IONA

Artix:

IBM Tivoli Integration Guide

Version 4.1, September 2006

Making Software Work Together™

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work
Together, Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2006 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: September 22, 2006

Contents

List of Figures

Preface
What is covered in this book
Who should read this book
Organization of this book
The Artix Library
Getting the Latest Version
Searching the Artix Library
Artix Online Help
Artix Glossary
Additional Resources
Document Conventions

Chapter 1 Integrating with IBM Tivoli™
Introduction
The IONA Tivoli Integration

Chapter 2 Configuring your IONA Product
Setting up your Artix Environment
Setting up your Orbix Environment

Chapter 3 Configuring your Tivoli Environment
Creating a Tivoli Installation Bundle
Installing the Resource Model in the Tivoli Server
Pushing the Resource Model out to your Host
Configuring the Resource Model for your Endpoint

Chapter 4 Extending to a Production Environment
Configuring an Artix Production Environment
Configuring an Orbix Production Environment

o

e
NN =FOO0ON NN N

15
16
19

23
24
28

33
34
36
40
42

45
46
50

CONTENTS

Chapter 5 Using the IONA Tivoli Integration
Detecting Common Server Problems
Tracking Server Performance Metrics
Stopping, Starting, and Restarting Servers

Appendix A IONA Tivoli Resource Model
Thresholds
Events
Parameters
WBEMY/CIM Definition

Index

55
56
58
59

61
62
64
65
66

69

List of Figures

Figure 1: Overview of the IONA Tivoli Integration
Figure 2: Example IONA Tivoli Deployment
Figure 3: Enabling Management in Artix Designer
Figure 4: Orbix Configuration GUI

Figure 5: Selecting Tivoli Agent Configuration
Figure 6: Selecting Performance Logging

Figure 7: Tivoli Profile Manager

Figure 8: Edit Resource Model

Figure 9: Contents of the IONA Server Task Library
Figure 10: The configure_provider Task

Figure 11: The configure provider Task

18
21
25
28
29
30
37
38
41
47
52

LIST OF FIGURES

Preface

What is covered in this book

IONA's products support integration with Enterprise Management Systems
such as IBM Tivoli™, BMC Patrol™, CA WSDM™, and HP OpenView™.
This book explains how to integrate Artix and Orbix with IBM Tivoli.

Who should read this book

This book is aimed at system administrators using IBM Tivoli to manage
distributed enterprise environments, and developers writing distributed
enterprise applications. Administrators do not require detailed knowledge of
the technology that is used to create distributed enterprise applications.

This book assumes that you already have a good working knowledge of the
IBM Tivoli Management Framework and IBM Tivoli Monitoring (formerly
known as Distributed Monitoring).

Organization of this book

This book contains the following chapters:

® Chapter 1 introduces Enterprise Management Systems, and IONA’s
integration with IBM Tivoli.

® Chapter 2 describes how to configure your IONA product for integration
with IBM Tivoli.

PREFACE

® Chapter 3 describes how to configure your IBM Tivoli environment for
integration with IONA products.

® Chapter 4 describes how to extend your integration from a test
environment into a production environment.

® Chapter 5 explains how to perform common tasks such as tracking
server metrics or starting a server.

® Appendix A lists the contents of the IONA Tivoli resource model,
describing its thresholds, events and parameters.

The Artix Library

The Artix documentation library is organized in the following sections:
® QGetting Started

® Designing Artix Solutions

® Configuring and Managing Artix Solutions

® Using Artix Services

® |Integrating Artix Solutions

® Integrating with Management Systems

® Reference

® Artix Orchestration

Getting Started

The books in this section provide you with a background for working with

Artix. They describe many of the concepts and technologies used by Artix.

They include:

® Release Notes contains release-specific information about Artix.

® |Installation Guide describes the prerequisites for installing Artix and the
procedures for installing Artix on supported systems.

® QGetting Started with Artix describes basic Artix and WSDL concepts.

® Using Artix Designer describes how to use Artix Designer to build Artix
solutions.

® Artix Technical Use Cases provides a number of step-by-step examples
of building common Artix solutions.

Designing Artix Solutions

The books in this section go into greater depth about using Artix to solve
real-world problems. They describe how to build service-oriented
architectures with Artix and how Artix uses WSDL to define services:

../release_notes/index.htm
../install_guide/index.htm
../getting_started/index.htm
../designer/index.htm
../cookbook/index.htm

PREFACE

® Building Service-Oriented Infrastructures with Artix provides an
overview of service-oriented architectures and describes how they can
be implemented using Artix.

® Writing Artix Contracts describes the components of an Artix contract.
Special attention is paid to the WSDL extensions used to define
Artix-specific payload formats and transports.

Developing Artix Solutions

The books in this section how to use the Artix APIs to build new services:

® Developing Artix Applications in C++ discusses the technical aspects
of programming applications using the C++ API.

® Developing Advanced Artix Plug-ins in C+ + discusses the technical
aspects of implementing advanced plug-ins (for example, interceptors)
using the C++ API.

® Developing Artix Applications in Java discusses the technical aspects
of programming applications using the Java API.

Configuring and Managing Artix Solutions

This section includes:

® Configuring and Deploying Artix Solutions explains how to set up your
Artix environment and how to configure and deploy Artix services.

® Managing Artix Solutions with JMX explains how to monitor and
manage an Artix runtime using Java Management Extensions.

Using Artix Services

The books in this section describe how to use the services provided with

Artix:

® Artix Router Guide explains how to integrate services using the Artix
router.

® Artix Locator Guide explains how clients can find services using the
Artix locator.

® Artix Session Manager Guide explains how to manage client sessions
using the Artix session manager.

® Artix Transactions Guide, C++ explains how to enable Artix C+ +
applications to participate in transacted operations.

../soa/index.htm
../contract/index.htm
../prog_guide/index.htm
../plugin_guide/index.htm
../java_pguide/index.htm
../deploy/index.htm
../jmx_mgmt/index.htm
../routing/index.htm
../locator_guide/index.htm
../session_mgr/index.htm
../transactions_cxx/index.htm

PREFACE

® Artix Transactions Guide, Java explains how to enable Artix Java
applications to participate in transacted operations.
® Artix Security Guide explains how to use the security features in Artix.

Integrating Artix Solutions

The books in this section describe how to integrate Artix solutions with other

middleware technologies.

® Artix for CORBA provides information on using Artix in a CORBA
environment.

® Artix for J2EE provides information on using Artix to integrate with
J2EE applications.

For details on integrating with Microsoft's .NET technology, see the
documentation for Artix Connect.

Integrating with Management Systems

The books in this section describe how to integrate Artix solutions with a

range of enterprise and SOA management systems. They include:

® |IBM Tivoli Integration Guide explains how to integrate Artix with the
IBM Tivoli enterprise management system.

® BMC Patrol Integration Guide explains how to integrate Artix with the
BMC Patrol enterprise management system.

® CA-WSDM Integration Guide explains how to integrate Artix with the
CA-WSDM SOA management system.

® AmberPoint Integration Guide explains how to integrate Artix with the
AmberPoint SOA management system.

Reference

These books provide detailed reference information about specific Artix
APIls, WSDL extensions, configuration variables, command-line tools, and
terms. The reference documentation includes:

® Artix Command Line Reference

® Artix Configuration Reference

® Artix WSDL Extension Reference

® Artix Java API Reference

® Artix C++ API Reference

® Artix .NET API Reference

® Artix Glossary

10

../transactions_java/index.htm
../security/index.htm
../corba_ws/index.htm
../j2ee/index.htm
../tivoli/index.htm
../bmc/index.htm
../ca_wsdm/index.htm
../amberpoint/index.htm
../command_ref/index.htm
../config_ref/index.htm
../wsdl_ref/index.htm
../javadoc/index.html
../cppdoc/index.html
../ndoc/index.html
../glossary/index.htm

PREFACE

Artix Orchestration

These books describe the Artix support for Business Process Execution
Language (BPEL), which is available as an add-on to Artix. These books
include:

® Artix Orchestration Release Notes

® Artix Orchestration Installation Guide

® Understanding Artix Orchestration

® Artix Orchestration Administration Console Help.

