
Writing Artix Contracts
Version 4.2, March 2007

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work
Together, Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2007 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: April 18, 2007

Preface
What is Covered in this Book
This book discusses the bindings and transports supported by Artix. It
describes how the combination of WSDL elements and Artix configuration is
used to set-up a binding or a transport. It also discusses the advantages of
using each of the bindings and transports. In the case of transports, such as
Websphere MQ, it also discusses how to access some of the transports more
advanced features.

Who Should Read this Book
This book is intended for people who are developing the contracts for Artix
endpoints. It assumes a working knowledge of WSDL and XML. It also
assumes a working knowledge of the underlying middleware technology
being discussed.

How to Use this Book
This book is broken onto three parts:

� Part I provides a basic introduction to WSDL. It also provides a
discussion of the WSDL elements that make up the logical portion of
an Artix contract.

� Part II discusses each of the bindings supported by Artix.

� Part III discusses each of the transports supported by Artix.

� Part IV discusses using other Artix features that are driven by contract
based directives.
 3

PREFACE
The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the
Artix Library.
 4

../library_intro/index.htm
../library_intro/index.htm

Contents

Preface 3

What is Covered in this Book 3
Who Should Read this Book 3
How to Use this Book 3
The Artix Documentation Library 4

List of Figures 9

List of Tables 11

Part I Introduction

Chapter 1 Introducing Artix Contracts 15

Chapter 2 Defining Logical Data Units 19
Mapping Data into Logical Data Units 21
Adding Data Units to a Contract 23
XMLSchema Simple Types 25
Defining Complex Data Types 27

Defining Data Structures 28
Defining Arrays 32
Defining Types by Extension 34
Defining Types by Restriction 35
Defining Enumerated Types 37

Defining Elements 39
 5

CONTENTS
Chapter 3 Defining Logical Messages Used by a Service 41

Chapter 4 Defining Your Logical Interfaces 47

Part II Bindings

Chapter 5 Understanding Bindings in WSDL 55

Chapter 6 Using SOAP 1.1 Messages 59
Adding a SOAP 1.1 Binding 60
Adding SOAP Headers to a SOAP 1.1 Binding 63
Sending Data Using SOAP with Attachments 68

Chapter 7 Using SOAP 1.2 Messages 73
Adding a SOAP 1.2 Binding 74
Adding Headers to a SOAP 1.2 Message 77

Chapter 8 Using Tuxedo�s FML Buffers 83

Chapter 9 Using Fixed Length Records 91

Chapter 10 Using Tagged Data 109

Chapter 11 Using Tibco Rendezvous Messages 123
Defining a TibrvMsg Binding 125
Artix Default Mappings for TibrvMsg 132
Defining Array Mapping Policies 137
Defining a Custom TibrvMsg Mapping 143
Adding Context Information to a TibrvMsg 161
6

CONTENTS
Chapter 12 Using XML Documents 165

Chapter 13 Using RMI 171

Chapter 14 Using G2++ Messages 177

Part III Transports

Chapter 15 Understanding How Endpoints are Defined WSDL 187

Chapter 16 Using HTTP 191
Adding an HTTP Endpoint to a Contract 192
Configuring an HTTP Endpoint 199

Specifying Send and Receive Timeout Limits 200
Specifying a Username and a Password 202
Configuring Keep-Alive Behavior 204
Specifying Cache Control Directives 206

Managing Cookies in Artix Clients 210

Chapter 17 Using IIOP 213

Chapter 18 Using WebSphere MQ 219
Adding a WebSphere MQ Endpoint 220
Specifying the WebSphere Library to Load 226
Using Queues on Remote Hosts 228
Using WebSphere MQ�s Transaction Features 230
Setting a Value of the Message Descriptor�s Format Field 232

Chapter 19 Using the Java Messaging System 235
Defining a JMS Endpoint 236

Basic Endpoint Configuration 238
Client Endpoint Configuration 242
Server Endpoint Configuration 243
Using the Command Line Tool 245

Migrating to the 4.x JMS WSDL Extensions 247
 7

CONTENTS
Using ActiveMQ as Your JMS Provider 248

Chapter 20 Using TIBCO Rendezvous 249

Chapter 21 Using Tuxedo 255

Chapter 22 Using FTP 259
Adding an FTP Endpoint 260
Coordinating Requests and Responses 262

Implementing the Client�s Coordination Logic 263
Implementing the Server�s Coordination Logic 267
Using Properties to Control Coordination Behavior 271

Part IV Other Artix Features

Chapter 23 Working with CORBA 277
Adding a CORBA Binding 278
Creating a CORBA Endpoint 284

Configuring an Artix CORBA Endpoint 285
Generating CORBA IDL 289

Chapter 24 Using the Artix Transformer 291
Using the Artix Transformer as a Service 292
Using Artix to Facilitate Interface Versioning 294
WSDL Messages and the Transformer 299
Writing XSLT Scripts 303

Elements of an XSLT Script 304
XSLT Templates 306
Common XSLT Functions 312

Chapter 25 Using Codeset Conversion 313

Index 317
8

List of Figures

Figure 1: Artix Cookie Processing 211

Figure 2: MQ Remote Queues 229
 9

LIST OF FIGURES
 10

List of Tables

Table 1: complexType Descriptor Elements 29

Table 2: Part Data Type Attributes 44

Table 3: Operation Message Elements 49

Table 4: Attributes of the Input and Output Elements 49

Table 5: wsoap12:header Attributes 77

Table 6: FML Type Support 84

Table 7: Attributes for fixed:binding 93

Table 8: Attributes for tagged:binding 111

Table 9: Attributes for tagged:operation 112

Table 10: Attributes for tagged:field 113

Table 11: Attributes for tagged:sequence 114

Table 12: Attributes for tagged:choice 116

Table 13: Attributes for tibrv:binding 126

Table 14: Attributes for tibrv:input 127

Table 15: Attributes for tibrv:output 128

Table 16: TIBCO to XSD Type Mapping 132

Table 17: Effect of tibrv:array 137

Table 18: Attributes for tibrv:array 138

Table 19: Functions Used for Specifying TibrvMsg Array Element Names 140

Table 20: Valid Casts for TibrvMsg Binding 146

Table 21: Attributes for tibrv:msg 159

Table 22: Attributes for tibrv:field 159

Table 23: Settings for CacheControl on an HTTP Server Endpoint 207

Table 24: Settings for CacheControl on HTTP Client Endpoint 208

Table 25: WebSphere MQ Server_Client Attribute Settings 226

Table 26: WebSphere MQ Transactional Attribute Settings 230
 11

LIST OF TABLES
Table 27: WebSphere MQ Format Attribute Settings 232

Table 28: JMS Port Attributes 238

Table 29: Supported TIBCO Rendezvous Features 249
 12

Part I
Introduction

In this part This part contains the following chapters:

Introducing Artix Contracts page 15

Defining Logical Data Units page 19

Defining Logical Messages Used by a Service page 41

Defining Your Logical Interfaces page 47
 13

14

CHAPTER 1

Introducing Artix
Contracts
Artix contracts define endpoints using Web Service
Description Language and a number of Artix extensions.

Overview When using Artix to service-enable your infrastructure, you will be working
directly with the WSDL and XML Schema that makes up the Artix contract.
Artix Designer provides wizards that automate most of the tasks involved in
creating a well-formed and valid WSDL document. When hand-editing Artix
contracts you will need to ensure that the contract is valid, as well as
correct. To do that you must have some familiarity with WSDL. You can find
the standard on the W3C web site, www.w3.org.

Structure of a WSDL document A WSDL document is, at its simplest, a collection of elements contained
within a root definition element. These elements describe a service and
how that service can be accessed.

The types, message, and portType elements describe the service�s interface
and make up the logical section of a contract. Within the types element,
XML Schema is used to define the structure of the data that makes up the
messages. A number of message elements are used to define the structure of
the messages used by the service. The portType element contains one or
more operation elements that define the messages sent by the operations
exposed by the service.
 15

http://www.w3.org/TR/wsdl

CHAPTER 1 | Introducing Artix Contracts
The binding and service elements describe how the service connects to
the outside world and make up the physical section of the contract. binding
elements describe how the data units defined in the message elements are
mapped into a concrete, on-the-wire data format, such as SOAP. service
elements contain one or more port elements which define the network
interface for the service.

WSDL elements A WSDL document is made up of the following elements:

� definitions�the root element of a WSDL document. The attributes of
this element specfiy the name of the WSDL document, the document�s
target namespace, and the shorthand definitions for the namespaces
referenced by the WSDL.

� types�the XMLSchema definitions for the data units that form the
building blocks of the messages used by a service. For information
about defining datatypes see �Defining Logical Data Units� on
page 19.

� message�the abstract definition of the data being communicated.
These elements define the arguments of the operations making up your
service. For information on defining messages see �Defining Logical
Messages Used by a Service� on page 41.

� portType�a collection of operation elements representing the logical
interface of a service. For inforamtion about defining port types see
�Defining Your Logical Interfaces� on page 47.

� operation�the logical description of an action perfromed by a service.
Operations are defined by the logical messages passed between two
endpoints. For information on defining operaitons see �Defining Your
Logical Interfaces� on page 47.

� binding�the concrete data format specification for an endpoint. A
binding element defines how the logical messages are mapped into the
concrete data format used by an endpoint. This is where specifics such
as parameter order and return values are specified. For information on
defining bindings see �Bindings� on page 53.

� service�a collection of related port elements. These elements are
respositories for organizing endpoint definitions.
16

� port�the endpoint defined by a binding and a physical address.
These elements bring all of the abstract definitions together, combined
with the definition of transport details, and define the physical
endpoint on which a service is exposed. For information on defining
endpoints see �Transports� on page 185.

Artix extensions Artix extends the original concept of WSDL by describing services that use
transports and bindings beyond SOAP over HTTP. Artix also extends WSDL
to allow it to describe complex systems of services and how they are
integrated. To do this IONA has extended WSDL according to the
procedures outlined by W3C.

The majority of the IONA WSDL extension elements are used in the physical
section of the contract because they relate to how data is mapped into an
on-the-wire format and how different transports are configured. In addition,
Artix defines extensions for creating routes between services, CORBA data
type mappings, and working with service references.

Each extension is defined in a separate namespace and IONA provides the
XML Schema definitions for each extension so that any XML editor can
validate an Artix contract.

Designing a contract To design an Artix contract for your services you must perform the following
steps:

1. Define the data types used by your services.

2. Define the messages used in by your services.

3. Define the interfaces for your services.

4. Define the bindings between the messages used by each interface and
the concrete representation of the data on the wire.

5. Define the transport details for each of the services.

6. Define any routing rules used to connect your services.
 17

CHAPTER 1 | Introducing Artix Contracts
18

CHAPTER 2

Defining Logical
Data Units
In Artix, complex data types are defined as logical units using
XML Schema.

Overview When defining a service in an Artix contract, the first thing you need to
consider is how the data used as parameters for the exposed operations are
going to be represented. Unlike applications that are written in a
programming language that uses fixed data structures, services must define
their data in logical units that can be consumed by any number of
applications. This involves two steps:

1. Breaking the data into logical units that can be mapped into the data
types used by the physical implementations of the service.

2. Combining the logical units into messages that are passed between
endpoints to carry out the operations.

This chapter discusses the first step. �Defining Logical Messages Used by a
Service� on page 41 discusses the second step.

In this chapter This chapter discusses the following topics:

Mapping Data into Logical Data Units page 21

Adding Data Units to a Contract page 23
 19

CHAPTER 2 | Defining Logical Data Units
XMLSchema Simple Types page 25

Defining Complex Data Types page 27

Defining Elements page 39
20

Mapping Data into Logical Data Units
Mapping Data into Logical Data Units

Overview The interfaces used to implement a service define the data representing
operation parameters as XML documents. If you are defining an interface for
a service that is already implemented, you need to translate the data types
of the implemented operations into discreet XML elements that can be
assembled into a message. If you are starting from scratch, you need to
determine the building blocks from which your messages are built in such a
way as they make sense from an implementation standpoint.

Available type systems for
defining service data units

According to the WSDL specification, you can use any type system you like
to define data types in a WSDL document. However, the W3C specification
states XMLSchema is the preferred canonical type system for a WSDL
document. Therefore, XMLSchema is the intrinsic type system in Artix and is
the only type system supported by Artix.

XMLSchema as a type system XMLSchema is used to define how an XML document is structured. This
done by defining the elements that make up the document. These elements
can use native XMLSchema types, like xsd:int, or they can use types that
are defined by the user. User defined types are either built up using
combinations of XML elements or they are defined by restricting existing
types. By combining type definitions and element definitions you can create
intricate XML documents that can contain complex data.

When used in WSDL XMLSchema defines the structure of the XML
document that will hold the data used to interact with a service. When
defining the data units that your service uses, you can define them as types
that specify the structure of the message parts. You can also define your
data units as elements that will make up the message parts.

Considerations for creating your
data units

You may consider simply creating logical data units that map directly to the
types you envision using when implementing the service. While this
approach works and closely follows the model of building RPC-style
applications, it is not neccesarlily ideal for building a piece of a
service-oriented architecture.
 21

CHAPTER 2 | Defining Logical Data Units
The Web Services Interoperability Organization�s WS-I basic profile provides
a number of guidelines for defining data units that can be seen accessed at
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html. In
addition, the W3C also provides guidelines on using XML Schema to
represent data types in WSDL documents:

� Use elements, not attributes.

� Do not use protocol-specific types as base types.
22

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#WSDLTYPES

Adding Data Units to a Contract
Adding Data Units to a Contract

Overview Depending on how you choose to create your WSDL, creating new data
definitions requires varying amounts of WSDL knowledge.

Artix Designer uses wizards that generate the proper XML Schema tags for
you.

If you choose to use another XML editor when writing your contract, you will
need to have a much more complete understanding of XML Schema. You
will also be responsible for validating your schema.

Defining types in Artix Designer Artix Designer provides wizards to walk you through the creation of data
definitions for your service. It automatically generates the elements needed
for the type section of a contract and the wizards lead you through the steps
to create different data definitions.

However, you will need to understand some XML Schema concepts when
using Artix Designer. Also, Artix Designer does not allow you to take full
advantage of XML Schema.

For more information on using Artix Designer, see the on-line help provided
with Artix Designer.

Using an XML editor Defining the data used in an Artix contract involves seven steps:

1. Determine all the data units used in the interface described by the
contract.

2. Create a types element in your contract.

3. Create a schema element, shown in Example 1, as a child of the type
element.
 23

CHAPTER 2 | Defining Logical Data Units
The targetNamespace attribute is where you specify the namespace
under which your new data types are defined. The remaining entries
should not be changed.

4. For each complex type that is a collection of elements, define the data
type using a complexType element. See �Defining Data Structures� on
page 28.

5. For each array, define the data type using a complexType element. See
�Defining Arrays� on page 32.

6. For each complex type that is derived from a simple type, define the
data type using a simpleType element. See �Defining Types by
Restriction� on page 35.

7. For each enumerated type, define the data type using a simpleType
element. See �Defining Enumerated Types� on page 37.

8. For each element, define it using an element element. See �Defining
Elements� on page 39.

Example 1: Schema Entry for an Artix Contract

<schema targetNamespace="http://schemas.iona.com/bank.idl"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
24

XMLSchema Simple Types
XMLSchema Simple Types

Overview If a message part is going to be of a simple type you do not need to create a
type definition for it. However, the complex types used by the interfaces
defined in the contract are defined using simple types.

Entering simple types XMLSchema simple types are mainly placed in the element elements used
in the types section of your contract. They are also used in the base attribute
of restriction elements and extension elements.

Simple types are always entered using the xsd prefix. For example, to
specify that an element is of type int, you would enter xsd:int in its type
attribute as shown in Example 2.

Supported XSD simple types Artix supports the following XMLSchema simple types:

� xsd:string
� xsd:normalizedString
� xsd:int
� xsd:unsignedInt
� xsd:long
� xsd:unsignedLong
� xsd:short
� xsd:unsignedShort
� xsd:float
� xsd:double
� xsd:boolean
� xsd:byte
� xsd:unsignedByte
� xsd:integer
� xsd:positiveInteger
� xsd:negativeInteger
� xsd:nonPositiveInteger
� xsd:nonNegativeInteger
� xsd:decimal

Example 2: Defining an Element with a Simple Type

<element name="simpleInt" type="xsd:int" />
 25

CHAPTER 2 | Defining Logical Data Units
� xsd:dateTime
� xsd:time
� xsd:date
� xsd:QName
� xsd:base64Binary
� xsd:hexBinary
� xsd:ID
� xsd:token
� xsd:language
� xsd:Name
� xsd:NCName
� xsd:NMTOKEN
� xsd:anySimpleType
� xsd:anyURI
� xsd:gYear
� xsd:gMonth
� xsd:gDay
� xsd:gYearMonth
� xsd:gMonthDay
26

Defining Complex Data Types
Defining Complex Data Types

Overview XMLSchema provides a flexible and powerful mechanism for building
complex data structures from its simple data types. You can create data
structures by creating a sequence of elements and attributes. You can also
extend your defined types to create even more complex types.

In addition to allowing you to build complex data structures, you can also
describe specialized types such as enumerated types, data types that have a
specific range of values, or data types that need to follow certain patterns by
either extending or restricting the primitive types.

In this section This section discusses the following topics:

Defining Data Structures page 28

Defining Arrays page 32

Defining Types by Extension page 34

Defining Types by Restriction page 35

Defining Enumerated Types page 37
 27

CHAPTER 2 | Defining Logical Data Units
Defining Data Structures

Overview In XMLSchema, data units that are a collection of data fields are defined
using complexType elements. The definition of a complexType has three
parts:

1. The name of the defined type is specified in the name attribute of the
complexType element.

2. The first child element of the complexType describes the behavior of
the structure�s fields when it is put on the wire. See �complexType
varieties� on page 29.

3. Each of the fields of the defined structure are defined in element
elements that are grandchildren of the complexType. See �Defining the
parts of a structure� on page 29.

For example the structure shown in Example 3 would be defined in
XMLSchema as a complexType with two elements.

Example 4 shows one possible XMLSchema mapping for personalInfo.

Example 3: Simple Structure

struct personalInfo
{
 string name;
 int age;
};

Example 4: A Complex Type

<complexType name="personalInfo>
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 </sequence>
</complexType>
28

Defining Complex Data Types
complexType varieties XMLSchema has three ways of describing how the fields of a complex type
are organized when represented as an XML document and when passed on
the wire. The first child element of the complexType determines which
variety of complex type is being used. Table 1 shows the elements used to
define complex type behavior.

If neither sequence, all, nor choice is specified, the default is sequence.
For example, the structure defined in Example 4 would generate a message
containing two elements: name and age.

If the structure was defined as a choice, as shown in Example 5, it would
generate a message with either a name element or an age element.

Defining the parts of a structure You define the data fields that make up a structure using element elements.
Every complexType should contain at least one element. Each element in
the complexType represents a field in the defined data structure.

To fully describe a field in a data structure, element elements have two
required attributes:

Table 1: complexType Descriptor Elements

Element complexType Behavior

sequence All the complex type�s fields must be present and in the
exact order they are specified in the type definition.

all All the complex type�s fields must be present but can be in
any order.

choice Only one of the elements in the structure is placed in the
message.

Example 5: Simple Complex Choice Type

<complexType name="personalInfo">
 <choice>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 </choice>
</complexType>
 29

CHAPTER 2 | Defining Logical Data Units
� name specifies the name of the data field and must be unique within
the defined complex type.

� type specifies the type of the data stored in the field. The type can be
either one of the XML Schema simple types or any named complex
type that is defined in the contract.

In addition to name and type, element elements have two other commonly
used optional attributes: minOcurrs and maxOccurs. These attributes place
bounds on the number of times the field occurs in the structure. By default,
each field occurs only once in a complex type. Using these attributes, you
can change how many times a field must or can appear in a structure. For
example, you could define a field, previousJobs, that must occur at least
three times and no more than seven times as shown in Example 6.

You could also use minOccurs to make the age field optional by setting
minOccurs to zero as shown in Example 7. In this case age can be omitted
and the data will still be valid.

Example 6: Simple Complex Type with Occurrence Constraints

<complexType name="personalInfo>
 <all>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 <element name="previousJobs" type="xsd:string"
 minOccurs="3" maxOccurs="7"/>
 </all>
</complexType>

Example 7: Simple Complex Type with minOccurs

<complexType name="personalInfo>
 <choice>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int" minOccurs="0"/>
 </choice>
</complexType>
30

Defining Complex Data Types
Defining attributes In XML documents attributes are contained in the element�s tag. For
example, in the complexType element name is an attribute. They are
specified using the attribute element. It comes after the all, sequence, or
choice element and are a direct child of the complexType element.
Example 8 shows a complex type with an attribute.

The attribute element has three attributes:

� name is a required attribute that specifies the string identifying the
attribute.

� type specifies the type of the data stored in the field. The type can be
either one of the XML Schema simple types.

� use specifies if the attribute is required or optional. Valid values are
required or optional.

If you specify that the attribute is optional you can add the optional attribute
default. default allows you to specify a default value for the attribute.

Example 8: Complex Type with an Attribute

<complexType name="personalInfo>
 <all>
 <element name="name" type="xsd:string"/>
 <element name="previousJobs" type="xsd:string"
 minOccurs="3" maxOccurs="7"/>
 </all>
 <attribute name="age" type="xsd:int" use="optional" />
</complexType>
 31

CHAPTER 2 | Defining Logical Data Units
Defining Arrays

Overview Artix supports two methods for defining arrays in a contract. The first is
define a complex type with a single element whose maxOccurs attribute has
a value greater than one. The second is to use SOAP arrays. SOAP arrays
provide added functionality such as the ability to easily define
multi-dimensional arrays and transmit sparsely populated arrays.

