IONA

Artix:

Artix Transactions Guide, C++
Version 4.1, September 2006

Making Software Work Together™

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2006 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: September 26, 2006

Contents

List of Tables
List of Figures
Preface

Chapter 1 Introduction to Transactions
Basic Transaction Concepts
Artix Transaction Features
X/Open Distributed Transaction Processing
X/Open DTP Architecture
X/Open XA Interface

Chapter 2 Getting Started with Transactions
Sample Scenario
Client Example
Server Example
Configuration

Chapter 3 Selecting a Transaction System
Configuring OTS Lite
Configuring OTS Encina
Configuring Non-Recoverable WS-AT
Configuring Recoverable WS-AT

Chapter 4 Basic Transaction Programming
Artix Transaction Interfaces
Beginning and Ending Transactions
Server Programming
Registering an XA Resource
Dynamic Registration Optimization
Writing a Custom Resource

17
18
20
25
26
29

33
34
40
43
52

55
56
59
63
67

71
72
75
78
79
85
92

CONTENTS

Server-Side Programming Model

Chapter 5 Transaction Propagation
Transaction Propagation and Interposition

Chapter 6 Threading
Client Threading
Threading and XA Resources

Chapter 7 Transaction Recovery
Transactions Systems and Recovery
Transaction Recovery Scenarios
Server Crash before or during Prepare Phase
Server Crash after Prepare Phase
Transaction Coordinator Crash

Chapter 8 Recoverable Resources
Transaction Participants
Interposition

Chapter 9 Notification Handlers
Introduction to Notification Handlers

Chapter 10 Exposing Artix as an XA Resource
Introduction to the Artix XA Resource Manager
Obtaining an Artix XA Resource Manager

Obtaining the XA Switch from a Global Function
Obtaining the XA Switch from a Bus Instance
Obtaining the XA Switch from a Switch Load File
Artix XA Open and Close Strings
Configuring the Artix XA Resource Manager

Chapter 11 MQ Transactions

Reliable Messaging with MQ Transactions

Index

93

97
98

103
104
109

115
116
118
119
121
123

125
126
134

137
138

141
142
145
146
147
148
150
152

155
156

165

List of Tables

Table 1: Sample Mechanisms for Obtaining XA Switches

Table 2: Examples of Open Strings for Some XA Resource Managers
Table 3: Examples of Close Strings for Some XA Resource Managers
Table 4: Transaction Systems and Recoverability

Table 5: Default Switch Load File for Artix on Various Platforms

80
81
81
116
148

LIST OF TABLES

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Artix Client Invokes a Transactional Operation on a CORBA OTS Server
One-Phase Commit Protocol

Two-Phase Commit Protocol

The X/Open DTP Architecture

Bank Scenario with Transactions

Overview of a Client-Server System that Uses OTS Lite

Overview of a Client-Server System that Uses OTS Encina
Client-Server System that Uses Non-Recoverable WS-AT

Client-Server System that Uses Recoverable WS-AT

Figure 10: Overview of the Artix Transaction API

Figure 11: Invocation Dispatch for a Normally Registered RM

Figure 12: Invocation Dispatch for a Dynamically Registered RM

Figure 13: Overview of Different Kinds of Transaction Propagation

Figure 14: Limitation of Transaction Propagation Using OTS Lite
Figure 15: Default Client Threading Model
Figure 16: Detaching and Re-Attaching a Transaction to a Thread

Figure 17: Attaching a Transaction to Multiple Threads

Figure 18: Transferring a Transaction from One Thread to Another

Figure 19: Auto-Association with a Single Registered Resource

Figure 20: Auto-Association with Multiple Registered Resources

Figure 21: Database Resource Operating in Multi-Threaded Mode

Figure 22: Threading for a Dynamically Registered Resource

Figure 23: Server Crash before or during the Prepare Phase

Figure 24: Server Crash after the Prepare Phase

Figure 25: Transaction Participants in a 2-Phase Commit Protocol

Figure 26: Artix XA Resource Manager Manages a Local Resource

21
22
23
26
34
56
59
63
67
72
86
88
99
100
104
106
107
108
109
111
112
113
119
121
127
142

LIST OF FIGURES

Figure 27: Artix XA Resource Manager Manages a Remote Resource 143
Figure 28: Oneway Operation Invoked Over an MQ Transport with MQ Transactions Enabled 157

Figure 29: Synchronous Operation Invoked Over the MQ Transport with MQ Transactions Enabled
160

Preface

What is Covered in this Book

This book explains how to program and configure Artix transactions in C++.

Who Should Read this Book

This guide is intended for Artix C++ programmers. This guide assumes that
the reader is familiar with WSDL and XML schemas.

The Artix Library

The Artix documentation library is organized in the following sections:
® QGetting Started

® Designing Artix Solutions

® Configuring and Managing Artix Solutions

® Using Artix Services

® Integrating Artix Solutions

® |ntegrating with Management Systems

® Reference

® Artix Orchestration

Getting Started

The books in this section provide you with a background for working with

Artix. They describe many of the concepts and technologies used by Artix.

They include:

® Release Notes contains release-specific information about Artix.

® Installation Guide describes the prerequisites for installing Artix and the
procedures for installing Artix on supported systems.

® QGetting Started with Artix describes basic Artix and WSDL concepts.

../release_notes/index.htm
../install_guide/index.htm
../getting_started/index.htm

PREFACE

10

® Using Artix Designer describes how to use Artix Designer to build Artix
solutions.

® Artix Technical Use Cases provides a number of step-by-step examples
of building common Artix solutions.

Designing Artix Solutions

The books in this section go into greater depth about using Artix to solve

real-world problems. They describe how to build service-oriented

architectures with Artix and how Artix uses WSDL to define services:

® Building Service-Oriented Infrastructures with Artix provides an
overview of service-oriented architectures and describes how they can
be implemented using Artix.

® Writing Artix Contracts describes the components of an Artix contract.
Special attention is paid to the WSDL extensions used to define
Artix-specific payload formats and transports.

Developing Artix Solutions

The books in this section how to use the Artix APIs to build new services:

® Developing Artix Applications in C++ discusses the technical aspects
of programming applications using the C++ API.

® Developing Advanced Artix Plug-ins in C++ discusses the technical
aspects of implementing advanced plug-ins (for example, interceptors)
using the C++ APL.

® Developing Artix Applications in Java discusses the technical aspects
of programming applications using the Java API.

Configuring and Managing Artix Solutions

This section includes:

® Configuring and Managing Artix Solutions explains how to set up your
Artix environment and how to configure and deploy Artix services.

® Managing Artix Solutions with JMX explains how to monitor and
manage an Artix runtime using Java Management Extensions.

Using Artix Services

The books in this section describe how to use the services provided with

Artix:

® Artix Router Guide explains how to integrate services using the Artix
router.

../designer/index.htm
../cookbook/index.htm
../soa/index.htm
../contract/index.htm
../prog_guide/index.htm
../plugin_guide/index.htm
../java_pguide/index.htm
../deploy/index.htm
../jmx_mgmt/index.htm
../routing/index.htm

PREFACE

® Artix Locator Guide explains how clients can find services using the
Artix locator.

® Artix Session Manager Guide explains how to manage client sessions
using the Artix session manager.

® Artix Transactions Guide, C++ explains how to enable Artix C++
applications to participate in transacted operations.

® Artix Transactions Guide, Java explains how to enable Artix Java
applications to participate in transacted operations.

® Artix Security Guide explains how to use the security features in Artix.

Integrating Artix Solutions

The books in this section describe how to integrate Artix solutions with other

middleware technologies.

® Artix for CORBA provides information on using Artix in a CORBA
environment.

® Artix for J2EE provides information on using Artix to integrate with
J2EE applications.

For details on integrating with Microsoft's .NET technology, see the
documentation for Artix Connect.

Integrating with Management Systems

The books in this section describe how to integrate Artix solutions with a

range of enterprise and SOA management systems. They include:

® |BM Tivoli Integration Guide explains how to integrate Artix with the
IBM Tivoli enterprise management system.

® BMC Patrol Integration Guide explains how to integrate Artix with the
BMC Patrol enterprise management system.

® CA-WSDM Integration Guide explains how to integrate Artix with the
CA-WSDM SOA management system.

® AmberPoint Integration Guide explains how to integrate Artix with the
AmberPoint SOA management system.

Reference

These books provide detailed reference information about specific Artix
APIs, WSDL extensions, configuration variables, command-line tools, and
terms. The reference documentation includes:

® Artix Command Line Reference

11

../locator_guide/index.htm
../session_mgr/index.htm
../transactions_cxx/index.htm
../transactions_java/index.htm
../security/index.htm
../corba_ws/index.htm
../j2ee/index.htm
../tivoli/index.htm
../bmc/index.htm
../ca_wsdm/index.htm
../amberpoint/index.htm
../command_ref/index.htm

PREFACE

® Artix Configuration Reference

® Artix WSDL Extension Reference
® Artix Java API Reference

® Artix C++ API Reference

® Artix .NET API Reference

® Artix Glossary

Artix Orchestration

These books describe the Artix support for Business Execution Process
Language (BEPL), which is available as an add-on to Artix. These books
include:

® Artix Orchestration Release Notes

® Artix Orchestration Installation Guide

® Understanding Artix Orchestration

® Artix Orchestration Administration Console Help.

Getting the Latest Version
The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Artix Library
You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right, for example:

http://www.iona.com/support/docs/artix/4.0/index.xml

You can also search within a particular book. To search within a HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Artix Online Help

Artix Designer includes comprehensive online help, providing:

12

http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/4.0/index.xml
http://www.iona.com/support/docs
http://www.iona.com/support/docs
../config_ref/index.htm
../wsdl_ref/index.htm
../javadoc/index.html
../cppdoc/index.html
../ndoc/index.html
../glossary/index.htm
../orch_relnotes/index.htm
../orch_install/index.htm
../orch_intro/index.htm
../orch_admin/index.htm

PREFACE

® Step-by-step instructions on how to perform important tasks

® Afull search feature

® Context-sensitive help for each screen

There are two ways that you can access the online help:

® Select Help|Help Contents from the menu bar. A section on Artix
Designer appears in the contents panel of the Eclipse help browser.

® Press F1 for context-sensitive help.

In addition, there are a number of cheat sheets that guide you through the

most important functionality in Artix Designer. To access these, select
Help|Cheat Sheets.

Artix Glossary

The Artix Glossary provides a comprehensive reference of Artix terminology.
It provides quick definitions of the main Artix components and concepts. All
terms are defined in the context of the development and deployment of Web
services using Artix.

Additional Resources

The IONA Knowledge Base (http://www.iona.com/support/knowledge_base/
index.xml) contains helpful articles written by IONA experts about Artix and
other products.

The IONA Update Center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products.

If you need help with this or any other IONA product, go to IONA Online
Support (http://www.iona.com/support/index.xml).

Comments, corrections, and suggestions on IONA documentation can be
sent to docs-support@iona.com .

13

http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml
../glossary/index.htm

PREFACE

Document Conventions

Typographical conventions
This book uses the following typographical conventions:

Fixed width

Fixed width italic

Italic

Bold

14

Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the 1T _Bus: :AnyType
class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

o

% cd /users/YourUserName

Italic words in normal text represent emphasis and
introduce new terms.

Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.

Keying Conventions

PREFACE

This book uses the following keying conventions:

No prompt

o

When a command’s format is the same for multiple
platforms, the command prompt is not shown.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the MS-DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File| Open).

15

PREFACE

16

In this chapter

CHAPTER 1

Introduction to
Transactions

This chapter provides an introduction to transaction concepts
and to the transaction features supported by Artix.

This chapter discusses the following topics:

Basic Transaction Concepts page 18
Artix Transaction Features page 20
X/Open Distributed Transaction Processing page 25

17

CHAPTER 1 | Introduction to Transactions

Basic Transaction Concepts

What is a transaction?

Example

18

Artix gives separate software objects the power to interact freely even if they
are on different platforms or written in different languages. Artix adds to this
power by permitting those interactions to be transactions.

What is a transaction? Ordinary, non-transactional software processes can
sometimes proceed and sometimes fail, and sometimes fail after only half
completing their task. This can be a disaster for certain applications. The
most common example is a bank fund transfer: imagine a failed software
call that debited one account but failed to credit another. A transactional
process, on the other hand, is secure and reliable as it is guaranteed to
succeed or fail in a completely controlled way.

The classical illustration of a transaction is that of funds transfer in a

banking application. This involves two operations: a debit of one account

and a credit of another (perhaps after extracting an appropriate fee). To

combine these operations into a single unit of work, the following properties

are required:

® |f the debit operation fails, the credit operation should fail, and
vice-versa; that is, they should both work or both fail.

® The system goes through an inconsistent state during the process
(between the debit and the credit). This inconsistent state should be
hidden from other parts of the application.

® |tis implicit that committed results of the whole operation are
permanently stored.

Properties of transactions

Basic Transaction Concepts

The following points illustrate the so-called ACID properties of a transaction.

Atomic A transaction is an all or nothing procedure —
individual updates are assembled and either
committed or aborted (rolled back) simultaneously
when the transaction completes.

Consistent A transaction is a unit of work that takes a system
from one consistent state to another.

Isolated While a transaction is executing, its partial results
are hidden from other entities accessing the
transaction.

Durable The results of a transaction are persistent.

Thus a transaction is an operation on a system that takes it from one
persistent, consistent state to another.

19

CHAPTER 1 | Introduction to Transactions

Artix Transaction Features

Overview

Supported protocols

Client-side transaction support

20

This section gives a short overview of the main features supported by Artix
transactions. The Artix transaction API is designed to be compatible with a
variety of different underlying transaction systems. Generally, you can
access the transaction system using a technology-neutral API, but the
technology-specific APls are also available, in case you need to access more
advanced functionality.

The main features of Artix transactions are as follows:
® Supported protocols

® Client-side transaction support.

® Server-side transaction support.

® Compatibility with Orbix.

® Pluggable transaction system.

® One-phase commit.

® Two-phase commit.

® Transaction propagation.

Artix supports distributed transactions using the following protocols:
® CORBA binding over IIOP.
® SOAP binding over any compatible transport.

Transaction demarcation functions (begin transaction(),
commit_transaction() and rollback transaction()) can be used on the
client side to initiate and terminate a transaction. While the transaction is
active, all of the operations called from the current thread are included in
the transaction (that is, the operations’ request headers include a
transaction context).

Server-side transaction support

Compatibility with Orbix

Artix Transaction Features

On the server side, an API is provided that enables you to implement
transaction participants (sometimes referred to as transactional resources).
Using transaction participants, you can implement servers that participate in
a distributed transaction with the ACID transaction properties (Atomicity,
Consistency, Integrity, and Durability).

Artix supports several different approaches to implementing a transaction
participant, depending on what kind of transaction system is loaded into
your application. For example, you might take a technology-neutral
approach by implementing the IT Bus::TransactionParticipant class, or
you might decide to exploit the special features of a particular transaction
system instead.

The Artix transaction facility is fully compatible with CORBA OTS in Orbix.
Hence, if you already have a transactional server implemented with Orbix
ASP, you can easily integrate this with an Artix client, as shown in Figure 1.

Figure 1: Artix Client Invokes a Transactional Operation on a CORBA OTS
Server

Orbix Domain

Artix
Client

begin transaction()
invoke

invoke

CORBA
- Server

Resource

Pluggable transaction system

Transaction
Factory

1
1
1
1
1
'
1
!
T
1
1
1
1
. . . . 1
commit_transaction() : !
R —
1
1
1
1
1
1
1
1
1
1
1
1
1

The underlying transaction system used by Artix can be replaced within a
pluggable framework. Currently, the following transaction systems are
supported by Artix:

® QTS Lite.
® QTS Encina.
® WS-AtomicTransactions.

21

CHAPTER 1 | Introduction to Transactions

One-phase commit

Two-phase commit

22

Artix supports the one-phase commit (1PC) protocol for transactions. This
protocol can be used if there is only one resource participating in the
transaction. The 1PC protocol essentially delegates the transaction
completion to the single resource manager. Figure 2 shows a schematic
overview of the 1PC protocol for a simple client-server system.

Figure 2: One-Phase Commit Protocol

Artix
Client

begin_transaction()

. invoke ;
. ; ® Artix Server
\ invoke :
‘commit_transaction ()--

©}

A 4

Resource

Transaction
System

The 1PC protocol progresses through the following stages:

1. Theclient calls begin transaction() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations
on the remote server. The WSDL operations are transactional, requiring
updates to a persistent resource.

3. Theclient calls commit_transaction() to make permanent any
changes caused during the transaction (alternatively, the client could
call rollback transaction() to abort the transaction).

4. The transaction system performs the commit phase by sending a
notification to the server that it should perform a 1PC commit.

The two-phase commit (2PC) protocol enables multiple resources to
participate in a transaction. In order to preserve the essential properties of a
transaction involving multiple distributed resources, it is necessary to use a
more elaborate algorithm. The 2PC algorithm consists of the following two
phases:

Artix Transaction Features

® Prepare phase—the transaction system notifies all of the participants
to prepare the transaction. The participants prepare the transaction by
saving the information that would be required to redo or undo the
changes made during the transaction. At the end of this phase, the
participants vote whether to commit or roll back the transaction.

® Commit (or rollback) phase—if all of the participants vote to commit
the transaction, the transaction system notifies the participants to
commit the changes. On the other hand, if one or more participants
vote to roll back the transaction, the transaction system notifies the

participants to roll back the changes.

Figure 3 shows a schematic overview of the 2PC protocol for a client and

two remote servers.

Figure 3: Two-Phase Commit Protocol

Artix
Client

begin_transaction() !

invoke

invoke

The 2PC protocol progresses through the following stages:

Artix Server

Transaction
System

»

---commit

--prepare - - -

Artix Server

Transaction
System

Resource

Resource

1. Theclient calls begin transaction() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations
on both of the remote servers.

23

CHAPTER 1 | Introduction to Transactions

Transaction propagation

24

3. Theclient calls commit_transaction() to make permanent any
changes caused during the transaction (alternatively, the client could
call rollback transaction() to abort the transaction).

4. The transaction system performs the prepare phase by polling all of the
remote transaction participants (the first phase of a two-phase
commit).

5. The transaction system performs the commit or rollback phase by
sending a notification to all of the remote transaction participants (the
second phase of a two-phase commit).

If you have a section of code executing within a transaction context, Artix
automatically propagates a transaction context with the request message,
whenever a remote operation is called.

For example, consider a three-tier system, where a client initiates a
transaction, invokes an operation on server 1, and then server 1 makes a
further call on server 2. In this scenario, Artix automatically propagates the
transaction to server 2. The transaction is propagated, even if the protocol
between the client and server 1 differs from the protocol used between
server 1 and server 2.

X/Open Distributed Transaction Processing

X/Open Distributed Transaction Processing

Overview The X/Open Distributed Transaction Processing (DTP) architecture is a
technical standard published by the Open Group. The X/Open DTP
architecture enables you to integrate resources relatively easily into a
distributed transaction system.

In this section This section contains the following subsections:
X/Open DTP Architecture page 26
X/Open XA Interface page 29

25

CHAPTER 1 | Introduction to Transactions

X/Open DTP Architecture

Overview

DTP model

26

This subsection provides a brief overview of the X/Open Distributed
Transaction Processing (DTP) architecture, also known as the XA
specification. For a complete description of the X/Open DTP standard, you
can download the XA specification from the following Web page:

http://www.opengroup.org/bookstore/catalog/c193.htm

Figure 4 shows an overview of the X/Open DTP model, showing the basic
components and the interfaces between them. The key idea of the X/Open
architecture is that responsibility for managing transactions in a distributed
system must be divided between two components: a transaction manager
and a resource manager. This division would be unnecessary for local
transactions, which could be managed happily by a resource manager
alone, but it is essential for distributed transactions, where the mechanisms
for coordinating global transactions (that is, starting, committing, and rolling
back) are implemented separately from the resource manager.

Figure 4: The X/Open DTP Architecture

Application
pp Resource
Program
{
EXEC SQL UPDATE
EXEC SQL UPDATE
}
. XA Interface
XA Transaction [XA Resource
Manager AT rora— Manager

http://www.opengroup.org/bookstore/catalog/c193.htm

Resource

Resource manager

Transaction manager

Global transaction

Transaction branch

X/Open Distributed Transaction Processing

A resource is any part of the system that could undergo a persistent change.
In most cases, a resource represents some form of persistent storage (such
as a database), but it could also represent, for example, the mechanism in
an Automated Teller Machine that tenders cash to customers.

