student = (StudentRec)XMLUtil.fromXML (xmlRec, name,
StudentRec.class,
"./grader.wsdl") ;

The code in Example 197 does the following:

1. Opens a file containing XML data

Reads in a record from the file.

Converts the byte stream into a string.

Creates the QName for the type definition.

o &~ wbN

Uses the xMLutils class to populate a studentRec object with the XML
data read from the file.

If the XML data passed into fromxur () does not conform to the XMLSchema
definition for the type a writeException will be thrown.

If the object you are populating is generated to represent an XMLSchema
element, you can use the more flexible form of fromxur (). This form will
work with both XMLSchema types and XMLSchema elements. The signature
for this form is shown in Example 198.

Example 198: Five Argument form of fromXML()

static Object fromXML (String xml, QOName elementName,
QOName typeName, Class class, String path)

323

CHAPTER 13 | Using Native XML

324

fromxML () returns an object that can be cast into the appropriate type. It
takes five arguments:

String xml Contains the XML data to populate the object.

OName Specifies the QName of the XMLSchema element from
elementName which the object was generated.

OName typeName Specifies the QName of the XMLSchema type from which
the object was generated.
Class class Specifies the c1ass object for the object to be populated.

String path Specifies the path to the contract or XMLSchema
document defining the data the object represents.

If your object represents an XMLSchema element, you would specify nu11
for typeName. Conversely, if your object represents an XMLSchema type, you
would specify null for elementName.

If we changed Example 197 so that studentrRec was defined as an
XMLSchema element instead of a complex type, the code for populating the
object would be similar to that shown in Example 199.

Example 199: Populating an Object from XML

FileInputStream file = new FileInputStream("test.xml");

byte record[256];
file.read(record);

String xmlRec = new String(record) ;

QOName name = new QName ("schemas.com/tests/types",
"studentRec") ;

StudentRec student = (StudentRec)XMLUtil.fromXML (xmlRec, name,
null
StudentRec.class,
"./grader.wsdl") ;

The code in Example 199 differs from the code in Example 197 in only one
way. The call to fromxvr () includes the extra parameter. In this case,
because studentRrec is defined as an element it is nu11.

If the XML data passed into fromxmr () does not conform to the XMLSchema
definition for the element a writeException will be thrown.

Converting Artix Objects Into XML

Converting Artix Objects Into XML

Overview

Artix objects that represent an
XMLSchema type

Objects that represent an
XMLSchema type

All Artix generated objects have a tostring () method that will produce a
stringified representation of the object. There are instances that you need to
recreate the XML data represented by the object. For example, you may
need to store the data in an XML database. Recreating the XML data
represented by an object can also be a useful debugging tool.

Artix solves this problem by providing the utility class
com.iona.jbus.utils.XMLUtils. This class provides the overloaded static
method toxmr () for converting objects into their XML form. It uses the
XMLSchema definitions of the XML data the objects represent. From the
XMLSchema definition, Artix can decompile the Java object and parse it into
valid XML data.

If the object you are converting into XML was generated by Artix to represent
an XMLSchema type you can use the simplest form of toxmL (). The
signature for this form is shown in Example 200.

Example 200: Two Argument toXML()
static String toXML (Object obj, String path)

It returns a string containing the XML representation of the object and
takes two arguments.

Object obj Specifies the object you are converting to XML. This
object must have been generated by the Artix Java code
generator because it uses Artix specific code for
determining the QName of the type which the object
represents.

String path Specifies the path to the contract or XMLSchema
document defining the data the object represents.

If you have an object, that was not generated by Artix, that represents an
XMLSchema type and you have access to the XMLSchema document that
defines the type, you can still convert it into XML. toxu () has a three

325

CHAPTER 13 | Using Native XML

Objects that represent an
XMLSchema element

326

argument form that allows you to specify the QName of the XMLSchema
type the object represents. The signature for this form is shown in
Example 201.

Example 201: Three Argument toXML()

static String toXML (QName name, Object obj, String path)

It returns a string containing the XML representation of the object and
takes three arguments.

OName name Specifies the QName of the XMLSchema type
represented by the object.

Object obj Specifies the object you are converting to XML. This
object must have been generated by the Artix Java code
generator because it uses Artix specific code for
determining the QName of the type which the object
represents.

String path Specifies the path to the contract or XMLSchema
document defining the data the object represents.

If you have an object, that represents an XMLSchema element and you have
access to the XMLSchema document that defines the type, can convert it
into XML using the four argument form of toxmr (). This form that allows you
to specify the QName of the XMLSchema element the object represents. It
also allows you to convert an object that represents an XMLSchema type by
specifying the type’'s QName. The signature for this form is shown in
Example 202.

Example 202: Four Argument toXML()

static String toXML (QName elementName, QName typeName,
Object obj, String pth)

It returns a string containing the XML representation of the object and
takes four arguments.

OName Specifies the QName of the XMLSchema element
elementName represented by the object.

OName typeName Specifies the QName of the XMLSchema type
represented by the object.

Converting Artix Objects Into XML

Object ob Specifies the object you are converting to XML. This
object must have been generated by the Artix Java code
generator because it uses Artix specific code for
determining the QName of the type which the object
represents.

String path Specifies the path to the contract or XMLSchema
document defining the data the object represents.

If your object represents an XMLSchema element, you would specify nu11
for typeName. Conversely, if your object represents an XMLSchema type, you
would specify null for elementName.

327

CHAPTER 13 | Using Native XML

Converting References into XML

Overview Artix references are defined with in an Artix specific XMLSchema document
that is not always available to applications. Therefore, they contain enough
information to be self-describing. For converting them to and from XML,
XMLUtils provides special methods.

Converting to XML To convert an Artix reference into XML, you use
XMLUtils.referenceToXML (). referenceToxML () takes a single Reference
object and returns a string object containing the XML representation of the
reference. If it cannot convert the reference it throws a writeException.

Converting from XML To convert the XML representation of an Artix reference into an Artix
Reference Object, you use xMLUti1.referenceFromxML () .
referenceFromxML () takes a string object containing the XML
representation of the reference and returns the reference object constructed
from the XML. If the supplied XML is not valid a ReadException is thrown.

328

In this chapter

CHAPTER 14

Using Message

Contexts

Artix implements and extends the JAX-RPC MessageContext
interface to allow users to manipulate metadata about

messages and transports.

This chapter discusses the following topics:

Understanding Message Contexts in Artix page 330
Getting the Context Registry page 334
Getting the MessageContext Object for a Thread page 336
Working with JAX-RPC MessageContext Objects page 339
Working with lonaMessageContext Objects page 345

329

CHAPTER 14 | Using Message Contexts

Understanding Message Contexts in Artix

Overview Artix implements the JAX-RPC MessageContext interface. MessageContext
objects, or message contexts, are primarily used in writing handlers, but can
also be used to store metadata about messages or pass state information
into or out of the message handling chain. Generally, this metadata is not
passed across the wire with the message.

Artix extends the JAX-RPC MessageContext interface to create Artix
TONAMessageContext Objects, or Artix message contexts. The Artix message
contexts provide a consistent, thread safe mechanism for passing
supplemental information along with request and reply messages. This
supplemental information can include SOAP headers, GIOP context objects,
transport attributes, and MIME type definitions.

Artix message context hierarchy All message contexts in Artix are based on the JAX-RPC MessageContext
interface as shown in Figure 5.

javax.xml.rpc.handler.MessageContext

javax.xml.rpc.handler.soap.SOAPMessageContext com.iona.jbus.IONAMessageContext

com. iona.jbus.StreamMessageContext

Figure 5: Artix Message Context Hierarchy

330

How Artix uses message contexts

Artix extensions to message
contexts

Understanding Message Contexts in Artix

All of the Artix operations that return a message context return an object that
implements the MessageContext interface. Depending on where you are in
your code and what properties you want to access, you can cast the
returned message context into an object that implements one of the other
interfaces.

In Artix, message contexts are thread-specific objects that are managed by
an instance of the Artix bus. Each bus instance creates a context registry to
manage its message contexts. The context registry manages the list of
registered context properties and one MessageContext instance for each
thread the bus has spawned. This mechanism ensures that message
contexts remain tied to the messages for which they are created.

Artix consumers, however, do have a number of Artix specific context
properties that survive beyond the life of a single message. These properties
contain information used to configure the bindings and transports used by
the consumer. The values of these properties persist until they are reset by
application code. For more information see “Working with Transport
Attributes” on page 375.

Artix extends the JAX-RPC MessageContext interface to create an

Artix-specific ToNAMessageContext interface. This interface is used to

implement Artix message contexts that are used to hold information which

is to be written out on the wire or used to alter how messages are sent and

received. To ensure that these properties remain attached to the correct

message in the sequence, Artix message contexts use two containers:

® arequest context container that hold properties associated with
messages that travel from a consumer to a service

® areply context container that holds properties associated with
messages that travel from a service to a consumer

331

CHAPTER 14 | Using Message Contexts

This is shown in Figure 6.

Context Registry

Thread X

o Artix Message
Context X

' |Request Context

Thread Y

Artix Message
Context Y &3

E Request Context

Reply Context Reply Context

Figure 6: Overview of the Message Context Mechanism

The request and reply context containers hold separate instances of each
property. So, a property can have one value for requests and one for replies.
Some properties are specific to a particular container. For example, the
HTTP properties are different for requests and replies.

Getting message contexts To access message contexts in your application do the following:

1. If you are using Artix message contexts, register the type factories for
the data stored in the contexts. See “Registering Type Factories” on
page 260.

2. Get a reference to the bus’ context registry.

Get the message context for the thread in which your application is
running from the context registry.

332

Working with message contexts

Understanding Message Contexts in Artix

Once you have gotten the message context, you can chose to use it as a
JAX-RPC message context, a SOAP message context, or an Artix message
context. The JAX-RPC interface allows you to set properties in the message
context as name value pairs. These properties can then be accessed as a
message passed along the messaging chain. For more information see
“Working with JAX-RPC MessageContext Objects” on page 339.

The Artix interface allows you to manipulate properties that are used to
create message headers or to change transport attributes. In addition, the
Artix interface, because it inherits from the JAX-RPC interface, can also
access any property set using the JAX-RPC message contexts. For more
information see “Working with lonaMessageContext Objects” on page 345.
The SOAP interface, which is defined by the JAX-RPC specification, is only
available when using the Artix SOAP binding. It provides access to
messages in SOAP form. Using this context you can manipulate the
messages using the soarMessage APIs. For more information see “Working
with SOAP Messages” on page 555.

333

CHAPTER 14 | Using Message Contexts

Getting the Context Registry

Overview The context registry is maintained by the bus. It contains an entry for all of
the Artix specific property types registered with the bus. It also instantiates
thread-specific message contexts and hands them out when requested by
the application.

Procedure The Bus has a method, getContextRegistry (), that returns a reference to
the bus instance’s context registry. The context registry is an object of type
ContextRegistry. Example 203 shows the signature of
getContextRegistry (). Because the context registry is specific to an
instantiated bus instance, you must call it on an initialized bus instance.

Example 203: getContextRegistry()
ContextRegistry com.iona.jbus.Bus.getContextRegistry () ;

To get access to the context registry from your application code, do the
following:

1. Get a handle for the desired bus using one of the following methods as
shown in “Getting a Bus” on page 102.

2. Call getcontextRegistry () on the returned bus to get a reference to
the context registry.

Example Example 204 shows an example of getting the context registry from within
the implementation object of an Artix service.

Example 204: Getting the Context Registry
import java.net.*;
import java.rmi.*;
1 import com.iona.jbus.*;
public class Atherny

{
// get the bus

334

Getting the Context Registry

Example 204: Getting the Context Registry

2 ContextRegistry contReg = bus.getContextRegistry();

}

The code in Example 204 does the following:

1. Import the package com.iona.jbus S0 that it has access to the Artix
bus APIs.

2. Call getcontextRegistry () on the default bus to get the default bus’
context registry.

335

CHAPTER 14 | Using Message Contexts

Getting the MessageContext Object for a

Thread

Overview

getCurrent()

To ensure thread safety, the context registry creates a message context for
each thread. The message contexts maintained by the context registry are
passed as JAX-RPC MessageContext objects. These objects provide access
to properties stored in the contexts using the APIs defined in the JAX-RPC
specification.

Artix provides two means of getting the current message context for a
thread. If you have the context registry, you can use the registry’s
getcurrent () method. If you do not have the context registry, you can use
the DispatchLocals.getCurrentContext () method.

To manipulate Artix specific properties you must cast the returned
MessageContext iNt0 an IonaMessageContext object. Once the
MessageContext IS cast 10 an IonaMessageContext you can access the Artix
specific context properties.

Message contexts are passed out by the context registry using the registry’s
getcurrent () method. getcurrent () returns the message context object for
the thread from which it is called. Message contexts are returned as
JAX-RPC MessageContext objects. Example 205 shows the signature for
getCurrent ().

Example 205: getCurrent()

javax.xml.rpc.handler.MessageCcontext ContextRegistry.getCurrent () ;

336

Example 206 shows how to get an message context from the context
registry.

Example 206: Getting a Message Context
import java.net.*;

import java.rmi.*;
import javax.xml.rpc.handlers.*;

DispatchLocals

1

Getting the MessageContext Object for a Thread

Example 206: Getting a Message Context
import com.iona.jbus.*;

public class Atherny
{
// get the bus

ContextRegistry contReg = def bus.getContextRegistry();
MessageContext messCont = contReg.getCurrent();
}

The code in Example 206 does the following:

1. Import the package com.iona.jbus S0 that it has access to the Artix
bus APIs.

2. Call getcontextResistry () on the default bus to get the default bus’
context registry.

3. Call getcurrent () on the context registry to get the Artix message
context for the application’s thread.

DispactLocals is a servant-specific interface that provides a simple method
for getting the current message context for a thread. Its
getCurrentMessageContext () method returns the message context object
for the thread from which it is called. Message contexts are returned as
JAX-RPC MessageContext objects. Example 207 shows the signature for

getCurrentMessageContext ().

Example 207: getCurrentMessageContext()

javax.xml.rpc.handler.MessageCcontext getCurrentMessageContext () ;

Example 208 shows how to get an message context using the
DispatchLocals interface.

Example 208: Getting a Message Context
import java.net.*;

import java.rmi.*;
import javax.xml.rpc.*

337

CHAPTER 14 | Using Message Contexts

Example 208: Getting a Message Context
import com.iona.jbus.*;

public class Atherny

{

MessageContext messCont =
DispatchLocals.getCurrentMessageContext () ;

338

Working with JAX-RPC MessageContext Objects

Working with JAX-RPC MessageContext

Objects

Overview

Artix context properties

A JAX-RPC message context is a container for properties that are shared
among the participants in applications message handling chain. They have
some predefined properties that are made available to the components
along the messaging chain. However, you can add any named property you
like to the context as long as the name does not conflict with one of the
predefined properties.

Properties set in the message context are only available at certain steps
along the messaging chain. Properties set in the context by handlers are
only available to handlers further down the processing chain and are
destroyed once the operation’s invocation completes. Properties set at the
application level are available globally and live for the duration of the
application.

JAX-RPC message contexts have methods to set a property in the context, to
get a property from the context, and to remove a property from the context.
They also have methods to determine what properties are set in the context.

Artix has a number of standard properties that it stores in the JAX-RPC
message context. These properties can all be accessed using the appropriate
constant from the com.iona.jbus.ContextConstants class. Table 15 lists
the context properties used by Artix.

Table 15: Artix Context Properties

Property Description

OPERATION NAME Holds the name of the operation the
originated the message being processed.
See “Working with Operation Parameters”
on page 550.

339

CHAPTER 14 | Using Message Contexts

340

Table 15: Artix Context Properties

Property

Description

SERVER REQUEST CLASSES

Holds an array of c1ass objects
representing the classes of each part of the
current request message. See “Working
with Operation Parameters” on page 550.

SERVER REQUEST VALUES

Holds an array of object objects
containing the data for each part in the
current request message. See “Working
with Operation Parameters” on page 550.

SERVER RESPONSE CLASSES

Holds an array of class objects
representing the classes of each part of the
current response message. See “Working
with Operation Parameters” on page 550.

SERVER RESPONSE VALUES

Holds an array of object objects
containing the data for each part in the
current response message. See “Working
with Operation Parameters” on page 550.

CLIENT REQUEST CLASSES

Holds an array of c1ass objects
representing the classes of each part of the
current request message. See “Working
with Operation Parameters” on page 550.

CLIENT REQUEST VALUES

Holds an array of object objects
containing the data for each part in the
current request message. See “Working
with Operation Parameters” on page 550.

CLIENT RESPONSE CLASSES

Holds an array of c1ass objects
representing the classes of each part of the
current response message. See “Working
with Operation Parameters” on page 550.

CLIENT RESPONSE VALUES

Holds an array of object objects
containing the data for each part in the
current response message. See “Working
with Operation Parameters” on page 550.

Setting a property in the context

Working with JAX-RPC MessageContext Objects

Before a property exists in the message context it must be set using the
message context’'s setProperty () method. Example 209 shows the
signature for setProperty (). The first parameter, name, can be any string as
long as it is unique among the properties set in the context. The second
parameter, value, can be any instantiated Java object. It becomes the value
of the property stored in the context.

Example 209: MessageContext.setProperty()
void setProperty (Sting name, Object value) ;

The scope of the property depends on where in the messaging chain the
property is set into the context. Properties set at the level from which the
operations are invoked they are global in scope and exist for the duration of
the process’ lifecycle or until they are explicitly removed from the message
context. Properties set by handlers are only available to handlers further
down the handler chain and expire once the operation’s invocation is
completed. For more information about handlers, see “Writing Handlers” on
page 519.

Example 210 shows the code for setting a property in the request context.
Example 210: Setting a Property in a Message Context

import java.net.*;

import java.rmi.*;

import com.iona.jbus.*;

public class Atherny

{

// get the bus

ContextRegistry contReg = def bus.getContextRegistry();
MessageContext context = contReg.getCurrent();

boolean isEncrytped = TRUE;

context.setProperty ("isEncrypted", isEncrypted);

341

CHAPTER 14 | Using Message Contexts

Getting a property from the
context

342

The code in Example 210 does the following:

1. Imports the package com. iona.jbus S0 that it has access to the Artix
bus APIs.

2. Calls getcontextResistry() on the default bus to get the default bus’
context registry.

3. Calls getcurrent () on the context registry to get the message context
for the application’s thread.

Creates the an instance of the property’s class and set the values.
5. Sets the property by calling setProperty ().

You get a property’s value from the message context using its
getProperty () method. Example 211 shows the signature for
getProperty (). It takes a single parameter, name, that is the name of the
property for which you want the value. If the property exists, it is returned. If
the property does not exist, nu11 is returned.

Example 211: MessageContext.getProperty()
Object getProperty (String name) ;

Example 212 shows the code for getting a property from the request
context.

Example 212: Getting a Property from the Message Context

import java.net.*;

import java.rmi.*;

import com.iona.jbus.*;

public class Atherny

{

// get the bus

ContextRegistry contReg = def bus.getContextRegistry();
MessageContext context = contReg.getCurrent () ;

boolean encrypt = (boolean)context.getProperty ("isEncrypted") ;

}

Removing a property from the
context

Working with JAX-RPC MessageContext Objects

The code in Example 212 does the following:

1. Imports the package com.iona.jbus so that it has access to the Artix
bus APlIs.

2. Calls getcontextResistry () on the default bus to get the default bus’
context registry.

3. Calls getcurrent () on the context registry to get the message context
for the application’s thread.

4. Gets the property by calling getproperty () with the appropriate name.

If you wish to remove a property from the message context, you do so using
the message context's removeProperty () method. Example 213 shows the
signature for removeProperty (). It takes a single parameter, name, that
represents the name of the property you wish to remove.

Example 213: MessageContext.removeProperty()
void removeProperty (String name) ;

Example 214 shows the code for removing a property from the message
context.

Example 214: Removing a Property from a Message Context
import java.net.*;

import java.rmi.*;

import com.iona.jbus.*;

public class Atherny

{

// get the bus

ContextRegistry contReg = def bus.getContextRegistry();
MessageContext context = contReg.getCurrent () ;

context.removeProperty ("isEnctryted") ;

}

343

CHAPTER 14 | Using Message Contexts

Determining what properties are
set

344

The code in Example 214 does the following:

1. Calls getContextResistry () on the default bus to get the default bus’
context registry.

2. Calls getcurrent () on the context registry to get the message context
for the application’s thread.

3. Removes the property by calling removeProperty ().

The JAX-RPC MessageContext interface has two methods that allow you to
determine what properties are set in a context. containsProperty () takes
the name of a property, as a string, and returns true if the property is set
and false if the property is not. getPropertyNames () returns an Iterator
object with the names of all properties stored in the message context.

Example 215 shows the code for seeing if a property is set in the message
context.

Example 215: Querying a Property in the Message Context

import java.net.*;
import java.rmi.*;
import com.iona.jbus.*;

public class Atherny

{
// get the bus
ContextRegistry contReg = def bus.getContextRegistry();

MessageContext context = contReg.getCurrent();

if (context.containsProperty ("isEnctryted"))

{
System.out ("The property is set");
}

Working with lonaMessageContext Objects

Working with lonaMessageContext Objects

Overview

In this section

Artix extends the MessageContext interface defined by JAX-RPC to support
some of Artix's more advanced features. This extended interface is the
TonaMessageContext interface. Message contexts that are accessed using
this interface are referred to as Artix message contexts. They are used to
store complex data types that are used for adding header elements to
messages or to programatically define certain binding and transport details.

This section discusses the following topics:

How Properties are Stored in Artix Message Contexts page 346

Setting a Property into an Artix Message Context page 348

Working with Properties from an Artix Message Context page 351

Special Artix Properties page 353

345

CHAPTER 14 | Using Message Contexts

How Properties are Stored in Artix Message Contexts

Overview Artix message contexts store data that must be used by both the Java
components of Artix and the C++ components of Artix. In addition, the
properties for a transport may differ depending on the direction a message is
travelling and a property may or may not be populated depending on where
in the request/reply sequence you access it. Transport properties and
message headers must also be preserved across multiple Artix endpoints.
For example, the HTTP properties that are available for a client to set on a
request are different from the HTTP properties that it can access for a reply.
Also, the HTTP properties for a reply are only available to the client after a
reply is received. If the invocation chain involves a router, the router must
also preserves both the request’s HTTP properties and the response’s HTTP
properties.

To make these capabilities possible Artix message contexts use two

additional components:

® Properties stored in Artix message contexts must be registered with the
context registry.

® Artix message contexts are broken down into two context containers.

Property registration Properties stored in an Artix message context are defined as XMLSchema
complex types. Each XMLSchema complex type represents one Java object
that conforms to the mappings described in “Using XMLSchema Complex
Types” on page 145. Before the property can be placed into an Artix
message context it must be registered with the context registry using the
context registry’s registerContext () method. For more details on
registering properties with the context registry see “Registering Context
Types” on page 359.

Each of the transports shipped with Artix has a set of properties that are
managed using Artix message contexts. The transports automatically
register all of the properties they use when the transport is loaded. For more
information see “Working with Transport Attributes” on page 375.

Context containers Each Artix message context holds one request context container and one
reply context container. The request context container holds all of the
properties associated with messages that originate as service requests in a

346

Working with lonaMessageContext Objects

proxy. The reply context container holds all of the properties associated with

messages that are created by services in response to a request. In both
instances, the properties in the context container are passed all the way
through the request and reply chain. For example, if client makes a

request on servera, Servera would receive the properties set in the request
context from the client. If servera then passes the request along to serverg,
ServerB also receives the request context sent by client. The same is true

when using the Artix router. Figure 7 shows how context properties are

passed with messages.

L ServerA/Router %

N

11 ServerBProxy :

\ Reply Context

[EH ServerB

/

Reply Context

Figure 7:

Contexts Passed Along Request/Reply Chain

The context containers hold the data for all of the contexts instantiated in
the Artix message context’s thread. Each context container can hold one
instance of a registered property type. Properties are instantiated separately

for the request context container and the reply context container. For
instance, you can get a SOAP header property for the request context
container and leave the reply context container empty. In that case, the

SOAP header property would be included in all request messages sent from

the thread in which it was set.

347

CHAPTER 14 | Using Message Contexts

Setting a Property into an Artix Message Context

Overview Before you can get a property from one of the context containers, the
property must be set in that container. Properties are set in one of two ways:

® the property is set by the sender of the message
® the property is set using the context’s setter methods

Received properties When Artix receives a message the transport layer will populate the
appropriate properties in the Artix message context. The SOAP and CORBA
bindings will populate the appropriate properties if headers are attached to
messages. In addition, other Artix plug-ins that have access to a message
can also set properties based on the content of a received message. For
example, if a client sends a request with a WS-Security header, the server's
request context container will have the WS-Security property set.

Artix message context setter Artix message contexts have two setter methods: setReplyContext () and
methods setRequestContext (). Example 216 shows the signature for these
methods.

Example 216: Methods for Setting a Property

void setReplyContext (QName name, Object value) ;
void setRequestContext (QName name, Object value);

The first parameter to these methods, name, specifies the name of the
property you desire to set. The oName passed in must be a gName of a
property that is registered with the context registry.

The second parameter, value, is data you are using to set the property. It
must be of the appropriate type for the property specified in name.

Procedure for setting a property To set a property do the following:

1. Create an instance of the object representing the property you want to
set.

2. Set the desired fields of the newly created property.

348

Working with lonaMessageContext Objects

3. Call the appropriate setter method with the name of the property you
are setting and the property instance you created. For example, to set a
property into the reply context container, you would use
setReplyContext ().

Example Example 217 shows the code for setting a property in the request context.
Example 217: Setting a Property in an Artix Message Context

import java.net.*;
import java.rmi.*;
1 import com.iona.jbus.*;

public class Atherny

{
// get the bus
2 ContextRegistry contReg = def bus.getContextRegistry();

3 IonaMessageContext context =
(IonaMessageContext) contReg.getCurrent () ;

4 MusicTagType tag = new MusicTagType () ;
tag.setArtist ("Murphy") ;
tag.setAlbum ("Law") ;

5 QName contextName = new QName ("http://records.com/",
"MusicTags") ;

6 context.setRequestContext (contextName, tag);

}

The code in Example 217 does the following:

1. Imports the package com.iona.jbus so that it has access to the Artix
bus APIs.

2. Calls getcontextResistry () on the default bus to get the default bus’
context registry.

3. Calls getcurrent () on the context registry to get the message context
for the application’s thread and casts it to an Artix message context.

4. Creates the an instance of the property’s class and set the values.

349

CHAPTER 14 | Using Message Contexts

5. Creates the QName for the property.

6. Sets the property by calling setRequestContext () with the appropriate
oName and the newly created property object.

350

Working with lonaMessageContext Objects

Working with Properties from an Artix Message Context

Overview

Getting a property

Manipulating a property

Once a property is set in an Artix message context you can retrieve the
property and manipulate its contents. Properties in an Artix message context
are Java objects, so you manipulate them as you would any other Java
object.

Artix message contexts have two methods that allows you to get a property
from one of the context containers. These methods are getReplyContext ()
and getRequestContext (). Example 218 shows the signature for these
methods.

Example 218: Methods for Getting a Property

Object getReplyContext (QName name) ;
Object getRequestContext (QName name) ;

They take a single parameter, name, that specifies the name of the property
you desire to get. The oName passed in must be a oName of a property that is
registered with the context registry. Artix has a number of preregistered
context types to support transport attributes. In addition, You can register
your own properties to use as SOAP headers or GIOP service contexts.

Once you have gotten a property from the context container, you must first
cast the returned object to the appropriate data type for the property. Each
property has its own associated data type. For example, in Example 219 the
custom SOAP header's data is of type headerType.

Once the property is cast into the appropriate type you can access its fields
using the methods defined for the type. Any changes made to the property
by your application change the copy stored in the context container and will
be propagated when the property is sent with a message.

351

CHAPTER 14 | Using Message Contexts

Example Example 219 shows the code for getting a property from the request
context.

Example 219: Getting a Property

import java.net.*;
import java.rmi.*;
1 import com.iona.jbus.*;

public class Atherny

{
// get the bus
2 ContextRegistry contReg = def bus.getContextRegistry ()

3 IonaMessageContext context =
(IonaMessageContext)contReg.getCurrent () ;

4 OName refName = new QName ("http://records.com/","MusicTags") ;
5 MusicTagType tag =
(MusicTagType) context.getRequestContext (refName) ;

}

The code in Example 219 does the following:

1. Imports the package com.iona.jbus S0 that it has access to the Artix
bus APIs.

2. Calls getcontextResistry () on the default bus to get the default bus
context registry.

3. Calls getcurrent () on the context registry to get the message context
for the application’s thread and casts it to an Artix message context.

4. Creates the QName used to get the property from the context
container. This QName must be the same QName as the one with
which the property was registered.

B. Gets the customer SOAP header property by calling
getRequestContext () With the appropriate oName.

352

Working with lonaMessageContext Objects

Special Artix Properties

Overview

Oneway property

N

Artix message contexts have two special properties for use by servers:

® oneway iS @ boolean property that specifies if a request requires a
response.

® correalationID is stored as a long and specifies a unique identifier
that allows a server to correlate an incoming request with its
corresponding outgoing reply.

The oneway property is available in a server's Artix message context once a
message reaches the request-level interceptors. You can check its value
using IonaMessageContext.isOneway (). If the request is a oneway request,
meaning that it will not generate a reply, oneway is true. For requests that
require a response, oneway IS false.

Example 220 shows code for checking if a request is oneway.
Example 220: Seeing if a Request is Oneway

import com.iona.jbus.IonaMessageContext;

ContextRegistry contReg = bus.getContextRegistry();
IonaMessageContext context =
(IonaMessageContext) contReg.getCurrent () ;

if (context.isOneway())
{

System.out.println("This is a oneway request.");
}
Example 220 does the following:
1. Imports the proper jous package.
2. Gets the context registry.
3. Gets the Artix message context.
4

Determine if the request is oneway.

353

CHAPTER 14 | Using Message Contexts

Correlation ID property

354

The correlationID property is available at all levels of the server-side
messaging chain and is accessed using
IonaMessageContext.getCorrelationID (). The value of the property is a
long that is specific to each request/reply pair. Using correlationID you
could, for instance, write an interceptor that tracked the amount of time
required for a reply to be generated for each request.

Overview

Procedure

CHAPTER 15

Sending Message
Headers

Artix message contexts are used to add headers to messages
that are sent using payload formats that support message
headers.

Using the context mechanism, you can embed data in message headers that
are not part of the operation’s parameter list. This is useful for sending
metadata such as security tokens or session information that is tangential to
the logic involved in processing the request.

The data sent in the message header is a custom context that you will need
to create and register with the Artix context container when you build your

application. How you define the data for the context and how you register

the context will depend on the payload format used by the application.

Note: If you change the payload format used by the application, your
code will continue to work. However, the header information stored in the
context will not be transmitted.

To send customer header information in a context you need to do the
following:

1. Define an XMLSchema for the data being stored in the header.
2. Generate the type factory and support code for the header data.

355

CHAPTER 15 | Sending Message Headers

In this chapter

356

3. Register the type factory for the header data. See “Registering Type
Factories” on page 260.

4. Register the header data as a context.

Once the header data is registered as a context with Artix, it can be
accessed using the normal context mechanisms.

This chapter discusses the following topics:

Defining Context Data Types page 357
Registering Context Types page 359
SOAP Header Example page 364

Defining Context Data Types

Defining Context Data Types

Overview

Defining a context schema

Contexts can store data of any XMLSchema type that is derived from
xsd:anyType. In other words, a context data type can be any primitive,
simple, or complex XMLSchema type.

When creating a context whose type is an XMLSchema primitive type or a
native XMLSchema simple type like xsd:nonNegativeInteger, you do not
need to explicitly define the context’s data type. However, if you are creating
a context whose type is a user-defined simple type or a complex type, you
need to define the data type in an XMLSchema document (XSD), or in the
types section of your contract, and generate the appropriate type factories
for the data type.

It is typically appropriate to define a context data type (or types) in a
separate schema file, rather than including the definition in the application’s
contract. This approach is logical because contexts are normally used to
implement features independent of any particular service.

To define a complex context data type, contextpataType, in the namespace,
ContextDataURI, you define a context schema following the outline shown
in Example 221.

Example 221: Outline of a Context Schema

<?xml version="1.0" encoding="UTF-8"7?>
<xsd:schema
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="ContextDataURI"
elementFormDefault="cqualified"
attributeFormDefault="unqualified">
<xsd:complexType name="ContextDataType">

</xsd:complexType>
</xsd:schema>

357

CHAPTER 15 | Sending Message Headers

Example For example, you could define the data for a header that contains two
elements. One element, originator, is a string containing the name of the
message originator. The other element, message, contains a message string.
The data type for this header, soapHeaderInfo, is shown in Example 222.

Example 222: Header Context Data Definition

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://schemas.iona.com/types/context"
elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:complexType name="SOAPHeaderInfo'">
<xs:sequence>
<xs:element name="originator" type="xs:string"/>
<xs:element name="message" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

Generating Java code foracontext To generate the Java code for the context data type, contextType, from a
schema context schema file, contextschema.xsd, enter the following command at
the command line:

wsdltojava ContextSchema.xsd

The WSDL-to-Java compiler will generate two Java classes:

® ContextType.java contains the class representing the data type.

® ContextTypeTypeFactory.java contains the type factory needed to
instantiate the context data type.

These classes will need to be accessible to any applications that wishes to
register and use a context of the defined type.

For more information on type factories see “Working with Artix Type
Factories” on page 257.

358

Registering Context Types

Registering Context Types

Overview

In this section

Before you can use a context, you must register it with the bus’ context
registry using the registry’s registerContext () method. registerContext ()
requires the gname for the context and the gname of the data type stored in
the context.

Registering a context adds a type factory reference to the context registry’s
internal table. This type factory reference enables the context registry to
create context data instances whenever they are needed.

This section discusses the following topics:

Registering a Context for Use as a SOAP Header page 360

Registering a Context for Use as a CORBA Header page 362

359

CHAPTER 15 | Sending Message Headers

Registering a Context for Use as a SOAP Header

Overview

360

To register a context to be used as a SOAP header you need to provide the
name of the WSDL message part that is to be inserted into the SOAP
header. This information comes from the WSDL contract defining the
messages used by the application.

Example 223 shows the signature of the registercontext () function used
to register a context to be used as a SOAP header.

Example 223: The registerContext() Function for SOAP Headers

void ContextRegistry.registerContext (QName name, QName type,
QName message name,
String part name);

registerContext () takes the following arguments:

name The qualified name used to represent the property.
type The qualified name of the property’s data type.

message name The qualified name of the WSDL message specified in the
soap:header element defining this SOAP header. If there
iS N0 soap:header elements defined in the contract, this
can be any valid oName.

part_name The part name specified in the soap:header element
defining this SOAP header. If there is no soap:header
elements defined in the contract, this can be any valid
String.

Registering Context Types

Example For example, to register a SOAP header property of the type defined in
Example 222 on page 358 you would use code similar to Example 224.

Example 224: Registering a SOAP Header Property

1 SOAPHeaderInfoTypeFactory fact = new
SOAPHeaderInfoTypeFactory () ;
// Bus, bus, obtained earlier
bus.registerTypeFactory (fact) ;

2 ContextRegestry contReg = bus.getContextRegistry() ;

3 // Create a QName for the new property
QOName name = new QName ("http://javaExamples.iona.com",

"SOAPHeader") ;

4 // Create a QName to hold the QName of the property’s data type

QName type = new QName ("http://schemas.iona.com/types/context",
"headerInfo") ;
5 // Create a QName for the message

OName message = new QName ("http://myHeader.com/header"
"header info");

6 // Register the property
contReg.registerContext (name, type, message, "header part");

The code in Example 224 does the following:

1. Register the type factory for the header's data type.

2. Get a handle to the bus’ context registry.

3. Build the oname by for the new property. This can be any valid oName.
4

Build the oname that specifies the property’s data type. The values for
this are taken from the XSD defining the data type. The first argument
is the namespace under which the type is defined. The second
argument is the name of the complex type.

5. Build the gname for the message defining the SOAP header. In this
example, the SOAP header is not defined in the WSDL contract so the
value is unimportant.

6. Register the property with the context registry. The value used for the
part name, header part, can be any string.

361

CHAPTER 15 | Sending Message Headers

Registering a Context for Use as a CORBA Header

Overview

Example

362

To register a property to be used as a CORBA header you need to provide an
ID to be placed in the GIOP service context ID.

Example 225 shows the signature of the registercontext () function used
to register a property to be used as a CORBA header.

Example 225: The registerContext() Function for CORBA Headers

void ContextRegistry.regiserContext (OName name, QName type,
long context id);

This registerContext () method takes the following arguments:

name The qualified name used to represent the property.
type The qualified name of the property’s data type.
context id The ID that tags the GIOP service context containing the

Artix context. In CORBA, the context id corresponds to
a service context ID of 110P: :service1d type. For details
of GIOP service contexts, consult the OMG CORBA
specification.

For example, to register a CORBA header property of the type defined in
Example 222 on page 358 you would use code similar to Example 226.

Example 226: Registering a Property as a CORBA Header

// Artix servant, servant, obtained earlier
headerInfoTypeFactory fact = new headerInfoTypeFactory () ;
servant.registerTypeFactory (factArray) ;

// Bus, bus, obtained earlier
ContextRegestry contReg = bus.getContextRegistry();

// Create a QName for the new property
QName name = new QName ("http://javaExamples.iona.com",
"CORBAHeader") ;

Registering Context Types

Example 226: Registering a Property as a CORBA Header

// Create a QName to hold the QName of the property’s data type
QName type = new QName ("http://schemas.iona.com/types/context",

"headerInfo") ;

// Register the property
contReg.registerContext (name, type, 1);

The code in Example 226 does the following:

1.

2.
3.
4

Register the type factory for the header's data type.
Get a handle to the bus’ context registry.
Build the gname for the new property. This can be any valid gName.

Build the oname that specifies the property’s data type. The values for
this are taken from the XSD defining the data type. The first argument
is the namespace under which the type is defined. The second
argument is the name of the complex type.

Register the property with the context registry.

363

CHAPTER 15 | Sending Message Headers

SOAP Header Example

Overview The example in this section transmits a custom SOAP header between two
Artix processes. The SOAP header is defined in the WSDL contract for this
example to demonstrate how context registration relates to the WSDL
contract for SOAP headers.

The SOAP header data in this example is transmitted as follows:

1. The client registers the property, soaPHeaderInfo, with the context
registry for its bus.

2. The client initializes the property instance.
The client invokes the say#i () operation on the server and the SOAP
header property is packaged into the request message's SOAP header.

4. When the server starts up, it registers the soarHeaderInfo property
with the context registry for its bus.

5. When the sayHi () operation request arrives on the server side, the
SOAP header is extracted and put into the request context container as
a SOAPHeaderInfo property.

6. The sayHi () operation implementation extracts the property from the
request.

If the server in this example were not an Artix process, it would not need to

use the context mechanism to extract the SOAP header. It would have its
own method of handling the SOAP header.

In this section This section discusses the following topics:
The Contract page 365
Generating the Classes for the Header page 367
The Client page 368
The Service page 371

364

SOAP Header Example

The Contract

Overview

Example

The contract used for this example imports the XSD file, soaPcontext.xsd,
that defines the SOAP header property’s data type in Example 222 on
page 358. The soaPHeaderInfo type is used to define the only part of the
headerMsg message. In the SOAP binding for Greeter,
GreeterSOAPBinding, the definition of the input message includes a
soap:header element that specifies that headerMsg:headerpPart is to be
placed in a SOAP header when a request is made. Your application code will
be responsible for creating the property that populates the defined SOAP
header.

Example 227 on page 365 shows the contract used to define the service
used in this example.

Example 227: SOAP Header WSDL

<?xml version="1.0" encoding="UTF-8"7?>

<definitions name="HelloWorld" targetNamespace="http://www.iona.com/custom soap interceptor"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.iona.com/custom soap interceptor"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<types>

<schema targetNamespace="http://www.iona.com/custom soap header"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<element name="responseType" type="xsd:string"/>
<element name="requestType" type="xsd:string"/>
<element name="SOAPHeaderInfo" type="nsl:headerInfo"/>

</schema>
</types>

<message name="sayHiRequest"/>
<message name="sayHiResponse'">
<part element="tns:responseType" name="theResponse"/>

</message>

<message name="greetMeRequest">
<part element="requestType" name="me"/>

</message>

<message name='"greetMeResponse">
<part element="responseType" name="theResponse"/>

</message>

365

CHAPTER 15 | Sending Message Headers

Example 227: SOAP Header WSDL

<portType name="Greeter">
<operation name="sayHi">
<input message="tns:sayHiRequest" name="sayHiRequest"/>
<output message="tns:sayHiResponse" name="sayHiResponse"/>
</operation>
<operation name="greetMe">
<input message="greetMeRequest" name="greetMeRequest"/>
<output message="greetMeResponse" name="greetMeResponse"/>
</operation>
</portType>
<binding name="GreeterSOAPBinding" type="Greeter">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="sayHi">
<soap:operation soapAction="" style="document"/>
<input name="sayHiRequest">
<soap:body use="literal"/>
</input>
<output name="sayHiResponse'">
<soap:body use="literal"/>

</output>
</operation>
<operation name="greetMe'>
<soap:operation soapAction="" style="document"/>

<input name="greetMeRequest'">
<soap:body use="literal"/>
</input>
<output name="greetMeResponse'">
<soap:body use="literal"/>
</output>
</operation>
</binding>
<service name="SOAPService">
<port binding="Greeter SOAPBinding" name="SoapPort">
<address location="http://localhost:9000"/>
</port>
</service>
</definitions>

366

SOAP Header Example

Generating the Classes for the Header

Overview

Procedure

In order to generate the proper classes to support the custom SOAP header
you need to run the wsdltojava tool on the SOAP headers schema file
separately. This will create the classes needed to work with the header. You
will need to add these classes to your application.

To generate the code for the header save header’s schema file to a file called
SOAPcontext.xsd. Then run the following command:

wsdltojava SOAPcontext.xsd

The file
InstallDir/artix/Version/demos/advanced/custom soap header/etc/co
ntextData.xsd also defines soaPHeaderInfo.