Getting the Latest Version

The latest updates to the Artix documentation can be found at
http://www.iona.com/support/docs.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Artix Library

You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right, for example:

http://www.iona.com/support/docs/artix/4.0/index.xml

You can also search within a particular book. To search within a HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Artix Online Help

Artix Designer and Artix Orchestration Designer include comprehensive
online help, providing:

® Step-by-step instructions on how to perform important tasks
® Afull search feature
® Context-sensitive help for each screen

There are two ways that you can access the online help:

11

../orch_relnotes/index.htm
../orch_install/index.htm
../orch_intro/index.htm
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/4.0/index.xml
../orch_admin/index.htm

PREFACE

12

® Select Help|Help Contents from the menu bar. The help appears in
the contents panel of the Eclipse help browser.

® Press F1 for context-sensitive help.

In addition, there are a number of cheat sheets that guide you through the

most important functionality in Artix Designer and Artix Orchestration
Designer. To access these, select Help|Cheat Sheets.

Artix Glossary

The Artix Glossary is a comprehensive reference of Artix terms. It provides

quick definitions of the main Artix components and concepts. All terms are
defined in the context of the development and deployment of Web services
using Artix.

Additional Resources

The IONA Knowledge Base

(http://www.iona.com/support/knowledge base/index.xml) contains helpful
articles written by IONA experts about Artix and other products.

The IONA Update Center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products.

If you need help with this or any other IONA product, go to IONA Online
Support (http://www.iona.com/support/index.xml).

Comments, corrections, and suggestions on IONA documentation can be
sent to docs-support@iona.com .

Document Conventions

Typographical conventions
This book uses the following typographical conventions:

Fixed width Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the IT Bus::AnyType
class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml
../glossary/index.htm

PREFACE

Fixed width italic Fixed width italic words or characters in code and

Italic

Bold

Keying Conventions

commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

o

% cd /users/YourUserName

Italic words in normal text represent emphasis and
introduce new terms.

Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.

This book uses the following keying conventions:

No prompt

When a command’s format is the same for multiple
platforms, the command prompt is not shown.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the MS-DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File | Open).

13

PREFACE

14

CHAPTER 1

Integrating with
IBM Tivoli™

This chapter introduces the integration of IONA products with
the IBM Tivoli™ Enterprise Management System (EMS).

In this chapter This chapter contains the following sections:
Introduction page 16
The IONA Tivoli Integration page 19

15

CHAPTER 1 | Integrating with IBM Tivoli™

Introduction

Overview

The application life cycle

Enterprise Management Systems

16

IONA'’s products support integration with Enterprise Management Systems
such as IBM Tivoli. This section includes the following topics:

® “The application life cycle”.

® ‘“Enterprise Management Systems”.

®* “IONA EMS integration”.

® “IONA Tivoli integration tasks”.

® “Integration overview”.

Most enterprise applications go through a rigorous development and testing
process before they are put into production. When applications are in
production, developers rarely expect to manage those applications. They
usually move on to a new project while the day-to-day running of the
applications are managed by a production team. In some cases, the
applications are deployed in a data center that is owned by a third party,
and the team that monitors the applications belong to a different
organization.

Different organizations have different approaches to managing their
production environment, but most will have at least one Enterprise
Management System (EMS).

For example, the main Enterprise Management Systems include IBM Tivoli,
HP OpenView™, and BMC Patrol™. These systems are popular because
they give a top-to-bottom view of every part of the IT infrastructure. This
means that if an application fails because the /tmp directory fills up on a
particular host, for example, the disk space is reported as the fundamental
reason for the failure. The various application errors that arise are
interpreted as symptoms of the underlying problem with disk space. This is
much better than being swamped by an event storm of higher level failures
that all originate from the same underlying problem. This is the fundamental
strength of integrated management.

IONA EMS integration

IONA Tivoli integration tasks

Integration overview

Introduction

IONA's Orbix and Artix products are designed to integrate with Enterprise
Management Systems. IONA's common management instrumentation layer
provides a base that can be used to integrate with any EMS.

In addition, IONA provides packaged integrations that provide out-of-the-box

integration with major EMS products. This guide describes IONA'’s
integration with the IBM Tivoli products.

The IONA Tivoli integration performs key enterprise management tasks (for
example, posting an event if a server dies). This enables automated recovery
actions to be taken.

The IONA Tivoli integration also tracks key server metrics (for example,
number of invocations received; and average, maximum and minimum
response times). Events can be generated when any of these parameters go
out of bounds.

In addition, you can also perform an extensible set of actions on servers. The
default actions are start, stop and restart.

In the IONA Tivoli integration, these key server performance metrics are
logged by the IONA performance logging plugins. Log file interpreting
utilities are then used to analyze the logged data. Figure 1 shows a
simplified overview of the IONA Tivoli integration at work. In this example, a
restart command is issued to an unresponsive server (for example, locator or
naming service).

The IONA performance logging plugins collect data relating to server
response times and log it periodically in the performance logs. The IONA
Tivoli resource model executes periodically on each host and uses the IONA
log file interpreter to collect and summarize the logged data. It compares the
response times and other values against user defined thresholds. If these
values exceed the threshold, an event is fired. This event can be used to
trigger an option from the Tivoli task library to restart the unresponsive
server.

17

CHAPTER 1 | Integrating with IBM Tivoli™

RESTART NEEDED

*THRESHOLD

EXCEEDED

— LOCATOR RESPONSE
“THIS OUTSIDE BOUNDS!*

IONA LOG
MANAGEMENT

PERFORMANCE
LOGGING
PLUGIN

RESTART LOCATOR

Figure 1: Overview of the IONA Tivoli Integration

18

The IONA Tivoli Integration

The IONA Tivoli Integration

Overview

IONA requirements

Tivoli requirements

Main components

This section describes the requirements and main components of IONA's
Tivoli integration. This section includes the following topics:

®* “IONA requirements”.
® “Tivoli requirements”.
¢ “Main components”.

® “IONA Tivoli resource model”.
® “IONA Tivoli task library”.
® “Integration and setup utilities”.

® “Example IONA Tivoli deployment”.

IONA's Artix and Orbix products are fully integrated with IBM Tivoli. You
must have at least one of the following installed:

® Artix 2.0.1 or higher.
® Orbix 6.1 or higher.

IONA's products are fully integrated with IBM Tivoli Management
Framework and IBM Tivoli Monitoring.

To use the IONA Tivoli integration, you must have at least the following
versions installed:

® IBM Tivoli Management Framework 4.1 or higher.
® IBM Tivoli Monitoring 5.1.1 (Fix Pack 04) or higher.

The IONA Tivoli integration package contains three main parts:
® A Tivoli Monitoring resource model.

® ATivoli task library.

® Integration and setup utilities.

19

CHAPTER 1 | Integrating with IBM Tivoli™

IONA Tivoli resource model

IONA Tivoli task library

Integration and setup utilities

Example IONA Tivoli deployment

20

For an introduction to Tivoli resource models, see the IBM Tivoli Monitoring
User Guide. The IONA Tivoli resource model enables Tivoli to track key
attributes of Artix and Orbix services and customer-built servers that are
based on Artix and Orbix. These attributes include:

® Server liveness.

® Number of incoming invocations received by the server.

® Maximum, average, and minimum response times of the server.

The resource model defines events that fire when a server's liveness cannot

be verified, or when any of the other attribute values go beyond thresholds
that can be set by the user.

The IONA Tivoli resource model is described in detail in Appendix A.

The IONA Tivoli task library contains a set of tasks that can be used to
configure and check the IONA Tivoli integration.