A resource manager manages part of a computer's shared resources. In
particular, the resource manager must be capable of grouping resource
operations into transactions and either committing or rolling back those
transactions in response to calls from the transaction manager (mediated by
the XA interface).

For example, the Oracle DB with an XA switch is an XA-compliant resource
manager.

A transaction manager is responsible for coordinating transactions across a
distributed system. The transaction manager coordinates decisions to
commit or roll back a global transaction and is also responsible for
coordinating failure recovery.

For example, the OTS Encina transaction manager implements the 2-phase
commit protocol for global transactions.

A global transaction is a transaction that spans multiple processes and
multiple resources in a distributed system. To manage a global transaction
properly, it is necessary to ensure that the updates made to different
resources in different processes can be committed atomically (or rolled
back) at the end of the transaction.

Because a global transaction is spread over a distributed system, work can
be done on the global transaction in different processes. Moreover, within
each process, work can be done in different resource managers (for
example, you might have an Oracle XA resource manager and an MQ-Series
resource manager both registered within the same process). Hence, it is
useful to introduce the concept of a transaction branch, which identifies the
work done on a global transaction by each resource manager in each
process. The total work done on a global transaction is, therefore, equal to
the sum of the work done in all of its branches.

27

CHAPTER 1 | Introduction to Transactions

XA interfaces

28

The XA architecture defines a suite of interfaces that mediate the interaction
between the various components of the XA DTP model, as follows:

XA interface—a collection of functions that the transaction manager
can call on a resource manager in order to coordinate local and
distributed transactions. This interface is fully supported by Artix, both
in the role of transaction manager (where Artix manages foreign
resource managers through the XA interface) and in the role of resource
manager (where Artix is controlled by a foreign transaction manager).
AX interface—a collection of functions that the resource manager can
call back on the transaction manager. This interface is used internally
by Artix to implement the dynamic registration optimization. See
“Dynamic Registration Optimization” on page 85 for more details.

TX interface—a collection of functions that perform transaction
demarcation (beginning, committing and rolling back transactions) by
calling on the transaction manager. Artix does not implement the TX
interface; you use the demarcation functions provided on the

IT Bus::TransactionSystem class instead.

X/Open Distributed Transaction Processing

X/Open XA Interface

Overview

XA switch type

The X/Open XA interface is the interface that a transaction manager uses to
control the committing or rolling back of a transaction branch in a resource
manager. The great convenience of the XA interface is that it provides a
simple mechanism for integrating a resource into a distributed transaction
system. The XA interface effectively enables you to p/ug in a resource
manager into a distributed transaction system.

For example, if you want to integrate an Oracle DB into the OTS Encina
distributed transaction system (which is one of the transaction systems
supported by Artix), you would simply register Oracle’s XA switch with Artix.
This requires no more than two or three lines of code in your application
program. Once you have registered the Oracle XA switch, the Oracle DB is
able to partake in distributed transactions managed by OTS Encina.

XA defines a set of C-function pointers, and a C-struct that holds these
function pointers, xa_switch t (see orbix_sys/xa.h) as shown in
Example 1.

Example 1: The XA Switch Type, xa_switch t

7= e =
struct xa switch t
{
char name [RMNAMESZ]; /* name of resource manager */
long flags; /* resource manager specific options */
long version; /* must be 0 */
int (*xa open entry) /* xa open function pointer */
(char *, int, long);
int (*xa close entry) /* xa close function pointer */
(char *, int, long);
int (*xa start entry) /* xa start function pointer */
(XID *, int, long) ;
int (*xa end entry) /* xa end function pointer */
(XID *, int, long) ;
int (*xa rollback entry) /* xa rollback function pointer */
(XID *, int, long) ;
int (*xa prepare entry) /* xa prepare function pointer */
(XID *, int, long) ;
int (*xa commit entry) /* xa commit function pointer */

29

CHAPTER 1 | Introduction to Transactions

Function pointers

30

Example 1: The XA Switch Type, xa_switch _t

(XID *, int, long);

int (*xa recover entry) /* xa recover function pointer */
(XID *, long, int, long);

int (*xa_ forget entry) /* xa forget function pointer */
(XID *, int, long);

int (*xa complete entry) /* xa complete function pointer */
(int *, int *, int, long);

It

The function pointers provided by the xa_switch_t struct point to the

following XA functions:

® xa open() and xa_close ()—the xa_open () function opens a
connection to the resource. For example, in a single-threaded
application, the transaction manager would usually call xa_open () as it
starts up.
The xa_close () function closes the connection to the resource. For
example, the transaction manager would usually call xa_close() as it
shuts down.

® xa start() and xa_end()—the transaction manager calls xa_start ()
before doing any work on a transaction branch. At the end of the work,
the transaction manager calls xa_end ().
The xa_start () and xa_end () functions are closely related to the XA
threading model (see “Threading and XA Resources” on page 109).
The xa_start () function creates an association between the current
thread and a transaction branch, and the xa_end () function ends the
association. By passing in the appropriate flag, it is also possible for
xa_end () to temporarily suspend the association between the current
thread and the transaction branch and for xa_start () to resume the
association.

® xa prepare(), xa_commit (), and xa_rollback ()—the transaction
manager calls these functions in the course of the 1-phase and
2-phase commit protocols.

® xa recover() and xa_forget ()—the transaction manager can call
these functions to recover after a system crash. Typically, a transaction
manager provides a recovery tool to manage the recovery process.

Providing an XA switch instance

X/Open Distributed Transaction Processing

Each XA resource manager must provide a global instance of the
xa_switch t type. For example, this might be provided either as a global
xa_switch_t struct or as the return value from a global function. The
mechanism for obtaining an xa_switch_t instance is not standardised and

varies from product to product.
For example, Oracle provides a global xa_switch_t instance called xaosw.

31

CHAPTER 1 | Introduction to Transactions

32

In this chapter

CHAPTER 2

Getting Started
with Transactions

This chapter discusses a simple demonstration scenario
involving a client and two remote servers. The servers enlist
XA resources, which are responsible for integrating the servers’
persistent storage with the Artix transaction system.

This chapter discusses the following topics:

Sample Scenario page 34
Client Example page 40
Server Example page 43
Configuration page 52

33

CHAPTER 2 | Getting Started with Transactions

Sample Scenario

Overview

Bank example

34

This section describes a sample scenario involving a funds transfer between
two different bank servers, where each bank server is a transactional
resource. This scenario is used as the basis for the examples discussed in
the rest of this chapter.

Figure 5 shows the outline of a scenario involving a funds transfer between
two bank accounts, which are located on different servers, Bank Server 1
and Bank Server 2. This scenario assumes that the application is using the
OTS transaction system. In particular, the client loads the OTS Encina
plug-in, which is responsible for coordinating the global transactions.

Figure 5: Bank Scenario with Transactions

make_withdrawal ()

Bank Server 1

2 Resource
_ib'é'gi'h:& ransaction() oTs
Artix . invoke
Client . invoke .
commit transaction() ®
oTS
OTS Encina - » Bank Server 2
make_deposit ()
Resource
oTS

Funds transfer

Bank WSDL contract

Sample Scenario

The scenario shown in Figure 5 can be described as follows:
1.

The client initiates a transaction by calling the

IT Bus::TransactionSystem::begin transaction() function.

Within the scope of the transaction, the client invokes the

make withdrawal () operation on an account in Bank Server 1, in order
to withdraw a sum of money. The operation request is accompanied by
a transaction context.

The client invokes the make deposit () operation on another account in
Bank Server 2, in order to deposit the sum of money.

The client calls the

IT Bus::TransactionSystem::commit transaction() to commit the
transaction. The Artix transaction manager then uses a two-phase
commit protocol to commit the changes to Bank Server 1 and Bank
Server 2.

Example 2 shows the WSDL contract for the Bank example that is described

in this section. There are two port types in this contract, Bank and Account.
For each of the two port types there is a SOAP binding, BankBinding and

AccountBinding.

Example 2: Bank WSDL Contract

<definitions targetNamespace="http://www.iona.com/demos/transactions/bank"
xmlns="http://schemas.xmlsoap.org/wsdl/"
bank="http://schemas.iona.com/demos/transactions/bank"
wsa="http://www.w3.0rg/2005/03/addressing"
soap="http://schemas.xmlsoap.org/wsdl/soap/"
tns="http://www.iona.com/demos/transactions/bank"

xmlns:
xmlns:
xmlns:
xmlns:
xmlns

<types>
<schema elementFormDefault="qualified"

targetNamespace="http://schemas.iona.com/demos/transactions/bank"

xmlns="http://www.w3.0rg/2001/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<import namespace="http://www.w3.0rg/2005/03/addressing"/>

<complexType name="AccountIDsType">

<sequence>

:xsd="http://www.w3.0rg/2001/XMLSchema" >

<element maxOccurs="unbounded" minOccurs="0" name="name"
type="xsd:string" />

35

CHAPTER 2 | Getting Started with Transactions

36

Example 2: Bank WSDL Contract

</sequence>
</complexType>
<complexType name="list accountsInputData'"s>
<sequence/>
</complexType>
<complexType name="list accountsOutputData"s>
<sequence>
<element name="return" type="bank:AccountIDsType"/>
</sequence>
</complexType>
<element name="list accounts" type="bank:list accountsInputData"/>
<element name="list accountsResponse" type="bank:list accountsOutputData"/>
<complexType name="create accountInputData'">
<sequence>
<element name="account id" type="xsd:string"/>
</sequence>
</complexType>
<complexType name="create accountOutputData">
<sequence>
<element name="return" type="wsa:EndpointReferenceType"/>
</sequence>
</complexType>
<element name="create account" type="bank:create_ accountInputData"/>
<element name="create accountResponse" type="bank:create accountOutputData"/>
<complexType name="get accountInputData">
<sequence>
<element name="account id" type="xsd:string"/>
</sequence>
</complexType>
<complexType name="get accountOutputData"s>
<sequence>
<element name="return" type="wsa:EndpointReferenceType"/>
</sequence>
</complexType>
<element name="get account" type="bank:get accountInputData"/>
<element name="get accountResponse" type="bank:get accountOutputData"/>
<complexType name="delete accountInputData'">
<sequence>
<element name="account id" type="xsd:string"/>
</sequence>
</complexType>
<complexType name="delete accountOutputData">
<sequence/>
</complexType>
<element name="delete account" type="bank:delete accountInputData"/>

Sample Scenario

Example 2: Bank WSDL Contract

<element name="delete accountResponse" type="bank:delete accountOutputData"/>
<complexType name="get balanceInputData">
<sequence/>
</complexType>
<complexType name="get balanceOutputData">
<sequence>
<element name="return" type="xsd:double"/>
</sequence>
</complexType>
<element name="get balance" type="bank:get balanceInputData"/>
<element name="get balanceResponse" type="bank:get balanceOutputData"/>
<complexType name="make depositInputData's>
<sequence>
<element name="amount" type="xsd:double"/>
</sequence>
</complexType>
<complexType name="make depositOutputData'"s>
<sequence/>
</complexType>
<element name="make deposit" type="bank:make depositInputData"/>
<element name="make depositResponse" type="bank:make depositOutputData"/>
<complexType name="make withdrawlInputData"s>
<sequence>
<element name="amount" type="xsd:double"/>
</sequence>
</complexType>
<complexType name="make withdrawlOutputData"s>
<sequence/>
</complexType>
<element name="make withdrawl" type="bank:make withdrawlInputData"/>
<element name="make withdrawlResponse" type="bank:make withdrawlOutputData"/>
</schema>
</types>
<message name="list accounts">
<part element="bank:list accounts" name="parameters"/>
</message>
<message name="list accountsResponse'>
<part element="bank:list accountsResponse" name="parameters"/>
</message>
<message name='"create account'">
<part element="bank:create account" name="parameters"/>
</message>
<message name='"create accountResponse'>
<part element="bank:create accountResponse" name="parameters"/>
</message>

37

CHAPTER 2 | Getting Started with Transactions

38

Example 2: Bank WSDL Contract

<message name='"get_ account">
<part element="bank:get account" name="parameters"/>
</message>
<message name='"get_ accountResponse'>
<part element="bank:get accountResponse" name="parameters"/>
</message>
<message name="delete account"s>
<part element="bank:delete account" name="parameters"/>
</message>
<message name="delete accountResponse'>
<part element="bank:delete accountResponse" name="parameters"/>
</message>
<message name="get balance">
<part element="bank:get balance" name="parameters"/>
</message>
<message name="get balanceResponse'>
<part element="bank:get balanceResponse" name="parameters"/>
</message>
<message name="make deposit'"s>
<part element="bank:make deposit" name="parameters"/>
</message>
<message name="make depositResponse">
<part element="bank:make depositResponse" name="parameters"/>
</message>
<message name="make withdrawl"s>
<part element="bank:make withdrawl" name="parameters"/>
</message>
<message name="make withdrawlResponse">
<part element="bank:make withdrawlResponse" name="parameters"/>
</message>
<portType name="Bank">
<operation name="list accounts">
<input message="tns:list_ accounts" name="list accounts"/>
<output message="tns:list accountsResponse" name="list accountsResponse"/>
</operation>
<operation name="create account">
<input message="tns:create account" name="create account"/>
<output message="tns:create accountResponse" name="create accountResponse'"/>
</operation>
<operation name="get account'>
<input message="tns:get account" name="get account"/>
<output message="tns:get accountResponse" name="get accountResponse"/>
</operation>
<operation name="delete account">
<input message="tns:delete account" name="delete account"/>

Sample Scenario

Example 2: Bank WSDL Contract

<output message="tns:delete accountResponse" name="delete accountResponse'"/>
</operation>
</portType>

<portType name="Account">
<operation name="get balance'">
<input message="tns:get balance" name="get balance"/>
<output message="tns:get balanceResponse" name="get balanceResponse"/>
</operation>
<operation name="make deposit'">
<input message="tns:make deposit" name="make deposit"/>
<output message="tns:make depositResponse" name="make depositResponse"/>
</operation>
<operation name="make withdrawl">
<input message="tns:make withdrawl" name="make withdrawl"/>
<output message="tns:make withdrawlResponse" name="make withdrawlResponse"/>
</operation>
</portType>

</definitions>

39

CHAPTER 2 | Getting Started with Transactions

Client Example

Overview

C++ demonstration code

C++ example

40

This section describes a transactional Artix client that connects to two
remote transactional Artix servers, server A and server B. The client uses the
Artix transaction demarcation API to delimit the transaction. The client must
also be configured to load a transaction system plug-in (see “Selecting a
Transaction System” on page 55).

The bank client demonstration code is located in the following directory:

ArtixinstallDir/artix/Version /demos/transactions/common/src
/clients/cxx_bank client

Example 3 shows how to use the transaction demarcation functions in an
Artix client. Two remote servers, bank server A and bank server B,
participate in the transaction. Hence, this example requires a two-phase
commit protocol.

Example 3: C++ Bank Client Example
// C++

BankClient * bank 1 proxy = /* Obtain 1lst bank proxy */ ;
BankClient * bank 2 proxy = /* Obtain 2nd bank proxy */ ;

AccountClient * acc 1;
AccountClient * acc 2;

try {
WS_Addressing: :EndpointReferenceType acc_1_ref;
bank 1 proxy->get account ("account 1", acc 1 ref);
acc_1 = new AccountClient (acc 1 ref, bus);

WS_Addressing: :EndpointReferenceType acc_2_ref;
bank 2 proxy->get account ("account 2", acc 2 ref);
acc_2 = new AccountClient (acc 2 ref, bus);
catch (const IT Bus::Exception & access balance ex)
String err msg("ERROR - account balance access failure! : ");
err_msg += access_balance_ex.message () ;
throw IT Bus::Exception (err msg) ;

(S

Client Example

Example 3: C++ Bank Client Example

}

try {

}

bus->transactions () .begin transaction() ;

acc_1l->make withdrawl (2000.00) ;
acc_2->make deposit (2000.00) ;

bus->transactions () .commit transaction (true) ;

display balances(acc 1, bank 1 id, acc 2, bank 2 id);

catch (const IT Bus::Exception & transfer ex)

{

String err msg("ERROR - funds transfer failure! : ");
err msg += transfer ex.message() ;
if (bus->transactions() .within transaction())

{
1

throw IT Bus::Exception(err msg) ;

bus->transactions () .rollback transaction();

The preceding code example can be explained as follows:
1.

The bank proxies, bank 1 proxy and bank 2 proxy, provide the initial
connections to bank server A and bank server B, respectively.

In the demonstration code (not shown here), each bank server writes a
reference to a file which is then read by the client (this presupposes
that the clients and servers can both access the same file system).
Obtain a proxy to an account in bank server A by calling

get_account () 0N bank_ 1 proxy. The endpoint reference, acc_1_ref,
returned from get_account () is used to initialize an account proxy
object, acc_1.

Likewise, obtain a proxy to an account in bank server B, acc 2.

You should always enclose a transaction in a try block, because it
might be necessary to catch an exception and roll back the transaction.

The IT Bus::TransactionSystem::begin transaction() call initiates
the transaction.

41

CHAPTER 2 | Getting Started with Transactions

42

The IT Bus::TransactionSystem::commit_transaction() call

attempts to commit the changes made to server A and server B. The

boolean argument is the report heuristics flag, which can take the

following values:

¢+ true—specifies that heuristic decisions should be reported during
the commit protocol (if supported by the underlying transaction
system).

+ false—specifies that heuristic decisions should not be reported.

It is essential to catch and handle any exceptions that might be thrown

during a transaction.

The within transaction() call is needed at this point, because the

rollback transaction() function must only be called from within a

transaction. If rollback transaction() is called outside a transaction,

it raises an exception.

If an exception is thrown, the transaction must be aborted by calling

IT Bus::TransactionSystem::rollback transaction().

Server Example

Server Example

Overview

C++ demonstration code

Servant classes

Banklmpl class

Accountimpl class

This section describes a transactional Artix server that implements a bank
service and an unlimited number of account services (each account service
representing a single account). The server uses a transactional resource—an
Oracle database—to store the account records. This transactional resource
is integrated with the Artix transaction manager using an XA interface
(which is an X/Open standard, supported both by Artix and by Oracle).

The bank server demonstration code is located in the following directory:

ArtixinstallDir/axrtix/Version /demos/transactions/common/src
/servers/cxx_xa_http soap wsat

The bank server implements two servant classes, as follows:
® Banklmpl class.
® Accountlmpl class.

The BankImpl servant class implements the operations from the Bank port
type. The BankImpl class has the characteristics of a typical account factory
class: that is, it provides operations for creating, finding and deleting
account objects. Clients that use the bank server would initially connect to
the Bankservice service and then call the Bank operations to obtain a
reference to an account object.

Because the BankImpl class does not participate in any transaction (that is,
it does not access any transactional resources), it is of no relevance to
transactional programming and is not discussed here in detail.

The Account Impl servant class implements the operations from the Account
port type. The Account Impl class is responsible for accessing and updating
account details stored in an Oracle database. Because the Oracle XA switch
is registered with the Artix transaction manager, any database updates must
be coordinated by the Artix transaction manager. When writing the

43

CHAPTER 2 | Getting Started with Transactions

Integration with Oracle database

C+ + registering the Oracle XA
switch

44

AccountImpl class, therefore, you should be aware that its operations are
participating in a global transaction and that this affects the way you access
the database.

In the bank server demonstration, the Oracle database is treated as a
resource whose transactions are to be coordinated by the Artix transaction
manager. In order to integrate the Oracle database with the Artix transaction
manager, you must do the following:

1. Register the Oracle XA switch—to subordinate Oracle transactions to
the Artix transaction manager, register an Oracle XA switch object with
the Artix transaction manager. See “Registering an XA Resource” on
page 79 for a detailed discussion.

2. Modify code that interacts with the database—when the XA interface
is enabled, you must observe the following programming restrictions:
+ Do notopen or close any database connections—connections are

now managed automatically through the XA interface.
s Do not use embedded SQL or native database API to demarcate
transactions—for example, you must not call the embedded SQL

COﬂ"ﬂandS,EXEC SQL BEGIN, EXEC SQL COMMIT, O EXEC SQL
ROLLBACK.