367

CHAPTER 15 | Sending Message Headers

The Client

Overview The client in this example will send a SOAP header of type soaPHeaderInfo
when it invokes the greetMe operation. To do this it must do four things:

Register the type factory for soapHeaderInfo.
Register a property of soaPHeaderInfo type.
Create an instance of soaPHeaderInfo.

Populate the instance with the appropriate data.

o &~ wbN

Set the soaPHeaderInfo property in the request context container.

When the greetMe () method is invoked, the property will be inserted into
the SOAP message’s header element and sent to the server.

Example Example 228 on page 368 shows the code for the client.

Example 228: Client Code

import java.util.*;
import java.io.*;

import java.net.*;
import java.rmi.*;

import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;

public class GreeterClient
{

public static void main (String args([]) throws Exception
{

1 Bus bus = Bus.init (args);

368

SOAP Header Example

Example 228: Client Code

QOName name =
new QName ("http://www.lona.com/custom soap interceptor",
"SOAPService") ;
QOName portName = new QName ("", "SoapPort") ;

String wsdlPath

"../../etc/hello world.wsdl";

URL wsdlLocation = null;
try
{
wsdlLocation = new URL (wsdlPath) ;
}
catch (java.net.MalformedURLException ex)

{
wsdlLocation = new File (wsdlPath) .toURL() ;

ServiceFactory factory = ServiceFactory.newlInstance();
Service service = factory.createService (wsdlLocation, name) ;
Soap impl = (Soap)service.getPort (portName, Soap.class);

SOAPHeaderInfoTypeFactory fact =
new SOAPHeaderInfoTypeFactory () ;
bus.registerTypeFactory (fact) ;
ContextRegestry contReg = bus.getContextRegistry() ;
QName name = new QName ("", "SOAPHeaderInfo");
QOName type =
new QName ("http://schemas.iona.com/types/context",
"SOAPHeaderInfo") ;
OName message =
new QName("http://schemas.iona.com/custom_header",
"header content", "socap header");
contReg.registerContext (name, type, message, "header info");
SOAPHeaderInfo header = new SOAPHeaderInfo () ;

header.setOriginator ("Client") ;
header.setMessage ("Hello from Client.!");

369

CHAPTER 15 | Sending Message Headers

370

10

11

12

13

14

Example 228: Client Code

}

IonaMessageContext context =
(IonaMessageContext) contReg.getCurrent () ;

context.setRequextContext (name, header) ;
String string out;

string out = impl.sayHi ()
System.out.println(string out);
string out = impl.greetMe ("Chris");
System.out.println(string out);

SOAPHeaderInfo replyInfo =

(SOAPHeaderInfo) (context.getReplyContext (name)) ;
System.out.println ("Context from Server: " + replyInfo);
bus.shutdown (true) ;

}

The code in Example 228 on page 368 does the following:

o ok Wb

10.
11.
12.

Initializes an instance of the bus.

Creates a proxy for the Greeter service.
Register the type factory for soapHeaderInfo.
Gets the context registry from the bus.
Builds the gNname for the new property.

Builds the oname for the property’s data type. The values for this are

taken from the XSD defining the data type. The first argument is the

namespace under which the type is defined. The second argument is
the name of the complex type.

Builds the oname for the message defining the SOAP header.
Registers the property with the context registry.

Instantiates an instance of the SOAP header property’s class,
SOAPHeaderInfo, and sets the fields.

Gets the Artix message context for the client.
Adds the SOAP header property to the request context container.

Invokes sayHi (). The SOAP header property is placed into the SOAP
header of the request and sent to the server.

13.

14.

SOAP Header Example

Invokes greetme (). The SOAP header property is placed into the SOAP
header of the request and sent to the server.

Retrieves the SOAP header that is returned from the service and
displays its contents.

371

CHAPTER 15 | Sending Message Headers

The Service

Overview

Registering the property in the
service

372

A service that works with SOAP headers need to do three things:

1.
2.
3.

Register the type factory for the SOAP header's data type.
Register the SOAP headers property with the context registry.
Extract the SOAP header from the request.

The service must also register the soaPHeader property with its context
registry in order to extract the SOAP header sent with the request. Because
the property only needs to be registered with the context registry once, it
makes sense to register it in the service’s busInit ().

Example 229 on page 371 shows the code for the service’s busInit ().

Example 229: Registering a Context in businit()

import com.iona.jbus.*;
import com.iona.jbus.servants.*;
import javax.xml.namespace.QName;

import java.net.*;

import java.io.*;

public class HelloWorldPlugIn extends BusPlugIn

{

private HelloWorldImpl service;

public void busInit () throws BusException

{

Bus bus = getBus();

OName name =
new QOName ("http://www.iona.com/custom soap interceptor",
"SOAPService") ;
Servant servant =
new SingleInstanceServant (new SoapImpl (),
"../../etc/hello world.wsdl", bus);
bus.registerServant (servant, name, "SoapPort");

SOAP Header Example

Example 229: Registering a Context in businit()

SOAPHeaderInfoTypeFactory fact =
new SOAPHeaderInfoTypeFactory () ;
bus.registerTypeFactory (fact) ;

ContextRegestry contReg = bus.getContextRegistry() ;
QName propName = new QName ("", "SOAPHeaderInfo");

QName propType =
new QName ("http://schemas.iona.com/types/context",
"SOAPHeaderInfo") ;

OName message =
new QName("http://schemas.iona.com/custom_header",
"header content", "socap header");

contReg.registeContext (propName, propType,
message, "header info");

}

The code in Example 229 on page 371 does the following:

Gets an instance of the bus.

Registers the services implementation object with the bus.
Registers the type factory for soaPHeaderInfo.

Gets the context registry from the bus.

Builds the oName for the new property.

Builds the oname for the property’s data type.

Builds the onName for the message defining the SOAP header.

©® N O ok wDd

Registers the property with the context registry.

373

CHAPTER 15 | Sending Message Headers

Extracting the SOAP header

374

The service's implementation object, Greeterimpl, gets the SOAP header
from the request message and prints the headers contents. To do this the
implementation object must get the SOAP header property from the request
context container. Getting the SOAP header property takes four steps:

1. Get a reference to the bus for the implementation object.

2. Get the bus' context registry.

3. Get the thread’s Artix message context from the registry.

4. Get the SOAP header property from the request context container.

Example 230 shows the code for the GreeterImpl implementation object.
Example 230: /Implementation of the Greeter Service

import java.net.*;
import java.rmi.*;
import javax.xml.namespace.QName;

import com.iona.jbus.*

public class SoapImpl
{
public String greetMe (String stringParam)

{
IonaMessageContext context =
(IonaMessageContext)DispatchLocals.getCurrentMessageContext () ;

QName name = new QName ("", "SOAPHeaderInfo");

SOAPHeaderInfo header =
(SOAPHederInfo) context.getRequestContext (name) ;

System.out.println ("SOAP Header Originator:
"+header.getOriginator());

System.out.println ("SOAP Header message:
"+header.getMessage ()) ;

SOAPHeaderInfo replyInfo = new SOAPHeaderInfo () ;
replyInfo.setOrginator ("Servier");

replyInfo.setMessage ("Success! :)");

context.setReplyContext (name, replyInfo) ;

SOAP Header Example

Example 230: /mplementation of the Greeter Service

return "Hello Artix User: "+stringParam;
}
}
The code in Example 230 on page 373 does the following:
1. Gets an instance of the bus.
2. Gets the context registry from the bus.
3. Gets the context current for the implementation object’s thread.
4

Builds the gname for the SOAP header property. This oName must be the
same as the gName used when registering the property in the server
main.

Gets the SOAP header property from the request context container.
Prints out the information contained in the SOAP header.

Instantiates a new SOAP header to send back to the client.

© N oo

Sets the new SOAP header into the reply context so it can be returned
to the client.

9. Returns the results of the operation to the client.

375

CHAPTER 15 | Sending Message Headers

376

CHAPTER 16

Working with
Transport
Attributes

Using the Artix context mechanism, you can set many of the
the transport attributes at runtime.

In this chapter This chapter discusses the following topics:
How Artix Stores Transport Attributes page 376
Getting Transport Attributes from an Artix Context page 378
Setting Configuration Attributes page 381
Setting HTTP Attributes page 385
Setting CORBA Attributes page 407
Setting WebSphere MQ Attributes page 409
Setting JMS Attributes page 423
Setting FTP Attributes page 434
Setting i18n Attributes page 444

375

CHAPTER 16 | Working with Transport Attributes

How Artix Stores Transport Attributes

Overview

Initialization properties

Global transport attributes

Transport specific

376

Artix uses the context mechanism described in “Using Message Contexts” on
page 329 to store the properties used to configure the transport layer and
populate any headers used by the selected transport. Most of the properties
are stored in the normal Artix context containers. However, some properties
that are used in initializing the transport layer at start-up are stored in a
special context container.

Some transport attributes, such as JMS broker sign-on values or a server's
HTTP endpoint URL, are used by Artix when it is initializing the transport
layer. Therefore, they need to be specified before Artix it initializes the
transport layer for a service or a service proxy. These attributes are stored in
a special context container. When the bus initializes the transport layer, it
will check this special context container for any initialization properties.

For most transport properties such as HTTP keep-alive, WebSphere MQ
AccessMode, and Tib/RV callbacklLevel, the context objects containing the
transport’s properties are stored in the Artix request context container and
the Artix reply context container. Once you have retrieved the context object
from the proper context container, you can inspect the values of transport
headers and other transport related properties such as codeset conversion.
You can also dynamically set many of the values for outgoing messages
using the context APIs. For a full listing of all the possible port attributes for
each transport see Understanding Artix Contracts.

Transport attributes are stored in built-in contexts. These contexts are
preregistered with the context container when the transport layer is
initialized. They are specific to the different transports. For example, if you
request the context for the HTTP port attributes from the context container,
the returned context will have methods for setting and examining HTTP
specific attributes. However, if the application is using another transport,
WebSphere MQ for example, the HTTP configuration context will not be
registered and you will be unable to get the HTTP configuration context from
the container.

../contract/index.htm

How Artix Stores Transport Attributes

When are the attribute contexts All of the transport attributes have default values that are specified in either

populated the service's contract or in the service’s configuration. If you do not use the
contexts for overriding transport attributes, these are always used when
sending messages. However, when you get the transport attributes for an
outgoing message, the context will be empty. You will need to create an
instance of the context and set the values you want to override in the context
yourself.
When a message is received by the transport layer, the transport populates
the context with the attributes of the message it receives. For example, if
you are using HTTP the values of the incoming message’s HTTP header will
be used to populate the context. The context can then be inspected at any
point in the application’s code.

377

CHAPTER 16 | Working with Transport Attributes

Getting Transport Attributes from an Artix

Context

Overview

Getting a transport attribute
context

378

All of the contexts for holding transport attributes are handled using the
standard context mechanism. To get a transport attribute context do the

following:
1.
Context Registry” on page 334.
2.
3.
4.

Get the applications message context registry as shown in “Getting the

Get the message context for the current application as shown in

“Getting the MessageContext Object for a Thread” on page 336.

Cast the message context to an Artix message context.
Get the desired context from the appropriate context container.

Once you have the context you can inspect it and set new values for any of
its properties.

You get an instance of a transport attribute context from an Artix message
context using the standard context APIs discussed in “Working with

lonaMessageContext Objects” on page 345. To make it easy to remember
the names used to access each context, Artix provides a helper class called
ContextConstants that has a static member for each configuration context.
The static member name for each configuration context is shown in
Table 16.

Table 16: Configuration Context QNames

Context

ContextConstants Member

HTTP Client Incoming Attributes

HTTP_CLIENT INCOMING CONTEXTS

HTTP Client Outgoing Attributes

HTTP CLIENT OUTGOING CONTEXTS

HTTP Server Incoming Attributes

HTTP SERVER INCOMING CONTEXTS

HTTP Server Outgoing Attributes

HTTP SERVER OUTGOING CONTEXTS

CORBA Transport Attributes

CORBA CONTEXT ATTRIBUTES

Getting Transport Attributes from an Artix Context

Table 16: Configuration Context QNames

Context

ContextConstants Member

MQ Connection Attributes

MO CONNECTION ATTRIBUTES

MQ Outgoing Message Attributes

MQ OUTGOING MESSAGE ATTRIBUTES

MQ Incoming Message Attributes

MQ INCOMING MESSAGE ATTRIBUTES

JMS Client Header Attributes

JMS_CLIENT CONTEXT

JMS Server Header Attributes

JMS SERVER CONTEXT

FTP Connection Policy

FTP CONNECTION POLICY

FTP Client Naming Policy

FTP_CLIENT NAMING POLICY

FTP Server Naming Policy

FTP_SERVER NAMING POLICY

FTP Connection Credentials

FTP CREDENTIALS

i18n Server Attributes

I18N INTERCEPTOR SERVER ONAME

i18n Client Attributes

I18N_INTERCEPTOR CLIENT QNAME

Bus Security Attributes

SECURITY_ SERVER CONTEXT

Once you have gotten the desired context from the Artix message context,
you will need to cast it to the appropriate class for the context. Table 17
lists the data types for each of the configuration contexts.

Table 17: Configuration Context Classes

Context Class
HTTP Client Attributes com.iona.schemas.transports.http.configuration.context.ClientType
HTTP ServerAttributes com.iona.schemas.transports.http.configuration.context.ServerType
CORBA Attributes com.iona.schemas.bindings.corba.contexts.CORBAAttributesType
MQ Connection Attributes com.iona.schemas.transports.mq.context.MQConnectionAttributesType
MQ Message Attributes com.iona.schemas.transports.mq.context.MQOMessageAttrinutesType
JMS Client Header Attributes com.iona.schemas.transports.Jjms.context.JMSClientHeadersType

379

CHAPTER 16 | Working with Transport Attributes

Table 17: Configuration Context Classes

Context Class
JMS Server Header Attributes com.iona.schemas.transports.jms.context.JMSServerHeadersType
FTP Connection Policy com.iona.schemas.transports. ftp.context.ConnectionPolicyType
FTP Client Naming Policy com.iona.schemas.transports. ftp.context.ClientNamingPolicyType
FTP Server Naming Policy com.iona.schemas.transports. ftp.context.ServerNamingPolicyType
FTP Connection Credentials com.iona.schemas.transports.ftp.context.CredentialsType
i18n Server Attributes com.iona.schemas.bus.il8n.context.ServerConfiguration
i18n Client Attributes com.iona.schemas.bus.i18n.context.ClientConfiguration
Bus Security Attributes com.iona.schemas.bus.security context.BusSecurity

380

Setting Configuration Attributes

Setting Configuration Attributes

Overview Depending on the attributes that are being set, you will one of two methods
for setting the configuration information into the context container. For most
cases, you will use the standard context mechanism. For properties that
must be known before the bus initializes the transport layer, you will use the
specialized configuration context.

In this section This section discussed the following topics:
Using the Standard Contexts page 382
Using the Configuration Context page 383

381

CHAPTER 16 | Working with Transport Attributes

Using the Standard Contexts

Durability of settings

Configuring clients

Configuring servers

382

When programmatically alter your application’s transport attributes, you
override any settings read from the application’s contract and the
application’s configuration file. The durability of this setting depends on
whether the application is a server or a client.

For servers, transport attribute settings are valid only for a single request.
After each request is processed and a reply is sent the settings revert back to
the settings specified in the contract.

For clients, the contexts used to programatically set transport attributes are
permanent. Once set, a value remains in place until it is explicitly changed.
So, if you change a client’'s HTTP username attribute to Greenbragon, it will
be used in all future requests. Exceptions to this rule are noted when
applicable.

To override the default transport attributes on the client-side you set values
on the context in the request context container. The bus uses the values
from the request context container to override the default configuration on
the client’s transport before sending a request. If no values have been set in
the request context container the transport uses its default values.

The values in a client’s reply context are set by the Artix bus when a reply is
received by the transport layer. They can be checked by client code at any
point.

To override the default transport attributes on the server-side you set the
values on the contexts in the reply context container. The bus uses the
values from the reply context container to override the default configuration
on the server's transport before sending a reply. If no values have been set in
the reply context container the transport uses its default values.

The values in a server's request context are set by the Artix bus when a
request is received by the transport layer. The properties can be checked at
any point in the server's messaging chain and in the server's implementation
object.

Setting Configuration Attributes

Using the Configuration Context

Overview

Available properties

Procedure

Getting the configuration context

There are a few transport attributes that need to be specified before the
transport layer of an Artix application is instantiated. For example when
using a secure JMS broker, your application need to know its username and
password before it attempts to connect to the JMS broker. To accomplish
this, you need to set these properties before the user level code is registered
with the bus. Artix uses a special context, called the configuration context,
to do this.

Currently, Artix supports the following special port properties:

® HTTP Endpoint URL - specifies the URL on which the server can be
contacted.

® JMS Broker Connection Security Info - specifies the username and
password used by an application when connecting to the JMS broker.

® FTP Transport Settings - specifies the attributes to use when
establishing an FTP connection for the FTP transport.

To register a special port property do the following:

1. Get the configuration context from the context registry.

Get a copy of the desired property from the configuration context.
Set the appropriate values into the property.

If the application is a server, register the servant with the bus.

o &~ Wb

If the application is a client, instantiate the service proxy.

The configuration context is obtained directly from the context registry using
the getConfigurationContext () method shown in Example 231. It is
returned as a port specific contextContainer object. To specify the port
with which the context container is associated you pass in the oName of the

383

CHAPTER 16 | Working with Transport Attributes

Setting properties in the
configuration context

384

service defining the port and the name of the port. You can also specify if
the bus will create an instance of the configuration context for the specified
port.

Example 231: getConfigurationContext()
ContextContainer getConfigurationContext (QName serviceName,

String portName,
boolean createIfNotFound) ;

Once you have the context container for the configuration context, you can
set the desired port properties. Like a normal message context, the context
container has a getcontext () method for retrieving contexts from the
container and a setContext () method for writing new contexts to the
container.

getContext (), shown in Example 232, gets the instance of a context from
the container. The method can also create a new instance of the desired
context. The context is returned as a Java object that can then be cast into
the appropriate data type. Once you have the context object, you can
manipulate any data set in it and the changes are propagated back to the
container.

Example 232: getContext()
Object getContext (QName contextName, boolean createIfNotFound) ;

You can also use the setcontext () method, shown in Example 233, to set
a context into the context container. setcontext () takes an instance of the
context's data type and the context name. The context instance is then use
to populate the context. All of the values set on the context instance become
the values used to configure your server port.

Example 233: setContext()

void setContext (QName contextName, Object context);

Setting HTTP Attributes

Setting HTTP Attributes

Overview

In this section

Artix uses four contexts to support the HTTP transport. Two contexts support
the server-side HTTP information. The server-side contexts are of type
com.iona.schemas.transports.http.configuration.context.ServerType.
The other two contexts support the client-side HTTP information. The
client-side contexts are of type
com.iona.schemas.transports.http.configuration.context.ClientType.
The information stored in the HTTP transport attribute contexts correlates to
the values passed in an HTTP header.

This section discusses the following topics:

Client-side Configuration page 386
Server-side Configuration page 395
Setting the Server's Endpoint URL page 405

385

CHAPTER 16 | Working with Transport Attributes

Client-side Configuration

Overview

Outgoing header information

386

HTTP clients have access to both the values being passed in the HTTP
header of the outgoing request and the values received in the HTTP header
of the response. The information for each header is stored in a separate
context.

On the client-side, the outgoing context, HTTP CLIENT OUTGOING CONTEXTS,
is available in the client’s request context. Any changes made to values in
the outgoing context are placed in the request’'s HTTP header and
propagated to the server. For example, if you want to allow requests to be
automatically redirected you could set the autoredirect attribute to true in
the client’s outgoing context. Example 234 shows the code for setting the
AutoRedirect property for a client.

Example 234: Setting a Client’s AutoRedirect Property

import com.iona.schemas.transports.http.configuration.context.*;
import com.iona.jbus.ContextConstants;

ContextRegistry contReg = bus.getContextRegistry();
IonaMessageContext context =
(IonaMessageContext) contReg.getCurrent () ;

ClientType httpAtribs =
(ClientType) context.getRequestContext (ContextConstants.HTTP C
LIENT OUTGOING CONTEXTS, true);

httpAtribs.setAutoRedirect (true) ;
// make proxy invocations

The code in Example 234 does the following:

1. Imports the package containing the HTTP client context type.
2. Gets the client’s context registry.

3. Gets the Artix context from the context registry.

Outgoing client attributes

Setting HTTP Attributes

4. Gets the client’s outgoing HTTP context from the request context

container.

5. Sets the value of the autoRedirect property to true.

Table 18 shows the attributes that are valid in the outgoing HTTP client

context.

Table 18: Outgoing HTTP Client Attributes

HTTP Attribute

Artix APls

Description

Accept

String getAccept ()
void setAccept (String val)

Specifies the MIME types the
client can handle in a response.

Accept-Encoding

String getAcceptEncoding ()
void setAcceptEncoding (String val)

Specifies the types of content
encoding the client can handle in
a response. This property typically
refers to compression
mechanisms.

Accept-Language

String getAcceptLanguage ()
void setAcceptlLanguage (String val)

Specifies the language the client
prefers. Valid language tags
combine an ISO language code
and an ISO country code
separated by a hyphen. For
example, en-uUs.

Authorization String getAuthorization () Specifies the credentials that will
void setAuthorization (String val) be used by the server to authorize
requests from the client.
AuthorizationType String getAuthorizationType () Specifies the name of the
void setAuthorizationType (authentication scheme in use.
String val)
AutoRedirect Boolean isAutoRedirect () Specifies whether a request

void setAutoRedirect (Boolean val)

should be automatically
redirected by the server. The
default is false to specify that
requests are not to be
automatically redirected.

387

CHAPTER 16 | Working with Transport Attributes

Table 18: Outgoing HTTP Client Attributes

HTTP Attribute

Artix APIs

Description

BrowserType

String getBrowserType ()
void setBrowserType (String val)

Specifies information about the
browser from which the request
originates. This property is also
know as the user-agent.

Cache-Control

String getCacheControl ()
void setCacheControl (String val)

Specifies directives to caches
along the request/response path.

Valid values are:

no-cache: caches must revalidate
responses with the server. If
response header fields are given,
the restriction applies only to
those header fields.

no-store: caches must not store
any part of a request or its
response.

max-age: the max age, in
seconds, of an acceptible
response.

max-stale: the client will accept
expired messages. If a value is
given, it specifies the how many
seconds after a response expires
that the it is still acceptable. If no
value is given, all stale responses
are acceptable.

min-fresh: the response must
stay fresh for the given number of
seconds.

no-transform: caches must not
modify the media type or the
content location of a response.

only-if-cached: caches should
return only cached responses.

388

Setting HTTP Attributes

Table 18: Outgoing HTTP Client Attributes

HTTP Attribute

Artix APIs

Description

ClientCertificate

String getClientCertificate()
void setClientCertificate (

String val)

Specifies the full path to the
PKCS12-encoded X509
certificate issued by the certificate
authority for the client.

ClientCertificateChain

String getClientCertificateChain ()

void setClientCertificateChain (

String val)

Specifies the full path to the file
containing all of the certificates in
the chain.

ClientPrivateKey

String getClientPrivateKey ()
void setClientPrivateKey (

String val)

Specifies the full path to the
PKCS12-encoded private key that
corresponds to the X509
certificate specified by
ClientCertificate.

ClientPrivateKeyPassword

String getClientPrivateKeyPassword ()
void setClientPrivateKeyPassword (
String val)

Specifies the password used to
decrypt the PKCS12-encoded
private key.

Connection

String getConnection ()
void setConnection (String val)

Specifies whether a connection is
to be kept open after each
request/response transaction.

Valid values are:

close: the connection is closed
after each transaction.

Keep-Alive: the client would like
the conneciton to remain open.
Servers do not have to honor this
request.

Cookie

String getCookie ()
void setCookie (String val)

Specifies a static cookie that is
sent along with a request.

Note: According to the HTTP
1.1 specification, HTTP cookies
must contain US-ASCII
characters.

Expires

String getExpires()
void setExpires (String val)

Specifies the date after which
responses are considered stale.

389

CHAPTER 16 | Working with Transport Attributes

Table 18: Outgoing HTTP Client Attributes

HTTP Attribute

Artix APIs

Description

void setPragma (String val)

Host String getHost () Specifies the Internet host and
void setHost (String val) port number of the service for
which the request is targeted.
Password String getPassword () Specifies the password to use in
void setPassword(String val) username/password
authentication.
Pragma String getPragma () Specifies implementation-specific

directives that might apply to any
recipient along the
request/response chain.

Proxy-Authorization

String getProxyAuthroization()
void setProxyAuthentication (
String val)

Specifies the credentials used to
perform validation at a proxy
server along the request/response
chain. If the proxy uses
username/password validation,
this value is not used.

ProxyAuthorizationType

String getProxyAuthorizationType ()
void setProxyAuthorizationType (
String val)

Specifies the type of
authentication used by proxy
servers along the
request/response chain.

void setProxyServer (String val)

ProxyPassword String getProxyPassword () Specifies the password used by
void setProxyPassword (String val) proxy servers for authentication if
username/password
authentication is in use.
ProxyServer String getProxyServer () Specifies the URL of the proxy

server, if one exists, along the
request/response chain.

Note: Artix does not support the
existence of more than one proxy
server along the request/response
chain.

390

Setting HTTP Attributes

Table 18: Outgoing HTTP Client Attributes

HTTP Attribute Artix APls Description
ProxyUserName String getProxyUsername () Specifies the username used by
void setProxyUserName (String val) proxy servers for authentication if
username/password
authentication is in use.
RecieveTimeout Integer getRecieveTimeout () Specifies the number of
void setRecieveTimeout (Integer val) milliseconds the client will wait to
receive a response from a server
before timing out. The default is
3000.
Referer String getReferer () Specifies the entity that referred

void setReferer (String val)

the client to the target server.

Send-Timeout

Integer getSendTimeout ()
void setSendTimeout (Integer val)

Specifies the number of
milliseconds the client will
continue trying to send a request
to the server before timing out.

ServerDate

String getServerDate ()
void setServerDate (String val)

Specifies the time setting for the
server. When this value is set, the
client will use it as the base time
from which to calculate message
expiration. The client defaults to
using its internal system clock.

Trusted Root Certificate

String getTrustedRootCertificates ()
void setTrustedRootCertificates(
String val)

Specifies the full path to the
PKCS12-encoded X509
certificate for the certificate
authority.

Username

String getUserName ()
void setUserName (String val)

Specifies the username used for
authentication when the server
uses username/password
authentication.

391

CHAPTER 16 | Working with Transport Attributes

Table 18: Outgoing HTTP Client Attributes

HTTP Attribute Artix APls Description
Use Secure Sockets Boolean isUseSecureSockets () Specifies the client wants to use a
void setUseSecureSockets (secure connection. Secure HTTP
Boolean val) | connections are also referred to as
HTTPS.

Valid values are true and false.

Note: If the contract specifies
HTTPS, this value is always true.

Incoming header The client’s incoming context, HTTP CLIENT INCOMING CONTEXTS, iS
available in the client’s reply context after a response from the server has
been received by the transport layer. The values stored in this context are for
informational purposes only. For example, if you need to check the MIME
type of the data returned in the request, you would read it from the client’s
incoming context as shown in Example 235.

Example 235: Reading the Content Type in an HTTP Client

1 import com.iona.schemas.transports.http.configuration.context.*;
import com.iona.jbus.ContextConstants;

2 // make proxy invocation

3 ContextRegistry contReg = bus.getContextRegistry();
4 IonaMessageContext context =
(IonaMessageContext) contReg.getCurrent () ;

5 ClientType httpAtribs =
(ClientType) context.getReplyContext (ContextConstants.HTTP CLI
ENT INCOMING CONTEXTS, true);

6 String contentType = httpAttribs.getContentType () ;

The code in Example 235 does the following:
1. Imports the package containing the HTTP client context type.
2. Makes an invocation on the proxy.

392

Incoming client attributes

Setting HTTP Attributes

3. Gets the client’s context registry.
4. Gets the Artix context from the context registry.

5. Gets the client’s incoming HTTP context from the reply context
container.

6. Gets the value of the contextType property.

Table 19 shows the attributes that are valid in the incoming HTTP client
context.

Table 19: /ncoming HTTP Client Attributes

HTTP Attribute

Artix APls Description

Content-Encoding

String getContentEncoding () Specifies the type of special
encoding, if any, the server used
to package the response.

Content-Language

String getContentLanguage () Specifies the language the server
used in writing the response.
Valid language tags combine an
ISO language code and an ISO
country code separated by a
hyphen. For example, en-us.

Content-Location String getContentLocation () Specifies the URL where the
resource being sent in a response
is located.

Content-Type String getContentType () Specifies the MIME type of the

data in the response.

ETag

String getETag () Specifies the entity tag in the
response header.

HTTPReply

String getHTTPReply () Specifies the type of reply being
sent back by the server. For
example, if a request is fulfilled a
server will reply with ok.

HTTPReplyCode

Integer getHTTPReplyCode () Specifies an integer code
associated with the server’s reply.
For example, 200 means ok and
404 means Not Found.

393

CHAPTER 16 | Working with Transport Attributes

Table 19: /ncoming HTTP Client Attributes

HTTP Attribute

Artix APIs

Description

Last-Modified

String getLastModified()

Specifies the date and time at
which the server believes a
resource was last modified.

Proxy-Authenticate

String getProxyAuthenticate ()

Specifies a challenge that
indicates the authentication
scheme and parameters
applicable to the proxy for this
Request-URI.

RedirectURL String getRedirectURL () Specifies the URL to which client
requests should be redirected.
This is issued by a server when it
is not appropriate for the request.

ServerType String getServerType () Specifies the type of server

responded to the client. Values
take the form

program-name/version.

WWW-Authenticate

String getWWWAuthentication ()

Specifies at least one challenge
that indicates the authentication
scheme(s) and parameters
applicable to the Request-URI.

394

Setting HTTP Attributes

Server-side Configuration

Overview

Outgoing header

HTTP servers have access to both the values being passed in the HTTP
header of the outgoing response and the values received in the HTTP header
of the request. The information for each header is stored in a separate
context.

On the server-side, the outgoing context, HTTP SERVER OUTGOING CONTEXTS,
is available in the server's reply context container. Any changes made to
values in the outgoing context are placed in the reply’s HTTP header and
propagated to the client. For example, if you want to inform the client that it
needs to redirect it's request to a different server, you could set the
RedirectURL attribute in the server's outgoing context to the URL of an
appropriate server. Example 236 shows the code for setting the
RedirectURL attribute for a server.

Example 236: Setting a Server’s RedirectURL Attribute

import com.iona.schemas.transports.http.configuration.context.*;
import com.iona.jbus.ContextConstants;

ContextRegistry contReg = bus.getContextRegistry();
IonaMessageContext context =
(IonaMessageContext) contReg.getCurrent () ;

ClientType httpAtribs =
(ClientType) context.getReplyContext (ContextConstants.HTTP SER
VER OUTGOING CONTEXTS, true);

httpAtribs.setRedirectURL ("http: \\www.notme.org\askthisguy") ;

The code in Example 236 does the following:

1. Imports the package containing the HTTP server context type.
2. Gets the server's context registry.

3. Gets the Artix context from the context registry.

4

Gets the server's outgoing HTTP context from the reply context
container.

395

CHAPTER 16 | Working with Transport Attributes

Outgoing server attributes

5. Sets the value of the rRedirectURL property to the URL of the server
who can satisfy the request.

Table 20 shows the attributes that are valid in the outgoing HTTP server
context.

Table 20: Outgoing HTTP Server Attributes

HTTP Attribute Artix APls Description
Cache-Control String getCacheControl () Specifies directives to caches
void setCacheControl (String val) along the request/response path.

Valid values are:

no-cache: caches must revalidate
responses with the server. If
response header fields are given,
the restriction applies only to
those header fields.

public: any cache can store the
response.

private: public caches cannot
store the response. If response
header fields are given, the
restriction applies only to those
header fields.

no-store: caches must not store
any part of the response or the
request.

no-transform: caches must not

modify the media type or the
content location of a response.

396

Setting HTTP Attributes

Table 20: Outgoing HTTP Server Attributes

HTTP Attribute Artix APls Description

must-revalidate: caches must
revalidate responses that have
expired with the server before the
response can be used.

proxy-revalidate: means the
same as must-revalidate, but it
can only be enforced on shared
caches. You must set the public
directive when using this
directive.

max-age: the max age, in
seconds, of an acceptible
response.

s-maxage: means the same as
max-age, but it can only be
enforced on shared caches. When
set it overides the value of
max-age. YOU must use the
proxy-revalidate directive when
using this directive.

Content-Encoding String getContentEncoding () Specifies the type of special
void setContextEncoding (String val) encoding, if any, the server uses
to package a response.

Content-Language String getContentLanguage () Specifies the language used to
void setContentLanguage (String val) write a response. Valid language
tags combine an ISO language
code and an ISO country code
separated by a hyphen. For
example, en-Us.

Content-Location String getContentLocation () Specifies the URL where the
void setContentLocation (String val) resource being sent in a response
is located.
Content-Type String getContentType () Specifies the MIME type of the
void setContentType (String val) data in the response.

397

CHAPTER 16 | Working with Transport Attributes

Table 20: Outgoing HTTP Server Attributes

HTTP Attribute

Artix APIs

Description

ETag String getETag () Specifies the entity tag in the
void setETag (String val) response header
Expires String getExpires () Specifies the date after which the
void setExpires(String val) response is considered stale.
HonorKeepAlive Boolean isHonorKeepAlive () Specifies if the server is going to
void setHonorKeepAlive (Boolean val) honor a client’s keep-alive
request.
HTTPReply String getHTTPReply () Specifies the type of response the
void setHTTPReply (String val) server is issuing. For example, if
the request is fulfilled the server
will reply with ox.
HTTPReplyCode Integer getHTTPReplyCode () Specifies an integer code

void setHTTPReplyCode (Integer val)

associated with the response. For
example, 200 means ok and 404
means Not Found.

Last-Modified

String getLastModified()
void setLastModified (String val)

Specifies the date and time at
which the server believes a
resource was last modified.

Pragma

String getPragma ()
void setPragma (String val)

Specifies implementation-specific
directives that might apply to any
recipient along the
request/response chain.

Proxy-Authorization

String getProxyAuthroization ()
void setProxyAuthentication (
String val)

Specifies the credentials used to
perform validation at a proxy
server along the request/response
chain. If the proxy uses
username/password validation,
this value is not used.

ProxyAuthorizationType

String getProxyAuthorizationType ()
void setProxyAuthorizationType (
String val)

Specifies the type of
authentication used by proxy
servers along the
request/response chain.

398

Setting HTTP Attributes

Table 20: Outgoing HTTP Server Attributes

HTTP Attribute Artix APls Description
ProxyPassword String getProxyPassword () Specifies the password used by
void setProxyPassword(String val) proxy servers for authentication if
username/password
authentication is in use.
ProxyServer String getProxyServer () Specifies the URL of the proxy
void setProxyServer (String val) server, if one exSts,anngthe
request/response chain.
Note: Artix does not support the
existence of more than one proxy
server along the request/response
chain.
ProxyUserName String getProxyUsername () Specifies the username used by

void setProxyUserName (String val)

proxy servers for authentication if
username/password
authentication is in use.

Recieve-Timeout

Integer getRecieveTimeout ()
void setRecieveTimeout (Integer val)

Specifies the number of
milliseconds the server will wait
to receive a request before timing
out. The default is 3000.

RedirectURL

String getRedirectURL ()
void setRedirectURL (String val)

Specifies the URL to which the
request should be redirected.

Send-Timeout

Integer getSendTimeout ()
void setSendTimeout (Integer val)

Specifies the number of
milliseconds the server will
continue trying to send a response
before timing out. The default is
3000.

ServerCertificate

String getServerCertificate()
void setServerCertificate (String
val)

Specifies the full path to the X509
certificate issued by the certificate
authority for the server.

ServerCertificateChain

String getServerCertificateChain ()
void setServerCertificateChain (
String val)

Specifies the full path to the file
containing all of the certificates in
the chain.

399

CHAPTER 16 | Working with Transport Attributes

Table 20: Outgoing HTTP Server Attributes

HTTP Attribute

Artix APIs

Description

Server Type

String getServerType ()
void setServerType (String val)

Specifies the type of server
responded to the client. Values

take the form

program-name/version.

ServerPrivateKey String getServerPrivateKey () Specifies the full path to the
void setServerPrivateKey (String val) PKCS12-encoded private key that
corresponds to the X509
certificate specified by
ServerCertificate.

ServerPrivateKeyPassword String getServerPrivateKeyPassword ()
void getServerPrivateKeyPassword (

String val)

Specifies the password used to
decrypt the PKCS12-encoded
private key.

Trusted Root Certificate String getTrustedRootCertificates ()
void setTrustedRootCertificates(

String val)

Specifies the full path to the
PKCS12-encoded X509
certificate for the certificate
authority.

UseSecureSockets Boolean isUseSecureSockets ()

void setUseSecureSockets (Boolean

Specifies the server wants to use
a secure connection. Secure
val) HTTP connections are also
referred to as HTTPS.

Note: If the contract specifies
HTTPS, this value is always true.

WWW-Authenticate String getWWWAuthentication ()

void setWWWAunthentication (String

Specifies at least one challenge
that indicates the authentication
val) scheme(s) and parameters
applicable to the Request-URI.

Incoming header The server's incoming context, HTTP_SERVER INCOMING CONTEXTS, iS
available in the server's request context container after a request from client

has been received by the transport layer. The values stored in this context

400

Incoming server attributes

Setting HTTP Attributes

are for informational purposes only. For example, if you need to check the
MIME type of the data the client can accept in the response, you would read
it from the server's incoming context as shown in Example 237.

Example 237: Reading the Accept Attribute in an HTTP Server

1 import com.iona.schemas.transports.http.configuration.context.*;
import com.iona.jbus.ContextConstants;

2 ContextRegistry contReg = bus.getContextRegistry();
3 IonaMessageContext context =
(IonaMessageContext) contReg.getCurrent () ;

4 ClientType httpAtribs =
(ClientType) context.getRequestContext (ContextConstants.HTTP_S
ERVER INCOMING CONTEXTS, true);

5 String contentType = httpAttribs.getAccept () ;

The code in Example 237 does the following:

1. Imports the package containing the HTTP server context type.
2. Gets the server's context registry.

3. Gets the Artix context from the context registry.

4

Gets the server's incoming HTTP context from the reply context
container.

5. Gets the value of the Accept attribute.

Table 19 shows the attributes that are valid in the incoming HTTP server
context.

Table 21: /ncoming HTTP Server Attributes

HTTP Attribute

Artix APls Description

Accept

String getAccept () Specifies the MIME types the
client can handle in a response.

401

CHAPTER 16 | Working with Transport Attributes

Table 21: /ncoming HTTP Server Attributes

HTTP Attribute

Artix APIs

Description

Accept-Encoding

String getAcceptEncoding ()

Specifies the types of content
encoding the client can handle in
a response. This property typically
refers to compression
mechanisms.

Accept-Language

String getAcceptLanguage ()

Specifies the language preferred
by the client. Valid language tags
combine an ISO language code
and an ISO country code
separated by a hyphen. For
example, en-uUs.

Authorization

String getAuthorization ()

Specifies the credentials that will
be used by the server to authorize
requests from the client.

AuthorizationType

String getAuthorizationType ()

Specifies the name of the
authentication scheme in use.

AutoRedirect

Boolean isAutoRedirect ()

Specifies whether the server
should automatically redirect the
request.

BrowserType

String getBrowserType ()

Specifies information about the
browser from which the request
originates. This property is also
know as the user-agent.

Certificate Issuer

String getCertificateIssuer ()

Specifies the value stored in the
Issuer field of the client’'s X509
certificate.

Certificate Key Size

Integer getCertificateKeySize ()

Specifies the size, in bytes, of the
public key included in the client’s
x509 certificate.

Certificate Valid Not
After

String getCertificateNotAfter ()

Specifies the date and time after
which the client's X509 certificate
is invalid.

402

Setting HTTP Attributes

Table 21: /ncoming HTTP Server Attributes

HTTP Attribute

Artix APIs

Description

Certificate Valid Not
Before

String

getCertificateNotBefore ()

Specifies the date and time before
which the client’s X509 certificate
is invalid.

Certificate Subject

String

getCertificateSubject ()

Specifies the value of the subject
field in the client’'s X509
certificate.

Connection

String

getConnection ()

Specifies whether a connection is
to be kept open after each
request/response transaction.

Cookie

String

getCookie ()

Specifies a static cookie that is
sent along with a request.

Note: According to the HTTP
1.1 specification, HTTP cookies
must contain US-ASCII
characters.

Host

String

getHost ()

Specifies the Internet host and
port number of the resource being
requested.

HTTPVersion

String

getHTTPVersion ()

Specifies the version of the HTTP
transport in use. Currently, this is
always setto 1.1.

If-Modified-Since

String

getIfModifiedSince ()

If the requested resource has not
been modified since the time
specified, the server should issue
a 304 (not modified) response
without any message body.

Method

String

getMethod ()

Specifies the value of the METHOD
token sent in the request. Valid
values and their meanings are
given in the HTTP 1.1
specification.

Passwrod

String

getPassword ()

Specifies the password the client
wishes to use for authentication.

403

CHAPTER 16 | Working with Transport Attributes

Table 21: /ncoming HTTP Server Attributes

HTTP Attribute

Artix APIs

Description

Proxy-Authenticate

String getProxyAuthenticate ()

Specifies a challenge that
indicates the authentication
scheme and parameters
applicable to the proxy for this
Request-URI.

Referer

String getReferer ()

Specifies the entity that referred
the client.

URL

String getURL()

Specifies the value of the
Request-URI sent in the request.
The valid values for this property
are described in the HTTP 1.1
specification.

Username

String getUserName ()

Specifies the username the client
wishes to use for authentication.

404

Setting HTTP Attributes

Setting the Server’s Endpoint URL

Overview

Getting the property

Side effects

Example

1

2

3

Because the server's endpoint URL must be known before the transport
layer is initialized by the bus, you must use the specialized configuration
context to set it. For more information on using the configuration context see
“Using the Configuration Context” on page 383.

To access the HTTP endpoint URL property for an HTTP server, you use the
ContextConstants member HTTP SERVER OUTGOING CONTEXTS. YOu are
returned a serverType Object that has two relevant methods:

® setURL() sets a string representing the URL of the server.