This task library can also be used to start, stop, or restart monitored servers.
It can also be extended to perform any number of actions on a monitored
server. These actions can be performed automatically as a result of receiving
an event. For example, if an event fires to indicate that a server is no longer
alive, you can configure Tivoli to use the IONA Tivoli task library to issue a
restart for that server.

Both the IONA Tivoli resource model and task library must be installed and
configured to work correctly. The IONA Tivoli integration package contains a
number of setup utilities that help you achieve this task. These utilities are
described in detail in “Configuring your Tivoli Environment” on page 33.

The high-level overview in Figure 2 shows a typical deployment of an IONA

Tivoli integration. This deployment is explained as follows:

1. The IONA Tivoli resource model and task library are installed on the
Tivoli region server.

2. The administrator customizes a monitoring profile based on the IONA
Tivoli resource model.

3. The monitoring profile is distributed through the gateways to each of
the Tivoli endpoints (managed hosts). In this example, there are three
Tivoli endpoints—two based on Windows, and one on Solaris.

CREATES

MONITORING
PROFILE

F Y

The IONA Tivoli Integration

4. The monitoring profile executes inside the Tivoli Monitoring Agent,
periodically checking the status and response times of the IONA
services and IONA-based applications.

e

ll a— & IONA Tivoli
Resource Model

RESOURCE MODEL

VoL DATABASE & Task Library
/ REGION SERVER \

AN N

- A
SOLARIS WINDOWS WINDOWS
ORBIX ARTIX USER
LOCATOR SERVER APPLICATION

Figure 2: Example IONA Tivoli Deployment

These steps are explained in more detail in “Configuring your Tivoli
Environment” on page 33 and “Extending to a Production Environment” on
page 45.

21

CHAPTER 1 | Integrating with IBM Tivoli™

22

In this chapter

CHAPTER 2

Configuring your
JONA Product

This chapter explains the steps that you need to perform in
Artix or Orbix so that they can be managed using IBM Tivoli.

This chapter contains the following sections:

Setting up your Artix Environment page 24

Setting up your Orbix Environment page 28

23

CHAPTER 2 | Configuring your IONA Product

Setting up your Artix Environment

Overview The best way to learn how to use the IONA Tivoli integration is to start with
a host that has both Tivoli and Artix installed. This section explains the
configuration steps in your Artix environment. It includes the following
topics:
® “Enabling management”.
® ‘“Generating EMS configuration files”.
® “The servers.conf file”.
® “The server_commands.txt file”.
® “Stopping Artix applications on Windows”.
® “Further information”.

Enabling management You can use the Artix Designer GUI tool to enable management for your
Artix applications. The Artix Tools dialog shown in Figure 3 allows you to do
this.

Note: Before enabling management, you must have first generated a
service plug-in (see Using Artix Designer).

To enable management, perform the following steps
1. Select Artix Designer|Artix Tools | Artix Tools.

2. In the Artix Tools window, create a new container deployment launch
configuration.

3. In the Advanced QoS Options tab, select the Enable reporting to a
third-party management application checkbox.

4. Enter an Output file location.

24

../designer/index.htm

& Artix Tools

Create, manage, and run configurations

Configurations: Mame: |my_container

Setting up your Artix Environment

(@) Ay Code Generation

L= Artix Container Deplaym
L] my_container

"b Arti for 2/05 Deployme M
% Artix Service Test

Generall Container Basics Advanced QoS Dptions

™ Register all deployed plug-ing with a locator service
Semnize [JEL

— Seszion Manager

" Enable session management services for all deployed plug-ins
Semniee [UEL

— Management

[V Enable reporting to a third-party management application

Output file location |c:hmy_ems_files

Browsze. .. |

Aol | Fevert |

Bun Cloze |

Generating EMS configuration

files

Figure 3:

Enabling Management in Artix Designer

IBM Tivoli integration:

® servers.conf
® server commands.txt

When you click Run, this generate two files that are used to configure the

These files are generated in the Output file location specified in Figure 3.

For more information on using Artix GUI tools, see Using Artix Designer.

25

../designer/index.htm

CHAPTER 2 | Configuring your IONA Product

The servers.conf file

The server_commands.txt file

Stopping Artix applications on
Windows

26

When you open the servers.conf file, you will see an entry such as the
following:

myapplication, 1, /Path/to/MyProject/log/myapplication perf.log

This example entry instructs Tivoli to track the myapplication server. It
reads performance data from the following log file:
/Path/to/MyProject/log/myapplication perf.log

There will be one of these files for each application that you want to
monitor. The IONA Tivoli resource model uses the servers.conf file to
locate these logs and then scans the logs for information about the server's
key performance indicators.

When you open the server commands.txt file, you will see entries like the
following:

myapplication, start=/Path/to/MyProject/bin/start myapplication.sh
myapplication, stop=/Path/to/MyProject/bin/stop myapplication.sh
myapplication, restart=/Path/to/MyProject/bin/restart myapplication.sh

Each entry in this file references a script that can be used to stop, start or
restart the myapplication server. For example, when the IONA Tivoli task
library receives an instruction to start myapplication, it looks up the

server commands.txt file, and executes the script referenced in this entry.

On Windows, stop scripts are not generated by default. While it is
straightforward to terminate a process on UNIX by sending it a kill signal,
there is no straightforward equivalent on most Windows platforms.

On Windows XP, you can use the taskkill command in your stop scripts.
On older versions of Windows, you can write your own stop scripts based on
a variety of methods. There are many options for implementing a stop script
including adding a Web service interface to control the shutdown of your
server, or simply making use of a utility such as pski11 from

www.sysinternals.comn.

Further information

Setting up your Artix Environment

See also, the following article on the Microsoft support pages:

How to terminate an application cleanly in Win32
(http://support.microsoft.com/default.aspx?scid=kb; EN-US;ql78893)

For details of how to manually configure servers to use the performance
logging, see “Configuring an Artix Production Environment” on page 46.

For a complete explanation of performance logging configuration, see
Configuring and Deploying Artix Solutions.

27

../deploy/index.htm
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q178893

CHAPTER 2 | Configuring your IONA Product

Setting up your Orbix Environment

Overview The best way to learn how to use the IONA Tivoli integration is to start with
an Orbix installation on a host that is also a Tivoli endpoint. This section

explains the configuration steps in your Orbix environment. It includes the
following:

® “Creating an Orbix configuration domain”.

® ‘“Generating EMS configuration files”.
® “Configuring performance logging”.
“Tivoli configuration files".

® “The servers.conf file”.

® “The server_commands.txt file”.

® “Further information”.

File View Run Tools Help

QLA rEeE IESD BERA

]
— g Mo Damain

{5 Orbix Configuration Welcome i x|
YWelcome to the Crhix Configuration toal. Please select an option

®|Create a new domair]
) Open an existing domain

O Go straight inta itconfigure

O Daont show this dialog again

| Cancel

Figure 4: Orbix Configuration GUI

28

Creating an Orbix configuration
domain

Generating EMS configuration
files

Setting up your Orbix Environment

You must first create the Orbix configuration domain that you want to
monitor using the Orbix Configuration GUI.

To start the Orbix Configuration GUI, enter itconfigure on the command
line. The first screen is shown in Figure 4.

To generate Tivoli agent configuration files, perform the following steps:
1. Click Go straight into itconfigure in the welcome dialog.

1. Select File|New|Expert from the GUI main menu. This displays the
Domain Details screen, as shown in Figure 5.

2. Select the Generate EMS Configuration Files checkbox. This will
generate configuration files required for your IONA Tivoli integration.

{7 Create a Configuration Domain - Expert Mode |

Steps

1. Domain Details

2. Starage Locations
3. Select Services

4. Confirm Choices
5. Deplaying

B. Summary

‘ Initialize | Localize

Domain Details

Domain Name: [sample-domain |

Location Domain: [sample-damain.location |

(@ File Based Domain
O Configuration Repositary Domain

[J Launch Domain Services on Machine Startup

[#]/Generate EMS configuration files

Adidress Mode Policy for Object References: Short (ungualified) hostharne B|

| Mext= | Cancel

Figure 5: Selecting Tivoli Agent Configuration

3. Proceed as normal following the steps in the wizard until you get to the
Select Services screen (see “Configuring performance logging”).