3. Link the server with the relevant Oracle libraries.

Example 4 shows how to register an Oracle XA switch with the Artix
transaction manager. Registration must occur before the server processes
any incoming requests. You would normally register the XA switch during
initialization of the server program.

Example 4: C++ Registering an Oracle XA Switch

// C++
#include <sglca.h>

extern "C" IT DECLSPEC IMPORT xa switch t xaosw;
extern "C" IT DECLSPEC IMPORT xa switch t xaoswd;

xa switch t* database switch = &xaosw;

IT Bus::TransactionManager & tx mgr =

Server Example

Example 4: C++ Registering an Oracle XA Switch

bus->transactions () .get transaction manager (
IT Bus::TransactionSystem: :XA TRANSACTION TYPE
)i

IT Bus::XATransactionManager& xa tx mgr =

dynamic_cast<IT Bus::XATransactionManageré&s> (tx mgr) ;

IT Bus::String db_resource id("oracle bank") ;
db resource id += bank id;

bool succeeded = xa tx mgr.register xa resource (

database switch,

IT Bus::String::EMPTY, // open string - ""

IT Bus::String::EMPTY, // close string - ""

db resource id, // configuration prefix

false, // don't use dynamic registration optimization
false // not single-threaded

(!'succeeded)
throw IT Bus::Exception (

"Failed to register Oracle database as an XA resource"
) 8

The preceding code fragment can be explained as follows:

1.

The sqlca.n header file is an Oracle header file that defines two
instances of xa_switch_t type: xaosw, for a normal XA switch, and
xaoswd, for a dynamically registering XA switch.

Declare xaosw to be an external C type (the xa_switch t type is
declared in C, not C++).

The XA switch used in this example, database switch, is simply a
pointer to an ordinary Oracle XA switch object, xaosw.

The XA transaction manager, xa_tx mgr, is an object that is used to
integrate XA resources with the Artix transaction manager.

45

CHAPTER 2 | Getting Started with Transactions

C++ Accountlmpl class

46

5. Call register xa resource() on the IT Bus::XATransactionManager
instance to register the Oracle XA switch, xaosw, with the Artix XA
transaction manager.

In this example, the open string and the close string are read from an
Artix configuration file. This is flagged by passing an empty string, ",
as the open string. The identifier, db_resource id, is then used as a

prefix string to identify the relevant variables in the configuration file.

See “Configuration” on page 52 for details.

Example 5 shows the implementation of the AccountImp1 servant class. The
operations implemented by this class are all intended to execute in the
context of a global transaction. This has an effect on the way you program
the database access: in particular, you must avoid starting a local
transaction.

Example 5: C++ Accountimpl Servant Class
// C++

void

AccountImpl: :get balance (

IT Bus::Double & return
) IT _THROW DECL((IT Bus::Exception))

{
IT Bus::String id = get instance id();
const char * id str = id.c_str();
double return balance = 0;
::get_balance from db(id str, return balance) ;
_return = return balance;

}

void

AccountImpl: :make deposit (
const IT Bus::Double amount

) IT _THROW DECL((IT Bus::Exception))

{
IT Bus::String id = get instance id();
const char * id str = id.c_str();

IT Bus::Double balance;
get_balance (balance) ;

Server Example

Example 5: C++ Accountimpl Servant Class

balance += amount;
::set_balance in db(id str, balance) ;

cout << "Made deposit of $" << amount << " to account \'" <<
id << endl;

void
AccountImpl: :make withdrawl (

const IT Bus::Double amount

) IT THROW DECL((IT Bus::Exception))

{

IT Bus::String id = get instance id();
const char * id str = id.c_str();

IT Bus::Double balance;
get_balance (balance) ;

if (balance < amount)
{
throw IT Bus::Exception("Not enough funds to faciliate

withdrawl") ;

}

balance -= amount;
::set_balance in db(id str, balance) ;

cout << "Made withdrawl of $" << amount << " from account \'"
<< 1d << endl;

AccountIDsType
AccountImpl::list_all()

{

AccountIDsType account ids;
account ids = ::list all accounts() ;
return account ids;

47

CHAPTER 2 | Getting Started with Transactions

48

The preceding class implementation can be explained as follows:

1.

The get_balance () function provides the implementation of the
account service's get_balance WSDL operation.

The get_instance id() function returns the identity of the account
that is being accessed. The implementation of the get_instance_id()
function depends on the approach used to implement the account
servant class, as follows:

+ Transient servant—in this approach, a distinct servant object is
created for each account instance. The account identity would be
passed to the servant object at creation time and stored in a
member variable. The get_instance id () function simply returns
the stored identity in this case.

+ Default servant—in this approach, a single servant object
services requests for all account instances. The account identity,
therefore, cannot be stored in a member variable. The
get_instance id() function obtains the account identity by
querying the current address context in this case. For details of
how this works, see the discussion of default servants in
Developing Artix Application in C+ +.

The get_balance from db() function uses embedded SQL calls to

retrieve the account balance from an Oracle database. This database

access is integrated into the global transaction.

See Example 6 for a detailed description of this function.

The following make deposit (), make withdrawl () and list all()

functions are implementations of WSDL operations, which follow a

pattern similar to the get_balance () function.

Server Example

C++ database code Example 6 shows some of the functions that the bank server uses to access
the Oracle database (taken from the oracle do fns.pc file). This file
contains embedded SQL statements, which will ultimately be converted into
C++ by the Oracle pre-compiler.

Example 6: C++ Database Code for Accessing Account Data

// For Pro/C++ compiler (C++ with embedded SQL)

void
1 get balance from db(
const char * the account id,
double& return balance

// local Oracle variables

EXEC SQL BEGIN DECLARE SECTION;
VARCHAR acc_id[20] ;
double Dbalance=0.0;

EXEC SQL END DECLARE SECTION;

acc_id.len = strlen(the account id);
strncpy ((char*) &acc_id.arr[0], the account id, 19);
return balance = (double)0.0;

// get the balance from the database table
bool foundit=false;
EXEC SQL WHENEVER NOT FOUND DO break;

i@ (7))
{
EXEC SQL SELECT CURRENT BALANCE
INTO :balance
FROM ARTIX ACCOUNTS
WHERE ACCOUNT ID = :acc id;
foundit = true;
break;
}
if (foundit)
{
return balance = balance;
1

49

CHAPTER 2 | Getting Started with Transactions

Example 6: C++ Database Code for Accessing Account Data

void
2 set balance in db(
const char * the account id,
double new_balance

EXEC SQL BEGIN DECLARE SECTION;
VARCHAR acc_1id[20] ;
double balance;

EXEC SQL END DECLARE SECTION;

acc_id.len = strlen(the account id);
strncpy ((char*) &acc_id.arr[0], the account id, 19);
balance = new balance;

bool foundit=false;
EXEC SQL WHENEVER NOT FOUND DO break;

for (;;)
EXEC SQL UPDATE ARTIX ACCOUNTS
SET CURRENT BALANCE = :balance
WHERE ACCOUNT ID = :acc id;
foundit=true;
break;

The preceding database code can be explained as follows:

1. The get_balance from db() function uses conventional embedded
SQL calls to access the arTIx AccounTs table, selecting the
CURRENT BALANCE field from the row indexed by accounT 1D.

From a transaction viewpoint, it is worth noting that transaction
demarcation statements (EXEc SQL BEGIN, EXEC SQL COMMIT, Of EXEC
SQL ROLLBACK) do not appear anywhere in this function. When an XA
switch is registered, the Artix transaction manager is responsible for
transaction demarcation.

2. The set_balance in db() function uses conventional embedded SQL
calls to update the arTIX AccounTs table, setting the CURRENT BALANCE
field in the row indexed by accounT 1D.

50

Server Example

Once again, note the absence of any transaction demarcation
statements (EXEC SQL BEGIN, EXEC SQL COMMIT, Of EXEC SQL
ROLLBACK).

51

CHAPTER 2 | Getting Started with Transactions

Configuration

Overview

Configuration file location

Client configuration

Artix Configuration File

Global configuration settings

To use Artix transactions, it is necessary to load and configure the relevant
transaction system (Artix supports multiple transaction systems). Artix does
not load a transaction system by default. Hence, you must include
transaction plug-ins explicitly in the orb plugins list.

For a more detailed discussion of transaction configuration, see “Selecting a
Transaction System” on page 55.

The tx_demo.cfg configuration file is located in the following directory:

ArtixInstallDir/artix/Version /demos/transactions/common/etc

Example 7 shows the configuration settings for the bank client, which uses
the artix.demos.tx demo.wsat coordinated Bus ID (which can be
specified, for example, by the -orBname command-line switch). In this
example, the client is configured to use the WS-AT transaction manager.

Example 7: Client Configuration Using the WS-AT Transaction Manager

Transaction demonstrations settings
artix

{

52

demos

{

tx demo

{

wsat coordinated

{

orb_plugins

["local log stream", "ws_coordination service"];

plugins:bus:default tx provider:plugin="wsat tx provider";

Server configuration

Artix Configuration File

Global configuration settings

Configuration

Example 7: Client Configuration Using the WS-AT Transaction Manager

The following configuration settings are relevant to transactions in the client:

orb_plugins—the client is configured to load the

ws_coordination service plug-in, which implements a transaction
manager on the pattern of the WS-Coordination standard. Implicitly,
the client also loads the wsat_protocol plug-in, which provides the
capability to send WS-AtomicTransaction transaction contexts over
SOAP.

plugins:bus:default_tx_provider:plugin——because Artix can
support several different transaction systems (for example, WS-AT and
OTS Encina), you need to specify explicitly which transaction system
the client uses when it initiates a transaction. In this example, the
client is configured to use the WS-AT transaction system by default.

Example 8: Server Configuration with Oracle XA Resource

Transaction demonstrations settings

artix

{

demos

{

tx demo

{

wsat_server

{

orb_plugins = ["local log stream", "wsat protocol", "coordinator stub wsdl"];
plugins:bus:default_tx provider:plugin="wsat_tx provider";

oracle xa

53

CHAPTER 2 | Getting Started with Transactions

54

Example 8: Server Configuration with Oracle XA Resource

policies:http:trace requests:enabled="true";

Configuration settings for the Oracle Databases

#

oracle bankA:open string="Oracle XA+Acc=P/scott/tiger+SesTm=60+threads=true";
oracle bankA:close string="";

poa:oracle bankA:direct persistent="true";

poa:oracle bankA:well known address:host="0.0.0.0"; # all network adapters
poa:oracle bankA:well known address:port="13003"; # unique port

oracle bankB:open string="Oracle XA+Acc=P/scott/tiger+SesTm=60+threads=true";
oracle bankB:close string="";

poa:oracle bankB:direct persistent="true";

poa:oracle bankB:well known address:host="0.0.0.0"; # all network adapters
poa:oracle bankB:well known address:port="13004"; # unique port

The following configuration settings are relevant to transactions in the

server:

® orb plugins—the server is configured to load the wsat protocol
plug-in, which provides the capability to send WS-AtomicTransaction
transaction contexts over SOAP, and the coordinator stub wsdl
plug-in, which enables the server to call back on the transaction
coordinator object in the client.

® oracle bankA:open string—if the programmer passes a blank open
string when registering an XA switch, Artix reads the open string from
configuration instead. The prefix, oracle banka, is set by the
programmer at registration time (see “C+ + registering the Oracle XA
switch” on page 44).

® oracle bankA:close string—if the programmer passes a blank open
string when registering an XA switch, Artix reads the close string from
configuration instead. In this example, the close string is a blank,
because Oracle does not use the close string.

In this chapter

CHAPTER 3

Selecting a
Transaction
System

Using the Artix plug-in architecture, you can choose between
a number of different transaction system implementations.
Because the Artix transaction API is designed to be
independent of the underlying transaction system, it is
possible to select a particular transaction system at runtime.
Typically, you would choose the transaction system that
provides the best match for your services. For example, if the
majority of your services are SOAP-based, you would select
the WS-AT transaction system.

This chapter discusses the following topics:

Configuring OTS Lite page 56
Configuring OTS Encina page 59
Configuring Non-Recoverable WS-AT page 63
Configuring Recoverable WS-AT page 67

55

CHAPTER 3 | Selecting a Transaction System

Configuring OTS Lite

Overview

OTS Lite and interposition

Default transaction provider

56

The OTS Lite plug-in is a lightweight transaction manager, which is subject
to the following restrictions: it supports the 1PC protocol only and it lets you
register only one resource. This plug-in allows applications that only access
a single transactional resource to use the OTS APIs without incurring a large
overhead, but allows them to migrate easily to the more powerful 2PC
protocol by switching to a different transaction manager. Figure 6 shows a
client-server deployment that uses the OTS Lite plug-in.

Figure 6: Overview of a Client-Server System that Uses OTS Lite

Artix Client » Artix Server i
Resource
oTS oTS
OTS Lite

If you plan to use OTS Lite in an application that needs to propagate
transactions between different transaction systems, you should be aware
that OTS Lite is subject to certain limitations in the context of interposition.
See “Limitation of using OTS Lite with propagation” on page 100 for details.

The following variable specifies the default transaction system used by an
Artix client or server:

plugins:bus:default tx provider:plugin

To select the CORBA OTS transaction system, you must initialize this
configuration variable with the value, ots_tx provider.

Configuring OTS Lite

Loading the OTS plug-in In order to use the CORBA OTS transaction system, the OTS plug-in must be

loaded both by the client and by the server. To load the OTS plug-in, include
the ots plug-in name in the orb plugins list. For example:

Artix Configuration File

ots lite client or server {
plugins:bus:default_tx provider:plugin = "ots tx provider";
orb plugins = [..., "ots"];

Da

Loading the OTS Lite plug-in The OTS Lite plug-in, which is capable of managing 1PC transactions, can

be loaded on the client side, but it is not usually needed on the server side.
You can load the OTS Lite plug-in in one of the following ways:

® Dynamic loading—configure Artix to load the ots_1lite plug-in

dynamically, if it is required. For this approach, you need to configure

the initial references:TransactionFactory:plugin variable as
follows:

Artix Configuration File
ots lite client or server {

plugins:bus:default_tx provider:plugin= "ots_ tx provider";
orb plugins = [..., "ots"];

initial references:TransactionFactory:plugin

};...

= "ots lite";

This style of configuration has the advantage that the OTS Lite plug-in
is loaded only if it is actually needed.

Explicit loading—Iload the ots 1ite plug-in by adding it to the list of
orb plugins, as follows:

Artix Configuration File
ots lite client {

plugins:bus:default_tx provider:plugin= "ots_ tx provider";
orb plugins = [..., "ots", "ots lite"];

};...

57

CHAPTER 3 | Selecting a Transaction System

Sample configuration

58

The following example shows a sample configuration for using the OTS Lite
transaction manager:

Artix Configuration File

Basic configuration for transaction plug-ins (shared library
names and so on) included in the global configuration scope.

... (not shown)

ots lite client or server {
plugins:bus:default tx provider:plugin= "ots tx provider";

orb plugins = ["xmlfile log stream", "iiop profile", "giop",
"iiOp" , Ilotsll] 9
initial references:TransactionFactory:plugin = "ots lite";

It

Configuring OTS Encina

Configuring OTS Encina

Overview

Default transaction provider

The Encina OTS Transaction Manager provides full recoverable 2PC
transaction coordination implemented on top of the industry proven Encina
Toolkit from IBM/Transarc. Encina supports both 1PC and 2PC protocols
and allows you to register multiple resources. Figure 7 shows a client/server
deployment that uses the OTS Encina plug-in.

Figure 7: Overview of a Client-Server System that Uses OTS Encina

Artix Server i

Resource
oTSs
Artix Client
oTs
OTS Encina
| Artix Server j
Resource
oTSs

The following variable specifies the default transaction system used by an
Artix client or server:

plugins:bus:default tx provider:plugin
To select the CORBA OTS transaction system, you must initialize this
configuration variable with the value, ots_tx provider.

59

CHAPTER 3 | Selecting a Transaction System

Loading the OTS plug-in For applications that use the CORBA OTS transaction system, the OTS
plug-in must be loaded both by the client and by the server. To load the OTS
plug-in, include the ots plug-in name in the orb_plugins list. For example:

Artix Configuration File

ots encina client or server {
plugins:bus:default_tx provider:plugin = "ots_tx provider";
orb plugins = [..., "ots"];

Da

Loading the OTS Encina plug-in The OTS Encina plug-in, which is capable of managing 1PC and 2PC
transactions, can be loaded on the client side, but it is not usually needed
on the server side. You can load the OTS Encina plug-in in one of the
following ways:
® Dynamic loading—configure Artix to load the ots_encina plug-in

dynamically, if it is required. For this approach, you need to configure
the initial references:TransactionFactory:plugin variable as
follows:

Artix Configuration File

ots encina client or server {
plugins:bus:default_tx provider:plugin="ots tx provider";
orb plugins = [..., "ots"];
initial references:TransactionFactory:plugin="ots encina";

};...

This style of configuration has the advantage that the OTS Encina
plug-in is loaded only if it is actually needed.

® Explicit loading—load the ots_encina plug-in by adding it to the list of
orb plugins, as follows:

Artix Configuration File

ots lite client {
plugins:bus:default_tx provider:plugin= "ots_ tx provider";
orb plugins = [..., "ots", "ots encina"];

};...

60

Sample configuration

o U b

Configuring OTS Enc

ina

Example 9 shows a complete configuration for using the OTS Encina
transaction manager:

Example 9: Sample Configuration for OTS Encina Plug-In

Artix Configuration File
ots encina client or server {

Da

plugins:bus:default tx provider:plugin= "ots tx provider";
orb plugins = [..., "ots"];

initial references:TransactionFactory:plugin = "ots encina";
plugins:ots_encina:direct persistence = "true";

plugins:ots encina:iiop:port = "3213";
plugins:ots_encina:initial disk = "../../log/encina.log";
plugins:ots encina:initial disk size = "1";

plugins:ots_encina:restart file =
"../../log/encina restart";
plugins:ots_encina:backup restart file =
"../../log/encina restart.bak";

Boilerplate configuration settings for OTS Encina:

(you should never need to change these)
plugins:ots_encina:shlib name = "it ots_encina";
plugins:ots_encina adm:shlib name = "it ots_encina adm";
plugins:ots_encina adm:grammar db =

"ots encina adm grammar.txt";

plugins:ots _encina adm:help db = "ots encina adm help.txt";

The preceding configuration can be described as follows:
1.

These two lines configure Artix to use the CORBA OTS transaction
system and load the OTS plug-in.

This line configures Artix to load the ots_encina plug-in dynamically, if

it is needed by the application (typically needed on the client side).
Configuring Encina to use direct persistence means that the Encina
transaction manager service listens on a fixed IP port. The port on
which the transaction manager listens is specified by the
plugins:ots_encina:iiop:port variable.

61

CHAPTER 3 | Selecting a Transaction System

62

The plugins:ots_encina:initial disk variable specifies the path for
the initial file used by the Encina OTS for its transaction logs.

If this file does not exist when you start the client, Encina OTS
automatically creates it (cold start).

The plugins:ots_encina:initial disk size variable specifies the
size of the initial file used by the Encina OTS for its transaction logs.
Defaults to 2.

The plugins:ots_encina:restart file variable specifies the path for
the restart file, which Encina OTS uses to locate its transaction logs.
If this file does not exist when you start the client, Encina OTS
automatically creates it (cold start).

The plugins:ots_encina:backup restart file variable specifies the
path for the backup restart file, which Encina OTS uses to locate its
transaction logs.

If this file does not exist when you start the client, Encina OTS
automatically creates it (cold start).

The settings in the next few lines specify the basic configuration of the
OTS Encina plug-in. It should not be necessary ever to change the
values of these configuration settings.

Configuring Non-Recoverable WS-AT

Configuring Non-Recoverable WS-AT

Overview The WS-AtomicTransactions (WS-AT) transaction system uses SOAP
headers to transmit transaction contexts between the participants in a
transaction. The lightweight WS-AT transaction system supports the 2PC
protocol and allows you to register multiple resources; unlike OTS Encina,
however, it does not support recovery. Figure 8 shows a client/server
deployment that uses the lightweight WS-AT transaction system.

Figure 8: Client-Server System that Uses Non-Recoverable WS-AT

Artix Server i

Resource

WS-AT

Artix Client

WS-AT

WS-Coordination

| Artix Server i

Resource

WS-AT

Default transaction provider The following variable specifies the default transaction system used by an
Artix client or server:

plugins:bus:default_tx provider:plugin
To select the WS-AT transaction system, you must initialize this
configuration variable with the value, wsat_tx provider.