® getURL() returns a string representing the URL of the server.

A side affect of setting the server's endpoint URL using contexts is that the
following configuration variables are ignored:

hd policies:soap:server address mode policy:publish hostname

* policies:at http:server address mode policy:publish hostname

The endpoint addresses advertised by the WSDL publish service will reflect

the values set in the configuration context, not the values set in the
configuration file.

Example 238 shows how to set the HTTP Endpoint URL programatically.
Example 238: Setting the HTTP Endpoint URL
ContextRegistry registry = bus.getContextRegistry() ;

OName name = new QName ("http://www.iona.com/config context",
"SOAPService") ;

ContextContainer contain = registry.getConfigurationContext (
name,
"SoapPort",
true) ;

405

CHAPTER 16 | Working with Transport Attributes

Example 238: Setting the HTTP Endpoint URL

4 ServerType httpConf = (ServerType)container.getContext (
ContextConstants.HTTP SERVER OUTGOING CONTEXTS,
true) ;

5 httpConf.setURL ("http://localhost:63278/config context test");

6 bus.registerServant (servant, gname, portName) ;

The code in Example 238 does the following:
Get the context registry.

Create the service’s QName.

Get the configuration context container.
Get the server's outgoing HTTP context.
Set the endpoint URL property.

o ok wb

Register the servant.

406

Setting CORBA Attributes

Setting CORBA Attributes

Overview

Retrieving the CORBA principle

The CORBA transport does not support programmatic configuration. It also
does not provide access to any of the settings that are used to establish the
connection. Artix does, however, provide access to the CORBA principle by
way of the context mechanism. The CORBA principle is manipulated as a
string by the Java contexts.

Generally, you would only be inspecting the CORBA principle of an incoming
message. This means that in an Artix server, you would get the CORBA
context from the Artix request context container. In an Artix client, you
would get the CORBA context from the Artix reply context container.

Example 239 shows the code for getting the CORBA principle in a server.
Example 239: Getting the CORBA Principle from a Client’s Request

import com.iona.schemas.bindings.corba.contexts.*;
import com.iona.jbus.ContextConstants;

ContextRegistry contReg = bus.getContextRegistry() ;
IonaMessageContext context =
(IonaMessageContext) contReg.getCurrent () ;

CORBAAttributesType CORBAAtribs =
(CORBAAttributesType) context.getRequestContext (ContextConstan
ts.CORBA CONTEXT ATTRIBUTES, true);

String CORBAPrinciple = CORBAAtribs.getPrinciple();

The code in Example 239 does the following:

1. Imports the package containing the CORBA context type.
Gets the server's context registry.

Gets the Artix context from the context registry.

Gets the server's CORBA context from the request context container.

o &~ wN

Gets the principle.

407

CHAPTER 16 | Working with Transport Attributes

Setting the CORBA principle

408

The CORBA principle is typically used for interoperability with older CORBA
servers to set security information. In most cases, you would set the CORBA
principle in a client’s request message using the client’s request context.
You can also set the CORBA principle in a server's reply message using the
server's reply context.

Example 240 shows the code for setting the CORBA principle for a client
request.

Example 240: Setting the CORBA Principle for a Client’s Request

import com.iona.schemas.bindings.corba.contexts.*;
import com.iona.jbus.ContextConstants;

ContextRegistry contReg = bus.getContextRegistry();
IonaMessageContext context =
(IonaMessageContext) contReg.getCurrent () ;

CORBAAttributesType CORBAAtribs =
(CORBAAttributesType) context.getRequestContext (ContextConstan
ts.CORBA CONTEXT ATTRIBUTES, true);

String username = new String("Fred");
CORBAAtribs.setPrinciple (username) ;

// Make invocation on proxy

The code in Example 239 does the following:

1. Imports the package containing the CORBA context type.
Gets the client’s context registry.

Gets the Artix context from the context registry.

Gets the CORBA context from the request context container.

ok~ w

Creates a new string to hold the value to set into the CORBA
principle.

)

Sets the principle.
Make the invocation on the proxy.

Setting WebSphere MQ Attributes

Setting WebSphere MQ Attributes

Overview

In this section

When working with WebSphere MQ, your applications can access
information about the WebSphere MQ connection that is in use and
information contained in the WebSphere MQ message descriptor. The MQ
connection attributes context contains information about the queues and
queue managers that your application uses for send and receiving
messages. On the client-side, you can set this information on a
per-invocation basis. The MQ message attributes context allows you to
inspect and set a number of the properties stored in the WebSphere MQ
message descriptor.

This section discusses the following topics:

Working with Connection Attributes page 410

Working with MQ Message Descriptor Attributes page 414

409

CHAPTER 16 | Working with Transport Attributes

Working with Connection Attributes

Overview

The WebSphere MQ transport provides information about the queues to
which your application send and receives messages. This information is
stored in the MQ connection attributes context and is accessed using
ContextConstants.MQ CONNECTION ATTRIBUTES. Ihe data is returned in an
MQConnetionAttributesContextType object. Table 22 describes the
attributes stored in the MQ connection attributes context.

Table 22: MQ Connection Attributes Context Properties

Attribute

Artix APIs

Description

AliasQueueName

String getAliasQueueName ()
void setAliasQueueName (String val)

Specifies the remote queue to
which a server will put replies if
its queue manager is not on the
same host as the client’s local
queue manager.

ConnectionName

String getConnectionName ()
void setConnecitonName (String val)

Specifies the name of the
connection by which the adapter
connects to the queue.

ModelQueueName

String getModelQueueName ()
void setModelQueueName (String val)

Specifies the name of the queue
to be used as a model for
creating dynamic queues.

void setReplyQueueManager (String val)

QueueManager String getQueueManager () Specifies the name of the queue
void setQueueManager (String val) manager.
QueueName String getQueueName () Specifies the name of the
void setQueueName (String val) message queue.
ReplyQueueManager | String getReplyQueueManager () Specifies the name of the reply

queue manager. This setting is
ignored by WebSphere MQ
servers when the client specifies
the rReplyTooMgr in the request
message’s message descriptor.

410

Setting WebSphere MQ Attributes

Table 22: MQ Connection Attributes Context Properties

Attribute Artix APls Description
ReplyQueueName String getReplyQueueName () Specifies the name of the queue
void setReplyQueueName (String val) where response messages are

received. This setting is ignored
by WebSphere MQ servers when
the client specifies the ReplyTo0
in the request message’s
message descriptor.

Transactional

TransactionType getTransactional () Specifies how messages
void setTransactional (TransactionType val) participate in transactions and

what role WebSphere MQ plays
in the transactions. For
information on setting
Transactional see “Setting the
Transactional attribute” on
page 412.

Example

N

On the client-side you can control the connection to which requests are
direct by setting the MQ connection attributes in the client’s request context
before each invocation. The connection attributes are returned to the
defaults specified in the client’s contract after each invocation.

Example 241 shows code for specifying the queue and queue manager to
use when making a request.

Example 241: Setting the Client’s QueueManager and QueueName
import com.iona.schemas.transports.mg.context.*;

import com.iona.jbus.ContextConstants;

ContextRegistry contReg = bus.getContextRegistry();
IonaMessageContext context =
(IonaMessageContext) contReg.getCurrent () ;

MQConnectionAttributesType connect =

(MOConnectionAttributesType) context.getRequestContext (Context
Constants.MQ CONNECTION ATTRIBUTES, true);

411

CHAPTER 16 | Working with Transport Attributes

Setting the Transactional attribute

Example 241: Setting the Client’s QueueManager and QueueName

5 connect.setQueueManager ("Bloggy") ;
6 connect.setQueueName ("TalkBack") ;

7 // Make invocation on proxy

The code in Example 241 does the following:

1.

5.
6.
7.

Imports the package containing the MQ connection attributes context
type.

Gets the client’s context registry.

Gets the Artix context from the context registry.

Gets the MQ connection attributes context from the request context
container.

Sets the queue manager attribute.
Sets the queue name attribute.
Makes the invocation on the proxy.

On the server-side you cannot change any of the connection attributes
programmatically.

The transactional attribute is set using a

com. iona.schemas.transports.mq.context.TransactionType Object.
TransactionType is @ WSDL enumeration whose values are described in
Table 23.

Table 23: Transactional Values

Value Artix API for Setting Description
none setTransactional (TransactionType.fromString ("none")) The messages are not part
of a transaction. No rollback
actions will be taken if
errors occur.
internal setTransactional (TransactionType.fromString ("internal")) The messages are part of a

transaction with
WebSphere MQ serving as
the transaction manager.

412

Setting WebSphere MQ Attributes

Table 23: Transactional Values

Value

Artix API for Setting Description

xa

setTransactional (TransactionType.fromString ("xa")) The messages are part of a

transaction with
WebSphere MQ serving as
the resource manager.

Example 242 shows code for setting a client’s connection to use XA style
transactionality for a request.

Example 242: Setting the Client’s Transactionality Attribute

import com.iona.schemas.transports.mg.context.*;
import com.iona.jbus.ContextConstants;

ContextRegistry contReg = bus.getContextRegistry();
IonaMessageContext context =
(IonaMessageContext) contReg.getCurrent () ;

MQConnectionAttributesType connect =
(MQOConnectionAttributesType) context.getRequestContext (Context
Constants.MQ CONNECTION ATTRIBUTES, true);

connect.setTransactional (TransactionType.fromString ("xa")) ;
// Make invocation on proxy

The code in Example 241 does the following:

1. Imports the package containing the MQ connection attributes context
type.

2. Gets the client’s context registry.
Gets the Artix context from the context registry.

4. Gets the MQ connection attributes context from the request context
container.

5. Sets the transactional attribute.
6. Makes the invocation on the proxy.

For more information about working with Artix enumerated types, see
“Using Enumerations” on page 132.

413

CHAPTER 16 | Working with Transport Attributes

Working with MQ Message Descriptor Attributes

Overview

The Artix WebSphere MQ transport breaks its support for MQ message
descriptor attributes across two contexts. One context, accessed using
ContextConstants.MQ INCOMING MESSAGE ATTRIBUTES, contains the MQ
message descriptor attributes for the last message received by the
application. For a client, this means that it contains the attributes for the
last response received from the server and the context is accessed through
the client’s reply context container. For a server, this means that the
incoming message attributes context contains the descriptor attributes for
the request being processed and it is accessed through the server's request
context container. The incoming message properties can be read at any
point in the processing of the message once the transport layer has passed it
to the messaging chain.

The second context, accessed using

ContextConstants.MQ OUTGOING MESSAGE ATTRIBUTES, allows you to set
the values of the attributes in the MQ message descriptor for the next
message being sent across the wire. For clients, this means that it affects
the values of the next request being made and the context is accessed
through the client’s request context. For server's, this means that the
outgoing message attributes context affects the values of the current
response’s MQ message descriptor and it is accessed through the server's
reply context container. You can set the values of the outgoing message
attributes at any point in an application’s message chain before it the
message is handed off to the transport layer.

Both the incoming message attributes context and the outgoing message
attributes context are returned using as an
com.iona.schemas.transports.mq.context.MOMessageAttributesType
object. Table 24 describes the attributes stored in the MQ message
attributes context.

Table 24: MQ Message Attributes Context Properties

Attribute

Artix APls Description

AccountingToken

String getAccountingToken () Specifies the value for the MQ
void setAccountingToken (String val) message decscnptor’s

AccountingToken field.

414

Setting WebSphere MQ Attributes

Table 24: MQ Message Attributes Context Properties

Attribute

Artix APIs

Description

ApplicationData

String getApplicationData ()
void setApplicationData (String val)

Specifies any
application-specific information
that needs to be set in the
message descriptor.

ApplicationldData

String getApplicationIdData ()
void setApplicationIdData (String val)

Specifies the value of the MQ
message descriptor’s
ApplIdentityData field. It is
only valid for MQ clients.

ApplicationOriginData

String getApplicationOriginData ()
void setBApplicationOriginData (String val)

Specifies the value of the MQ
message descriptor's
ApplOriginData field.

BackoutCount

Integer getBackoutCount ()

Specifies the number of times
the message has been
previously returned by the
MQGET call as part of a unit of
work, and subsequently backed
out.

Convert

Boolean isConvert ()
void setConvert (Boolean val)

Specifies if the messages in the
gueue needs to be converted to
the system'’s native encoding.

Correlationld

byte[] getCorrelationId()
void setCorrelationId(byte[] wval)

Specifies the value for the MQ
message descriptor's correlrd
field.

CorrelationStyle

CorrelationStyleType getCorrelationStyle ()
void
setCorrelationStyle (CorrelationStyleType
val)

Specifies how WebSphere MQ
matches both the message
identifier and the correlation
identifier to select a particular
message to be retrieved from
the queue. For information on
how to set CorrelationStyle, see
“Setting the CorrelationStyle
attribute” on page 417.

415

CHAPTER 16 | Working with Transport Attributes

Table 24: MQ Message Attributes Context Properties

Attribute Artix APls Description
Delivery DeliveryType getDelivery () Specifies the value of the MQ
void setDelivery (DeliveryType val) message descriptor’s
Persistence field. For
information on setting Delivery,
see “Setting the Delivery
attribute” on page 418.
Format FormatType getFormat () Specifies the value of the MQ
void setFormat (FormatType val) message descriptor’s Format
field. For information on setting
Format, see “Setting the Format
attribute” on page 419.
Messageld byte[] getMessageId() Specifies the value for the MQ
void setMessageld (byte[] val) message descriptor's MsgId
field.
ReportOption ReportOptionType getReportOption () Specifies the value of the MQ

void setReportOption (ReportOptionType val)

message descriptor’'s Report
field. For information on setting
ReportOption, see “Setting the
ReportOption attribute” on
page 421.

Userldentifier

String getUserIdentifier ()
void setUserIdentifier (String val)

Specifies the value for the MQ
message descriptor’s
UserIdentifier field.

416

Setting WebSphere MQ Attributes

Setting the CorrelationStyle The CorrelationStyle attribute is set using a

attribute com.iona.schemas.transports.mg.context.CorrealatoinStyleType
object. correlationStyleType is @ WSDL enumeration whose values are
described in Table 25.

Table 25: CorrelationStyle Values

Value Artix API for Setting Description
messageId setCorrelationStyle (Use the message ID as the
CorrelationStyleType.fromString ("messageId") valueforthelﬂessage%
) CorrelId.
correlationId setCorrelationStyle (Use the message’s
CorrelationStyleType.fromString ("correlationId") Correlationld as the value
) for the message's
CorrelId.
messageId copy setCorrelationStyle (Use the message ID as the
CorrelationStyleType.fromString ("messageld copy") valueforthe[ﬂessage%
) MsgId

Example 243 shows code for setting a request message descriptor's
CorrelationStyle message Id.

Example 243: Setting the Client’s CorrelationStyle Attribute

1 import com.iona.schemas.transports.mg.context.*;
import com.iona.jbus.ContextConstants;

2 ContextRegistry contReg = bus.getContextRegistry();
3 IonaMessageContext context =
(IonaMessageContext) contReg.getCurrent () ;

4 MQMessageAttributesType desc =
(MOMessageAttributesType) context.getRequestContext (ContextCon
stants.MQ OUTGOING MESSAGE ATTRIBUTES, true);

5 connect.setCorrelationStyle (
CorrelationStyleType.fromString ("messageId")
);

6 // Make invocation on proxy

417

CHAPTER 16 | Working with Transport Attributes

Setting the Delivery attribute

The code in Example 243 does the following:

1.

5.
6.

Imports the package containing the MQ connection attributes context
type.

Gets the client’s context registry.

Gets the Artix context from the context registry.

Gets the MQ connection attributes context from the request context
container.

Sets the correlation style attribute.

Makes the invocation on the proxy.

For more information about working with Artix enumerated types, see
“Using Enumerations” on page 132.

The Delivery attribute is set using a

com.iona.schemas.transports.mg.context.DeliveryType Object.
DeliveryType is @ WSDL enumeration whose values are described in
Table 26.

Table 26: Delivery Values

Value

Artix API for Setting Description

persistent

setDelivery (DeliveryType.fromString ("persistent")) Sets the persistence field

to MOPER PERSISTENT.

not persistent

setDelivery (

Sets the persistence field

DelvieryType.fromString ("not persistent") t0 MOPER NOT PERSISTENT.

)

418

Example 244 shows code for setting a request message descriptor’s
Persistence field o MOPER PERSISTENT.

Example 244: Setting the Client’s Delivery Attribute

1 import com.iona.schemas.transports.mg.context.*;
import com.iona.jbus.ContextConstants;

2 ContextRegistry contReg = bus.getContextRegistry () ;

Setting the Format attribute

3

Setting WebSphere MQ Attributes

Example 244: Setting the Client’s Delivery Attribute

IonaMessageContext context =
(IonaMessageContext) contReg.getCurrent () ;

MOMessageAttributesType desc =
(MQOMessageAttributesType) context .getRequestContext (ContextCon
stants.MQ OUTGOING MESSAGE ATTRIBUTES, true);

connect.setDelivery (DeliveryType.fromString ("persistent")) ;
// Make invocation on proxy

The code in Example 244 does the following:

1. Imports the package containing the MQ connection attributes context
type.

2. Gets the client’s context registry.
Gets the Artix context from the context registry.

4. Gets the MQ connection attributes context from the request context
container.

B. Sets the delivery attribute.
6. Makes the invocation on the proxy.

For more information about working with Artix enumerated types, see
“Using Enumerations” on page 132.

The Format attribute is set using a
com.iona.schemas.transports.mg.context.FormatType object.
FormatType iS @ WSDL enumeration whose values are described in
Table 27.

Table 27: Format Values

Value Artix API for Setting Description
none setFormat (FormatType.fromString ("none")) Sets the Format field to
MOFMT NONE.
string setFormat (FormatType.fromString ("string")) Sets the Format field to

MQFMT STRING.

419

CHAPTER 16 | Working with Transport Attributes

Table 27: Format Values

Value Artix API for Setting Description
unicode setFormat (FormatType.fromString ("unicode™)) Sets the Format field to
MOFMT STRING.
event setFormat (FormatType.fromString ("event")) Sets the Format field to
MQFMT_EVENT.
programmable setFormat (Sets the Format field to
command

FormatType.fromString ("programmable command") MQFMT PCF.

)

420

Example 245 shows code for setting a request message descriptor's Format
field to MOPER STRING.

Example 245: Setting the Client’s Format Attribute

import com.iona.schemas.transports.mg.context.*;
import com.iona.jbus.ContextConstants;

ContextRegistry contReg = bus.getContextRegistry();
IonaMessageContext context =
(IonaMessageContext) contReg.getCurrent () ;

MOMessageAttributesType desc =
(MQMessageAttributesType) context.getRequestContext (ContextCon
stants.MQ OUTGOING MESSAGE ATTRIBUTES, true);

connect.setFormat (FormatType.fromString ("string"));

// Make invocation on proxy

The code in Example 245 does the following:

1. Imports the package containing the MQ connection attributes context
type.

2. Gets the client’s context registry.
Gets the Artix context from the context registry.

4. Gets the MQ connection attributes context from the request context
container.

5. Sets the format attribute.

Setting WebSphere MQ Attributes

6. Makes the invocation on the proxy.

For more information about working with Artix enumerated types, see
“Using Enumerations” on page 132.

Setting the ReportOption attribute The ReportOption attribute is set using a

com.iona.schemas.transports.mg.context.ReportOptionType Object.
ReportOptionType is @ WSDL enumeration whose values are described in
Table 28.

Table 28: ReportOption Values

Value Artix API for Setting Description
coa setReportOption (ReportOption. fromString ("coa")) Set the message
descriptor’s report field to
MORO_COA.
cod setReportOption (ReportOption. fromString ("cod")) Set the message
descriptor’s rReport field to
MQRO_COD.
exception setReportOption (Set the message
ReportOption. fromString ("exception") descriptor’s rReport field to
) MORO EXCEPTION.
expiration setReportOption (Set the message
ReportOption.fromString ("expiration) descﬂptofs Report field to
) MORO EXPTRATION.
discard setReportOption (ReportOption. fromString ("discard") Settherﬂessage

) descriptor's rReport field to
MQORO DISCARD MSG.

Example 246 shows code for setting a request message descriptor's Report
field to MORO DISCARD MSG.

Example 246: Setting the Client’s ReportOption Attribute

1 import com.iona.schemas.transports.mg.context.*;
import com.iona.jbus.ContextConstants;

2 ContextRegistry contReg = bus.getContextRegistry();

421

CHAPTER 16 | Working with Transport Attributes

422

Example 246: Setting the Client’s ReportOption Attribute

IonaMessageContext context =
(IonaMessageContext) contReg.getCurrent () ;

MOMessageAttributesType desc =
(MOMessageAttributesType) context.getRequestContext (ContextCon
stants.MQ OUTGOING MESSAGE ATTRIBUTES, true);

connect.setReportOption (ReportOptionType. fromString ("discard")) ;
// Make invocation on proxy

The code in Example 246 does the following:

1. Imports the package containing the MQ connection attributes context
type.

2. Gets the client’s context registry.
Gets the Artix context from the context registry.

4. Gets the MQ connection attributes context from the request context
container.

B. Sets the report option attribute.
6. Makes the invocation on the proxy.

For more information about working with Artix enumerated types, see
“Using Enumerations” on page 132.

Setting JMS Attributes

Setting JMS Attributes

Overview

In this section

Artix splits the JMS transport information into three contexts:
® one for JMS clients.
® one for JMS servers.

® one to register JMS enabled Artix applications with a secure JMS
broker.

The JMS server context and the JMS client context provide access to the
JMS message header attributes. It includes information about message
expiration, message persistence, message correlation, and when the
message was created. In addition, the JMS header contexts enable you to
set optional properties into the JMS header for use with message selectors.

Both the JMS server context and the JMS client context provide access to
specific properties that alter the behavior of the transport. For instance the
JMS client context allows you to specify a timeout value for messages.

This section discusses the following topics:

Using JMS Message Headers and Properties page 424
Using Client-side JMS Attributes page 428
Using Server-side JMS Attributes page 430
Setting JMS Broker Security Information page 432

423

CHAPTER 16 | Working with Transport Attributes

Using JMS Message Headers and Properties

Overview

Standard JMS attributes available
from the context

A JMS message is composed of three sections:

® a JMS header containing a number of standard properties effecting ho
a message is handled.

® agroup of name/value properties that specify optional information
about the message.

® the message body.

Using the context mechanism, Artix allows you to inspect all members of the

JMS header. It also allows you to set the values for members that are not set

by the JMS broker. In addition, the context mechanism provides you with a
way to set properties into the properties group of the JMS message.

Table 29 shows the JMS header attributes available for both the JMS client
context and the JMS server context. Not all of the JMS header attributes are
settable. For those that are settable, both the getter and the setter methods
are shown.

Table 29: JMS Header Attributes

JMS Header Attribute

Artix API Description

JMSCorrelationID String getJMSCorrelationID() Specifies the message’s

correlation ID.

JMSDeliveryMode Integer getJMSDeliveryMode () Specifies if the message is
void setJMSDeliveryMode (Integer val) persistent or non-persistent. Valid

values are PERSITENT and
NON_PERSISTENT. The default is
PERSISTENT.

JMSExpiration Long getJMSExpiration () Specifies the time at which the

message expires. An expiration of
0 means that the message never
expires.

JMSMessagelD String getJMSMessagelD() Specifies the unique ID assigned

to the message by the JMS
broker.

424

Table 29: JMS Header Attributes

Setting JMS Attributes

JMS Header Attribute

Artix API

Description

JMSPriority

Integer getJMSPriority()
void setJMSPriority(Integer val)

Specifies the relative priority of
the message. Valid values are 0-9.
0 is the lowest priority. The
default priority is 4.

Optional Properties

JMSPropertyType[] getProperty ()
void setProperty (JMSPropertyType[] val)

Specifies any number of
user-defined properties that are
used in conjunction with JMS
message selectors.

JMSRedelivered

Boolean isJMSRedelivered ()

Specifies if the JMS broker
believes that this message has
already been delivered, but not
acknowledged.

JMSTimestamp

Long getJMSTimeStamp ()

Specifies the time at which the
message was handed off to the
JMS broker.

JMSType String getJIMSType () Specifies the type of the message.
Some JMS implementations use
this field to specify templates for
messages.

Time To Live Long getTimeToLive () Specifies the number of

void setTimeToLive (Long val)

milliseconds the message will
remain active in the JMS
destination to which it is
delivered. The default value is
unlimited.

Creating optional JMS header

properties

A part of the JMS header is set aside for optional properties. These

properties include a few standard properties that are prefixed with JMSX.
JMS vendors also use the properties section of the JMS message to specify
vendor-specific information. The properties section can also be used as a
place to store user-defined properties that can be used for message selection

among other things.

425

CHAPTER 16 | Working with Transport Attributes

426

The JMS properties are stored in the JMS header as name value pairs. In
Artix JMS properties are created in

com. iona.schemas.transports.jms.context.JMSProperyType Objects
JMSProperty objects have two members and getter and setter methods for
each member. The name member specifies the name by which the property
will be referred. It can be any string value. The value member stores the
data of the property and can also be any string value.

Properties are set into the JMS header using the outbound JMS context’s
setProperty () Method. setProperty () takes an array of properties, so you
can create as many user-defined properties as you wish.

Example 247 shows how to create a set of user-defined properties and set
them on a client request’'s JMS message.

Example 247: Creating User-Defined Properties and Setting Them into a
JMS Header

import com.iona.schemas.transports.jms.context.*;
import com.iona.jbus.ContextConstants;

JMSPropertyType[] props = new JMSPropertyTypel[2];

props[0] = new JMSPropertType () ;
props[0].setName ("Username") ;
props[0] .setValue ("Flint") ;

props[1l] = new JMSPropertType () ;
props[1l].setName ("Password") ;
props[1l].setValue ("Moore") ;

ContextRegistry contReg = bus.getContextRegistry();
IonaMessageContext context =
(IonaMessageContext) contReg.getCurrent () ;
JMSClientHeadersType header =
(JMSClientHeadersType) context.getRequestContext (ContextConsta
nts.JMS CLIENT CONTEXT, true);

header.setProperty (props) ;

// Make invocation on proxy

Setting JMS Attributes

The code in Example 247 does the following:

1.
2.

© O N OO kW

Imports the package containing the JMS context types.

Creates an array of two JMsPropertyType objects to hold the
user-defined properties.

Sets the name/value pair for the first property.

Sets the name/value pair for the second property.

Gets the client’s context registry.

Gets the Artix context from the context registry.

Gets the JMS context from the request context container.
Sets the user-defined properties into the JMS context.

Makes an invocation on the proxy.

427

CHAPTER 16 | Working with Transport Attributes

Using Client-side JMS Attributes

Overview

Timeout

Setting the client attributes

428

When working with JMS clients you get the JMS header information using
the JMS client context which is accessed using the JvMs CLIENT CONTEXT
tag. The JMS client context information is returned as a
JMSClientHeadersType Object. The JMS client context has all of the
standard JMS header attributes plus an additional Timeout attribute.

The Timeout attribute specifies the value passed into the JMS message
consumer’s recieve () method. The time-out value is specified as a Long
and determines how long, in milliseconds, the message consumer will wait
for a message to arrive before timing out. Example 248 shows the methods
for accessing the Timeout value on a JMsClientHeadersType oObject.

Example 248: Methods for Accessing the TimeOut Value

Long getTimeOut () ;
void setTimeOut (Long timeout) ;

Most of the attributes in the JMS header are populated by the JMS broker
and are provided simply for informational purposes. However, when making
requests you can add any number of user-defined properties to the header
as shown in “Creating optional JMS header properties” on page 425. In
addition, you can set the message’s oMpDeliveryMode, the message’s
JMSPriority, the message’s time to live, and the time-out interval used to
wait for a response. To set these properties, you use the JMS client context
from the client’s request context container at any point along the messaging
chain before the message is handed off to the transport layer. The settable
attributes are valid for one request and are reset once the request is sent to
the JMS broker.

To set the user settable JMS client attributes do the following:

1. Get the application’s message context.

2. Get the JMS client context from the request context container.
3. Set the desired property values on the JMS client context.

Inspecting the client attributes

Setting JMS Attributes

Example 249 shows the code for setting the JMS client attributes for a
request.

Example 249: Setting a Request’s JMS Header Attributes

import com.iona.schemas.transports.jms.context.*;
import com.iona.jbus.ContextConstants;

IONAMessageContext cont = (IONAMessageContext)
DispatchLocals.getCurrentMessageContext () ;

JMSClientHeadersType header = (JMSClientHeadersType)
cont.getRequstContext (ContextConstants.JMS CLIENT CONTEXT,
true) ;

header.setJMSDeliveryMode ("NON_PERSISTENT") ;
header.setJMSPriority (new Integer (7)) ;
header.setTimeTolLive (new Long (120000)) ;
header.setTimeOut (new Long(3000)) ;

// Make invocation on proxy

To inspect the JMS header values of a response message, you get the JMS
client context from the client’s reply context container. The values in the
context are valid for the last response received from the server. They are
available once the transport layer passes the message up the messaging
chain.

Example 250 shows code for checking the dMscorrelationID of a response.
Example 250: Checking a Responses JMSCorrelation/D

import com.iona.schemas.transports.jms.context.*;
import com.iona.jbus.ContextConstants;

// Make invocation on proxy

IONAMessageContext cont = (IONAMessageContext)
DispatchLocals.getCurrentMessageContext () ;

JMSClientHeadersType header = (JMSClientHeadersType)
cont.getReplyContext (ContextConstants.JMS CLIENT CONTEXT,

true) ;

String corrID = header.getJMSCorrealtionID() ;

429

CHAPTER 16 | Working with Transport Attributes

Using Server-side JMS Attributes

Overview

CommitMessage

Setting server attributes

430

When working with JMS servers you get the JMS header information using
the JMS server context which is accessed using the JMs_SERVER CONTEXT
tag. The JMS client context information is returned as a
JMSServerHeadersType Object. The JMS server context contains all of the
JMS header attributes plus an additional boolean attribute called

CommitMessage.

Commi tMessage Specifies if a message that is part of a transaction should be
commited if an exception is thrown. The default behavior of JMS is to
rollback the message and continue to retry a message that is part of a
transaction. Setting commitMessage to true before you send the message
forces JMS to commit the message regardless of the result of the
transmission.

As with the JMS header properties on the client-side, the server can only
change a few of the values in the JMS header. It can add user-defined
properties to the response’s JMS header as shown in “Creating optional JMS
header properties” on page 425. From the server you can also set a
response’s delivery mode, priority, and time to live. To set these properties,
you use the JMS server context from the server's reply context container.
The values are valid only for the active response and are reset each time the
servant is invoked.

Example 251 shows the code for setting the JMS header attributes for a
response.

Example 251: Setting a Response’s JMS Header Attributes

import com.iona.schemas.transports.jms.context.*;
import com.iona.jbus.ContextConstants;

IONAMessageContext cont = (IONAMessageContext)
DispatchLocals.getCurrentMessageContext () ;

Inspecting server attributes

Setting JMS Attributes

Example 251: Setting a Response’s JMS Header Attributes

JMSServerHeadersType header = (JIJMSServerHeadersType)
cont.getReplyContext (ContextConstants.JMS SERVER CONTEXT,
true) ;

header.setJMSDeliveryMode ("NON PERSISTENT") ;
header.setJMSPriority (new Integer(l));
header.setTimeToLive (new Long (3000)) ;
header. setCommitMessage (Boolean.TRUE) ;

To inspect the JMS header values of a request message, you get the JMS
server context from the server's request context container. Example 250
shows code for checking a request’s JMSRedilvered flag.

Example 252: Checking a Request’s JMSRedlivered Flag

import com.iona.schemas.transports.jms.context.*;
import com.iona.jbus.ContextConstants;

// Make invocation on proxy

IONAMessageContext cont = (IONAMessageContext)
DispatchLocals.getCurrentMessageContext () ;

JMSServerHeadersType header = (JIJMSServerHeadersType)
cont.getResponseContext (ContextConstants.JMS SERVER CONTEXT,
true);

if (header.isJdMSRedelivered())
{

System.out.println("This is a redelivered message.");

431

CHAPTER 16 | Working with Transport Attributes

Setting JMS Broker Security Information

Overview When using a secure JMS broker, your applications will need to register with
the JMS broker using a username and password. These are set using the
JMS broker connection security property. You need to set this property for
both JMS client applications and JMS server applications.

Because the username and password used to connect to the JMS broker
must be known before the JMS transport is initialized, you need to set the
property in the special configuration context that is made available before
Artix registers any user level code with the bus. For more information on
using the configuration context see “Using the Configuration Context” on

page 383.
Getting the JMS broker To set the JMS broker connection security information property you use the
connection info ContextConstants member JMS_CONNECTION SECURITY INFO. YOu are

returned a JMSConnectionSecurityInfoType object that has four methods:

® setUsername () Sets a string representing the username used when
connecting to the JMS broker.

® getUsername () returns a string representing username used when
connecting to the JMS broker.

® setPassword() Sets a string representing the password used when
connecting to the JMS broker.

® getPassword () returns a string representing the password used when
connecting to the JMS broker.

Example Example 253 shows how to set the JMS broker connection properties on an
Artix JMS client.

Example 253: Setting the JMS Connection Info
1 ContextRegistry registry = bus.getContextRegistry();

2 OName name = new OName ("http://www.iona.com/config context",
"SOAPService") ;

432

Setting JMS Attributes

Example 253: Setting the JMS Connection Info

ContextContainer cnt = registry.getConfigurationContext (name,
"SoapPort",
true) ;

JMSConnectionSecurityInfoType info =
(JMSConnectionSecurityInfoType) cnt.getContext (
ContextConstants.JMS CONNECTION SECURITY INFO,
true);

info.setUsername ("george") ;
info.setPassword ("bosco") ;

QName servName = new QName ("http://buystuff.com", "Register");
String portName = new String("RegisterPort");
String wsdlPath = "file:/./resister.wsdl";
URL wsdlURL = new File (wsdlPath) .toURL() ;
Register proxy = bus.createClient (wsdlURL, servName,
portName, Register.class);

The code in Example 253 does the following:
Get the context registry.

Create the service's oName.

Get the configuration context container.

Get the client’'s JMS connection info.
Set the username and password.

o ok wb

Creates the service proxy.

433

CHAPTER 16 | Working with Transport Attributes

Setting FTP Attributes

Overview

In this section

434

The attributes used to configure an FTP connection are split into four
contexts:

® one for setting the policies used to connect to the FTP daemon.

® one for setting the credentials to use when connecting to the FTP
daemon.

® one for setting the naming scheme implementation to use for Artix
clients.

® one for setting the naming scheme implementation to use for Artix
servers.

These settings are all controlled through the special configuration context
that is made available before Artix registers any user level code with the bus.
For more information on using the configuration context see “Using the
Configuration Context” on page 383.

Artix clients can dynamically set the scan interval used by the FTP transport.
and can dynamically adjust the length of time they will wait for a response
before timing out.

This section discusses the following topics:

Setting FTP Connection Policies page 435
Setting the Connection Credentials page 439
Setting the Coordination Policies page 441

Setting FTP Attributes

Setting FTP Connection Policies

Overview When setting the FTP connection policies you access them using the
FTP_CONNECTION POLICY tag. The FTP connection policy context information
is returned as a ConnectionPolicyType object. All of the connection policies
are valid when set in the configuration context. In addition, Artix clients can
set the scan interval policy and the receive timeout policy in their request
contexts.

Setting the connection mode The FTP connection mode is set using a
com.iona.schemas.transports. ftp.context.ConnectionModeType object.
ConnectionModeType iS an enumeration whose values are described in
Table 30.

Table 30: ConnectionMode Values

Value Artix API for Setting Description

active setConnectMode (ConnectModeType. fromString ("active")) Specifies that Artix controls the
connection to the FTPD.

passive setConnectMode (ConnectModeType. fromString ("passive")) Specifies that the FTPD
controls the connection.

Example 254 shows code for setting the connection mode to passive.

Example 254: Setting the FTP Connection Mode

1 import com.iona.schemas.transports.ftp.context.*;
import com.iona.jbus.ContextConstants;

2 ContextRegistry contReg = bus.getContextRegistry();

3 QName name = new OName ("http://www.iona.com/config context",
"SOAPService") ;

435

CHAPTER 16 | Working with Transport Attributes

436

Example 254: Setting the FTP Connection Mode

ContextContainer ctn = registry.getConfigurationContext (name,
"SoapPort",
true);

ConnectionPolicyType policy =
(ConnectionPolicyType) ctn.getContext (ContextConstants.FTP _CON
NECTION POLICY, true);

policy.setConnectionMode (ConnectionModeType.fromString ("passive"
)) i

QName servName = new QName ("http://buystuff.com", "Register");
String portName = new String ("RegisterPort");
String wsdlPath = "file:/./resister.wsdl";
URL wsdlURL = new File (wsdlPath) .toURL() ;
Register proxy = bus.createClient (wsdlURL, servName,
portName, Register.class);

The code in Example 254 does the following:

1. Imports the package containing the FTP connection policy attributes
context type.

Gets the context registry.

Creates the service’s QName.

Gets the Artix configuration context from the context registry.
Gets the FTP connection attributes context from the context.
Sets the connection mode.

N o o s~ e

Creates the proxy.

For more information about working with Artix enumerated types, see
“Using Enumerations” on page 132.

Setting the connection timeout

Setting the scan interval

Setting the receive timeout

Setting FTP Attributes

The FTP connection time out determines the number of milliseconds Artix
will spend in attempting to connect to the FTPD before timing out. It is set

using setConnectTimeout (). The value is specified as an integer as shown
in Example 255.

Example 255: Setting the Connection Timeout Policy
ConnectionPolicyType policy =
(ConnectionPolicyType)ctn.getContext (ContextConstants.FTP_CON

NECTION POLICY, true);

policy.setConnectTimeout (10000) ;

The scan interval determines the number of seconds that Artix waits before
rescaning the remote message repository for new messages. In addition to
being settable in the configuration context, the scan interval can also be set
by Artix clients using the request context.

It is set using setscanInterval (). The value is specified as an integer as
shown in Example 256.

Example 256: Setting the Scan Interval in a Client

IONAMessageContext cont = (IONAMessageContext)
DispatchlLocals.getCurrentMessageContext () ;

ConntectionPolicyType policy = (ConnectionPolicyType)
cont.getRequstContext (ContextConstants.FTP_CONNECTION POLICY) ;

policy.setScanInterval (3) ;

// Make invocation on proxy

The receive timeout determines the number of milliseconds that an Artix
client waits for a response before throwing a timeout exception. In addition
to being settable in the configuration context, the receive timeout can also
be set by Artix clients using the request context.

It is set using setRecieveTimeout (). The value is specified as an integer as
shown in Example 256.

437

CHAPTER 16 | Working with Transport Attributes

Example 257: Setting the Timeout Interval in a Client

IONAMessageContext cont = (IONAMessageContext)
DispatchLocals.getCurrentMessageContext () ;

ConntectionPolicyType policy = (ConnectionPolicyType)
cont.getRequstContext (ContextConstants.FTP _CONNECTION POLICY) ;

policy.setRecieveTimeout (60000) ;

// Make invocation on proxy

438

Setting FTP Attributes

Setting the Connection Credentials

Overview

Setting the FTP connection
credentials

Example

1

2

FTP servers require you to connect using a username and password. These
are set using the FTP connection credentials property.

Because the username and password used to connect to the FTP server
must be known before the transport is initialized, you need to set the
property in the special configuration context that is made available before
Artix registers any user level code with the bus. For more information on
using the configuration context see “Using the Configuration Context” on
page 383.

To set the FTP connection credentials property you use the

ContextConstants member FTP _CREDENTIALS. You are returned a

CredentialsType oObject that has four methods:

® setName() Sets a string representing the username used when
connecting to the FTP server.

® getName () returns a string representing username used when
connecting to the FTP server.

® setPassword() Sets a string representing the password used when
connecting to the FTP server.

® getPassword() returns a string representing the password used when
connecting to the FTP server.

Example 258 shows how to set the FTP connection credentials properties
on an Artix FTP client.

Example 258: Setting the FTP Connection Credentials
ContextRegistry registry = bus.getContextRegistry();

OName name = new QName ("http://www.iona.com/config context",
"SOAPService") ;

439

CHAPTER 16 | Working with Transport Attributes

440

Example 258: Setting the FTP Connection Credentials

ContextContainer cnt = registry.getConfigurationContext (name,
"SoapPort",
true);

CredentialsType creds =(CredentialsType)cnt.getContext (
ContextConstants.FTP_CREDENTIALS,
true);

creds.setUsername ("george") ;
creds.setPassword ("bosco") ;

QName servName = new QName ("http://buystuff.com", "Register");
String portName = new String("RegisterPort");
String wsdlPath = "file:/./resister.wsdl";
URL wsdlURL = new File (wsdlPath) .toURL () ;
Register proxy = bus.createClient (wsdlURL, servName,
portName, Register.class);

The code in Example 258 does the following:
Get the context registry.

Create the service's oName.

Get the configuration context container.
Get the client’s FTP credentials.

Set the username and password.

o ok wb

Creates the service proxy.

Setting FTP Attributes

Setting the Coordination Policies

Overview

Setting the client-side naming
policies

The FTP coordination policies determine how Artix names the files created
for the messages sent over the FTP transport and how Artix cleans up files
on the remote datastore. These behaviors are controlled by a set of Java
classes that you can implement to meet specific needs. Artix also provides
default implementations. For more information see the FTP chapter in
Understanding Artix Contracts.

Artix uses two contexts to set the naming polices. One is used for setting the
naming policies for an Artix client. The other is used for setting the naming
policies for an Artix server.

Because the client and server naming policies are interdependent, you need
to establish the policies when the connection is initialized. Therefore it can
only be set in the special configuration context that is made available before
Artix registers any user level code with the bus. For more information on
using the configuration context see “Using the Configuration Context” on
page 383.

To set the FTP client-side naming policies you use the ContextConstants

member FTP_CLIENT NAMING POLICY. You are returned a

ClientNamingPolicyType Object that has four methods:

® setFilenameFactory() Sets a string representing the fully qualified
classname of the class that implements
com.iona.jbus.transports.ftp.client.FilenameFactory.

® getFilenameFactory() returns a string representing the name of the
class of the class that implements the client-side filename factory.

® setReplyFileLifecycle() Sets a string representing the fully
qualified classname of the class that implements
com.iona.jbus.transports.ftp.client.ReplyFileLifecycle.