Complex type arrays Complex type arrays are nothing more than a special case of a sequence
complex type. You simply define a complex type with a single element and
specify a value for the maxOccurs attribute. For example, to define an array
of twenty floating point numbers you would use a complex type similar to
the one shown in Example 9.

You could also specify a value for minOccurs.

SOAP arrays SOAP arrays are defined by deriving from the SOAP-ENC:Array base type
using the wsdl:arrayType. The syntax for this is shown in Example 10.

Example 9: Complex Type Array

<complexType name="personalInfo>
 <element name="averages" type="xsd:float" maxOccurs="20"/>
</complexType>

Example 10: Syntax for a SOAP Array derived using wsdl:arrayType

<complexType name="TypeName">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="ElementType<ArrayBounds>"/>
 </restriction>
 </complexContent>
</complexType>
32

Defining Complex Data Types
Using this syntax, TypeName specifies the name of the newly-defined array
type. ElementType specifies the type of the elements in the array.
ArrayBounds specifies the number of dimensions in the array. To specify a
single dimension array you would use []; to specify a two-dimensional array
you would use either [][] or [,].

For example, the SOAP Array, SOAPStrings, shown in Example 11, defines
a one-dimensional array of strings. The wsdl:arrayType attribute specifies
the type of the array elements, xsd:string, and the number of dimensions,
[] implying one dimension.

You can also describe a SOAP Array using a simple element as described in
the SOAP 1.1 specification. The syntax for this is shown in Example 12.

When using this syntax, the element's maxOccurs attribute must always be
set to unbounded.

Example 11: Definition of a SOAP Array

<complexType name="SOAPStrings">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="xsd:string[]"/>
 </restriction>
 </complexContent>
</complexType>

Example 12: Syntax for a SOAP Array derived using an Element

<complexType name="TypeName">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <sequence>
 <element name="ElementName" type="ElementType"
 maxOccurs="unbounded"/>
 </sequence>
 </restriction>
 </complexContent>
</complexType>
 33

CHAPTER 2 | Defining Logical Data Units
Defining Types by Extension

Overview Like most major coding languages, XMLSchema allows you to create data
types that inherit some of their elements from other data types. This is
called defining a type by extension. For example, you could create a new
type called alienInfo, that extends the personalInfo structure defined in
Example 4 on page 28 by adding a new element called planet.

Types defined by extension have four parts:

1. The name of the type is defined by the name attribute of the
complexType element.

2. The complexContent element specifies that the new type will have
more than one element.

3. The type from which the new type is derived, called the base type, is
specified in the base attribute of the extension element.

4. The new type�s elements and attributes are defined in the extention
element as they would be for a regular complex type.

For example, alienInfo would be defined as shown in Example 13.

Note: If you are only adding new attributes to the complex type, you
can use a simpleContent element.

Example 13: Type Defined by Extension

<complexType name="alienInfo">
 <complexContent>
 <extension base="personalInfo">
 <sequence>
 <element name="planet" type="xsd:string"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>
34

Defining Complex Data Types
Defining Types by Restriction

Overview XMLSchema allows you to create new types by restricting the possible
values of an XMLSchema simple type. For example, you could define a
simple type, SSN, which is a string of exactly nine characters. New types
defined by restricting simple types are defined using a simpleType element.

The definition of a simpleType has three parts:

1. The name of the new type is specified by the name attribute of the
simpleType element.

2. The simple type from which the new type is derived, called the base
type, is specified in the restriction element. See �Specifying the base
type� on page 35.

3. The rules, called facets, defining the restrictions placed on the base
type are defined as children of the restriction element. See �Defining
the restrictions� on page 35.

Specifying the base type The base type is the type that is being restricted to define the new type. It is
specified using a restriction element. The restriction element is the
only child of a simpleType element and has one attribute, base, that
specifies the base type. The base type can be any of the XMLSchema simple
types.

For example, to define a new type by restricting the values of an xsd:int
you would use a definition like Example 14.

Defining the restrictions The rules defining the restrictions placed on the base type are called facets.
Facets are elements with one attribute, value, that defines how the facet is
enforced. The available facets and their valid value settings depend on the
base type. For example, xsd:string supports six facets including:

Example 14: int as Base Type

<simpleType name="restrictedInt">
 <restriction base="xsd:int">
 ...
 </restriction>
</simpleType>
 35

CHAPTER 2 | Defining Logical Data Units
� length
� minLength
� maxLength
� pattern
� whitespace
� enumeration

Each facet element is a child of the restriction element.

Example Example 15 shows an example of a simple type, SSN, which represents a
social security number. The resulting type will be a string of the form
xxx-xx-xxxx. <SSN>032-43-9876<SSN> is a valid value for an element of this
type, but <SSN>032439876</SSN> is not.

Example 15: SSN Simple Type Description

<simpleType name="SSN">
 <restriction base="xsd:string">
 <pattern value="\d{3}-\d{2}-\d{4}"/>
 </restriction>
</simpleType>
36

Defining Complex Data Types
Defining Enumerated Types

Overview Enumerated types in XMLSchema are a special case of definition by
restriction. They are described by using the enumeration facet which is
supported by all XMLSchema primitive types. As with enumerated types in
most modern programming languages, a variable of this type can only have
one of the specified values.

Defining an enumeration in XML
Schema

The syntax for defining an enumeration is shown in Example 16.

EnumName specifies the name of the enumeration type. EnumType specifies
the type of the case values. CaseNValue, where N is any number one or
greater, specifies the value for each specific case of the enumeration. An
enumerated type can have any number of case values, but because it is
derived from a simple type, only one of the case values is valid at a time.

Example For example, an XML document with an element defined by the
enumeration widgetSize, shown in Example 17, would be valid if it
contained <widgetSize>big</widgetSize>, but not if it contained
<widgetSize>big,mungo</widgetSize>.

Example 16: Syntax for an Enumeration

<simpleType name="EnumName">
 <restriction base="EnumType">
 <enumeration value="Case1Value"/>
 <enumeration value="Case2Value"/>
 ...
 <enumeration value="CaseNValue"/>
 </restriction>
</simpleType>
 37

CHAPTER 2 | Defining Logical Data Units
Example 17: widgetSize Enumeration

<simpleType name="widgetSize">
 <restriction base="xsd:string">
 <enumeration value="big"/>
 <enumeration value="large"/>
 <enumeration value="mungo"/>
 </restriction>
</simpleType>
38

Defining Elements
Defining Elements

Overview Elements in XMLSchema represent an instance of an element in an XML
document generated from the schema. At their most basic, an element
consists of a single element element. Like the element element used to
define the members of a complex type, they have three attributes:

� name is a required attribute that specifies the name of the element as it
will appear in an XML document.

� type specifies the type of the element. The type can be any XML
Schema primitive type or any named complex type defined in the
contract. This attribute can be omitted if the type has an in-line
definition.

� nillable specifies if an element can be left out of a document entirely.
If nillable is set to true, the element can be omitted from any
document generated using the schema.

An element can also have an in-line type definition. In-line types are
specified using either a complexType element or a simpleType element.
Once you specify if the type of data is complex or simple, you can define any
type of data needed using the tools available for each type of data. In-line
type definitions are discouraged, because they are not reusable.
 39

CHAPTER 2 | Defining Logical Data Units
40

CHAPTER 3

Defining Logical
Messages Used by
a Service
A service exchanges logical messages when its operations are
invoked.

Overview In an Artix contract a service�s operations are defined by specifying the
logical messages that are exchanged when the operation in invoked. These
logical messages define the data that is passed over a network as an XML
document. They contain all of the parameters that would be a part of a
method invocation.

Logical messages are defined using the message element in your contracts.
Each logical message consists of one or more parts, defined in part
elements. While your messages can list each parameter as a seperate part,
the recomended practice is to use only a single part that encapsulates the
data needed for the operation.

Adding message definitions to a
contract

Artix Designer provides wizards for creating and editing logical message
definitions. The wizards can be access using the context menu available
when you select the Messages element from a contract�s diagram view. You
can also access the wizards by selcting Artix Designer | New Message. For
more information see the on-line help provided with Artix Designer.
 41

CHAPTER 3 | Defining Logical Messages Used by a Service
You can also add a message definition to a contract using any text or XML
editor. When you use an alternate tool, you are responsible for ensuring that
the message definitions are valid.

Messages and parameter lists Each operation exposed by a service can only have one input message and
one output message. The input message defines all of the information the
service receives when the operation is invoked. The output message defines
all of the data that the service returns when the operation is completed.
Fault messages define the data that the service returns when an error
occurs.

In addition, each operation can have any number of fault messages. The
fault messages define the data that is returned when the service encounters
an error. These messages generally have only one part that provides enough
information for the consumer to understand the error.

Message design for integrating
with legacy systems

If you are defining an existing application as a service, you need to ensure
that each parameter used by the method implementing the operation is
represented in a message. You must also ensure that the return value is
included in the operation�s output message.

One approach to defining your messages is RPC style. When using RPC
style, you define the messages using one part for each parameter in the
method�s parameter list. Each message part is based on a type defined in
the types element of the contract. Your input message would contain one
part for each input parameter in the method. Your output message would
contain one part for each output parameter and a part to represent the
return value if needed. If a parameter is both an input and an output
parameter, it would be listed as a part of both the input message and the
output message.

RPC style message definition is usefull when service enabling legacy
systems that use transports such as Tibco or CORBA. These systems are
designed around procedures and methods. As such, they are easiest to
model using messages that resemble the parameter lists for the operation
being invoked. RPC style also makes a cleaner mapping between Artix and
the application it is exposing.
42

Message design for SOAP services While RPC style is useful for modeling existing systems, the service�s
community strongly favors the wrapped document style. In wrapped
document style, each message has a single part. The message�s part
references a wrapper element defined in the types element of the contract.
The wrapper element has the following characteristics:

� It is a complex type containing a sequence of elements. For more
information see �Defining Complex Data Types� on page 27.

� If it is a wrapper for an input message:

♦ It would have one element for each of the method�s input
parameters.

♦ Its name would be the same as the name of the operation with
which it is associated.

� If it is a wrapper for an output message:

♦ It would have one element for each of the method�s output
parameters and one for each of the method�s inout parameters.

♦ Its first element would represent the method�s return parameter.

♦ Its name would be generated by appending Response to the name
of the opperation with which the wrapper is associated.

Message naming Each message in a contract must have a unique name within its
namespace. It is also recommended that you use the following naming
conventions:

� Messages should only be used by a single operation.

� Input message names are formed by appending Request to the name
of the operation.

� Output message names are formed by appending Response to the
name of the operation.

� Fault message names should represent the reason for the fault.
 43

CHAPTER 3 | Defining Logical Messages Used by a Service
Message parts Message parts are the formal data units of the logical message. Each part is
defined using a part element. They are identified by a name attribute and
either a type attribute or an element attribute that specifies its data type.
The data type attributes are listed in Table 2

Messages are allowed to reuse part names. For instance, if a method has a
parameter, foo, that is passed by reference or is an in/out, it can be a part in
both the request message and the response message as shown in
Example 18.

Example For example, imagine you had a server that stored personal information and
provided a method that returned an employee�s data based on an employee
ID number. The method signature for looking up the data would look similar
to Example 19.

Table 2: Part Data Type Attributes

Attribute Description

element="elem_name" The datatype of the part is defined by an
element called elem_name.

type="type_name" The datatype of the part is defined by a type
called type_name.

Example 18: Reused Part

<message name="fooRequest">
 <part name="foo" type="xsd:int"/>
<message>
<message name="fooReply">
 <part name="foo" type="xsd:int"/>
<message>

Example 19: personalInfo lookup Method

personalInfo lookup(long empId)
44

This method signature could be mapped to the RPC style WSDL fragment
shown in Example 20.

It could also be mapped to the wrapped document style WSDL fragment
shown in Example 21.

Example 20: RPC WSDL Message Definitions

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int"/>
<message/>
<message name="personalLookupResponse>
 <part name="return" element="xsd1:personalInfo"/>
<message/>

Example 21: Wrapped Document WSDL Message Definitions

<types>
 <schema ...>
 ...
 <element name="personalLookup">
 <complexType>
 <sequence>
 <element name="empID" type="xsd:int" />
 </sequence>
 </complexType>
 </element>
 <element name="personalLookupResponse">
 <complexType>
 <sequence>
 <element name="return" type="personalInfo" />
 </sequence>
 </complexType>
 </element>
 </schema>
</types>
<message name="personalLookupRequest">
 <part name="empId" element="xsd1:personalLookup"/>
<message/>
<message name="personalLookupResponse>
 <part name="return" element="xsd1:personalLookupResponse"/>
<message/>
 45

CHAPTER 3 | Defining Logical Messages Used by a Service
46

CHAPTER 4

Defining Your
Logical Interfaces
Logical service interfaces are defined using the portType
element.

Overview Logical service interfaces are defined using the WSDL portType element.
The portType is a collection of abstract operation definitions. Each
operation is defined by the input, output, and fault messages used to
complete the transaction the operation represents. When code is generated
to implement the service interface defined by a portType element, each
operation is converted into a method containing the parameters defined by
the input, output, and fault messages specified in the contract.

Process Defining a logical interface in an Artix contract entails the following:

1. Creating a portType element to contain the interface definition and
give it a unique name. See �Port types� on page 48.

2. Creating an operation element for each operation defined in the
interface. See �Operations� on page 48.

3. For each operation, specifying the messages used to represent the
operation�s parameter list, return type, and exceptions. See �Operation
messages� on page 49.
 47

CHAPTER 4 | Defining Your Logical Interfaces
Tools for adding logical interfaces
to a contract

Artix Designer provides wizards for creating and editing logical interface
definitions. The wizards can be access using the context menu available
when you select the PortTypes element or one of its children from a
contract�s diagram view. You can also access the wizards by selecting Artix
Designer | New Port Type. For more information see the on-line help
provided with Artix Designer.

You can also add a logical interface definition to a contract using any text or
XML editor. When you use an alternate tool, you are responsible for ensuring
that the logical interface definition is valid.

Port types A WSDL portType element is the root element in a logical interface
definition. While many Web service implementations, including Artix, map
portType elements directly to generated implementation objects, a logical
interface definition does not specify the exact functionality provided by the
the implemented service. For example, a logical interface named
ticketSystem can result in an implementation that sells concert tickets or
issues parking tickets.

The portType element is the unit of a WSDL document that is mapped into
a binding to define the physical data used by an endpoint exposing the
defined service. For more information on mapping logical interfaces into
bindings see �Understanding Bindings in WSDL� on page 55.

Each portType element in a WSDL document must have a unique name,
specified using the name attribute, and is made up of a collection of
operations, described in operation elements. A WSDL document can
describe any number of port types.

Operations Logical operations, defined using WSDL operation elements, define the
interaction between two endpoints. For example, a request for a checking
account balance and an order for a gross of widgets can both be defined as
operations.

Each operation defined within a portType element must have a unique
name, specified using the name attribute. The name attribute is required to
define an operation.
48

Operation messages Logical operations are made up of a set of elements representing the logical
messages communicated between the endpoints to execute the operation.
The elements that can describe an operation are listed in Table 3.

An operation is required to have at least one input or one output element.
An operation can have both input and output elements, but it can only
have one of each. Operations are not required to have any fault messages,
but can have any number of fault messages needed.

The elements have the two attributes listed in Table 4.

Table 3: Operation Message Elements

Element Description

input Specifies the message the client endpoint sends to the
service provider when a request is made. The parts of this
message correspond to the input parameters of the
operation.

output Specifies the message that the service provider sends to the
client endpoint in response to a request. The parts of this
message correspond to any operation parameters that can
be changed by the service provider, such as values passed
by reference. This includes the return value of the operation.

fault Specifies a message used to communicate an error
condition between the endpoints.

Table 4: Attributes of the Input and Output Elements

Attribute Description

name Identifies the message so it can be referenced when
mapping the operation to a concrete data format. The name
must be unique within the enclosing port type.

message Specifies the abstract message that describes the data
being sent or received. The value of the message attribute
must correspond to the name attribute of one of the abstract
messages defined in the WSDL document.
 49

CHAPTER 4 | Defining Your Logical Interfaces
It is not necessary to specify the name attribute for all input and output
elements; WSDL provides a default naming scheme based on the enclosing
operation�s name. If only one element is used in the operation, the element
name defaults to the name of the operation. If both an input and an output
element are used, the element name defaults to the name of the operation
with Request or Response respectively appended to the name.

Return values Because the operation element is an abstract definition of the data passed
during an operation, WSDL does not provide for return values to be specified
for an operation. If a method returns a value it will be mapped into the
output message as the last part of that message. The concrete details of
how the message parts are mapped into a physical representation are
described in �Bindings� on page 53.

Example For example, you might have an interface similar to the one shown in
Example 22.

This interface could be mapped to the port type in Example 23.

Example 22: personalInfo lookup interface

interface personalInfoLookup
{
 personalInfo lookup(in int empID)
 raises(idNotFound);
}

Example 23: personalInfo lookup port type

<message name="personalLookupRequest">
 <part name="empId" element="xsd1:personalLookup"/>
<message/>
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalLookupResponse"/>
<message/>
<message name="idNotFoundException">
 <part name="exception" element="xsd1:idNotFound"/>
<message/>
50

<portType name="personalInfoLookup">
 <operation name="lookup">
 <input name="empID" message="personalLookupRequest"/>
 <output name="return" message="personalLookupResponse"/>
 <fault name="exception" message="idNotFoundException"/>
 </operation>
</portType>

Example 23: personalInfo lookup port type
 51

CHAPTER 4 | Defining Your Logical Interfaces
52

Part II
Bindings

In this part This part contains the following chapters:

Understanding Bindings in WSDL page 55

Using SOAP 1.1 Messages page 59

Using SOAP 1.2 Messages page 73

Using Tuxedo�s FML Buffers page 83

Using Fixed Length Records page 91

Using Tagged Data page 109

Using Tibco Rendezvous Messages page 123

Using XML Documents page 165

Using RMI page 171

Using G2++ Messages page 177
 53

54

CHAPTER 5

Understanding
Bindings in WSDL
Bindings map the logical messages used to define a service
into a concrete payload format that can be transmitted and
received by an endpoint.

Overview Bindings provide a bridge between the logical messages used by a service to
a concrete data format that an endpoint uses in the physical world. They
describe how the logical messages are mapped into a payload format that is
used on the wire by an endpoint. It is within the bindings that details such
as parameter order, concrete data types, and return values are specified. For
example, the parts of a message can be reordered in a binding to reflect the
order required by an RPC call. Depending on the binding type, you can also
identify which of the message parts, if any, represent the return type of a
method.

Port types and bindings Port types and bindings are directly related. A port type is an abstract
definition of a set of interactions between two logical services. A binding is a
concrete definition of how the messages used to implement the logical
services will be instantiated in the physical world. Each binding is then
associated with a set of network details that finish the definition of one
endpoint that exposes the logical service defined by the port type.
 55

CHAPTER 5 | Understanding Bindings in WSDL
To ensure that an endpoint defines only a single service, WSDL requires that
a binding can only represent a single port type. For example, if you had a
contract with two port types, you could not write a single binding that
mapped both of them into a concrete data format. You would need two
bindings.

However, WSDL allows for a port type to be mapped to several bindings. For
example, if your contract had a single port type, you could map it into two or
more bindings. Each binding could alter how the parts of the message are
mapped or they could specify entirely different payload formats for the
message.

The WSDL elements Bindings are defined in a contract using the WSDL binding element. The
binding element has a single attribute, name, that specifies a unique name
for the binding. The value of this attribute is used to associate the binding
with an endpoint as discussed in �Understanding How Endpoints are
Defined WSDL� on page 187.

The actual mappings are defined in the children of the binding element.
These elements vary depending on the type of payload format you decide to
use. The different payload formats and the elements used to specify their
mappings are discussed in the following chapters.

Adding to a contract Artix provides a number of tools for adding bindings to your contracts. These
include:

� Artix Designer has wizards that lead you through the process of adding
bindings to your contract.

� A number of the bindings can be generated using command line tools.

The tools will add the proper elements to your contract for you. However, it
is recommended that you have some knowledge of how the different types
of bindings work.

You can also add a binding to a contract using any text editor. When you
hand edit a contract, you are responsible for ensuring that the contract is
valid.

Supported bindings Artix supports the following bindings:

� SOAP

� CORBA
56

� Fixed record length

� Pure XML

� Tagged (variable record length)

� TibrvMsg (a TIBCO Rendezvous format)

� Tuxedo's Field Manipulation Language (FML)

� G2++
 57

CHAPTER 5 | Understanding Bindings in WSDL
58

CHAPTER 6

Using SOAP 1.1
Messages
SOAP 1.1 is a common payload format used by Web services.

Overview Artix provides a tool to generate a SOAP 1.1 binding which does not use any
SOAP headers. However, you can add SOAP headers to your binding using
any text or XML editor. In addition, you can define a SOAP binding that uses
MIME multipart attachments.

In this chapter This chapter discusses the following topics:

Adding a SOAP 1.1 Binding page 60

Adding SOAP Headers to a SOAP 1.1 Binding page 63

Sending Data Using SOAP with Attachments page 68
 59

CHAPTER 6 | Using SOAP 1.1 Messages
Adding a SOAP 1.1 Binding

Overview Artix provides three ways to add a SOAP 1.1 binding for a logical interface.
The first is to use Artix Designer as discussed in �Using Artix Designer� on
page 60. The second is the command line tool wsdltosoap as described in
�Using wsdltosoap� on page 60.

Using Artix Designer Artix Designer provides three ways of adding a SOAP 1.1 binding to a
contract:

1. Select Artix Designer | SOAP Enable.

2. Select Artix Designer | New Binding.

3. Select New Binding from the context menu available in diagram view.

For more information on using Artix Designer, see Artix Designer�s on-line
help.