63

CHAPTER 3 | Selecting a Transaction System

Disabling recovery

Plug-ins for WS-AT

Sample configuration

64

Since Artix version 4.0, the WS-AT transaction system is recoverable by
default (by layering itself over OTS Encina). Hence, to use the lightweight,
non-recoverable version of WS-AT in your application, you need to explicitly
disable recovery by setting the following configuration variable to true:

plugins:ws_coordination service:disable tx recovery = "true";

The division of the WS-AT transaction system into separate plug-ins reflects

the fact that the WS-AT specification has two distinct parts:

WS-AtomicTransactions and WS-Coordination.

The following plug-ins are required to support the WS-AT transaction

system:

® wsat_protocol plug-in—implements WS-AtomicTransactions. It is
required by all services and clients that use WS-AT transactions. This
plug-in enables an Artix executable to receive and transmit WS-AT
transaction contexts.

® ws_coordination service plug-in—implements WS-Coordination.
Only one instance of this plug-in is required (typically, loaded into a
client). This plug-in coordinates the two-phase commit protocol.

Example 10 shows a complete configuration for using the non-recoverable
WS-AT transaction manager:

Example 10: Sample Configuration for Non-Recoverable WS-AT

Artix Configuration File
ws_atomic transactions {
client
{
orb plugins = ["local log stream",
"ws_coordination service"];
plugins:bus:default tx provider:plugin ="wsat tx provider";
plugins:ws_coordination service:disable_tx recovery ="true";

I

server

orb plugins = ["local log stream", "wsat protocol",
"coordinator stub wsdl"];
plugins:ws_coordination service:disable tx recovery ="true";

Configuring Non-Recoverable WS-AT

Example 10: Sample Configuration for Non-Recoverable WS-AT

// No need to specify default tx provider here.
I
I

The preceding configuration can be described as follows:

1. The ws_coordination service plug-in is needed only on the client
side. Artix does not support auto-loading of this plug-in; you must
explicitly include it in the orb plugins list.

The ws_coordination_service plug-in implicitly loads the
wsat_protocol plug-in as well. Hence, it is unnecessary to include
wsat_protocol plug-in in the orb plugins list on the client side.

2. This line specifies that WS-AT is the default transaction provider. This
implies that whenever a client initiates a transaction (for example, by
calling begin_transaction()), Artix creates a new WS-AT transaction
by default.

3. This line specifies that transaction recovery is disabled. The effect of
this setting is that the transaction system relies on a lightweight,
non-recoverable implementation of WS-AT.

4. The server needs to load the wsat protocol plug-in, in order to
process incoming atomic transactions coordination contexts and to
propagate transaction contexts. The coordinator stub wsdl plug-in
enables the server to talk to the WS-Coordination service on the client
side.

5. Strictly speaking, it is unnecessary to specify a default transaction
provider on the server side. On the server side, the transaction provider
is automatically determined by the incoming transaction context.

If the server needs to initiate its own transactions, however, it would be
appropriate to set the default transaction provider here also.

65

CHAPTER 3 | Selecting a Transaction System

References The specifications for WS-AtomicTransactions and WS-Coordination are
available at the following locations:
® WS-AtomicTransactions

(http://msdn.microsoft.com/library/en-us/dnglobspec/htm|/WS-AtomicT
ransaction.pdf).

® WS-Coordination

(http://msdn.microsoft.com/library/en-us/dnglobspec/htmI|/WS-Coordin
ation.pdf).

66

http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-AtomicTransaction.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Coordination.pdf

Configuring Recoverable WS-AT

Configuring Recoverable WS-AT

Overview In order to provide enterprise-level transaction management using the
WS-AT protocols, Artix supports an option to layer WS-AT over the OTS
Encina transaction manager. With this configuration, WS-AT becomes a
fully recoverable transaction system. Figure 9 shows a client/server
deployment that uses the recoverable WS-AT transaction system.

Figure 9: Client-Server System that Uses Recoverable WS-AT

Artix Server i
Resource
WS-AT
Artix Client ors
WS-AT
WS-Coordination
oTS . Artix Server i
OTS Encina Resource
WS-AT
oTS
Default transaction provider The following variable specifies the default transaction system used by an

Artix client or server:

plugins:bus:default tx provider:plugin

To select the WS-AT transaction system, you must initialize this
configuration variable with the value, wsat_tx provider.

67

CHAPTER 3 | Selecting a Transaction System

Enabling recovery

Loading WS-AT and OTS Encina
plug-ins

Sample configuration

68

Since Artix version 4.0, the WS-AT transaction system is recoverable by
default. Hence, to use the recoverable version of WS-AT in your application,
you can either omit the
plugins:ws_coordination service:disable tx recovery variable from
your Artix configuration file or set it to false, as follows:

Artix Configuration File
plugins:ws_coordination service:disable tx recovery = "false";

The configuration for the recoverable WS-AT transaction system is
essentially a combination of the WS-AT configuration and the OTS Encina
configuration. It is only necessary to load the WS-AT plug-ins explicitly—if
recovery is enabled, Artix implicitly loads the OTS and OTS Encina plug-ins.

Example 10 shows a complete configuration for using the recoverable
WS-AT transaction manager:

Example 11: Sample Configuration for Recoverable WS-AT

Artix Configuration File
ws_atomic transactions {
client
{
orb_plugins = ["local log stream",
"ws coordination service"];
plugins:bus:default tx provider:plugin ="wsat tx provider";

OTS Encina Configuration
initial references:TransactionFactory:plugin =
"ots_encina";

plugins:ots_encina:direct persistence = "true";
plugins:ots_encina:iiop:port = "3213";

plugins:ots encina:initial disk = "../../log/encina.log";
plugins:ots_encina:initial disk size = "1";

plugins:ots _encina:restart file =
"../../log/encina restart";

plugins:ots_encina:backup restart file =
"../../log/encina restart.bak";

Boilerplate configuration settings for OTS Encina:
(you should never need to change these)
plugins:ots_encina:shlib name = "it ots encina";

Configuring Recoverable WS-AT

Example 11: Sample Configuration for Recoverable WS-AT

Da

plugins:ots encina adm:shlib name = "it ots_encina adm";
plugins:ots_encina adm:grammar db =
"ots encina adm grammar.txt";

plugins:ots_encina adm:help db = "ots encina adm help.txt";
IE
server
{
orb plugins = ["local log stream", "wsat protocol",

"coordinator stub wsdl"];
// No need to specify default tx provider here.

b

The preceding configuration can be described as follows:
1.

The ws_coordination service plug-in is needed only on the client
side. Artix does not support auto-loading of this plug-in; you must
explicitly include it in the orb_plugins list.

The ws_coordination service plug-in implicitly loads the
wsat_protocol, ots, and ots_encina plug-ins as well. Hence, it is
unnecessary to include the wsat protocol, ots, and ots_encina
plug-ins in the orb plugins list on the client side.

This line specifies that WS-AT is the default transaction provider. This
implies that whenever a client initiates a transaction (for example, by
calling begin_transaction()), Artix creates a new WS-AT transaction
by default.

From this line up to the end of the client scope shows the OTS Encina
configuraion settings. For detailed descriptions of the OTS Encina
settings, see “Sample configuration” on page 61.

The server needs to load the wsat protocol plug-in, in order to
process incoming WS-AT coordination contexts and to propagate
transaction contexts. The coordinator stub wsdl plug-in enables the
server to talk to the WS-Coordination service on the client side.

69

CHAPTER 3 | Selecting a Transaction System

70

Strictly speaking, it is unnecessary to specify a default transaction
provider on the server side. On the server side, the transaction provider
is automatically determined by the incoming transaction context.

If the server needs to initiate its own transactions, however, it would be
appropriate to set the default transaction provider here also.

In this chapter

CHAPTER 4

Basic Transaction
Programming

This chapter covers the basics of programming transactional
clients and servers. For simple applications, this probably
covers all you need to know about transaction programming.

This chapter discusses the following topics:

Artix Transaction Interfaces page 72
Beginning and Ending Transactions page 75
Server Programming page 78

71

CHAPTER 4 | Basic Transaction Programming

Artix Transaction Interfaces

Overview

72

Figure 10 shows an overview of the main classes that make up the Artix
transaction API. The Artix transaction API is designed to function as a
generic wrapper for a wide variety of specific transaction systems. As long as
your code is restricted to using the generic classes, you will be able to
switch between any of the transaction systems supported by Artix.

On the server side it is likely that you will need to access advanced
functionality, which is available only from technology-specific transaction
manager classes, such as oTSTransactionManager,

WSATTransactionManager, Of XATransactionManager.

Figure 10: Overview of the Artix Transaction API

transactions ()

IT Bus::Bus

TransactionSystem

—

get_transaction_manager (

XATransactionManager

| WSATTransactionManager

TransactionManagerf--------- OTSTransactionManager

dynamic_cast<...>

TransactionParticipant

TransactionNotificationHandler

Accessing the transaction system

TransactionSystem class

TransactionManager class

OTSTransactionManager class

Artix Transaction Interfaces

To access the Artix transaction system, call the transactions () function on
the Bus. The returned 1T Bus: :TransactionSystem reference provides the
starting point for accessing all aspects of Artix transactions.

The 1T Bus::Bus::transactions () function has the following signature:

IT Bus::TransactionSystem&
transactions() IT THROW DECL((IT Bus::Exception)) ;

The IT Bus::TransactionSystem class provides the basic functions needed
for transaction demarcation on the client side (begin_transaction(),
commit_ transaction() and rollback transaction()). For more details see
“Beginning and Ending Transactions” on page 75.

To access server-side functions and advanced client-side functions, you
must call IT Bus::TransactionSystem::get transaction manager () {0
obtain an IT Bus::TransactionManager instance.

The IT Bus::TransactionManager class provides server-side functions and
advanced transaction functionality. For the server side, the most important
member function is IT Bus: :TransactionManager: :enlist (), which
enables you to implement a transactional resource by enlisting a transaction
participant object.

In order to support multiple transaction systems, the TransactionManager
class is designed as a facade, which is layered above a specific
implementation. In some cases, if the functionality provided by the generic
TransactionManager is not sufficient, you might need to downcast the
TransactionManager reference to one of the following types:

® OTSTransactionManager class.
® WSATTransactionManager class.

The IT Bus::0TSTransactionManager class provides access to an
underlying CORBA OTS implementation of the transaction system. Using
this class, you can access the cosTransactions: : Coordinator and the
CosTransactions: : Current objects for this transaction.

A discussion of the CORBA OTS is beyond the scope of this guide. For more
details, see the CORBA OTS Guide
(http://www.iona.com/support/docs/orbix/6.2/develop.xml), which is
available from the Orbix documentation suite.

73

http://www.iona.com/support/docs/orbix/6.2/develop.xml
http://www.iona.com/support/docs/orbix/6.2/develop.xml

CHAPTER 4 | Basic Transaction Programming

WSATTransactionManager class

TransactionParticipant base class

TransactionNotificationHandler
base class

74

The IT Bus::WSATTransactionManager class provides access to an
underlying WS-AT implementation of the transaction system. Currently, the
WSATTransactionManager class provides access to the WS-AT context,
which is included in a SOAP header with every transactional operation call.

If you want to implement a transactional resource on the server side, you
can define and implement a class that inherits from the

IT Bus::TransactionParticipant base class. The
TransactionParticipant class receives callbacks from the transaction
manager that are used to coordinate the commit or rollback steps with other
transaction participants. For more details, see “Recoverable Resources” on
page 125.

There are alternative ways of implementing a transactional resource, which
do not require you to implement a TransactionParticipant class. Some
transaction managers (for example, 0TSTransactionManager) support
alternative approaches.

If you want to synchronize certain actions with the committing or rolling
back of a transaction, you can define and implement a class that inherits
from the IT Bus::TransactionNotificationHandler base class. The

IT Bus::TransactionNotificationHandler class receives notification
callbacks from the transaction manager whenever a transaction is either
committed or rolled back.

Beginning and Ending Transactions

Beginning and Ending Transactions

Overview On the client side, the functions for beginning and committing (or rolling
back) a transaction are collectively referred to as transaction demarcation
functions. Within a given thread, any Artix operations invoked after the
transaction begin and before the transaction commit (or rollback) are
implicitly associated with the transaction. The transaction demarcation
functions are typically the only functions that you need on the client side.

TransactionSystem member Example 12 shows the public member functions of the
functions IT Bus::TransactionSystem class.

Example 12: The IT_Bus::TransactionSystem Class

// C++
namespace IT Bus
{
class IT BUS API TransactionSystem
: public virtual RefCountedBase
{

public:
virtual ~TransactionSystem() ;

virtual void
begin transaction() IT THROW DECL ((Exception)) = 0;

virtual Boolean
commit transaction(
Boolean report heuristics
) IT_THROW_DECL((Exception)) = 0;

virtual void
rollback transaction() IT THROW DECL ((Exception)) = 0;

virtual TransactionManagers&
get transaction manager (
const String&
tx manager type=DEFAULT TRANSACTION TYPE
) IT_THROW_DECL((Exception)) = 0;

virtual Boolean

75

CHAPTER 4 | Basic Transaction Programming

Client transaction functions

76

Example 12: The IT Bus::TransactionSystem Class

Da

within transaction() = 0;

// String constants for transaction manager types

static const String DEFAULT TRANSACTION TYPE;
static const String WSAT TRANSACTION TYPE;
static const String OTS_TRANSACTION TYPE;
static const String XA TRANSACTION TYPE;

b

typedef Var<TransactionSystem> TransactionSystem var;
typedef TransactionSystem* TransactionSystem ptr;

The following functions are used to demarcate transactions on the client

side:

begin transaction()—creates a new transaction on the client side

and associates it with the current thread. This function takes no

arguments and has no return value.

This function can throw the following exceptions:

. TransactionAlreadyActiveException is thrown if
begin transaction() is called inside an already active
transaction.

. TransactionSystemUnavailableException is thrown if the
transaction system cannot be loaded. This usually points to a
configuration problem.

commit_transaction()—ends the transaction normally, making any

changes permanent. This function takes a single boolean argument,

report_heuristics, and returns true, if the transaction is commited
successfully.

This function can throw the following exception:

¢ NoActiveTransactionException is thrown if there is there is no
transaction associated with the current thread.

rollback transaction()—aborts the transaction, rolling back any

changes.

This function can throw the following exception:

Other transaction functions

Beginning and Ending Transactions

. NoActiveTransactionException is thrown if there is there is no
transaction associated with the current thread.

In addition to the preceding demarcation functions, which are intended for
use on the client side, the TransactionSystem class also provides the
following functions, which can be used both on the client side and on the
server side:

within transaction()—teturns true if the current thread is
associated with a transaction; otherwise, false.
get_transaction manager ()—returns a reference to a
TransactionManager Object, which provides access to advanced
transaction features.

Typically, a TransactionManager object is needed on the server side in
order to enlist participants in a transaction (for example, see
“Recoverable Resources” on page 125). For advanced applications,
you can also downcast the TransactionManager reference to get a
particular implementation of the transaction system (for example, an
IT Bus::0TSTransactionManager object or an

IT Bus::WSATTransactionManager Object).

This function can throw the following exception:

. TransactionSystemUnavailableException iS thrown if the
transaction system cannot be loaded.

77

CHAPTER 4 | Basic Transaction Programming

Server Programming

Overview

In this section

78

On the server side, the main transactions-related programming task is the
integration of resources with the Artix transaction system. The purpose of
this integration step is to enable the Artix transaction manager to control the
resource’s transactions.

By far the simplest and most common method of integrating resources into
the Artix transaction system is to use the XA standard, which is supported
by most modern databases. An XA-compliant resource provides a special
data structure, the XA switch, which you can then register with Artix in order
to integrate the resource with the Artix transaction system.

This section contains the following subsections:

Registering an XA Resource page 79
Dynamic Registration Optimization page 85
Writing a Custom Resource page 92
Server-Side Programming Model page 93

Server Programming

Registering an XA Resource

Overview

When to register an XA resource

register_xa_resource() function

The simplest way to integrate a third-party resource (such as a database)
into the Artix transaction system is to use the XA interface. If the third-party
resource supports the XA interface, all that you need to do to integrate the
resource with the Artix transaction system is to register a particular type of
object, an XA switch, with the Artix transaction manager. This puts the Artix
transaction manager in charge of beginning, committing and rolling back
transactions associated with the XA resource. This also implies that the
resource can now participate in distributed transactions, since these are
supported by the Artix transaction manager.

You should register an XA resource in the main () function as your
application program is performing initialization and before you attempt to
access the resource for the first time.

The register xa resource() function, which is a member of the

IT Bus::XATransactionManager class, is used to register third-party XA
resource managers with the Artix transaction manager. Example 13 gives
the signature of the register xa resource() function.

Example 13: The register xa_resource() Function

// C++
// In IT Bus::XATransactionManager
IT Bus::Boolean
register xa resource (
xa_switch t* xa_switch,
IT Bus::String open string,
IT Bus::String close string,
IT Bus::String resource manager identifier,
IT Bus::Boolean use dynamic registration optimization,
IT Bus::Boolean is single threaded resource

79

CHAPTER 4 | Basic Transaction Programming

register_xa_resource() arguments

xa_switch

open_string

80

The IT Bus::XATransactionManager: :register xa resource () function
takes the following arguments:

® xa_switch,

® open_string,

® close_string,

® resource_manager_identifier,

® use_dynamic_registration_optimization,
® is_single threaded_resource.

The xa_switch argument is a pointer to an xa_switch_t instance, which is
provided by the third-party XA resource manager. The xa_switch_t type is
declared in the <orbix_sys/xa.h> header, which you need to include in any
file that references the xa_switch t type.

Each XA resource manager defines a specific XA switch instance, which is
essentially a global struct variable. Table 1 gives the identifier names for
some common XA resource managers.

Table 1: Sample Mechanisms for Obtaining XA Switches

XA Resource XA Switch Instance
Manager
Oracle DB Two XA switches are defined as global instances

in the Oracle sglca.h header file:
® xaosw—normal Oracle XA switch.

® xaoswd—Oracle XA switch that supports
dynamic registration.

Sybase DB sybase xa switch

DB2 do2xa_switch (UNIX), or

*db2xa_switch (Windows)

The open_string argument specifies the string that the Artix XA transaction
manager passes to xa_open () when it opens a connection to the XA
resource manager. The form of the open string is not defined by Artix; it is
defined by the particular third-party XA resource manager being registered.

close_string

Server Programming

The XA standard intends that the open string be used as a general

mechanism for passing initialization parameters to the XA resource
manager.

Examples of open strings for some common XA resource managers are
provided in Table 2.

Table 2: Examples of Open Strings for Some XA Resource Managers

XA Resource Example Open String
Manager

Oracle DB Oracle XA+Acc=P/SCOTT/TIGER+SesTm=60+thre
ads=true

Sybase DB -U<Username> -P<Password> -N<DB Name>
-T<LoggingType> -L<LogFile>

DB2 <DB_Name>, <Username>, <Password>

Note: An empty open string, ", is treated as a special case. In this case,

Artix assumes that the open string is specified in the Artix configuration
file. The name of the configuration variable that specifies the open string is
determined by the resource manager identifier argument.

The close_string argument specifies the string that the Artix XA

transaction manager passes to xa_close () when it closes a connection to
the XA resource manager.

Examples of close strings for some common XA resource managers are
provided in Table 3. Some XA resource managers (for example, Oracle DB)
ignore the close string, in which case you can pass an empty string, n.

Table 3: Examples of Close Strings for Some XA Resource Managers

XA Resource Example Close String
Manager
Oracle DB None
Sybase DB None
DB2 None

81

CHAPTER 4 | Basic Transaction Programming

resource_manager_identifier

use_dynamic_registration_optimi
zation

82

The resource manager identifier argument specifies a string that serves
as a name prefix for certain configuration variables in the Artix configuration
file. These configuration variables can then be used to configure the
resource manager registration.

In particular, if you pass an empty string, ", as the open_string argument,
Artix assumes that you want to specify the value of the open string in
configuration instead of passing it as an argument. In this case, Artix looks
for a configuration variable called ResourceManagerPrefix :open_string,
where ResourceManagerPrefix is the string passed as the

resource manager identifier argument.