® getReplyFileLifecycle () returns a string representing the name of
the class that implements the logic for cleaning up reply files from the
remote data store.

441

../contract/index.htm

CHAPTER 16 | Working with Transport Attributes

Setting the server-side naming
policies

Example

442

To set the FTP server-side naming policies you use the ContextConstants

member FTP_SERVER NAMING POLICY. You are returned a

ServerNamingPolicyType Object that has four methods:

® setFilenameFactory() Sets a string representing the fully qualified
classname of the class that implements
com.iona.jbus.transports.ftp.server.FilenameFactory.

® getFilenameFactory () returns a string representing the name of the
class of the class that implements the server-side filename factory.

® setRequestFileLifecycle() Sets a string representing the fully
qualified classname of the class that implements
com.iona.jbus.transports.ftp.server.RequestFilelifecycle.

® getRequestFileLifecycle() returns a string representing the name
of the class that implements the logic for cleaning up request files from
the remote data store.

Example 259 shows how to set the FTP server-side naming policies.

Example 259: Setting the FTP Server Naming Policy
ContextRegistry registry = bus.getContextRegistry();

OName name = new QName ("http://www.iona.com/config context",
"SOAPService") ;

ContextContainer cnt = registry.getConfigurationContext (name,
"SoapPort",
true);

ServerNamingPolicyType namePol =
(ServerNamingPolicyType)cnt.getContext (
ContextConstants.FTP_SERVER NAMING POLICY,
true);

namePol.setFilenameFactory ("example.ServerNamingFactory") ;
namePol.setRequestFileLifecycle ("example.RequestLifecycle") ;

Setting FTP Attributes

The code in Example 259 does the following:

1.

o &~ wN

Get the context registry.

Create the service's oName.

Get the configuration context container.
Get the server's FTP naming policy.

Set the filename factory and request lifecycle.

443

CHAPTER 16 | Working with Transport Attributes

Setting i18n Attributes

Overview

Configuring Artix to use the i18n
interceptor

444

Artix has two contexts to configure codeset conversion when using the i18n
interceptor. One context configures the client and the other configures the
server. The i18n interceptor is used when working in an environment where
codeset conversion is required, but the transports in use do not support it. It
is a message-level interceptor and is invoked just before the transport layer
is handed the message.

The i18n interceptor can also be set up using port extensors in your
application’s contract. For information on setting up the i18n interceptor
using port extensors see the chapter on services in Understanding Artix
Contracts.

Before your application can use the i18n interceptor for code conversion you
must configure the Artix bus to load the required plug-ins and add the
interceptor to the appropriate message interceptor lists. To configure your
application to use the i18n interceptor do the following:

1. If your application includes a service proxy that needs to use codeset
conversion, add "il8n-context:I18nInterceptorFactory" to the
binding:artix:client message interceptor list variable for your
application.

2. If your application includes a service that needs to use codeset
conversion, add "il8n-context:I18nInterceptorFactory" to the
binding:artix:server message interceptor list variable for your
application.

3. Add "i18n_interceptor" to the list of plug-ins to load in the
orb plugins variable for your application.

For more information on configuring Artix see Configuring and Deploying
Artix Solutions.

../contract/index.htm
../contract/index.htm
../deploy/index.htm
../deploy/index.htm

Setting up i18n on a client

Setting up i18n on a server

Setting i18n Attributes

In a client the only attributes in the i18n context that alter how the i18n
interceptor works are the client local codeset and the client outbound
codeset in the client’s request context. The client inbound codeset defaults
to the value of the outbound codeset and the client-side interceptor does not
read its value from the context.

To configure a client for codeset conversion using the i18n interceptor do
the following:

1. Get the client's message context.
2. Get the i18n client request context.
3. Set the local codeset property.

4. Set the outbound codeset property.

Example 260 shows the code for configuring a client for codeset conversion.
Example 260: Client i18n Properties

// Java
IONAMessageContext messCont =
(IONAMessageContext) DispatchLocals.getCurrentMessageContext () ;

com.iona.schemas.bus.il8n.context.ClientConfiguration il8nConfig
= (com.iona.schemas.bus.il8n.context.ClientConfiguration)
messCont.getRequestContext (
ContextUtils.I18N INTERCEPTOR CLIENT QNAME, true);

i18nConfig.setLocalCodeSet ("Latin-1") ;
i18nConfig.setOutboundCodeSet ("UTF-16") ;

In a server the only attributes in the i18n context that alter how the i18n
interceptor works are the server local codeset and the server outbound
codeset in the server's reply context. The server-side interceptor does not
read the server inbound codeset from the context.

To configure a server for codeset conversion using the i18n interceptor do
the following:

1. Get the server's message context.
2. Get the i18n server reply context.
3. Set the local codeset property.

4. Set the outbound codeset property.

445

CHAPTER 16 | Working with Transport Attributes

446

Example 261 shows the code for configuring a server for codeset

conversion.

Example 261: Server i18n Properties

// Java
IONAMessageContext messCont =
(IONAMessageContext)DispatchLocals.getCurrentMessageContext () ;

com.iona.schemas.bus.il8n.context.ServerConfiguration il8nConfig
= (com.iona.schemas.bus.il8n.context.ServerConfiguration)
messCont.getReplyContext (
ContextUtils.I18N_INTERCEPTOR_CLIENT_QNAME, true);

i18nConfig.setLocalCodeSet ("UTF-16") ;
i18nConfig.setOutboundCodeSet ("LATIN-1") ;

Part ||

Advanced Artix
Programming

In this part This part contains the following chapters:
Using Persistent Datastores page 449
Using the Call Interface for Dynamic Invocations page 479
Instrumenting a Service page 487
Developing Plug-Ins page 507
Writing Handlers page 519
Manipulating Messages in a Handler page 549
Developing Custom Artix Transports page 561
Configuring Artix Plug-Ins page 605
Using Artix Classloader Environments page 613

447

448

In this chapter

CHAPTER 17

Using Persistent

Datastores

Artix provides a persistence mechanism, built on top of
Berkeley DB, which you can use to persist data when using
Artix. With this mechanism, you can make your services highly

available.

This chapter discusses the following topics:

Introduction to Artix Persistent Datastores page 450
Creating a Persistent Datastore page 455
Working with Data in a Persistent Datastore page 464
Supporting High-Availability page 473
Configuring Artix to Use Persistent Datastores page 478

449

CHAPTER 17 | Using Persistent Datastores

Introduction to Artix Persistent Datastores

Overview

450

In many enterprise services it is imperative that data does not get lost when
a service goes down. There are also many instances where an enterprise
service must always be available. To address these use cases, Artix has an
integrated persistence mechanism. This mechanism, which is built using
Berkeley DB, provides a Java API for storing data in persistent datastores as
shown in Figure 8.

DB _ >
Layer Datastore
7
Persistent Service Hard Drive

Figure 8: The Artix Persistence Mechanism

In addition, the persistence mechanism provides the backbone for creating
highly available services. Services that are implemented using persistent
datastores can be configured and deployed in a highly available cluster as
shown in Figure 9. The Berkeley DB layer will seamlessly set up a

Introduction to Artix Persistent Datastores

master/slave relationship between members of the cluster to ensure that the
service remains available and the slaves have the latest data from the

master.

Figure 9: Artix Service Cluster

For more information on deploying your service as a highly available cluster
see Configuring and Deploying Artix Solutions.

How Artix datastores are Artix persistent datastores are hash tables stored in a Berkeley DB database.
structured The hash table stores pairs of items as shown in Figure 10.The first item is
a key and the second item is the data. Both the key, which is used to locate

451

../deploy/index.htm

CHAPTER 17 | Using Persistent Datastores

Developing a service with
persistent datastores

452

entries in the datastore, and the data can be any Java object. The objects

can either be stored as serialized data, or, if they are generated by Artix, as
XML data.

Service

keyl datal

key2 data2

key3 data3

key4 datad

keyN dataN
Hard Drive

Figure 10: Artix Persistent Datastores

Developing a service that uses Artix based persistent datastores is a simple

process. To create a persistent datastore and work with the data it contains
you will need to do the following:

1.
2.
3.

4.
5.

Create a database manager object.

Create one or more persistent datastores using the provided templates.

Use the persistent datastore object to add or remove data from the
persistent datastore.

Close the persistent datastore.

Close the database manager.

The APIs deal exclusively with creating datastores and manipulating the
data stored in them. The underlying Berkeley DB layer automatically creates

a

new database instance for the service’s datastores and initializes all of the

database connections. The Berkeley DB layer's behavior can be configured

Packages

Types of Persistent datastores

Persistent map templates

Persistent list templates

Introduction to Artix Persistent Datastores

to specify the location of the database and the name of the Berkeley DB’s
environment file. By default the database and environment files are created
in the directory from which the service is started.

To use persistent datastores in an Artix application you will need to import
the following packages:

com.iona.jbus.db contains the classes for configuring the database layer
and handling exceptions thrown by the database layer.

com.iona.jbus.db.collections contains the template classes from which you
instantiate instances of Artix datastores.

Artix provides two different types of persistent datastores. You can choose
persistent datastores the are implementations of java.util.Map Or you can
choose datastores that are implementations of java.util.List. Both types
of datastore use the database layer to automatically persist data.

The key difference between the two types of datastores is how they handle
the keys in the hash table. Using persistent maps, you get to specify the key
values. When you use persistent lists, the key values of the hash table are
handled by the database layer. They are always a sequential series of
integers.

There are four templates for using persistent maps:

® persistentMap is the base class for all persistent maps. It allows you
to store data in any format for which you have a data handler. The
most common use is to store both key values and data values as XML.

® serialPersistentMap allows both the key values and the data values
to be any serializable Java object.

® SstringSerialPersistentMap allows key valuess to be java string
objects and the data values to be any serializable Java object.

® stringXMLPersistentMap allows key values to be Java string objects
and the data values to be an Artix generated Java object that will be
stored as XML.

There are two persistent list templates:

453

CHAPTER 17 | Using Persistent Datastores

® persistentList is the base class for all persistent lists. It allows you to
store data in any format for which you have a data handler. The most
common use is to store data values as XML.

® serialPersistentList allows you to store any serializeable Java
object.

454

Creating a Persistent Datastore

Creating a Persistent Datastore

Overview Artix persistent datastores are instances of one of the persistent datastore
templates listed in “Types of Persistent datastores” on page 453. The first
step in creating a persistent datastore is to consider what data is going to be
stored in the datastore and in what format you want it stored. For example,
if you are storing a complex type defined in one of your contracts, you do not
care what the key values are then you may want to make your datastore an
instance of persistentList. If you want the data to be keyed using strings,
you may want to make your datastore an instance of

StringSerialPersistentMap.

In this section This section contains subsections discussing the following topics:
Creating Persistent Maps page 458
Creating Persistent Lists page 462
Procedure To create a persistent datastore you need to do four things:

1. Determine what type of datastore you want to create.

2. Instantiate a pDatabaseManager object to hold the database
configuration.

3. If the datastore you want to create stores Artix generated datatypes as
XML, create an xMLDataHandler for each type.

4. Instantiate an instance of the persistent datastore template for the type
of datastore is most appropriate for your application.

455

CHAPTER 17 | Using Persistent Datastores

Instantiating a DatabaseManager

Closing the DatabaseManager

Creating an XMLDataHandler

456

To instantiate an instance of a patabaseManager object for your service you
pass an instance of the active bus into its constructor as shown in
Example 262.

Example 262: Instantiating a DatabaseManager

import com.iona.jbus.*;
import com.iona.jbus.db.*;

Bus bus = Bus.init (args);
DatabaseManager mgr = new DatabaseManager (bus) ;

When the database manager is instantiated, Artix initiates the database
layer. The database manager is used when creating persistent datastores. It
also provides a method for releasing database locks when using iterators
created by datastores created with it.

When your application is done accessing persistent data, you need to invoke
the database manager's close () method. This releases any resources used
in maintaining the connection to the underlying database and ensures that it
is left in a stable state.

WARNING: This must be done before the server is shutdown.

An xMLDataHandler object provides the database layer with the information

needed to convert an object into an XML document. To create an

XMLDataHandler object for an Artix generated class you need the following

things:

® The oname of the root element of the XML representation of the data in
the datastore.

® The oname of the XMLSchema type that defines the class.

® The class object for the class.

® The location of the contract in which the type is defined.

Example 263 shows an example of creating an xMLDataHandler object for

the widgetorderInfo type defined in Example 105 on page 181.

Creating a Persistent Datastore

Example 263: Creating an XMLDataHandler

QName typeName = new QName ("http://widgets.com/widgetTypes",
"widgetOrderInfo") ;
String wsdlPath = "file:/../widgets.wsdl";

XMLDataHandler handler = new XMLDataHandler (null, typeName,

WidgetOrderInfo.class,
wsdlPath) ;

457

CHAPTER 17 | Using Persistent Datastores

Creating Persistent Maps

Overview

Creating a generic PersistentMap

458

All of the persistent datastore templates that implement java.util.Map

extend from the superclass PersistentMap. They also share two

instantiation parameters:

® id- specifies the name of the datastore. It can be any string value. If a
datastore matching the id already exists, the database layer will
connect to that datastore. If the datastore does not exist, the database
layer will create a new datastore.

® manager - specifies the database manager that provides the connection
to the database layer.

Each of the templates that extend persistentmMap have additional

parameters that are required to instantiate them. The following blocks
describe each.

To create a generic persistentMap you need to pass in the id of your map,
the database manager, and two patahandler objects. The first is for the key
value and the second one is for the data value. If you chose not to use the
supplied xMLDataHandler objects you can create your own custom data
handlers by extending the com.iona.jbus.db.collections.DataHandler
interface.

The most common use for a generic persistent map is to store Artix
generated objects that are defined in XMLSchema as XML. This is done by
passing in an xMLDataHandler for both the key and the data. When an
object is placed into the map both the key and the data are converted into
XML based on their schema definitions. The XML representations are then
written into the persistent store.

Note: If you want to share a persistent datastore between a Java service
and a C++ service, you will need to use a persistent map that stores data
as XML.

When using this type of persistent map both your key and data must be
Artix generated objects and the service must have access to the XMLSchema
definitions of the types. Objects not defined in an accessible XMLSchema
will cause an exception to be thrown.

Creating a Persistent Datastore

Example 264 shows how to instantiate a PersistentMap that stores objects
as XML. The id of the created datastore is widget table.

Example 264: Instantiating a PersistentMap for storing XML
import com.iona.jbus.db.collections.*;
String wsdlPath = "file:/../widgets.wsdl";

QName keyName = new QName ("http://widgets.com/widgetTypes", "orderID");
QOName dataName = new QName ("http://widgets.com/widgetTypes", "widgetOrderInfo");

XMLDataHandler keyHandler = new XMLDataHandler (null, keyName, OrderID.class, wsdlPath);
XMLDataHandler dataHandler = new XMLDataHandler (null, dataName, WidgetOrderInfo.class, wsdlPath) ;

// DatabaseManager mgr obtained earlier
PersistentMap widgetMap = new PersistentMap ("widget table", mgr, keyHandler, dataHander);

Creating a SerialPersistentMap A serialPersistentMap is the most flexible of the persistent datastore
templates. It allows you to use any serializable Java object for both the key
and data in your map. To create an instance of a serialPersistentMap, you
pass in the id of the database you wish to create, the database manager for
the datastore, and the c1ass objects for both the key and the data to be
stored in the map.

The only restriction on the type of data that can be stored in a
SerialPersistentMap IS that the objects must be serializable. All native
Java objects are serializable. However, Java atomic types, such as 1ong, are
not serializable. Also, object generated by Artix are not, be default
serializable. To make Artix generated objects serializable use the -ser flag
when using wsdltojava.

Example 265 shows how to instantiate a serialPersistentMap that uses
Integer Objects as keys and Ineté6address objects as data. The id of the
created datastore is host_ipv6 table.

Example 265: Instantiating a SerialPersistentMap
import com.iona.jbus.db.collections.*;
// DatabaseManager mgr obtained earlier

SerialPersistentMap ipMap = new SerialPersistentMap ("host ipv6 table", mgr, Integer.class,
Inet6Address.class) ;

459

CHAPTER 17 | Using Persistent Datastores

Creating a A stringSerialPersistentMap allows you to store any serializable Java

StringSerialPersistentMap object as data but it requires that the key values be strings. To create an
instance of a stringSerialPersistentMap, you pass in the id of the
database you wish to create, the database manager for the datastore, and
the c1ass objects for the data to be stored in the map.

Example 266 shows how to instantiate a stringSerialPersistentMap that
stores Float objects as data. The id of the created datastore is float table.

Example 266: Instantiating a StringSerialPersistentMap
import com.iona.jbus.db.collections.*;
// DatabaseManager mgr obtained earlier

StringSerialPersistentMap floatMap = new StringSerialPersistentMap ("float table", mgr,
Float.class);

Creating a A stringXMLPersistentMap USeS strings as the key values and the XML

StringXMLPersistentMap representation of an Artix generated object that is defined in XMLSchema as
the data. When an object is placed into the map the data is converted into
XML based on their schema definitions. The XML representation is then
written into the persistent store.

When using this type of map the data must be an Artix generated object and
the service must have access to the XMLSchema definitions of the type the
object represents. Objects not defined in an accessible XMLSchema will
cause an exception to be thrown.

To create a stringxMLPersistentMap you need to pass in the id of your
map, the database manager, and an xMLDatahandler object for the data
value.

Example 267 shows how to instantiate a stringxMLPersistentMap. The id
of the created datastore is widget table.

Example 267: Instantiating a StringXMLPersistentMap
import com.iona.jbus.db.collections.*;
String wsdlPath = "file:/../widgets.wsdl";

QName dataName = new QName ("http://widgets.com/widgetTypes", "widgetOrderInfo");

460

Creating a Persistent Datastore

Example 267: Instantiating a StringXMLPersistentMap

XMLDataHandler dataHandler = new XMLDataHandler (null, dataName, WidgetOrderInfo.class, wsdlPath) ;

// DatabaseManager mgr obtained earlier
StringXMLPersistentMap widgetMap = new StringXMLPersistentMap ("widget table", mgr, dataHandler);

461

CHAPTER 17 | Using Persistent Datastores

Creating Persistent Lists

Overview

Creating a generic PersistentList

462

The two persistent datastore templates that implement java.util.List

extend from the superclass persistentList. They also share two

instantiation parameters:

® id- specifies the name of the datastore. It can be any string value. If a
datastore matching the id already exists, the database layer will
connect to that datastore. If the datastore does not exist, the database
layer will create a new datastore.

® manager - specifies the database manager that provides the connection
to the database layer.

Each of the templates that extend persistentList have additional

parameters that are required to instantiate them. The following blocks
describe each.

To create a generic persistentList you need to pass in the id of your list,
the database manager, and a patahandler object for the data value. The
most common use for a generic persistent list is to store Artix generated
objects that are defined in XMLSchema as XML. This is done by passing in
an XMLDataHandler for the data elements data handler. When an object is
placed into the list it is converted into XML based on its schema definition.
The XML representations are then written into the persistent store.

Note: If you want to share a persistent datastore between a Java service
and a C++ service, you will need to use a persistent list that stores data
as XML.

If you chose not to use the supplied xMr.DataHandler object you can create
your own custom data handler by extending the
com.iona.jbus.db.collections.DataHandlerinteﬁace.

When using this type of persistent list both your data must be Artix
generated objects and the service must have access to the XMLSchema
definitions of the type. Objects not defined in an accessible XMLSchema will
cause an exception to be thrown.

Creating a Persistent Datastore

Example 268 shows how to instantiate a PersistentList that stores
objects as XML. The id of the created datastore is widget 1list.

Example 268: Instantiating a PersistentList for storing XML
import com.iona.jbus.db.collections.*;
String wsdlPath = "file:/../widgets.wsdl";

QName keyName = new QName ("http://widgets.com/widgetTypes", "orderID");
QOName dataName = new QName ("http://widgets.com/widgetTypes", "widgetOrderInfo");

XMLDataHandler dataHandler = new XMLDataHandler (null, dataName, WidgetOrderInfo.class, wsdlPath) ;

// DatabaseManager mgr obtained earlier
PersistentList widgetList = new PersistentList ("widget table", mgr, dataHander);

Creating a SerialPersistentList A serialPersistentList allows you to store any serializable Java object. To
create an instance of a serialPersistentList, you pass in the id of the
database you wish to create, the database manager for the datastore, and
the c1ass objects for the data to be stored in the list.

The only restriction on the type of data that can be stored in a
SerialPersistentList iS that the objects must be serializable. All native
Java objects are serializable. However, Java atomic types, such as 1ong, are
not serializable. Also, object generated by Artix are not, be default
serializable. To make Artix generated objects serializable use the -ser flag
when using wsdltojava.

Example 269 shows how to instantiate a serialPersistentList that stores
Float objects as data. The id of the created datastore is float list.

Example 269: Instantiating a SerialPersistentList
import com.iona.jbus.db.collections.*;

// DatabaseManager mgr obtained earlier
SerialPersistentList floatList = new SerialPersistentList ("float table", mgr, Float.class);

463

CHAPTER 17 | Using Persistent Datastores

Working with Data in a Persistent Datastore

Overview

In this section

464

Artix persistent datastores are implemented using the standard Java
interfaces java.util.Map and java.util.List. The Artix implementations
are built on top of Berkeley DB to provide persistence and they have a few
Artix specific behaviors. They implement all of the defined methods for both
interfaces. In addition, they have a method for closing the datastore when
the application is finished with it.

This section discusses the following topics:

Using Persistent Maps page 465

Using Persistent Lists page 469

Working with Data in a Persistent Datastore

Using Persistent Maps

Overview

Adding data to a map

Artix persistent maps implement java.util.Map using Berkeley DB to

provide persistence. To manipulate the data in a persistent map you use the

standard methods defined for a Map object. However, because the maps are

persistent there are a few things to consider when using them:

® Tterator objects are implemented using Berkeley DB cursors that
aquire a read lock on the datastore. This lock is not released until the
Tterator object is closed by the database manager.

® When your application is finished working with a persistent map it
must close the map or the database layer may leave the data in an
unusable state.

Maps have two methods for inserting data. The one most likely to be used is
put (). put () takes two objects as parameters:

® The first object is the key.

® The second object is the data.

When using serialPersistentMap maps you must be sure that both the key
and the data objects are of the class you specified when creating the map.
When using stringSerialPersistentMap maps, you must ensure that the
key is a String object and that the data is of the class you specified when
creating the map. The XML style persistent maps do not have this restriction
because the objects are converted to XML representations.

Example 270 shows the code for adding an entry to a
StringSerialPersistentMap uﬂng put ().

Example 270: Putting an Element in a Persistent Map
import com.iona.jbus.db.collections.*;

// DatabaseManager mgr obtained earlier
StringSerialPersistentMap floatMap = new

StringSerialPersistentMap ("float table", mgr, Float.class);

Float data = new Float (0.314);
floatMap.put ("first", data);

465

CHAPTER 17 | Using Persistent Datastores

Removing data from a map

Getting an entry from a map

466

The other way to add data to a persistent map is to use the putaii ()
method. puta11 () takes a Map object as a parameter and copies all of the
values from the map parameter into the current map. If any values in the
current map have the same key as a value in the map being copied, the
copied values overwrite them.

You remove entries from a persistent map using the remove () method.
remove () takes a key value and returns the data value associated with the
key. remove () deletes the data value associated with the key from the map.

When using persistent maps that use serialized objects as key values, you
must be sure to specify the proper class of object for the key. When using
persistent maps that use string objects as keys, you must ensure that the
value used in a string object.

Example 271 shows code for removing an object from a map.
Example 271: Removing an Element from a Persistent Map
floatMap.remove ("first") ;

In addition to using remove () to delete a single entry from a persistent map,
you can also clear all of the entries in a persistent map by invoking its
clear () method.

To retrieve an entry from a persistent map you can use the get () method.
get () takes a key value as a parameter and returns the data value
associated with the key. If the key does not exist in the map get () returns
null.

When using persistent maps that use serialized objects as key values, you
must be sure to specify the proper class of object for the key. When using
persistent maps that use string objects as keys, you must ensure that the
value used in a string object.

Example 272 shows code for getting an object from a map.
Example 272: Getting an Element from a Persistent Map

floatMap.get ("first");

Searching through the map

Closing a persistent map

Working with Data in a Persistent Datastore

If you wish to search through all of the data values in a persistent map you
will need to use one the two methods that return the data values in a form
that provides access to an Tterator object:

® entrysSet () returns the values stored in the map as a java.util.set
object.

® values () returns the values stored in the map as a
java.util.Collection object.

Both the set object and the collection object support the iterator ()
method. iterator () returns an Iterator object that can be used to iterate
through the values in the map. Any changes made to values using either the
Set object, the collection object, or the 1terator object are reflected in
the values stored in the original persistent map.

The returned Tterator object is implemented using Berkeley DB cursors.
When the 1terator object is created the database layer creates a read lock
on the underlying datastore. This read lock is held until the Tterator object
is closed by the database manager using the database manager’s static
closeIterator () method. closelterator () takes the rterator object to
be closed as a parameter.

Example 273 shows code for iterating through a map.
Example 273: Iterating through a Persistent Map

Iterator iter = floatMap.entrySet().iterator();

while (iter.hasNext())
{

Map.entry entry = (Map.Entry)iter.next();

System.out.println (entry.getKey() + ’ ’ + entry.getValue());
}

DatabaseManager.closelterator (iter) ;

When you are finished working with a persistent map, your application
needs to invoke the persistent map’s close () method. close () informs the
database layer to release any resources used to maintain the connection to
the physical representation of the datastore and flushes any buffered writes
to the physical disk.

467

CHAPTER 17 | Using Persistent Datastores

Other operations

468

Example 274 shows code for closing a persistent map.
Example 274: Closing a Persistent Map

floatMap.close () ;

Artix persistent maps implement all of the methods of the java.util.Map
interface. These methods provide means for querying the list to see if it
contains a specific key values or specific data values. They also provide a
means for seeing if the map has any data stored in it. For a full list of all the
methods available see the Java 1.4.2 API documentation for java.util.Map
(http://java.sun.com/j2se/1.4.2/docs/api/java/util/Map.html).

Note: Artix persistent maps throw an unsupported exception when
invoking the size () method.

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Map.html

Working with Data in a Persistent Datastore

Using Persistent Lists

Overview

Adding data to a list

Artix persistent lists implement java.util.List using Berkeley DB to
provide persistence. To manipulate the data in a persistent list you use the
standard methods defined for a List object. However, because the lists are
persistent there are a few things to consider when using them:

Tterator oObjects are implemented using Berkeley DB cursors that
aquire a read lock on the datastore. This lock is not released until the
Tterator object is closed by the database manager.

When your application is finished working with a persistent list it must
close the list or the database layer may leave the data in an unusable
state.

Lists have four methods that can be used to add data:

add (Object obj) adds the specified to the end of the list.

add (int index, Object obj) adds the specified object to the specified
position in the list and shifts all existing elements that fall after the new
object are forward one element.

addAll (Collection col) adds the objects stored in the specified
Collection object to the end of the list.

addAll (int index, Collection col) adds the object stored in the
specified in the co11ection object to the list starting at the specifed
position. The elements that fall after the newly inserted objects are
shifted forward in the list.

When using a serialpPersistentList you need to ensure that all of the
objects being added to the list are of the class specified when the list was
created.

469

CHAPTER 17 | Using Persistent Datastores

Example 275 shows an example of adding an element to the end of a
persistent list.

Example 275: Adding an Element to a Persistent List
import com.iona.jbus.db.collections.*;

// DatabaseManager mgr obtained earlier
SerialPersistentList floatList = new

SerialPersistentList ("float table", mgr, Float.class);

Float data = new Float (0.314);
floatList.add (data) ;

Removing data from a list Lists have four methods for removing data:

® clear() deletes all of the entries from the list.

® remove (int index) removes the entry specified by the index. The
elements that come after the removed element are shifted back by one.

® remove (Object obj) removes the specified object from the list. The
elements that come after the removed element are shifted back by one.

® remove (Collection col) removes all of the elements in the collection
from the list. The remaining elements are adjusted to remove any gaps.

Example 276 shows an example of removing an element from a persistent

list.

Example 276: Removing an Element from a Persistent List

floatList.remove (3) ;

Getting an element from a list To retrieve a single element from a persistent list you use the get () method.
get () takes an integer value and returns the entry stored at the specified
position in the list.

Example 276 shows an example of getting an element from a persistent list.
Example 277: Getting an Element from a Persistent List

floatList.get (3);

470

Searching through the elements of
a list

Working with Data in a Persistent Datastore

If you wish to search through all of the elements in a persistent list you will

need to use one the three methods that return an Tterator object:

® iterator() returns an rterator object to access the entries in their
proper order.

® listIterator() returns a java.util.ListIterator object to access
the entries.

b listIterator (int index) returns a java.util.ListIterator object
to access the entries. The ListIterator object starts from the
specified position in the list.

Both the Iterator object and the ListIteraor object provide the means for
iterating through the elements of the list and remove elements from the list.
The ListIterator object allows you the additional capabilities of traversing
the list in both directions and modifying elements in the list. Any changes
made to elements using either the ListIterator object are reflected in the
values stored in the original persistent list.

The Tterator object and the ListTterator object are implemented using
Berkeley DB cursors. When the Iterator object or ListIterator object is
created the database layer creates a read lock on the underlying datastore.
This read lock is held until the iterator is closed by the database manager
using the database manager's static closeIterator () method.
closeIterator () takes the iterator to be closed as a parameter.

Example 278 shows code for iterating through a list.
Example 278: Iterating through a Persistent List

Iterator iter = floatlist.iterator();

while (iter.hasNext ())

{
Float entry = (Float)iter.next():;
System.out.println(Float.floatValue()) ;
}

DatabaseManager.closelterator (iter);

471

CHAPTER 17 | Using Persistent Datastores

Closing a persistent list

Other operations

472

When you are finished working with a persistent list, your application needs
to invoke the persistent list's close () method. close () informs the
database layer to release any resources used to maintain the connection to
the physical representation of the datastore and flushes any buffered writes
to the physical disk.

Example 274 shows code for closing a persistent list.
Example 279: Closing a Persistent List

floatMap.close() ;

Artix persistent lists implement all of the methods of the java.util.List
interface. These methods provide means for querying the list to see if it
contains a specific object. They also provide a means for seeing if the list
has any data stored in it and for converting the data into an array. For a full
list of all the methods available see the Java 1.4.2 APl documentation for
java.util.List

(http://java.sun.com/j2se/1.4.2/docs/api/java/util/List.html).

Note: Artix persistent lists throw an unsupported exception when
invoking the size () method.

http://java.sun.com/j2se/1.4.2/docs/api/java/util/List.html

Supporting High-Availability

Supporting High-Availability

Overview

Write-request forwarding

Enabling write-request forwarding

If you are going to use persistent maps in conjunction with the high
availability features of Artix, it is necessary to perform some additional
programming tasks to support write-request forwarding. Essentially, you
must write a few lines of code to tell Artix which WSDL operations need to
write to the database.

The high availability model in Artix mirrors the high availability features of

Berkeley DB. In this model, a replicated cluster consists of a master replica
and any number of slave replicas. The master replica can perform both read
and write operations to the database, but the slaves can perform only read
operations.

What happens, though, if a client sends a write-request to one of the slave
replicas? In this case, the slave replica needs to have some way of
forwarding the write-request to the master replica. Artix supports this
write-request forwarding feature using the request forwarder plug-in on
the server side. To enable the write-request forwarding feature, you must
appropriately configure the server replicas, as described in Configuring and
Deploying Artix Solutions, and you must perform some programming steps,
as described here.

To enable your service to perform write-request forwarding you must do the
following before handing control over to the bus:

1. Create a com.iona.jbus.db.DatabaseConfig object from the
DatabaseManager object.

2. Create an array of strings that contains the names of all of the
operations defined in the portType element of the service's contract
that make changes to a persistent datastore.

3. Call the patabaseConfig object’s markaswWriteOperations () method to
enable write-request forwarding for the specified operations.

There are three recommended places you can add this code to your service:

® In the server mainline before you call Bus.run().
® In the service plug-in's busInit () method.

473

../deploy/index.htm
../deploy/index.htm

CHAPTER 17 | Using Persistent Datastores

Creating a DatabaseConfig object

Creating the operation list

474

® In the creator for your service implementation object.

The demo provided with Artix uses the last method.

The patabaseConfig object stores the configuration information used to
connect to the Berkeley DB instance behind the datastore. It is created from
the patabaseManager object using the getConfiguration () method as
shown in Example 280.

Example 280: Creating a DatabaseConfig Object
// Bus object bus obtained earlier

DatabaseManager mgr = new DatabaseManager (bus) ;
DatabaseConfig cfg = mgr.getConfiguration () ;

The write-request forwarding mechanism in Artix uses the service's contract
to determine which operations to forward. In order to do this, the method
used to set up the write-request forwarding takes an array of strings that
contain the names of the operations for which write-requests to forward to
the master.

The strings used to populate the array match the values of the name attribute
of the operation elements whose implementation requires the modification
of a persistent datastore. For example, imagine a service with the interface
defined in Example 281.

Example 281: Interface that Modifies Persistent Data

<portType name="empService">
<operation name="is registered employee">
<input message="tns:is registered employee request"
name="is registered employee request"/>
<output message="tns:is registered employee response"
name="is registered employee response"/>
</operation>
<operation name="add employee">
<input message="tns:add employee request"
name="add employee request"/>
<output message="tns:add employee response"
name="add employee response"/>
</operation>

Marking the write operations

Supporting High-Availability

Example 281: Interface that Modifies Persistent Data

<operation name="delete employee">
<input message="tns:delete employee request"
name="delete employee request"/>
<output message="tns:delete employee response"
name="delete employee response"/>
</operation>
</portType>

The service, empservice, defines three operations:
isiregisteredgemployee,addiempolyee,and deletegemployee.FﬂMNeveh
only two of the operations, add employee and delete employee, require
modifying the persistent data store. Therefore, you would place
add_employee and delete employee in the array of strings that configures
the write-request forwarding mechanism as shown in Example 282.

Example 282: Populating the Operation List
String[] writeOps = { "add employee", "delete employee" };

This string will configure the write-forward request mechanism to only
forward requests when a client invokes add employee Or delete employee.
If a client invokes either add_employee Or delete employee On a slave
instance of this service the request will be automatically forwarded to the
master instance. If a client invokes is_registered employee, the slave
instance will handle the request.

The last step in setting-up write-request forwarding is to mark the operations
that write data to the persistent datastore. This informs Artix which
operations will be forwarded to the master service instance.

You do this using the patabaseConfig Object’s markasiriteOperations ()
method. Its signature is shown in Example 283.

Example 283: markAsWritelOperations() Signature

void markAsWriteOperations (String[] operations, QName service,
String portName, String wsdlURL) ;

475

CHAPTER 17 | Using Persistent Datastores

Configuring write-request
forwarding

476

It has the following parameters:

operations The array of strings containing the name of the operations
to mark.

service The QName of the service element defining the
endpoint.

portName The value of the name attribute of the port element

defining the endpoint’s contact details
wsd1URL The URL of the contract defining the service.

Example 284 shows the code for marking a set of operations as write
operations.

Example 284: Marking Operations for Write-Request Forwarding

OName service = new QName ("http://www.iona.com/persist demo",
"empSOAPService") ;

// Bus object bus obtained earlier

DatabaseManager mgr = new DatabaseManager (bus) ;

DatabaseConfig cfg = mgr.getConfiguration();

String[] writeOps = { "add employee", "delete employee" };

cfg.markAsWriteOperations (writeOps, service, "empSOAPPort",
".\epmServ.wsdl") ;

In order for a service to use the Artix write-request forwarding mechanism it

must be configured to load the request forwarder plug-in. In addition, the

request_forwarder plug-in must be placed on the service’s request

interceptor list. To do this do the following:

1. Add request forwarder to the list of plug-ins in the service's
orb_plugins variable.

2. Add request_ forwarder to the list of plug-ins in the service's

binding:artix:server request interceptor list variable.

Supporting High-Availability

Example 285 shows a sample configuration for a service that has
write-request forwarding enabled.

Example 285: Configuration for Write-Request Forwarding
server
{
orb plugins = ["local log stream", "request forwarder",
"iiop profile", "iiop", "giop"l;
binding:artix:server request interceptor list=

"request forwarder";

For more information on Artix configuration see Configuring and Deploying
Artix Solutions.

477

../deploy/index.htm
../deploy/index.htm

CHAPTER 17 | Using Persistent Datastores

Configuring Artix to Use Persistent Datastores

Overview Artix will automatically create all of the artifacts needed to use persistent
datastores without adding any configuration to your Artix environment.
However, Artix can be configured to control the location and name of the
Berkeley DB artifacts used by the database layer.

Also, if you intend to deploy a service as a highly available cluster, that is all
done in Artix configuration.

Database layer configuration The database layer is configured using two configuration variables:

® plugins:artix:db:env_name Specifies the filename for the Berkeley
DB environment file. It can be any string and can have any file
extension.

® plugins:artix:db:home Specifies the directory where Berkeley DB
stores all the files for the service databases. Each service should have a
dedicated folder for its data stores. This is especially important for
replicated services.

Example Example 286 shows a configuration fragment for a service using persistent
datastores.

Example 286: Persistent Datastore Configuration
Artix Configuration File
foo_service {

plugins:artix:db:env_name = "myDB.env";

plugins:artix:dbo:home = "/etc/dbs/foo service";

}i

More information For more information on Artix configuration see Configuring and Deploying
Artix Solutions.

478

../deploy/index.htm
../deploy/index.htm

In this chapter

CHAPTER 18

Jsing the Call
nterface for
Dynamic
nvocations

The JAX-RPC Call interface allows you to make invocations on
remote services for which you only have a WSDL description.

This chapter discusses the following topics:

DIl and the Call Interface page 480
Building Invocations using the Call Interface page 482
Printer Service Demo page 484

479

CHAPTER 18 | Using the Call Interface for Dynamic Invocations

DIl and the Call Interface

What is DII?

The Call interface

Artix DIl support

480

DIl stands for Dynamic Invocation Interface. DIl provides a mechanism by
which you can invoke on remote services without having the stubs statically
linked into your application code. Using DII, you query a service for a
description of its interface, use that description to dynamically build the
proper invocation interface, and then use the dynamic interface to invoke on
the service. This is useful if your application cannot always be sure of the
exact structure of the request message or must dynamically request services
from a repository of some sort.

The JAX-RPC specification defines the call interface to support DII. Using
the call interface, Artix developers can invoke on remote services without
needing to have access to the service's generated interface. To invoke on a
remote service using the call interface, you need to get a copy of the
remote service’s WSDL contract, a description of the message expected by
the service, and any message the service may return. With this information
you build, at runtime, the interface needed to invoke on the remote service
and receive a response.

Artix supports the majority of the functions specified in sections 8.2.4-8.2.8

of the JAX-RPC specification. The limitations are listed below.

® Artix does not support the javax.xml.rpc.session.maintain standard
property.

® The methods listed in Table 31 are not supported by the Artix
implementation of the service interface.

Table 31: Unsupported Service Methods

Method Signature

TypeMappingRegistry getTypeMappingRegistry () ;

HandlerRegistry getHandlerRegistry () ;

Remote getPort (Class intfc) throws ServiceException;

DIl and the Call Interface

Table 31: Unsupported Service Methods

Method Signature

Iterator getPorts() throws ServiceException;

® The methods listed in Table 32 are not supported by the Artix
implementation of the serviceFactory interface.

Table 32: Unsupported ServiceFactory Methods

Method Signature

Service createService (Qname gname) throws ServiceException;

Service loadService (Class classl) throws ServiceException;

Service loadService (URL url, Class classl, Properties props)
throws ServiceException;

Service loadService (URL url, QName gname, Properties props)
throws ServiceException;

481

CHAPTER 18 | Using the Call Interface for Dynamic Invocations

Building Invocations using the Call Interface

Overview

Procedure

482

Using a dynamic proxy to invoke on a remote service requires you to
discover the name of the remote service’s operation that you wish to invoke.
It also requires you to carefully construct the parameter list for the
operation. There are several ways to get this information. They range from
giving the client application some foreknowledge of the possible operations
it will invoke to parsing the services WSDL to recreate the operation.

Applications that use the ca11 interface to dynamically invoke on remote
services also need to have knowledge of the types used by the services from
which they request services. The application making the dynamic invocation
must register the type factories for any complex types used by the remote
services on which it will invoke. For more information on type factories see
“Working with Artix Type Factories” on page 257.

To make a dynamic service invocation using the ca11 interface do the

following:

1. Register the type factories for the complex types the application may
use in building a dynamic invocation. See “Registering Type Factories”
on page 260.

2. Obtain a copy of the remote service’s WSDL contract.

Create a serviceFactory instance using
ServiceFactory.newInstance ().

4. Using the location of the remote service’s WSDL contract and service
name, create a new service instance from the factory.

5. Using the QName of the port element defining the service and the
name of the operation to be invoked, create a call instance from the
service.

6. Create the input parameters required to invoke the operation and store
them in an object[].

Note: Only in and inout parameters are included in the object[]
used to invoke on the service. Do not include out parameters.

Building Invocations using the Call Interface

Invoke the remote service using the cal1 instance’s invoke () method.
Note: For oneway operations you can use invokeOneWay () .

Unpack any output parameters from the operation using the ca11
instance’s getoutputParameters () method.

Note: getoutputParameters () can return either a Map or a List.

483

CHAPTER 18 | Using the Call Interface for Dynamic Invocations

Printer Service Demo

Overview

484

One use of dynamic invocations is in situations where you cannot be sure or
the exact requirements of an operation. This can occur when a service may
be fulfilled by a number of service providers. Each service provider may
provide a service, such as document printing, but may have different
operation signatures and require different information to fulfill the service
request.

The application outlined below asks a service repository for an available
printing service. The service repository can return two types of printing
service: Laser and InkJet. The print () operation supported by a raser
printing service takes three arguments:

Byte[] dataBuff The data to be printed.

boolean duplex Specifies whether to use double sided printing.

long numPage Specifies the number of pages to print per side.

The print () operation supported by an InkJet printing service takes two
arguments:

Byte[] dataBuff The data to be printed.

boolean draft Specifies the print quality.

Both printing services return a cost for the printing. They also have one

output parameter, numsheets, that specifies the number of sheets used to
print the job.