29

CHAPTER 2 | Configuring your IONA Product

Configuring performance logging

30

To configure performance logging, take the following steps:

1. In the Select Services screen, click Settings to launch the Domain
Defaults dialog, shown in Figure 6.

2. Select the Performance Logging option in the Other Properties box,
shown in Figure 6. This ensures that, by default, all your selected
services are configured for monitoring.

If you want to enable Tivoli to start, stop, or restart your servers, also

select the Launch Service on Domain Startup option, in the Service
Launching box.

fﬁ! Create a Configuration Domain - Expert Mod

x|
Steps Select Services
1. Domain Details Infrastructure Messaging
2 SitTiEe e [Lacation | Edit [CORBA Notification [Eat
3. Select Servi
elect Senices [Mode Daemon | Edit [GORBA Events | Ean
4. Gonfirm Choices =
5. Deplaying [management | Edit I [WS (Java Messaging | Edit
& S {27 Domain Defaults - Orbix Configuration x|
Hosts
Host [et
Base Part [2075 [Eat
Address Mode Policy for Ohject References: |Bhurt (unqualified) hostname |z||
Semvice Launching Other Properties T
elec
[standalane Senvice [Managed
[A|Launch Sewvice an Domain Startup [Perfarmance Logging

[Firewiall Prosy

appy || close
Selectall [[clearan [[getings |
| =Back || Next=]| Einish H Cancel

Figure 6: Selecting Performance Logging

Alternatively, you can configure these settings separately for each
service by selecting the service, and clicking the Edit button.

3. Click Apply, and then Close.

Tivoli configuration files

The servers.conf file

Setting up your Orbix Environment

4. Click Next to view a Confirmation screen for your selected
configuration.

5. Click Next to deploy your configuration.
6. Click Finish to exit.

Note: When configuring Tivoli integration, you must also configure
performance logging. This step is not optional. However, you can configure
performance logging without Tivoli integration. For full details, see the
Orbix Management User’s Guide.

When the domain is created, you can start it like any other domain, using
the start script in your orbixInstall/etc/bin directory. Selecting the
performance logging feature has enabled some extra configuration and
logging. In your orbixInstall/var/domain-name directory, you will find the
following Tivoli configuration files:

servers.conf Used by the IONA Tivoli resource model.
server_commands.txt Used by the IONA Tivoli task library.

When you open the servers.conf file, you will see a number of entries in
the following form:

ServerName, number, /Path/to/a/Log/File
For example:

mydomain locator myhost, 1,
/opt/iona/var/mydomain/logs/locator myhost perf.log

31

CHAPTER 2 | Configuring your IONA Product

The server_commands.txt file

Further information

32

The servers.conf file lists the servers that you want Tivoli to monitor on a
particular host. To begin with, assume that you are running all services in
the domain on one host. For example, assume your servers.conf file has
the above entry. When you have started your domain, you should see a log
file in the following location:

/opt/iona/var/mydomain/logs/locator perf.log

There will be one of these files for each server that you want to monitor. The
IONA Tivoli resource model uses the servers.conf file to locate these logs
and then scans the logs for information about the server's key performance
indicators.

When you open the server commands.txt file, you will see a number of
entries of the form:

ServerName, Action=/Path/to/Script
For example:

mydomain locator myhost, start
=/opt/iona/var/mydomain/locator myhost start.sh

Each entry in this file contains a pointer to a script that implements an
action on a particular server. In this example, the action is a start action for
the server mydomain locator myhost. When the IONA Tivoli task library
receives an instruction to start the locator in a domain named mydomain on a
host named myhost, it looks up the server commands.txt file on myhost,
and execute the script pointed to in this entry.

For details of how to manually configure servers to use the performance
logging plugins, see “Extending to a Production Environment” on page 45.

For a complete explanation of performance logging configuration, see the
Orbix Management User’s Guide.

In this chapter

CHAPTER 3

Configuring your
Tivoli Environment

This chapter explains the steps that you must perform in your

IBM Tivoli environment. It assumes that you already have a

good working knowledge of the IBM Tivoli Management
Framework and IBM Tivoli Monitoring (formerly known as

Distributed Monitoring).

This chapter contains the following sections:

Creating a Tivoli Installation Bundle page 34
Installing the Resource Model in the Tivoli Server page 36
Pushing the Resource Model out to your Host page 40
Configuring the Resource Model for your Endpoint page 42

33

CHAPTER 3 | Configuring your Tivoli Environment

Creating a Tivoli Installation Bundle

Overview Your Tivoli integration comes in a .tar file called tivoli integration.tar.
This file is located in the following directory:
ArtixInstall\artix\Version\management\Tivoli
This section explains how to create a Tivoli install bundle from the

tivoli integration.tar file. You will create an install bundle named
tivoli install.tar.

Creating an install bundle To create a Tivoli install bundle, perform the following steps:

1. Untar the tivoli_ integration.tar file into any directory on the host
that you want to monitor, using the following command:
tar xvf tivoli integration.tar

There should be three subdirectories:

bin
resource-model
task-library

2. Go into the pin directory and run the create tivoli install bundle
shell script.

Note: This is a bash script. On Windows (with Tivoli installed), you
must use the bash environment that is installed with Tivoli. If you
invoke the script with no arguments, it prints out a page of
instructions.

34

Creating a Tivoli Installation Bundle

The create tivoli install bundle script takes the following

arguments:

Configuration directory

Region name

Profile manager

The configuration directory where the
servers.conf and server commands.txt
files are located:

Artix

The directory you specified when
generating these files using Artix Designer
(for example, c:\my ems files).

Orbix

OrbixInstall/var/DomainName

Note: On Windows, you must use a
forward slash character (/) when
specifying this location.

The name of the Tivoli administrative
region that you want this host/application
to be in.

The name of the Tivoli profile manager that
you want the IONA profile to be installed
in.

Decide which region to use in your Tivoli deployment, and which
profile manager you want the IONA profile to be installed in.

Run the create tivoli install bundle shell script with all three
values specified. This results in a new tar file called

tivoli install.tar.

35

CHAPTER 3 | Configuring your Tivoli Environment

Installing the Resource Model in the Tivoli

Server

Overview

Installing the IONA Tivoli resource
model

36

This section explains how to install the IONA Tivoli resource model from the
tivoli install.tar file that you created.

To install the IONA Tivoli resource model and task library into your Tivoli

server, perform the following steps:

1. Transfer the tivoli install.tar file to your Tivoli region server, and
untar it to a temporary location, using the following command:

tar xvf tivoli install.tar

2. Start a Tivoli shell environment (see your Tivoli documentation for
details). On Windows, type bash, to run in a bash shell. Change to your
temporary location, and you will see a new directory structure starting
with a directory named iona.

3. Change directory into iona/bin. This contains the following shell
scripts:

import tll.sh
create profile.sh

4. Runthe create profile.sh script. This adds the IONA Tivoli resource
model to the resource model database and creates a new profile
named IONAProfile.

5. Open the Tivoli Desktop and select the region that you specified when
you created the install bundle, followed by the profile manager that you
specified. In the Profile Manager GUI, you will see a new profile called
IONAProfile, as shown in Figure 7.

Installing the Resource Model in the Tivoli Server

Profils

Figure 7: Tivoli Profile Manager

37

CHAPTER 3 | Configuring your Tivoli Environment

6. Open the TonAProfile, and then open the resource model ToNAServer
Monitor. You will see a resource model with default thresholds and
indications, as shown in Figure 8.

/28 Edit Resource Model

Figure 8: Edit Resource Model

38

Installing the Resource Model in the Tivoli Server

Figure 8 shows that the profile has been initialized with default
threshold values. Appendix A describes these thresholds in detail; you
do not need to be concerned with these now.