For example, if you specify the open_string argument to be an empty
string, v, and the resource manager identifier argument to be
xa_resource managers:oracle, you can then specify the open string in the
Artix configuration file as follows:

Artix Configuration File
oracle xa example {
Xa_resource managers:oracle:open string =
"Oracle XA+Acc=P/SCOTT/TIGER+SesTm=60";
Xa_resource managers:oracle:close string="";

poa:xa_resource managers:oracle:direct persistent="true";

poa:xXa_resource managers:oracle:well known address:host
="0.0.0.0"; # all network adapters

poa:Xa_resource managers:oracle:well known address:port
="13003"; # unique port

It

Where the Artix Bus has been initialized with the configuration scope,

oracle xa example

The use_dynamic_registration optimization argument is a boolean flag
that informs the Artix XA transaction manager whether or not the resource
manager has enabled the dynamic registration optimization. Consult the

is_single_threaded_resource

Example

Server Programming

documentation for your third-party XA resource manager to discover whether
or not this optimization is supported. If the optimization is supported, you
can enable it as follows:
1. Follow the instructions in the third-party XA resource manager
documentation to enable the dynamic registration optimization.
2. Pass the value, true, to the
use dynamic registration optimization argument.
It is important to ensure that both the transaction manager and the resource
manager are aware of the dynamic registration optimization, because this
optimization changes the nature of their interaction through the XA
interface. For more details, see “Dynamic Registration Optimization” on
page 85.

The is_single threaded resource argument is a boolean flag that selects

the XA threading model in the transaction manager as follows:

® false—the XA threading model is multi-threaded (each thread maps
to a resource connection),

® true—the XA threading model is single-threaded (a process maps to a
single resource connection).

You must also ensure that the third-party XA resource manager is configured
to use the same threading model as the transaction manager.

For example, if you want to use the multi-threaded model with the Oracle
XA switch, you must include the setting, threads=true, in the Oracle XA
open string.

For more details see “Threading and XA Resources” on page 109.

Example 14 shows an example of how to register an Oracle XA switch with
the Artix XA transaction manager.

Example 14: Example of Registering an Oracle XA Switch
// C++

#include <it bus/bus.h>

#include <it bus/transaction system.h>

#include <it bus pdk/xa transaction manager.h>

#include <orbix sys/xa.h>

#include <sglca.h>

83

CHAPTER 4 | Basic Transaction Programming

84

3

Example 14: Example of Registering an Oracle XA Switch

extern "C" IT DECLSPEC IMPORT xa switch t xaosw;

IT Bus::Bus var bus = ...

IT Bus::XATransactionManager& xa tx mgr = dynamic_ cast
<IT Bus::XATransactionManageré&s (

) g

bus->transactions () .get transaction manager (
IT Bus::TransactionSystem::XA TRANSACTION TYPE
)

Xa tx mgr->register xa resource(

)5

&Xa0sw, // Oracle XA switch
"Oracle XA+Acc=P/SCOTT/TIGER+SesTm=60+threads=true",
// Oracle open string
nn, // Oracle close string
o // resource manager identifier
false, // dynamic registration?
true // multi-threaded?

The preceding code fragment can be explained as follows:

1. The Artix orbix_sys/xa.h header file contains the standard declaration
of the xa_switch_t struct type, as defined in the The XA Specification.
Include this header in any file that refers to the xa_switch t type.

2. The sqglca.h header file is an Oracle header file that defines two
instances of xa_switch_t type: xaosw, for a normal XA switch, and
xaoswd, for a dynamically registering XA switch.

3. Declare xaosw to be an external C type (the xa_switch t type is
declared in C, not C++).

4. From the Bus instance, obtain an IT Bus: :XATransactionManager
instance.

5. Call register xa resource() on the xATransactionManager instance

to register the Oracle XA switch, xaosw, with the Artix XA transaction
manager. In this example, the open string is provided explicitly in the
second parameter; the resource manager identifier is not used (empty
string); the dynamic registration optimization is not used; and the
threading model is multi-threaded.

Server Programming

Dynamic Registration Optimization

Overview

AX interface

The dynamic registration optimization is a variation of the usual protocol
that governs interactions between an XA transaction manager and an XA
resource manager. Typically, it results in more efficient access to the
resource. For example, if the resource is a database, this optimization
causes the database tables to be locked less often, thereby improving
concurrency. Hence, it is usually a good idea to enable this optimization.

If you just want to know how to enable this feature, skip ahead to “Enabling
dynamic registration” on page 89 for details. For advanced users, this
subsection also provides background information on the dynamic
registration optimization, so that you can understand how this protocol
works. A key difference between dynamic registration and normal
registration is that dynamic registration exploits the AX interface.

Example 15 shows the signatures of the two functions, ax_reg() and
ax_unreg (), that constitute the AX interface. These functions enable an XA
resource manager to call back on an XA transaction manager (that is,
reversing the usual direction of control, where the transaction manager calls
the resource manager).

Example 15: Functions in the AX Interface

75 @ =f
int ax reg(int rmid, XID *xid, long flags)

int ax unreg(int rmid, long flags)

The AX functions can be explained as follows:

® ax reg() function—is called by the resource manager to inform the
transaction manager that work is about to begin on a transaction in the
current thread. For example, in the case of a database, the ax_reg()
call would be triggered, when the application code attempts to perform
a database update.

® ax unreg() function—is needed only for the special case where an
application makes some database updates outside the context of a
global transaction. The resource manager then calls ax_unreg () to

85

CHAPTER 4 | Basic Transaction Programming

Normal registration

@ Upcall

@ Return

86

inform the transaction manager that the work has ended and,
therefore, the current thread is free once more to participate in a global
transaction.

Figure 11 shows the outline of an Artix transactional server that has a
normally registered resource manager, where FooImpl::op() is the
implementation of the WSDL operation, op ().

Figure 11: /nvocation Dispatch for a Normally Registered RM

FooImpl::op ()

{

Application Transaction Resource
Code Manager Manager
—xa_start () —p

EXEC SQL UPDATE Transaction Branch Scope T Tor ST %eTe

EXEC SQL UPDATE

Oracle DB

The server is divided up into the following parts:

® The Application Code—showing the implementation of the WSDL
operation, op (), and

® The Transaction Manager—showing the calls made by the Artix
transaction manager,

® The Resource Manager—showing a database resource and its
associated XA resource manager.

The shaded area shows the scope of the association between the current

thread and a transaction branch in the resource manager. The association
begins with xa_start () and ends with xa_end ().

Server Programming

Steps in normal registration In this scenario, the Artix server accesses an XA resource which is registered
normally. When the server receives a client request with transactional
context, the invocation dispatch proceeds as follows:

1.

Before dispatching the invocation, the Artix transaction manager (TM)
obtains a list of all the registered XA resource managers (RMs). In this
case, there is only one RM, which is registered normally. The TM calls
xa_start () on the RM, thereby creating an association between the
current thread and a transaction branch in the RM.

Note: The xa start () call typically imposes some overheads on the
resource. For example, a mutex lock might be set on the database
connection.

The Artix runtime makes an upcall to the FooTmpl::0p () function,
which implements the WSDL operation, op ().

In the body of the op () function, the application code makes updates
to the resource—for example, through some embedded SQL calls such
as EXEC SQL UPDATE. These updates are governed by the current
transaction.

The FooImpl::op () upcall returns.

The Artix TM calls xa_end () on the RM, thereby ending the association
between the current thread and the transaction branch in the RM.

87

CHAPTER 4 | Basic Transaction Programming

Dynamic registration

@ Upcall

@ Return

Steps in dynamic registration

88

Figure 12 shows the outline of an Artix transactional server that has a
dynamically registered resource manager, where FooImpl::op() is the
implementation of the WSDL operation, op ().

Figure 12: /nvocation Dispatch for a Dynamically Registered RM

Application
Code

FooImpl::op()

EXEC SQL UPDATE

EXEC SQL UPDATE

Transaction
Manager

Resource
Manager

pe W]

——xa_end () —W

Oracle DB

The shaded area shows the scope of the association between the current
thread and a transaction branch in the resource manager. The association
begins when the RM calls ax_reg() and ends when the TM calls xa_end ().

In this scenario, the Artix server accesses an XA resource which is registered

dynamically. When the server receives a client request with transactional
context, the invocation dispatch proceeds as follows:

1. Before dispatching the invocation, the Artix TM obtains a list of all the
registered XA RMs. In this case, there is one dynamically registered
RM. The TM does not call xa_start () on the dynamically registered
RM.

2. The Artix runtime makes an upcall to the FooImpl::op() function,
which implements the WSDL operation, op ().

3. Inthe body of the op() function, the application code makes updates
to the resource—for example, through some embedded SQL calls such
as EXEC SQL UPDATE. The very first update triggers the RM to make an
ax_reg() callback on the TM. This callback initiates an association
between the current thread and a transaction branch in the RM.

Enabling dynamic registration

Server Programming

The FooImpl::op () upcall returns.

The Artix TM calls xa_end () on the dynamically registered RM, thereby
ending the association between the current thread and the transaction
branch in the RM.

To enable dynamic registration for a particular XA resource, perform the
following steps:

1.

Follow the instructions in the third-party XA resource manager
documentation to enable the dynamic registration optimization.

In particular, you must ensure that the Artix library containing the
implementation of the AX interface (ax_reg () and ax_unreg()
functions) is accessible to the third-party XA resource manager. The
Artix library containing the AX interface implementation is, as follows:
+ Windows platforms—it xa.lib.

+ UNIX platforms—1ibit xa.so Or 1ibit xa.sl.

Pass the value, true, to the

use_dynamic_registration optimization argument of the

IT Bus::XATransactionManager::register xa resource () function

when you are registering the resource manager's XA switch.

It is important to ensure that both the transaction manager and the resource
manager are aware of the dynamic registration optimization, because this
optimization changes the nature of their interaction through the XA
interface.

The following examples explain how to enable dynamic registration for
certain third-party XA resource managers:

Enabling dynamic registration for Oracle.
Enabling dynamic registration for DB2.

89

CHAPTER 4 | Basic Transaction Programming

Enabling dynamic registration for
Oracle

Enabling dynamic registration for
DB2

90

In Oracle, dynamic registration is enabled by registering a special XA switch
instance, xaoswd, instead of the normal XA switch instance, xaosw. You
must also set the dynamic registration flag in the register xa resource ()
call to true. Sample code for registering an Oracle XA switch with dynamic
registration enabled is shown in Example 16.

Example 16: Dynamic Registration for the Oracle XA Resource Manager

// C++

#include <it bus/bus.h>

#include <it bus/transaction system.h>
#include <it bus pdk/xa transaction manager.hs>
#include <orbix sys/xa.h>

#include <sglca.h>
extern "C" IT DECLSPEC IMPORT xa switch t xaoswd;

xa_tx mgr->register xa resource (
&xaoswd, // Oracle XA dynamic switch
"Oracle XA+Acc=P/SCOTT/TIGER+SesTm=60+threads=true",

// Oracle open string

o // Oracle close string
nn, // resource manager identifier
true, // dynamic registration = true
false // single-threaded = false

) g

To make the Artix implementation of the AX interface available to Oracle,
you must also ensure that the it_xa.1ib (Windows) or libit xa[.so] [.sl]
(UNIX) library is placed in the link line before the Oracle client library.

In DB2, dynamic registration is enabled by updating the DB2 configuration
with the name of the Artix library that implements the AX interface. Enter
the following db2 command:

db2 update dbom cfg using TP _MON NAME <AX LibNameRoot>

Where <ax LibNameRoot > is the name of the relevant Artix library less the
filename suffix—that is, it xa (Windows) or 1ibit xa.so, libit xa.sl
(UNIX). The Artix library must also be made accessible to DB2 (by including
it in the library path, or whatever is appropriate for your platform). You need
to restart DB2 after issuing this command.

You must a

Server Programming

Iso set the dynamic registration flag in the

register xa_ resource () call to true. Sample code for registering a DB2
XA switch with dynamic registration enabled is shown in Example 17.

Example 17: Dynamic Registration for the DB2 XA Resource Manager

// C++

#include
#include
#include
#include

<it bus/bus.h>

<it bus/transaction system.h>

<it bus_pdk/xa_transaction manager.h>
<orbix sys/xa.h>

#ifdef WIN32
#define db2xa switch (*db2xa switch)

#endif

extern "C

Xa_tx mgr
&db2x

" IT DECLSPEC IMPORT xa switch t db2xa switch;

->register xa resource (
a switch, // DB2 XA switch

"<DB Name>, <Username>, <Password>",

nn
i

nn
1

true,
false

// DB2 open string

// DB2 close string

// resource manager identifier
// dynamic registration = true
// single-threaded = false

91

CHAPTER 4 | Basic Transaction Programming

Writing a Custom Resource

When do you need a custom
resource?

Implementing a custom resource

Reference

92

Occasionally, it might be necessary to integrate a resource with the Artix
transaction manager, where that resource does not support the XA standard.
That is, the resource does not provide an XA switch that can be registered
with a transaction manager.

In this case, you would have to write a custom resource by implementing a
class that derives from the Artix IT Bus: :TransactionParticipant base
class. This custom resource would implement the same functionality as a
resource manager. Writing the custom resource is a fairly complex task that
requires a good understanding of transaction systems.

For an introduction to some of the programming issues involved in writing a
custom resource, see “Recoverable Resources” on page 125.

Server Programming

Server-Side Programming Model

Overview

Restrictions on connecting to and
disconnecting from a resource

Transaction demarcation
restrictions

When you register an XA resource with Artix, this typically has an impact on
the way you program the XA resource itself. You should consult the
documentation for the third-party resource in order to get a detailed
overview of the resource’s programming model under XA.

Although the programming model under XA is specific to a particular
resource implementation, it is possible to make a few general observations
on the programming model, as follows:

® Restrictions on connecting to and disconnecting from a resource.

® Transaction demarcation restrictions.

® Demarcation models under XA.

Typically, an XA switch is implemented in such a way that xa_open() is
responsible for opening a connection to the XA resource and xa_close() is
responsible for closing the connection to the XA resource. In this case the
Artix transaction manager, through calls to xa_open() and xa_close(), is
responsible for opening and closing connections to the resource. Typically,
this implies that you must avoid making any explicit calls (using the
resource API) to open or close connections to the resource.

For example, when you register an XA switch for the Oracle database, the
xa_open () and xa_close () calls are responsible for opening and closing
connections to the database. When an XA switch is registered, Oracle
forbids you from opening or closing a database connection explicitly.

If your third-party resource has a native demarcation APl—that is, a native
API for beginning, committing and rolling back transactions—you must not
use this native demarcation APl when you have registered the resource’s XA
switch.

For example, if the resource is a database supporting embedded SQL, you
must avoid using any embedded SQL statements that demarcate a
transaction (whether explicitly or implicitly). At a minimum, you must avoid
using the EXEC SQL BEGIN, EXEC SQL COMMIT, and EXEC SQL ROLLBACK
commands.

93

CHAPTER 4 | Basic Transaction Programming

Demarcation models under XA

Operation participating in a global
transaction

Operation not participating in a
global transaction

94

When a resource’s transactions are under the control of the Artix XA
transaction manager, the programming model for transaction demarcation
changes fundamentally. When implementing a WSDL operation in Artix,
there are essentially three different cases to consider:

® Operation participating in a global transaction.

® Operation not participating in a global transaction.

® Operation sometimes participating in a global transaction.

If you are writing database code in the body of an operation which always

participates in a global transaction (that is, incoming requests always

include a transaction context), you should observe the following coding

guidelines when accessing the database:

® Do not open or close any database connections—that is the
responsibility of the transaction manager.

®* Do not use any embedded SQL commands that demaracate
transactions. For example, avoid using EXEC SQL BEGIN, EXEC SQL
COMMIT, and EXEC SQL ROLLBACK.

® Do not use any native database APIs that demarcate transactions.

® Do not use the Artix begin_transaction(), commit_transaction(),
and rollback transaction() functions (defined on the
IT Bus::TransactionSystem Object). A thread can only associate with
one transaction at a time and the operation’s thread is already
associated with a global transaction.

If you are writing database code in the body of an operation which never
participates in a global transaction (that is, incoming requests never include
a transaction context), you should observe the following coding guidelines
when accessing the database:
® Do not open or close any database connections—that is the
responsibility of the transaction manager.
® You can demarcate transactions, but you must not do so using
embedded SQL commands or the native database API. Instead, use
the demarcation functions provided by the Artix
IT Bus::TransactionSystem class—that is, begin transaction(),

commit transaction(), and rollback transaction().

Operation sometimes
participating in a global
transaction

Server Programming

If you are writing database code in the body of an operation which
sometimes participates in a global transaction (that is, incoming requests
may include a transaction context), you should observe the following coding
guidelines when accessing the database:

Do not open or close any database connections—that is the
responsibility of the transaction manager.

Use the TransactionSystem: :within transaction() function to
determine whether the operation is being called in the context of a
global transaction or not.

If within transaction() returns true, do not attempt to demarcate a
new transaction, as any database operations would be executed in the
context of the global transaction.

If you wish to demarcate a new transaction, separate to the global
transaction, you must first disassociate the global transaction from the
current thread using the TransactionManager: :detach_thread ()
function. Once the global transaction has been detached, you can
demarcate a new transaction using the demarcation functions provided
by the Artix IT Bus::TransactionSystem class—that is,

begin transaction(), commit transaction(), and

rollback transaction().

If you have detached a transaction from the current thread it is
imperative that it be re-attached before the operation exits, using the
TransactionManager: :attach thread() operation.

95

CHAPTER 4 | Basic Transaction Programming

926

In this chapter

CHAPTER 5

Transaction
Propagation

Transaction propagation refers to the implicit propagation of
transaction context data in message headers.

This chapter discusses the following topics:

Transaction Propagation and Interposition page 98

97

CHAPTER 5 | Transaction Propagation

Transaction Propagation and Interposition

Overview In a multi-tier application, Artix automatically propagates transactions from
tier to tier. This ensures that all of the processes that are relevant to the
outcome of a transaction can participate in the transaction. You do not have
to do anything special to switch on transaction propagation; it is enabled by
default. However, the receiver of a transaction context must have a
transaction plug-in loaded, otherwise the transaction context would be
ignored.

Transaction contexts A transaction context is a data structure that is transmitted to a remote
server and used to recreate the transaction at a remote location. The type of
transaction context that is transmitted depends on the middleware protocol.
Artix supports the following kinds of transaction context:

® QTS transaction context—a transaction context that is sent in a GIOP
header (part of the CORBA standard).

® WS-AT transaction context—a transaction context that is embedded in
a SOAP header.

Propagation scenario The propagation scenario shown in Figure 13 shows two different kinds of

transaction propagation, as follows:

® Transaction propagation within a single middleware technology—the
OTS transaction context, which propagates across the top half of
Figure 13, illustrates a simple kind of propagation, where the client
and the servers all use the same CORBA OTS transaction technology.

® Transaction propagation across middleware technologies—the WS-AT
transaction context, which propagates across the bottom half of
Figure 13, illustrates a kind of propagation, where the transaction
crosses technology domains. While the client uses OTS Encina to

98

Transaction Propagation and Interposition

manage the transaction, it must generate a WS-AT transaction context
to send to the server. The ability to transform transaction contexts is
known as interposition.

Figure 13: Overview of Different Kinds of Transaction Propagation

Artix Server

Artix Server

Artix Server

,—> CORBA X Contextg_’ CORBA
oTS :
Tx Context
@ e oTs oTs
Artix Client
@ fp----- |
|
|
oTS feenees eereeees
: WS-AT
i : Tx Context
OTS Encina Teeeees IR
® |
|

Scenario steps

SOAP/HTTP

WS-AT

Resource

-

Resource

The propagation scenario shown in Figure 13 can be described as follows:

Stage

Description

1

The Artix client (which is configured to use the OTS Encina
transaction system) initiates a transaction by calling the
begin_transaction () function. The client then invokes a
remote operation, which results in a request message being
sent over an 1lOP connection.

2 | The request received by the server includes an OTS transaction

context embedded in a GIOP header. Although this server does
not participate directly in the transaction (it registers no
resources), it is capable of propagating the transaction context
to the next tier in the application.

99

CHAPTER 5 | Transaction Propagation

Stage Description

3 | The third tier of the application receives a request containing
an OTS transaction context. This server participates in the
transaction by registering a database resource with the OTS
transaction manager.

4 | The client invokes a remote operation, which results in a
request message being sent over a SOAP/HTTP connection.