The application uses the ca11 interface to invoke on the returned printing
service. For purposes of demonstrating the use of the Call interface, the
application is designed to not need to parse the returned WSDL contract to
determine how to construct the invocation.

Printer Service Demo

Application code Example 287 shows the code for creating a print request and invoking on
the returned print service.

Example 287: Dynamic Invocation using the Call Interface
//Java

import javax.xml.rpc.*;

import java.net.*

import com.iona.webservices.reflect.types.*;

Object[] args = null;
1 Bus bus = Bus.init();

2 OName name = new QName ("http://www.printers.com",

"RegisteryService");
String portName = "RegisteryPort";
String wsdlPath = "file:/./printresistery.wsdl";
URL wsdlURL = new File (wsdlPath) .toURL() ;
Register printReg = (Register)bus.createClient (wsdlURL, name,

portName,
Registery.class);

3 String printerType;
URIHolder tempURL;
QONameHolder tempName = new QNameHolder () ;
printReg.getPrinter (printerType, tempURL, tempName) ;

URL printerURL = tempURL.value.toURL() ;
QOName printerName = tempName.value;
4 if (printerType.equals ("Laser"))
{
boolean duplex = true;
long numPages = 2;
// byte[] dataBuff obtained earlier
args = new Object[]{dataBuff, duplex, numPages};
}
5 else if (printerType.equals ("InkJet"))
{
boolean draft = false;
// byte[] dataBuff obtained earlier
args = new Object[]{dataBuff, draft};
}

else System.exit (1) ;

6 ServiceFactory factory = ServiceFactory.newInstance () ;

485

CHAPTER 18 | Using the Call Interface for Dynamic Invocations

What does the code do?

486

7

10

11
12

Example 287: Dynamic Invocation using the Call Interface

Service printService = factory.createService (printerURL,

printerName) ;

String portName = name.getLocalPart () .concat ("Port");
QOName port = new QName ("", portName) ;
Call printCall = printService.createCall (port, "print");

float cost = printCall.invoke (args) ;

Map outs = printCall.getOutputParameters() ;
long numSheets = outs.get ("numSheets") ;

System.out.println ("Your print job costs "+cost+" and used "+

numSheets+" sheets of paper.");

The code in Example 287 does the following:

1.

2.
3.
4

10.
11.
12.

Initialize the Artix bus.
Create a proxy for the print service registry.
Request a printing service from the print service registry.

If the type of printing service returned is Laser, build the three
argument list.

If the type of printing service returned is inkJet, build the two
argument list.

Get a new serviceFactory.

Using the WSDL location and the service name returned from the print
service registry, create a new service.

Build the QName for the port defining the print service’s endpoint.
Using the port name and the operation name, print, create a ca1l.
Invoke the print request using the argument list created above.
Get the output parameters as a Map.

Extract numsheets from the Map.

In this chapter

CHAPTER 19

Instrumenting a
Service

Artix provides two mechanisms that allow you to instrument
your service implementations to be managed using any JMX

console.

This chapter discusses the following topics:

Overview of Artix Instrumentation page 488
Using the JMX APIs page 491
Using the Artix ManagedComponent Interface page 495

487

CHAPTER 19 | Instrumenting a Service

Overview of Artix Instrumentation

Default instrumentation Artix exposes a number of its internal components through a JMX complaint
MBean server as shown in Figure 11. The instrumented components can be
managed using any JMX console.

Artix
Bus MBean
MBean

Server

Service MBean

Request Message

Binding
Handler Handler
Port MBean

Artix Service Process

Figure 11: Default Artix MBean Structure

Artix Bus MBean

Each instance of an Artix bus has an MBean associated with it. The bus’
MBean exposes the following properties:

® the bus identifier.

® the bus’ configuration scope.

® the list of arguments passed to the bus.

® the list of service objects being managed by the bus.

488

Overview of Artix Instrumentation

The bus MBean exposes the following operations:

® enable/disable performance logging for a service.
® set/retrieve the logging level for the different Artix subsystems.

Artix Service MBean

When Artix loads a service contract, it creates a service object for each
service element in the contract. Each service object has an MBean
associated with it. The name of each service MBean is received from the
bus’ MBean.

The service's MBean exposes the following properties:
® the QName, specified in the service contract, of the service element
represented by the service object.
® the status of the service.
® alist of all the ports exposing this service.
® anumber of service counters including:
+ the average response time of the service.
+ the total number of requests processed.
+ the total number of oneway requests processed.

+ the number errors encountered by the service.

Artix Port MBean

When Artix activates a service it creates a port object for each port element
in the activated service's service element. Each port object has an MBean
associated with it. The name of a port's MBean is received from the MBean
of the service object that manages the port.

The port’'s MBean exposes the following properties:

® the port's name as specified in the service’s contract.

® the endpoint address.

® the transport’s name.

® the list of message handlers through which messages on this port pass.

Additional Components

A number of other Artix provided components also provide JMX
instrumentation including:

® the Artix locator.
® the Artix session manager.

489

CHAPTER 19 | Instrumenting a Service

Adding custom instrumentation

Activating Artix management

490

® the HTTP transport.

For more information on accessing the properties exposed by Artix see
Configuring and Deploying Artix Solutions.

Artix allows the registration of additional MBeans with the Artix MBean
server. This makes it possible for you to add custom instrumentation to your
service implementations and mange it through the same management
console as the other Artix components.

There are two methods of instrumenting your service implementations:

® implement one of the JMX MBean interfaces and register it with Artix’s
MBean server.

® implement an Artix ManagedComponent interface.

Functionally there is no different between the two approaches. The decision

on which to use depends on ease of development, maintainability, and
portability.

In order to manage the instrumented Artix components you need to add the
following to your service's configuration scope:

plugins:bus:management:enabled="true";

For more information about Artix configuration see the Configuring and
Deploying Artix Solutions.

../deploy/index.htm
../deploy/index.htm
../deploy/index.htm

Using the JMX APIs

Using the JMX APIs

Overview

Creating your custom MBean

The Artix MBean server can be accessed through the Artix bus and allows
for the registration of user developed MBeans. This allows you to instrument
your service implementation by developing a custom MBean using one of
the JMX MBean interfaces and registering it with the Artix MBean server.
Your custom instrumentation will then be accessible through the same JMX
connection as the Artix internal components used by your service.

When you use the JMX APIs to instrument your service implementation, you
follow the design methodology laid out by the JMX specification. This
involves the following steps:

1. Decide what type of MBean you wish to use.

+ standard MBeans expose a management interface that is defined
at development time.

+ dynamic MBeans expose their management interface at run time.
2. Create the MBean interface to expose the properties and operations

used to manage your service implementation.

+ standard MBeans use the MBean interface.

+ dynamic MBeans use the pynamicMBean interface.
3. Implement the MBean class.
For example, if you wanted to add instrumentation to the widget ordering
service, defined in Example 153 on page 248, that tracked the number of
orders placed and average time it takes for an order to be processed. You

could do this by creating a standard MBean that exposed the following
attributes:

® NumOrders
® AvgTime

Note: The default instrumentation provided with Artix can provide you
with statistics for the service as a whole, but to get statistics on the
operations you need to add custom instrumentation.

491

CHAPTER 19 | Instrumenting a Service

Example 288 shows the interface for the MBean.
Example 288: Widget Monitoring MBean Interface

public interface widgetMonitorMBean
{

public int getNumOrders () ;

public int getAvgTime () ;
}

Example 289shows the class that implements the MBean.
Example 289: Widget Monitoring MBean

public class widgetMonitor implements widgetMonitorMBean
{

int numOrders = 0;

int avgTime = 0;
public int getNumOrders ()
{

return numOrders;
}
public void setNumOrders (int i)
{

numOrders = 1i;

public int getAvgTime ()
{

return avgTime;
}
public void setAvgTime (int i)
{

avgTime = i;

}

The attributes, Numorders and avgTime, exposed by the MBean are only
readable from a management console because the interface only defines
their getter methods. The service implementation can use the setter
methods to update the values of the attributes.

492

Registering the MBean

Using the JMX APIs

For your MBean to be exposed to a management console, it must be
registered with the Artix MBean server. The Artix MBean server is accessible
through the bus’ registry. Typically this will be done when your service is
initialized. For services that are deployed in an Artix container, you would
register you MBean in the service's bustnit () method. For a standalone
service, you would register your MBean in the service's main () method
before calling bus.run ().

To register a custom MBean do the following:

1. Instantiate your custom MBean.

2. Get an instance of the bus’ registry using bus.getRegistry().

3. Get the Artix MBean server from the registry using the registry’s
getEntry () method as shown in Example 290.

Example 290: Getting the Artix MBean Server

Object obj = registry.getEntry(ManagementConstants.MBEAN SERVER INTERFACE NAME) ;

Cast the returned object object into an MBeanserver object.
5. Create an objectName object for your MBean.

Register the MBean with the MBean server using the server's
registerMBean () method.

Example 291 shows code for registering a custom MBean with the Artix
MBean server.

Example 291: Registering a Custom MBean

import javax.management.*;
import com.iona.jbus.management.ManagementConstants;

widgetMonitor widgetMon = new widgetMonitor();
Bus bus = getBus();

BusRegistry registry = bus.getRegistry();
Object obj =

registry.getEntry (ManagementConstants.MBEAN SERVER INTERFACE
NAME) ;

493

CHAPTER 19 | Instrumenting a Service

Example 291: Registering a Custom MBean

4 MBeanServer mbeanServer = (MBeanServer)obj;
5 ObjectName name = new OBjectName ("WidgetOrderMonitor");

6 mbeanServer.registerMBean (widgetMon, name) ;

494

Using the Artix ManagedComponent Interface

Using the Artix ManagedComponent Interface

Overview

Procedure

In this section

If you do not want to use the JMX interfaces to add custom instrumentation
to your service, you can use the Artix ManagedComponent interface. This
interface wraps the JMX subsystem in proprietary interfaces. You do not
need to access the Artix JMX server to add instrumentation to your service.

To add custom instrumentation to your service using the ManagedComponent
interface you need to do the following:

1.

Implement an instrumentation class that implements both the

com. iona.jbus.managment .ManagedComponent interface and the
com. iona.jbus.management . Instrumentation interface.

Implement a support class for your instrumentation that implements
the com.iona. jbus.management .MBeanInfoGenerator interface.

In the service’s initialization routine, instantiate your instrumentation
object and register it with the bus.

In the service’s shutdown routine, unregister your instrumentation
object.

Note: If your service is designed to be a standalone service, you do not
need to do step 4.

This section discusses the following topics:

Implementing the Instrumentation Class page 496
Implementing the Support Class page 500
Creating and Removing your Instrumentation page 504

495

CHAPTER 19 | Instrumenting a Service

Implementing the Instrumentation Class

Overview Like an MBean, a ManagedComponent Style instrumentation class is
responsible for providing access to the attributes you want to track and any
management operations you want to expose.

Unlike an MBean, you do not need to define an interface for your
instrumentation class. Instead, your instrumentation object implements two
Artix management interfaces and defines the operations required to expose
the attributes and operations you want.

Implementing the creator Your instrumentation class must have at least one public contrusctor that
takes no arguments. You can use the default constructor provided by Java to
fulfil this requirement.

Interfaces to implement Your instrumentation class needs to implement the following Artix
management interfaces:
d com. iona.jbus.management .ManagedComponent

d com.iona.jbus.management.Instrumentation

The Instrumentation interface is a marker interface that has no methods
that need to be implemented.

The ManagedComponent interface is the wrapper that allows the Artix runtime
to extract management information from your service. It has three methods
that need to be implemented: getInstrumentation(), getObjectName (),
and setObjectName ().

Implementing the You must provide the implementation for the three operations defined in the
ManagedComponent methods ManagedComponent interface. For most applications, the implementations for
these operations can be boilerplate.

getInstrumentation()

getInstrumentation () is called by the bus to obtain an instance of your
instrumentation class. Its signature is shown in Example 292.

Example 292: getinstrumentation()

public Instrumentation getInstrumentation();

496

Defining attributes and operations

Using the Artix ManagedComponent Interface

For most cases, this method can simply return an instance of itself as shown
in Example 293. You can, however, do other initialization work in this
method.

Example 293: Implementing getinstrumentation()

public Intrumentation getInstrumentation ()

{

return this;

}

setObjectName()

setObjectName () provides a mechanism for setting the name of an
instrumentation object. Its signature is shown in Example 294.

Example 294: setObjectName()

public void setObjectName (ObjectName name) ;

It takes a javax.management .ObjectName. If you don't wish to expose this
functionality, you can implement this method to just return void. The name
of the instrumentation object can be completely handled by
getObjectName ().

getObjectName()

getObjectName () returns the name of an instrumentation object. Its
signature is shown in Example 295.

Example 295: getObjectName()
public ObjectName getObjectName () ;

It returns a javax.management .ObjectName. The name returned is the name
by which an instrumentation object is identified by a JMX console.

Your instrumentation class is responsible for providing the methods used to
get and set the attributes exposed by your instrumentation. It is also
responsible for providing the methods used to implement any operations
exposed by your instrumentation. The methods to do this is not part of any
of the Artix management interfaces.

497

CHAPTER 19 | Instrumenting a Service

Example

498

The naming pattern for attributes and operations follow the same patterns
as those used by MBeans. Each attribute must have at least a setter or a
getter method. The setter methods use the naming pattern
setAttributeName (). The getter methods use the naming pattern
getAttributeName (). Operations can have any name you would like.

So, if you wanted to expose the attributes Numorders and AvgTime you
would implement the following methods:

getNumOrders ()

setNumOrders ()
getAvgTime ()

setAvgTime ()

Example 296 shows a fully implemented instrumentation class.
Example 296: ManagedComponent Style Instrumentation Object

import com.iona.jbus.management.Intrumentation;
import com.iona.jbus.management.ManagedComponent;
import com.iona.jbus.management.ManagementException;

import javax.management.ObjectName;

public class WidgetManager
implements ManagedComponent, Instrumentation
{

private ObjectName objName;

private int numOrders;

private float avgTime;

private float totalTime;

public WidgetManager ()
{
objName = new ObjectName ("WidgetManager") ;

numOrders = 0;
avgTime = 0.0;
totalTime = 0.0;

public Instrumentation getInstrumentation ()

{

return this;

Using the Artix ManagedComponent Interface

Example 296: ManagedComponent Style Instrumentation Object

public void setObjectName (ObjectName name)
{

return;

public ObjectName getObjectName ()
{

return objName;

public void setNumOrders (int num)
{
numOrders += num;

}

public int getNumOrders ()
{

return numOrders;

public void setAvgTime (float time)
{

totalTime += time;

avgTime = totalTime/numOrders;

public float getAvgTime ()
{

return avgTime;

499

CHAPTER 19 | Instrumenting a Service

Implementing the Support Class

Overview

Naming convention

Interface to implement

Example

500

Under the covers, a ManagedComponent Style instrumentation class is used
by Artix to generate a Mode1MBean that is used by the Artix management
infrastructure. To facilitate the Mode1MBean generation, you are required to
provide a support class for your instrumentation class. This support class is
responsible for creating a ModleMBeanInfo object that describes your
instrumentation class.

Your support class must use the following naming convention to be
recognized by Artix:

instrumentationClassNameSupport

For example, if your instrumentation class is named widgetManager, the
corresponding support class must be named widgetManagerSupport.

Your support class needs to implement the Artix interface
com.iona.jbus.management.MBeanInfoGenerator.|thaS one pubHc
method, getModel (), that you need to implement.

getModel () is called by Artix when it creates that MBean for your
instrumentation. As shown in Example 297, it returns a

javax.management .ModelMBeanInfo object that fully describes the attributes
and operations exposed by your instrumentation class.

Example 297: getModel()

public ModelMBeanInfo getModel (ObjectName objName,
String displayName)
throws RuntimeOperationsException, MBeanException;

For more information on populating a Mode1MBeanInfo object see
http://java.sun.com/products/JavaManagement.

Example 298 shows the support class for the instrumentation class defined
in Example 296 on page 498.

http://java.sun.com/products/JavaManagement/

Using the Artix ManagedComponent Interface

import com.iona.jbus.management.MBeanInfoGenerator;

import java.lang.reflect.Constructor;

import javax.management.Descriptor;

import javax.management.MBeanException;

import javax.management.ObjectName;

import javax.management.RuntimeOperationsException;

import javax.management.modelmbean.DescriptorSupport;

import javax.management.modelmbean.ModelMBeanAttributelInfo;
import javax.management.modelmbean.ModelMBeanConstructorInfo;
import javax.management.modelmbean.ModelMBeanInfo;

import javax.management.modelmbean.ModelMBeanInfoSupport;
import javax.management.modelmbean.ModelMBeanNotificationInfo;
import javax.management.modelmbean.ModelMBeanOperationInfo;

public class WidgetManagerSupport implements MBeanInfoGenerator
{

public WidgetManagerSupport ()

{

}

protected ModelMBeanAttributeInfo[] getAttributes ()

{
ModelMBeanAttributeInfo[] attributes =new ModelMBeanAttributeInfo[2];

Descriptor orderDescriptor = new DescriptorSupport (new Stringl[]

{
"name=NumOrders",
"class=WidgetManager",
"descriptorType=attribute",
"getMethod=getNumOrders",
"setMethod=setNumOrders",
"value=0",
"default=0",
"displayName=Number of orders processed",
"persistPolicy=NoMoreOftenThan",
"persistPeriod=300",
"currencyTimeLimit=0",
"persistLocation=/data",
"persistName=WidgetManager.ser",
"default=0"

1)

501

CHAPTER 19 | Instrumenting a Service

Descriptor timeDescriptor = new DescriptorSupport (new Stringl]
{
"name=AvgTime",
"class=WidgetManager",
"descriptorType=attribute",
"getMethod=getAvgTime",
"setMethod=setAvgTime",
"value=0",
"default=0",
"displayName=Average time to process an order",
"persistPolicy=NoMoreOftenThan",
"persistPeriod=300",
"currencyTimeLimit=0",
"persistLocation=/data",
"persistName=WidgetManager.ser",

"default=0"

1

attributes[0] = new ModelMBeanAttributeInfo ("NumOrders",
"java.lang.Integer",
""V
true,
true,
false,
orderDescriptor) ;

attributes[1l] = new ModelMBeanAttributeInfo ("AvgTime",

"java.lang.Float",
o

4
true,
true,
false,
timeDescriptor) ;

return attributes;

protected ModelMBeanOperationInfo[] getOperations ()
{

ModelMBeanOperationInfo[] operations = new ModelMBeanOperationInfo[O];
return operations;

502

Using the Artix ManagedComponent Interface

protected ModelMBeanNotificationInfo[] getNotifications ()

{
ModelMBeanNotificationInfo[] notifications = new ModelMBeanNotificationInfo[O];
return notifications;

public ModelMBeanInfo getModel (ObjectName objName, String displayName)
throws RuntimeOperationsException, MBeanException
{
Descriptor modelDescriptor = new DescriptorSupport (new Stringl[]
{
"name=WidgetManagerBean",
"descriptorType=mbean"
1

ModelMBeanConstructorInfo[] constructors = new ModelMBeanConstructorInfo[O0];

ModelMBeanInfo model = new ModelMBeanInfoSupport ("WidgetManager",
"Widget Sales mbean",
getAttributes (),
constructors,
getOperations (),
getNotifications());

model . setMBeanDescriptor (modelDescriptor) ;

return model;

503

CHAPTER 19 | Instrumenting a Service

Creating and Removing your Instrumentation

Overview

Creating the instrumentation

504

=

To make your custom instrumentation available to management consoles,
you must create an instance of your instrumentation class. Then you need to
tell the bus to create an MBean for your instrumentation. The bus
automatically registers the MBean with the Artix JMX server.

Unlike JMX-style instrumentation, ManagedComponent-style instrumentation
must be cleaned up. In your services shutdown() routine you need to tell the
bus to remove the MBean created for your instrumentation. This also cleans
up any other resources created to support the custom instrumentation.

As with JMX-style instrumentation ManagedComponent-style instrumentation
is not available until an MBean is created and registered with the Artix
MBean server. However, when you create ManagedComponent-style
instrumentation you do not directly create an MBean or register it with the
MBean server. This is all handled by the bus.

To create an MBean for your instrumentation and register it with the MBean

server do the following:

1. Instantiate an instance of your instrumentation class.

2. Instantiate a ManagedComponentEvent using
ManagedComponentCreateEvent ().

3. Send the event to the bus using Bus.sendEvent ().

Example 298 shows code for creating an MBean for your custom
instrumentation.

Example 298: Creating a MBean for a Managed Component

public class WidgetPlugin extends BusPlugIn

{
WidgetManager inst;

public void busInit () throws BusException

{
Bus bus = getBus();

inst = new WidgetManager () ;
ManagedComponentEvent create = new
ManagedComponentCreatedEvent (inst) ;

Removing your instrumentation

Using the Artix ManagedComponent Interface

Example 298: Creating a MBean for a Managed Component

bus.sendEvent (create) ;

To clean up your custom instrumentation you need to unregister the MBean
created to support it and destroy the MBean. This is all done using a bus
event.

To remove your custom instrumentation from the JMX serer do the

following:

1. Instantiate a ManagedComponentEvent using
ManagedComponentRemovedEvent ().

2. Send the event to the bus using Bus.sendEvent ().

Example 299 shows code for creating an MBean for your custom
instrumentation.

Example 299: Removing the MBean for a Managed Component

public class WidgetPlugin extends BusPlugIn
{
WidgetManager inst;

public void busShutdown () throws BusException
{
Bus bus = getBus();

ManagedComponentEvent create = new

ManagedComponentRemovedEvent (inst) ;
bus.sendEvent (create) ;

505

CHAPTER 19 | Instrumenting a Service

506

Overview

In this chapter

CHAPTER 20

Developing
Plug-Ins

Plug-Ins can perform a number of tasks including registering
servants or implementing handlers.

Developing and loading an Artix plug-in requires you to perform three tasks:
1. Extend the BusPlugIn class to implement your plug-in's application
logic.
2. Implement the BusPlugInFactory interface.
Configure Artix to use the plug-in.

This chapter discusses the following topics:

Understanding the Artix Plug-in Model page 508
Extending the BusPlugln Class page 511
Implementing the BusPlugInFactory Interface page 514
Configuring Artix to Load a Plug-in page 516

507

CHAPTER 20 | Developing Plug-Ins

Understanding the Artix Plug-in Model

In this section This section discusses the following topics:
Artix plug-ins page 508
Configuration page 508
Loading the plug-in page 509
Initializing the plug-in page 510
BusPluglnFactory object page 510
BusPlugln object page 510

Artix plug-ins An Artix plug-in is a well-defined component that can be independently

loaded into an Artix application. Artix defines a platform-independent
framework for loading plug-ins dynamically, based on the dynamic linking
capabilities of modern operating systems.

Plug-ins, due to the platform-independent nature of Artix, can be
implemented in either C++ or Java and be loaded into any Artix
application. Plug-ins developed in Java are packaged as independent JAR
files that are located by Artix using configuration information. Java based
plug-ins can be loaded into Artix applications developed in C+ +.

Configuration The plug-ins that an application should load are specified by the
orb_plugins configuration variable, which contains a list of plug-in names.

In addition, for each plug-in that is to be loaded, the bus needs to know
which factory class is used to create instances of the plug-in's
implementation. You specify the name of a plug-in’s factory class using the

variable plugins:pl ugin name:classname.

508

Understanding the Artix Plug-in Model

For example, the following extract shows how to configure an application,
whose ORB name is plugin_example, to load a single plug-in,
sample artix interceptor.

Artix domain configuration file

plugin example {
orb plugins = ["sample artix interceptor"];

plugins:sample artix interceptor:classname =
"samplePlugInFactory";
bi

Loading the plug-in Figure 12 shows how a plug-in is loaded as the application starts up. The
steps to load the plug-in are as follows:

1. The user launches the application, app, specifying the bus name as
plugin example at the command line.

2. As the application starts up, it scans the Artix configuration file to
determine which plug-ins to load. Priority is given to the configuration
settings in the plugin_example configuration scope.

3. The Artix core loads the plug-ins specified by the application’s
configuration.

» app —OFEnams plugin_sxampls

(1) Launen

|

Application

J |

) Load plug-in
I

| &

Plug-In

Figure 12: Loading a Plug-In

509

CHAPTER 20 | Developing Plug-Ins

Initializing the plug-in

BusPluginFactory object

BusPlugin object

510

Plug-ins are usually initialized when the bus is initialized. Figure 13 shows
the plug-in initialization sequence, which proceeds as follows:

1. The bus is initialized.

2. The Artix core iterates over all of the plug-ins in the orb plugins list,
calling BusPlugInFactory.createBusPlugin () ON each one.

3. The BusPlugInFactory object creates a BusPlugIn object, which
initializes the state of the plug-in for the current bus instance.

4. After all of the BusPlugIn objects have been created, the Artix core
calls busInit () on each BusPlugIn object.

Application

(1) 1T pum: s anit)

FuzPlug InFactors EuzPlugln

.-..---.-..;"a'_;.-.;

{2} crsats_pum_plugini) (4 sus_tnit()

Figure 13: Initializing a Plug-In

A BusPlugInFactory object provides the basic hook for initializing an Artix
plug-in. A single static instance of the BusPlugInFactory object is created
when the plug-in is loaded into an application. See “Implementing the
BusPluglnFactory Interface” on page 514 for more details.

A BusPlugIn object caches the state of the plug-in for the current bus
instance. The BusP1ugIn object is responsible for performing most of the
plug-in initialization and shutdown tasks. See “Extending the BusPlugin
Class” on page 511 for more details.

Extending the BusPlugin Class

Extending the BusPlugin Class

Overview The BusPlugIn class is the base class for all Artix plug-ins. It provides a
method, getBus (), that returns the bus with which the plug-in is
associated. In addition, it has two abstract classes that you must
implement:
® A constructor for your class.
® The busInit () method called by the bus to initialize the plug-in.
® The bussShutdown () method called by the bus when it is shutting down

to allow the plug-in to perform any clean-up it needs before being
destroyed.

Implementing the constructor The constructor for your plug-in has two requirements:
1. Its first argument must be a bus instance.
2. It must call super () with the passed in bus reference.

Example 300 shows a constructor for a plug-in called BankP1ugIn. It simply
calls super () on the bus instance. It could, however, have performed some
logging operations or initialized resources.

Example 300: BusPlugin constructor

// Java
public class BankPlugIn extends BusPlugIn
{
public BankPlugIn (Bus bus)
{
super (bus) ;

}

buslnit() busInit () is called by every bus that loads your plug-in. Inside busInit (),
you perform all of the initialization needed for your plug-in to perform its job.
For example, if your plug-in implemented a service defined in WSDL you

511

CHAPTER 20 | Developing Plug-Ins

busShutdown()

512

would create and register the servant in bustnit (). If your plug-in
implemented a handler, you would register your handler factory in
busInit ().

Example 301 shows a busInit () the registers two message handlers.
Example 301: bus/nit()

// Java

import com.iona.jbus.*;

import com.iona.jbus.servants.*;
import javax.xml.namespace.QName;

import java.net.*;
import java.io.*;

public class BankPlugIn extends BusPlugIn
{
private BankImpl bank;

public void busInit () throws BusException

{
Bus bus = getBus();

bus.registerHandlerFactory (new firstHandFactory());
bus.registerHandlerFactory (new secondHandFactory2());

}

busShutdown () is called on the plug-in by the bus when the bus is shutting
down. Once busShutdown () completes, the bus calls destrotBusPlugIn ()
on the plug-in factory object. This is good place to release instance specific
resources used by the plug-in or to do other house keeping. For example,
the bank service may need to force the account objects it created to finish
any running transactions and flush their information to the permanent store
before shutting down as shown as shown in Example 302.

Extending the BusPlugin Class

Example 302: busShutdown()

// Java

import com.iona.jbus.*;

import com.iona.jbus.servants.*;

import com.iona.schemas.references.Reference;

import javax.xml.namespace.QName;
import java.net.*;
import java.io.*;

public class BankPlugIn extends BusPlugIn
{
private BankImpl bank;
public void busShutdown () throws BusException
{
Account acctProxy;
Reference ref;
Bus bus = getBus ()
Iterator it = bank.accounts.values () .interator();

while (it.hasNext ())

{
ref = (Reference)it.next();
acctProxy = bus.createClient (ref, Account.class);
acctProxy.closeDown () ;

513

CHAPTER 20 | Developing Plug-Ins

Implementing the BusPluginFactory Interface

Overview The BusPlugInFactory interface provides the methods used by the Artix bus
to manage a plug-in implementation. It has two methods you must
implement:
® createBusPlugIn() creates instances of the plug-in and its associated

resources and associate them with particular bus instances.
® destroyBusPlugIn () destorys plug-in instances and frees the resources
associated with them.

createBusPlugin() createBusPlugIn () is called by a bus instance when it loads a plug-in. In
most instances, createBusPlugIn () will simply instaniate an instance of
your plug-in object and return it. However, you can use this method to
initialize any global resources used by the plug-in.

Example 303 shows the signature for createBusPlugIn().
Example 303: createBusPlugin()

public BusPlugIn createBusPlugln (Bus bus) throws BusException;

destroyBusPluglin() destroyBusPlugIn () is called by a bus instance when it is shutting down
and releasing its resources. In most instances, this method does not need to
do anything. However, if you created any global resources for your plug-in
this would be a convinient place to free them.

Example 304 shows the signature for destroyBusPlugIn ().
Example 304: destroyBusPlugin()

public void destroyBusPlugIn (BusPlugIn plugin);

Example For example, the BusPlugInFactory implementation for a plug-in
BankPlugTn would look similar to Example 305.

514

Implementing the BusPlugInFactory Interface

Example 305: BankPluginFactory

// Java
import com.iona.jbus.*;

public class BankPlugInFactory implements BusPlugInFactory

{
public BusPlugIn createBusPlugIn(Bus bus) throws BusException
{

return new BankPlugIn (bus);

public void destroyBusPlugIn (BusPlugIn plugin)
throws BusException

{

}

515

CHAPTER 20 | Developing Plug-Ins

Configuring Artix to Load a Plug-in

Overview

Specifying a plug-in’s factory class

516

All Java based plug-in have some common configuration entries that are
required so that the bus can load the plug-in. These entries include:

® specifying the plug-in's factory class.
® loading the Java plug-in loader.
® adding the plug-in to the list of Java plug-ins to load.

In addition, there is an optional variable that specifies the classloader
environment, if any, used by the plug-in.

To load a plug-in the bus needs to know which factory class is used to
create instances of the plug-in's implementation. You specify the name of a
plug-in's factory class using the variable plugins:plugin name:classname.
It takes a single string that is the name of the plug-in’s factory class. You
can place this variable in either an application specific scope or in the global
scope. It is often better to place it in the global scope so that all applications
in the configuration domain have access to the information.

Note: The name you give the plug-in in this variable must match the
name you intend to use when listing the plug-in in the list of Java plug-ins
to be loaded.

For example, if you created a plug-in to filter junk messages and called its
factory class JunkPluginFactory, you would add the configuration line
shown in Example 306 to the global scope of your Artix configuration file.
When configuring an application to load this plug-in, you would refer to it as
junk.

Example 306: Configuring a Plug-in Factory Class

plugins:junk:classname="JunkPluginFactory";

Loading the Java plug-in loader

Listing the Java plug-ins to be
loaded by an application

Specifying a classloading
environment

Configuring Artix to Load a Plug-in

Java plug-ins require that a special Java plug-in loader be used by the bus.
You need to add this plug-in loader to the orb plugins list of any
application that uses Java plug-ins as shown in Example 307.

Example 307: The Java Plug-in Loader in orb_plugins

orb plugins=[..., "java"];

Unlike C++ plug-ins which are listed in an application’s orb plugins list,
Artix Java plug-ins are listed in a separate configuration variable called
java_plugins. java plugins is a list of comma separated plug-in names.
The plug-in names used in the list must correspond to the name given the
plug-in when specifying its factory class. For example to load the junk
message plug-in configured in Example 306, you would use the
configuration fragment shown in Example 308.

Example 308: Loading a Java Plug-in

orb plugins=["java"];
java plugins=["junk"];

If you want your plug-in to use an Artix classloader environment, you specify
the classloading environment using the plugins:plugin name:CE Name
variable. The CE name is specified as a unique string.

In addition, you need to specify the location of the XML file describing the
classloader environment. This is done with the ce:ce name:FileName
variable. ce name is the CE name used when configuring the plug-in.

Example 309 shows a configuration fragment for loading the junk message
plug-in using a classloader environment.

Example 309: Using a Classloader Environment

plugins:junk:CE Name="junk ce";
ce:junk ce:FileName="\artix ces\junk ce.xml";

For more information on using classloaders see “Using Artix Classloader
Environments” on page 613.

517

CHAPTER 20 | Developing Plug-Ins

518

CHAPTER 21

Writing Handlers

Using the JAX-RPC Handler mechanism, developers can
access and manipulate messages as they pass along the
delivery chain.

In this chapter This chapter discusses the following topics:
Handlers: An Introduction page 520
Developing Request-Level Handlers page 523
Developing Message-Level Handlers page 526
Implementing a Handler as a Plug-in page 529
Handling Errors and Exceptions page 537
Configuring Endpoints to Use Handlers page 545

519

CHAPTER 21 | Writing Handlers

Handlers: An Introduction

Overview When a service proxy invokes an operation on a service, the operations
parameters are passed to the Artix bus where they are built into a message
and placed on the wire. When the message is received by the service, the
Artix bus reads the message from the wire, reconstructs the message, and
then passes the operation parameters to the application code responsible for
implementing the operation. When the service is finished processing the
request, the reply message undergoes a similar chain of events on its trip to
the server. This is shown in Figure 14.

L]
Q CLIENT SERVER |.U

2

> > » 3 »» \—b
zZmgE || = =g | | ==
Binding Transport Transport Binding

(Application Code E}M)

(Application Code

Figure 14: The Life of a Message

You can write handlers that work with a message at each stop along its
path. For example, if you wanted to compress a message before sending it
on the wire, you could write a handler that takes the message data from the

520

Handler levels

Proxy

Handlers: An Introduction

binding and compresses it before the transport puts the message on the
wire. Likewise, you could write a handler that takes the message from the
transport and decompresses it before passing it on to the binding.

The JAX-RPC specification outlines a mechanism for developers to write
custom handlers using the Handler interface. Using the handler
mechanism, you can intercept and work with message data at four points
along the request message’s life cycle and at four points along the reply
message’s life cycle. Both requests and replies can be handled at the client
request level, the client message level, the server message level, and the
server request level. These levels are shown in Figure 15.

Request-Level Message-Level
Handlers Handlers
— ¢ 9 [K— T K k— _
ZE =g k
Binding Transport
13 € 2| K+ A K K— =
= c
= ZI g
— <& P — P& P 5
]
Transport Message-Level Binding Request-Level
Handlers Handlers

Figure 15: Handler Levels

On the client side of an application, you can write handlers to process
requests as they pass from the application to the binding and to process
responses as they passes from the binding to the application. These are
called request-level handlers. You can also write handlers to process

521

CHAPTER 21 | Writing Handlers

Implementing a handler

Generic implementations

522

requests as they pass from the binding to the transport and to process
responses as they pass from the transport to the binding. These are called
message-level handlers.

On the server side of an application the direction of the message flow is
reversed, but the levels stay the same. For example, a request-level handler
on the server side would work with requests as they pass from the binding
to the application and a message-level handler would process with
responses as they passed from the binding to the transport.

Handlers can be implemented as standalone Java classes or as Artix
plug-ins. Implementing your handlers as a standalone Java class is the
simplest method. This method only requires you to implement the JAX-RPC
Handler interface. Artix will load all of the handlers based on the endpoint’s
configuration scope and register them with the bus.

Implementing your handlers as plug-ins requires that you implement more
classes, but it also provides you some added control over your
implementation. In addition to the JAX-RPC nandler interface, this method
requires that you implement the BusP1ugInFactory interface, extend the
BusPlugIn class, implement the HandlerFactory interface, and register the
handler factory with the bus. For information about implementing handlers
in a plug-in see “Implementing a Handler as a Plug-in” on page 529.

Your sandler implementation contains the logic for the handler you are
writing. The Handler interface has two methods that process messages:
handleRequest () and handleResponse (). handleRequest () iS invoked
when a request message is passing through the handler. handleresponse ()
in invoked when a response message is passing through the handler. These
methods are invoked in both request level handlers and message level
handlers.

To simplify implementing a handler, Artix supplies a GenericHandler class
and a GenericHandlerFactory class that you can extend to write your
handlers. These generic classes provide idle implementations of all of the
methods for the interfaces. By extending them you only to provide
implementations for the methods needed by your handler.

Developing Request-Level Handlers

Developing Request-Level Handlers

Overview

The handler implementation

Request-level handlers process messages as they pass between your
application code and the binding that formats the message that is being sent
on the wire. On the client side, request messages are processed immediately
after the application invokes a remote method on its service proxy and
before the binding formats the message. Responses are processed after the
message is decoded by the binding and before the data is returned to the
client application code. On the server side, requests are processed as they
pass from the binding to the service implementation. Replies are processed
as they pass from the server implementation to the binding.

Currently, handlers at the request level can access the following pieces of

data:

® The name of the invoked operation

® The parameters of the invoked operation

® The application’s message context

® Any Artix-specific context information that is set using the
IonaMessageContext

® The message's SOAP headers

® The message’s security properties

For example, your application could have a client side handler that added a

custom SOAP header to its requests for authorization purposes. The server

could then use a handler to read the SOAP header and perform the
authorization before the request gets to the service implementation.

The easiest way to develop your handler logic is to extend the

com. iona.jbus.jaxrpc.handlers.GenericHandler class supplied with
Artix. The GenericHandler class provides implementations for all of the
methods in the JAX-RPC Handler interface, so all you need to do is override
the methods your handler requires. You can also implement the JAX-RPC
Handler interface if you desire.

The Handler interface has two methods that are used to process messages:
handleRequest () and handleResponse (). handleRequest () Processes
request messages and handleResponse () processes reply messages. The

523

CHAPTER 21 | Writing Handlers

Example

524

bus will call these methods at the appropriate place in the messaging chain
to process the message data. It is important to remember where in the
messaging chain the handler is called. For example, a handler that reads a
SOAP header from a request in the server will not work if it is placed in the
client request chain.

The signatures for handleRequest () and handleResponse () are shown in
Example 310. Both methods have a MessageContext as an argument. For
information on using the message contexts see “Using Message Contexts”
on page 329. The return value should reflect the state of the message
processing. If the message is successfully processed return true. If not,
return false.

Example 310: handleRequest() and handleResponse()

boolean handleRequest (MessageContext context);
boolean handleResponse (MessageContext context) ;

At the request-level, your handler can access the generic message context or
the Artix specific context. Because the properties of the generic message
context do not effect the message as it passes through the messaging chain,
it is more likely that your handler will use the Artix specific message context.
Properties set into the Artix specific message context at the request-level will
be propagated down the message chain and effect how the message is
formatted and transmitted. For example, security properties and SOAP
headers manipulated in a client request-level handler will change the
properties that are sent to the server. On the return side of the messaging
chain, such as in a server request handler or a client response handler, the
request-level is the level in which the SOAP header and security properties
are made available.

Example 311 shows the code for a client request-level handler that sets a
SOAP header on the request and reads the SOAP header returned with the
response. The object used to hold the SOAP header is of the generated type
SOAPHeaderInfo. This type is generated from a user supplied XMLSchema
document that describes the contents of the SOAP header. For more
information see “Sending Message Headers” on page 355.

Developing Request-Level Handlers

Example 311: Client Request Level Handler

// Java

import com.iona.jbus.IonaMessageContext;
import com.iona.jbus.ContextException;
com.iona.jbus.jaxrpc.handlers.GenericHandler;

import javax.xml.namespace.QName;

public class emoClientRequestHandler extends GenericHandler

{
public boolean handleRequest (MessageContext context)

{
IonaMessageContext mycontext = (IonaMessageContext)context;
QName principalCtxName = new QName ("", "SOAPHeaderInfo");
SOAPHeaderInfo requestInfo = new SOAPHeaderInfo () ;
requestInfo.setOriginator ("Client") ;
requestInfo.setMessage ("Hello from Client!"™);
mycontext.setRequestContext (principalCtxName, requestInfo) ;

return true;

public boolean handleResponse (MessageContext context)

{
IonaMessageContext mycontext = (IonaMessageContext)context;
QName ctxName = new QName ("", "SOAPHeaderInfo");
SOAPHeaderInfo replyInfo =
(SOAPHeaderInfo)mycontext.getReplyContext (ctxName) ;

System.out.println ("Header from Server: ");
System.out.println ("Originator - " +
replyInfo.getOriginator());

System.out.println ("Message - " + replyInfo.getMessage()) ;

return true;

525

CHAPTER 21 | Writing Handlers

Developing Message-Level Handlers

Overview Message-level handlers process messages as they pass between the binding
and the transport. On the client side, request messages are processed after
the binding formats the message and before the transport writes it to the
wire. Responses are processed after the message is read off of the wire and
before it is decoded by the binding. On the server side, requests are
processed after the message is read off of the wire and before it is decoded
by the binding. Replies are processed as they pass from the binding to the
transport.

Handlers at the message level have access to the raw message stream that
is being written out the wire. This data has been formatted into the
appropriate message type specified by the binding. Message-level handlers
can also access the applications message context. For example, your
application could have a client-side handler that compresses the message
data to enhance network performance. The server could then use a handler
to decompress the message data before it is sent to the binding for
decoding.

The handler implementation The easiest way to develop your handler logic is to extend the
GenericHandler class supplied with Artix. The GenericHandler class
provides implementations for all of the methods in the JAX-RPC Handler
interface, so all you need to do is override the methods your handler
requires. You can also implement the JAX-RPC nandler interface if you
desire.

The Handler interface has two methods that are used to process messages:
handleRequest () and handleResponse (). handleRequest () Processes
request messages and handleResponse () processes reply messages. The
bus will call these methods at the appropriate place in the messaging chain
to process the message data. It is important to remember where in the
messaging chain the handler is called. For example, a handler that
compresses a request in the client will cause unpredictable results if it is
placed in the server message chain.

The signatures for handleRequest () and handleResponse () are shown in
Example 312. Both methods have a MessageContext as an argument. For
information on using the message contexts see “Using Message Contexts”

526

Example

Developing Message-Level Handlers

on page 329. The return value should reflect the state of the message
processing. If the message is successfully processed return true. If not,
return false.