Using wsdltosoap To generate a SOAP 1.1 binding using wsdltosoap use the following
command:

The command has the following options:

wsdltosoap -i portType -n namespace wsdl_file
 [-b binding][-d dir][-o file]
 [-style {document|rpc}][-use {literal|encoded}]
 [-quiet][-verbose][-h][-v]

-i portType Specifies the name of the port type being mapped to a
SOAP binding.

-n namespace Specifies the namespace to use for the SOAP binding.

-b binding Specifies the name for the generated SOAP binding.
Defaults to portTypeBinding.

-d dir Specifies the directory into which the new WSDL file is
written.

-o file Specifies the name of the generated WSDL file. Defaults
to wsdl_file-soap.wsdl.
60

Adding a SOAP 1.1 Binding
wsdltosoap does not support the generation of document/encoded SOAP
bindings.

Example If your system had an interface that took orders and offered a single
operation to process the orders it would be defined in an Artix contract
similar to the one shown in Example 24.

-style Specifies the encoding style to use in the SOAP binding.
Defaults to document.

-use Specifies how the data is encoded. Default is literal.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.

-h Specifies that the tool will display a usage message.

-v Displays the tool�s version.

Example 24: Ordering System Interface

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>
 61

CHAPTER 6 | Using SOAP 1.1 Messages
The SOAP binding generated for orderWidgets is shown in Example 25.

This binding specifies that messages are sent using the document/literal
message style.

<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>
...
</definitions>

Example 24: Ordering System Interface

Example 25: SOAP 1.1 Binding for orderWidgets

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap:operation soapAction="" style="document"/>
 <input name="order">
 <soap:body use="literal"/>
 </input>
 <output name="bill">
 <soap:body use="literal"/>
 </output>
 <fault name="sizeFault">
 <soap:body use="literal"/>
 </fault>
 </operation>
</binding>
62

Adding SOAP Headers to a SOAP 1.1 Binding
Adding SOAP Headers to a SOAP 1.1 Binding

Overview SOAP headers are defined by adding soap:header elements to your default
SOAP 1.1 binding. The soap:header element is an optional child of the
input, output, and fault elements of the binding. The SOAP header
becomes part of the parent message. A SOAP header is defined by
specifying a message and a message part. Each SOAP header can only
contain one message part, but you can insert as many SOAP headers as
needed.

Syntax The syntax for defining a SOAP header is shown in Example 26. The
message attribute of soap:header is the qualified name of the message from
which the part being inserted into the header is taken. The part attribute is
the name of the message part inserted into the SOAP header. Because
SOAP headers are always doc style, the WSDL message part inserted into
the SOAP header must be defined using an element. Together the message
and the part attributes fully describe the data to insert into the SOAP
header.

As well as the mandatory message and part attributes, soap:header also
supports the namespace, the use, and the encodingStyle attributes. These
optional attributes function the same for soap:header as they do for
soap:body.

Example 26: SOAP Header Syntax

<binding name="headwig">
 <soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="weave">

 <soap:operation soapAction="" style="document"/>
 <input name="grain">
 <soap:body .../>
 <soap:header message="QName" part="partName"/>
 </input>
...
</binding>
 63

CHAPTER 6 | Using SOAP 1.1 Messages
Development considerations When you use SOAP headers in your Artix applications, you are responsible
for creating and populating the SOAP headers in your application logic. For
details on Artix application development, see either Developing Artix
Applications in C++ or Developing Artix Applications in Java.

Splitting messages between body
and header

The message part inserted into the SOAP header can be any valid message
part from the contract. It can even be a part from the parent message which
is being used as the SOAP body. Because it is unlikely that you would want
to send information twice in the same message, the SOAP binding provides
a means for specifying the message parts that are inserted into the SOAP
body.

The soap:body element has an optional attribute, parts, that takes a space
delimited list of part names. When parts is defined, only the message parts
listed are inserted into the SOAP body. You can then insert the remaining
parts into the SOAP header.

Example Example 27 shows a modified version of the orderWidgets service shown in
Example 24. This version has been modified so that each order has an
xsd:base64binary value placed in the SOAP header of the request and
response. The SOAP header is defined as being the keyVal part from the
widgetKey message. In this case you would be responsible for adding the
SOAP header in your application logic because it is not part of the input or
output message.

Note: When you define a SOAP header using parts of the parent
message, Artix automatically fills in the SOAP headers for you.

Example 27: SOAP 1.1 Binding with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
64

../prog_guide/index.htm
../prog_guide/index.htm
../java_pguide/index.htm

Adding SOAP Headers to a SOAP 1.1 Binding
<types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="keyElem" type="xsd:base64Binary"/>
 </schema>
</types>
<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>
<message name="widgetKey">
 <part name="keyVal" element="xsd1:keyElem"/>
</message>
<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>
<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap:operation soapAction="" style="document"/>
 <input name="order">
 <soap:body use="literal"/>
 <soap:header message="tns:widgetKey" part="keyVal"/>
 </input>
 <output name="bill">
 <soap:body use="literal"/>
 <soap:header message="tns:widgetKey" part="keyVal"/>
 </output>
 <fault name="sizeFault">
 <soap:body use="literal"/>
 </fault>
 </operation>
</binding>
...
</definitions>

Example 27: SOAP 1.1 Binding with a SOAP Header (Continued)
 65

CHAPTER 6 | Using SOAP 1.1 Messages
You could modify Example 27 so that the header value was a part of the
input and output messages as shown in Example 28. In this case keyVal is
a part of the input and output messages. In the soap:body elements the
parts attribute specifies that keyVal is not to be inserted into the body.
However, it is inserted into the SOAP header.

Example 28: SOAP 1.1 Binding for orderWidgets with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
<types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="keyElem" type="xsd:base64Binary"/>
 </schema>
</types>
<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
 <part name="keyVal" element="xsd1:keyElem"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
 <part name="keyVal" element="xsd1:keyElem"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>
<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>
66

Adding SOAP Headers to a SOAP 1.1 Binding
<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap:operation soapAction="" style="document"/>
 <input name="order">
 <soap:body use="literal" parts="numOrdered"/>
 <soap:header message="tns:widgetOrder" part="keyVal"/>
 </input>
 <output name="bill">
 <soap:body use="literal" parts="bill"/>
 <soap:header message="tns:widgetOrderBill" part="keyVal"/>
 </output>
 <fault name="sizeFault">
 <soap:body use="literal"/>
 </fault>
 </operation>
</binding>
...
</definitions>

Example 28: SOAP 1.1 Binding for orderWidgets with a SOAP Header
 67

CHAPTER 6 | Using SOAP 1.1 Messages
Sending Data Using SOAP with Attachments

Overview SOAP 1.1 messages generally do not carry binary data. However, the W3C
SOAP 1.1 specification allows for using MIME multipart/related messages to
send binary data in SOAP 1.1 messages. This technique is called using
SOAP with attachments. SOAP attachments are defined in the W3C�s SOAP
Messages with Attachments Note
(http://www.w3.org/TR/SOAP-attachments).

Namespace The WSDL extensions used to define the MIME multipart/related messages
are defined in the namespace http://schemas.xmlsoap.org/wsdl/mime/.

In the discussion that follows, it is assumed that this namespace is prefixed
with mime. The entry in the WSDL definitions element to set this up is
shown in Example 29.

Changing the message binding In a default SOAP binding, the first child element of the input, output, and
fault elements is a soap:body element describing the body of the SOAP
1.1 message representing the data. When using SOAP with attachments,
the soap:body element is replaced with a mime:multipartRelated element.

The mime:multipartRelated element tells Artix that the message body is
going to be a multipart message that potentially contains binary data. The
contents of the element define the parts of the message and their contents.
mime:multipartRelated elements in Artix contain one or more mime:part
elements that describe the individual parts of the message.

The first mime:part element must contain the soap:body element that
would normally appear in a default SOAP binding. The remaining mime:part
elements define the attachments that are being sent in the message.

Example 29: MIME Namespace Specification in a Contract

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

Note: WSDL does not support using mime:multipartRelated for fault
messages.
68

http://www.w3.org/TR/SOAP-attachments

Sending Data Using SOAP with Attachments
Describing a MIME multipart
message

MIME multipart messages are described using a mime:multipartRelated
element that contains a number of mime:part elements. To fully describe a
MIME multipart message in an Artix contract:

1. Inside the input or output message you want to send as a MIME
multipart message, add a mime:mulipartRelated element as the first
child element of the enclosing message.

2. Add a mime:part child element to the mime:multipartRelated element
and set its name attribute to a unique string.

3. Add a soap:body element as the child of the mime:part element and
set its attributes appropriately.

If the contract had a default SOAP binding, you can copy the
soap:body element from the corresponding message from the default
binding into the MIME multipart message.

4. Add another mime:part child element to the mime:multipartReleated
element and set its name attribute to a unique string.

5. Add a mime:content child element to the mime:part element to
describe the contents of this part of the message.

To fully describe the contents of a MIME message part the
mime:content element has the following attributes:

♦ part�Specifies the name of the WSDL message part, from the
parent message definition, that is used as the content of this part
of the MIME multipart message being placed on the wire.

♦ type�The MIME type of the data in this message part. MIME
types are defined as a type and a subtype using the syntax
type/subtype.

There are a number of predefined MIME types such as
image/jpeg and text/plain. The MIME types are maintained by
the Internet Assigned Numbers Authority (IANA) and described in
detail in Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies
(ftp://ftp.isi.edu/in-notes/rfc2045.txt) and Multipurpose Internet
Mail Extensions (MIME) Part Two: Media Types
(ftp://ftp.isi.edu/in-notes/rfc2046.txt).

6. For each additional MIME part, repeat steps 4 and 5.
 69

ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt

CHAPTER 6 | Using SOAP 1.1 Messages
Example Example 30 shows an Artix contract for a service that stores X-rays in JPEG
format. The image data, xRay, is stored as an xsd:base64binary and is
packed into the MIME multipart message�s second part, imageData. The
remaining two parts of the input message, patientName and patientNumber,
are sent in the first part of the MIME multipart image as part of the SOAP
body.

Example 30: Contract using SOAP with Attachments

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="XrayStorage"
 targetNamespace="http://mediStor.org/x-rays"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://mediStor.org/x-rays"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <message name="storRequest">
 <part name="patientName" type="xsd:string"/>
 <part name="patientNumber" type="xsd:int"/>
 <part name="xRay" type="xsd:base64Binary"/>
 </message>
 <message name="storResponse">
 <part name="success" type="xsd:boolean"/>
 </message>
 <portType name="xRayStorage">
 <operation name="store">
 <input message="tns:storRequest" name="storRequest"/>
 <output message="tns:storResponse" name="storResponse"/>
 </operation>
 </portType>
 <binding name="xRayStorageBinding" type="tns:xRayStorage">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="store">
 <soap:operation soapAction="" style="document"/>
 <input name="storRequest">
 <mime:multipartRelated>
 <mime:part name="bodyPart">
 <soap:body use="literal"/>
 </mime:part>
 <mime:part name="imageData">
 <mime:content part="xRay" type="image/jpeg"/>
 </mime:part>
 </mime:multipartRelated>
 </input>
70

Sending Data Using SOAP with Attachments
 <output name="storResponse">
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="xRayStorageService">
 <port binding="tns:xRayStorageBinding" name="xRayStoragePort">
 <soap:address location="http://localhost:9000"/>
 </port>
 </service>
</definitions>

Example 30: Contract using SOAP with Attachments
 71

CHAPTER 6 | Using SOAP 1.1 Messages
72

CHAPTER 7

Using SOAP 1.2
Messages
SOAP 1.2 is an updated specification of SOAP messages.

Overview Artix provides tools to generate a SOAP 1.2 binding which does not use any
SOAP headers. However, you can add SOAP headers to your binding using
any text or XML editor.

In this chapter This chapter discusses the following topics:

Adding a SOAP 1.2 Binding page 74

Adding Headers to a SOAP 1.2 Message page 77
 73

CHAPTER 7 | Using SOAP 1.2 Messages
Adding a SOAP 1.2 Binding

Overview Artix provides three ways to add a SOAP 1.2 binding for a logical interface.
The first is to use Artix Designer as described in �Using Artix Designer� on
page 74. The second is the command line tool wsdltosoap as described in
�Using wsdltosoap� on page 74.

Using Artix Designer Artix Designer provides three ways of adding a SOAP 1.2 binding to a
contract:

1. Select Artix Designer | SOAP Enable.

2. Select Artix Designer | New Binding.

3. Select New Binding from the context menu available in diagram view.

For more information on using Artix Designer, see Artix Designer�s on-line
help.

Using wsdltosoap To generate a SOAP 1.2 binding using wsdltosoap use the following
command:

The command has the following options:

Note: Artix 4.1 only supports literal SOAP 1.2 messages.

wsdltosoap �soapversion 1.2 -i portType -n namespace wsdl_file
 [-b binding][-d dir][-o file]
 [-style {document|rpc}][-use {literal|encoded}]
 [-quiet][-verbose][-h][-v]

�soapversion 1.2Specifies that the generated binding should use SOAP
1.2.

-i portType Specifies the name of the port type being mapped to a
SOAP binding.

-n namespace Specifies the namespace to use for the SOAP binding.

-b binding Specifies the name for the generated SOAP binding.
Defaults to portTypeBinding.
74

Adding a SOAP 1.2 Binding
wsdltosoap does not support the generation of document/encoded SOAP
bindings.

Example If your system had an interface that took orders and offered a single
operation to process the orders it would be defined in an Artix contract
similar to the one shown in Example 31.

-d dir Specifies the directory into which the new WSDL file is
written.

-o file Specifies the name of the generated WSDL file. Defaults
to wsdl_file-soap.wsdl.

-style Specifies the encoding style to use in the SOAP binding.
Defaults to document.

-use Specifies how the data is encoded. Default is literal.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.

-h Specifies that the tool will display a usage message.

-v Displays the tool�s version.

Example 31: Ordering System Interface

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsoap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>
 75

CHAPTER 7 | Using SOAP 1.2 Messages
The SOAP binding generated for orderWidgets is shown in Example 32.

This binding specifies that messages are sent using the document/literal
message style.

<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>
...
</definitions>

Example 31: Ordering System Interface

Example 32: SOAP 1.2 Binding for orderWidgets

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <wsoap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <wsoap12:operation soapAction="" style="document"/>
 <input name="order">
 <wsoap12:body use="literal"/>
 </input>
 <output name="bill">
 <wsoap12:body use="literal"/>
 </output>
 <fault name="sizeFault">
 <wsoap12:body use="literal"/>
 </fault>
 </operation>
</binding>
76

Adding Headers to a SOAP 1.2 Message
Adding Headers to a SOAP 1.2 Message

Overview SOAP message headers are defined by adding wsoap12:header elements to
your SOAP 1.2 message. The wsoap12:header element is an optional child
of the input, output, and fault elements of the binding. The header
becomes part of the parent message. A header is defined by specifying a
message and a message part. Each SOAP header can only contain one
message part, but you can insert as many headers as needed.

Syntax The syntax for defining a SOAP header is shown in Example 33.

The wsoap12:header element�s attributes are described in Table 5.

Example 33: SOAP Header Syntax

<binding name="headwig">
 <wsoap12:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="weave">

 <wsoap12:operation soapAction="" style="documment"/>
 <input name="grain">
 <wsoap12:body .../>
 <wsoap12:header message="QName" part="partName"
 use="literal|encoded"
 encodingStyle="encodingURI"
 namespace="namespaceURI" />
 </input>
...
</binding>

Table 5: wsoap12:header Attributes

Attribute Description

message A required attribute specifying the qualified name of
the message from which the part being inserted into
the header is taken.

part A required attribute specifying the name of the
message part inserted into the SOAP header.
 77

CHAPTER 7 | Using SOAP 1.2 Messages
Development considerations When you use SOAP headers in your Artix applications, you are responsible
for creating and populating the headers in your application logic. For details
on Artix application development, see either Developing Artix Applications in
C++ or Developing Artix Applications in Java.

Splitting messages between body
and header

The message part inserted into the SOAP header can be any valid message
part from the contract. It can even be a part from the parent message which
is being used as the SOAP body. Because it is unlikely that you would want
to send information twice in the same message, the SOAP 1.2 binding
provides a means for specifying the message parts that are inserted into the
SOAP body.

The wsoap12:body element has an optional attribute, parts, that takes a
space delimited list of part names. When parts is defined, only the message
parts listed are inserted into the body of the SOAP 1.2 message. You can
then insert the remaining parts into the message�s header.

Example Example 34 shows a modified version of the orderWidgets service shown in
Example 31. This version has been modified so that each order has an
xsd:base64binary value placed in the header of the request and response.

use Specifies if the message parts are to be encoded
using encoding rules. If set to encoded the message
parts are encoded using the encoding rules specified
by the value of the encodingStyle attribute. If set to
literal then the message parts are defined by the
schema types referenced.

encodingStyle Specifies the encoding rules used to construct the
message.

namespace Defines the namespace to be assigned to the header
element serialized with use="encoded".

Table 5: wsoap12:header Attributes

Attribute Description

Note: When you define a SOAP header using parts of the parent
message, Artix automatically fills in the SOAP headers for you.
78

../prog_guide/index.htm
../prog_guide/index.htm
../java_pguide/index.htm

Adding Headers to a SOAP 1.2 Message
The header is defined as being the keyVal part from the widgetKey
message. In this case you would be responsible for adding the application
logic to create the header because it is not part of the input or output
message.

Example 34: SOAP 1.2 Binding with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsoap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
<types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="keyElem" type="xsd:base64Binary"/>
 </schema>
</types>
<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>
<message name="widgetKey">
 <part name="keyVal" element="xsd1:keyElem"/>
</message>
<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>
 79

CHAPTER 7 | Using SOAP 1.2 Messages
You could modify Example 34 so that the header value was a part of the
input and output messages as shown in Example 35. In this case keyVal is
a part of the input and output messages. In the wsoap12:body elements the
parts attribute specifies that keyVal is not to be inserted into the body.
However, it is inserted into the header.

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <wsoap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <wsoap12:operation soapAction="" style="document"/>
 <input name="order">
 <wsoap12:body use="literal"/>
 <wsoap12:header message="tns:widgetKey" part="keyVal"/>
 </input>
 <output name="bill">
 <wsoap12:body use="literal"/>
 <wsoap12:header message="tns:widgetKey" part="keyVal"/>
 </output>
 <fault name="sizeFault">
 <wsoap12:body use="literal"/>
 </fault>
 </operation>
</binding>
...
</definitions>

Example 34: SOAP 1.2 Binding with a SOAP Header

Example 35: SOAP 1.2 Binding for orderWidgets with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsoap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
<types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="keyElem" type="xsd:base64Binary"/>
 </schema>
</types>
80

Adding Headers to a SOAP 1.2 Message
<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
 <part name="keyVal" element="xsd1:keyElem"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
 <part name="keyVal" element="xsd1:keyElem"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>
<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>
<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <wsoap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <wsoap12:operation soapAction="" style="document"/>
 <input name="order">
 <wsoap12:body use="literal" parts="numOrdered"/>
 <wsoap12:header message="tns:widgetOrder" part="keyVal"/>
 </input>
 <output name="bill">
 <wsoap12:body use="literal" parts="bill"/>
 <wsoap12:header message="tns:widgetOrderBill" part="keyVal"/>
 </output>
 <fault name="sizeFault">
 <wsoap12:body use="literal"/>
 </fault>
 </operation>
</binding>
...
</definitions>

Example 35: SOAP 1.2 Binding for orderWidgets with a SOAP Header
 81

CHAPTER 7 | Using SOAP 1.2 Messages
82

CHAPTER 8

Using Tuxedo�s
FML Buffers
Artix can send and receive messages packaged as FML buffers.

Overview Tuxedo�s native data format is FML. The FML buffers used by Tuxedo
applications are described in one of two ways:

� A field table file that is loaded at runtime.

� A C header file that is compiled into the application.

A field table file is a detailed and user readable text file describing the
contents of a buffer. It clearly describes each field�s name, ID number, data
type, and a comment. Using the FML library calls, Tuxedo applications map
the field table description to usable fldids at runtime.

The C header file description of an FML buffer simply maps field names to
their fldid. The fldid is an integer value that represents both the type of
data stored in a field and a unique identifying number for that field.

Artix works with this data by mapping the native Tuxedo data descriptions
into a WSDL binding element. As part of developing an Artix solution to
integrate with legacy Tuxedo applications, you must add an FML binding to
the contract describing the integration.
 83

CHAPTER 8 | Using Tuxedo�s FML Buffers
FML/XML Schema support An FML buffer can only contain the data types listed in Table 6.

Due to FML limitations, support for complex types is limited to
xsd:sequence and xsd:all.

Mapping from a field table to an
Artix contract

Creating an Artix contract to represent an FML buffer is a two-step process:

1. Create the logical data representation of the FML buffer in the Artix
contract as described in �Mapping to logical type descriptions� on
page 84.

2. Enter the FML binding information using Artix WSDL extensors as
described in �Adding the FML binding� on page 89.

Mapping to logical type
descriptions

To create a logical data type to represent data in an FML buffer:

1. If the C header file for the FML buffer does not exist, generate it from
the field table using the Tuxedo mkfldhdr or mkfldhdr32 utility
program.

2. For each field in the FML buffer, create an element with the following
attribute settings:

♦ name is set to the name specified in the field table.

Table 6: FML Type Support

XML Schema Type FML Type

xsd:short short

xsd:unsignedShort short

xsd:int long

xsd:unsignedInt long

xsd:float float

xsd:double double

xsd:string string

xsd:base64Binary string

xsd:hexBinary string
84

♦ type is set to the appropriate XML Schema type for the type
specified in the field table. See �FML/XML Schema support� on
page 84.

3. If your Tuxedo application has data fields that are always used
together, you can group the corresponding elements into complex
types.

For example, consider a Tuxedo application that returns personnel records
on employees that needs to be exposed through a new web interface. The
Tuxedo application uses the field table file shown in Example 36.