5 | In this case, Artix automatically translates the OTS transaction
into a WS-AT transaction context, which is suitable for
transmission in the header of the SOAP/HTTP request.

There is no need to perform any special configuration or
programming to enable interposition; it occurs automatically.

Limitation of using OTS Lite with Figure 14 shows an interposition scenario where the client, which uses an
propagation OTS transaction system, connects to a SOAP/HTTP server, which uses the
WS-AT transaction system.

Figure 14: Limitation of Transaction Propagation Using OTS Lite

Artix Client CwsaT Artix Server
- — Ty Context™ *— —-» SOAP/HTTP

Resource

oTSs WS-AT

OTS Encina

Because there is only one explicitly registered resource in this scenario (the
database connected to the server), it would seem that the client could use
an OTS Lite transaction manager for this scenario. In reality, however, the
client must use the OTS Encina transaction manager. The reason for this is
that Artix implicitly registers an interposition resource to bridge the
OTS-to-WS-AT middleware boundary. Therefore, there are really two
resources in this scenario.

100

Suppressing propagation

Transaction Propagation and Interposition

In summary, interposition requires additional resources as follows:

® OTS-to-WS-AT middleware boundary—one interposition resource is
registered automatically. Applications with one explicitly registered
resource must use OTS Encina.

® WS-AT-to-OTS middleware boundary—no interposition resource
required. Applications with one explicitly registered resource may use
OTS Lite.

Once you have selected a transaction system (for example, the application
loads an OTS plug-in or a WS-AT plug-in), transaction contexts are
propagated by default.

It is possible, however, to suppress transaction propagation selectively using
the detach thread() and attach thread() functions. After calling
detach_thread (), subsequent operation invocations do not participate in
the transaction and, therefore, do not propagate any transaction context.
You can re-establish an association with a transaction by calling

attach thread().

For more details on these functions, see “Threading” on page 103.

101

CHAPTER 5 | Transaction Propagation

102

In this chapter

CHAPTER 6

Threading

This chapter discusses the thread affinity of transactions and
how you can modify thread affinities using the Artix transaction
API.

This chapter discusses the following topics:

Client Threading page 104

Threading and XA Resources page 109

103

CHAPTER 6 | Threading

Client Threading

Overview

Default client threading model

begin_transaction()

Artix supports a threading API that enables you to change the thread affinity
of a given transaction. Using the attach thread() and detach thread()
functions, you can flexibly re-assign threads to a transaction (subject to the
limitations imposed by the underlying transaction system).

Figure 15 shows the default threading model for transaction on the client
side. When you call begin transaction(), Artix creates a new transaction
and attaches it to the current thread. So long as the transaction remains
attached, any WSDL operations called from the current thread become part
of the transaction. When you call commit_transaction() (or

rollback transaction(), if the transaction must be aborted), the
transaction is deleted.

Figure 15: Default Client Threading Model

commit_transaction()

mreadx KRS R e

Transaction Scope

Transaction identifiers

104

A transaction identifier is an opaque identifier of type

IT Bus::TransactionIdentifier that identifies a transaction uniquely.
Depending on the underlying transaction system, a transaction identifier can
be downcast (using dynamic_cast<. ..>) to an implementation-specific
transaction identifier.

For example, if OTS is the underlying transaction system, the transaction
identifier can be downcast to an instance of an oTsTransactionIdentifier.
The OTS transaction identifier provides access to implementation-specific
features, such as the cosTransaction: :Control class.

Controlling thread affinity

Client Threading

On the client side, thread affinity is controlled by the following
TransactionManager member functions:

Example 18: Functions for Controlling Thread Affinity

// C++

namespace IT Bus

{

Da

class IT BUS API TransactionManager
: public virtual RefCountedBase

{
public:
virtual TransactionIdentifier* detach thread()=0;

virtual Boolean attach thread(
TransactionIdentifier* tx identifier

) = ©f

virtual TransactionIdentifier* get tx identifier()=0;

These functions can be explained as follows:

detach thread()

Detach the transaction from the current thread. After the call to
detach_thread (), WSDL operations called from the current thread do
not participate in the transaction. The returned transaction identifier
can be used to re-attach the transaction to the current thread at a later
stage.

attach thread()

Attach the transaction, specified by the tx identifier argument, to
the current thread.

get_tx identifier()

Return the identifier of the transaction that is attached to the current
thread. If no transaction is attached, return NuLL.

105

CHAPTER 6 | Threading

Detaching and re-attaching a Figure 16 shows how to use the detach thread() and attach thread()

transaction to a thread functions to suspend temporarily the association between a transaction and
a thread. This can be useful if, in the midst of a transaction, you need to
perform some non-transactional tasks.

Figure 16: Detaching and Re-Attaching a Transaction to a Thread

begin_transaction () detach_thread () attach_thread() commit_transaction()

— l T — l

U VaVaWawaUaUaUa UaUawawe W

Transaction Scope

Attachingatransaction tomultiple Figure 17 shows how to use the get tx identifier() and

threads attach thread() functions to associate a transaction with multiple threads.
The get_tx identifier () function is called from within the thread that
initiated the transaction. The transaction ID can then be passed to the other
threads, Y and Z, enabling them to attach the transaction.

Figure 17: Attaching a Transaction to Multiple Threads
begin_transaction() id = get_tx identifier() commit_transaction()

LRI VaVaUaWabaUaUaUaWawawe W

BRI, : Transaction Scope

LMV UAVAYaUaWalWaWaWaWa

Thread Z

attach_thread (id) attach_thread(id)

106

Client Threading

Note: Some transaction systems do not allow you to associate multiple
threads with a transaction. In this case, an attach thread() call fails
(returning false), if you attempt to attach a second thread to the

transaction.

Figure 18 shows how to use the detach thread() and attach thread()
functions to transfer a transaction from thread X to thread Y. The transaction
ID returned from the detach thread() call must be passed to thread Y,
enabling it to attach the transaction.

Transferring a transaction from
one thread to another

Figure 18: Transferring a Transaction from One Thread to Another

begin_transaction () id = detach_thread()

Thread X W\MW

.................................... fe e et aaaeeeaaaeeeaaiaaeeaaaaeeeaaaaaaeaaa,

Transaction Scope

Thread Y me

attach_thread(id) commit_transaction ()

Note: Some transaction systems do not allow you to transfer a
transaction from one thread to another. In this case, an attach thread()
call fails (returning false), unless you are re-attaching the original thread

to the transaction.

107

CHAPTER 6 | Threading

Threading and XA Resources

Overview This section discusses the following threading models for XA resources:
® Auto-association.
® Multiple registered resources.
® Multi-threaded resource connections.
® Dynamic registration.

Auto-association When an Artix server receives a transactional request (that is, a request
accompanied by a transaction context), Artix automatically creates an
association between the current thread and locally registered resources. For
each registered resource, the Artix transaction manager creates a
transaction branch, which participates in the global transaction.

Figure 19 shows the sequence of events that occur when a transactional
request arrives at an Artix server that has one registered resource.

Figure 19: Auto-Association with a Single Registered Resource

@ Upcall @ Return
xa_start () xa_end ()
@ = e (@
®

@Recelve request Yaoex xocx schex 50 SR KIRIIKRIIURKKA KR KK R IR AR IR 5 Y Send reply
Transaction Branch Scope :

Thread X W

Resource /

Connection

Resource

108

Threading and XA Resources

The sequence of events shown in Figure 19 on page 109 can be explained
as follows:

1.

Request is received—an operation request is received, which contains
a transaction context.

Artix calls xa_start ()—to create a temporary association between the
current thread and the local resource. The resource creates a new
transaction branch, which performs work on behalf of the global
transaction.

Artix calls servant function—control is passed to the servant function
that implements the WSDL operation. Any interactions and updates
you make to the resource are now governed implicitly by the global
transaction.

Servant function returns—control passes back to the Artix runtime.
Artix calls xa_end ()—to end the association between the current
thread and the resource. Effectively, the local transaction branch is
terminated (but the global transaction is still active).

Reply is sent—and the thread becomes available to process another
request.

109

CHAPTER 6 | Threading

Multiple registered resources

110

Figure 20 shows how auto-association works with multiple registered

resources. When the Artix server receives a transactional request, it obtains
a list of all registered resources. Artix then creates a new transaction branch
for each resource, before making an upcall to the relevant servant function.

Figure 20: Auto-Association with Multiple Registered Resources

Upcall Return

xa_start () xa_end ()

Resource R1 Resource R2

After the upcall, any application code in the servant function that interacts
with one of the resources (either resource R1 or resource R2) is implicitly
governed by a global transaction, where the global transaction ID has been
obtained from the received transaction context.

Threading and XA Resources

Multi-threaded resource Most modern databases offer the option of running in a multi-threaded

connections mode. What this means is that instead of having a single connection to the
database, which must be shared between all threads in the server, the
database allows the transaction manager to open a dedicated connection for
each server thread. This has the advantage of reducing contention between
the server threads.

Figure 21 shows an example of a resource configured to use multi-threaded
mode, where the server threads each open an independent connection to
the resource. This enables the threads to access the resource concurrently.

Figure 21: Database Resource Operating in Multi-Threaded Mode

xa_start () xa_end()

Resource
Connections

Resource

To use the multi-threaded resource mode, both the resource manager and
the Artix transaction manager must be configured appropriately. For details
of how to configure the Artix transaction manager in this case, see
“is_single_threaded_resource” on page 83.

111

CHAPTER 6 | Threading

Dynamic registration As shown in Figure 22, some XA resources support an alternative algorithm,
dynamic registration, for associating a global transaction with a locally
registered resource.

Figure 22: Threading for a Dynamically Registered Resource

Upcall Return

ax_reg() xa_end ()

-

Transaction Branch Scope

Thread X

Resource /

Connection

Resource

When dynamic registration is enabled, the transaction manager does not
automatically create a transaction branch for an incoming request (that is,
the transaction manager does not call xa_start ()). Instead, the transaction
manager waits until it receives a callback, ax_reg(), from the resource
manager. This callback indicates to the transaction manager that the
application code has attempted to update the resource in some way (for
example, by calling Exec sor uppaTE). The transaction manager responds to
this by creating a new transaction branch, which it associates with a global
transaction (assuming the incoming request has a transaction context).

The advantage of this algorithm is that the transaction branch is created
only when necessary. In some cases, if the application code does not make
any resource updates, it might not be necessary to create a transaction
branch at all.

For details of how to configure dynamic registration, see “Dynamic
Registration Optimization” on page 85.

112

In this chapter

CHAPTER 7

Transaction
Recovery

Transaction recovery is an enterprise-level feature thatensures
a transaction system can cope with any kind of crash or system
failure, without losing data or getting into an inconsistent
state. In Artix, transaction recovery is implemented by the
Encina transaction engine.

This chapter discusses the following topics:

Transactions Systems and Recovery page 116

Transaction Recovery Scenarios page 118

115

CHAPTER 7 | Transaction Recovery

Transactions Systems and Recovery

Overview

OTS Lite

OTS Encina

Non-recoverable WS-AT

116

Not all of the Artix transaction systems support recovery. It is important to
distinguish between the lightweight transactions systems, which are
non-recoverable, and the enterprise-level transactions systems, which are
recoverable. Table 4 summarizes the characteristics of the various Artix

transaction systems.

Table 4: Transaction Systems and Recoverability

Transaction System Single or Multiple Recoverable?
Resources?
OTS Lite Single No
OTS Encina Multiple Yes
Non-recoverable WS-AT | Multiple No
Recoverable WS-AT Multiple Yes

OTS Lite is a lightweight transaction system, whose programming interface
is based on the CORBA OTS standard. The OTS Lite system can manage a
single resource only and is not recoverable.

OTS Encina is a complete, enterprise-level transaction system, whose
programming interface is based on the CORBA OTS standard. The OTS
Encina system can manage multiple resources and is recoverable.

Recoverability is the key property that distinguishes an enterprise-level
transaction systems from lightweight transaction systems. Recoverability
ensures that the system can always be brought back into a consistent state,
irrespective of when or how a transaction participant fails.

The non-recoverable WS-AT transaction system is a lightweight transaction
system based on the WS-AtomicTransactions and WS-Coordination
standards. The non-recoverable WS-AT transaction system (in contrast to
OTS Lite) can manage multiple resources.

Recoverable WS-AT

Transactions Systems and Recovery

The recoverable WS-AT transaction system is layered on top of the OTS
Encina transaction engine to give enterprise-level transaction support. From
Artix 4.0 onwards, WS-AT is layered over OTS by default and the relevant
OTS plug-ins are automatically loaded when WS-AT is enabled. If the
plugins:ws_coordination service:disable tx recovery variable appears
in your Artix configuration file, it must be set as follows to ensure
recoverability:

Artix Configuration File
plugins:ws_coordination service:disable tx recovery = "false";

When WS-AT is layered over Encina, the initiation of a transaction in
WS-Coordination effectively initiates an OTS transaction. The coordination
context returned from the WS-Coordination service (and subsequently
propagated on SOAP calls) includes an identifier indicating that it is OTS
based and also includes an encoded form of the relevant OTS propagation
context. That is, all transactions, including WS-AT initiated ones, are always
OTS transactions. If a participant enlistment is required then the WS-AT
system will completely bypass the WS-AT protocols and enlist the
participant directly with OTS. This means that at completion time, OTS is
aware of, and in control of, all resources in the system, be they native OTS
resources, WSAT Participants, XA resources and so on.

Note: It is also possible to layer WS-AT over OTS Lite, but there is no
benefit in doing so, because OTS Lite is more limited than plain WS-AT.

117

CHAPTER 7 | Transaction Recovery

Transaction Recovery Scenarios

Overview The whole point of transaction recovery is that it enables a transaction
system to recover to a consistent state, irrespective of what kind of system
failures occur. This section discusses a variety of different failure scenarios
in order to illustrate how Encina recovers the transactional system.

In this section This section contains the following subsections:
Server Crash before or during Prepare Phase page 119
Server Crash after Prepare Phase page 121
Transaction Coordinator Crash page 123

118

Transaction Recovery Scenarios

Server Crash before or during Prepare Phase

Overview

Figure 23 shows a scenario involving two transactional resources, one
attached to server 1 and another attached to server 2, and a client, which
initiates a transaction involving server 1 and server 2. This scenario uses the
OTS Encina transaction system, where the OTS Encina transaction
coordinator is loaded into the client and the two servers participate in the

transaction.

The mode of failure described in this scenario involves server 1 crashing
either before or during the prepare phase of the two-phase commit protocol.

Figure 23: Server Crash before or during the Prepare Phase

Artix
Client

begin_transaction() !

invoke

invoke

‘commit transaction ()7~

Pttt S S S

OTS Encina

Resource

® crash!!
Server 1
DI
! oTS
1
@
» Server 2
--prepare - - -
oTS

]

Resource

119

CHAPTER 7 | Transaction Recovery

Steps leading to crash As shown in Figure 23, the steps leading to a server crash before or during
the prepare phase of a two-phase commit can be described as follows:

1. Theclient calls begin transaction() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations
on both of the remote servers.

3. Theclient calls commit_transaction() to make permanent any
changes caused during the transaction.

4. The transaction coordinator initiates the prepare phase of the
two-phase commit. At some point either before or during the prepare
phase, server 1 crashes. That is, the transaction coordinator never
receives a vote commit or vote rollback from server 1.

Transaction system recovery If the transaction coordinator does not receive a reply from the prepare call
on server 1 (for example, the connection to server 1 breaks or the
transaction times out), the transaction coordinator will presume that the
transaction is to be rolled back (this rule is called presumed rollback).

The transaction system also rolls back the transaction on all of the other
transaction participants.

Server 1 recovery The manner in which server 1 recovers depends on whether it wrote
anything into its log during the prepare phase. When server 1 re-starts after
crashing, the transaction is recovered in one of the following ways:
® No record of prepare phase in log—in this case, server 1 knows that a
transaction was begun (this is recorded in its log) and that the
transaction was interrupted before the prepare phase. Server 1
automatically rolls back the transaction (presumed rollback), bringing
it back to a state that is consistent with the rest of the system.

® Prepare phase recorded in log—in this case, it is possible that the
prepare phase had completed successfully. Server 1, therefore, needs
to contact the transaction coordinator to discover the outcome of the
transaction. From its log, it can retrieve a recovery coordinator
reference, which it uses to query the transaction state. Depending on
the reply, it will either commit or roll back the transaction (in the
scenario shown in Figure 23, it will be a rollback).

120

Transaction Recovery Scenarios

Server Crash after Prepare Phase

Overview Figure 24 shows a scenario involving two transactional resources, one
attached to server 1 and another attached to server 2, and a client, which
initiates a transaction involving server 1 and server 2. This scenario uses the
OTS Encina transaction system.

The mode of failure described in this scenario involves server 1 crashing
after the prepare phase of the two-phase commit protocol.

Figure 24: Server Crash after the Prepare Phase

® crash!!

Server 1
R D
1
' Resource
_____________________________ @
begin_transaction() ! oTs
Artix i
Client . | - prepare--
Ecommit_transaction()'E"“““‘,
-------------------------------- 1 i
1
oTs @@
1
1
OTS Encina P Server 2
| '--prepare --->
L---commit - - -- > Resource
oTS
Steps leading to crash As shown in Figure 24, the steps leading to a server crash after the prepare

phase of a two-phase commit can be described as follows:

1. Theclient calls commit_transaction() to make permanent any
changes caused during the transaction.

2. The transaction system performs the prepare phase by polling all of the
remote transaction participants.

121

CHAPTER 7 | Transaction Recovery

Transaction system recovery

Server 1 recovery

122

3. Atfter replying to the prepare call, but before receiving the commit call,
server 1 crashes. For this scenario, it is assumed that server 1 replied
to the prepare call with a vote commit.

4. Assuming that the other transaction participants all reply to the
prepare phase with a vote commit, the transaction coordinator decides
to commit the transaction and sends a commit notification to the
participants.

If the prepare phase has completed successfully (that is, the prepare call
returned from all of the transaction participants), the transaction coordinator
determines the outcome of the transaction to be either commit or rollback.
In the present scenario, it is assumed that the outcome is commit.

When the transaction coordinator attempts to send a commit notification to
server 1, it discovers that server 1 has crashed. The transaction coordinator
reacts to this situation by retrying the commit call forever.

When server 1 is restarted, it knows from its own log that a transaction was
prepared but not commited. Therefore, it expects to receive either a commit
or a rollback call from the transaction coordinator. Because the transaction
coordinator retries the commit call forever, server 1 is bound to receive a
commit call shortly after it starts up, thereby resolving the transaction.

Transaction Recovery Scenarios

Transaction Coordinator Crash

Overview Another mode of failure can occur where the process hosting the transaction
coordinator crashes (for example, in Figure 24 this would be the client
process). The transaction coordinator has its own log, which it uses as the
basis for recovery.

Encina logs To enable the transaction coordinator to recover gracefully after a crash, it
writes whatever information would be needed for recovery into a log file or
partition as it goes along.

Transaction system recovery After a transaction coordinator crash, the possible recovery scenarios can be

reduced essentially to two cases, as follows:

® The coordinator determined the transaction outcome before
crashing—upon restarting, the transaction coordinator will try forever
to notify the participants of the transaction outcome (commit or
rollback).

® The coordinator did not determine the transaction outcome before
crashing—the presumed rollback rule is used here. Transaction
participants that were not prepared will simply presume a rollback,
after a timeout has elapsed. Prepared participants will use the
coordinator reference to contact the transaction coordinator and query
the outcome of the transaction.

123

CHAPTER 7 | Transaction Recovery

124

CHAPTER 8

Recoverable
Resources

This section describes those aspects of server side
programming which enable you to update a persistent resource

transactionally.

In this chapter This chapter discusses the following topics:

Transaction Participants page 126

Interposition page 134

125

CHAPTER 8 | Recoverable Resources

Transaction Participants

Overview

126

When Artix uses a persistent resource, the easiest way to integrate that
resource within the Artix transaction system is to enlist the resource’s XA
switch. If the resource does not support the XA standard, however, you need
to implement a transaction participant instead. A transaction participant is
an object usually on the server side that interfaces between the Artix
transaction manager and a persistent resource. The role of the transaction
participant is to receive callbacks from the transaction manager, which tell
the participant whether to make pending changes permanent or whether to
abort the current transaction and return the resource to its previous
consistent state.