If you want Tivoli to log historical data on the attributes of each server,
click the Logging... button for the profile, and then check the box
marked Enable Data Logging to put logging into effect. This will record
historical data for each attribute.

Click Modify & Close.

39

CHAPTER 3 | Configuring your Tivoli Environment

Pushing the Resource Model out to your Host

Overview This section explains how to push the IONA Tivoli resource model out to the
endpoint where your IONA product is running (Orbix or Artix).

Pushing out the resource model To push the IONA Tivoli resource model out to the endpoint where your
IONA product is running, perform the following steps:
1. Add the Tivoli endpoint where your IONA product is installed as a
subscriber to the profile manager, and distribute the roNAProfile to
this endpoint.

The resource model should now be running on the endpoint, but it will
not yet be able to collect any meaningful data because it needs to be
pointed to the servers.conf file.

2. Return to the directory where you untarred tivoli install.tar, and
change directory to iona/bin.

3. Runthe import t11.sh script. This installs the task library.

4. Reopen the Tivoli region that you are using on the desktop. You should
now see a task library called ToNAServerTaskLibrary.

5. Open the task library. It contains the following four tasks (also shown
in Figure 9):

check deployment
configure provider
list server commands
server command

6. Run the check deployment task on the endpoint that contains your
correctly configured Artix or Orbix installation. It prints out diagnostics
to indicate that it has found your servers.conf file and your
server commands.txt file. This task also verifies the contents of these
files.

40

Pushing the Resource Model out to your Host

% 'Task Library: IONAServerTaskLibrary® i | Ellll

Library Edit Wew Create Help

@ 7
check_deployment configure_provider list_semer_commands

semver_cammand

Find Mext | Find il | | |

[Task

Figure 9: Contents of the IONA Server Task Library

7. If the check deployment task runs successfully, try running
list server commands. This shows a list of actions that you can run

on each server, for example:

mydomain locator myhost, stop

Executing this command stops the Orbix locator in mydomain. You can
execute any of these server commands by running the server command
task. This is an exercise for later (described in “Configuring the

resource model” on page 42).

41

CHAPTER 3 | Configuring your Tivoli Environment

Configuring the Resource Model for your
Endpoint

Overview This section explains how to configure the IONA Tivoli resource model for
your endpoint host, and how to test that your integration is configured
correctly. It includes the following topics:

® “Configuring the resource model”.
® “Testing your Tivoli integration”.
® “Further information”.

Configuring the resource model To configure the resource model for your endpoint, perform the following

steps:

1. First, verify that the configure provider script uses the correct
location for the servers.conf file, and then execute the
configure provider task

2. You must restart the Tivoli Monitoring Engine on the endpoint to pick
up this new information. You can do this using the following
command:

wdmemd -e endpoint name -stop

Note: On Windows, you might need to allow some time before
restarting. This is because it takes time to shut down the Tivoli M12
provider, which hosts the resource model.

3. When this process has finished, it is safe to execute a restart using the
following command:

wdmcmd -e endpoint name -restart

4. View the status of your deployed resource model by opening the Tivoli
Web Health Console, and view the data for your host. If all the servers
in your domain are running, everything should be fine with no errors.

42

Testing your Tivoli integration

Further information

Configuring the Resource Model for your Endpoint

5. Verify that monitoring is working correctly by killing one of your
servers. The effect is not immediately visible on the Web Health
Console. The delay depends on cycle time setting in the profile. The
default is 60 seconds. However, the Web Health Console can take
longer to refresh.

The quickest way to check the status is by executing the following
command:

wdmlseng -e endpoint name -verbose

This shows the status of any errors in the deployed resource models.

6. You should be able to start the server again using the task library. Go
to the task library and execute the server command task. Fill in the
name of the server and the action to perform on it (for example, in this
case, mydomain locator myhost, start). You should see your server
start and your health return to 100% in the Web Health Console soon
after that.

When you have checked that you can start and stop servers and monitor
their liveness, you can try some of the other available thresholds.

For example, the IONA Tivoli resource model provides a threshold called
Numlnvocations upper bound. This emits an event when the number of
operations that a server receives exceeds a certain threshold, which can
indicate that an overload is in progress. You can set the threshold,
redistributing the profile. You can test this by writing clients to frequently
contact the server in question until the threshold is exceeded.

For full details on how to use the Tivoli Monitoring product, see the Tivoli
Monitoring User Guide.

43

CHAPTER 3 | Configuring your Tivoli Environment

44

CHAPTER 4

Extending to a
Production
Environment

This section describes how to extend an IONA Tivoli integration
from a test environment to a production environment.

In this chapter This chapter contains the following sections:
Configuring an Artix Production Environment page 46
Configuring an Orbix Production Environment page 50

45

CHAPTER 4 | Extending to a Production Environment

Configuring an Artix Production Environment

Overview

When you have performed the basic setup steps, then you can move on to
the deployment-based production tasks. These include:

® “Monitoring your own Artix applications”.

® “Monitoring an Artix application on multiple hosts”.

® “Monitoring multiple Artix applications on the same host”.
® “Further information”.

Monitoring your own Artix Using the Artix Designer GUI to enable Tivoli to manage your applications is

applications

46

straightforward. Artix Designer generates all the correct configuration for
you. For details, see “Setting up your Artix Environment” on page 24.
Manual configuration

If you do not use Artix Designer, you must add the following settings to your
Artix server's configuration file:

my application {

Ensure that bus response monitor is in your orb plugins list.
orb plugins = [...,"bus response monitor"];

Collector period (in seconds). How often performance information is logged.
plugins:it response time collector:period = "60";

Set the name of the file which holds the performance log
plugins:it response time collector:filename =
"/opt/myapplication/log/myapplication perf.log";

}

Note: The specified plugins:it response time collector:period
should divide evenly into your cycle time (for example, a period of 20 and
a cycle time of 60).

Configuring an Artix Production Environment

Monitoring an Artix applicationon The same principles apply when monitoring your server on multiple hosts.
multiple hosts Each host has one servers.conf file. In the following example, assume that
you want to run the prdserver on an endpoint host called dublin:

1. Create the servers.conf and server commands.txt files for the
servers that you want to monitor on the dub1in host. You can write
these files manually or use Artix Designer (see “Setting up your Artix
Environment” on page 24 for details).

2. Runthe configure provider task selecting the dub1in endpoint. Enter
the location of the servers.conf file on the dub1in host, shown in
Figure 10.

3. Restart the Tivoli Monitoring Engine on dublin as described in
“Configuring the Resource Model for your Endpoint” on page 42.

Now you should be able to monitor prdserver on dublin.

/%8 configure_provider : _|EI|1|
Configure Task Arguments
—Conflgure configure_pravider from 1OMNAServerTaskLibrary
Server Configuration File Location | CrAppsiOrbix1 rarfsample-domain/servers.conf |ﬂ
|Set&Executel |Save| |Cancel| |TaskDescripti0n...|

Figure 10: The configure_provider Task

47

CHAPTER 4 | Extending to a Production Environment

48

Example task Suppose you want to execute the stop script for the
prdserver on the dublin endpoint. Assuming your server commands.txt
file is complete, you can open the server command task selecting the dupblin
endpoint. The script takes the following parameters:

Server Command File Location, (location of server commands.txt)
Server Name,

Server Action,

Server Id

The server Name and Server IdiSmyapplication prdserver. The action is
stop, but the server Command File Location defaults to whatever this
location was on the host where you first generated the tivoli install.tar.

You must retype this location so that it points to the correct location on the
dublin host. Use the same path for your servers.conf and

server commands.txt files on all hosts, if possible. If not, enter a new
location each time that you want to invoke an action on a different host.

Alternatively, you can use the server command task as a template for a new
task. After changing the value of server commands.txt, and filling in the
other fields, instead of clicking Set & Execute, click Save.... You can
rename this task as, for example, stop prdserver on dublin.