Note: In Tuxedo, a WSDL operation is implicitly bound to the
Tuxedo service used. So, when the Tuxedo extensor is configured for
the WSDL port there must be a one-to-one mapping between the
WSDL operation and the Tuxedo service. IONA recommends that
you group elements into complex types only if they appear together in
all exposed Tuxedo services.

Example 36: personnelInfo Field Table File

personnelInfo Field Table
name number type flags comment
empId 100 long -
name 101 string -
age 102 short -
dept 103 string -
addr 104 string -
city 105 string -
state 106 string -
zip 107 string -
 85

CHAPTER 8 | Using Tuxedo�s FML Buffers
The C++ header file generated by the Tuxedo mkfldhdr tool to represent
the personnelInfo FML buffer is shown in Example 37. Even if you are not
planning to access the FML buffer using the compile-time method, you will
need to generate the header file when using Artix because this will give you
the fldid values for the fields in the buffer.

Before mapping the FML buffer into your contract, you need to look at the
operations exposed by the Tuxedo application. Suppose it exposes two
operations:

� infoByName() that returns the employee data based on a name search.

� infoByID() that returns the employee data based on the employee�s ID
number.

Example 37: personnelInfo C++ header

/* fname fldid */
/* ----- ----- */
#define empId ((FLDID)8293) /* number: 100 type: long */
#define name ((FLDID)41062) /* number: 101 type: string */
#define age ((FLDID)102) /* number: 102 type: short */
#define dept ((FLDID)41064) /* number: 103 type: string */
#define addr ((FLDID)41065) /* number: 104 type: string */
#define city ((FLDID)41066) /* number: 105 type: string */
#define state ((FLDID)41067) /* number: 106 type: string */
#define zip ((FLDID)41068) /* number: 107 type: string */
86

Because the employee data is always returned as a unit you can group it
into a complex type as shown in Example 38.

The interface for your Tuxedo application would be mapped to a portType
similar to Example 39.

Example 38: Logical description of personneInfo FML buffer

<types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="personnelInfo">
 <sequence>
 <element name="empId" type="xsd:int"/>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:short"/>
 <element name="dept" type="xsd:string"/>
 <element name="addr" type="xsd:string"/>
 <element name="city" type="xsd:string"/>
 <element name="state" type="xsd:string"/>
 <element name="zip" type="xsd:string"/>
 </sequence>
 </complexType>
 ...
 </schema>
</types>

Example 39: personnelInfo Lookup Interface

<message name="idLookupRequest">
 <part name="empId" type="xsd:int"/>
</message>
<message name="nameLookupRequest">
 <part name="empId" type="xsd:string"/>
</message>
<message name="lookupResponse">
 <part name="return" element="xsd1:personnelInfo"/>
</message>
 87

CHAPTER 8 | Using Tuxedo�s FML Buffers
Flattened XML and FML While XML Schema allows you to create structured data that is organized in
multiple layers, FML data is essentially flat. All of the elements in a field
table exist on the same level. To handle this difference Artix flattens out the
XML data when it is passed through the FML binding.

As a result, complex types defined in XML Schema are collapsed into their
composite elements. For instance, the message lookupResponse, which
uses the complex type defined in Example 38 on page 87, would be
equivalent to the message definition in Example 40 when processed by the
FML binding.

<portType name="personelInfoLookup">
 <operation name="infoByName">
 <input name="name" message="nameLookupRequest"/>
 <output name="return" message="lookupResponse"/>
 </operation>
 <operation name="infoByID">
 <input name="id" message="idLookupRequest"/>
 <output name="return" message="lookupResponse"/>
 </operation>
</portType>

Example 39: personnelInfo Lookup Interface

Example 40: Flattened Message for FML

<message name="lookupResponse">
 <part name="empId" type="xsd:int"/>
 <part name="name" type="xsd:string"/>
 <part name="age" type="xsd:short"/>
 <part name="dept" type="xsd:string"/>
 <part name="addr" type="xsd:string"/>
 <part name="city" type="xsd:string"/>
 <part name="state" type="xsd:string"/>
 <part name="zip" type="xsd:string"/>
</message>
88

Adding the FML binding To add the binding that maps the logical description of the FML buffer to a
physical FML binding:

1. Add the following line in the definition element at the beginning of
the contract.

2. Create a new binding element in your contract to define the FML
buffer�s binding.

3. Add a tuxedo:binding element to identify that this binding defines an
FML buffer.

4. Add a tuxedo:fieldTable element to the binding to describe how the
element names defined in the logical portion of the contract map to the
fldid values for the corresponding fields in the FML buffer.

The tuxedo:fieldTable has a mandatory type attribute. type can be
either FML for specifying that the application uses FML16 buffers or
FML32 for specifying that the application uses FML32 buffers.

5. For each element in the logical data type, add a tuxedo:field element
to the tuxedo:fieldTable element.

tuxedo:field defines how the logical data elements map to the
physical FML buffer. It has two mandatory attributes:

♦ name specifies the name of the logical type describing the field.

♦ id specifies the fldid value for the field in the FML buffer.

6. For each operation in the interface, create a standard WSDL operation
element to define the operation being bound.

7. For each operation, add a standard WSDL input and output elements
to the operation element to define the messages used by the
operation.

8. For each operation, add a tuxedo:operation element to the operation
element.

xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"
 89

CHAPTER 8 | Using Tuxedo�s FML Buffers
For example, the binding for the personalInfo FML buffer, defined in
Example 36 on page 85, will be similar to the binding shown in
Example 41.

Example 41: personalInfo FML binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="personalInfoService" targetNamespace="http://info.org/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://soapinterop.org/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo">
...
 <binding name="personelInfoFMLBinding" type="tns:personnelInfoLookup">
 <tuxedo:binding/>
 <tuxedo:fieldTable type="FML">
 <tuxedo:field name="empId" id="8293"/>
 <tuxedo:field name="name" id="41062"/>
 <tuxedo:field name="age" id="102"/>
 <tuxedo:field name="dept" id="41064"/>
 <tuxedo:field name="addr" id="41065"/>
 <tuxedo:field name="city" id="41066"/>
 <tuxedo:field name="state" id="41067"/>
 <tuxedo:field name="zip" id="41068"/>
 </fml:idNameMapping>
 <operation name="infoByName">
 <tuxedo:operation/>
 <input name="name"/>
 <output name="return"/>
 </operation>
 <operation name="infoByName">
 <tuxedo:operation/>
 <input name="name"/>
 <output name="return"/>
 </operation>
 </binding>
...
</definitions>
90

CHAPTER 9

Using Fixed
Length Records
To make interoperating with mainframes and older systems
easy, Artix can send and receive messages formatted as fixed
length records.

Overview The Artix fixed binding is used to represent fixed record length data.
Common uses for this type of payload format are communicating with
back-end services on mainframes and applications written in COBOL. Artix
provides several means for creating a contract containing a fixed binding:

� If you are integrating with an application written in COBOL and have
the COBOL copybook defining the data to be used, you can import the
copybook to create a contract.

� If you have a description of the fixed data in some form other than a
COBOL copybook, you can create a contract by describing the data.

� If you have a logical interface you want to map to a fixed binding you
can use Artix Designer to create a fixed binding.

� You can enter the binding information using any text editor or XML
editor.
 91

CHAPTER 9 | Using Fixed Length Records
Using Artix Designer Artix Designer provides a number of tools for creating a contract with a fixed
binding:

1. You can create a new contract from a COBOL copybook by selecting
New | File | WSDL from Dataset and importing it.

2. You can create a new contract from a description of the fixed data by
selecting New | File | WSDL from Dataset.

3. You can add a fixed binding to a contract by selecting Artix Designer |
New Binding.

4. You can add a fixed binding using the context menu available in Artix
Designer�s diagram view.

For more information see the on-line help provided with Artix Designer.

Hand editing To map a logical interface to a fixed binding:

1. Add the proper namespace reference to the definition element of
your contract. See �Fixed binding namespace� on page 93.

2. Add a WSDL binding element to your contract to hold the fixed
binding, give the binding a unique name, and specify the port type that
represents the interface being bound.

3. Add a fixed:binding element as a child of the new binding element to
identify this as a fixed binding and set the element�s attributes to
properly configure the binding. See �fixed:binding� on page 93.

4. For each operation defined in the bound interface, add a WSDL
operation element to hold the binding information for the operation�s
messages.

5. For each operation added to the binding, add a fixed:operation child
element to the operation element. See �fixed:operation� on page 93.

6. For each operation added to the binding, add the input, output, and
fault children elements to represent the messages used by the
operation. These elements correspond to the messages defined in the
port type definition of the logical operation.
92

7. For each input, output, and fault element in the binding, add a
fixed:body child element to define how the message parts are mapped
into the concrete fixed record length payload. See �fixed:body� on
page 94.

Fixed binding namespace The IONA extensions used to describe fixed record length bindings are
defined in the namespace http://schemas.iona.com/bindings/fixed. Artix
tools use the prefix fixed to represent the fixed record length extensions.
Add the following line to your contract:

fixed:binding fixed:binding specifies that the binding is for fixed record length data. Its
attributes are described in Table 7.

The settings for the attributes on these elements become the default settings
for all the messages being mapped to the current binding. All of the values
can be overridden on a message-by-message basis.

fixed:operation fixed:operation is a child element of the WSDL operation element and
specifies that the operation�s messages are being mapped to fixed record
length data.

xmlns:fixed="http://schemas.iona.com/bindings/fixed

Table 7: Attributes for fixed:binding

Attributes Purpose

justification Specifies the default justification of the data contained
in the messages. Valid values are left and right.
Default is left.

encoding Specifies the codeset used to encode the text data.
Valid values are any valid ISO locale or Internet
Internet Assigned Numbers Authority (IANA) codeset
name. Default is UTF-8.

padHexCode Specifies the hex value of the character used to pad
the record.
 93

CHAPTER 9 | Using Fixed Length Records
fixed:operation has one attribute, discriminator, that assigns a unique
identifier to the operation. If your service only defines a single operation, you
do not need to provide a discriminator. However, if your service has more
than one service, you must define a unique discriminator for each operation
in the service. Not doing so will result in unpredictable behavior when the
service is deployed.

For each message used in the operation, you will need to include a
fixed:field element whose name attribute is equal to the value of
discriminator and whose bindingOnly attribute is set to true.. This field
will hold the the value used by the binding to discriminate between the
operations. For more information see �fixed:field� on page 95.

fixed:body fixed:body is a child element of the input, output, and fault messages
being mapped to fixed record length data. It specifies that the message body
is mapped to fixed record length data on the wire and describes the exact
mapping for the message�s parts.

To fully describe how a message is mapped into the fixed message:

1. If the default justification, padding, or encoding settings for the
attribute are not correct for this particular message, override them by
setting the following optional attributes for fixed:body.

♦ justification specifies how the data in the messages are
justified. Valid values are left and right.

♦ encoding specifies the codeset used to encode text data. Valid
values are any valid ISO locale or IANA codeset name.

♦ padHexCode specifies the hex value of the character used to pad
the record.

2. For each part in the message the fixed:body element is binding, add
the appropriate child element to define the part�s concrete format on
the wire.

The following child elements are used in defining how logical data is
mapped to a concrete fixed format message:

♦ fixed:field maps message parts defined using a simple type.
See �XMLSchema Simple Types� on page 25.
94

♦ fixed:sequence maps message parts defined using a sequence
complex type. Complex types defined using all are not supported
by the fixed format binding. See �Defining Data Structures� on
page 28.

♦ fixed:choice maps message parts defined using a choice
complex type. See �Defining Data Structures� on page 28.

3. If you need to add any fields that are specific to the binding and that
will not be passed to the applications, define them using a fixed:field
element with its bindingOnly attribute set to true.

 When bindingOnly is set to true, the field described by the
fixed:field element is not propagated beyond the binding. For input
messages, this means that the field is read in and then discarded. For
output messages, you must also use the fixedValue attribute.

The order in which the message parts are listed in the fixed:body element
represent the order in which they are placed on the wire. It does not need to
correspond to the order in which they are specified in the message element
defining the logical message.

fixed:field fixed:field is used to map simple data types to a fixed length record. To
define how the logical data is mapped to a fixed field:

1. Create a fixed:field child element to the fixed:body element
representing the message.

2. Set the fixed:field element�s name attribute to the name of the
message part defined in the logical message description that this
element is mapping.

3. If the data being mapped is of type xsd:string, a simple type that has
xsd:string as its base type, or an enumerated type set, the size
attribute of the fixed:field element.

size specifies the length of the string record in the concrete fixed
message. For example, the logical message part, raverID, described in

Note: If the message part is going to hold a date you can opt to use
the format attribute described in step 4 instead of the size attribute.
 95

CHAPTER 9 | Using Fixed Length Records
Example 42 would be mapped to a fixed:field similar to
Example 43.

In order to complete the mapping, you must know the length of the
record field and supply it. In this case, the field, raverID, can contain
no more than twenty characters.

4. If the data being mapped is of a numerical type, like xsd:int, or a
simple type that has a numerical type as its base type, set the
fixed:field element�s format attribute.

format specifies how non-string data is formatted. For example, if a
field contains a 2-digit numeric value with one decimal place, it would
be described in the logical part of the contract as an xsd:float, as
shown in Example 44.

From the logical description of the message, Artix has no way of
determining that the value of rageLevel is a 2-digit number with one
decimal place because the fixed record length binding treats all data as
characters. When mapping rageLevel in the fixed binding you would
specify its format with ##.#, as shown in Example 45. This provides
Artix with the meta-data needed to properly handle the data.

Example 42: Fixed String Message

<message name="fixedStringMessage">
 <part name="raverID" type="xsd:string"/>
</message>

Example 43: Fixed String Mapping

<fixed:field name="raverID" size="20"/>

Example 44: Fixed Record Numeric Message

<message name="fixedNumberMessage">
 <part name="rageLevel" type="xsd:float"/>
</message>

Example 45: Mapping Numerical Data to a Fixed Binding

<fixed:field name="rageLevel" format="##.#"/>
96

Dates are specified in a similar fashion. For example, the format of the
date 12/02/72 is MM/DD/YY. When using the fixed binding it is
recommended that dates are described in the logical part of the
contract using xsd:string. For example, a message containing a date
would be described in the logical part of the contract as shown in
Example 46.

If goDate is entered using the standard short date format for US
English locales, mm/dd/yyyy, you would map it to a fixed record field as
shown in Example 47.

5. If the justification setting is not correct for this particular field, overide
it by setting the justification attribute. Valid values are left and
right.

6. If you want the message part to have a fixed value no matter what data
is set in the message part by the application, set the fixed:field
element�s fixedValue attribute instead of the size or the format
attribute.

fixedValue specifies a static value to be passed on the wire. When
used without bindingOnly="true", the value specified by fixedValue
replaces any data that is stored in the message part passed to the fixed
record binding. For example, if goDate, shown in Example 46 on
page 97, were mapped to the fixed field shown in Example 48, the
actual message returned from the binding would always have the date
11/11/2112.

Example 46: Fixed Date Message

<message name="fixedDateMessage">
 <part name="goDate" type="xsd:string"/>
</message>

Example 47: Fixed Format Date Mapping

<fixed:field name="goDate" format="mm/dd/yyyy"/>

Example 48: fixedValue Mapping

<fixed:field name="goDate" fixedValue="11/11/2112"/>
 97

CHAPTER 9 | Using Fixed Length Records
7. If the data being mapped is of an enumerated type, see �Defining
Enumerated Types� on page 37, add a fixed:enumeration child
element to the fixed:field element for each possible value of the
enumerated type.

fixed:enumeration takes two required attributes, value and
fixedValue. value corresponds to the enumeration value as specified
in the logical description of the enumerated type. fixedValue specifies
the concrete value that will be used to represent the logical value on
the wire.

For example, if you had an enumerated type with the values
FruityTooty, Rainbow, BerryBomb, and OrangeTango the logical
description of the type would be similar to Example 49.

When you map the enumerated type, you need to know the concrete
representation for each of the enumerated values. The concrete
representations can be identical to the logical or some other value. The
enumerated type in Example 49 could be mapped to the fixed field
shown in Example 50. Using this mapping Artix will write OT to the
wire for this field if the enumerations value is set to OrangeTango.

Example 49: Ice Cream Enumeration

<xs:simpleType name="flavorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="FruityTooty"/>
 <xs:enumeration value="Rainbow"/>
 <xs:enumeration value="BerryBomb"/>
 <xs:enumeration value="OrangeTango"/>
 </xs:restriction>
</xs:simpleType>

Example 50: Fixed Ice Cream Mapping

<fixed:field name="flavor" size="2">
 <fixed:enumeration value="FruityTooty" fixedValue="FT"/>
 <fixed:enumeration value="Rainbow" fixedValue="RB"/>
 <fixed:enumeration value="BerryBomb" fixedValue="BB"/>
 <fixed:enumeration value="OrangeTango" fixedValue="OT"/>
</fixed:field>
98

Note that the parent fixed:field element uses the size attribute to
specify that the concrete representation is two characters long. When
mapping enumerations, the size attribute will always be used to
represent the size of the concrete representation.

fixed:choice fixed:choice is used to map choice complex types into fixed record length
messages. To map a choice complex type to a fixed:choice:

1. Add a fixed:choice child element to the fixed:body element.

2. Set the fixed:choice element�s name attribute to the name of the
logical message part being mapped.

3. Set the fixed:choice element�s optional discriminatorName attribute
to the name of the field used as the discriminator for the union.

The value for discriminatorName corresponds to the name of a
bindingOnly fixed:field element that describes the type used for the
union�s discriminator as shown in Example 51. The only restriction in
describing the discriminator is that it must be able to handle the values
used to determine the case of the union. Therefore the values used in
the union mapped in Example 51 must be two-digit integers.

4. For each element in the logical definition of the message part, add a
fixed:case child element to the fixed:choice element.

Example 51: Using discriminatorName

<fixed:field name="disc" format="##" bindingOnly="true"/>
<fixed:choice name="unionStation" discriminatorName="disc">
...
</fixed:choice>
 99

CHAPTER 9 | Using Fixed Length Records
fixed:case fixed:case elements describe the complete mapping of a choice complex
type element to a fixed record length message. To map a choice complex
type element to a fixed:case:

1. Set the fixed:case element�s name attribute to the name of the logical
definition�s element.

2. Set the fixed:case element�s fixedValue attribute to the value of the
discriminator that selects this element. The value of fixedValue must
correspond to the format specified by the discriminatorName attribute
of the parent fixed:choice element.

3. Add a child element to define how the element�s data is mapped into a
fixed record.

The child elements used to map the part�s type to the fixed message
are the same as the possible child elements of a fixed:body element.
As with a fixed:body element, a fixed:sequence is made up of
fixed:field elements to describe simple types, fixed:choice elements to
describe choice complex types, and fixed:sequence elements to
describe sequence complex types.

Example 52 shows an Artix contract fragment mapping a choice complex
type to a fixed record length message.

Example 52: Mapping a Union to a Fixed Record Length Message

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/FixedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/fixed"
 xmlns:tns="http://www.iona.com/FixedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/FixedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
100

 <xsd:complexType name="unionStationType">
 <xsd:choice>
 <xsd:element name="train" type="xsd:string"/>
 <xsd:element name="bus" type="xsd:int"/>
 <xsd:element name="cab" type="xsd:int"/>
 <xsd:element name="subway" type="xsd:string"/>
 </xsd:choice>
 </xsd:complexType>
...
</types>
<message name="fixedSequence">
 <part name="stationPart" type="tns:unionStationType"/>
</message>
<portType name="fixedSequencePortType">
...
</portType>
<binding name="fixedSequenceBinding"
 type="tns:fixedSequencePortType">
 <fixed:binding/>
...
 <fixed:field name="disc" format="##" bindingOnly="true"/>
 <fixed:choice name="stationPart"
 descriminatorName="disc">
 <fixed:case name="train" fixedValue="01">
 <fixed:field name="name" size="20"/>
 </fixed:case>
 <fixed:case name="bus" fixedValue="02">
 <fixed:field name="number" format="###"/>
 </fixed:case>
 <fixed:case name="cab" fixedValue="03">
 <fixed:field name="number" format="###"/>
 </fixed:case>
 <fixed:case name="subway" fixedValue="04">
 <fixed:field name="name" format="10"/>
 </fixed:case>
 </fixed:choice>
...
</binding>
...
</definition>

Example 52: Mapping a Union to a Fixed Record Length Message
 101

CHAPTER 9 | Using Fixed Length Records
fixed:sequence fixed:sequence maps sequence complex types to a fixed record length
message. To map a sequence complex type to a fixed:sequence:

1. Add a fixed:sequence child element to the fixed:body element.

2. Set the fixed:sequence element�s name attribute to the name of the
logical message part being mapped.

3. For each element in the logical definition of the message part, add a
child element to define the mapping for the part�s type to the physical
fixed message.

The child elements used to map the part�s type to the fixed message
are the same as the possible child elements of a fixed:body element.
As with a fixed:body element, a fixed:sequence is made up of
fixed:field elements to describe simple types, fixed:choice elements to
describe choice complex types, and fixed:sequence elements to
describe sequence complex types.

4. If any elements of the logical data definition have occurrence
constraints, see �Defining Data Structures� on page 28, map the
element into a fixed:sequence element with its occurs and
counterName attributes set.

The occurs attribute specifies the number of times this sequence
occurs in the message buffer. counterName specifies the name of the
field used for specifying the number of sequence elements that are
actually being sent in the message. The value of counterName
corresponds to a binding-only fixed:field with at least enough digits
to count to the value specified in occurs as shown in Example 53. The
value passed to the counter field can be any number up to the value
specified by occurs and allows operations to use less than the
specified number of sequence elements. Artix will pad out the
sequence to the number of elements specified by occurs when the
102

data is transmitted to the receiver so that the receiver will get the data
in the promised fixed format.