Transaction Participants

Participants in a 2-phase commit Figure 25 shows an example of a two-phase commit involving two
transaction participant instances. Any operations meant to be transactional
should start by creating a transaction participant object and enlisting it with
the transaction manager.

Figure 25: Transaction Participants in a 2-Phase Commit Protocol

Artix Server [_eniist > Resource
>

begin_transaction()

- Transaction TransactionParticipant
: System
Client & - - detete

Artix invoke
invoke

‘commit transaction ()= [----=3
DR, LTt - ---- o

1
i @
1 .
Lo » Artix Server [__eniist Resource
| '--prepare ---[> P
1
t---commit----- e S Sttt >
Transaction TransactionParticipant
System
delete

Participants in a 2-phase commit As shown in Figure 25, the transaction participants participate in a
two-phase commit as follows:

Stage Description

1 | The client calls begin_transaction() to initiate a distributed
transaction.

2 | Within the transaction, the client calls transactional operations
on Server A and on Server B. In order to participate in the
distributed transaction, the servant code creates a new
transaction participant and enlists it with the transaction
manager.

127

CHAPTER 8 | Recoverable Resources

Implementing a transaction
participant

TransactionParticipant member
functions

128

Stage Description

3 | Theclient calls commit_transaction() to make permanent any
changes caused during the transaction.

4 | The transaction system performs the prepare phase by calling
prepare () on all of the transaction participants. Each
participant can vote either to commit or to rollback the current
transaction by returning a flag from the prepare () function.

5 | The transaction system performs the commit or rollback phase
by calling comnmit () or rollback () on all of the transaction
participants.

6 | When the transaction is finished, the transaction manager
automatically deletes the associated transaction participant
instances.

To implement a transaction participant, define a class that inherits from the
IT Bus::TransactionParticipant base class and implement all of its
member functions.

Example 19 shows the public member functions of the

IT Bus::TransactionParticipant class.
Example 19: The IT_Bus::TransactionParticipant Class

// C++

namespace IT Bus

class IT BUS API TransactionParticipant
: public virtual RefCountedBase

public:
virtual ~TransactionParticipant() ;

enum VoteOutcome {
VoteCommit,
VoteRollback,
VoteReadOnly

I

// 1PC Functions.

Transaction Participants

Example 19: The IT _Bus::TransactionParticipant Class

It

virtual void commit one phase()=0;

// 2PC Functions.

virtual VoteOutcome prepare ()=0;
virtual void commit () =0;
virtual void rollback () =0

// Getting the transaction manager.
virtual String

preferred transaction manager()=0;

virtual void
set_manager (

TransactionManager* txX manager
)=0;

typedef Var<TransactionParticipants>
TransactionParticipant var;
typedef TransactionParticipant* TransactionParticipant ptr;

1PC callback function The following function is called during a one-phase commit:

commit one phase ()—this function should make permanent any
changes associated with the current transaction.

2PC callback functions The following functions are called during a two-phase commit:

prepare ()—called during phase one of a two-phase commit. Before
returning, this function should write a recovery log to persistent
storage. The recovery log should contain whatever data would be
necessary to restore the system to a consistent state, in the event that
the server crashes before the transaction is finished.

Note: In some transaction systems, such as OTS Encina, the
transaction manager will not call prepare () if it knows that
transaction will be rolled back.

129

CHAPTER 8 | Recoverable Resources

Getting the transaction manager

130

The prepare () function also votes on whether to commit or roll back
the transaction overall, by returning one of the following vote
outcomes:

¢ IT Bus::TransactionParticipant::VoteCommit—Vote to

commit the transaction.

¢ IT Bus::TransactionParticipant::VoteRollback—vote to roll
back the transaction. For example, you would return
VoteRollback, if an error occurred while attempting to write the
recovery log.

. IT Bus::TransactionParticipant: :VoteReadonly—explicitly
request not to be included in the commit phase of the 2PC
protocol.

commit ()—called during phase two of a two-phase commit, if the
transaction outcome was successful overall. The implementation of
this function should make permanent any changes associated with the
current transaction.

rollback ()—called during phase two of a two-phase commit, if the
transaction must be aborted. The implementation of this function
should undo any changes associated with the current transaction,
returning the system to the state it was in before.

After the transaction participant is enlisted by a transaction manager
instance, the transaction system calls back to pass a transaction manager to
the participant. The following functions are relevant to this callback
behavior:

preferred transaction manager ()—called just after the participant
is enlisted. The return value is a string that tells the transaction system
what type of transaction manager the participant requires. The
following return strings are supported:

¢+ DEFAULT TRANSACTION TYPE—NO preference; use the current
default.

. OTS_TRANSACTION_TYPE—prefer the oTsTransactionManager
interface (manager for CORBA OTS transactions).

¢ WSAT TRANSACTION TYPE—prefer the WSATTransactionManager
interface (manager for WS-AtomicTransactions).

Enlisting a transaction participant

[

Transaction Participants

set_manager ()—called after the preferred transaction manager ()
call. The transaction system calls set_manager () to pass a transaction
manager of the preferred type to the participant. If the type of
transaction manager requested by the participant differs from the one
currently in use, Artix uses interposition to simulate the preferred
transaction manager type.

For more details about interposition, see “Interposition” on page 134.

Example 20 shows an example of how to enlist a participant instance in a
transaction. You must enlist a participant at the start of any transactional
WSDL operation. Example 20 shows a sample implementation of a WSDL
operation, transactional op(), which is called in the context of a
transaction.

Example 20: Example of Enlisting a Transactional Participant

// C++
void
HelloWorldServantImpl: :transactional op (

const IT Bus::String value

) IT_THROW DECL((IT Bus::Exception))

{

cout << "HelloWorld transactional op() called" << endl;

IT Bus::Bus_var bus = this->get bus() ;
if (bus->transactions() .within transaction())

{

cout << "This is a transaction" << endl;

TXParticipant * participant = new TXParticipant (this);
bus->transactions () .get transaction manager () .enlist (
participant,
true
) 7

// Implementation of ’transactional op()’ comes here.
// Includes writing to DB or other persistent resources.
// (not shown)

}

else

{

cout << "No transaction" << endl;

131

CHAPTER 8 | Recoverable Resources

132

Example 20: Example of Enlisting a Transactional Participant

}

IT Bus::Exception ex("Invocation not in transaction");
throw ex;

The preceding code example can be explained as follows:

1.

The get_bus () function is a standard servant function that returns a
stored reference to the Bus instance.

In this example, the transactional op() operation requires a
transaction. If it is not called in the context of a transaction, it raises an
exception back to the client.

It is an implementation decision whether or not an operation should
require a transaction. In some cases, it may be appropriate for the
operation to proceed with or without a transaction.

The TxParticipant class is a sample participant class, which is
implemented by inheriting from 1T Bus: :TransactionParticipant.

In this example, a new Txparticipant instance is created every time
transactional op() is called.

This line enlists the participant in the transaction, ensuring that the
participant receives callbacks either to commit or rollback any
changes.

The second parameter is a boolean flag that specifies the kind of

participant:

¢+ true indicates a durable participant, which participates in all
phases of the transaction.

. false indicates a volatile participant, which is only guaranteed to
participate in the prepare phase of the 2PC protocol. There is no
guarantee that a volatile participant will participate in the commit
phase.

The implementation of transactional op() involves writing to a
persistent resource. The committing or rolling back of any changes to
this persistent resource is controlled by the enlisted TxpPersistent
instance.

Transaction Participants

Alternatives to the Artix Implementing and enlisting an Artix TransactionParticipant class is not
transaction participant the only way to make a WSDL operation transactional. By drilling down to
the underlying transaction manager type (for example,
IT Bus::0TSTransactionManager) it is sometimes possible to use an
alternative APl supported by a specific transaction system.

For example, the following demonstration shows how to use the OTS
transaction system:

ArtixInstallDir/artix/Version /demos/transactions/legacy ots integrati
on

133

CHAPTER 8 | Recoverable Resources

Interposition

What is interposition?

Interposition matrix

Using interposition

134

Sometimes, there can be a mismatch between the transaction APl used by
the application code and the type of the underlying transaction system. For
example, imagine that you have a legacy CORBA server that manages
transactions with CORBA OTS. If you migrate this server code to a
WS-AT-based Artix service, you would obtain a mismatch between the
transaction API used by the application code (which is CORBA OTS-based)
and the underlying transaction system (which is WS-AT).

To bridge this APl mismatch, Artix uses interposition. With interposition,
the Artix runtime provides the application code with an object of the
preferred type (for example, an 0TSTransactionManager object), but the
object is merely a facade, whose calls are ultimately translated into a form
suitable for the underlying transaction system (for example, WS-AT).

Artix supports interposition between every permutation of transaction
systems. Internally, Artix converts calls made on a specific transaction API
into a technology-neutral API. The calls are then converted from the
technology-neutral API into one of the supported transaction APlIs.

As an example of interposition, consider a service that loads the WS-AT
transaction system (for example, see “Configuring Non-Recoverable WS-AT”
on page 63), but actually implements the transaction functionality using the
CORBA OTS programming interface. In this case, it is necessary for the
TransactionParticipant implementation to request explicitly an OTS
transaction manager, instead of the default WS-AT transaction manager.

Example 21 shows the implementation of the
preferred transaction manager () function and the set_manager (
function for the transaction participant implementation, TxParticipant.

Example 21: Example of a TransactionParticipant that Uses Interposition

// C++

IT Bus::String
TXParticipant: :preferred transaction manager ()

Interposition

Example 21: Example of a TransactionParticipant that Uses Interposition

return IT Bus::TransactionSystem::0TS TRANSACTION TYPE;

void
TXParticipant: :set manager (
IT Bus::TransactionManager* tx manager

m ots tx manager =
dynamic cast<IT Bus::0TSTransactionManager*> (tx manager) ;

When Artix calls back on set_manager (), it passes a transaction manager
object, tx manager, of OTSTransactionManager type. There is no need to
query the type of the tx_manager object before downcasting it, because its
type is already specified by the preferred transaction manager ()
callback.

135

CHAPTER 8 | Recoverable Resources

136

CHAPTER 9

Notification
Handlers

A notification handler is an object that receives callbacks to
inform it about the outcome of a transaction.

In this chapter This chapter discusses the following topics:

Introduction to Notification Handlers page 138

137

CHAPTER 9 | Notification Handlers

Introduction to Notification Handlers

Overview A notification handler is an object that records the outcome of a
transaction. It can be used both on the server side and on the client side.
For example, you might use a notification handler to log transaction
outcomes or to synchronize other events with a transaction.

Implementing a notification To implement a notification handler, define a class that inherits from the
handler IT Bus::TransactionNotificationHandler base class and implement all of
its member functions.

TransactionNotificationHandler Example 22 shows the TransactionNotificationHandler base class.
base class These functions will only be called if an appropriate notification mechanism
is available in the underlying transaction system.

Example 22: The IT_Bus::TransactionNotificationHandler Class

// C++
namespace IT Bus

class IT BUS API TransactionNotificationHandler
: public virtual RefCountedBase

{
public:
virtual void commit initiated(
TransactionIdentifier ptr tx identifier

)=0;
virtual void committed()=0;
virtual void aborted()=0;

b

typedef Var<TransactionNotificationHandler>
TransactionNotificationHandler var;

typedef TransactionNotificationHandler*
TransactionNotificationHandler ptr;

138

Notification callback functions

Enlisting a notification handler

Introduction to Notification Handlers

The following notification handler functions receive callbacks from the
transaction manager:

® commit_initiated()—informs the handler that a commit has been
initiated. This function is called before any participants are prepared.

Note: WS-AT does not support this notification point.

® committed()—informs the handler that the transaction completed
successfully.

® aborted()—informs the handler that the transaction did not complete
successfully and was aborted.

To use a notification handler, you must enlist it with a TransactionManager
object while there is a current transaction. You can enlist a notification
handler at any time prior to the termination of the transaction.

Example 23 shows how to enlist a sample notification handler,
NotificationHandlerImpl.

Example 23: Example of Enlisting a Notification Handler

// C++
IT Bus::Bus var bus = ... // Get reference to Bus cbject
if (bus->transactions().within transaction())
{
// Enlist notification handler
NotificationHandlerImpl * handler
= new NotificationHandlerImpl () ;
TransactionManager& tx manager
= bus->transactions () .get transaction manager ()
tx manager.enlist for notification (handler) ;

}

else

IT Bus::Exception ex("Invocation not in transaction");
throw ex;

139

CHAPTER 9 | Notification Handlers

140

In this chapter

CHAPTER 10

Exposing Artix as
an XA Resource

You can expose Artix as an XA resource manager by registering
the Artix XA switch with a third-party XA transaction manager.

This chapter discusses the following topics:

Introduction to the Artix XA Resource Manager page 142
Obtaining an Artix XA Resource Manager page 145
Artix XA Open and Close Strings page 150
Configuring the Artix XA Resource Manager page 152

141

CHAPTER 10 | Exposing Artix as an XA Resource

Introduction to the Artix XA Resource Manager

Overview

Scenario 1 - local resource

142

The most common use case for XA in Artix is where you register a
third-party resource manager (such as an Oracle DB) with Artix and Artix is
responsible for coordinating the transactions.

It is possible, however, to reverse these roles, so that Artix assumes the role
of an XA resource manager and a foreign transaction manager is responsible
for coordinating the transactions in Artix. To support this use case, Artix
provides an XA switch, which can be registered with the foreign transaction
manager. Although this use case is much less common than the former,
there are two possible scenarios where you might want to expose Artix as an
XA resource manager, as follows:

® Scenario 1 - local resource.
® Scenario 2 - remote resource.

In the scenario shown in Figure 26, the Artix XA resource manager is
registered with the Microsoft DTC transaction manager and has
responsibility for managing a local resource. This scenario could arise, for
example, if you have already implemented a recoverable resource using the
Artix transaction API and you now want to integrate the resource with a
third party transaction manager (such as Microsoft DTC).

Figure 26: Artix XA Resource Manager Manages a Local Resource

Application Program

_
H_
enlist () Resource
Microsoft DTC / %&faﬁ Artix
Tx Manager Tx Manager

Scenario 2 - remote resource

Introduction to the Artix XA Resource Manager

Of course, it is unlikely that you would implement an Artix recoverable
resource just for this purpose. But if you already have such an
implementation, the Artix XA switch enables you to integrate it rapidly with
a third-party transaction manager.

In the scenario shown in Figure 27, the Artix XA resource manager is
registered with the Microsoft DTC transaction manager, but the managed
resource (or resources) belongs to a remote server. In this case, the Artix
Bus is effectively being used as a transport stack to facilitate interoperability
with a remote server that manages a transactional resource. Artix uses the
I1OP protocol to communicate with the CORBA server and the OTS standard
is used to coordinate the distributed CORBA transactions.

Figure 27: Artix XA Resource Manager Manages a Remote Resource

Application Program

CORBA

Server | S
———IOP/TLS—»

Resource

Microsoft DT ged |
Tx Manager A

Artix

Tx Manager O

To program this example, you would demarcate the transactions using the
relevant APl from Microsoft DTC. To access the operations supported by the
remote CORBA server, use the Artix programming API (the relevant function
signatures for the operations are provided in the Artix stub code).

143

CHAPTER 10 | Exposing Artix as an XA Resource

How to use the Artix XA switch

144

To use the Artix XA switch with a third-party transaction manager, perform
the following steps:

1.

Obtain the Artix XA switch—you need to obtain a pointer to a struct of
xa_switch_t type (as specified by the XA standard). Artix provides a
number of ways of obtaining the Artix XA switch instance. See
“Obtaining an Artix XA Resource Manager” on page 145 for details.

Register the Artix XA switch—after obtaining a pointer to the Artix XA
switch, you must register the switch instance with your third-party
transaction manager. Typically, the registration step consists of a
single function call that requires you to provide an open string and a
close string (for details of the Artix-specific open and close strings, see
“Artix XA Open and Close Strings” on page 150).

For details of how to register the XA switch, consult the documentation
for your third-party transaction manager.

Configure the Artix XA resource manager—the Artix XA resource
manager needs to be configured as described in “Configuring the Artix
XA Resource Manager” on page 152.

Observe the usual XA programming conventions—according to the
usual XA programming conventions, once you have registered the Artix
XA switch, the third-party transaction manager, and not the Artix
transaction system, is responsible for transaction demarcation. This
implies that you should not use the begin transaction(),
commit_transaction(), and rollback transaction() functions from
the Transactionsystem class to demarcate transactions.

Obtaining an Artix XA Resource Manager

Obtaining an Artix XA Resource Manager

Overview

In this section

Artix supports several different ways of obtaining an XA resource manager.
Essentially, this involves providing a pointer to the xa_switch t struct. The
different approaches to obtaining the XA switch are described in the
following subsections.

This section contains the following subsections:

Obtaining the XA Switch from a Global Function page 146
Obtaining the XA Switch from a Bus Instance page 147
Obtaining the XA Switch from a Switch Load File page 148

145

CHAPTER 10 | Exposing Artix as an XA Resource

Obtaining the XA Switch from a Global Function

Overview

GetXaSwitch() function

Example

Required library

146

In this scenario, you obtain a pointer to the Artix xa_switch_t instance by
calling a global function. Use this approach when the external transaction
manager provides an API function to enlist the XA switch and you do not

have an instance of an Artix Bus.

To obtain a pointer to the Artix XA switch, call the Getxaswitch() function,
which is a C function defined in the global scope. The Getxaswitch ()
function takes no arguments and has a return type of xa_switch t *.

Example 24 shows how to obtain an Artix XA switch using the
Getxaswitch () function. Remember to include the it bus/xa switch.h
header file.

Example 24: Obtaining the Artix XA Switch Using GetXaSwitch()

// C++
#include <it bus/xa switch.h>

xa_switch t* artix xa switch = ::GetXaSwitch() ;

You need to link your code with the Artix it_xa switch library.

Obtaining an Artix XA Resource Manager

Obtaining the XA Switch from a Bus Instance

Overview

get_xa_switch() function

Example

Required library

In this scenario, you obtain a pointer to the Artix xa_switch_t instance
through an IT Bus::XATransactionManager object, which you can obtain
from the Artix Bus. Use this approach when the external transaction
manager provides an API function to enlist the XA switch and you do have
an instance of an Artix Bus.

To obtain a pointer to the Artix XA switch, call the get_xa_switch()
function, which is @ member of the IT Bus: : XATransactionManager class.
The get_xa_switch() function takes no arguments and has a return type of

xa_switch t *.

Example 25 shows how to obtain an Artix XA switch from the Bus instance,
by calling the 1T Bus: :XATransactionManager: :get_xa switch() function.

Example 25: Obtaining the Artix XA Switch from a Bus Instance

// C++

#include <it bus/bus.h>

#include <it bus/transaction system.h>
#include <it bus pdk/xa transaction manager.h>

IT Bus::Bus var bus = ...

IT Bus::XATransactionManager& xa tx mgr = dynamic_ cast
<
IT_Bus::XATransactionManager,
bus->transactions () .get transaction manager (
IT Bus::TransactionSystem::XA TRANSACTION TYPE
)
>;

xa_switch t* artix xa switch = xa tx mgr->get xa switch();

You need to link your code with the Artix it _bus library.

147

CHAPTER 10 | Exposing Artix as an XA Resource

Obtaining the XA Switch from a Switch Load File

Overview

Using a switch load file

Default switch load file

In this scenario, the third-party transaction manager obtains the Artix XA
switch by loading a shared library file (the switch load file). Use this
approach when the external transaction manager does not provide an API
function to enlist the XA switch, but does support switch load files.

To use a switch load file, you supply the third-party transaction manager
(TM) with the name and location of the relevant shared library or DLL.
When the TM loads the switch load library file, it calls a particular function
to obtain the XA switch instance. The mechanisms that are used to load the
switch file and obtain the XA switch instance are specific to the particular
TM. Refer to your third-party TM documentation for details.

Artix provides a default switch load file: the it _xa_switch library. The
precise name of the default switch load file depends on the platform, as
shown in Table 5.

Table 5: Default Switch Load File for Artix on Various Platforms

Platform Link Library Shared Library or DLL
Windows VC++ 6.0 it xa switch.lib it xa switch5 vc60.d1ll
Windows VC++ 7.1 it xa switch.lib it xa switch5 vc71.d1l
Solaris libit_xa switch.so libit_xa switch sc53.s0.5
HP-UX libit_xa switch.sl libit_xa switch acca0331.5
AIX libit_xa switch.a libit_xa switch5 x1c60.so

148

The default switch load file exposes the C functions shown in Example 26.