If you want more flexibility in deciding which parameters to default and
which to leave open, you can create a custom task library based on the
IONA Tivoli task library. A description of how this is done is beyond the
scope of this document. If you need to do this, contact IONA Professional
Services.

Monitoring multiple Artix

Configuring an Artix Production Environment

Sometimes you may need to deploy multiple separate Artix applications on

applications on the same host the same host. However, the Artix Designer only generates a servers.conf

Further information

and server commands. txt file for a single application.

The solution is to merge the servers.conf and server commands.txt files
from each of the applications into single servers.conf and

server_ commands.txt files.

For example, if the servers.conf file from the Underwritercalc application
looks as follows:

UnderwriterCalc, 1, /opt/myAppUnderwritierCalc/log/UnderwriterCalc perf.log

And the servers.conf file for the ManagePolicy application looks as
follows:

ManagePolicy, 1, /opt/ManagePolicyApp/log/ManagePolicy perf.log
The merged servers. conf file will then include the following two lines:

UnderwriterCalc, 1, /opt/myAppUnderwritierCalc/log/UnderwriterCalc perf.log
ManagePolicy, 1, /opt/ManagePolicyApp/log/ManagePolicy perf.log

Exactly the same procedure applies to the server commands.txt file.

For full details on how to use the Tivoli Monitoring product, see your Tivoli
Monitoring User Guide.

49

CHAPTER 4 | Extending to a Production Environment

Configuring an Orbix Production Environment

Overview When you have performed the basic setup steps, then you can move on to
the deployment-based production tasks. These include:

® “Monitoring your own Orbix applications”.

® “Monitoring your Orbix servers on multiple hosts”.

® “Monitor multiple Orbix domains on the same host”.
® “Further information”.

Monitoring your own Orbix You can use the Orbix Configuration tool to enable Tivoli management of
applications Orbix services. Enabling Tivoli to manage your own Orbix applications
involves the following steps:

1. You must configure your application to use performance logging (see
the Orbix Management User’s Guide for a full description). For
example, suppose you have a server executable named
myapplication prdserver that executes with the ORB name
myapplication.prdserver. The typical configuration would be as
follows:

C+ + applications

myapplication {

prdserver {
binding:server binding list = [“it response time logger+OTS”, “”];
plugins:it response time collector:period = "30";

plugins:it response time collector:server-id
="myapplication prdserver";

plugins:it response time collector:filename =
"/opt/myapplication/logs/prdserver/prdserver perf.log";

}

50

Configuring an Orbix Production Environment

Java applications

myapplication {
prdserver {

binding:server binding list = [“it response time logger+OTS”, “...”];

plugins:it response time collector:period = "30";

plugins:it response time collector:server-id = "myapplication prdserver";

plugins:it response time collector:log properties = [“log4j.rootCategory=INFO, Al”,
“log4j.appender.Al=com.iona.management.logging.logd4jappender.TimeBasedRollingFile
Appender”,

“log4j.appender.Al.File=/opt/myapplications/logs/prdserver perf.log”,
“log4j.appender.Al.layout=org.apache.log4]j.PatternLayout”,
“log4j.appender.Al.layout.ConversionPattern=%d{IS08601} %-80m %n”];

}

Note: The specified plugins:it response time collector:period
should divide evenly into your cycle time (for example, a period of 20 and
a cycle time of 60).

2. The most important configuration values are the server-id and the
C++ filename Or Java log properties used by the
response_time collector. You can add these values to the
servers.conf file to make the IONA Tivoli resource model aware of
your application as follows:

myapplication prdserver, 1,
/opt/myapplication/logs/prdserver/prdserver perf.log

3. Restart your endpoint. Now Tivoli will monitor the execution of the

myapplication prdserver.

4. To control the myapplication prdserver server through the
server command task, edit the server commands.txt file. For example
you could add the following entries to the server commands.txt file:

myapplication prdserver,start =
/opt/myapplication/scripts/prdserver start.sh

myapplication prdserver,stop =
/opt/myapplication/scripts/prdserver stop.sh

myapplication prdserver, restart =
/opt/myapplication/scripts/prdserver restart.sh

51

CHAPTER 4 | Extending to a Production Environment

The prdserver start.sh, prdserver stop.sh and
prdserver restart.sh SCripts will be written by you.

Monitoring your Orbix servers on The same principles apply when monitoring your Orbix servers on multiple

multiple hosts

52

hosts. Each host has one servers.conf file. In the following example,

assume that you want to run the prdserver on an endpoint host called

dublin:

1. Write the servers.conf and server commands. txt files for the servers
that you want to monitor on the dqub1in host (see “Setting up your
Orbix Environment” on page 28 for details).

2. Runthe configure provider task selecting the dub1in endpoint. Enter
the location of the servers.conf file on the dub1lin host, shown in
Figure 10.

3. Restart the Monitoring Engine on dublin as described in “Configuring
the Resource Model for your Endpoint” on page 42.

Now you should be able to monitor prdserver on dublin.

I configure_provider K =101x]

Configure Task Arguments

—Conflgure configure_pravider from 1OMNAServerTaskLibrary

Server Configuration File Location | CrAppsiOrbix1 rarfsample-domain/servers.conf |ﬂ

|Set&Executel |Save| |Cancel| |TaskDescripti0n...|

Figure 11: The configure_provider Task

Monitor multiple Orbix domains
on the same host

Configuring an Orbix Production Environment

Example task: Suppose you want to execute the stop script for the
prdserver on the dublin endpoint. Assuming your server commands.txt
file is complete, you can open the server command task selecting the dupblin
endpoint. The script takes the following parameters:

Server Command File Location, (location of server commands.txt)
Server Name,

Server Action,

Server Id

The server Name and Server IdiSmyapplication prdserver. The action is
stop, but the server command File Location defaults to whatever this
location was on the host where you first generated the tivoli install.tar.

You must retype this location so that it points to the correct location on the
dublin host. Use the same path for your servers.conf and

server commands.txt files on all hosts, if possible. If not, enter a new
location each time that you want to invoke an action on a different host.

Alternatively, you can use the server command task as a template for a new
task. After changing the value of server commands.txt, and filling in the
other fields, instead of clicking Set & Execute, click Save.... You can
rename this task as, for example, stop_prdserver on dublin.

If you want more flexibility in deciding which parameters to default and
which to leave open, you can create a custom task library based on the
IONA Tivoli task library. A description of how this is done is beyond the
scope of this document. If you need to do this, contact IONA Professional
Services.

You may have more than one Orbix configuration domain running on the
same host. Tivoli is not aware of concepts like Orbix configuration domains
and the current solution for this is to have the IONA Tivoli resource model
perform monitoring of all domains on the same host. This means having
only one servers.conf Of server_commands. txt file for each host.

This could potentially cause problems if you have servers on the same host
that have the same ORB name and by extension the same default value for
the following variable:

plugins:it response time collector:server-id

53

CHAPTER 4 | Extending to a Production Environment

This is why, by default, the server IDs are generated with the domain name
added as prefix and the host name added as suffix (for example,

mydomain_locator myhost).

A typical servers.conf file with two domains (mydomain and yourdomain)
would look as follows:

mydomain locator, 1,
/opt/iona/var/domains/mydomain/logs/locator myhost perf.log

yourdomain locator, 1,
/opt/iona/var/domains/yourdomain/logs/locator yourhost perf.log

Similarly for the task library:

mydomain locator myhost , start,
/opt/iona/etc/bin/mydomain locator start.sh

yourdomain locator yourhost , start,
/opt/iona/etc/bin/yourdomain locator start.sh

Further information For full details on how to use the Tivoli Monitoring product, see your Tivoli
Monitoring User Guide.

54

In this chapter

CHAPTER 5

Using the IONA
Tivoll Integration

This chapter explains how to perform common tasks using the
IONA Tivoli integration. For example, how to access historical
data, or detect when a server is down.