For example, a structure containing a name, a date, and an ID number
would contain three fixed:field elements to fully describe the mapping of
the data to the fixed record message. Example 54 shows an Artix contract
fragment for such a mapping.

Example 53: Using counterName

<fixed:field name="count" format="##" bindingOnly="true"/>
<fixed:sequence name="items" counterName="count" occurs="10">
...
</fixed:sequence>

Example 54: Mapping a Sequence to a Fixed Record Length Message

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/FixedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/fixed"
 xmlns:tns="http://www.iona.com/FixedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/FixedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="person">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="date" type="xsd:string"/>
 <xsd:element name="ID" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
...
</types>
<message name="fixedSequence">
 <part name="personPart" type="tns:person"/>
</message>
<portType name="fixedSequencePortType">
...
</portType>
 103

CHAPTER 9 | Using Fixed Length Records
Example Example 55 shows an example of an Artix contract containing a fixed record
length message binding.

<binding name="fixedSequenceBinding"
 type="tns:fixedSequencePortType">
 <fixed:binding/>
...
 <fixed:sequence name="personPart">
 <fixed:field name="name" size="20"/>
 <fixed:field name="date" format="MM/DD/YY"/>
 <fixed:field name="ID" format="#####"/>
 </fixed:sequence>
...
</binding>
...
</definition>

Example 54: Mapping a Sequence to a Fixed Record Length Message

Example 55: Fixed Record Length Message Binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:fixed="http://schemas.iona.com/binings/fixed"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
 <types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:simpleType name="widgetSize">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="big"/>
 <xsd:enumeration value="large"/>
 <xsd:enumeration value="mungo"/>
 <xsd:enumeration value="gargantuan"/>
 </xsd:restriction>
 </xsd:simpleType>
104

 <xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street1" type="xsd:string"/>
 <xsd:element name="street2" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zipCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderBillInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="amtDue" type="xsd:float"/>
 <xsd:element name="orderNumber" type="xsd:string"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 </schema>
 </types>
 <message name="widgetOrder">
 <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
 </message>
 <message name="widgetOrderBill">
 <part name="widgetOrderConformation" type="xsd1:widgetOrderBillInfo"/>
 </message>
 <portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 </operation>
 </portType>

Example 55: Fixed Record Length Message Binding
 105

CHAPTER 9 | Using Fixed Length Records
 <binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <fixed:binding/>
 <operation name="placeWidgetOrder">
 <fixed:operation discriminator="widgetDisc"/>
 <input name="widgetOrder">
 <fixed:body>
 <fixed:sequence name="widgetOrderForm">
 <fixed:field name="amount" format="###"/>
 <fixed:field name="order_date" format="MM/DD/YYYY"/>
 <fixed:field name="type" size="2">
 <fixed:enumeration value="big" fixedValue="bg"/>
 <fixed:enumeration value="large" fixedValue="lg"/>
 <fixed:enumeration value="mungo" fixedValue="mg"/>
 <fixed:enumeration value="gargantuan" fixedValue="gg"/>
 </fixed:field>
 <fixed:sequence name="shippingAddress">
 <fixed:field name="name" size="30"/>
 <fixed:field name="street1" size="100"/>
 <fixed:field name="street2" size="100"/>
 <fixed:field name="city" size="20"/>
 <fixed:field name="state" size="2"/>
 <fixed:field name="zip" size="5"/>
 </fixed:sequence>
 </fixed:sequence>
 </fixed:body>
 </input>

Example 55: Fixed Record Length Message Binding
106

 <output name="widgetOrderBill">
 <fixed:body>
 <fixed:sequence name="widgetOrderConformation">
 <fixed:field name="amount" format="###"/>
 <fixed:field name="order_date" format="MM/DD/YYYY"/>
 <fixed:field name="type" size="2">
 <fixed:enumeration value="big" fixedValue="bg"/>
 <fixed:enumeration value="large" fixedValue="lg"/>
 <fixed:enumeration value="mungo" fixedValue="mg"/>
 <fixed:enumeration value="gargantuan" fixedValue="gg"/>
 </fixed:field>
 <fixed:field name="amtDue" format="####.##"/>
 <fixed:field name="orderNumber" size="20"/>
 <fixed:sequence name="shippingAddress">
 <fixed:field name="name" size="30"/>
 <fixed:field name="street1" size="100"/>
 <fixed:field name="street2" size="100"/>
 <fixed:field name="city" size="20"/>
 <fixed:field name="state" size="2"/>
 <fixed:field name="zip" size="5"/>
 </fixed:sequence>
 </fixed:sequence>
 </fixed:body>
 </output>
 </operation>
 </binding>
 <service name="orderWidgetsService">
 <port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
 <http:address location="http://localhost:8080"/>
 </port>
 </service>
</definitions>

Example 55: Fixed Record Length Message Binding
 107

CHAPTER 9 | Using Fixed Length Records
108

CHAPTER 10

Using Tagged
Data
Artix has a binding that reads and writes messages where the
data fields are delimited by specified characters.

Overview The tagged data format supports applications that use self-describing, or
delimited, messages to communicate. Artix can read tagged data and write
it out in any supported data format. Similarly, Artix is capable of converting
a message from any of its supported data formats into a self-describing or
tagged data message.

Artix provides several ways of creating a contract with a tagged binding:

� Artix Designer can create a contract with a tagged binding from a
description of the tagged data.

� Artix Designer can create a tagged binding for an existing interface.

� You can enter the binding information using any text editor or XML
editor.

Using Artix Designer Artix Designer provides a number of tools for creating a contract with a
tagged binding:

1. You can create a new contract from a description of the tagged data by
selecting New | File | WSDL from Dataset.

2. You can add a tagged binding to a contract by selecting Artix Designer
| New Binding.
 109

CHAPTER 10 | Using Tagged Data
3. You can add a tagged binding using the context menu available in Artix
Designer�s diagram view.

For more information see the on-line help provided with Artix Designer.

Hand editing To map a logical interface to a tagged data format:

1. Add the proper namespace reference to the definition element of
your contract. See �Tagged binding namespace� on page 110.

2. Add a WSDL binding element to your contract to hold the tagged
binding, give the binding a unique name, and specify the port type that
represents the interface being bound.

3. Add a tagged:binding element as a child of the new binding element
to identify this as a tagged binding and set the element�s attributes to
properly configure the binding.

4. For each operation defined in the bound interface, add a WSDL
operation element to hold the binding information for the operation�s
messages.

5. For each operation added to the binding, add a tagged:operation child
element to the operation element.

6. For each operation added to the binding, add the input, output, and
fault children elements to represent the messages used by the
operation. These elements correspond to the messages defined in the
port type definition of the logical operation.

7. For each input, output, and fault element in the binding, add a
tagged:body child element to define how the message parts are
mapped into the concrete tagged data payload.

Tagged binding namespace The IONA extensions used to describe tagged data bindings are defined in
the namespace http://schemas.iona.com/bindings/tagged. Artix tools
use the prefix tagged to represent the tagged data extensions. Add the
following line to the definitions element of your contract:

xmlns:tagged="http://schemas.iona.com/bindings/tagged"
110

tagged:binding tagged:binding specifies that the binding is for tagged data format
messages. Its ten attributes are explained in Table 8.

Table 8: Attributes for tagged:binding

Attribute Purpose

selfDescribing Required attribute specifying if the
message data on the wire includes the field
names. Valid values are true or false. If
this attribute is set to false, the setting for
fieldNameValueSeparator is ignored.

fieldSeparator Required attribute that specifies the
delimiter the message uses to separate
fields. Valid values include any character
that is not a letter or a number.

fieldNameValueSeparator Specifies the delimiter used to separate
field names from field values in
self-describing messages. Valid values
include any character that is not a letter or
a number.

scopeType Specifies the scope identifier for complex
messages. Supported values are tab(\t),
curlybrace({data}), and none. The default
is tab.

flattened Specifies if data structures are flattened
when they are put on the wire. If
selfDescribing is false, then this
attribute is automatically set to true.

messageStart Specifies a special token at the start of a
message. It is used when messages require
a special character at the start of a the data
sequence. Valid values include any
character that is not a letter or a number.

messageEnd Specifies a special token at the end of a
message. Valid values include any
character that is not a letter or a number.
 111

CHAPTER 10 | Using Tagged Data
The settings for the attributes on these elements become the default settings
for all the messages being mapped to the current binding.

tagged:operation tagged:operation is a child element of the WSDL operation element and
specifies that the operation�s messages are being mapped to a tagged data
format. It takes two optional attributes that are described in Table 9.

unscopedArrayElement Specifies if array elements need to be
scoped as children of the array. If set to
true, arrays take the form
echoArray{myArray=2;item=abc;item=def
}. If set to false, arrays take the form
echoArray{myArray=2;{0=abc;1=def;}}.
Default is false.

ignoreUnknownElements Specifies if Artix ignores undefined
elements in the message payload. Default
is false.

ignoreCase Specifies if Artix ignores the case with
element names in the message payload.
Default is false.

Table 8: Attributes for tagged:binding

Attribute Purpose

Table 9: Attributes for tagged:operation

Attribute Purpose

discriminator Specifies a discriminator to be used by the
Artix runtime to identify the WSDL operation
that will be invoked by the message reciever.

discriminatorStyle Specifies how the Artix runtime will locate the
discriminator as it processes the message.
Supported values are msgname, partlist,
fieldvalue, and fieldname.
112

tagged:body tagged:body is a child element of the input, output, and fault messages
being mapped to a tagged data format. It specifies that the message body is
mapped to tagged data on the wire and describes the exact mapping for the
message�s parts.

tagged:body will have one or more of the following child elements:

� tagged:field

� tagged:sequence

� tagged:choice

They describe the detailed mapping of the message to the tagged data to be
sent on the wire.

tagged:field tagged:field is used to map simple types and enumerations to a tagged
data format. Its two attributes are described in Table 10.

When describing enumerated types tagged:field will have a number of
tagged:enumeration child elements.

tagged:enumeration tagged:enumeration is a child element of tagged:field and is used to map
enumerated types to a tagged data format. It takes one required attribute,
value, that corresponds to the enumeration value as specified in the logical
description of the enumerated type.

Table 10: Attributes for tagged:field

Attribute Purpose

name A required attribute that must correspond to the name
of the logical message part that is being mapped to
the tagged data field.

alias An optional attribute specifying an alias for the field
that can be used to identify it on the wire.
 113

CHAPTER 10 | Using Tagged Data
For example, if you had an enumerated type, flavorType, with the values
FruityTooty, Rainbow, BerryBomb, and OrangeTango the logical description
of the type would be similar to Example 56.

flavorType would be mapped to the tagged data format shown in
Example 57.

tagged:sequence taggeded:sequence maps arrays and sequences to a tagged data format.
Its three attributes are described in Table 11.

Example 56: Ice Cream Enumeration

<xs:simpleType name="flavorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="FruityTooty"/>
 <xs:enumeration value="Rainbow"/>
 <xs:enumeration value="BerryBomb"/>
 <xs:enumeration value="OrangeTango"/>
 </xs:restriction>
</xs:simpleType>

Example 57: Tagged Data Ice Cream Mapping

<tagged:field name="flavor">
 <tagged:enumeration value="FruityTooty"/>
 <tagged:enumeration value="Rainbow"/>
 <tagged:enumeration value="BerryBomb"/>
 <tagged:enumeration value="OrangeTango"/>
</tagged:field>

Table 11: Attributes for tagged:sequence

Attributes Purpose

name A required attribute that must correspond to the name
of the logical message part that is being mapped to
the tagged data sequence.

alias An optional attribute specifying an alias for the
sequence that can be used to identify it on the wire.

occurs An optional attribute specifying the number of times
the sequence appears. This attribute is used to map
arrays.
114

A tagged:sequence can contain any number of tagged:field,
tagged:sequence, or tagged:choice child elements to describe the data
contained within the sequence being mapped. For example, a structure
containing a name, a date, and an ID number would contain three
tagged:field elements to fully describe the mapping of the data to the fixed
record message. Example 58 shows an Artix contract fragment for such a
mapping.

Example 58: Mapping a Sequence to a Tagged Data Format

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="taggedDataMappingsample"

targetNamespace="http://www.iona.com/taggedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/tagged"
 xmlns:tns="http://www.iona.com/taggedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/taggedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="person">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="date" type="xsd:string"/>
 <xsd:element name="ID" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
...
</types>
<message name="taggedSequence">
 <part name="personPart" type="tns:person"/>
</message>
<portType name="taggedSequencePortType">
...
</portType>
<binding name="taggedSequenceBinding"
 type="tns:taggedSequencePortType">
 <tagged:binding selfDescribing="false" fieldSeparator="pipe"/>
...
 115

CHAPTER 10 | Using Tagged Data
tagged:choice tagged:choice maps unions to a tagged data format. Its three attributes are
described in Table 12.

A tagged:choice may contain one or more tagged:case child elements to
map the cases for the union to a tagged data format.

tagged:case tagged:case is a child element of tagged:choice and describes the
complete mapping of a union�s individual cases to a tagged data format. It
takes one required attribute, name, that corresponds to the name of the case
element in the union�s logical description.

 <tagged:sequence name="personPart">
 <tagged:field name="name"/>
 <tagged:field name="date"/>
 <tagged:field name="ID"/>
 </tagged:sequence>
...
</binding>
...
</definition>

Example 58: Mapping a Sequence to a Tagged Data Format

Table 12: Attributes for tagged:choice

Attributes Purpose

name A required attribute that must correspond to
the name of the logical message part that is
being mapped to the tagged data union.

discriminatorName Specifies the message part used as the
discriminator for the union.

alias An optional attribute specifying an alias for the
union that can be used to identify it on the
wire.
116

tagged:case must contain one child element to describe the mapping of the
case�s data to a tagged data format. Valid child elements are tagged:field,
tagged:sequence, and tagged:choice. Example 59 shows an Artix contract
fragment mapping a union to a tagged data format.

Example 59: Mapping a Union to a Tagged Data Format

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/tagService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/tagged"
 xmlns:tns="http://www.iona.com/tagService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/tagService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="unionStationType">
 <xsd:choice>
 <xsd:element name="train" type="xsd:string"/>
 <xsd:element name="bus" type="xsd:int"/>
 <xsd:element name="cab" type="xsd:int"/>
 <xsd:element name="subway" type="xsd:string"/>
 </xsd:choice>
 </xsd:complexType>
...
</types>
<message name="tagUnion">
 <part name="stationPart" type="tns:unionStationType"/>
</message>
<portType name="tagUnionPortType">
...
</portType>
<binding name="tagUnionBinding" type="tns:tagUnionPortType">
 <tagged:binding selfDescribing="false"
 fieldSeparator="comma"/>
...
 117

CHAPTER 10 | Using Tagged Data
Example Example 60 shows an example of an Artix contract containing a tagged data
format binding.

 <tagged:choice name="stationPart" descriminatorName="disc">
 <tagged:case name="train">
 <tagged:field name="name"/>
 </tagged:case>
 <tagged:case name="bus">
 <tagged:field name="number"/>
 </tagged:case>
 <tagged:case name="cab">
 <tagged:field name="number"/>
 </tagged:case>
 <tagged:case name="subway">
 <tagged:field name="name"/>
 </tagged:case>
 </tagged:choice>
...
</binding>
...
</definition>

Example 59: Mapping a Union to a Tagged Data Format

Example 60: Tagged Data Format Binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:taged="http://schames.iona.com/binings/tagged"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
 <types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
118

 <xsd:simpleType name="widgetSize">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="big"/>
 <xsd:enumeration value="large"/>
 <xsd:enumeration value="mungo"/>
 <xsd:enumeration value="gargantuan"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street1" type="xsd:string"/>
 <xsd:element name="street2" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zipCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderBillInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="amtDue" type="xsd:float"/>
 <xsd:element name="orderNumber" type="xsd:string"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 </schema>
 </types>
 <message name="widgetOrder">
 <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
 </message>
 <message name="widgetOrderBill">
 <part name="widgetOrderConformation" type="xsd1:widgetOrderBillInfo"/>
 </message>

Example 60: Tagged Data Format Binding
 119

CHAPTER 10 | Using Tagged Data
 <portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 </operation>
 </portType>
 <binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <tagged:binding selfDescribing="false" fieldSeparator="pipe"/>
 <operation name="placeWidgetOrder">
 <tagged:operation discriminator="widgetDisc"/>
 <input name="widgetOrder">
 <tagged:body>
 <tagged:sequence name="widgetOrderForm">
 <tagged:field name="amount"/>
 <tagged:field name="order_date"/>
 <tagged:field name="type" >
 <tagged:enumeration value="big"/>
 <tagged:enumeration value="large"/>
 <tagged:enumeration value="mungo"/>
 <tagged:enumeration value="gargantuan"/>
 </tagged:field>
 <tagged:sequence name="shippingAddress">
 <tagged:field name="name"/>
 <tagged:field name="street1"/>
 <tagged:field name="street2"/>
 <tagged:field name="city"/>
 <tagged:field name="state"/>
 <tagged:field name="zip"/>
 </tagged:sequence>
 </tagged:sequence>
 </tagged:body>
 </input>

Example 60: Tagged Data Format Binding
120

 <output name="widgetOrderBill">
 <tagged:body>
 <tagged:sequence name="widgetOrderConformation">
 <tagged:field name="amount"/>
 <tagged:field name="order_date"/>
 <tagged:field name="type">
 <tagged:enumeration value="big"/>
 <tagged:enumeration value="large"/>
 <tagged:enumeration value="mungo"/>
 <tagged:enumeration value="gargantuan"/>
 </tagged:field>
 <tagged:field name="amtDue"/>
 <tagged:field name="orderNumber"/>
 <tagged:sequence name="shippingAddress">
 <tagged:field name="name"/>
 <tagged:field name="street1"/>
 <tagged:field name="street2"/>
 <tagged:field name="city"/>
 <tagged:field name="state"/>
 <tagged:field name="zip"/>
 </tagged:sequence>
 </tagged:sequence>
 </tagged:body>
 </output>
 </operation>
 </binding>
 <service name="orderWidgetsService">
 <port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
 <http:address location="http://localhost:8080"/>
 </port>
 </service>
</definitions>

Example 60: Tagged Data Format Binding
 121

CHAPTER 10 | Using Tagged Data
122

CHAPTER 11

Using Tibco
Rendezvous
Messages
Artix can natively use the Tibco TibrvMsg data format to send
and receive messages.

Overview Tibco Rendezvous applications typically use a Tibco specific data format
called a TibrvMsg. Artix provides a very flexible mechanism for mapping
messages into the TibrvMsg format. This allows you to integrate with
existing Tibco/RV applications by service-enabling them.

The TibrvMsg binding provides default mappings for most XML Schema
constructs to simplify defining a TibrvMsg in an Artix contract. The TibrvMsg
binding also supports custom mappings between the messages defined in
an Artix contract and the physical representation of a TibrvMsg. Custom
mappings also support the inclusion of static binding-only data.

To further extend the functionality of the TibrvMsg binding, Artix includes a
mechanism for passing context data stored in an Artix application as part of
a TibrvMsg. For more information about using Artix contexts see either
Developing Artix Applications in C++ or Developing Artix Applications in
Java.

In this chapter This chapter discusses the following topics:
 123

../prog_guide/index.htm
../java_pguide/index.htm
../java_pguide/index.htm

CHAPTER 11 | Using Tibco Rendezvous Messages
Defining a TibrvMsg Binding page 125

Artix Default Mappings for TibrvMsg page 132

Defining Array Mapping Policies page 137

Defining a Custom TibrvMsg Mapping page 143

Adding Context Information to a TibrvMsg page 161
124

Defining a TibrvMsg Binding
Defining a TibrvMsg Binding

Overview The Artix TibrvMsg binding provides a set of default mappings to make
writing a binding simple. By default, messages are mapped into a root
TibrvMsg such that parts defined using XML Schema native types become
TibrvMsgFields of the root TibrvMsg and parts defined using complex types
become TibrvMsgs within the root message. The elements comprising a
complex type also follow the same default mapping behavior. The default
mappings will work for most basic applications. For a detailed explanation
of how WSDL types are mapped to TibrvMsg see �Artix Default Mappings for
TibrvMsg� on page 132.

Procedure To map a logical interface to a TibrvMsg:

1. Add the proper namespace reference to the definition element of
your contract. See �TibrvMsg binding namespace� on page 126.

2. Add a WSDL binding element to your contract to hold the TibrvMsg
binding, give the binding a unique name, and specify the port type that
represents the interface being bound.

3. Add a tibrv:binding element as a child of the new binding element to
identify this as a TibrvMsg binding and specify any global parameters.

4. For each operation defined in the bound interface, add a WSDL
operation element to hold the binding information for the operation�s
messages.

5. For each operation in the binding, add a tibrv:operation child element
and set its attributes.

6. For each operation in the binding, add the input, output, and fault
children elements to represent the messages used by the operation.
These elements correspond to the messages defined in the port type
definition of the logical operation.

7. For each input element in the binding, add a tibrv:input child element
and set its attributes.

8. For each output element in the binding, add a tibrv:output child
element and set its attributes.
 125

CHAPTER 11 | Using Tibco Rendezvous Messages
9. To add custom message mappings see �Defining a Custom TibrvMsg
Mapping� on page 143.

TibrvMsg binding namespace The IONA extensions used to describe TibrvMsg bindings are defined in the
namespace http://schemas.iona.com/transports/tibrv. Artix tools use
the prefix tibrv to represent the tagged data extensions. Add the following
line to the definitions element of your contract:

tibrv:binding tibrv:binding is an immediate child of the WSDL binding element and
identifies that the data is to be packed into a TibrvMsg. Its attributes are
described in Table 13.

In addition to the above properties, tibrv:binding can also specify a policy
for how array data is handled for messages using the binding. The array
policy is set using a child tibrv:array element. The array policy set at the
binding level can be overridden on a per-operation basis, per-message basis,
and a per-type basis. For information on defining array policies see �Defining
Array Mapping Policies� on page 137.