Example 312: handleRequest() and handleResponse()

boolean handleRequest (MessageContext context);
boolean handleResponse (MessageContext context);

At the message level, your handler can access both the generic message
context and a special streamMessageContext that provides access to the
raw message data that is to be written onto the wire. For more information
on using the stream message context, see “Manipulating Messages as a
Binary Stream” on page 558. In addition, if you are using the SOAP binding,
you can access the SOAP message context. For more information on
working with the SOAP message context, see “Working with SOAP
Messages” on page 555. Because the properties of the generic message
context do not effect the message as it passes through the messaging chain,
it is more likely that your message-level handlers will use either the raw
message data or the SOAP message context.

Example 313 shows the code for a client message-level handler that adds a
string onto the end of a SOAP request before sending it to the server and
removes an additional string from the end of the SOAP response before
passing the SOAP message to the binding. The complete code for this demo
can be found in the custom interceptor demo included in your Artix
installation.

Example 313: Client Message-Level Handler
// Java
import com.iona.jbus.*;

com.iona.jbus.jaxrpc.handlers.GenericHandler;

import java.io.*;
import javax.xml.namespace.QName;

527

CHAPTER 21 | Writing Handlers

528

Example 313: Client Message-Level Handler

public class firstHandClientMessageHandler extends

GenericHandler

public boolean handleRequest (MessageContext context)

{

StreamMessageContext smc = (StreamMessageContext)context;

InputStream ins = smc.getInputStream() ;

ins = new TestInputStream(ins,
TestInputStream.CLIENT TO SERVER) ;

smc.setInputStream(ins) ;

return true;

public boolean handleResponse (MessageContext context)

{

StreamMessageContext smc = (StreamMessageContext)context;
InputStream ins = smc.getInputStream() ;

ins.mark (1000) ;

byte bytes[] = new
byte[TestInputStream.SERVER TO CLIENT.length];

ins.read (bytes) ;

String s = new String (bytes);

System.out.println("Got string: "+s);

return true;

Implementing a Handler as a Plug-

in

Implementing a Handler as a Plug-in

Overview

In this section

If you choose to implement your handlers as Artix plug-in, you need to do

the following:

® Implement the Artix plug-in interfaces as described in “Developing
Plug-Ins” on page 507.

® Implement the HandlerFactory interface for the handlers loaded by

the plug-in.

This section discusses the following topics:

Creating the Handler Plug-in page 530

Creating a Handler Factory page 533

529

CHAPTER 21 | Writing Handlers

Creating the Handler Plug-in

Overview

Procedure

The plug-in

530

Artix handlers can be hosted in a plug-in. Creating a plug-in for your
handlers follows the same pattern as creating any other Java plug-in. The
difference is that in BusPlugin.busInit () you register the handler factories
used to instantiate your handlers.

To create a plug-in for your handlers do the following:

1. Implement a BusPluginFactory to load the plug-in that implements
your handler. See “Implementing the BusPluginFactory Interface” on
page 514.

2. Extend BusPlugin to load your handler using the bus’
registerHandlerFactory () method.

If you wish to have a single plug-in load multiple handlers, make multiple
calls to registerHandlerFactory().

The implementation of busInit () in your plug-in registers the handler
factories for the handlers used by the application. Handler factory
registration is done using the bus’ registerHandlerFactory() method. The
signature for registerHandlerFactory () is shown in Example 314.

Example 314: registerHandlerFactory()
void registerHandlerFactory (HandlerFactory factory) ;

registerHandlerFactory () takes an instance of the handler factory for your
handler. Subsequent calls t0 registerHandlerFactory () add to the list of
registered handler factories. So, if you need to register multiple handler
factories you simply call registerHandlerFactory () with an instance of
each handler factory to be registered.

Implementing a Handler as a Plug-in

Example Example 315 shows a the plug-in code for a handler.
Example 315: Handler Plug-In
//Java
1 import com.iona.jbus.*;

public class HandlerPlugIn extends BusPlugIn
{

2 public HandlerPlugin (Bus bus)
{
super (bus) ;
}
3 public void busInit () throws BusException
{
try
{
4 Bus bus = getBus () ;
5 bus.registerHandlerFactory (new firstHandFactory()) ;

bus.registerHandlerFactory (new secondHandFactory2());
}
catch (Exception ex)
{

throw new BusException (ex) ;

6 public void busShutdown () throws BusException
{
}

The code in Example 315 does the following:

1. Imports the Artix bus APlIs.

Implements a constructor for the plug-in class.
Implements busInit () to register the handler factory.
Gets a handle for the plug-in’s bus.

ok~ wi

Registers the handlers’ factories with the bus using

registerHandlerFactory ().

531

CHAPTER 21 | Writing Handlers

6. Implements busshutdown ().

532

Implementing a Handler as a Plug-in

Creating a Handler Factory

Overview

The GenericHandlerFactory

Implementing the methods

When you implement your handler in a plug-in, the bus calls the methods

provided by the HandlerFactory you register in the handler plug-in. You

implement a HandlerFactory for each set of handlers you are deploying in a

plug-in. The HandlerFactory interface has four methods:

® getClientRequestHandler () creates a client-side, request-level
handler.

® getServerRequestHandler () Creates a server-side, request-level
handler.

® getClientMessageHandler () creates a client-side, message-level
handler.

® getServerMessageHandler () Creates a server-side, message-level
handler.

If all four methods are implemented, one HandlerFactory can instantiate
one of each type of handler.

The easiest way to develop your handler factory is to extend the
GenericHandlerFactory included with Artix. The GenericHandlerFactory
implements all of the methods in the HandlerFactory interface. You only
need to override the methods needed for your handlers and provide a
constructor for your handler factory.

When using the GenericHandlerFactory as a base class, you only need to

implement the methods that relate to your application. For example if your
application only uses a server-side, message-level handler, you only need to
implement getserverMessageHandler (). If, however, your application also
uses a client-side. message-level handler, you will also need to implement

getClientMessgeHandler ().

533

CHAPTER 21 | Writing Handlers

The signatures for the HandlerFactory methods are shown in Example 316.
They take a single HandlerInfo object and return an instance of the class
HandlerInfo.

Example 316: Handler Factory Methods

public HandlerInfo getClientRequestHandler (HandlerInfo info)
public HandlerInfo getServerRequestHandler (HandlerInfo info)
public HandlerInfo getClientMessageHandler (HandlerInfo info)
public HandlerInfo getServerMessageHandler (HandlerInfo info)

The factory methods need to supply the c1ass that implements your
handler. For example if your client-side handler is implemented by a class
called firstHandRequestHandler, you need to set the returned
HandlerInfo’s Handerclass field to firstHandClientRequestHandler.class
by invoking setHandlerClass () on the HandlerInfo object.

Example Example 317 shows code for implementing a handler factory.
Example 317: Handler Factory For Request Level Handlers

//Java

import com.iona.jbus.*;

import com.iona.jbus.servants.*;
import javax.xml.namespace.QName;

import java.net.*;
import java.io.*;

import javax.xml.rpc.handler.*;

1 public class firstHandFactory extends GenericHandlerFactory

{
2 public fristHandFactory ()

{

super (new String("firstHand")) ;

3 public HandlerInfo getClientRequestHandler (HandlerInfo info)

{
4 info.setHandlerClass (firstHandClientRequestHandler.class) ;
return info;

534

HandlerInfo

Implementing a Handler as a Plug-in

Example 317: Handler Factory For Request Level Handlers

public HandlerInfo getServerRequestHandler (HandlerInfo)
{

info.setHandlerClass (secondHandServerRequestHandler.class) ;
return info;
}
}

The code in Example 317 does the following:

1. Extends GenericHandlerFactory.

2. Implements a constructor for the handler factory. The string set is the
string used by the bus to reference the handler factory. It is also the
value which is used in the configuration file to refer to the handler
factory.

3. Overrides getClientRequestHandler ().

4. Sets the Handlerclass property to the class of the handler that will
process client requests.

The HandlerInfo passed into the method contains the following
information:

® The current bus
® The QName of the service for which the handler is being created
® The name of the port for which the handler is being created

To retrieve this information you first need to get the configuration map from
the HandlerInfo object as shown in Example 318.

Example 318: Getting a Configuration Map from a HandlerInfo
import java.util.Map;

Map config = info.getHandlerConfig();

535

CHAPTER 21 | Writing Handlers

536

To access the properties stored in the configuration map use the Artix
handler constants shown in Table 33.

Table 33: Configuration Map Properties

Property Description

HandlerContants.BUS Returns the current bus.

HandlerConstants.SERVICE NAME Returns the QName of the service
for which the handler is being
created.

HandlerConstants.PORT NAME Returns the name of the port
through which messages for this
handler will pass.

Example 319 shows code for getting all of the properties from a
HandlerInfo Object.

Example 319: Getting Configuration Information From a Handlerlnfo

import java.util.Map;
import com.iona.jbus.*;
import com.iona.jbus.HandlerConstants;

Map config = info.getHandlerConfig();

Bus bus = (Bus)config.get (HandlerConstants.BUS) ;

OName serv = (QName)config.get (HandlerConstants.SERVICE NAME) ;
String port = (String)config.get (HandlerConstants.PORT NAME) ;

Handling Errors and Exceptions

Handling Errors and Exceptions

Overview

In this section

Java handlers have three ways of generating errors when processing a
message:

® throw a runtime exception.

® throw a user-exception that is wrapped in a runtime exception.

® populate the message context with an error message and return false.
The behavior of the handler depends on if the message being processed is a

request or a response. The resulting behavior also depends on if the handler
is implemented on the client-side or the server-side of an application.

This section discusses the following topics:

Handling Errors when Processing Requests page 538
Handling Errors when Processing Responses page 540
Throwing User Faults page 541
Processing Fault Messages page 543

537

CHAPTER 21 | Writing Handlers

Handling Errors when Processing Requests

Overview

Client-side

Server-side

538

As requests are passed down the messaging chain, they are processed by
each handler's handlerRequest () method. Regardless of where on the
messaging chain a request is, an error will prevent the request from making
it to the service implementation.

If an exception is thrown at any point in the client’s request processing
chain, it is returned immediately to the client. All handlers in the messaging
chain are skipped and no message processing is done.

If handleRequest () returns false, the handler is responsible for populating
the response buffer with an appropriate fault message. Artix then invokes
the handler’s response chain starting from the handler that created the fault
condition. The fault message will be processed as if it were a normal
response and each handler's handleResponse () method will process it.

Error processing on the server-side is more complicated. The behavior of the
service depends on where in the messaging chain the error condition is
encountered.

At the message-level, throwing an exception will cause the messaging chain
to stop processing the message. The bus will the create a fault message
containing the exception, place it in the response buffer, and return the fault
to the client. The response message is passed back down the handler chain
and precessed by each message handler's handleFault () method.

If a message-level request handler returns false, you must ensure that an
appropriate response message is created and placed in the response buffer.
A return of false from a message-level request handler will cause the bus to
stop processing the request and return the message in the response buffer to
the client. The response handler sequence is followed starting from the
handler that created the error condition. The messages are processed
through the handleresponse () method.

At the request-level, throwing an exception will cause the messaging chain
to stop processing the message. The bus will then send the response back
down the message chain starting from the handler that generated the

Handling Errors and Exceptions

exception. However, instead of calling handleResponse () on each handler,
the bus will call handleFault (). In this instance, the servant will never be
invoked.

Returning false will cause the messaging chain to stop processing the
request and forward the request straight to the servant for processing.

539

CHAPTER 21 | Writing Handlers

Handling Errors when Processing Responses

Overview

Server-side

540

As responses are passed down the messaging chain, they are processed by
each handler's handleResponse () method. At this point in the
request/response chain, it is expected that the response buffer is already
populated. However, the contents of the request buffer is not fixed.

On the server-side, request-level handlers can safely throw runtime
exceptions. The exception will stop the further processing of handlers along
the server's message chain. The exception will be immediately sent to the
client as a fault message. As the fault message is passed back down the
message handler chain it is processed by each handler's handleFault ()
method.

At the message-level, throwing an exception will cause the messaging chain
to stop processing the message. The bus will the create a fault message
containing the exception, place it in the response buffer, and return the fault
to the client. The response message is passed back down the handler chain
and precessed by each message handler's handleFault () method.

Server-side response handlers that return false, at both the request-level
and the message-level, have no effect on message processing. Regardless of
the return value from handleResponse (), the server will continue to send
the message along the messaging chain. The message will pass through all
of the handlers in the chain.

Handling Errors and Exceptions

Throwing User Faults

Overview In cases where you want to pass a user defined exception back to the client
application, you can wrap the user defined exception in a runtime exception
and send it back to the client. Artix will catch the runtime exception and
inspect its contents. If the runtime exception contains a user defined fault,
then Artix passes the user defined fault up the messaging chain. If not, Artix
just passes the runtime exception up the messaging chain.

Procedure To throw a user defined fault from a message handler do the following:

1. Ensure that your service definition, in the service's contract, includes a
fault message. See “Describing User-defined Exceptions in an Artix
Contract” on page 226.

2. Create an instance of the user defined fault you want to throw. See
“Working with User-defined Exceptions in Artix Applications” on
page 231.

3. Throw a RuntimeException using the created instance of your user
defined fault as the parameter to the constructor.

When the Artix client transport layer receives the exception it will discover
that it contains a user defined exception, remove it from the
RuntimeException wrapper, and pass the user defined exception up the
messaging chain. As the message is passed up the messaging chain it will
be processed by the handleFault () method of the message handlers.

Example If you had a service that could return a user defined fault called pied its
contract would contain a fragment similar to Example 320.

Example 320: Service Definition with a Fault

<message name="pied">
<part name="flavor" type="xsd:string" />
</message>

541

CHAPTER 21 | Writing Handlers

Example 320: Service Definition with a Fault

<portType name="brainService">
<operation name="tonight">
<input message="tns:marketData" name="plan" />
<output message="tns:worldDominiation" name="goal" />
<fault message="tns:pied" name="pinky" />
</operation>
</portType>

The contract fragment in Example 320 would cause Artix to generate a Java
class called pied that extended the class Exception. Pied would contain a
single member variable called fiavor. Because pied extends Exception, it
inherits from Throwable which means it can be used as an argument the
RuntimeException object’s constructor.

If you wanted to throw a pied exception from a message handler, you would
use code similar to Example 321.

Example 321: Throwing a User Defined Exception in a MessageHandler

public class cageBreak extends GenericHandler
{
public boolean handleRequest (MessageContext context)

{

Pied userFault = new Pied("bananaCream") ;
throw RemoteException (userFault) ;

return true;

542

Handling Errors and Exceptions

Processing Fault Messages

Overview

Implementing the fault handler

Reading the contents of the
exception

Fault messages are processed by the handlerault () method of a handler. It
is implemented in the same manner as the other message handler
functions.

Like handleRequest () and handleResponse (), handleFault () receives a
generic MessageContext as a parameter. Its signature is shown in
Example 322.

Example 322: handleFault()

public boolean handleFault (MessageContext context)

The information available from the MessageContext depends on where in
the messaging chain the handler is placed. At the request-level, the fault
handler can access any information in the generic MessageContext and any
information in the 1oNAMessageContext. For information on using the
IONAMessageContext, See “Using Message Contexts” on page 329.

At the message-level, the fault handler can access the soaPMessageContext,
if the service uses a SOAP payload format, or the streamMessageContext.
For information on using the soaPMessageContext or the
StreamMessageContext, see “Manipulating Messages in a Handler” on
page 549.

Server-side request-level message handlers can access the contents of an
exception thrown by the servant in handleFault () in much the same way
that they access the information about an operation in handleResponse ().
You call the getProperties () method on the context using
ContextConstants.SERVER RESPONSE_EXCEPTION as the property name. The
property is returned as a generic Java object that needs to be cast into either
the actual class of the specific exception or one of the generic subclasses
used to create the exception.

543

CHAPTER 21 | Writing Handlers

Example 323 shows code for getting an exception in handleFault ().

Example 323: Accessing an Exception

handleFault (MessageContext context)

{

Throwable ex = (Throwable)context.getProperty (ContextConstants.SERVER RESPONSE EXCEPTION) ;

//process the exception

Return values

Throwing exceptions

544

handleFault () returns a boolean value. If handleFault () returns true, the
message continues along the massaging chain as normal. If handleFault ()
returns false, the bus stops processing the message and returns it directly
to the client. In the case where handleFault () returns false, it is the
handler's responsibility to ensure that the response message contains an
appropriate message.

If handleFault () throws an exception, the exception is returned directly to
the client. If the exception is thrown while in the server-side messaging
chain, the client-side messaging chain will process the returned fault
message normally. If the exception is thrown while in the client-side
messaging chain, the exception is immediately returned to the user code.

Configuring Endpoints to Use Handlers

Configuring Endpoints to Use Handlers

Overview

Specifying the implementation
class

Configuring an endpoint to load and use handlers is a two step process.
First, you must specify the class that implements and associate it with a
name. Second, you must add the handler to one of the endpoint’s
interceptor chains.

How you specify the implementation class for your handler depends on how
you implemented your handler.

Handlers implemented as a Java class

If you implemented your handler as a plain Java class, you specify the
implementation class using a configuration variable of the form:

handler: handlerName:classname="handlerClassname" ;

The value you supply for handlername is the name by which the handler will
be referred to in the interceptor chains. The value you supply for
handlercClassname is the fully qualified class name of your handler's
implementation. For example, if you wrote a handler for scrubbing messages
in a class called com. squeaky.ScrubberHandler YOU would add the
configuration variable shown in Example 324 to your endpoint’s
configuration.

Example 324: Handler Class Specification
handler:scrubber:classname="com. squeaky.ScrubberHandler";

When adding the handler to the endpoint’s interceptor chain you would refer
to the handler using scrubber.
Handlers implemented as a Plug-in

If you implemented your handler as an Artix plug-in, you specify its
implementation using the method described in “Configuring Artix to Load a
Plug-in” on page 516.

545

CHAPTER 21 | Writing Handlers

Adding handlers to an interceptor
chain

546

Before your applications can use handlers, you must configure them to load
the handlers at the appropriate points in the message chain. This is done by
adding the following configuration variables into the application’s
configuration scope:

binding:artix:client_message_interceptor_list is an ordered list of handler
names specifying the message-level handlers for a client.

binding:artix:client_request_interceptor_list is an ordered list of handler
names specifying the request-level handlers for a client.

binding:artix:server_message_interceptor_list is an ordered list of handler
names specifying the message-level handlers for a server.

binding:artix:server_request_interceptor_list is an ordered list of handler
names specifying the request-level handlers for a server.

The handlers are placed in the list in the order they will be invoked on the
message as it passes through the messaging chain. For example, if the
server request interceptor list was specified as "Freeze+Dry", @ message
would be passed into the handler Freeze as it left the binding. Once Freeze
processed the message, it would be passed into pry for more processing.
pry would then pass the message along to the application code.

Example 326 shows the configuration for an application that uses both
client and server handlers.

Example 325: Configuration with Handlers

java interceptors

client

{
binding:artix:client request interceptor list =
"firstHand+secondHand";
binding:artix:client message interceptor list =
"firstHand+secondHand";

}i

Configuring Endpoints to Use Handlers

Example 325: Configuration with Handlers

server

{
binding:artix:server request interceptor list=
"secondHand+firstHand";
binding:artix:server message interceptor list =
"secondHand+firstHand";
bi

}i

More information For more information on configuring Artix applications see Configuring and
Deploying Artix Solutions.

Example 326 shows the configuration for an application that uses both
client and server handlers.

Example 326: Configuration with Handlers

java interceptors

{
plugins:first hand:classname="FirstHandlerPlugInFactory";
plugins:second hand:classname="SecondhandlerPlugInFactory";

java plugins = ["first handler", "second hand"];
orb plugins = ["xmlfile log stream","java"];
client

{
binding:artix:client request interceptor list
"firstHand+secondHand";
binding:artix:client message interceptor list =
"firstHand+secondHand";

override config settings for client here

}i

server

{
binding:artix:server request interceptor list=
"secondHand+firstHand";
binding:artix:server message interceptor list =
"secondHand+firstHand";

override config settings for server here

1
}i

547

../deploy/index.htm
../deploy/index.htm

CHAPTER 21 | Writing Handlers

548

Overview

In this chapter

CHAPTER 22

Manipulating
Messages In a
Handler

One function of a handler may be to modify messages as they
pass between the application level code and the wire.

Handlers often need to have a fine grained access to the messages they
process. Artix provides access to the message details in the handlers in
several ways. Request-level handlers can access the parameters passed as
part of an operation invocation. Message-level handlers can access the
message information as raw stream data using the streamMessageContext.
In addition, if your application uses a SOAP binding, your message-level
handlers can also access message data using the JAXM SOAP APIs through
the soaPMessageContext.

This chapter discusses the following topics:

Working with Operation Parameters page 550
Working with SOAP Messages page 555
Manipulating Messages as a Binary Stream page 558

549

CHAPTER 22 | Manipulating Messages in a Handler

Working with Operation Parameters

Overview

Getting the operation name

550

Request-level handlers in Artix have access to the name of the operation
which generated the message and the message parts, which represent the
operation parameters, of both the request message and the response
message. You can use this information to determine how a message is to be
processed. You can also change the values of the message parts as they are
passed along the message chain.

You get the name of the operation from which the message being processed
originated through the generic message context. It is stored in a property
accessed using the Artix constant ContextConstants.OPERATION NAME. The
returned value is a string containing the operation name as listed in the
Artix contract.

WARNING: Changing this value can produce unpredictable results.

For example, if you have a contract with the interface defined in
Example 327 the operation name returned from the context would be

forward.
Example 327: Example Port Type

<message name="travelRequest'">
<part name="date" type="xsd:string"/>
</message>
<message name="travelResponse'">
<part name="arrived" type="xsd:boolean"/>
</message>
<portType name="tardis">
<operation name="forward">
<input message="travelRequest" name="request"/>
<output message="travelResponse" name="outcome"/>
</operation>
</portType>

Message part context properties

Working with Operation Parameters

Example 328 shows the code for getting the operation name from the
message context.

Example 328: Getting the Operation Name
import com.iona.jbus.ContextConstants;

public class ServerRequestHandler extends GenericHandler
{
public boolean handleRequest (MessageContext context)
{
String opName = (String)
context.getProperty (ContextConstants.OPERATION NAME) ;

Artix uses four separate context properties for storing message parts:

® CLIENT REQUEST VALUES holds the message parts for an outbound
request on the client-side of the messaging chain.

® SERVER REQUEST VALUES holds the message parts for an inbound
request on the server-side of the messaging chain.

® SERVER RESPONSE VALUES holds the message parts for an outbound
response on the server-side.

® CLIENT RESPONSE VALUES holds the message parts for an inbound
response on the client-side.

The values are stored as an array of generic Java object objects that can be

cast back into their proper types for manipulation. The returned array

contains values for all parts in the message that are set. If a message part is
nillable, it will not be included in the returned array if was not populated.

In addition to storing message parts, Artix also stores a list of each parts

Java class. This list is an array of class objects and it contains information

on all of the possible parts in a message. There are also four context

properties for storing the message parts’ class list:

® CLIENT REQUEST CLASSES holds the class information for the message
parts of an outbound request on the client-side of the messaging chain.

® SERVER REQUEST CLASSES holds the class information for the message
parts of an inbound request on the server-side of the messaging chain.

551

CHAPTER 22 | Manipulating Messages in a Handler

Accessing the message parts

Working with the message parts

Working with message part class
information

552

® SERVER RESPONSE CLASSES holds the class information for the message
parts of an outbound response on the server-side.

® CLIENT RESPONSE CLASSES holds the class information for the message
parts of an inbound response on the client-side.

You can access the parts of a message using the getProperties () method
on the generic message context in request-level handlers. While, you can
pass in any of the message part property identifiers into getProperties (),
only the message parts appropriate to the position in the message chain
have valid values. For example, if your handler is a server-side response
handler, only the properties SERVER RESPONSE CLASSES and

SERVER RESPONSE_VALUES have data. If you try to access any of the other
message part properties, getProperties () will return NULL.

Artix returns the message parts as an array of Java cbject objects when you
request the message part values. The returned array contains all of the
non-nill message parts. If a message part is nillable and not set, there will
not be a place holder in the returned array of objects.

To inspect or change any of the message parts, you can cast it to the
appropriate type and work with it as you would normally. All changes made
to the value of a message part are immediately reflected in the message.

The only restriction to manipulating message parts in Java handlers is that
you cannot add or remove a message parts. This also means that you
cannot change the value of a nill message part.

Artix returns message part class information as an array of class objects.
The returned array has an entry for every part specified in the WSDL
description of the message. If a message part is nillable and not set by the
operation, the message part’s class information will still be returned.

You should not change any of the values in the returned array. It is only
stored for information purposes. For instance you could compare the list of
parts to the list of classes to determine if a message part is not set.

Working with Operation Parameters

Example If you were developing an ordering system for kayak paddles for a
manufacturer in Europe that takes orders from retailers in the United States,
you may need to convert the paddle lengths from inches to centimeters. The
interface for such an ordering system is shown in Example 329.

Example 329: Paddle Ordering Interface

<message name="order'">
<part name="amt" type="xsd:int" />
<part name="length" type="xsd:int" />
</message>
<message name="bill">
<part name="amtDue" type="xsd:float" />
</message>
<portType name="supplyPaddles">
<operation name="orderPaddles">
<input message="tns:order" name="order" />
<output message="tns:bill" name="bill" />
</operation>
</portType>

Example 330 shows s server-side request handler that converts the 1ength
part of an incoming request from inches to centimeters.

Example 330: Changing the Value of Message Parts

import javax.xml.rpc.handler.GenericHandler;
import javax.xml.rpc.handler.MessageContext;
import javax.xml.namespace.QName;

import com.iona.jbus.ContextConstants;

public class ServerRequestHandler extends GenericHandler

{
public boolean handleRequest (MessageContext context)
{
1 Object[] parts = (Object[])
context.getProperty (ContextConstants.SERVER REQUEST VALUES) ;

2 int length = (int)parts[1];
3 parts[l] = length * 2.54;
4 return true;

553

CHAPTER 22 | Manipulating Messages in a Handler

554

The code in Example 330 does the following:

1.
2.

Gets the server request message parts from the message context.

Gets the 1ength part of the message. As shown in Example 329 on
page 553, length is the second part in the request.

Converts the 1ength part from inches to centimeters.

Returns true to continue message processing.

Working with SOAP Messages

Working with SOAP Messages

Overview

SOAPMessageContext

Message-level handlers in Artix can, if they are used by application with a
SOAP binding, access and modify the SOAP message being sent between
the participating services. Using the soapPMessageContext class, developers
can get the message being passed as a javax.xml.soap.SOAPMessage Object
and manipulate the message using the standard Java APlIs.

SOAPMessageContext extends the generic MessageContext class that is
passed into all message handlers. It is only available in message-level
handlers for applications that have a SOAP binding. If your application is not
using a SOAP binding and you attempt to use the soarPMessageContext you
will get an exception.

SOAPMessageContext has two methods that allow you to retrieve and modify
the contents of the SOAP message being processed by a handler. They are
described in Table 34.

Table 34: SOAPMessageContext Methods

Signature Description

SOAPMessage getMessage () Returns the soapPMessage
contained in the context.

void setMessage (SOAPMessage message) | Sets the soaPMessage
contained in the context to
the message specified.

555

CHAPTER 22 | Manipulating Messages in a Handler

SOAPMessage Once you have the soaPMessageContext, you can use it to manipulate the
SOAP message using the soaPMessage APIs. The soaPMessage
implementation in Artix conforms to the SOAP with Attachments API for
Java (SAA)J 1.2 specification. Using this API, you can access all parts of the
SOAP message elements. These are listed in Table 35.

Table 35: SOAPMessage Elements

Element Description

SOAPPart Contains routing and identification
information for the message. All
SOAPMessages must have a valid
SOAPPart.

SOAPEnvelope Contained inside of the soappart.
By default, this object contains an
empty soaPHeader and an empty

SOAPBody.

SOAPBody Contains the data passed in the
SOAP message. All data must be
XML data.

SOAPHeader An optional element of the SOAP

message that contains XML data.
This element provides a container
for additional information such as
security information.

AttachmentPart Optional elements of a SOAP
message that can contain binary
data such as images or word
processing documents.

For more information on the soarMessage APIls see the SAAJ 1.2
specification or the publicly available J2EE APl documentation.

556

http://java.sun.com/webservices/saaj/index.jsp
http://java.sun.com/webservices/saaj/index.jsp

Working with SOAP Messages

Example Example 331 shows an example of using the soaPMessageContext to add
an attachment to a SOAP message.

Example 331: Using the SOAPContext

//Java
boolean handleRequest (MessageContext context)

{

SOAPMessageContext SOAPcontext = (SOAPMessageContext)context;

SOAPMessage message = SOAPcontext.getMessage () ;

Java.awt.Image image = getPicture();

AttachmentPart imagePart = message.createAttachmentPart (image,
"img/gif") ;

message.addAttachmentPart (imagePart) ;

message.saveChanges () ;

SOAPcontext.setMessage (message) ;

The code in Example 331 does the following:

1.

N o o &

Gets the soapMessageContext by casting the passed in

MessageContext.
Gets the soapMessage stored in the context.
Gets the image to store in the SOAP message.

Note: You are left to implement the getPicture () method.

Creates a new AttachmentPart to store the image.

Adds the new attachmentPart to the message.

Updates the message’s data.

Sets the modified message back into the soaPMessageContext.

557

CHAPTER 22 | Manipulating Messages in a Handler

Manipulating Messages as a Binary Stream

Overview

Getting the
StreamMessageContext

Getting message streams

558

While the soapMessageContext provides a more convenient means of
accessing the contents of a message, it only works when the service is using
a SOAP payload format. If your service does not use a SOAP payload format
or you cannot be sure what payload format your service is going to use, you
can access the contents of messages using the streamMessageContext.

The streamMessageContext returns the contents of a message as either a
Java InputStream Or a Java outputStream. Using these binary streams, you
can then manipulate the contents of the message as needed. It is important
to remember, however, that the service receiving the message can accept
the alterations made to the message.

To get a streamMessageContext you cast the MessageContext passed into
the handler method as shown in Example 332.

Example 332: Getting a StreamMessageContext

// Java
boolean handleResponse (MessageContext context)
{
StreamMessageContext myCtx = (StreamMessageContext)context;

The streamMessageContext has methods for getting and setting the input
and output streams used by the transport as shown in Example 333. While
StreamMessageContext provides methods for getting the output stream, you
should always work with the input stream provided. Artix will ensure that
data from the input stream is the data that gets propagated through the
message chain.

Example 333: StreamMessageContext

package com.iona.jbus;

Manipulating Messages as a Binary Stream

Example 333: StreamMessageContext

import javax.xml.rpc.handler.MessageContext;
import java.io.InputStream;
import java.io.OutputStream;

public interface StreamMessageContext extends MessageContext
{
public static final String INPUT STREAM PROPERTY =
"StreamMessageContext.InputStream";
public static final String OUTPUT STREAM PROPERTY =
"StreamMessageContext.OutputStream";

public InputStream getInputStream();

public void setInputStream(InputStream ins) ;
public OutputStream getOutputStream() ;

public void setOutputStream (OutputStream out);

Example Example 334 shows code for adding a string to the end of a message.
Example 334: Using StreamMessageContext

class TestInputStream extends InputStream

{
InputStream in;
ByteArrayInputStream bin;

TestInputStream(InputStream i2, byte bytes[])
{
in = i2;
bin = new ByteArrayInputStream (bytes);

559

CHAPTER 22 | Manipulating Messages in a Handler

Example 334: Using StreamMessageContext

public int read() throws IOException
{
if (bin != null)
{
int 1 = bin.read();
if (1 == -1) bin = null;
else return i;

return in.read();

}

boolean handleResponse (MessageContext context)

{
String message = "San Dimas High School Football Rules!";

byte bytes[] = message.getBytes();

StreamMessageContext smc = (StreamMessageContext)context;
InputStream ins = smc.getInputStream() ;

ins = new TestInputStream(ins, bytes);
smc.setInputStream(ins) ;

560

In this chapter

CHAPTER 23

Developing
Custom Artix
Transports

Artix provides a number of standard transport plug-ins.
However, your applications my use a custom transport that is
not provided. Using the Artix plug-in mechanism, developing
custom transports in Java is a straightforward procedure.

This chapter discusses the following topics:

Developing a Transport: The Big Picture page 562
Making a Schema for the Transport Attributes page 564
Developing and Registering the Transport Factory page 568
Developing the Client Transport page 577
Developing the Server Transport page 585
Using your Custom Transport page 602

561

CHAPTER 23 | Developing Custom Artix Transports

Developing a Transport: The Big Picture

Overview

What does a transport do?

The transport WSDL definition

Procedure

562

All of the transports used by Artix are implemented as plug-ins that are
loaded based on cues from an application’s Artix contract. The
implementation of transports in plug-ins makes it easy to develop custom
Artix transports. This is useful in situations where you have applications that
use a homegrown transport.

Artix transports are responsible for reading data from and writing data to an
Artix endpoint. A transport first establishes a connection with the target
endpoints and then waits to perform work. When reading data from the
wire, a transport plug-in reads the raw binary data, decodes any transport
specific header information, and passes the message to the binding as a
binary buffer. When writing data to the wire, a transport plug-in receives a
formatted message from the binding as a binary buffer, adds any transport
specific headers, and sends the binary data to the target endpoint.

Every transport requires some piece of information from the user before it
can connect two endpoints. In the simplest case, the only information
needed is the address where messages are sent and received. More complex
transports may require more information such as persistence and security
settings. In all cases, this information is supplied in an application’s Artix
contract. Transport configuration is supplied inside the WSDL port element
that defines an endpoint.

For each Transport used by Artix there is a corresponding XMLSchema
document describing the WSDL extension element that defines the transport
attributes. When designing a custom transport, you will also need to define
the transport attributes in an XMLSchema document.

To develop a custom Artix transport you need to do the following:

1. Make an XMLSchema document defining the attributes needed to
define an endpoint for your transport.

2. Extend the TransportFactory class.

Implement an Artix plug-in that registers your transport factory.

Developing a Transport: The Big Picture

Implement the clientTransport interface as shown in “Developing the
Client Transport” on page 577.
Implement the serverTransport interface as shown in “Developing the
Server Transport” on page 585.

563

CHAPTER 23 | Developing Custom Artix Transports

Making a Schema for the Transport Attributes

Overview

Transport namespace

564

Like most parts of Artix, transport endpoints are defined by an application’s
contract. The transports, other than SOAP/HTTP, are defined using an
XMLSchema document that defines an extension to WSDL. When you
create a custom transport you must also define the WSDL extensions for
defining an endpoint for the newly developed transport. The XMLSchema
document defining your transport’s attributes will also be specify the
namespace identifying your transport so that Artix can load it dynamically.

The namespace you assign to a transport is important for two reasons. First
it allows you to validate your endpoint definition against the XMLSchema
you develop to define its WSDL extensions. Second, and more important, it
informs Artix to load your transport at runtime. When Artix parses an
application’s contract it decides what transport and binding plug-ins to load
based on the namespaces used in the contract’s port elements and their
corresponding xmlns entries in the contract’s definition element.

For example, when using the Artix 1IOP tunnel transport you include
xmlns:iiop="http://schemas.iona.com/transports/iiop tunnel" in the
contract’s definition element. When defining the endpoint you use the
service element shown in Example 335.

Example 335: Endpoint Definition

<service name="IIOPservice'">
<port name="IIOPport" binding="tns:IIOPbinding">
<iiop:address location="file:///objref.ior" />
<iiop:policy persistent="true" />
</port>
</service>

When parsing the port element, Artix would resolve the iiop tag to the
namespace specified in the definition element and then know to load the
I1OP tunnel transport plug-in. For more information on how to specify the
configuration for a transport see, “Using your Custom Transport” on

page 602.

Defining the transport attributes

Making a Schema for the Transport Attributes

When writing the XMLSchema for your transport’s attributes you specify the
transport’'s namespace as the target namespace. This is done using the
targetNamespace attribute of the XMLSchema document’s schema element,
as shown in Example 336.

Example 336: Specifying the Transport’s Namespace

<xs:schema
targetNamespace="http://widgetVendor.com/transport/socket"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:sock="http://widgetVendor.com/transport/socket"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
elementFormDefault="cqualified"
attributeFormDefault="unqualified">

When defining an endpoint that uses the transport defined with the
statement in Example 336, your contract needs to include
xmlns:sock="http://widgetVendor.com/trasnport/socket" in its
definition element. The port element defining the endpoint’s attributes
would contain elements prefixed sock to specify that they used the custom
transport.

Transport attributes are defined as WSDL extensibility elements according to

the WSDL 1.1 specification. To properly define your transport’s attributes as

WSDL extensions your XMLSchema definition must conform to the following

rules:

1. It must import the WSDL 1.1 XMLSchema document defined in the
namespace http://schemas.xmlsoap.org/wsdl/.

2. All the elements that define attributes to be listed in the Artix contract
must be of a type that extends the abstract
wsdl:tExtensibilityElement type.

Beyond these two restrictions your transport’s attributes can be as complex

or as simple as needed to fully define an endpoint. For example, the [IOP

tunnel transport has a single required element to specify the endpoint’s
address. However, the MQ transport has two elements each of which can
take a number of attributes to define an endpoint.

565

CHAPTER 23 | Developing Custom Artix Transports

Example Example 337 shows an example of an XMLSchema document for a
transport that uses a single element, sock:address, to define an endpoint.

Example 337: Sample Transport XMLSchema

<xsd:schema

targetNamespace="http://widgetVendor.com/transport/socket"

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

xmlns:sock="http://widgetVendor.com/transport/socket"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xsd:import namespace="http://schemas.xmlsoap.org/wsdl/"/>

<xsd:complexType name="addressType">

<xsd:complexContent>
<xsd:extension base="wsdl:tExtensibilityElement'">
<xsd:attribute name="host" type="xsd:string"
use="required">
<xsd:attribute name="port" type="xsd:string"
use="required">
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:element name="address" type="sock:addressType"/>
</xsd:schema>

Example 337 does the following:

1. Defines the target namespace for the transport’s attributes.

2. Imports the WSDL XMLSchema definition.

3. Defines a complex type, addressType, that extends
wsdl:tExtensibilityElement and has one required attribute,
location.

4. Defines the element address.

When you wanted to define an endpoint for the transport defined in

Example 337 you would include

xmlns:sock="http://widgetVendor.com/transport/socket" in the

contract’s definition element and a service element similar to
Example 338.

566

Making a Schema for the Transport Attributes

Example 338: Socket Endpoint Definition

<service name="widgetSocketService">
<port name="widgetSocketPort> binding="tns:widgetSOAPbinding">
<sock:address host="localhost" port="8090" />
</port>
</service>

567

CHAPTER 23 | Developing Custom Artix Transports

Developing and Registering the Transport

Factory

Overview

In this section

568

Transports are created and managed by the bus, so each transport must
have a transport factory. You create a transport factory by extending
TransportFactory. The transport factory is responsible for creating any
resources needed by the transport and setting the threading model used by
the transport.

Transports are loaded by the Artix bus using the plug-in mechanism. So to
use a transport you must write a plug-in that instantiates a transport factory
for your transport. The plug-in must also register the transport factory with
the bus. For a detailed discussion of implementing a plug-in see “Developing
Plug-Ins” on page 507.

This section discusses the following topics:

Creating a Transport Factory page 569
Transport Policies page 572
Registering and Unregistering a Transport Factory page 575

Developing and Registering the Transport Factory

Creating a Transport Factory

Overview Transports are managed by the bus using a transport factory. The transport
factory allows the bus to create transport instances, to initialize the
transport with the desired policies, and to eventually shutdown the
transport. You create a transport factory for your transport by extending the
abstract com.iona.jbus.TransportFactory class.

TransportFactory methods TransportFactory has six methods that must be implemented. These are

explained in Table 36.

Table 36: Method for Transport Factory

Method

Function

ClientTransport createClientTransport ()

This method is responsible for instantiating
an instance of your clientTransport
implementation. In addition, you can
initialize any resources needed by your client
transport.

void destroyClientTransport (ClientTransport transport)

This method is responsible for cleaning up
any resources used by your
ClientTransport implementation.

ThreadingModel getClientThreadingModel ()

This method is responsible for specifying the
threading model used by your client
transport. For details about the available
threading models see “Transport threading
models” on page 572.

ServerTransport createServerTransport ()

This method is responsible for instantiating
an instance of your serverTransport
implementation. In addition, you can
initialize any resources needed by your
server transport.

void destroyServerTransport (ServerTransport transport)

This method is responsible for cleaning up
any resources used by your
ServerTransportinuﬂernentaﬁon.

569

CHAPTER 23 | Developing Custom Artix Transports

Table 36: Method for Transport Factory

Method Function

ServerTransportPolicies getServerTransportPolicies () This method is responsible for specifying the
threading model used by your server
transport, who supplies threads to the
transport, and if the transport can support
concurrent requests. For details about the
available threading models see “Transport
Policies” on page 572.

Example Example 339 shows a transport factory for a custom transport.
Example 339: SocketTransportFactory

import com.iona.jbus.*;

public class SocketTransportFactory extends TransportFactory

{

private final ServerTransportPolicies serverPolicies = new DemoServerTransportPolicies();

public ClientTransport createClientTransport ()

{

return new SocketClientTransport();

public void destroyClientTransport (ClientTransport transport)
{
}

public ThreadingModel getClientThreadingModel ()

{
return ThreadingModel .MULTI THREADED;

}

public ServerTransport createServerTransport ()

{

return new SocketServerTransport();

public void destroyServerTransport (ServerTransport transport)
{
}

570

Developing and Registering the Transport Factory

Example 339: SocketTransportFactory

public ServerTransportPolicies getServerTransportPolicies ()

{

}

return serverPolicies;

private class DemoServerTransportPolicies implements ServerTransportPolicies

{

public void setThreadingResourcesPolicy (ServerTransportThreadingResourcesPolicy policy)
{
}

public ServerTransportThreadingResourcesPolicy getThreadingResourcesPolicy ()
{

return ServerTransportThreadingResourcesPolicy.ARTIX DRIVEN;
}

public void setMessagingPortThreadingPolicy (ThreadingModel policy)
{
}

public ThreadingModel getMessagingPortThreadingPolicy ()
{

return ThreadingModel.MULTI_ THREADED;
}

public void setRequiresConcurrentDispatchPolicy(Boolean requiresConcurrentDispatch)
{
}

public Boolean getRequiresConcurrentDispatchPolicy ()

{

return Boolean.TRUE;

571

CHAPTER 23 | Developing Custom Artix Transports

Transport Policies

Overview Both client and server transports have policies that are used to control how
the bus manages the transport and how the transport handles messages.
Client transports have only one policy. The policy controls its threading
model. This policy is set in the transport factory’s
getClientThreadingModel () method.