This chapter contains the following sections:

Detecting Common Server Problems page 56
Tracking Server Performance Metrics page 58
Stopping, Starting, and Restarting Servers page b9

55

CHAPTER 5 | Using the IONA Tivoli Integration

Detecting Common Server Problems

Overview

Detecting possible server crashes

Detecting problems with response
times

56

This section explains how to detect common server problems using the
IONA Tivoli integration. It includes the following:

® “Detecting possible server crashes”.

® “Detecting problems with response times”.

® “Detecting heavy traffic”.

® ‘“Enabling data logging for your servers”.

® “Further information”.

An Ev_IONAServer ServerStatus_matches event is sent when a server
listed in servers.conf fails to log a status=running message since the
beginning of the last cycle. The Ev_IONAServer ServerStatus matches
event contains information about the identity of the server that has stopped
running.

The cycle time can be set appropriately before you distribute your profile. It
is important that the configured value of the
plugins:it_response time collector:period is always less than the
cycle time. Otherwise, you may get spurious events of this type. The
specified period should divide evenly into your cycle time (for example, a
period of 20 and a cycle time of 60).

For more details on configuration variables, see “Extending to a Production
Environment” on page 45.

If the average response time of a server exceeds the average response time
threshold (Thr IONAServer Resource Model AvgResponseTime gt), an
event is emitted to warn the user. A higher than expected response time
may indicate a heavy load or possibly a failure that is causing an
unexpectedly slow response for users. This threshold should be set
appropriately for the servers that you are monitoring. This can be done in a
profile or a policy.

Detecting heavy traffic

Enabling data logging for your
servers

Further information

Detecting Common Server Problems

There is also a threshold for maximum response times

(Thr IONAServer Resource Model MaxResponseTime gt). The maximum
response time refers to the slowest operation that took place on a server
during the last collection cycle. Typically, this value can vary a lot more than
the average response time, so you might want to set this threshold higher
than the average response time.

The NumInvocations parameter tracks the number of invocations being
processed by the server during each cycle. You must treat this metric with
caution because it is not normalized and can be prone to sampling errors.

For example, small differences in the actual cycle time could mean that you
pick up an extra log entry during the lifetime of a particular cycle. This can
lead to a spike in the data.

The effect of this is lessened when the ratio of cycle time/collector period
increases. For example, if the performance logging plugin logs data every 60
seconds and the cycle time is 60 seconds, the error could be as much as
+/- 100%. If the ratio of cycle time/collector period is 10, the error for this
parameter is +/- 10%.

Before you distribute your 1oNAProfile, or indeed any profile based on the

IONA Tivoli resource model, it is recommended that you enable logging in

the profile as follows:

1. In the Tivoli Monitoring Profile window, double click on IONAServer
Monitor in the top pane.

2. This launches an Edit Resource Model window, click on the Logging...
button in this window.

3. Ensure that the Enable Data Logging button is checked.

4. Click Apply Changes and Close.

5. Click Modify & Close in the Edit Resource Model window.

If you do this before distributing the profile, the Tivoli Agent will track and

summarize data for all of the attributes in the resource model. You can use

these historical logs for a number of tasks (for example, server downtime,
explained in the next section).

For descriptions of all the events, thresholds, and parameters in the IONA
Tivoli resource model, see Appendix A.

57

CHAPTER 5 | Using the IONA Tivoli Integration

Tracking Server Performance Metrics

Overview

Examining server downtime

Tracking other server performance
metrics

58

This section explains how to track key server performance metrics (for
example, server downtime and response time). It includes:

® “Examining server downtime”.
® “Tracking other server performance metrics”.

To examine server downtime, perform the following steps:

1. Open the Web Health Console and connect to a machine that is
running your profile.

2. Inthe top pane (the one labelled Resource Models on Hostname),
select the Historical Data radio button.

3. In the bottom pane, choose the 1oNAServer Resource Model in the
left-hand drop-down box, and
IONAServer Resource Model Availability in the right-hand
drop-down box.

4. In the left-hand selection, choose the name of the server that you want
to examine.

5. In the right-hand selection, choose serverstatus.

A table is displayed that shows when the server was running, and for what
periods (if any) that its status was unknown. This will most likely be
because the server was not running.

Follow steps 1-4 listed for “Examining server downtime”. But this time,
choose a different metric on the right.

For example, to view a history of the average response time of your server,
choose AvgResponseTime (AVG). The data is displayed in tabular form for
the last hour, by default. However, you can choose to view data for longer
periods. The range of graphical presentation options, such as line and bar
charts, can give a useful insight into your server usage patterns.

Another metric of interest is Numoperations. This tracks the throughput of

your server. Viewing the history can help you identify times when the server
usage peaks.

Stopping, Starting, and Restarting Servers

Stopping, Starting, and Restarting Servers

Overview

Establishing which servers and
operations are tracked

Example of starting the locator
service

This section explains how to use the 1oNAServerTaskLibrary to perform
actions on servers (for example, stop, start, or restart). It includes:

® ‘“Establishing which servers and operations are tracked”.
® “Example of starting the locator service”.

The ToNAserverTaskLibrary enables you to stop, start or restart your
servers. To check what servers are recognized by the system and what
operations are defined for them, perform the following steps:

Double click on the 10NAServerTaskLibrary.
Double click on 1ist _server commands.

Click the Display on Desktop checkbox.

Click the endpoint on which to execute the task.
Select Execute & Dismiss.

o ok wb

Verify that the Server Command File Location is correct (this is the

server commands.txt file).
7. Click Set & Execute.

A list of recognized servers and the operations supported for those servers is
displayed.

To start an Orbix locator service (for example, in the domain foo, on the
host patrick) perform the following steps:

1. Double click on the ToNAServerTaskLibrary.
2. Double click on server command.

3. Click the Display on Desktop checkbox. Select the endpoint on which
to execute the task.

4. Click Execute & Dismiss.

59

CHAPTER 5 | Using the IONA Tivoli Integration

5. Verify that the Server Commands File Location is correct (this is for

the server commands.txt file)

6. Fill in the name and ID of the server (foo locator patrick) and the
action (start).

7. Click Set & Execute.

60

APPENDIX A

IONA Tivol
Resource Model

This appendix describes the contents of the IONA Tivoli
resource model. It includes descriptions of the thresholds,
events, and parameters used in this model, along with a

WBEM/CIM definition.
In this appendix This chapter contains the following sections:
Thresholds page 62
Events page 64
Parameters page 65
WBEM/CIM Definition page 66

61

APPENDIX A | IONA Tivoli Resource Model

Thresholds

This section describes the thresholds in the IONA Tivoli resource model. It
lists an internal name and description of each threshold.

Thr_IONAServer_Resource_Model AvgResponseTime_gt

When the avgResponseTime counter exceeds this threshold, the
Ev_IONAServer Resource Model AvgResponseTime too high event is
generated.

The default value is so.

This threshold corresponds to the AvgResponseTime upper bound threshold
displayed in the Profile Manager GUI.

Thr_IONAServer_Resource_Model_MaxResponseTime_gt

When the MaxResponseTime counter exceeds this threshold, the
Ev_IONAServer Resource Model MaxResponseTime too high event is
generated.

The default value is 250.

This threshold corresponds to the MaxResponseTime upper bound
threshold displayed in the Profile Manager GUI.

Thr_IONAServer_Resource_Model_Numinvocations_It

When the NumInvocations counter is lower than this threshold, the
Ev_IONAServer Resource Model NumInvocations too low event is
generated.

The default value is o.

This threshold corresponds to the Numinvocations lower bound threshold
displayed in the Profile Manager GUI. This threshold is useful for detecting
server hangs when used in conjunction with a ping client that is run at
regular intervals.

62

Thresholds

Thr_IONAServer_Resource_Model_Numlnvocations_gt

When the NumInvocations counter exceeds this threshold the
Ev_IONAServer Resource Model NumInvocations too high event is
generated.

The default value is 100000.