The tibrv:binding element can also define binding-only message data
using the tibrv:msg element, the tibrv:field element, or tibrv:context
element. Any binding-only data defined at the binding level is attached to all
messages that use the binding.

xmlns:tibrv="http://schemas.iona.com/transports/tibrv"

Table 13: Attributes for tibrv:binding

Attribute Purpose

stringEncoding An optional attribute that specifies the
character set used in encoding string data
included in the message. The default value
is utf-8.

stringAsOpaque An optional attribute that specifies how
string data is passed in messages. false,
the default value, specifies that string data
is passed as TIRBMSG_STRING. true
specifies that string data is passed as
OPAQUE.
126

Defining a TibrvMsg Binding
tibrv:operation tibrv:operation is the immediate child of a WSDL operation element.
tibrv:operation has no attributes. It can, however, specify an
operation-specific array policy using a a child tibrv:array element. This
array policy overrides any array policy set at the binding level. For
information on defining array policies see �Defining Array Mapping Policies�
on page 137.

Within a tibrv:operation element you can also define binding-only
message data using the tibrv:msg element, the tibrv:field element, or
tibrv:context element. Any binding-only data defined at the operation
level is attached to all messages that make up the operation.

tibrv:input tibrv:input is the immediate child of a WSDL input element and defines a
number of properties used in mapping the input message to a TibrvMsg. Its
attributes are described in Table 14.

Table 14: Attributes for tibrv:input

Attribute Purpose

messageNameFieldPath An optional attribute that specifies the field
path that includes the message name. If this
attribute is not specified, the first field in the
top level message will be used as the
message name and given the value
IT_BUS_MESSAGE_NAME.

messageNameFieldValue An optional attribute that specifies the field
value that corresponds to the message
name. If this attribute is not specified, the
WSDL message�s name will be used.

stringEncoding An optional attribute that specifies the
character set used in encoding string data
included in the message. This value will
override the value set in tibrv:binding.
 127

CHAPTER 11 | Using Tibco Rendezvous Messages
In addition to the above properties, tibrv:input can also specify a policy
for how array data is handled for messages using the binding. The array
policy is set using a child tibrv:array element. The array policy set at this
level overrides any policies set at the binding level or the operation level. For
information on defining array policies see �Defining Array Mapping Policies�
on page 137.

The tibrv:input element also defines any custom mappings between the
WSDL messages defined in the contract and the physical TibrvMsg on the
wire. A custom mapping can also include binding-only message data and
context information. For information on defining custom data mappings see
�Defining a Custom TibrvMsg Mapping� on page 143.

tibrv:output tibrv:output is the immediate child of a WSDL output element and
defines a number of properties used in mapping the output message to a
TibrvMsg. Its attributes are described in Table 14.

stringAsOpaque An optional attribute that specifies how
string data is passed in the message. false
specifies that string data is passed as
TIRBMSG_STRING. true specifies that string
data is passed as OPAQUE. This value will
override the value set in tibrv:binding.

Table 14: Attributes for tibrv:input

Attribute Purpose

Table 15: Attributes for tibrv:output

Attribute Purpose

messageNameFieldPath An optional attribute that specifies the field
path that includes the message name. If this
attribute is not specified, the first field in the
top level message will be used as the
message name and given the value
IT_BUS_MESSAGE_NAME.
128

Defining a TibrvMsg Binding
In addition to the above properties, tibrv:output can also specify a policy
for how array data is handled for messages using the binding. The array
policy is set using a child tibrv:array element. The array policy set at this
level overrides any policies set at the binding level or the operation level. For
information on defining array policies see �Defining Array Mapping Policies�
on page 137.

The tibrv:output element also defines any custom mappings between the
WSDL messages defined in the contract and the physical TibrvMsg on the
wire. A custom mapping can also include binding-only message data and
context information. For information on defining custom data mappings see
�Defining a Custom TibrvMsg Mapping� on page 143.

Example Example 61 shows an example of an Artix contract containing a default
TibrvMsg binding.

messageNameFieldValue An optional attribute that specifies the field
value that corresponds to the message
name. If this attribute is not specified, the
WSDL message�s name will be used.

stringEncoding An optional attribute that specifies the
character set used in encoding string data
included in the message. This value will
override the value set in tibrv:binding.

stringAsOpaque An optional attribute that specifies how
string data is passed in the message. false
specifies that string data is passed as
TIRBMSG_STRING. true specifies that string
data is passed as OPAQUE. This value will
override the value set in tibrv:binding.

Table 15: Attributes for tibrv:output

Attribute Purpose

Example 61: Default TibrvMsg Binding

<?xml version="1.0" encoding="UTF-8"?>
 129

CHAPTER 11 | Using Tibco Rendezvous Messages
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tibrv="http://schemas.iona.com/transports/tibrv"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
 <types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string" minOccurs="1" maxOccurs="5"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zipCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd:string"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderBillInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd:string"/>
 <xsd:element name="amtDue" type="xsd:float"/>
 <xsd:element name="orderNumber" type="xsd:string"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 </schema>
 </types>
 <message name="widgetOrder">
 <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
 </message>

Example 61: Default TibrvMsg Binding
130

Defining a TibrvMsg Binding
 <message name="widgetOrderBill">
 <part name="widgetOrderConformation" type="xsd1:widgetOrderBillInfo"/>
 </message>
 <portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 </operation>
 </portType>
 <binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <tibrv:binding/>
 <operation name="placeWidgetOrder">
 <tibrv:operation/>
 <input name="widgetOrder">
 <tibrv:input/>
 </input>
 <output name="widgetOrderBill">
 <tibrv:output/>
 </output>
 </operation>
 </binding>
 <service name="orderWidgetsService">
 <port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
 ...
 </port>
 </service>
</definitions>

Example 61: Default TibrvMsg Binding
 131

CHAPTER 11 | Using Tibco Rendezvous Messages
Artix Default Mappings for TibrvMsg

TIBRVMSG type mapping Table 16 shows how Artix maps XSD types into TibrvMsg data types.

Table 16: TIBCO to XSD Type Mapping

TIBRVMSG XSD

TIBRVMSG_STRING xsd:string

TIBRVMSG_BOOL xsd:boolean

TIBRVMSG_I8 xsd:byte

TIBRVMSG_I16 xsd:short

TIBRVMSG_I32 xsd:int

TIBRVMSG_I64 xsd:long

TIBRVMSG_U8 xsd:unsignedByte

TIBRVMSG_U16 xsd:unsignedShort

TIBRVMSG_U32 xsd:unsignedInt

TIBRVMSG_U64 xsd:unsignedLong

TIBRVMSG_F32 xsd:float

TIBRVMSG_F64 xsd:double

TIBRVMSG_STRING xsd:decimal

TIBRVMSG_DATETIMEa xsd:dateTime

TIBRVMSG_OPAQUE xsd:base64Binary

TIBRVMSG_OPAQUE xsd:hexBinary

TIBRVMSG_STRING xsd:QName

TIBRVMSG_STRING xsd:nonPositiveInteger

TIBRVMSG_STRING xsd:negativeInteger

TIBRVMSG_STRING xsd:nonNegativeInteger
132

Artix Default Mappings for TibrvMsg
Sequence complex types Sequence complex types are mapped to a TibrvMsg message as follows:

� The elements of the complex type are enclosed in a TibrvMsg instance.

� If the complex type is specified as a message part, the value of the
part element�s name attribute is used as the name of the generated
TibrvMsg.

� If the complex type is specified as an element, the value of the element
element�s name attribute is used as the name of the generated
TibrvMsg.

� The TibrvMsg id is 0.

TIBRVMSG_STRING xsd:positiveInteger

TIBRVMSG_STRING xsd:time

TIBRVMSG_STRING xsd:date

TIBRVMSG_STRING xsd:gYearMonth

TIBRVMSG_STRING xsd:gMonthDay

TIBRVMSG_STRING xsd:gDay

TIBRVMSG_STRING xsd:gMonth

TIBRVMSG_STRING xsd:anyURI

TIBRVMSG_STRING xsd:token

TIBRVMSG_STRING xsd:language

TIBRVMSG_STRING xsd:NMTOKEN

TIBRVMSG_STRING xsd:Name

TIBRVMSG_STRING xsd:NCName

TIBRVMSG_STRING xsd:ID

a. While TIBRVMSG_DATATIME has microsecond precision, xsd:dateTime
only supports millisecond precision. Therefore, Artix rounds all times to the
nearest millisecond.

Table 16: TIBCO to XSD Type Mapping

TIBRVMSG XSD
 133

CHAPTER 11 | Using Tibco Rendezvous Messages
� The elements are the mapped to child TibrvMsgField instances of the
wrapping TibrvMsg.

� If an element of the sequence is of a complex type, it will be mapped
into a TibrvMsg instance that conforms to the default mapping rules.

� The value of the element element�s name attribute is used as the name
of the generated TibrvMsgField instance.

� The child fields� ids are 0.

� The child fields are serialized in the same order as they appear in the
schema definition.

� The child fields are deserialized in the same order as they appear in
schema definition.

All complex types All complex types are mapped to a TibrvMsg message as follows:

� The elements of the complex type are enclosed in a TibrvMsg instance.

� If the complex type is specified as a message part, the value of the
part element�s name attribute is used as the name of the generated
TibrvMsg.

� If the complex type is specified as an element, the value of the element
element�s name attribute is used as the name of the generated
TibrvMsg.

� The TibrvMsg id is 0.

� The elements are the mapped to child TibrvMsgField instances of the
wrapping TibrvMsg.

� If an element of the all is of a complex type, it will be mapped into a
TibrvMsg instance that conforms to the default mapping rules.

� The value of the element element�s name attribute is used as the name
of the generated TibrvMsgField instance.

� The child field�s ids are 0.

� The child fields are serialized in the same order as they appear in the
schema definition.

� The child fields can be deserialized in any order.

Choice complex types Choice complex types are mapped to a TibrvMsg message as follows:

� The elements of the complex type are enclosed in a TibrvMsg instance.
134

Artix Default Mappings for TibrvMsg
� If the complex type is specified as a message part, the value of the
part element�s name attribute is used as the name of the generated
TibrvMsg.

� If the complex type is specified as an element, the value of the element
element�s name attribute is used as the name of the generated
TibrvMsg.

� The TibrvMsg id is 0

� There must only be one and only child field in this TibrvMsg message
that corresponds to the active choice element.

� The child field has the name of the corresponding choice's active
element name.

� The child field id is zero.

� During deserialization the binding runtime will extract the first child
field from this message using index equal to 0 as the key. If no field is
found then this choice is considered an empty choice.

NMTOKEN NMTOKEN schema types are mapped as follows:

� The NMTOKEN is enclosed in a TibrvMsg instance.

� If the NMTOKEN is specified as a message part, the value of the part
element�s name attribute is used as the name of the generated
TibrvMsg.

� If the NMTOKEN is specified as an element, the value of the element
element�s name attribute is used as the name of the generated
TibrvMsg.

� The TibrvMsg id is 0

� Each NMTOKEN is mapped to a child TibrvMsgField instance of this
TibrvMsg.

� The names of the children fields are an ever increasing counter values
beginning with 0.

Default mapping of arrays XML Schema elements that are not mapped to native Tibrv scalar types and
have minOccurs != 1 and maxOccurs != 1 are mapped as follows:

� Array elements are stored in a TibrvMsg instance at the same scope as
the sibling elements of this array element.
 135

CHAPTER 11 | Using Tibco Rendezvous Messages
� Array element names are a result of an expression evaluation. The
expression is evaluated for every array element.

� The default array element name expression is
concat(xml:attr('name'), '_', counter(1, 1).

� If an instance of an array element has 0 elements then this array
instance will have nothing loaded onto the wire. Currently this is not
true for scalar arrays that are loaded as a single field.

Default mapping for scalar arrays The XML Schema elements that are mapped to native Tibrv scalar types and
have minOccurs != 1 and maxOccurs != 1 are mapped as follows:

� Array elements are stored in a TibrvMsg instance at the same scope as
sibling elements of this array element.

� The binding utilizes the Tibrv native array mapping to store XML
Schema arrays. Hence, there will be only one TibrvMsgField with the
name equal to that of the XML Schema element name defining this
array.
136

Defining Array Mapping Policies
Defining Array Mapping Policies

Overview Because TibrvMsg does not natively support sparsely populated arrays, the
Artix TibrvMsg binding allows you to define how array elements are mapped
into a TibrvMsg when they are written to the wire using the tibrv:array
element. In addition, the Artix TibrvMsg binding allows you to define the
naming schema used for array elements when they are mapped into
TibrvMsgField instances.

Policy scoping The tibrv:array element can define array properties at any level of
granularity by making it the child of different TibrvMsg binding elements.
Table 17 shows the effect of setting tibrv:array at different levels of a
binding.

Table 17: Effect of tibrv:array

Child of Effect

tibrv:binding Sets the array policies for all messages in the
binding.

tibrv:operation Array policies set at the operation level only affect
the messages defined within the parent operation
element. They override any array policies set at the
binding level.

tibrv:input Array policies set at this level only affect the input
message. They override any array policies set at the
binding or operation level.

tibrv:output Array policies set at this level only affect the output
message. They override any array policies set at the
binding or operation level.

tibrv:msg Array policies set at this level affect only the fields
defined within the tibrv:msg element. They
override any array policies set at higher levels.
 137

CHAPTER 11 | Using Tibco Rendezvous Messages
Array policies The array policies are set using the attributes of tibrv:array. Table 18
describes the attributes used to set array policies.

tibrv:field Array policies set at this level affect only the
TibrvMsg field being defined. They override any
array policies set at higher levels.

Table 17: Effect of tibrv:array

Child of Effect

Table 18: Attributes for tibrv:array

Attribute Purpose

elementName Specifies an expression that when
evaluated will be used as the name of the
TibrvMsg field to which array elements are
mapped. The default element naming
scheme is to concatenate the value of
WSDL element element�s name attribute
with a counter. For information on
specifying naming expressions see
�Custom array naming expressions� on
page 140.

integralAsSingleField Specifies how scalar array data is mapped
into TibrvMsgField instances. true, the
default, specifies that arrays are mapped
into a single TibrvMsgField. false specifies
that each member of an array is mapped
into a separate TibrvMsgField.

loadSize Specifies if the number of elements in an
array is included in the TibrvMsg. true
specifies that the number of elements in
the array is added as a TibrvMsgField in
the same TibrvMsg as the array. false, the
default, specifies that the number of
elements in the array is not included in the
TibrvMsg.
138

Defining Array Mapping Policies
Sparse arrays A sparse array is an array with some of the elements set to nil. For instance,
if an array has 10 elements, the 3rd and fifth elements may be nil. Tibco/RV
has no way of natively representing sparse arrays or nil element members.
This presents two problems:

� Tibco/RV throws an exception when it encounters nil scalar values that
are mapped to a TibrvMsgField.

� There is no mechanism for maintaining the element positions of the
non-nil members of the array.

To solve both problems you would specify array policies such that the size of
the array is written to the wire and that each element of the array is written
to the wire as a separate TibrvMsgField. To specify that the array size is
written to the wire use loadSize="true". To specify that each member of
the array is written in a separate TibrvMsgField use
integralAsSingleField="false".

The resulting TibrvMsg would have one field for each non-nil member of the
array and a field specifying the size of the array. Artix can use this
information to reconstruct the sparse array when it is passed through the
TibrvMsg binding. A Tibco/RV application would need to implement the
logic to handle the information.

sizeName Specifies an expression that when
evaluated will be used as the name of the
TibrvMsgField to which the size of the
array is written. The default naming
scheme is to concatenate the value of
WSDL element element�s name attribute
with @size. For information on specifying
naming expressions see �Custom array
naming expressions� on page 140.

Table 18: Attributes for tibrv:array

Attribute Purpose
 139

CHAPTER 11 | Using Tibco Rendezvous Messages
Custom array naming expressions When specifying a naming policy for array element names you use a string
expression that combines XML properties, strings, and custom naming
functions. For example, you could use the expression
concat(xml:attr(�name�), �_�, counter(1,1)) to specify that each
element in the array street is named street_n.

Table 19 shows the available functions for use in building array element
names.

Example Example 62 shows an example of an Artix contract containing a TibrvMsg
binding that uses array policies. The policies are set at the binding level and:

� Force the name of the TibrvMsg containing array elements to be
named street0, street1,

� Write out the number of elements in each street array.

� Force each element of a street array to be written out as a separate
field.

Table 19: Functions Used for Specifying TibrvMsg Array Element Names

Function Purpose

xml:attr(�attribute�) Inserts the value of the named
attribute.

concat(item1, item2, ...) Concatenates all of the elements
into a single string.

counter(start, increment) Adds an increasing numerical
value. The counter starts at start
and increases by increment.

Example 62: TibrvMsg Binding with Array Policies Set

<?xml version="1.0" encoding="UTF-8"?>
140

Defining Array Mapping Policies
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tibrv="http://schemas.iona.com/transports/tibrv"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
 <types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string" minOccurs="1" maxOccurs="5"
 nillable="true"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zipCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </schema>
 </types>
 <message name="addressRequest">
 <part name="resident" type="xsd:string"/>
 </message>
 <message name="addressResponse">
 <part name="address" type="xsd1:Address"/>
 </message>
 <portType name="theFourOneOne">
 <operation name="lookUp">
 <input message="tns:addressRequest" name="request"/>
 <output message="tns:addressResponse" name="response"/>
 </operation>
 </portType>

Example 62: TibrvMsg Binding with Array Policies Set
 141

CHAPTER 11 | Using Tibco Rendezvous Messages
 <binding name="lookUpBinding" type="tns:theFourOneOne">
 <tibrv:binding>
 <tibrv:array elementName="concat(xml:attr('name'), counter(0, 1))"
 integralsAsSingleField="false"
 loadSize="true"/>
 <\tibrv:binding>
 <operation name="lookUp">
 <tibrv:operation/>
 <input name="addressRequest">
 <tibrv:input/>
 </input>
 <output name="addressResponse">
 <tibrv:output/>
 </output>
 </operation>
 </binding>
 <service name="orderWidgetsService">
 <port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
 ...
 </port>
 </service>
</definitions>

Example 62: TibrvMsg Binding with Array Policies Set
142

Defining a Custom TibrvMsg Mapping
Defining a Custom TibrvMsg Mapping

Overview For instances where the default mappings are insufficient to map the
TibrvMsgs to corresponding WSDL messages, you can define custom
mappings that allow you to specify exactly how the WSDL message parts
are mapped into a TibrvMsg. Custom TibrvMsg mappings allow you to:

� override the native XML Schema type specification of contract
elements.

� add binding-only elements to the TibrvMsg placed on the wire.

� place globally used contract elements in higher levels of the binding.

� change how contract elements are mapped into nested TibrvMsg
structures.

Custom TibrvMsg binding elements are defined using a combination of
tibrv:msg elements and tibrv:field elements.

Contract elements vs.
binding-only elements

A contract element is an atomic piece of a message defined in the logical
description of the interface being bound. It can be a native XML Schema
type such as xsd:int, in which case it is mapped to a TibrvMsgField. Or it
can be an instance of a complex type, in which case it is mapped to a
TibrvMsg. For example, if a message has a part that is of type xsd:string,
the part is a contract element. In contract fragment shown in Example 63,
 143

CHAPTER 11 | Using Tibco Rendezvous Messages
the message part title is a contract element that will be mapped to a
TibrvMsgField. The message part tale is a contract element that will be
mapped to a TibrvMsg that contains three TibrvMsgField entries.

A binding-only element is any artifact that is added to the message as part
of the binding. The main purpose of a binding-only element is to add data
required by a native Tibco application to a message produced by an Artix
application. Binding-only elements are not passed back into an Artix
application. However, a native Tibco application will have access to
binding-only elements.

Scoping You can add custom TibrvMsg binding elements to any of the TibrvMsg
binding elements. The order in which custom TibrvMsg binding elements
are serialized is as follows:

1. Immutable root TibrvMsg wrapper.

2. Custom elements defined in tibrv:binding are added for all
messages.

3. Custom elements defined in tibrv:operation for all messages used by
the WSDL operation.

4. Custom elements defined in tibrv:input or tibrv:output for the
specific message.

Example 63: TibrvMsg Contract Elements

<types>
 ...
 <complextType name="leda">
 <sequence>
 <element name="castor" type="xsd:string"/>
 <element name="pollux" type="xsd:string"/>
 <element name="hellen" type="xsd:boolean"/>
 </sequence>
 </complexType>
 ...
</types>
<message name="taleRequest">
 <part name="title" type="xsd:sting"/>
</message>
<message name="taleResponse">
 <part name="tale" type="xsd1:leda"/>
</message>
144

Defining a Custom TibrvMsg Mapping
If you define a binding-only element in the tibrv:binding element, it will be
the first field in the TibrvMsg generated for all messages that are generated
by the binding. If you also added a binding-only field in the
tibrv:operation for the operation getHeader, messages used by getHeader
would have both binding-only fields.

Casting XMLSchema types If the default mapping between the type of a contract element and the type
of the corresponding TibrvMsgField is not appropriate, you can use the type
attribute of tibrv:field to change the type of the contract element. The
type attribute allows you to cast one native XML Schema type into another
native XML Schema type.

When Artix finds a tibrv:field element whose name attribute corresponds
to a part defined in the contract, or an element of a complex type used as a
part, and whose type attribute is set, it will convert the value of the
message part into the specified type. For example, given the contract
fragment in Example 64, the value of casted would be converted from an
int to a string. So if casted had a value of 3, the TibrvMsg binding would
turn it into the string �3�.