Example 26: Functions in the Default Artix Switch Load File

J5 €)
xa_switch t* GetXaSwitch() /* for use by Microsoft DIC */
xa_switch t* MQStart() /* for use by MQSeries */

Example of using a switch load file
with Microsoft DTC

Creating a custom switch load file

Obtaining an Artix XA Resource Manager

For example, if you are writing a COM+ application on the Windows
platform, you can use Microsoft DTC to load a switch load file. Microsoft
DTC provides the following function to load a switch load file:

// In IDtcToXaMapper

HRESULT RequestNewResourceManager (
CHAR * pszDSN,
CHAR * pszClientDllName,
DWORD * pdwRMCookie

)i

The argument, pszpsN, is used as the open string for the XA switch; the
argument, pszClientDl1Name, iS the name of the switch load file; and the
argument, pdwRMCookie, is a cookie used to identify the resource manager
loaded by this call. See Opening an XA Connection in the Microsoft
documentation for more details.

You can create your own custom switch load file, as follows. Implement the
global function required by your third-party TM (usually a simple wrapper
function around the Artix Getxaswitch () function). Then compile this code
as a shared library or DLL, as appropriate for the platform you are working
on.

For example, the following code shows the implementation of a load switch
file for use with MQ-Series:

// C++
#include <cmgc.h>
#include<it bus/xa switch.h>

struct xa switch t * MQENTRY MQStart (void)

{
}

return ::GetXaSwitch() ;

The header, cmgc.h, is an MQ-Series header file that defines the signature of
the mostart () function. The Moseries () function is called automatically by
MQ-Series after it loads the switch file.

Note: You do not actually have to implement the mMostart () function,
because it is already defined in the default switch load file.

149

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cossdk/html/bfd5de9b-1863-49db-9762-a8e0fbdb6c15.asp

CHAPTER 10 | Exposing Artix as an XA Resource

Artix XA Open and Close Strings

Overview

Specifying open and close strings

Open string

150

When registering the Artix XA switch with a third-party transaction manager

(TM), the TM usually requires you to supply an open string and a close

string. These strings are used as follows:

® The TM passes the open string to the xa_open () function, when it
opens a connection to the Artix resource manager,

® The TM passes the close string to the xa_close () function, when it
closes the connection to the Artix resource manager.

The format of the open and close strings is specific to an XA switch
implementation. Therefore, just as Oracle and Sybase have their own
proprietary formats for their open and close strings, the Artix XA switch
defines proprietary open string and close string formats, as described here.

The mechanism for specifying the open and close strings is defined by the
third-party TM implementation. See your TM documentation for details.

For the Artix XA switch, the open string must be an Artix Bus ID. In practice,
the Bus ID is equivalent to the name of an Artix configuration scope.

For example, if you choose a Bus ID equal to
xa_bus.ots lite coordinated, Artix will initialize a Bus object that takes
its configuration from the xa_bus.ots lite coordinated scope in the Artix
configuration file (for example, see the configuration scope in Example 27).

Artix XA Open and Close Strings

Close string For the Artix XA switch, there are two cases to consider for the close string:

® |f the Artix XA switch is obtained either from a global function (see
“Obtaining the XA Switch from a Global Function” on page 146) or
from a switch load file (see “Obtaining the XA Switch from a Switch
Load File” on page 148), the close string should usually be
shutdown=true. This close string tells the Bus to call
IT Bus::Bus::shutdown (true) When xa close() is called by the TM.

® If the Artix XA switch is obtained from a Bus instance (see “Obtaining
the XA Switch from a Bus Instance” on page 147), the close string
should be empty, ", implying that the caller will take care of calling

bus->shutdown ().

151

CHAPTER 10 | Exposing Artix as an XA Resource

Configuring the Artix XA Resource Manager

Overview

Configuration for a single resource

152

When Artix is exposed as an XA resource manager, it has the same
configuration requirements as an Artix application that uses the OTS
transaction coordinator. Two alternative configurations can be used:
® Configuration for a single resource.

® Configuration for multiple resources.

Example 27 shows the configuration, xa bus.ots_lite coordinated,
which is suitable for an Artix XA resource manager that manages a single
resource. This type of configuration is suitable for the scenario shown in
Figure 26 on page 142.

Example 27: Resource Manager Configuration for a Single Resource

Artix Configuration File

Xa_bus

{
orb plugins = ["local log stream", "iiop profile", "giop",
"iiOp", Ilotsll];
plugins:ots:default ots policy="adapts";
plugins:bus:default tx provider:plugin=
"xa transaction provider";

ots lite coordinated

{
I

initial references:TransactionFactory:plugin ="ots lite";

The presence of the ots plug-in is required in the list of ORB plug-ins. The
default tx provider Setting ensures that the xa_transaction provider
plug-in is loaded by default. Strictly speaking, the latter setting is
unnecessary. Whenever a third-party transaction manager attempts to
obtain a reference to the Artix XA switch, the xa_transaction provider
plug-in is loaded automatically.

To use this configuration with the Artix XA switch, pass
xa _bus.ots lite coordinated as the open string.

Configuring the Artix XA Resource Manager

Configuration for multiple Example 28 shows the configuration, xa bus.ots encina coordinated,

resources which is suitable for an Artix XA resource manager that manages multiple
resources. This type of configuration is suitable for the scenario shown in
Figure 27 on page 143.

Example 28: Resource Manager Configuration for Multiple Resources

Artix Configuration File

xa_bus

{
orb plugins = ["local log stream", "iiop profile", "giop",
"iiOp", “OtS“] ;

plugins:ots:default ots policy="adapts";
plugins:bus:default tx provider:plugin=
"xa transaction provider";

ots_encina coordinated

{
plugins:ots encina:direct persistence = "true";
plugins:ots_encina:shlib name = "it ots encina";
plugins:ots encina adm:shlib name = "it ots encina adm";
plugins:ots _encina adm:grammar db =

"ots encina adm grammar.txt";
plugins:ots encina adm:help db =

"ots encina adm help.txt";
initial references:TransactionFactory:plugin =

"ots encina";

plugins:ots encina:initial disk = "encina.log";
plugins:ots encina:initial disk size = "1";
plugins:ots encina:restart file = "encina restart";

plugins:ots_encina:backup restart file =
"encina restart.bak";

}i
Da

The presence of the ots plug-in is required in the list of ORB plug-ins.

To use this configuration with the Artix XA switch, pass
xa_bus.ots_encina_coordinated as the open string.

Note: There might be more resources registered than you think. In certain
cases, Artix automatically registers extra resources to support interposition.
See “Limitation of using OTS Lite with propagation” on page 100.

153

CHAPTER 10 | Exposing Artix as an XA Resource

Interoperating with WS-AT The Artix XA resource manager can also interoperate over SOAP with

transactions applications that require WS-AT transactions. This requires no special
configuration. Artix automatically loads the required WS-AT plug-ins, if they
are needed.

154

CHAPTER 11

MQ Transactions

This chapter describes how transactions are integrated with
the Artix MQ transport, which integrates with the IBM
MQ-Series product to provide a reliable message-oriented
transport.

In this chapter This chapter discusses the following topics:

Reliable Messaging with MQ Transactions page 156

155

CHAPTER 11 | MQ Transactions

Reliable Messaging with MQ Transactions

Overview This section describes how to enable reliable messaging with MQ
transactions in your Artix applications. MQ transactions differ in several
important respects from ordinary Artix transactions, in particular:
® MQ transactions are managed by a transaction manager that is internal
to the MQ-Series product.

® MQ transactions are enabled by setting the relevant attributes of a
WSDL port in the WSDL contract.

® You can not initiate and terminate MQ transactions on the client side
using the Artix transaction API (for example, the functions in
IT Bus::TransactionSystem are not used for MQ on the client side).

On the client side, MQ transactions follow a completely different model from
Artix transactions. On the server side, however, the MQ transaction is
integrated with an Artix transaction, so that an incoming message is
considered to have been processed, only if the Artix transaction completes
successfully on the server side.

156

Reliable Messaging with MQ Transactions

Oneway invocation scenario Figure 28 shows a oneway invocation scenario, where an Artix client
invokes oneway operations on an Artix server over the MQ transport with
MQ transactions enabled. Because the WSDL operations are oneway (that
is, consisting only of output messages), the MQ transport does not require a
reply queue in this scenario.

Figure 28: Oneway Operation Invoked Over an MQ Transport with MQ
Transactions Enabled

o Aliant : @ : ; propagation. . . :
Artix Client ; send » MO RequestQueue MO receive | Artix Server
MQ : 6 MQ
: Transaction .
i....Scope : : WS-AT
WS-Coordination

Transaction Scope

Description of oneway invocation The oneway operation invocation shown in Figure 28 is executed in the
following stages:

Stage Description

1 | When the client invokes a oneway operation over MQ, an MQ
transaction is initiated. After the request message is pushed
onto the client side of the MQ request queue, the MQ
transaction is committed.

Note: The client MQ transaction is local and does not extend
beyond the client side.

2 | MQ-Series is responsible for reliably transmitting the request
message from the client side of the MQ transport to the server
side of the MQ transport.

3 | When the server pulls the request message off the incoming
queue, an Artix transaction is initiated before dispatching the
request to the relevant Artix servant.

157

CHAPTER 11 | MQ Transactions

Stage Description

4 | If the Artix servant now invokes operations on some other Artix
servers, these invocations occur within a transaction context.
Hence, these follow-on invocations propagate a transaction
context (for example, a WS-AT context) and enable the remote
servers to participate in the transaction.

5 | If the operation completes its work successfully, the transaction
is committed and the request message permanently disappears
from the queue.

On the other hand, if the operation is unsuccessful, the
transaction is rolled back and the request message is pushed
back onto the queue. The request message is immediately
reprocessed (the maximum number of times the message can
be processed is determined by the queue’s backout threshold—
see “Configuring the backout threshold” on page 163).

Oneway client configuration To enable transactional semantics for a client that invokes oneway
operations over the MQ transport, you should define a WSDL port as shown
in Example 29.

Example 29: WSDL Port Configuration for Oneway Client Over MQ

<wsdl : service name="MQService">
<wsdl :port binding="tns:BindingName" name="PortName">
<mg:client QueueManager="MY DEF QM"
QueueName="HW REQUEST"

AccessMode="send"
CorrelationStyle="correlationId"
Transactional="internal"
Delivery="persistent"
UsageStyle="peer"

/>

</wsdl :port>
</wsdl:service>

158

Oneway server configuration

Reliable Messaging with MQ Transactions

Because the invocation is oneway, there is no need to specify a reply queue
manager. To enable transactions, you must set the Transactional attribute
to internal and the pelivery attribute to persistent.

On the server side, you must configure both the WSDL contract and the
Artix configuration file appropriately for using MQ transactions.

WSDL Contract Configuration

To enable transactional semantics for a server that receives oneway
invocations over the MQ transport, you should define a WSDL port as shown
in Example 30.

Example 30: WSDL Port Configuration for Oneway Server Over MQ

<wsdl :service name="MQService">
<wsdl :port binding="tns:BindingName" name="PortName">

<mg:server QueueManager="MY DEF QM"
QueueName="HW REQUEST"

AccessMode="receive"
CorrelationStyle="correlationId"
Transactional="internal"
Delivery="persistent"
UsageStyle="peer"
/>
</wsdl :port>
</wsdl:services>

To enable transactions, you must set the Transactional attribute to
internal and the pelivery attribute to persistent.

Artix Configuration File

On the server side, Artix initiates a transaction whenever it receives a
request message from the MQ transport. Because this transaction is
managed by an Artix transaction manager, you must load and configure one
of the Artix transaction systems (for example, OTS or WS-AT).

For details of how to select a transaction system, see “Selecting a
Transaction System” on page 55.

159

CHAPTER 11 | MQ Transactions

Synchronous invocation scenario

Description of synchronous

invocation

160

Figure 29 shows a synchronous invocation scenario, where an Artix client

invokes normal operations on an Artix server over the MQ transport with MQ
transactions enabled. Because the WSDL operations are synchronous (that
is, consisting of output messages and input messages), the MQ transport
requires a reply queue.

Figure 29: Synchronous Operation Invoked Over the MQ Transport with
MQ Transactions Enabled

Artix Client

MQ

RequestQueue MQ w‘
: ; ropagation. . .
5 Artix Server | Propag :
p MQ

ReplyQueue MQ: S(Cgsgd e
: WS-Coordination

Transaction Scope

The synchronous operation invocation shown in Figure 29 is executed in the

following stages:

Stage

Description

1

When the client invokes a synchronous operation over MQ, an
MQ transaction is initiated.

MQ-Series is responsible for reliably transmitting the request
message from the client side of the MQ transport to the server
side of the MQ transport.

When the server pulls the request message off the incoming
queue, an Artix transaction is initiated before dispatching the
request to the relevant Artix servant.

Synchronous client configuration

Reliable Messaging with MQ Transactions

Stage Description

4 | If the Artix servant now invokes operations on some other Artix
servers, these invocations occur within a transaction context.
Hence, these follow-on invocations propagate a transaction
context (for example, a WS-AT context) and enable the remote
servers to participate in the transaction.

5 | If the operation completes its work successfully, the transaction
is committed, the request message permanently disappears
from the request queue, and a reply message gets pushed onto
the reply queue.

On the other hand, if the operation is unsuccessful, the
transaction is rolled back. No reply message is sent and the
request message is pushed back onto the request queue. The
request message is immediately reprocessed (the maximum
number of times the message can be processed is determined
by the request queue’s backout threshold—see “Configuring
the backout threshold” on page 163).

6 | MQ-Series is responsible for reliably transmitting the reply
message from the server side of the MQ transport to the client
side of the MQ transport.

7 | When the client receives the reply message, the synchronous
operation call returns and the client transaction is committed.
Because the client is independent of the server side
transaction, however, it is not possible for the client code to
receive a rollback exception from the server.

It is possible to manage blocked calls by defining the Timeout
attribute on the mg:client element in the WSDL contract. If
the timeout is exceeded, an exception will be thrown.

To enable transactional semantics for a client that invokes synchronous
operations over the MQ transport, you should define a WSDL port as shown
in Example 31.

Example 31: WSDL Port Configuration for Synchronous Client Over MQ

<wsdl :service name="MQService">
<wsdl:port binding="tns:BindingName" name="PortName">
<mg:client QueueManager="MY DEF QM"

161

CHAPTER 11 | MQ Transactions

Example 31:

/>

</wsdl :port>
</wsdl:service>

WSDL Port Configuration for Synchronous Client Over MQ

QueueName="HW REQUEST"
ReplyQueueManager="MY DEF QOM"
ReplyQueueName="HW REPLY"
AccessMode="send"
CorrelationStyle="correlationId"
Transactional="internal"
Delivery="persistent"
UsageStyle="responder"

To enable transactions, you must set the Transactional attribute to
internal and the pelivery attribute to persistent.

Synchronous server configuration On the server side, you must configure both the WSDL contract and the
Artix configuration file appropriately for using MQ transactions.

WSDL Contract Configuration

To enable transactional semantics for a server that receives synchronous
invocations over the MQ transport, define a WSDL port as shown in

Example 32.

Example 32: WSDL Port Configuration for Synchronous Server Over MQ

<wsdl:service name="MQService">
<wsdl :port binding="tns:BindingName" name="PortName">

<mg:server QueueManager="MY DEF QOM"

/>

</wsdl :port>
</wsdl:service>

162

QueueName="HW REQUEST"
ReplyQueueManager="MY DEF QM"
ReplyQueueName="HW REPLY"
AccessMode="receive"
CorrelationStyle="correlationId"
Transactional="internal"
Delivery="persistent"
UsageStyle="responder"

Configuring the backout threshold

Accessing the backout count

Reliable Messaging with MQ Transactions

To enable transactions, you must set the Transactional attribute to
internal and the pelivery attribute to persistent.

Artix Configuration File

On the server side, Artix initiates a transaction whenever it receives a
request message from the MQ transport. Because this transaction is
managed by an Artix transaction manager, you must load and configure one
of the Artix transaction systems (for example, OTS or WS-AT).

For details of how to select a transaction system, see “Selecting a
Transaction System” on page 55.

You can configure the backout threshold using the runmgsc command-line

tool, which is provided as part of the MQ-Series product. To configure a

queue to use backouts, set the following MQ attributes:

® porHrEsH—the backout threshold, which defines the maximum
number of times a message can be pushed back onto the queue.

® BogNaME—the backout queue name. If the current backout count
equals the backout threshold, Artix puts the message onto the backout
queue whose name is given by BOQNAME.

Hence, the Booname queue would contain all of the messages that have been
rolled back more than BoTHrESH times. The administrator can then manually
examine the messages stored in the BogNaME queue and take appropriate
remedial action.

For more details about how to set MQ attributes, see your MQ-Series user
documentation.

On the server side, you can obtain the backout count for the current
message using Artix contexts. To access the current backout count, perform
the following steps:

1. Retrieve the server context identified by the
IT ContextAttributes::MQ INCOMING MESSAGE ATTRIBUTES QName.

2. Cast the returned context instance to the
IT ContextAttributes::MQMessageAttributesType type.

3. Invoke the getBackoutcount () function to access the current backout
count.

163

CHAPTER 11 | MQ Transactions

For more details about programming with Artix contexts, see Developing
Artix Applications in C++.

164

Index

A

attach_thread() function
and suppressing propagation 101

B

backout count 163

backout threshold 158, 161
configuring 163

BOQNAME attribute 163

BOTHRESH attribute 163

D
Delivery attribute 159
detach_thread() function

and suppressing propagation 101

G
getBackoutCount() function 163

|
interoperability

transaction propagation 98
interposition

resource for 100

M
MQ-Series
BOQNAME attribute 163
BOTHRESH attribute 163
runmgsc command-line tool 163
MQ transactions 156
backout count 163
backout threshold 158, 161, 163

Delivery attribute 159
synchronous invocation 160
Transactional attribute 159

0]
oneway invocations

and MQ transactions 157
OTS Lite

limitations on using 100

R
reliable messaging

and transactions 156
runmgsc command-line tool 163

S

synchronous invocation
and MQ transactions 160

T

Transactional attribute 159
TransactionAlreadyActiveException 76
transaction contexts 98
transaction propagation 98
suppressing, how to 101
transactions 18
compatibility with CORBA OTS 21
example 18
properties 19

TransactionSystemUnavailableException 76

U
UsageStyle attribute 162

165

INDEX

166

	List of Tables
	List of Figures
	Preface
	What is Covered in this Book
	Who Should Read this Book
	The Artix Library
	Getting the Latest Version
	Searching the Artix Library
	Artix Online Help
	Artix Glossary
	Additional Resources
	Document Conventions

	Introduction to Transactions
	Basic Transaction Concepts
	Artix Transaction Features
	X/Open Distributed Transaction Processing
	X/Open DTP Architecture
	X/Open XA Interface

	Getting Started with Transactions
	Sample Scenario
	Client Example
	Server Example
	Configuration

	Selecting a Transaction System
	Configuring OTS Lite
	Configuring OTS Encina
	Configuring Non-Recoverable WS-AT
	Configuring Recoverable WS-AT

	Basic Transaction Programming
	Artix Transaction Interfaces
	Beginning and Ending Transactions
	Server Programming
	Registering an XA Resource
	Dynamic Registration Optimization
	Writing a Custom Resource
	Server-Side Programming Model

	Transaction Propagation
	Transaction Propagation and Interposition

	Threading
	Client Threading
	Threading and XA Resources

	Transaction Recovery
	Transactions Systems and Recovery
	Transaction Recovery Scenarios
	Server Crash before or during Prepare Phase
	Server Crash after Prepare Phase
	Transaction Coordinator Crash

	Recoverable Resources
	Transaction Participants
	Interposition

	Notification Handlers
	Introduction to Notification Handlers

	Exposing Artix as an XA Resource
	Introduction to the Artix XA Resource Manager
	Obtaining an Artix XA Resource Manager
	Obtaining the XA Switch from a Global Function
	Obtaining the XA Switch from a Bus Instance
	Obtaining the XA Switch from a Switch Load File

	Artix XA Open and Close Strings
	Configuring the Artix XA Resource Manager

	MQ Transactions
	Reliable Messaging with MQ Transactions

	Index