This threshold corresponds to the Numinvocations upper bound threshold
displayed in the Profile Manager GUI.

63

APPENDIX A | IONA Tivoli Resource Model

Events

This section describes the events in the IONA Tivoli resource model. It lists
an internal name and description of each event.

Ev_IONAServer_Resource_Model AvgResponseTime too_high

This event is generated when the AvgresponseTime counter exceeds the
AvgResponseTime upper bound threshold.

Ev_IONAServer_Resource_Model_MaxResponseTime_too_high

This event is generated when the MaxResponseTime counter exceeds the
MaxResponseTime upper bound threshold.

Ev_IONAServer_Resource_Model_Numlnvocations_too_low

This event is generated when the NumInvocations counter is lower than the
Numinvocations lower bound threshold.

Ev_IONAServer_Resource_Model_Numlinvocations_too_high

This event is generated when the server is receiving a large number of
invocations, and when the NumInvocations counter exceeds the
Numlnvocations upper bound threshold. This can be an indication of
overload.

Ev_IONAServer_Server_Status_matches

64

This event is generated when the status of the server is unknown.

Parameters

Parameters

This section describes the parameter in the IONA Tivoli resource model. It
lists an internal name and description.

Par_Problematic_Status Values eqs

This specifies values that indicate a problem with the server status. Possible
values are as follows:
hd unknown

® shutdown started

® shutdown complete

65

APPENDIX A | IONA Tivoli Resource Model

WBEM/CIM Definition

66

WBEM/CIM refers to Web-Based Enterprise Management/Common
Information Model. The WBEM/CIM definition for the IONA Tivoli resource
model is as follows:

#pragma namespace ("\\\\.\\ROOT\\CIMV2")

[

Dynamic,
M12 Instrumentation ("Java.com.iona.management.provider.tivoli.AR
TILTProviderImpl | | ENUM"),

Provider ("M12JavaProvider")

]

class IONAServer

{

[Key, Description ("The unique name of an IONA Server
Replica")]
string Identifier;

[

Dynamic,

M12 Instrumentation ("Java.com.iona.management.provider.tivoli
.ARTILTProviderImpl | | GET"),
Provider ("M12JavaProvider")

]

uint32 NumInvocations;

[

Dynamic,

M12 Instrumentation ("Java.com.iona.management.provider.tivoli
.ARTILTProviderImpl | | GET"),
Provider ("M12JavaProvider")

]

uint32 MaxResponseTime;

WBEMY/CIM Definition

[

Dynamic,

M12 Instrumentation ("Java.com.iona.management.provider.tivoli
ARTILTProviderImpl | | GET"),
Provider ("Ml12JavaProvider")

]

uint32 MinResponseTime;

[

Dynamic,

M12 Instrumentation ("Java.com.iona.management.provider.tivoli
.ARTILTProviderImpl | | GET"),
Provider ("Ml12JavaProvider")

]

uint32 AvgResponseTime;

[

Dynamic,

M12_ Instrumentation ("Java.com.iona.management.provider.tivoli
.ARTILTProviderImpl | | GET"),
Provider ("Ml12JavaProvider")

]

string ServerStatus;

67

APPENDIX A | IONA Tivoli Resource Model

68

Index

A

Apply Changes and Close 57

Artix Designer 24

average response time 56, 58
AvgResponseTime 58
AvgResponseTime upper bound 62

B
binding:server_binding_list 50, 51
bus_response_monitor 46

C

C++ configuration 50
check_deployment task 40
configure_provider 42, 47, 52
configure_provider task 40

crash, server 56

create_profile.sh 36
create_tivoli_install_bundle 34, 35
cycle time 43, 51, 56

D

Display on Desktop 59
Domain Settings 29

E

Edit Resource Model 57

EMS 16

Enable Data Logging 39, 57

Enterprise Management System 16

events 64

Ev_IONAServer_Resource_Model_MaxResponseTime
_too_high 64

Ev_IONAServer_Resource_Model_Numinvocations_t
oo_high 64

Ev_IONAServer_Resource_Model_Numilnvocations_t
0o_low 64

Ev_IONAServer_Server_Status_matches 64

Ev_IONAServer_ServerStatus_matches 56

Execute & Dismiss 59

F

filename 51

G
Generate EMS Configuration Files 29

|

import_tll.sh 36

IONAProfile 36, 57

|IONAServer Monitor 38, 57
IONAServer_Resource_Model 58
IONAServer_Resource_Model_Availability 58
IONAServerTaskLibrary 40, 59

IONA Tivoli resource model 57

itconfigure tool 29

it_response_time_logger 50, 51

J

Java configuration 51

L

Launch Service on Domain Startup 30
list_server commands task 40

log file interpreter 17

Logging... 39, 57

log_properties 51

M

maximum response time 57
MaxResponseTime upper bound 62
Modify & Close 39, 57

Monitoring Profile 57

N

Numlnvocations 57

Numlnvocations lower bound 62
Numlnvocations upper bound 43, 63, 64
NumOperations 58

69

INDEX

o

Orbix Configuration tool 29, 50
orb_plugins 46

Other Properties 30

P
parameters 65
Par_Problematic_Status Values eqs 65
performance logging

configuration 30

plugins 17
plugins:it_response_time_collector:filename 46, 50
plugins:it_response_time_collector:log_properties 5

plugins:it_response_time_collector:period 46, 50,
51, 56

plugins:it_response_time_collector:server-id 50, 51,
53

Profile Manager 36, 62
pskill 26

R

resource model
events 64
parameters 65
servers.conf 26
thresholds 62
response time 17
average 56
maximum 57
response_time_collector 51

S

Save... 48, 53

server_command 48, 53

Server Command File Location 48, 53, 59
server_commands.txt 26, 31, 40, 48, 49, 53, 59
server_command task 40, 43, 51

server crash 56

server-id 51

servers.conf file 26, 31, 40, 47, 49, 52
ServerStatus 58

70

Service Launching 30
Set & Execute 48, 53, 59
setup utilities 20
shutdown_complete 65
shutdown_started 65
stopping

applications on Windows 26

T

taskkill 26

threshold

average response time 56
maximum response time 57

thresholds 62

Thr_IONAServer_Resource_Model_AvgResponseTim
e gt 56, 62

Thr_IONAServer_Resource_Model _MaxResponseTim
e gt 57, 62

Thr_IONAServer Resource_Model _Numlnvocations_
gt 63

Thr_IONAServer_Resource_Model_Numlnvocations_
It 62

Tivoli Desktop 36

tivoli_install.tar 35, 48, 53

tivoli_integration.tar 34

Tivoli Management Framework 19

Tivoli Monitoring 19

Tivoli profile manager 35

Tivoli region name 35

Tivoli task library 20, 26

Tivoli Web Health Console 42

u

unknown 65

W
WBEM/CIM definition 66
wdmemd 42
wdmlseng 43
Web Health console 58
Windows

stopping applications 26

	List of Figures
	Preface
	What is covered in this book
	Who should read this book
	Organization of this book
	The Artix Library
	Getting the Latest Version
	Searching the Artix Library
	Artix Online Help
	Artix Glossary
	Additional Resources
	Document Conventions

	Integrating with IBM Tivoli™
	Introduction
	The IONA Tivoli Integration

	Configuring your IONA Product
	Setting up your Artix Environment
	Setting up your Orbix Environment

	Configuring your Tivoli Environment
	Creating a Tivoli Installation Bundle
	Installing the Resource Model in the Tivoli Server
	Pushing the Resource Model out to your Host
	Configuring the Resource Model for your Endpoint

	Extending to a Production Environment
	Configuring an Artix Production Environment
	Configuring an Orbix Production Environment

	Using the IONA Tivoli Integration
	Detecting Common Server Problems
	Tracking Server Performance Metrics
	Stopping, Starting, and Restarting Servers

	IONA Tivoli Resource Model
	Thresholds
	Events
	Parameters
	WBEM/CIM Definition

	Index