Note: If you add a custom mapped contract element at any scope above
the tibrv:input or the tibrv:output level, you must be certain that it is
part of the logical messages for all elements at a lower scope. For
example, if a contract element is given a custom mapping in a
tibrv:operation, the corresponding WSDL message must be used by
both the input and output messages. If it is not an exception will be
thrown.

Example 64: Casting in a TibrvMsg Binding

<definitions ...>
 ...
 <message name="request">
 <part name="input1" type="xsd:int"/>
 </message>
 <portType name="castor">
 <operation name="ascend">
 <input message="tns:request" name="day"/>
 </operation>
 ...
 </portType>
 145

CHAPTER 11 | Using Tibco Rendezvous Messages
Table 20 shows the matrix of valid casts for native XML Schema types.

 <binding name="castorTib" portType="castor">
 <tibrv:binding/>
 <operation name="ascend">
 <tibrv:operation/>
 <input message="tns:request" name="day">
 <tibrv:input>
 <tibrv:field name="input1" type="xsd:string"/>
 </tibrv:input>
 </input>
 </operation>
 ...
 </binding>
 ...
</definitions>

Example 64: Casting in a TibrvMsg Binding

Table 20: Valid Casts for TibrvMsg Binding

Type Full Support Restricted Supporta

byte short, int, long,
float, double,
decimal, string,
boolean

unsignedByte,
usignedShort,
unsignedInt,
unsignedLong

unsignedByte short, usignedShort,
int, unsignedInt,
long, unsignedLong,
float, double,
decimal, string,
boolean

byte

short int, long, float,
double, decimal,
string, boolean

byte, unsignedByte,
usignedShort,
unsignedInt,
unsignedLong

unsignedShort byte, unsignedByte,
short

int, unsignedInt, long,
unsignedLong, float,
double, decimal, string,
boolean
146

Defining a Custom TibrvMsg Mapping
int long, decimal,
string, boolean

byte, unsignedByte,
short, usignedShort,
unsignedInt,
unsignedLong, float,
double

unsignedInt long, unsignedLong,
decimal, string,
boolean

byte, unsignedByte,
short, usignedShort,
int, float, double

long decimal, string,
boolean

byte, unsignedByte,
short, usignedShort,
int, unsignedInt,
unsignedLong, float,
double

unsignedLong decimal, string,
boolean

byte, unsignedByte,
short, usignedShort,
int, unsignedInt, long,
float, double

float double, decimal,
string, boolean

byte, unsignedByte,
short, usignedShort,
int, unsignedInt, long,
unsignedLong

double decimal, string,
boolean

byte, unsignedByte,
short, usignedShort,
int, unsignedInt, long,
unsignedLong, float

decimal string, boolean byte, unsignedByte,
short, usignedShort,
int, unsignedInt, long,
unsignedLong, float,
double

stringb byte, unsignedByte,
short, usignedShort,
int, unsignedInt, long,
unsignedLong, float,
double, decimal,
boolean, QName, DateTime

Table 20: Valid Casts for TibrvMsg Binding

Type Full Support Restricted Supporta
 147

CHAPTER 11 | Using Tibco Rendezvous Messages
Adding binding-only elements to a
contract

As mentioned in �Scoping� on page 144, a binding-only element can be
added to a TibrvMsg binding at any point in its definition. Before adding a
binding-only element you should determine the proper placement for its
inclusion in the binding. For example, if you are interoperating with a Tibco
system that expects every message to have a header, you would most likely
add the header definition in the tibrv:binding element.

However, if the Tibco system required a static footer for every message, you
would need to add the footer to the tibrv:input and tibrv:output
elements. This is because of the serialization order of the elements in the
TibrvMsg binding. Elements are added to the serialized message from the
global scope to the local scope in order.

Binding-only elements are specified using a combination of tibrv:msg
elements and tibrv:field elements. When specifying a binding-only element
you need to specify a value for the alias attribute. The alias attribute
specifies the name of the generated TibrvMsg element. For tibrv:field
elements you also need to specify values for the type attribute and the
value attribute. The type attribute specifies the XML Schema type of the
element being added and the value attribute specifies the value to be
placed in the resulting TibrvMsgField.

boolean byte, unsignedByte,
short, usignedShort,
int, unsignedInt,
long, unsignedLong,
float, double

decimal, string

QName string

DateTime string

a. Must be within the appropriate value range.

b. In addition to a, the syntax must also conform

Table 20: Valid Casts for TibrvMsg Binding

Type Full Support Restricted Supporta
148

Defining a Custom TibrvMsg Mapping
Example 65 shows a TibrvMsg binding that adds a static header to each
message that is put on the wire.

A message generated by the binding in Example 65 would have as its first
member a TibrvMsg called header as shown in Example 66.

Example 65: TibrvMsg Binding with Binding-only Elements

<binding name="headedTibcoBinding" portType="mythMaker">
 <tibrv:binding>
 <tibrv:msg alias="header">
 <tibrv:field alias="class" type="xs:string" value="greek"/>
 <tibrv:field alias="form" type="xs:string" value="poetry"/>
 </tibrv:msg>
 </tibrv:binding>
 <operation name="spinner">
 ...
 </operation>
 ...
</binding>

Example 66: TibrvMsg with a Header

TibrvMsg
{
 TibrvMsgField
 {
 name = "header";
 id = 0;
 data.msg =
 {
 TibrvMsgField
 {
 name = "class";
 id = 0;
 data.str = "greek";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_STRING;
 }
 149

CHAPTER 11 | Using Tibco Rendezvous Messages
Placing binding-only elements
between contract elements

In addition to adding extra-information at the beginning and end of
messages, you can place binding-only elements between contract elements
in a message. For example, the default mapping of the message
taleResponse, defined in Example 63, would produce the TibrvMsg shown
in Example 67.

 TibrvMsgField
 {
 name = "form";
 id = 0;
 data.str = "poetry";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_STRING;
 }
 }
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_MSG;
 }
...
}

Example 66: TibrvMsg with a Header

Example 67: Default TibrvMsg Example

TibrvMsg
{
 TibrvMsgField
 {
 name = "tale";
 id = 0;
 data.msg =
 {
 TibrvMsgField
 {
 name = "castor";
 id = 0;
 data.str = "This one is a horse trainer.";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_STRING;
 }
150

Defining a Custom TibrvMsg Mapping
If the Tibco application you are integrating with requires an additional
TibrvMsgField or an additional TibrvMsg between pollux and hellen, as
shown in Example 68, you could add it to the binding by redefining the
mapping of the entire contract element to include a binding-only element.

 TibrvMsgField
 {
 name = "pollux";
 id = 0;
 data.str = "This one is a boxxer.";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_STRING;
 }
 TibrvMsgField
 {
 name = "hellen";
 id = 0;
 data.str = "false";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_BOOL;
 }
 }
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_MSG;
 }
...
}

Example 67: Default TibrvMsg Example

Example 68: TibrvMsg with added TibrvMsg Example

TibrvMsg
{
 TibrvMsgField
 {
 name = "tale";
 id = 0;
 data.msg =
 {
 151

CHAPTER 11 | Using Tibco Rendezvous Messages
 TibrvMsgField
 {
 name = "castor";
 id = 0;
 data.str = "This one is a horse trainer.";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_STRING;
 }
 TibrvMsgField
 {
 name = "pollux";
 id = 0;
 data.str = "This one is a boxxer.";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_STRING;
 }
 TibrvMsgField
 {
 name = "clytemnestra";
 id = 0;
 data.msg =
 {
 TibrvMsgField
 {
 name = "father";
 id = 0;
 data.str = "tyndareus";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_STRING;
 }
 TibrvMsgField
 {
 name = "husbands";
 id = 0;
 data.i32 = 2;
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_I32;
 }
 }

Example 68: TibrvMsg with added TibrvMsg Example
152

Defining a Custom TibrvMsg Mapping
To add the binding-only element clytemnestra to the default binding of the
message leda:

1. Because the message leda is used as an output message, add a
tibrv:msg child element to the tibrv:output element.

2. Set the tibrv:msg element�s name attribute to the value of the
corresponding contract message part that uses the type leda.

3. Add a tibrv:field element as a child of the tibrv:msg element.

4. Set the new tibrv:field element�s name attribute to the value of the
corresponding element�s name attribute. In this instance, castor.

5. Repeat steps 3 and 4 for the second element, pollux, in leda.

6. To start the binding-only TibrvMsg element, add a tibrv:msg element
after the tibrv:field element for pollux.

7. Set the new tibrv:msg element�s alias attribute to clytemnestra.

8. Add a tibrv:field element as a child of the tibrv:msg element.

9. Set the tibrv:field element�s alias attribute to father.

10. Set the tibrv:field element�s type attribute to xsd:string.

11. Set the tibrv:field element�s value attribute to tyndareus.

 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_MSG;
 }
 TibrvMsgField
 {
 name = "hellen";
 id = 0;
 data.str = "false";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_BOOL;
 }
 }
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_MSG;
 }
...
}

Example 68: TibrvMsg with added TibrvMsg Example
 153

CHAPTER 11 | Using Tibco Rendezvous Messages
12. Repeat steps 8 through 11 for the second TibrvMsgField in
clytemnestra.

13. On the same level as the tibrv:field elements mapping castor and
pollux, add a tibrv:field element to map helen.

Example 69 shows a binding for the message shown in Example 68.

Creating a custom mapping for a
message defined in the contract

Using the tibrv:msg elements and tibrv:field elements you can change how
contract elements are broken into TibrvMsgs and TibrvMsgFields. For a
detailed discussion of the default TibrvMsg mapping see �Artix Default
Mappings for TibrvMsg� on page 132.

Example 69: TibrvMsg Binding with an Added Binding-only Element

<binging name="tibBinding">
 <tibrv:binding/>
 <operation ...>
 <tibrv:operation/>
 <input ...>
 <tibrv:input/>
 </input>
 <output name="response" message="tns:taleResponse">
 <tibrv:output>
 <tibrv:msg name="tale">
 <tibrv:field name="castor"/>
 <tibrv:field name="pollux"/>
 <tibrv:msg alias="clytemnestra">
 <tibrv:field alias="father" type="xsd:string"
 value="tyndareus"/>
 <tibrv:field alias="husbands" type="xsd:int"
 value="2"/>
 <tibrv:msg/>
 <tibrv:field name="hellen"/>
 </tibrv:msg>
 </tibrv:output>
 </output>
 </operation>
</binding>
154

Defining a Custom TibrvMsg Mapping
You can alter this default mapping to add more wrapping to the
TibrvMsgFields. For instance, if a message consists of a single xsd:string
part, it would be mapped to a TibrvMsg similar to the one shown in
Example 70.

However, you could specify that instead of being mapped straight to a
TibrvMsgField, it be mapped to a TibrvMsg containing a TibrvMsgField as
shown in Example 71.

Example 70: TibrvMsg for a String

TibrvMsg
{
 TibrvMsgField
 {
 name = "electra";
 id = 0;
 data.str = "forelorn";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_STRING;
 }
}

Example 71: TibrvMsg with a TibrvMsg with a String

TibrvMsg
{
 TibrvMsgField
 {
 name = "grandchild";
 id = 0;
 data.msg =
 155

CHAPTER 11 | Using Tibco Rendezvous Messages
To increase the depth of the wrapping of contract elements you define a
custom TibrvMsg mapping that adds the desired number of levels. Each
new level of wrapping is specified by a tibrv:msg element. To create the
message shown in Example 71 you would use a binding definition similar to
the one shown in Example 72.

You can also use this feature to alter the wrapping of complex type
elements. For example, if you were using the message defined in
Example 63 the default TibrvMsg would consist of one TibrvMsg, leda,
containing 3 fields, one for each element in the structure, wrapped by the

 {
 TibrvMsgField
 {
 name = "electra";
 id = 0;
 data.str = "forelorn";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_STRING;
 }
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_MSG;
 }
}

Example 71: TibrvMsg with a TibrvMsg with a String

Example 72: TibrvMsg Binding with an Extra TibrvMsg Level

<binging name="tibBinding">
 <tibrv:binding/>
 <operation ...>
 <tibrv:operation/>
 <input ...>
 <tibrv:input>
 <tibrv:msg alias="gradnchild">
 <tibrv:field name="electra" type="xsd:string"/>
 </tibrv:msg>
 </input>
 ...
 </operation>
</binding>
156

Defining a Custom TibrvMsg Mapping
root TibrvMsg. You could modify the mapping of the logical message to a
TibrvMsg that resembles the one shown in Example 73. The two elements
castor and pollux have been wrapped in a TibrvMsg called brothers.

Example 73: TibrvMsg with Custom TibrvMsg Wrapping

TibrvMsg
{
 TibrvMsgField
 {
 name = "tale";
 id = 0;
 data.msg =
 {
 TibrvMsgField
 {
 name = "brothers"
 id = 0;
 data.msg =
 {
 TibrvMsgField
 {
 name = "castor";
 id = 0;
 data.str = "This one is a horse trainer.";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_STRING;
 }
 TibrvMsgField
 {
 name = "pollux";
 id = 0;
 data.str = "This one is a boxxer.";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_STRING;
 }
 }
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_MSG;
 }
 157

CHAPTER 11 | Using Tibco Rendezvous Messages
Adding additional levels of wrapping within a complex type is done the same
way as it is done with a message part. You place additional tibrv:msg
elements around the contract elements you want to be at a deeper level.
Example 74 shows a binding fragment that would create the TibrvMsg
shown in Example 73.

 TibrvMsgField
 {
 name = "hellen";
 id = 0;
 data.bool = false;
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_BOOL;
 }
 }
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_MSG;
 }
...
}

Example 73: TibrvMsg with Custom TibrvMsg Wrapping (Continued)

Example 74: Binding of a Complex Type with an Extra TibrvMsg Level

<binging name="tibBinding">
 <tibrv:binding/>
 <operation ...>
 <tibrv:operation/>
 <input ...>
 <tibrv:input>
 <tibrv:msg name="tale">
 <tibrv:msg alais="brothers">
 <tibrv:field name="castor" type="xsd:string"/>
 <tibrv:field name="pollux" type="xsd:string"/>
 </tibrv:msg>
 <tibrv:field name="hellen" type="xsd:boolean"/>
 </tibrv:msg>
 </tibrv:input>
 </input>
 ...
 </operation>
</binding>
158

Defining a Custom TibrvMsg Mapping
tibrv:msg tibrv:msg instructs the binding runtime to create an instance of a TibrvMsg.
Its attributes are described in Table 21.

tibrv:field tibrv:field instructs the binding to create an instance of a TibrvMsgField.
Its attributes are described in Table 22.

Table 21: Attributes for tibrv:msg

Attribute Purpose

name Specifies the name of the contract element from which
this TibrvMsg instance gets its value. If this attribute is not
present, then the TibrvMsg is considered a binding-only
element.

alias Specifies the value of the name member of the TibrvMsg
instance. If this attribute is not specified, then the binding
will use the value of the name attribute.

element Used only when tibrv:msg is an immediate child of
tibrv:context. Specifies the QName of the element
defining the context data to use when populating the
TibrvMsg. See �Adding Context Information to a TibrvMsg�
on page 161.

id Specifies the value of the id member of the TibrvMsg
instance. The default value is 0.

minOccurs/

maxOccurs

Used only with contract elements. The values must be
identical to the values specified in the schema definition.

Table 22: Attributes for tibrv:field

Attribute Purpose

name Specifies the name of the contract element from which
this TibrvMsgField instance gets its value. If this attribute
is not present, then the TibrvMsgField is considered a
binding-only element.
 159

CHAPTER 11 | Using Tibco Rendezvous Messages
alias Specifies the value of the name member of the
TibrvMsgField instance. If this attribute is not specified,
then the binding will use the value of the name attribute.

element Used only when tibrv:field is an immediate child of
tibrv:context. Specifies the QName of the element
defining the context data to use when populating the
TibrvMsgField. See �Adding Context Information to a
TibrvMsg� on page 161.

id Specifies the value of the id member of the TibrvMsgField
instance. The default value is 0.

type Specifies the XML Schema type of the data being used to
populate the data member of the TibrvMsgField instance.
For a list of supported types, see �Artix Default Mappings
for TibrvMsg� on page 132.

value Specifies the value inserted into the data member of the
TibrvMsgField instance when the field is a binding-only
element.

minOccurs/

maxOccurs

Used only with contract elements. The values must be
identical to the values specified in the schema definition.

Table 22: Attributes for tibrv:field

Attribute Purpose
160

Adding Context Information to a TibrvMsg
Adding Context Information to a TibrvMsg

Overview By using Artix contexts, you can define binding-only data that is dynamically
generated and consumed by Artix applications. Contexts are a feature of the
Artix programming model that allow application developers to pass
metadata up and down the messaging chain. When using the TibrvMsg
binding, you can instruct your Artix application to use context data to
populate outgoing binding-only fields. On the receiving end, the TibrvMsg
binding takes the information and uses it to populate a context in the
application. For information on using contexts in Artix applications, see
Developing Artix Applications with C++ or Developing Artix Applications
with Java.

Telling the binding to get
information from Artix contexts

When defining a custom TibrvMsg binding, you use the tibrv:context
element to inform the binding that the immediate child element is populated
from an Artix context. The immediate child of a tibrv:context element
must be either a tibrv:msg element or a tibrv:field element depending on
what type of information is contained in the context.

You would use tibrv:msg for context data that is an instance of a complex
XML Schema type. You could also use tibrv:msg if you want an instance of a
native XML Schema type wrapped in a TibrvMsg. You would use tibrv:field
to insert context data that was an instance of a native XML Schema type as
a TibrvMsgField.

When a tibrv:msg element or a tibrv:field element are used to insert context
information into a TibrvMsg they use the element attribute in place of the
name attribute. The element attribute specifies the QName used to register
the context data with the Artix bus. It must correspond to a globally defined
XML Schema element. Also, when inserting context information you cannot
specify values for any other attributes except the alias attribute.

Application considerations When using context data in your TibrvMsg binding there is some
application-specific information you need to abide by:

� At least one piece of the integrated solution must be an Artix
application to process the context data.
 161

../prog_guide/index.htm
../java_pguide/index.htm
../java_pguide/index.htm

CHAPTER 11 | Using Tibco Rendezvous Messages
� The Tibrv binding will automatically register, but not create an instance
of, any contexts used in its binding definition with the Artix bus.
Contexts are registered using the QName of the element specified in
the contract.

� For any context data that will be sent in an input message, client-side
Artix applications are responsible for creating an instance of the
appropriate context data in the request context container before the
message is handed off to the binding.

� Context data sent from a client in an input message will be available to
server-side Artix applications in the request context once the message
has been processed by the binding.

� For any context data that will be sent in an output message,
server-side Artix applications are responsible for creating an instance of
the appropriate context data in the reply context container before the
message is handed off to the binding.

� Context data sent from a server in an output message will be available
to client-side Artix applications in the reply context once the message
has been processed by the binding.

Example If you were integrating with a Tibco server that used a header to correlate
messages using an ASCII correlation ID, you could use the TibrvMsg
binding�s context support to implement the correlation ID on the Artix side of
the solution. The first step would be to define an XML Schema element
called corrID for the context that would hold the correlation ID. Then in
your TibrvMsg binding definition you would include a tibrv:context
element in the tibrv:binding element to specify that all messages passing
through the binding will have the header. Example 75 shows a contract
fragment containing the appropriate entries for this scenario.

Example 75: Using Context Data in a TibrvMsg Binding

<definitions
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 ...>
162

Adding Context Information to a TibrvMsg
When you develop the Artix side of the solution, you will need to supply the
logic for handling the context data stored in corrID. The context for corrID
will be registered with the Artix bus using the QName
"http://widgetVendor.com/types/widgetTypes", "corrID". If the Artix
side of your solution is a client, you will need to include logic to set an
appropriate corrID in the request context before each request and to read
each response�s corrID from the response context. If the Artix side of your
application is a server, you will need to include logic to read request�s
corrID from the request context and set an appropriate corrID in the reply
context before sending the response.

For information on using contexts in Artix applications, see Developing Artix
Applications with C++ or Developing Artix Applications with Java.

 <types>
 <schema
 targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 ...
 <element name="corrID" type="xsd:string"/>
 ...
 </schema>
 </types>
 ...
 <portType name="correalatedService">
 ...
 </portType>
 <binding name="tibrvCorrBinding" type="correlatedService">
 <tibrv:binding>
 <tibrv:context>
 <tibrv:field element="xsd1:corrID"/>
 </tibrv:context>
 </tibrv:binding>
 ...
 </binding>
 ...
</definitions>

Example 75: Using Context Data in a TibrvMsg Binding
 163

../prog_guide/index.htm
../prog_guide/index.htm
../java_pguide/index.htm

CHAPTER 11 | Using Tibco Rendezvous Messages
164

CHAPTER 12

Using XML
Documents
Artix allows you to pass XML documents that are not packaged
as SOAP messages.

Overview The pure XML payload format provides an alternative to the SOAP binding
by allowing services to exchange data using straight XML documents
without the overhead of a SOAP envelope.

Artix Designer provides a wizard for generating an XML binding from a
logical interface. Alternatively, you can create an XML binding using any text
or XML editor.

Using Artix Designer You can add an XML binding to a contract by either selecting Artix Designer
| New Binding or selecting New Binding from the context menu available in
Artix Designer�s diagram view. For more information see the on-line help
provided with Artix Designer.
 165

CHAPTER 12 | Using XML Documents
Hand editing To map an interface to a pure XML payload format:

1. Add the namespace declaration to include the IONA extensions
defining the XML binding. See �XML binding namespace� on
page 166.

2. Add a standard WSDL binding element to your contract to hold the
XML binding, give the binding a unique name, and specify the name of
the WSDL portType element that represents the interface being bound.

3. Add an xformat:binding child element to the binding element to
identify that the messages are being handled as pure XML documents
without SOAP envelopes.

4. Optionally, set the xformat:binding element�s rootNode attribute to a
valid QName. For more information on the effect of the rootNode
attribute see �XML messages on the wire� on page 167.