Server transports on the other hand, have three policies that need to be set.
One policy, the threading policy uses the same values as the client
transport. The other policies determine who controls the threads used by the
transport, if the transport is able to optimize its calls to the messaging
chain, and if the transport requires all calls to be handled synchronously or
asynchronously.

Transport threading models Artix transports can use one of the three threading models listed in
Table 37.

Table 37: Transport Threading Models

Threading Model Behavior
MULTI_INSTNACE A new instance of the transport will be created for
each thread that uses this particular type of
transport.
MULTI_THREADED One instance of the transport is created by the bus

and all threads that use this particular type of
transport use the same instance. When writing
transports with this threading model, you are
responsible for ensuring that the code is thread
safe.

SINGLE THREADED One instance of the transport is created and only
one thread can access the instance.

572

Server transport policies

Message port threading policy

Threading resource policy

Developing and Registering the Transport Factory

You establish the server transport’s policies in the transport factory’s
getServerTransportPolicies () method. getServerTransportPolicies ()
returns an instance of the com.iona.jbus.ServerTransportPolicies
interface. As shown in Example 339, you need to implement this interface
for a custom transport.

ServerTransportPolicies has getter and setter methods for each of the
server transport policies. You only need to provide implementaitons for the
getter methods of the interface. For each policy, the value returned in the
getter method is the value that the bus will use to set-up the transport. So
the transport in Example 339 has the following policy settings:

® Message port threading policy iS MULTI THREADED.

® Threading resource policy iS ARTIX DRIVEN.

® Requires concurrent dispatch policy is true.

The message port threading policy determines the threading model used by
the server transport. It is set in
ServerTransportPolicies.getMessagePortThreadingPolicy (). It takes the
same values as the client transport threading model. For more information
see, “Transport threading models” on page 572.

The threading resource policy determines from where the threads used by
the server transport are provided. It is set in
ServerTransportPolicies.getThreadingResourcePolicy (). Server
transports can either use threads provided by the bus from an Artix
managed thread pool, it can directly access the bus’ work queue thread, or
it can manage its own thread pool.

573

CHAPTER 23 | Developing Custom Artix Transports

Requires concurrent dispatch
policy

574

Artix includes a static class called
com. iona.jbus.ServerTransportThreadingResourcesPolicy that contains
the values for the threading resource policy. Table 38 explains these values.

Table 38: Threading Resource Policy Values

Policy Value Description

ARTIX DRIVEN Artix provides the transport with threads for
processing requests. When using this setting, you
may need to implement the run () method of the
ServerTransport Class depending on the setting
of the message port threading policy.

USES_WORKQUEUE Artix provides the transport with one of its work
queues. The work queue will then process the
incoming requests asynchronously.

TRANSPORT DRIVEN | The transport is responsible for providing its own
thread pool. It is also fully responsible for
processing all incoming requests and ensuring that
responses are returned to the client.

The requires concurrent dispatch policy specifies if the transport can handle
concurrent requests. The setting is used by Artix to determine what
optimizations can be made when processing requests. It is set using

ServerTransportPolicies.getRequiresConcurrentDsipatchPolicy ().

Setting the requires concurrent dispatch policy to true informs Artix that
multiple threads can call the transport’s dispatch () method at one time.
Setting it to fa1se will inform Artix that the transport can process only one
dispatch () call at a time.

Developing and Registering the Transport Factory

Registering and Unregistering a Transport Factory

Register the transport factory

Unregister the transport factory

Example

You must register the transport factory for your transport with the bus before
it can be used. You register the transport factory in the businit () method of
the plug-in that loads your transport. The method for registering a transport
factory with the bus is bus.registerTransportFactory ().
registerTransportFactory () takes two arguments. The first is the
namespace under which the transport will be registered. The second is an
instance of the transport’s transport factory.

When your transport is no longer needed, it should be unregistered by the
transport plug-in’s busshutdown () method. You unregister a transport using
the bus.deregisterTransportFactory (). deregisterTransportFactory ()
takes the namespace of the transport to be unregistered as its only
argument.

Example 340 shows a transport plug-in that registers and unregisters a
transport factory with the bus.

Example 340: Transport Plug-in

import com.iona.jbus.*;
import com.iona.jbus.servants.*;
import javax.xml.namespace.QName;

import java.net.*;
import java.io.*;

public class DemoTransportPlugIn extends BusPlugIn
{
public DemoTransportPlugIn (Bus bus)

{
super (bus) ;

}

575

CHAPTER 23 | Developing Custom Artix Transports

Example 340: Transport Plug-in

public void busInit () throws BusException

{

TransportFactory factory = new SocketTransportFactory();
getBus () .registerTransportFactory (

"http://widgetVendor.com/transport/socket",
factory) ;

public void busShutdown () throws BusException

{
getBus () .deregisterTransportFactory (
"http://widgetVendor.com/transport/socket") ;

For more information on plug-in development see “Developing Plug-Ins” on
page 507.

576

Developing the Client Transport

Developing the Client Transport

Overview The client transport is invoked by client proxies. It is responsible for writing
requests to a server and for passing the response, if one is expected, back to
the proxy’s binding. Requests are received from the binding, or the last
request-level handler if any exists, as a stream whose contents are placed
on the wire for transmission. Responses are read from the wire into a stream
that is passed back up through the messaging chain.

You create a client transport by implementing the
com. iona.jbus.ClientTransport interface. clientTransport has six
methods that need to be implemented. describes them.

Table 39: ClientTransport Methods

Method Description

initialize() Parses the Artix contract to get the initial
configuration for the endpoint and initializes any
resources needed by the client transport.

connect () Establishes the connection between the transport
and the physical hardware responsible for
carrying the message.

disconnect () Disables the connection and releases any system
resources used by the connection.

getOutputStream () Creates an output stream to which outgoing data
written.
invoke () Writes information out to the network and waits

for a response from the server.

invokeOneway () Performs similar duties to invoke () but it is
called when the operation is defined as a oneway
operation in the endpoints contract. It writes the
request out to the network, but does not wait for
a response.

577

CHAPTER 23 | Developing Custom Artix Transports

Initializing a client transport

578

The initialize () method of the client transport is responsible for
initializing any resources needed by the transport and for determining the
transports initial settings. The signature for initialize () is shown in
Example 341.

Example 341: initialize()

void initialize (String wsdlPath, QName serviceName,
String wsdlPortName)
throws BusException;

It takes three parameters: wsd1path is the absolute path to the Artix contract
containing the transport details to be used in configuring the connection.
serviceName is the oName of the service containing the definition for the
endpoint. wsdlPortName is the name of the port defining the details of the
endpoint.

The transport details of an endpoint are specified using a port element in an
application’s Artix contract and your client transport will need to parse the
contract to get the information defined in this <port> element. The elements
in which the transport details are placed should correspond to the elements
defined in the previous step. You can parse the Artix contract for these
elements using any XML parsing API at your disposal.

For example, the custom transport demo shipped with Artix creates a DOM
for the Artix contract and parses the DOM using standard Java APls. The
demo parses the contract in following steps:

1. Find the service element with the service name specified by

serviceName.
Find the port element specified by wsd1PortName.
Get the address element from the port.

Get the value for the port attribute.

ok~ wb

Get the value for the nost attribute.

Your transport will also need to perform steps one and two to get the port
element defining the specifics for the endpoint. However, the rest of the
parsing will be determined by the structure of the elements you defined to
contain the description of an endpoint using your transport.

Developing the Client Transport

Example 342 shows the initialize () method for the custom transport
demo.

Example 342: /nitialization Method for Custom Transport

public void initialize (String wsdlPath, OName serviceName,
String wsdlPortName) throws BusException

try

{
DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance () ;
factory.setNamespaceAware (true) ;
DocumentBuilder builder = factory.newDocumentBuilder () ;
File file = new File (new URI (wsdlPath)) ;
Document wsdl = builder.parse(file);
NodeList nodes =

wsdl.getElementsByTagNameNS ("http://schemas.xmlsoap.org/wsdl/
", "service");

Element serviceEl = null;

for(int 1 = 0; i < nodes.getlLength(); ++1i)
{
serviceEl = (Element)nodes.item(i);
String name = serviceEl.getAttribute ("name");
if (serviceName.getLocalPart () .equals (name))
{

break;

579

CHAPTER 23 | Developing Custom Artix Transports

580

Example 342: Initialization Method for Custom Transport

}

nodes =
serviceEl.getElementsByTagNameNS ("http://schemas.xmlsoap.org/
wsdl/", "port");

Element portEl = null;

for(int i = 0; i < nodes.getLength(); ++i)

{
portEl = (Element)nodes.item(i);
String name = portEl.getAttribute ("name");
if (wsdlPortName.equals (name))

{

break;

nodes =
portEl.getElementsByTagNameNS ("http://schemas.iona.com/transp
orts/socket", "address");

Element addresskEl = (Element)nodes.item(0) ;
String port = addressEl.getAttribute ("port") ;
// m_portnum is defined elsewhere in this class.

m portnum = (new Integer (port)) .intValue();

// m_host is defined elsewhere in this class.
m _host = addressEl.getAttribute ("host");

catch (Exception ex)

{

throw new BusException (ex) ;

The code in Example 342 does the following:

1.

2.
3.
4

Loads the application’s contract into the DOM.
Finds the correct service element.
Finds the correct port element.

Finds the address element that defines the connection information for
a port using the custom transport.

Sets the transport’s port number to the value set in the port attribute.

Making and breaking connections
in a transport

Developing the Client Transport

6. Sets the transport’s hostname to the value set in the nhost attribute.

Client transport connections are made when the bus invokes the transport’s
connect () method. Its signature is shown in Example 343. connect () is
called immediately after initialize () and is only called once per transport
instance.

Example 343: connect()
void connect () throws BusException

Client transport connections are broken when the bus invokes the
transport’s disconnect () method. Its signature is shown in Example 344.
disconnect () is called just before the bus destroys the resources used by
the transport’s plug-in.

Example 344: disconnect()

void disconnect () throws BusException

Example 345 shows code for making and breaking a socket connection.
Example 345: Making and Breaking a Socket Connection

public void connect () throws BusException
{
try
{
// m_socket is defined elsewhere in this class.
mySocket SocketChannel.open () ;
mySocket .connect (new InetSocketAddress (m host, m portnum)) ;
mySocket.finishConnect () ;
}
catch (IOException ioex)
{
throw new BusException (ioex) ;

}

581

CHAPTER 23 | Developing Custom Artix Transports

Getting an output stream

582

Example 345: Making and Breaking a Socket Connection

public void disconnect () throws BusException
{
try
{
mySocket.close() ;
}
catch (IOException ioex)
{
throw new BusException (ioex) ;

}

When a client proxy invokes an operation, the bus passes the request
message down the messaging chain until it reaches the client transport. At
this point, Artix needs a Java outputStream to use for writing the request
out to the wire. The client transport’s getoutputStream() method is
responsible for instantiating the output stream to which the request is
written. So, when creating your transport you will need to create the
appropriate type of stream for your transport. For example, the custom
transport demo creates socket streams to read and write data.

getOutputStream (), shown in Example 346, is called imediately before the
bus calls invoke () Or invokeOneway ().Once getoutputStream() returns,
the bus writes the request message into the returned output stream and
then calls the proper invocation method on the transport.

Example 346: getOutputStream()

OutputStream getOutputStream (MessageContext context)
throws TransportException;

Invoking an operation

Developing the Client Transport

Example 347 shows the getoutputStream() implementation in custom
transport demo.

Example 347: Custom Transport Demo getOutputStream()

private static final String CLIENT TRANSPORT CONTEXT KEY =
DemoClientTransport.class.getName () + ".SOCKET";

public OutputStream getOutputStream (MessageContext context)
throws TransportException
{
try {
Socket socket = new Socket (m host, m portnum);
context.setProperty (CLIENT TRANSPORT CONTEXT KEY, socket);
return socket.getOutputStream() ;
} catch (IOException ioex) {
throw new TransportException (ioex) ;

After writing the request, the bus calls either the client transport’s invoke ()
method or the client transport’s invokeoneway () method depending upon
how the operation is defined in the application’s contract.

The bus calls invoke () when the operation definition in the application’s
contract has both an input message and an output message. If the operation
is defined as a oneway operation, meaning that it only has an input
message, then the bus calls invokeOneway ().

Both operations receive the outputstream to which the bus wrote the
request and the MessageContext object associated with the invocation.
Depending on the type of output stream used, invoke() and invokeOneway()
may need to push the request out to the wire. For example, a transport the
Uses ByteArrayOutputStream output streams will need to push the data to
the wire. However, if the transport uses a socket output stream, like the
custom transport demo, the data is pushed to the wire as soon as it is
written into the output stream.

Note: For information on accessing information in a message context, see
“Using Message Contexts” on page 329.

583

CHAPTER 23 | Developing Custom Artix Transports

584

The difference between the operations is that invoke () waits for a response
to be returned and passes the response back the bus as a Java
InputBuffer. invokeOneway () Simply returns after pushing the message to
the wire.

The signatures for invoke () and invokeOneway () are shown in
Example 348.

Example 348: Invoking Operations From the Transport

InputStream invoke (OutputStream request, MessageContext context)
throws TransportException
void invokeOneway (OutputStream request, MessageContext context)
throws TransportException

Example 349 shows he implementation of invoke () used in the custom
transport demo. The code gets the socket created for the invocation in
getoutputStream(). It then gets the response from the socket as an
InputStream.

Example 349: invoke() for a Socket Transport

public InputStream invoke (OutputStream request,
MessageContext context)
throws TransportException
{
try {

final Socket socket =
(Socket) context.getProperty (CLIENT TRANSPORT CONTEXT KEY);
socket . shutdownOutput () ;

//close the socket when done
return new FilterInputStream(socket.getInputStream()) {
public void close() throws IOException {
super.close() ;
socket.close() ;
}
}i
} catch (IOException ioex) {
throw new TransportException (ioex) ;

Developing the Server Transport

Developing the Server Transport

Overview The server transport is responsible for reading requests from the wire,
passing it to the server binding, and then writing the replies back to the wire
for delivery. Requests are read from the wire using input streams that are
passed on to any request-level handlers and then to the binding. Replies are
returned to the transport as an output stream that is then placed back on
the wire.

You create a server transport by implementing the
com. iona.jbus.ServerTransport interface. serverTransport has six
methods as shown in Table 40.

Table 40: ServerTransport Methods

Method Description

activate () Parses the Artix contract to get the initial
configuration for the endpoint and initializes any
resources needed by the server transport. If the
transport’s message port threading policy is
MULTI INSTANCE and the transport’s threading
resource policy iS ARTIX DRIVEN, activate() IS
also responsible for request processing.

run () Reads requests off of the wire and dispatches
them to the transport callback object. The
callback object then passed the message up the
messaging chain.

getOutputsStream () Creates the output stream to which the bus
writes responses.

postDispatch () Called by the transport callback object after it
writes the response to the output stream.
Depending on the type of output stream used,
postDispacth () may have to push the response
to the wire. postbispatch () can also be used to
clean up any resources used in processing the
request.

585

CHAPTER 23 | Developing Custom Artix Transports

In this section

586

Table 40: ServerTransport Methods

Method Description
deactivate () Stops the transport listener and allows any
requests that are already in process to complete.
shutdown () Disables the connection and releases any system

resources used by the connection.

Depending on the server transport policies set for the transport, you do not
need to implement all of the methods. At a minimum, you will need to
provide implementations for activate (), getOutputStream(),

deactivate (), and shutdown ().

This section discusses the following topics:

Activating a Server Transport page 587
Processing Requests page 592
Shutting Down a Server Transport page 600

Developing the Server Transport

Activating a Server Transport

Overview

activate()

Contract parsing

The activate () method of the server transport is responsible for initializing
any resources needed by the transport and for determining the transports
initial settings. Depending on the threading policies set on the transport,
activate () may also have other responsibilities such as request processing.

The signature for activate () is shown in Example 341.
Example 350: activate()

void activate (String wsdlPath, OName service, String port,
TransportCallback callback, WorkQueue queue)
throws TransportException

activate () takes five parameters: wsd1path is the absolute path to the Artix
contract containing the transport details to be used in configuring the
connection. serviceName is the gname of the service containing the definition
for the endpoint. port is the name of the port defining the details of the
endpoint. callback is a reference to a bus managed callback object that
passes the request up the message chain and returns the output stream
containing the reply. queue is the Artix workgueue that will be used by the
transport to process requests if the threading resource policy is set to
USES_WORKQUEUE.

Note: You do not need to implement the callback object because it is
implemented and managed by the bus. However, your transport does need
to maintain a handle to the callback object to pass requests up the
message chain.

The transport details of an endpoint are specified using a port element in an
application’s Artix contract and your client transport will need to parse the
contract to get the information defined in this port element. The elements in
which the transport details are placed should correspond to the elements
defined in the previous step. You can parse the Artix contract for these
elements using any XML parsing API at your disposal.

587

CHAPTER 23 | Developing Custom Artix Transports

Threading policies and activate()

For example, the custom transport demo shipped with Artix creates a DOM
for the Artix contract and parses the DOM using standard Java APIs. The
demo parses the contract in following steps:

1. Find the service element with the service name specified by

serviceName.

Find the port element specified by wsd1lPortName.
Get the address element from the port.

Get the value for the port attribute.

S

Get the value for the nost attribute.

Your transport will also need to perform steps one and two to get the port
element defining the specifics for the endpoint. However, the rest of the
parsing will be determined by the structure of the elements you defined to
contain the description of an endpoint using your transport.

The threading policies set on the server transport will determine, to some
extent, how you code activate (). In all cases, activate () will need to
parse the contract and set-up the transport’s resources. However, the
threading policy settings determine what activate () needs to do after the
transport resources are set-up.

Table 41 shows what activate () needs to do for all combinations of
message port threading policy settings and threading resource policy
settings.

Table 41: activate() Responsibilities by Threading Policies

Message Port Thread Policy

Threading Resource Policy activate() Responsibilities

MULTI_THREADED

USES_WORKQUEUE activate () spawns a new thread

MULTI_ INSTANCE

to host the workoueue provided by

USES_WORKQUEUE the queue parameter. The new

SINGLE_THREADED

USES WORKQUEUE thread processes requests.

MULTI_ THREADED

ARTIX DRIVEN activate() can exit once the
transport’s resources are set-up.

MULTI_ INSTANCE

ARTIX DRIVEN activate () must block and
process requests from the wire.

588

Developing the Server Transport

Table 41: activate() Responsibilities by Threading Policies

Message Port Thread Policy

Threading Resource Policy

activate() Responsibilities

SINGLE THREADED

ARTIX DRIVEN

activate () can exit once the
transport’s resources are set-up.

MULTI THREADED

TRANSPORT DRIVEN

MULTI INSTANCE

TRANSPORT DRIVEN

SINGLE THREADED

TRANSPORT DRIVEN

activate () creates the threads
used by the transport to process
requests and hands control off to
them.

Notifying the bus

Example

Once the server transport is activated, the transport needs to inform the bus
that the transport is going to begin dispatching messages. The transport
callback object’s transportactivated () method notifies the bus that the
transport is active and ready to begin dispatching messages up the message
chain. transportaActivated () must be called before you begin dispatching
messages.

Example 351 shows the activate () method for the custom server transport
demo. The transport used in the custom transport demo uses the
MUTLI_THREADED message port threading policy and the ARTIX DRIVEN
threading resource policy. Therefore, it does not use the workoueue passed
into it and does not block.

Example 351: Activation Method for Custom Server Transport

// Java
import com.iona.jbus*;

public class SocketServerTransport implements ServerTransport
{

private TransportCallback theCallback;

private ServerSocket serverSocket;

public void activate (String wsdlPath, QName serviceName,

String wsdlPortName,

TransportCallback callback, WorkQueue queue)
throws TransportException

{

589

CHAPTER 23 | Developing Custom Artix Transports

Example 351: Activation Method for Custom Server Transport
1 theCallback = callback;

2 try

{
DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance () ;
factory.setNamespaceAware (true) ;
DocumentBuilder builder = factory.newDocumentBuilder () ;
File file = new File (new URI (wsdlPath)) ;
Document wsdl = builder.parse(file);

3 NodeList nodes =

wsdl .getElementsByTagNameNS ("http://schemas.xmlsocap.org/wsdl/
", "service");

Element serviceEl = null;

for(int i = 0; i < nodes.getLength(); ++i)
{
serviceEl = (Element)nodes.item(i);
String name = serviceEl.getAttribute ("name");
if (serviceName.getLocalPart () .equals (name))
{

break;

4 nodes =

serviceEl.getElementsByTagNameNS ("http://schemas.xmlsoap.org/
wsdl/", "port");

Element portEl = null;

for(int i = 0; i < nodes.getLength(); ++1i)
{
portEl = (Element)nodes.item(i);
String name = portEl.getAttribute ("name");
if (wsdlPortName.equals (name))
{

break;

590

Developing the Server Transport

Example 351: Activation Method for Custom Server Transport

nodes =
portEl.getElementsByTagNameNS ("http://schemas.iona.com/transp
orts/socket", "address"):;

Element addresskEl = (Element)nodes.item(0) ;

String port = addressEl.getAttribute ("port");
int portnum = (new Integer (port)) .intValue();

String host = addressEl.getAttribute ("host");

serverSocket = new ServerSocket (portnum, O,
InetAddress.getByName (host)) ;

theCallback.transportActivated() ;
}

catch (Exception ex)

{
throw new TransportException (ex) ;

}

The code in Example 342 does the following:

1.

o &~ Wb

L o N O

Saves a handle to the transport callback in a private data member.
Loads the application’s contract into the DOM.

Finds the correct service element.

Finds the correct port element.

Finds the address element that defines the connection information for
a port using the custom transport.

Sets the transport’s port number to the value set in the port attribute.
Sets the transport’s hostname to the value set in the host attribute.
Creates a serversocket to connect to the endpoint.

Notifies the bus that the transport is active and ready to dispatch
messages.

591

CHAPTER 23 | Developing Custom Artix Transports

Processing Requests

Overview

Dispatching messages to the
messaging chain

592

Server transport process requests by reading the data off of the wire,
dispatching the request to the transport callback object in an input stream,
and then writing the response to the wire. Which method is responsible for
reading the request from the wire and dispatching the request to the
transport callback object depends on the transport’s policy settings. For
example, in a mulit-instance transport with a thread resource policy of
ARTIX DRIVEN, reading the request and dispatching the request to the
transport callback would be handled in activate (). However, in a transport
with a thread resource policy of uses WORKQUEUE, the message reading is
done in a WorkItem Object.

The method responsible for writing the response to the wire depends on the
type of output stream used to write the response. If you use an output
stream that automatically writes the message to the wire, such as a socket
output stream or a file output stream, the request is put on the wire when
the transport callback puts the message into the output stream. However, if
your transport uses an output stream type that does not write to the wire,
such as a ByteArrayOutputStream, postDispatch () Will need to push the
response to the wire. See “Writing the response” on page 596.

Server transports use a callback mechanism to pass messages to the
messaging chain. The TransportCallback object provided to activate () is
used to dispatch requests to the messaging chain and return the responses.
The TransportCallback object has one method dispatch () that takes an
input stream containing a request message and the active MessageContext
object as input parameters. The signature for dispatch () is shown in
Example 352.

Example 352: TransportCalback.dispatch()
void dispatch (InputStream request, MessageContext ctx);

When the message chain returns the response to the transport callback
object, the transport callback object calls getoutputsStream() on the server
transport to get an output stream. The transport callback object writes the
response into the returned output stream and then calls postbispatch() on
the server transport. See “Writing the response” on page 596.

Developing the Server Transport

Reading requests with a When a transport’s threading resource policy is set to USES_WORKQUEUE, you
USES_WORKQUEUE threading implement a thread to read requests off of the wire and place them on the
resource policy WorkQueue. The requests are dispatched to the messaging chain by a

WorkItem Object that you implement.

The first step is to extend the Thread class for your transport. In the thread’s
run () method, three things need to happen.

1. Requests are read into an input stream.
2. The stream is packed into a WworkItem object.

3. The workItem is placed onto the work queue using the work queue’s
enqueue () method.

Example 353 shows a thread for a server transport with a threading
resource policy of USES_WORKQUEUE.

Example 353: Server Transport Thread

class demolListenerThread extends Thread
{
private final WorkQueue theQueue;
private final Socket theSocket;
private final TransportCallback theCallback;

public listenerThread (WorkQueue workQueue,
ServerSocket serverSocket,
TransportCallback callback)

theQueue = workQueue;
theSocket = serverSocket.accept();
theCallback = callback;

public void run()
{
while (true)
{
InputStream request = theSocket.getInoutStream() ;
WorkItem item = new demoWorkItem (request, theCallback) ;
theQueue.enqueue (item, -1);

593

CHAPTER 23 | Developing Custom Artix Transports

The second thing you need to do is implement the com. iona.jbus.WorkItem
interface for your transport. workItem has two methods: execute () and
destroy ().

execute () is called when the work queue processes this work item. In
execute (), your work item needs to dispatch the request message to the
messaging chain using the transport callback’s dispatch () method.

destroy () is called by the work queue when the work item is finished being
processed. It is is responsible for cleaning up any resources used by the
work item.

Example 354 shows a work item for a server transport.
Example 354: Transport Work Item

import com.iona.jbus.BusException;
import com.iona.jbus.WorkItem;

public class demoWorkItem implements WorkItem
{
private final TransportCallback theCallback;
private final ByteBuffer theMessage;

public demoWorkItem (InputStream message,
TransportCallback callback)

theMessage = message;
theCallback = callback;

public void execute() throws BusException
{
MessageContext context = theCallback.getCurrentContext () ;
theCallback.dispatch (requestBuf, context);
}

public void destroy() throws BusException
{
}

Reading requests with a When a transport’s threading resource policy is set to ArRT1x DRIVEN and its
ARTIX_DRIVEN threading message port threading policy is set to MULTI THREADED, run() is
resource policy responsible for pulling requests off of the wire and dispatching them to the

594

Developing the Server Transport

messaging chain. run () is called once per thread that uses the transport
and must loop for as long as the connection is open. Inside the loop, run ()
reads requests off of the wire and passes the requests up the messaging
chain using the transport callback’s dispatch () method.

When a transport’s threading resource policy is set to ArRT1x DRIVEN and its
message port threading policy is set to MULTI INSTANCE, activate () iS
responsible for pulling requests off of the wire and dispatching them to the
transport callback method. In this case, activate () must block by looping
as long as the connection is open. Inside the loop, activate () reads
requests off the wire and dispatching them to the messaging chain.

Example 355 shows the code for implementing run () for a multi-threaded
transport.

Example 355: run() for a Custom Server Transport

// Java
import iona.com.jbus.*;

public class SocketServerTransport implements ServerTransport

{

public void run() throws TransportException
{

try

{

++connectionCount;

while (!serverSocket.isClosed())

{

Socket socket;

synchronized (serverSocket)

{

if (!serverSocket.isClosed())
{

socket = serverSocket.accept();
} else

{

break;
}

MessageContext dispatchContext =
theCallback.getCurrentContext () ;

595

CHAPTER 23 | Developing Custom Artix Transports

Reading requests with a
TRANSPORT_DRIVEN threading
resource policy

Writing the response

596

Example 355: run() for a Custom Server Transport

dispatchContext.setProperty (SERVER TRANSPORT CONTEXT KEY,
socket) ;

theCallback.dispatch (socket.getInputStream (),
dispatchContext) ;
}

} catch (Exception ex)

{

throw new TransportException (ex);
}
}
}

The code in Example 355 does the following:
Loop for as long as the socket opened in activate () remain open.
Synchronizes access to the socket to ensure thread safety.
Blocks until a socket channel is accepted.
Gets the message context.
Stores the socket in the message context for later use.

o ok Wb

Dispatches the request to the transport callback object.

When the threading resource policy is set to TRANSPORT DRIVEN, your
transport is responsible for implementing its own threads for processing
messages. The implementation details would be similar to implementing a
transport with the uses_workQUEUE threading resource policy. In your
thread’s run (), you would pull messages off of the wire and dispatch them
to the messaging chain using the transport callback object. Where the
response were written to the wire would depend on the type of output
streams used and how your transport pushes data to the wire.

When the message chain returns a response to the transport callback
object, the transport callback object does the following:

1. Invokes getoutputStream() on the server transport to get an
appropriate output steam for writing the response.

2. Writes the response into the returned output stream.

Developing the Server Transport

3. Invokes postDispatch () on the server transport to allow for any post
processing that need to be done.

4. Closes the output stream.

You are responsible for providing implementations of getoutputStream()
and postDispatch () for your server transport.

getOutputStream (), as shown in Example 356, takes a message context as
a parameter and returns a Java outputStream into which the transport
callback object will write the response.

Example 356: ServerTransport.getOutputStream()

public OutputStream getOutputStream (MessageContext ctx)
throws TransportException;

Example 357 shows the implementation of getoutputStream() used in the
custom transport demo. It creates a socket output stream using a socket
stored in the request's message context. The resulting output stream
provides a direct connection to the client who made the request.

Example 357: Socket Transport Server Side getOutputStream()

public OutputStream getOutputStream (MessageContext ctx)
throws TransportException
{
try
{
Socket socket =
(Socket) ctx.getProperty (SERVER TRANSPORT CONTEXT KEY) ;
return socket.getOutputStream() ;
} catch (Exception ex)
{
throw new TransportException (ex);

}

597

CHAPTER 23 | Developing Custom Artix Transports

Using message contexts

598

postDispatch () is called by the transport callback object after the response
is written to the output stream. It is used to do any post-processing and
clean-up required after a request is fully processed. As shown in

Example 358, postDispatch () takes the outputstream containing the
response and the request’s message context.

Example 358: postDispatch()

public void postDispatch (OutputStream request,
MessageContext ctx)
throws TransportException;

shows the implementation of postbispatch () used in the custom transport
demo. Because this transport uses socket streams, postDispatch () does
not need to do anything to with the output stream. The response was
delivered when the transport callback object wrote it to the output stream.
However, if your transport uses some other mechanism for pushing the
response to the wire, postDispatch () would be the method to place that
logic.

Example 359: Custom Transport postDispatch()

public void postDispatch (OutputStream request,
MessageContext ctx)
throws TransportException
{
try
{
Socket socket =
(Socket) ctx.getProperty (SERVER TRANSPORT CONTEXT KEY) ;
socket.close() ;
} catch (Exception ex)
{
throw new TransportException (ex);

}

If your transport uses a header block to pass transport information, like the
header used by JMS, that the application code may be interested in, you
can pass this information up the messaging chain using the Artix message
context mechanism.

Developing the Server Transport

To get access to the application’s message context, you use the
getCurrentContext () method of the transport callback object.
getCurrentContext () returns a JAX-RPC MessageContext object. To pass
custom header information back to the application level, you will need to
cast the JAX-RPC message context to an TonaMessageContext object and
set the appropriate context properties. The transport callback will
automatically pass the context information up the messaging chain where
the handlers and application level code can access it.

For more information on using contexts see “Using Message Contexts” on
page 329.

599

CHAPTER 23 | Developing Custom Artix Transports

Shutting Down a Server Transport

Overview

Shutting down a transport using a
TRANSPORT_DRIVEN threading
resource policy

Notifying the bus

Example

600

When the bus shuts a servant down it calls shutdown () on the transports
used by that servant. shutdown () is responsible for closing any open
connections used by the transport and cleaning up the resources used by
the transport.

When your transport uses the TransporT DRIVEN threading resource policy,
Artix does not automatically clean up the transport’s threads. Your
shutdown () implementation must clean-up all of the threads spawned by
the transport.

When the transport has finished cleaning up its resources and is ready to be
fully shutdown, it need to notify the bus that it can no longer send or receive
messages. The transport callback’s transportShutdownComplete () method
notifies the bus when the transport is done shutting itself down and cannot
accept any more messages. Typically this is the last thing your server will do
before shutdown () exits.

Example 360 shows the code used to disconnect a socket server transport.
The code simply loops through all of the open sockets and closes them.
Once the sockets are closed the loop in connect () is broken and it will exit.

Example 360: Disconnecting a Custom Server Transport

// Java
import iona.com.jbus.*;

public class SocketServerTransport implements ServerTransport

{

Developing the Server Transport

Example 360: Disconnecting a Custom Server Transport

public void disconnect () throws Exception

{
if (--connectionCount <=0)
{
m_SSChannel.close() ;

}

m_callback.transportShutdownComplete () ;
}

601

CHAPTER 23 | Developing Custom Artix Transports

Using your Custom Transport

Overview

Adding the transport to an Artix
contract

602

To use a custom transport you need to add the appropriate entries in you
application’s contract and add some configuration to your Artix configuration
file. The entries in the application’s contract inform the bus that your
application uses the transport and describes how the endpoint is to be
established. The configuration information tells Artix how to load the plug-in
that implements the transport.

To make an application use your custom transport, you must create an
endpoint that is defined as using the custom transport in the application’s
contract. You add an endpoint description to a contract in two steps:

1. Add an XML namespace declaration to the definition element of the
contract so that the contract can include elements defined by the
schema defining your transport.

2. Add a service element and port element to describe an endpoint that
uses your transport to the contract.

Example 361 shows a fragment from a contract that uses the custom socket
transport defined in this chapter. Notice that the namespace declaration for
the socket transport,
xmlns:sock="http://widgetVendor.com/transport/socket", Uses the
target namespace from the schema definition of defining the WSDL
extensions for describing a the transport.

Example 361: Contract using a Custom Transport

<?xml version="1.0" encoding="UTF-8"7?>

<definitions name="widgetSocketVendor"
targetNamespace="http://schemas.iona.com/widgetVendor"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://schemas.iona.com/widgetVendor"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:sock="http://widgetVendor.com/transport/socket"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/socap/">

Configuring Artix to load the
transport

Using your Custom Transport

Example 361: Contract using a Custom Transport

<service name="widgetService">
<port binding="tns:widgetSOAPBinding" name="widgetPort">
<sock:address host="localhost" port="8080"/>
</port>
</service>
</definitions>

For more information on defining endpoints in an Artix contract see
Understanding Artix Contracts.

To use a custom transport plug-in, you must make three modifications to

the application’s configuration:

1. Add the Java plug-in to your application’s orb plugins list.

2. Specify the namespace for the transport plug-in in the global scope of
the Artix configuration file.

3. Specify the plug-in factory for the plug-in that implements the plug-in.

Specifying the namespace for a transport plug-in

The bus identifies which transport plug-ins to load based on the endpoints
defined in an application’s contract. To do this the bus looks through its
configuration for a namespace match and then loads the specified plug-in.
The namespaces are specified using variables pre-fixed with namespace and
have the syntax shown in Example 362.

Example 362: Specifying a Transport Namespace
namespace:xml namespace:plugin="plugin name";

xml namespace is the target namespace in the XMLSchema used to define
your transport’s attributes. plugin name is the name by which the plug-in is
configured in the Artix configuration file. For example to specify the
namespace for the socket transport implemented in this chapter you would
use a configuration entry similar to Example 363.

Example 363: Socket Transport Namespace Specification
namespace:http://widgetVendor.com/transport/socket :plugin="sock"

7

plugin:sock:classname="SocketPluginFactory";

603

../contract/index.htm

CHAPTER 23 | Developing Custom Artix Transports

For more information on configuring Artix plug-ins see “Configuring Artix
Plug-Ins” on page 605.

604

CHAPTER 24

Configuring Artix
Plug-Ins

Artix plug-ins can use the Artix runtime configuration file to
receive configuration information.

In this chapter This chapter discusses the following topics:
Understanding Artix Configuration page 606
Adding Custom Configuration for a Plug-in page 610

605

CHAPTER 24 | Configuring Artix Plug-Ins

Understanding Artix Configuration

Overview

In this section

Configuration domains

606

Artix is built upon IONA's Adaptive Runtime architecture (ART). Runtime
behaviors are established through common and application-specific
configuration settings that are applied during application startup. As a
result, the same application code may be run—and may exhibit different
capabilities—in different configuration environments.

This section discusses the following:

Configuration domains page 606
Configuration scopes page 607
Specifying configuration scopes page 608
Configuration namespaces page 608
Configuration variables page 609
Configuration data types page 609

An Artix configuration domain is a collection of configuration information in
an Artix runtime environment. This information consists of configuration
variables and their values. A default Artix configuration is provided when
Artix is installed. The default configuration file is located in:

Windows S%IT PRODUCT DIR%\artix\artix version\etc\domains\artix.c
g

UNIX $IT PRODUCT DIR/artix/artix version/etc/domains/artix.cf
9

You can also manually create new Artix configuration domains to
compartmentalize your applications. These new configuration domains can
import information from other configuration domains using a #include
statement in your configuration. This provides a convenient way of
compartmentalizing your application specific configuration from the global
Artix configuration information contained in the default domain.

Configuration scopes

Understanding Artix Configuration

An Artix configuration domain is subdivided into configuration scopes.
These are typically organized into a hierarchy of scopes, whose
fully-qualified names map directly to ORB names. By organizing
configuration variables into various scopes, you can provide different
settings for individual services, or common settings for groups of services.

Applications read their configuration information from a given scope based
on the ORB name passed into the application’s bus.init () call.
Application-specific configuration variables either override default values
assigned to common configuration variables, or establish new configuration
variables.

A configuration scope may include nested configuration scopes.
Configuration variables set within nested configuration scopes take
precedence over values set in enclosing configuration scopes.

Example 364 shows the nested configuration scope demo. In each nested
scope, orb plugins is redefined so that an application starting up in one
scope will load a different set of plug-ins from one starting in another scope.
In addition, each scope sets application-specific configuration variables.

Example 364: Demo Configuration Scope

demo
{
fml plugin
{
orb plugins = ["local log stream"];
bi
telco
{
orb plugins = ["xml log stream", "router"];
plugins:tunnel:iiop:port = "55002";
poa:MyTunnel:direct persistent = "true";
poa:MyTunnel:well known address = "plugins:tunnel";
server
{
orb plugins = ["local log stream", "iiop profile",
"giop", "iiop”, "ots"];
plugins:tunnel:poa name = "MyTunnel";

bi
}i
}

607

CHAPTER 24 | Configuring Artix Plug-Ins

Specifying configuration scopes

Configuration namespaces

Configuration variables

608

To make an Artix process run under a particular configuration scope, you
specify that scope using the -orBname parameter. Configuration scope
names are specified using the format scope. subscope.

For example, the scope for the telco server demo shown in Example 364 is
specified as demo.telco.server. During process initialization, Artix
searches for a configuration scope with the same name as the -OrRBname
parameter. To specify an -OrRBname, you use the following syntax:

<processName> [application parameters] -ORBname configScope

If a corresponding scope is not located, the process starts under the highest
level scope that matches the specified scope name. If there are no scopes
that correspond to the orename parameter, the Artix process runs under the
global scope. For example, if the nested tibrv scope does not exist, the
Artix process uses the configuration specified in the demo scope; if the demo
scope does not exist, the process runs under the default global scope.

Most configuration variables are organized within namespaces, which group
related variables. Namespaces can be nested, and are delimited by colons
(:). For example, configuration variables that control the behavior of a
plug-in begin with plugins: followed by the name of the plug-in for which
the variable is being set. For example, to specify the port on which the Artix
standalone service starts, set the following variable:

plugins:artix service:iiop:port

To set the location of the routing plug-in's contract, set the following
variable:

plugins:routing:wsdl url

Configuration data is stored in variables that are defined within each
namespace. In some instances, variables in different namespaces share the
same variable names.

Variables can also be reset several times within successive layers of a
configuration scope. Configuration variables set in narrower configuration
scopes override variable settings in wider scopes. For example, a
company.operations.orb plugins variable would override a

Configuration data types

Understanding Artix Configuration

company.orb plugins variable. Plug-ins specified at the company scope
would apply to all processes in that scope, except those processes that
belong specifically to the company.operations scope and its child scopes.

Each configuration variable has an associated data type that determines the
variable's value.

Data types can be categorized into two types:
® Primitive types
® Constructed types

Primitive types
There are three primitive types: boolean, double, and long,.

Constructed types
Artix supports two constructed types: string and configList (a sequence
of strings).

® |n an Artix configuration file, the string character set is ASCII.

The configList type is simply a sequence of string types. For
example:

orb plugins = ["local log stream", "iiop profile",
llgiop", lliiop"] ;

609

CHAPTER 24 | Configuring Artix Plug-Ins

Adding Custom Configuration for a Plug-in

Overview

Variable scoping

Variable naming

Supported variable types

610

Artix provides an API that allows you to access the Artix configuration
mechanism from with in Java plug-ins. This APl makes it easy to place any
configuration information required by a custom plug-in into the standard
Artix configuration file.

The configuration APIs search for configuration variables using fully qualified
variable names similar to the ones used in the common configuration
elements. This means that your custom variables are subject to the same
scoping rules as common configuration elements. So, variables in local
scopes override variables set in more global scopes.

For consistency, it is recommended that you make your configuration
variable names consistent with the naming scheme applied to standard Artix
configuration elements. So, the variables for your plug-ins would also use
the syntax shown in Example 365.

Example 365: Plug-in Variable Syntax
plugins:plugin name:var name=value;

plugin name is the name used to refer to the plug-in throughout the
configuration file. var_name is the name of the configuration variable and
value is the value of the variable.

The Artix configuration APIs allow you to use either string configuration
variables or list configuration variables. Example 366 shows a variable with
a string value.

Example 366: String Value

plugins:junk:junkyard="\etc\junkyard";

Getting the configuration

Reading string values

Adding Custom Configuration for a Plug-in

Example 367 shows a variable with a list value.

Example 367: List Value

plugins:junk:filters=["spam", "adult", "blacklist"];

The bus provides access to the configuration using getconfiguration ().
getConfiguration () returns a configuraiton object that provides access to
the application’s configuration.

Example 368 shows code for getting the configuration in a plug-in.
Example 368: Getting Access to Configuration Details

//Java
import com.iona.jbus.*;

public void busInit () throws BusException
{
Bus bus = getBus();

Configuration config=bus.getConfiguration/();

}

The code in Example 368 does the following:
1. Gets a reference to the plug-ins bus.
2. Gets the bus’ configuration information.

To read a configuration variable with a string value you use the
Configuration oObject’s getstring () method. The signature for
getString () is shown in Example 369. If it finds the specified variable, it
returns the value as a string. If it does not find the variable, it returns a null
string.

Example 369: getString()

String getString (String name) ;

611

CHAPTER 24 | Configuring Artix Plug-Ins

Reading list values

612

Example 370 shows the code for reading the variable
plugins.junk.junkyard

Example 370: Reading a String Value

// Java
String junkyard = config.getString ("plugins:junk:junkyard");

To read a configuration variable with a list value you use the configuration
object's getList () method. The signature for getList () is shown in
Example 369. If it finds the specified variable, it returns the entries in the
list as an array of strings. If it does not find the variable, it returns a null
array.

Example 371: getString()
String[] getlist (String name) ;

Example 370 shows the code for reading the variable
plugins.junk.filters and printing out the values.

Example 372: Reading a String Value

// Java
String[] filterList = config.getlist ("plugins:junk:filters");

for (int i = 0; 1 < filterList.length ; ++)
{

System.out ("Filter: "+filterList([i]);
}

In this chapter

CHAPTER 25

Using Artix
Classloader
Environments

Artix Classloader Environments provide an easily configurable
mechanism for overcoming some of the shortcomings in Java’s
default class loading scheme. In particular, they give you finer
control over which classes are loaded by each classloader in
an application’s classloader chain.

This chapter discusses the following topics:

Class Loading: An Overview page 614
Artix’s Classloader Hierarchy page 617
Using Artix’s Classloader Environment page 621

613

CHAPTER 25 | Using Artix Classloader Environments

Class Loading: An Overview

Introduction

When are classes loaded?

Classloader chaining

614

One of Java’'s most important features is that compiled Java applications are
platform independent. Unlike, C++ applications, for instance, a Java
application can be built on a Windows system and run without modification
on a UNIX system.

Part of the mechanism used to allow this platform independence is the way
the Java Virtual Machine, or JVM, loads the binary data that makes up a
Java application. Java binary code is stored, at its most atomic state, as a
class file that stores the binary code for a Java c1ass object. When the JVM
needs to create an instance of a c1ass object it loads the class’ binary
representation using a classloader. The classloader reads in the binary data,
transforms the data into usable machine code, and creates a generic
java.lang.Class object for the class.

To enhance the performance of the JVM, classloaders only load a class the
first time it is needed and then cache the data in case it is needed again.
Classloaders are also split into a hierachical structure to provide a level of
security for the JVM. This hierarchical structure prevents classloaders in the
application space from loading corrupt versions of core Java classes.

Any of the following events can trigger a class to be loaded:
® The creation of a new instance of a class.
® The dependency of one class on another class. For example, if class

Foo has a member of class Bar, then Bar will need to be loaded along
with Foo.

® Anexplicit call to a classloader’s 10adclass () method.

Classloaders link together to form a chain where each classloader holds a
link to the classloader that created it. When a classloader attempts to load a
class, it first checks its local cache. If the class is not in the local cache, the
classloader then checks with its parent classloader to find the class. Finally,
if the class has not been loaded by any of the existing classloaders, the
classloader loads the class from an external source.

Default classloader hierachy

Class Loading: An Overview

So, if your application has three classloaders, A, B, and C as shown in
Figure 16, classloader C will always check with classloaders A and B before
loading a class from an external source. For example, if class ¢3 has a
dependency on class al, it will not need to be loaded because it is supplied

by classloader A.

Classloader A

T

Classloader B

A

Classloader C

Figure 16: Classloader Chain

The JVM provides a default classloader hierachy to supply a minimal
guarantee that the JVM's core classes do not get corrupted or overwritten by
application specific class implementations. The JVM'’s classloader hierachy
consists of three levels as shown in Figure 17.

Bootstrap Classloader

SJAVA HOME\Jjre\lib\rt.jar

T

Extension Classloader

SJAVA HOME\jre\lib\ext*.jar

A

System Classloader

SCLASSPATH

Figure 17: Default Classloader Hierarchy

615

CHAPTER 25 | Using Artix Classloader Environments

Limitations of classloaders

616

The bootstrap classloader is responsible for loading the core Java classes
such as java.lang.Object. The extension classloader then loads any
runtime extension classes such as the ones that provide localization support.
Finally, the system classloader loads the remainder of the classes needed by
an application.

While the design of the class loading system is effective in ensuring that the
core Java classes are not hijacked and isolating user defined classes based
on where they are loaded, it does not address two key issues. These are:

® Using multiple versions of the same library in a single application.
® (Classes becoming inaccessible.

In large applications where some of the core functionality is provided by
vendor supplied libraries, you may run into a situation where multiple
versions of a core library, such as Xerces or log4j, are desired. For example,
the vendor supplied libraries may use Xerces 1.0 while your application
code uses Xerces 2.0. In this instance, the first version of the library loaded
will be the version used.

It is also possible for classes to become inaccessible because it is possible
for a class may have dependencies on classes that are only available to a
classloader further down the classloader chain. Because the classloader
mechanism only checks up the chain, the dependencies cannot be resolved.

Artix’s Classloader Hierarchy

Artix’s Classloader Hierarchy

Overview

Why use the added classloaders?

You can configure Artix to add two additional layers to the default
classloader hierachy used by the JVM when the bus or any Artix plug-in is
loaded. The first is a firewall classloader that can be configured to block
access to classes loaded by classloaders higher up the chain. The second is
a classloader that can be configured to load all of the classes needed by the
bus or the plug-in from a specific set of resources, including URLs. This is
shown in Figure 18.

Bootstrap Classloader $JAVA HOME\jre\lib\rt.jar

T

Extension Classloader
A

SJAVA HOME\jre\lib\ext*.jar

System Classloader CLASSPATH

Bus Classloader
Firewall

T

Bus Classloader

Path configured by user

Figure 18: Artix Bus Classloader Chain

Adding these two classloaders solves both of the problems of Java's
classloader system. It solves the problem of using multiple versions of a
library by blocking the bus’, or the plug-in’s, classloader from classes loaded
by other classloaders and directing the bus’, or the plug-in’s, classloader to
load only the version of the classes in its path. It solves the problem of

617

CHAPTER 25 | Using Artix Classloader Environments

Where do plug-ins fit into the
hierarchy?

618

inaccessible classes in much the same way. Because the bus, or the
plug-in, has a dedicated classloader, all of the classes needed by it are
accessible.

In addition, the Artix classloader environment’s dedicated classloader
removes an application’s dependency in listing all of the required classes in
the crasspaTH. You can specify where the classes to be loaded by the Artix
classloader are located. The location of the resources used by the dedicated
classloader can be specified using absolute paths or valid URLs. Thus you
can load classes over the web or from a central repository if needed.

If a plug-in is configured to use the optional Artix classloaders, the parent
classloader of the plug-in's firewall classloader will be the classloader that
loaded the bus as shown in Figure 19. If the bus is loaded by the system
classloader, then the plug-in’s firewall classloader will block classes from
the system classloader and above. If the bus is configured to use the Artix

Classloader chaining

Artix’s Classloader Hierarchy

classloading environment, the bus’ classloader becomes the parent
classloader for the plug-in. In this instance, the plug-in will only have access
to the classes that are allowed through the bus’ classloader firewall.

Default Classloader

Bus Classloader
Firewall

?

Bus Classloader

Plug-In1 Classloader Plug-In2 Classloader
Firewall Firewall
Plug-In1 Classloader Plug-In2 Classloader

Figure 19: Artix Plug-In Classloader Chain

If the bus blocks a system class from the plug-ins, it create problems for the
plug-ins. Therefore you must be careful when creating the rules for what is
allowed through the bus’ classloader firewall. Optionally, you can also use
the plug-in's classloader to load the needed classes from the system.
However, these loaded classes will not inherit from the class instances
loaded by other plug-ins or components that are loaded by the system
classloader.

If you are using multiple plug-ins that are configured to use the Artix
classloader environment, or the bus itself is using the Artix classloader
environment, you can specify the order in which the classloaders are placed
into the classloader hieracrchy. The bus’ classloader will always be the

619

CHAPTER 25 | Using Artix Classloader Environments

620

parent of the first plug-in loaded, but the order in which the plug-in’s
classloaders are placed into the hierarchy can be specified in the classloader
configuration files.

By default, all of the plug-in classloaders are children of the classloader that
loaded the Artix bus. However, inside the each plug-in's classloader
configuration you can specify which classloader will be the current
classloader's parent. This can be useful if you have a number of plug-ins
that share common set or restrictions or that need a particular chain of
inheritance to remain intact.

Using Artix’s Classloader Environment

Using Artix’s Classloader Environment

Overview

Creating the CE file

The Artix classloader environment provides a powerful mechanism for
controlling what classes are used by the Artix bus and the plug-ins that
make up your applications. However, it is easy to configure. You simply add
the appropriate configuration information the Artix configuration file to tell
your code to use the Artix classloader environment. Then you configure the
classloader firewall and resource locations in a CE file that is written in XML.

The Artix classloader environment is configured using CE files. Each plug-in
that uses the Artix classloader environment will have a CE file that defines

the parent of its classloader in the classloader hierarchy, the filters used by
its classloader firewall, and where the its classloader looks for resources.

CE files are written in XML and use a small number of elements to define
the environments behavior. Each CE file has four parts. The first part is
common to all CE files and should appear in all CE files you create. It
defines the encoding style used, the type of XML document being specified,
and a namespace shortcut. The entries for this section are shown in
Example 373.

Example 373: CE File Preamble

<?xml version="1.0" encoding="UTF-8"7?>

<!DOCTYPE ce:classloader-environment PUBLIC "-//IONA//DTD IONA Classloading Environment 2.0//EN"
"http://www.iona.com/dtds/classloader-environment 2 0.dtd">

<ce:classloader-environment xmlns:ce="http://www.iona.com/ns/classloader-environment"

loglevel="info">

The second section is contained in the ce:environment element of the
document. This element is the only child of the top-level
ce:classloader-environment element. This section specifies the
classloader environment’'s name using the name attribute of ce:environment

621

CHAPTER 25 | Using Artix Classloader Environments

Chaining classloaders

622

as shown in Example 374. In addition, you can use the optional parent
attribute to define the classloader’s parent as discussed in “Chaining
classloaders” on page 622.

Example 374: Naming a Classloader Environment

<ce:classloader-environment>
<ce:environment name="sifter ce">

</ce:environment>
</ce:classloader-environment>

The third section of the CE file defines the filters used by the classloader
firewall. It consists of both positive and negative filter definitions defined
inside of the ce:firewall element. ce:firewall is the first child of
ce:environment and has one or more ce:filter child elements. Defining
firewall filters is described in “Configuring the classloader firewall” on
page 623.

The forth section of the CE file defines the locations where the plug-in
classloader searches for the resources it needs. This section is contained in
the ce:loader element, which is also a child of ce:environment. The
resource locations are specified in a ce:location element, a ce:url
element, and two other elements as described in “Specifying the locations
for the classloader” on page 624.

You chain a CE by setting the parent attribute in the ce:environment
element. The possible settings are:

® Attribute not set.

If the parent attribute is not set, the classloader responsible for loading
the bus is the parent of the plug-in's classloader firewall.
parent="ParentCEName"

The classloader whose name is ParentcEName is the parent of the
plug-in's classloader firewall. If the specified classloader does not exist,
the bus’ classloader is used.

parent="system-classloader"

The system classloader is the parent of the plug-in’s classloader
firewall.

Configuring the classloader
firewall

Using Artix’s Classloader Environment

The classloader firewall assumes that all classes not specified by a positive
filter are to be blocked from the Artix runtime’s classloader. You define
positive filters using one of the two ce: filter element’s attributes:
type="discover" and type="pattern".

Using type="discover”

The discover filter type specifies that the classloader will discover the filters
from the location specified in the discover-source attribute. Table 42
shows the values for discover-source.

Table 42: discover-source values for the Classloader Firewall

Value Meaning

jre Discover the filters need to load all of the classes for the
currently running JRE. It is highly recommended that this
filter is included in your firewall definition.

jar Discover the filters to load all of the classes from the specified
jar file. Jar file locations can be given using relative or
absolute file names. For example to load all of the classes in
myApp.jar, you could define a filter like <ce:filter
type="discover"
discover-source="jar">.\myApp.jar</ce:filter>.

jar-of Discover the filters needed to load specified resources. This
option makes it possible to discover the contents of jar files
that you know are reachable through the class loading
system, but that you do not know the actual location.
Resources can be classes, properties files, or HTML files. For
example to load the libraries for the EgBHome class, you could
use a filter like <ce:filter type="discover"
discover-source="jar-of">javax/ejb/EJBHome.class</ce:
filter>.

Using type="pattern”

The pattern filter type directly specifies a package pattern to be allowed
through the firewall from the application’s classloader. The syntax for
specifying package patterns is similar to the syntax used in Java import
statements. For example, to specify that all classes from javax.xml.rpc are
to be allowed through the firewall you could use a filter like <ce:filter

623

CHAPTER 25 | Using Artix Classloader Environments

Specifying the locations for the
classloader

624

type="pattern">javax.xml.rpc.*</ce:filter>. You could also drop the
asterisk(*) and use the filter <ce:filter
type="pattern">javax.xml.rpc.</ce:filter>.

Negative filters

Occasionally a positive filter will allow classes that you want blocked from
the Artix runtime classloader to be visible through the firewall. This is
particularly true with the package com.iona.3bus. The Artix runtime needs
to share a number of resources from this package with the application code,
but it also needs to ensure that some of its resources are loaded from the
Artix jar files.

To solve this problem the classloader firewall allows you to define negative
filters. To define a negative filter you use a value of negative-pattern for
the type attribute of the filter. This tells the firewall to block any resources
that match the pattern specified. For example, to block the system'’s
JAX-RPC classes from being loaded into the Artix runtime you could define a
filter like <ce:filter

type="negative-pattern">com.iona.jbus.jaxrpc.<\ce:filter>.

The ce:loader element in the CE file specifies where the classloader will
look for the resources it needs. These resources can be located on the local
machine, on a networked machine, or even on the Web. You can specify
their location using either pathnames or URLs.

To specify a resource’s location using a pathname you use the ce:1location
element. Pathnames can be either absolute or relative. In addition they can
include system variables. For example, the resource definition in

Example 375 will use the value of L1B to resolve the specified path.

Example 375: Resource Location Using a Variable
<ce:location>$ (LIB) \xml-apis.jar</ce:location>

To specify a resource’s location using a URL you use the ce:url element.
The classloader will use the URL to locate the classes specified.

In addition to ce:location and ce:url you can use two special elements to
include resources:

ce:inherit-parent-locations specifies that the classloader will also use the
resources defined in its parent classloader.

Using Artix’s Classloader Environment

ce:tools-tar specifies that the current JDK's tools.jar is a resource for the
classloader.

Example Example 376 shows a sample CE file.

Example 376: Simple CE File

<?xml version="1.0" encoding="UTF-8"7?>

<!DOCTYPE ce:classloader-environment PUBLIC "-//IONA//DID IONA Classloading Environment 2.0//EN"
"http://www.iona.com/dtds/classloader-environment 2 0.dtd">

<ce:classloader-environment xmlns:ce="http://www.iona.com/ns/classloader-environment"
loglevel="info">

<ce:classloader-environment>
<ce:environment name="sifter ce">

<ce:firewall>
<ce:filter type="discover" discover-source="jre"/>
<ce:filter type="negative-pattern">com.iona.jbus.jms.</ce:filter>
<ce:filter type="negative-pattern">com.iona.Jjbus.runtime.</ce:filter>
<ce:filter type="negative-pattern">com.iona.jbus.types.</ce:filter>
<ce:filter type="negative-pattern">com.iona.jbus.jaxrpc.</ce:filter>
<ce:filter type="negative-pattern">com.iona.jbus.ntv.</ce:filter>
<ce:filter type="negative-pattern">com.iona.jbus.util.</ce:filter>
<ce:filter type="pattern">com.iona.Jjbus.</ce:filter>
<ce:filter type="pattern">com.iona.Jjbus.servants.</ce:filter>
<ce:filter type="pattern">com.iona.webservices.reflect.types.</ce:filter>
<ce:filter type="pattern">com.iona.schemas.references</ce:filter>
<ce:filter type="pattern">javax.xml.rpc.</ce:filter>
<ce:filter type="pattern">javax.xml.namespace.QName</ce:filter>

</ce:firewall>

<ce:loader>
<ce:location>/usr/iona/artix/lib/apache/jakarta-log4j/1.2.6/1log4]j.jar</ce:location>
<ce:location>/usr/iona/artix/lib/apache/xerces/2.5.0/xercesImpl.jar</ce:location>
<ce:location>/usr/iona/artix/lib/artix/java runtime/3.0/it bus.jar</ce:location>
<ce:location>/usr/iona/artix/lib/artix/ws common/3.0/it wsdl.jar</ce:location>
<ce:location>/usr/iona/artix/lib/artix/ws common/3.0/saaj-api.jar</ce:location>
<ce:location>/usr/iona/artix/lib/artix/ws common/3.0/it saaj.jar</ce:location>
<ce:location>/usr/iona/artix/lib/artix/ws common/3.0/it ws reflect.jar</ce:location>
<ce:location>/usr/iona/artix/lib/common/ifc/1.1/ifc.jar</ce:location>

</ce:loader>

</ce:environment>
</ce:classloader-environment>

625

CHAPTER 25 | Using Artix Classloader Environments

Configuring your applications

626

To configure the plug-ins in your application to use the Artix classloader
environment you need to modify the application’s configuration scope in the
Artix configuration file, artix.cfg. For each plug-in that will use the Artix
classloader environment you need to add two configuration variables:

plugins:piugin name:CE_Name specifies the name of the classloader that
the plug-in specified will use to load. The CE name is defined in the
classloader’s configuration file.

ce:ce name:FileName specifies the name of the classloader’s configuration
file. ce_name must match the name specified in the plug-in's CE name
configuration.

For example, if your application loads a plug-in called sifter that uses the
Artix classloader environment and the classloader environment is configured
using a file called sifter ce.xml, then your application’s configuration
would look similar to Example 377.

Example 377: Configuring a Plug-In to use the Classloader Environment

#artix.cfg

pluginApp

{

orb plugins=[...,"java"];

java plugins=["sifter"];
plugins:sifter:classname="sifterFactory";
plugins:sifter:CE Name="sifter ce";

ce:sifter ce:FileName="..\etc\sifter ce.xml";

}

The entries in Example 377 do the following:

1. Configures the application to load the Java plug-in sifter.

2. Specifies that sifter uses a classloader environment named sifter ce.
3. Specifies that the file defining sifter ce is located at

..\etc\sifter ce.xml

For more information on configuring Artix applications to use plug-ins see
“Configuring Artix Plug-Ins” on page 605 and Configuring and Deploying
Artix Applications.

../deploy/index.htm
../deploy/index.htm

Index

A
activate() 585, 587, 595
Adaptive Runtime architecture 606
AnyType
getBoolean() 273
getByte() 273
getDecimal() 273
getDouble() 273
getFloat() 273
getint() 273
getlong() 273
getSchemaTypeName() 272
getShort() 273
getString() 273
getType() 274
getUByte() 273
getUInt() 273
getULong() 273
getUShort() 273
setBoolean() 270
setByte() 270
setDecimal() 271
setDouble() 270
setFloat() 270
setint() 270
setlLong() 270
setShort() 270
setString() 270
setType() 271
setUByte() 270
setUInt() 271
setULong() 271
setUShort() 270
anyType 268
arrayType attribute 211
ART 606
Artix bus 27
initializing 46, 81
starting 83
ARTIX_DRIVEN 574, 588
atomic types
XMLSchema 122

B

binding name

specifying to code generator 32, 42, 65

Bus
createClient() 49

createEndpointReference() 285
deregisterTransportFactory() 575
getTypeFactoryMap() 261

init() 46, 81

registerTransportFactory() 575
registerTypeFactory() 261

run() 83
shutdown() 51
bus
getConfiguration() 611

registerHandlerFactory() 530

buslnit() 72
BusPlugin 511
BusPluglin.buslnit() 511

BusPluglin.busShutdown() 512

BusPlugln.getBus() 511
BusPluginFactory 514

BusPluglInFactory().createBusPlugin() 514

busShutdown() 72, 75

C

ce:ce_name:FileName 517

choice type

occurrence constraints 189

client
developing 45
ClientNamingPolicy

setReplyFileLifecycle() 441
ClientNamingPolicyType 441
setFilenameFactory() 441

client proxy
instantiating 47

client stub code 31, 42, 65

ClientTransport 569
getOutputStream() 582
initialize() 578

ClientType 385

code generation 31, 65

627

INDEX

consumer stubs 42
from the command line 32
consumer 42
service 65
impl flag 68
server flag 81
service plug-in 71
types flag 68
code generator
command-line 32, 42, 65
files generated 31
consumer 44
service 67
com.iona.jbus.db 453
com.iona.jbus.db.collections 453
com.iona.jbus.Servant 77, 82

CLIENT_REQUEST_VALUES 551
CLIENT_RESPONSE_CLASSES 552
CLIENT_RESPONSE_VALUES 551
OPERATION_NAME 550
SERVER_REQUEST_CLASSES 551
SERVER_REQUEST_VALUES 551
SERVER_RESPONSE_CLASSES 552

SERVER_RESPONSE_EXCEPTION 543

SERVER_RESPONSE_VALUES 551
ContextContainer 383
getContext() 384
setContext() 384
ContextRegistry 334
getConfigurationContext() 383
context registry 334
contexts

com.iona.jbus.utils. XMLUtils 322, 325 stub files, generating 358

com.iona.jbus package 39 type factories for 359
com.iona.webservices.reflect.types.AnyType 269 contract type descriptions 145
com.iona.webservices.reflect.types.TypeFactory 25 correlationID 354

9, 269 CorrelationStyleType 417

complex choice type
receiving 151
transmitting 151
complex types
attribute groups 155
attributes 155
derivation by extension 181
derivation by restriction 177
deriving from simple 177
description in XMLSchema 145
mapping to Java 145
Configuration
getList() 612
getString() 611
configuration
data type 609
domain 606
namespace 608
scope 607
variables 609
ConnectionModeType 435
ConnectionPolicyType 435
setConnectionTimeout() 437
setRecieveTimeoutl() 437
setScanlinterval() 437
constructed types 609
ContextConstants 339, 378
CLIENT_REQUEST_CLASSES 551

628

createClient() 49, 59, 288
createClientTransport() 569
createEndpointReference() 285, 286
createServerTransport() 569
createService() 47
creating a dynamic proxy 48
creating a Service object 47
creating a service proxy
from UDDI 59
CredentialsType 439
setName() 439
setPassword() 439

D
DatabaseConfig 474
markAsWriteOperations() 475
DataBaseManager
close() 456
DatabaseManager 456
closelterator() 467, 471
getConfiguration() 474
deactivate() 586
DeliveryType 418
deregisterTransportFactory() 575
destroyClientTransport() 569
destroyServerTransport() 569
dynamic proxies 45
dynamic proxy

instantiating 47

E

enumeration facet 131
exceptions
associating to an operation 227
describing in a contract 226

F
facets 127
enumeration 131
length 129
maxLength 130
minLength 130
FaultException 110
fault message 29
FormatType 419
fractionDigits facet 131
fromString() 133
fromValue() 133
fromXML() 323
FTP_CONNECTION_POLICY 435

G

generated getter method 147
generated setter method 146
generated types

getter method 147

setter method 146
GenericHandler 522, 523, 526
GenericHandlerFactory 522, 533
getBoolean() 273
getBus() 72
getByte() 273
getClass() 272
getClientMessageHandler() 533
getClientRequestHandler() 533
getClientThreadingModel() 569, 572
getConfigurationContext() 383
getContextRegistry() 334
getCorrelationID() 354
getCurrent() 336
getDecimal() 273
getDouble() 273
getFloat() 273
getint() 273
getJavaType() 265
getJavaTypeForElement() 266

INDEX

getlong() 273
getMessagePortThreadingPolicy() 573
getProperties() 552
getReplyContext() 351
getRequestContext() 351
getRequiresRequiresDispatchPolicy() 574
getSchemaType() 264
getSchemaTypeName() 272
getServerMessageHandler() 533
getServerRequestHandler() 533
getServerTransportPolicies() 570, 573
getServiceWSDL() 99

getShort() 273

getString() 273
getSupportedNamespaces() 263
getThreadingResourcePolicy() 573
getType() 274

getTypeFactoryMap() 261
getTypeResourcelLocation() 266
getUByte() 273

getUInt() 273

getULong() 273

getUShort() 273

getValue() 133

H
handleFault() 543
Handler 523, 526
handleFault() 543
handleRequest() 523, 526
handleResponse() 523, 526
HandlerConstants.PORT_NAME 536
HandlerConstants.SERVICE_NAME 536
HandlerContants.BUS 536
handleRequest() 523, 526, 538
handleResponse() 523, 526, 540
HandlerFactory 533
getClientMessageHandler() 533
getClientRequestHandler() 533
getServerMessageHandler() 533
getServerRequestHandler() 533
HandlerInfo 535
setHandlerClass() 534

|

init() 46, 81
initialize() 578
initializing the bus

629

INDEX

client side 46

server side 81
input message 29
InputStream 558
instantiating a client proxy 47
Instrumentation 496
IONAMessageContext 524, 543
isOneway() 353
itemType 138
itemType attribute 140

J

java.io.* package 40
java.net.* package 40
java.rmi.Remote 36
java.rmi.RemoteException exception 37
java.util.Collection 467
java.util.Listlterator 471
java.util.Set 467
Java Exception class 228
Java Holder class 37
java_plugins 60, 517
ava_uddi_proxy 60
avax.activation.DataHandler 221
avax.xml.namespace.QName package 39
avax.xml.rpc.* package 39
avax.xml.rpc.holders 214
avax.xml.rpc.holders.Holder interface 214
avax.xml.rpc.holders package 37
avax.xml.rpc.security.auth.password 55
avax.xml.rpc.security.auth.username 55
avax.xml.rpc.service.endpoint.address 56
avax.xml.rpc.ServiceFactory 47
avax.xml.rpc.Service interface 47
avax.xml.soap.Name 205
avax.xml.soap.Node 206
avax.xml.soap.SOAPElement 204
avax.xml.soap.Text 206
JMS
using a secure connection 432
JMS _CLIENT_CONTEXT 428
JMSClientHeadersType 428
JMSClientHeadersType:TimeOut 428
JMS header properties
inspecting request values 431
inspecting response values 429
setting request values 428
setting response values 430
JMSProperyType 426

j
!
!
!
!
!
!
!
!
!
!
!
!
!
!
j

630

JMS_SERVER_CONTEXT 430
JMSServerHeadersType 430

L

length facet 129
list types 138
logical contract 26

M

ManagedComponent 496
getInstrumentation() 496
getObjectName() 497
setObjectName() 497
ManagedComponentEvent 504, 505
ManagedComponentCreateEvent() 504, 505
maxExclusive facet 131
maxlInclusive facet 131
maxLength facet 130
MBeanInfoGenerator 500
getModel() 500
MessageContext 336, 337, 524, 526, 543, 583
getProperties() 543
getProperty() 342
removeProperty() 343
setProperty() 341
message context 336
message parts
client request 551
client response 551
server request 551
server response 551
message part sharing 214
message port threading policy 573, 585, 594, 595
MULTI_INSTANCE 595
MULTI_THREADED 594
MIME multi-part related message 218
minExclusive facet 131
minlinclusive facet 131
minLength facet 130
MQConnetionAttributesContextType 410
MQ_INCOMING_MESSAGE_ATTRIBUTES 414
MQMessageAttributesType 414
MQ_OUTGOING_MESSAGE_ATTRIBUTES 414
Multi-dimensional arrays 212

0]

obtaining a ServiceFactory 47
occurrence constraints

choice type 189

on 194
oneway 353
operation name

getting in handler 550
-ORBname parameter 608
orb_plugins 60
output message 29
OutputStream 558

P
partially transmitted arrays

SOAP arrays

partially transmitted 213

pattern facet 131
PerlnvocationServant 91
PersistentList 454

add(int index, Object obj) 469

add(Object obj) 469

addAll(Collection col) 469

addAll(int index, Collection col) 469

clear() 470

close() 472

get() 470

iterator() 471

listiterator() 471

listlterator(int index) 471

remove(Collection col) 470

remove(int index) 470

remove(Object obj) 470
PersistentMap 453

clear() 466

close() 467

entrySet() 467

get() 466

put() 465

putAll() 466

remove() 466

values() 467
physical contract 26
plugins:artix:db:env_name 478
plugins:artix:db:home 478
plugins:plugin_name:CE_Name 517
plugins:plugin_name:classname 516
port name

specifying to code generator 32, 42, 65
portType 32, 42, 66
postDispatch() 585
primitive types 609

Java 122

R

receiving choice types 151
registerContext() for CORBA 362
registerContext() for SOAP 360
registerHandlerFactory() 530
registering a servant instance 83
registerServant() 78, 83, 86
registerServiceActivator() 73
registerTransientServant() 88
registerTransportFactory() 575
registerTypeFactory() 261

reply context container 346
ReportOptionType 421

request context container 346
required java packages 39
requires concurrent dispatch policy 574
run() 83, 585, 594

S

sequence complex types 146
SerializedServant 91
SerialPersistentList 454
creating 463
SerialPersistentMap 453
creating 459
server
implementation class 68
ServerNamingPolicy
setRequestFileLifecycle() 442
ServerNamingPolicyType 442
setFilenameFactory() 442
server skeleton code 31, 42, 65
ServerTransport 569, 585
activate() 585, 587, 595
deactivate() 586
getOutputStream() 585, 592, 597
postDispatch() 585, 592, 598
run() 585, 594
shutdown() 586, 600
ServerTransportPolicies 573
getMessagePortThreadingPolicy() 573

getRequiresConcurrentDispatchPolicy() 574

getThreadingResourcePolicy() 573
server transport policies

INDEX

message port threading policy 573, 585, 594,

595

631

INDEX

requires concurrent dispatch policy 574
threading resource policy 573, 585, 587, 594,
595
ServerTransportThreadingResourcesPolicy 574
ServerType 385
Service 59
service
main() function 81
Service.getPort() 48
ServiceFactory.newlInstance() 47
service hame
specifying to code generator 32, 42, 65
setBoolean() 270
setByte() 270
setDecimal() 271
setDouble() 270
setFloat() 270
setHandlerClass() 534
setint() 270
setLong() 270
setReplyContext() 348
setRequestContext() 348
setShort() 270
setString() 270
setType() 271
setUByte() 270
setUInt() 271
setULong() 271
setUShort() 270
shutdown() 51, 586, 600
shutting down the bus 51
SinglelnstanceServant 89
skeleton code
generating with wsdltojava 33
SOAP arrays
sparse 212
syntax 210
SOAPElement.getChildElements() 206
SOAPElement.getElementName() 205
SOAP-ENC:Array type 210
SOAPFaultException 116
SOAPMessage 555
AttachmentPart 556
message elements 556
SOAPBody 556
SOAPEnvelope 556
SOAPHeader 556
SOAPPart 556
SOAPMessageContext 527, 543, 549, 555

632

getMessage() 555
setMessage() 555
SOAP with attachments 218
sparse arrays 212
static servant 86
StreamMessageContext 527, 543, 549, 558
StringSerialPersistentMap 453
creating 460
StringXMLPersistentMap 453
creating 460
Stub._getProperty() 54
Stub._setProperty() 54
Stub interface 54

T
ThreadingModel 569
ThreadingResourcePolicy
ARTIX DRIVEN 585, 588, 594, 595
TRANSPORT_DRIVEN 589
USES_ WORKQUEUE 587, 588
threading resource policy 573, 585, 587, 594, 595
ARTIX_DRIVEN 574
artix driven 585
TRANSPORT_DRIVEN 574
USES_WORKQUEUE 574
use workqueue 587
thread_pool:high_water_mark 89
thread_pool:initial_threads 89
thread_pool:low_water_mark 89
toString() 133, 147, 228
totalDigits facet 131
TransactionType 412
transient servant 87
transmitting choice types 151
transportActivated() 589
TransportCallback
dispatch() 592
getCurrentContext() 599
TRANSPORT _DRIVEN 574, 589
TransportFactory 568, 569
createClientTransport() 569
createServerTransport() 569
destroyClientTransport() 569
destroyServerTransport() 569
getClientThreadingModel() 569, 572
getServerTransportPolicies() 570, 573
transportShutdownComplete() 600
type derivation
by extension 177, 181

by restriction 177

type factories 258
and contexts 359
generating 258
instantiating 260
registering 261

TypeFactory
getJavaType() 265
getJavaTypeForElement() 266
getSchemaType() 264
getSupportedNamespaces() 263
getTypeResourcelocation() 266

U

uDDI
building queries 58
configuring your applicaiton to use 60
looking up services 59

UDDI URL 58

USES WORKQUEUE 574, 588

w

whiteSpace facet 131
wsdl:arrayType 210
wsdl:arrayType attribute 211
WSDL fault element 37, 227
message attribute 227
WSDL input element 37
WSDL message element 28, 37, 226
name attribute 228
WSDL operation element 28, 37
name attribute 37
parameterOrder attribute 37
WSDL output element 37
WSDL part element 28
WSDL port element
name attribute 36
WSDL portType element 28, 36
wsdltojava 32, 65, 68
command-line switches 32
consumer generation 42
-datahandlers 221
files generated 31
consumer 44
service 67
generating a service plug-in 71
-ser flag 459, 463
service generation 65

XML schemas, generating from 358
WSDL types element 28, 145, 268

X
XMLDataHandler 456
XMLSchema
all element 146, 197
anyAttribute element 163
attribute element 125, 155
default attribute 125, 155
fixed attribute 125, 155
name attribute 155
type attribute 155
use attribute 125, 155
attributeGroup element 155
name attribute 157
ref attribute 157
XMLSchema choice element 151, 197
maxOccurs attribute 189
minOccurs attribute 189

XMLSchema complexContent element 181

XMLSchema complexType element 145
name attribute 146
XMLSchema element element 125, 197

INDEX

maxOccurs attribute 125, 147, 194, 197, 211

minOccurs attribute 125, 194, 197
nillable attribute 125
type attribute 167
XMLSchema extension element 177, 181
base attribute 181
XMLSchema facets 127
XMLSchema group element 197
name attribute 197
ref attribute 198
XMLSchema restriction element 127, 181
base attribute 127, 181
XMLSchema sequence element 146, 197
maxOccurs attribute 185
minQOccurs attribute 185
XMLSchema simpleContent element 177
XMLSchema simpleType element 127
name attribute 127, 133, 142
XMLSchema union element 141
memberTypes attributes 141
XMLUHtil
referenceFromXML() 328
XMLUtils 322, 325
fromXML() 322
referenceToXML() 328

633

INDEX

toXML() 325 and context types 357
xsd:anyType 268 xsd:list 138

634

	List of Figures
	List of Tables
	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	The Artix Library
	Getting the Latest Version
	Searching the Artix Library
	Artix Online Help
	Artix Glossary
	Additional Resources
	Document Conventions

	Fundamentals of Artix Programming
	The Artix Java Development Model
	Separating Transport Details from Application Logic
	Representing Services in Artix Contracts
	Mapping from an Artix Contract to Java
	Generating Java Code
	Mapping Contract Elements to Java
	Java Package Naming

	Developing Artix Consumers
	Generating the Stub Code
	Writing the Consumer Code
	Initializing an Artix Bus
	Creating a Service Proxy Using the JAX-RPC Method
	Creating a Service Proxy Using Artix APIs
	Shutting Down the Artix Bus
	Full Consumer Code

	Setting Connection Attributes Using the Stub Interface
	Creating a Service Proxy Using UDDI
	Building an Artix Consumer

	Developing Artix Services
	Generating the Skeleton Code
	Developing a Service Implementation
	Developing a Container Based Service
	Generating Starting Point Code
	Implementing the Service’s Plug-in Class
	Implementing the Service’s Activator Class

	Developing a Standalone Service
	Servant Registration
	Static Servant Registration
	Transient Servant Registration

	Servant Threading Models
	Building an Artix Service

	Finding Contracts and References at Runtime
	Finding Initial References
	Finding Artix Contracts

	Things to Consider when Developing Artix Applications
	Getting a Bus
	Class Loading

	Handling Artix Generated Exceptions
	Generic Exception Handling
	Overview of Fault Exceptions
	Processing Fault Exceptions
	Throwing Fault Exceptions

	Using the SOAP Binding

	Working with Artix Data Types
	XMLSchema Elements
	Using XMLSchema Simple Types
	Atomic Type Mapping
	Special Atomics Type Mappings
	Defining Simple Types by Restriction
	Using Enumerations
	Using Lists
	Using XMLSchema Unions

	Using XMLSchema Complex Types
	Sequence and All Complex Types
	Choice Complex Types
	Attributes
	Undeclared Attributes
	Nesting Complex Types
	Deriving a Complex Type from a Simple Type
	Deriving a Complex Type from a Complex Type
	Occurrence Constraints
	Using Model Groups

	Using XMLSchema any Elements
	SOAP Arrays
	Holder Classes
	Using SOAP with Attachments
	Unsupported XMLSchema Constructs

	Creating User-Defined Exceptions
	Describing User-defined Exceptions in an Artix Contract
	How Artix Generates Java User-defined Exceptions
	Working with User-defined Exceptions in Artix Applications

	Using Substitution Groups
	Substitution Groups in XML Schema
	Using Substitution Groups with Artix
	Widget Vendor Example
	Widget Server
	Widget Client

	Working with Artix Type Factories
	Introduction to Type Factories
	Registering Type Factories
	Getting Type Information From Type Factories

	Working with XMLSchema anyTypes
	Introduction to Working with XMLSchema anyTypes
	Setting anyType Values
	Retrieving Data from anyTypes

	Using Endpoint References
	Introduction to Endpoint References
	Endpoint Reference Basic Concepts
	Using Endpoint References in Artix Contracts
	Creating a NULL Endpoint Reference
	Creating Endpoint References for a Service
	Instantiating Service Proxies Using an Endpoint Reference

	Using Endpoint References in a Factory Pattern
	Bank Service Contract
	Bank Service Implementation
	Bank Service Client

	Using Endpoint References to Implement Callbacks
	The Accounting Contract
	The Accounting Client
	The Accounting Server

	Migration Scenarios

	Using Native XML
	Populating Artix Objects with XML
	Converting Artix Objects Into XML
	Converting References into XML

	Using Message Contexts
	Understanding Message Contexts in Artix
	Getting the Context Registry
	Getting the MessageContext Object for a Thread
	Working with JAX-RPC MessageContext Objects
	Working with IonaMessageContext Objects
	How Properties are Stored in Artix Message Contexts
	Setting a Property into an Artix Message Context
	Working with Properties from an Artix Message Context
	Special Artix Properties

	Sending Message Headers
	Defining Context Data Types
	Registering Context Types
	Registering a Context for Use as a SOAP Header
	Registering a Context for Use as a CORBA Header

	SOAP Header Example
	The Contract
	Generating the Classes for the Header
	The Client
	The Service

	Working with Transport Attributes
	How Artix Stores Transport Attributes
	Getting Transport Attributes from an Artix Context
	Setting Configuration Attributes
	Using the Standard Contexts
	Using the Configuration Context

	Setting HTTP Attributes
	Client-side Configuration
	Server-side Configuration
	Setting the Server’s Endpoint URL

	Setting CORBA Attributes
	Setting WebSphere MQ Attributes
	Working with Connection Attributes
	Working with MQ Message Descriptor Attributes

	Setting JMS Attributes
	Using JMS Message Headers and Properties
	Using Client-side JMS Attributes
	Using Server-side JMS Attributes
	Setting JMS Broker Security Information

	Setting FTP Attributes
	Setting FTP Connection Policies
	Setting the Connection Credentials
	Setting the Coordination Policies

	Setting i18n Attributes

	Advanced Artix Programming
	Using Persistent Datastores
	Introduction to Artix Persistent Datastores
	Creating a Persistent Datastore
	Creating Persistent Maps
	Creating Persistent Lists

	Working with Data in a Persistent Datastore
	Using Persistent Maps
	Using Persistent Lists

	Supporting High-Availability
	Configuring Artix to Use Persistent Datastores

	Using the Call Interface for Dynamic Invocations
	DII and the Call Interface
	Building Invocations using the Call Interface
	Printer Service Demo

	Instrumenting a Service
	Overview of Artix Instrumentation
	Using the JMX APIs
	Using the Artix ManagedComponent Interface
	Implementing the Instrumentation Class
	Implementing the Support Class
	Creating and Removing your Instrumentation

	Developing Plug-Ins
	Understanding the Artix Plug-in Model
	Extending the BusPlugIn Class
	Implementing the BusPlugInFactory Interface
	Configuring Artix to Load a Plug-in

	Writing Handlers
	Handlers: An Introduction
	Developing Request-Level Handlers
	Developing Message-Level Handlers
	Implementing a Handler as a Plug-in
	Creating the Handler Plug-in
	Creating a Handler Factory

	Handling Errors and Exceptions
	Handling Errors when Processing Requests
	Handling Errors when Processing Responses
	Throwing User Faults
	Processing Fault Messages

	Configuring Endpoints to Use Handlers

	Manipulating Messages in a Handler
	Working with Operation Parameters
	Working with SOAP Messages
	Manipulating Messages as a Binary Stream

	Developing Custom Artix Transports
	Developing a Transport: The Big Picture
	Making a Schema for the Transport Attributes
	Developing and Registering the Transport Factory
	Creating a Transport Factory
	Transport Policies
	Registering and Unregistering a Transport Factory

	Developing the Client Transport
	Developing the Server Transport
	Activating a Server Transport
	Processing Requests
	Shutting Down a Server Transport

	Using your Custom Transport

	Configuring Artix Plug-Ins
	Understanding Artix Configuration
	Adding Custom Configuration for a Plug-in

	Using Artix Classloader Environments
	Class Loading: An Overview
	Artix’s Classloader Hierarchy
	Using Artix’s Classloader Environment

	Index