5. For each operation defined in the bound interface, add a standard
WSDL operation element to hold the binding information for the
operation�s messages.

6. For each operation added to the binding, add the input, output, and
fault children elements to represent the messages used by the
operation. These elements correspond to the messages defined in the
interface definition of the logical operation.

7. Optionally add an xformat:body element with a valid rootNode
attribute to the added input, output, and fault elements to override
the value of rootNode set at the binding level.

XML binding namespace The IONA extensions used to describe XML format bindings are defined in
the namespace http://celtix.objectweb.org/bindings/xmlformat. Artix
tools use the prefix xformat to represent the XML binding extensions. Add
the following line to your contracts:

Note: If any of your messages have no parts, for example the output
message for an operation that returns void, you must set the rootNode
attribute for the message to ensure that the message written on the wire is
a valid, but empty, XML document.

xmlns:xformat="http://celtix.objectweb.org/bindings/xmlformat"
166

XML messages on the wire When you specify that an interface�s messages are to be passed as XML
documents, without a SOAP envelope, you must take care to ensure that
your messages form valid XML documents when they are written on the
wire. You also need to ensure that non-Artix participants that receive the
XML documents understand the messages generated by Artix.

A simple way to solve both problems is to use the optional rootNode
attribute on either the global xformat:binding element or on the individual
message�s xformat:body elements. The rootNode attribute specifies the
QName for the element that serves as the root node for the XML document
generated by Artix. When the rootNode attribute is not set, Artix uses the
root element of the message part as the root element when using doc style
messages, or an element using the message part name as the root element
when using rpc style messages.

For example, if the rootNode attribute is not set the message defined in
Example 76 would generate an XML document with the root element
lineNumber.

For messages with one part, Artix will always generate a valid XML
document even if the rootNode attribute is not set. However, the message in
Example 77 would generate an invalid XML document.

Example 76: Valid XML Binding Message

<type ...>
 ...
 <element name="operatorID" type="xsd:int"/>
 ...
</types>
<message name="operator">
 <part name="lineNumber" element="ns1:operatorID"/>
</message>

Example 77: Invalid XML Binding Message

<types>
 ...
 <element name="pairName" type="xsd:string"/>
 <element name="entryNum" type="xsd:int"/>
 ...
</types>
 167

CHAPTER 12 | Using XML Documents
Without the rootNode attribute specified in the XML binding, Artix will
generate an XML document similar to Example 78 for the message defined
in Example 77. The Artix-generated XML document is invalid because it has
two root elements: pairName and entryNum.

If you set the rootNode attribute, as shown in Example 79 Artix will wrap
the elements in the specified root element. In this example, the rootNode
attribute is defined for the entire binding and specifies that the root element
will be named entrants.

<message name="matildas">
 <part name="dancing" element="ns1:pairName"/>
 <part name="number" element="ns1:entryNum"/>
</message>

Example 77: Invalid XML Binding Message (Continued)

Example 78: Invalid XML Document

<pairName>
 Fred&Linda
</pairName>
<entryNum>
 123
</entryNum>

Example 79: XML Format Binding with rootNode set

<portType name="danceParty">
 <operation name="register">
 <input message="tns:matildas" name="contestant"/>
 <output message="tns:space" name="entered"/>
 </operation>
</portType>
<binding name="matildaXMLBinding" type="tns:dancingMatildas">
 <xmlformat:binding rootNode="entrants"/>
 <operation name="register">
 <input name="contestant"/>
 <output name="entered"/>
 </operation>
</binding>
168

An XML document generated from the input message would be similar to
Example 80. Notice that the XML document now only has one root element.

Overriding the binding�s rootNode
attribute setting

You can also set the rootNode attribute for each individual message, or
override the global setting for a particular message, by using the
xformat:body element inside of the message binding. For example, if you
wanted the output message defined in Example 79 to have a different root
element from the input message, you could override the binding�s root
element as shown in Example 81.

Example 80: XML Document generated using the rootNode attribute

<entrants>
 <pairName>
 Fred&Linda
 </pairName>
 <entryNum>
 123
 </entryNum>
</entrants>

Example 81: Using xformat:body

<binding name="matildaXMLBinding" type="tns:dancingMatildas">
 <xmlformat:binding rootNode="entrants"/>
 <operation name="register">
 <input name="contestant"/>
 <output name="entered"/>
 <xformat:body rootNode="entryStatus"/>
 </operation>
</binding>
 169

CHAPTER 12 | Using XML Documents
170

CHAPTER 13

Using RMI
Artix allows you to communicate with remote objects using
RMI.

Overview Artix provides a way for Artix Java applications to connect to a remote object
using RMI. The remote object does not require a Web services front end, nor
does it require the ability to understand SOAP. Artix will handle the message
translation.

Procedure To use RMI you need to do the following:

1. Add an RMI binding to the application�s WSDL contract.

2. Add an RMI port definition to the application�s WSDL contract.

3. Develop the application so that it uses an interface that extends
java.rmi.Remote.

4. If you are developing a service, generate the RMI stubs using rmic.

5. Configure the application to load the RMI plug-in and the Java plug-in.

Note: If you want to use RMI/IIOP, you need to specify the proper
flags to rmic and extend the appropriate class.
 171

CHAPTER 13 | Using RMI
Namespace The IONA extensions used for RMI information to a WSDL contract are
defined in the namespace http://schemas.iona.com/bindings/rmi. Artix
tools use the prefix rmi to represent the RMI extensions. Add the following
line to your contracts:

Adding RMI information to a
contract

A contract for an Artix endpoint that uses RMI is slightly different than other
contracts because the RMI connectivity feature of Artix does not use the
interface generated from the logical interface definition. Instead, it uses the
RMI interface of the object to which it will connect. Therefore, the portType
element defining the logical interface can be left empty. If it is fully
specified, it will be ignored by the runtime.

To specify that an endpoint is to use RMI you need to add an RMI binding
definition and RMI endpoint definition to your contract. This is done using
the rmi:class element and the rmi:address element.

The rmi:class element defines an RMI binding and is a child of the WSDL
binding element. It has a single attribute, name, that specifies the fully
qualified name of the Java interface of the RMI object to which your
application connects. This interface must extend java.rmi.Remote.

The rmi:address element defines the connection information for an RMI
endpoint. It has a single attribute, url, the specifies the JNDI URL the
application will use to talk to remote objects.

Artix Designer provides a tool for adding an RMI binding to a contract. To
use this tool select Artix Designer | New Binding or select New Binding
from the context menu available in daigram view. For more information see
the on-line help provided with Artix Designer.

xmlns:rmi="http://schemas.iona.com/bindings/rmi"
172

Example 82 shows a contract fragment that defines an RMI endpoint.

Writing a service to use RMI Unlike standard Artix Java services, Artix Java services using RMI do not
require that you use the code generated by wsdltojava. It does not require
that the types adhere to the JAX-RPC mappings. The only requirement is
that the service�s implementation class must implement an interface that
extends java.rmi.Remote.

You will need to generate RMI stubs for your implementation class using
Sun�s rmic compiler. If you want to use RMI/IIOP instead of plain RMI, you
need to generate the RMI stubs using the proper flags. For more information
on rmic see Sun�s RMIC documentation.

Once you have implemented your service�s application logic and generated
the RMI stubs, you need to create a servant for the implementation object
register the servant with the Artix bus. This is done using the standard Artix
APIs as shown in Example 83.

Example 82: RMI Endpoint

...
<portType name="RMIPortType" />
<binding name="RMIBinding" type="tns:RMIPortType">
 <rmi:class name="foo.bar.MyRemoteInterface"/>
</binding>
<service name="RMIService">
 <port name="RMIPort" binding="RMIBinding">
 <rmi:address url="rmi://localhost/RMIObject"/>
 </port>
</service>

Note: You can use the interface generated by wsdltojava because the
generated interface extends java.rmi.Remote.

Example 83: Service for Using RMI

public interface GreeterInterface extends java.rmi.Remote
{
 ...
}

 173

http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/rmic.html

CHAPTER 13 | Using RMI
Writing a client to use RMI Implementing a client that uses the RMI binding is similar to implementing
a standard Artix client in Java. You need to have access to the RMI interface
implemented by the service. You use the interface to create a service proxy
using the standard Artix createClient() method.

The only difference is that instead of casting the proxy returned from
createClient() to the implementation class, you cast it to the RMI
interface class as shown in Example 84. This gives you access to all of the

public class RMIGreeter extends UnicastRemoteObject implements GreeterInterface
{
 ...
}

public class MyRMIService
{
 ...
 public static void main (String args[]) throws Exception
 {
 ...
 Servant servant = new SingleInstanceServant(new RMIGreeter(), myWsdlPath, bus);
 bus.registerServant(servant, new QName(tns, "MyRmiService");
 ...
 }
}

Example 83: Service for Using RMI
174

remote object�s methods including the ones used to manage the remote
object. When the proxy connects to the service, it will download the stubs it
needs for communicating.

For more information see Developing Artix Applications in Java.

Stub downloading If the java.rmi.server.codebase property is not set and the RMI plug-in
was loaded by a URL classloader, the RMI plug-in will set the codebase to
the classpath of the classloader that loaded the plug-in. This effectively
makes the server classpath available to the client for loading RMI stubs.

If the client and server are on the same host, the client does not need to
have the stub paths explicitly on its classpath. If the RMI stubs are available
via an FTP or HTTP url in the server�s classpath, the client can download
them on a different host.

For more on RMI class loading see
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/codebase.html.

Using RMI/IIOP If you want to use RMI/IIOP instead of plain RMI, you need to do a few
things differently:

� Use a corbaname URL as the value of rmi:address in your contract.

� Make sure your servant class extends
javax.rmi.PortableRemoteObject.

� Specify the -iiop flag when running rmic to generate your stubs. For
more information see Sun�s RMIC documentation.

� Store the remote object�s address in a CORBA naming service.

Example 84: Client Using RMI

public class MyRMIClient
{
 ...
 public static void main (String args[]) throws Exception
 {
 ...
 // GreeterInterface defined in previous example.
 GreeterInterface proxy = (GreeterInterface)bus.createClient(wsdlUrl, serviceQName,
 portName, GreeterInterface.class);
 ...
 }
}

 175

../java_pguide/index.htm
http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/rmic.html
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/codebase.html

CHAPTER 13 | Using RMI
Configuring an application to use
RMI

Unlike most Artix bindings, the RMI binding does not cause your application
to automatically load the plug-ins it needs. To configure your application to
use RMI you must add the following to your application�s configuration:

For more information see the Artix Configuration Reference.

Limitations The RMI support in Artix has the following limitations:

� The RMI support bypasses all Artix interceptors.

� The router does not support RMI.

� Applications using RMI must be explicitly configured to load the RMI
plug-in and the Java plug-in. See the Artix Configuration Reference.

� RMI is only available to Artix endpoints developed in Java.

� Artix security features are not available when using RMI.

� The APIs that resolve a service given only a QName do not work for
services using RMI.

� You cannot register transient services with RMI.

Logging Errors For ports that use the RMI binding you may see errors like this in the logs:

These can be ignored.

orb_plugins=[..., "java", ...];
java_plugins=["rmi"];

(IT_BUS.WSDL:0) E - WSDL for Port hello in service HelloRmiService
xmlns="http://www.iona.com/com.iona.jbus.bindings.rmi.Hello" is not valid. It doesn't have
any contents. ([[RmiBinding]])
176

../config_ref/index.htm
../config_ref/index.htm

CHAPTER 14

Using G2++
Messages

Overview G2++ is a set of mechanisms for defining and manipulating hierarchically
structured messages. G2++ messages can be thought of as records, which
are described in terms of their structure and the data types they contain.

G2++ is an alternative to �raw� structures (such as C or C++ structs),
which rely on common data representation characteristics that might not be
present in a heterogeneous distributed system.

Simple G2++ mapping example Consider the following instance of a G2++ message:

Note: Because tabs are significant in G2++ files (that is, tabs indicate
scoping levels and are not simply treated as �white space�), examples in
this chapter indicate tab characters as an up arrow (caret) followed by
seven spaces.
 177

CHAPTER 14 | Using G2++ Messages
This G2++ message can be mapped to the following logical description,
expressed in WSDL:

Note that each of the message sub-structures (newPart and XYZ_Part) are
initially described separately in terms of their elements, then the two
sub-structures are aggregated to form the enclosing record (PRequest).

Example 85: ERecord G2++ Message

ERecord
^ XYZ_Part
^ ^ XYZ_Code^ someValue1
^ ^ password^ someValue2
^ ^ serviceFieldName^ someValue3
^ newPart
^ ^ newActionCode^ someValue4
^ ^ newServiceClassName^ someValue5
^ ^ oldServiceClassName^ someValue6

Example 86: WSDL Logical Description of ERecord Message

<types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="XYZ_Part">
 <all>
 <element name="XYZ_Code" type="xsd:string"/>
 <element name="password" type="xsd:string"/>
 <element name="serviceFieldName" type="xsd:string"/>
 </all>
 </complexType>
 <complexType name="newPart">
 <all>
 <element name="newActionCode" type="xsd:string"/>
 <element name="newServiceClassName" type="xsd:string"/>
 <element name="oldServiceClassName" type="xsd:string"/>
 </all>
 <complexType name="PRequest">
 <all>
 <element name="newPart" type="xsd1:newPart"/>
 <element name="XYZ_Part" type="xsd1:XYZ_Part"/>
 </all>
 </complexType>
178

This logical description is mapped to a physical representation of the G2++
message, also expressed in WSDL:

Note that all G2++ definitions are contained within the scope of the
G2Definitions element. Each of the messages are defined within the scope
of a G2MessageDescription element. The type attribute for message
descriptions must be msg while the name attribute simply has to be unique.

Each record is described within the scope of a G2MessageComponent
element. Within this, the name attribute must reflect the G2++ record name
and the type attribute must be struct.

Nested within the records are the element definitions; however, if required,
a record could be nested here by inclusion of a nested G2MessageComponent
element (newPart and XYZ_Part are nested records of parent ERecord).
Element name attributes must match the G2 element name. Defining a
record and then referencing it as a nested struct of a parent is legal for the
logical mapping but not the physical. In the physical mapping, nested
structs must be defined in-place.

Example 87: WSDL Physical Representation of ERecord Message

<binding name="ERecordBinding" type="tns:ERecordRequestPortType">
 <soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <artix:binding transport="tuxedo" format="g2++">
 <G2Definitions>
 <G2MessageDescription name="creation" type="msg">
 <G2MessageComponent name="ERecord" type="struct">
 <G2MessageComponent name="XYZ_Part" type="struct">
 <element name="XYZ_Code" type="element"/>
 <element name="password" type="element"/>
 <element name="serviceFieldName" type="element"/>
 </G2MessageComponent>
 <G2MessageComponent name="newPart" type="struct">
 <element name="newActionCode" type="element"/>
 <element name="newServiceClassName" type="element"/>
 <element name="oldServiceClassName" type="element"/>
 </G2MessageComponent>
 </G2MessageComponent>
 </G2MessageDescription>
 </G2Definitions>
</artix:binding>
 179

CHAPTER 14 | Using G2++ Messages
The following example illustrates the custom mapping of arrays, which
differs from strictly defined G2++ array mappings. The array definition is
shown below:

This represents an array with two elements. When placed in a G2++
message, the result is as follows:

In this version of the ERecord record, XYZ_Part contains an array called
XYZ_MetaData, whose size is one. The single entry can be thought of as a
name/value pair: pushToTalk/PT01, which allows us to ignore columnName
and columnValue.

IMS_MetaData^ 2
^ 0
^ ^ columnName^ SERVICENAME
^ ^ columnValue^ someValue1
^ 1
^ ^ columnName^ SERVICEACTION
^ ^ columnValue^ someValue2

Example 88: Extended ERecord G2++ Message

ERecord
^ XYZ_Part
^ ^ XYZ_Code^ someValue1
^ ^ password^ someValue2
^ ^ serviceFieldName^ someValue3
^ XYZ_Metadata^ 1
^ ^ 0
^ ^ ^ columnName^ pushToTalk
^ ^ ^ columnValue^ PT01
^ newPart
^ ^ newActionCode^ someValue4
^ ^ newServiceClassName^ someValue5
^ ^ oldServiceClassName^ someValue6
180

Mapping the new ERecord record to a WSDL logical description results in
the following:

Example 89: WSDL Logical Description of Extended ERecord Message

<types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="XYZ_Part">
 <all>
 <element name="XYZ_Code" type="xsd:string"/>
 <element name="password" type="xsd:string"/>
 <element name="serviceFieldName" type="xsd:string"/>
 <element name="pushToTalk" type="xsd:string"/>
 </all>
 </complexType>
 <complexType name="newPart">
 <all>
 <element name="newActionCode" type="xsd:string"/>
 <element name="newServiceClassName" type="xsd:string"/>
 <element name="oldServiceClassName" type="xsd:string"/>
 </all>
 <complexType name="PRequest">
 <all>
 <element name="newPart" type="xsd1:newPart"/>
 <element name="XYZ_Part" type="xsd1:XYZ_Part"/>
 </all>
 </complexType>
 181

CHAPTER 14 | Using G2++ Messages
Thus the array elements columnName and columnValue are �promoted� to a
name/Value pair in the logical mapping. This physical G2++ representation
can now be mapped as follows:

This physical mapping of the extended ERecord message now contains an
array, described with its XYZ_MetaData name (as per the G2++ record
definition). Its type is "array" and its size is one. This
G2MessageComponent contains a single element called "pushToTalk".

Example 90: WSDL Physical Representation of Extended ERecord
Message

<binding name="ERecordBinding" type="tns:ERecordRequestPortType">
 <soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <artix:binding transport="tuxedo" format="g2++">
 <G2Definitions>
 <G2MessageDescription name="creating" type="msg">
 <G2MessageComponent name="ERecord" type="struct">
 <G2MessageComponent name="XYZ_Part" type="struct">
 <element name="XYZ_Code" type="element"/>
 <element name="password" type="element"/>
 <element name="serviceFieldName" type="element"/>
 <G2MessageComponent name="XYZ_MetaData" type="array" size="1">
 <element name="pushToTalk" type="element"/>
 </G2MessageComponent>
 </G2MessageComponent>
 <G2MessageComponent name="newPart" type="struct">
 <element name="newActionCode" type="element"/>
 <element name="newServiceClassName" type="element"/>
 <element name="oldServiceClassName" type="element"/>
 </G2MessageComponent>
 </G2MessageComponent>
 </G2MessageDescription>
 </G2Definitions>
</artix:binding>
182

Ignoring unknown elements It is possible to create a G2Definitions element that begins with a
G2-specific configuration scope. This configuration scope is called G2Config
in the following example:

In this scope, the only variable used is IgnoreUnknownElements, which can
have a value of true or false. If the value is set to true, elements or array
elements that are not defined in the G2 message definitions will be ignored.
For example the following record would be valid if IgnoreUnknownElements
is set to true.

When parsed, the above ERecord would not include the elements
"AnElement" or "AnArrayElement". If IgnoreUnknownElements is set to
false, the above record would be rejected as invalid.

<G2Definitions>
^ <G2Config>
^ ^ <IgnoreUnknownElements value="true"/>
</G2Config>
 .
 .
 .

Example 91: Valid G2++ Record With Ignored Fields

ERecord
^ XYZ_Part
^ XYZ_Code^ someValue1
^ AnElement^ foo
^ password^ someValue2
^ serviceFieldName^ someValue3
^ XYZ_MetaData^ 2
^ ^ 0
^ ^ ^ columnName^ pushToTalk
^ ^ ^ columnValue^ PT01
^ ^ 1
^ ^ ^ columnName^ AnArrayElement
^ ^ ^ columnValue^ bar
^ newPart
^ ^ newActionCode^ someValue4
^ ^ newServiceClassName^ someValue5
^ ^ oldServiceClassName^ someValue6
 183

CHAPTER 14 | Using G2++ Messages
184

Part III
Transports

In this part This part contains the following chapters:

Understanding How Endpoints are Defined WSDL page 187

Using HTTP page 191

Using IIOP page 213

Using WebSphere MQ page 219

Using the Java Messaging System page 235

Using TIBCO Rendezvous page 249

Using Tuxedo page 255

Using FTP page 259
 185

186

CHAPTER 15

Understanding
How Endpoints
are Defined WSDL
Endpoints represent an instantiated service. They are defined
by combining a binding and the networking details used to
expose the endpoint.

Overview An endpoint can be thought of as a physical manifestation of a service. It
combines a binding, which specifies the physical representation of the
logical data used by a service, and a set of networking details that define the
physical connection details used to make the service contactable by other
endpoints.

Endpoints and services In the same way a binding can only map a single interface, an endpoint can
only map to a single service. However, a service can be manifested by any
number of endpoints. For example, you could define a ticket selling service
that was manifested by four different endpoints. However, you could not
have a single endpoint that manifested both a ticket selling service and a
widget selling service.
 187

CHAPTER 15 | Understanding How Endpoints are Defined WSDL
The WSDL elements Endpoints are defined in a contract using a combination of the WSDL
service element and the WSDL port element. The service element is a
collection of related port elements. The port elements define the actual
endpoints.

The WSDL service element has a single attribute, name, that specifies a
unique name. The service element is used as the parent element of a
collection of related port elements. WSDL makes no specification about
how the port elements are related. You can associate the port elements in
any manner you see fit.

The WSDL port element has a single attribute, binding, that specifies the
binding used by the endpoint. The port element is the parent element of the
elements that specify the actual transport details used by the endpoint. The
elements used to specify the transport details are discussed in the following
sections.

Adding endpoints to a contract Artix provides a number of tools for adding endpoints to your contracts.
These include:

� Artix Designer has wizards that lead you through the process of adding
endpoints to your contract.

� A number of the endpoint types can be generated using command line
tools.

The tools will add the proper elements to your contract for you. However, it
is recommended that you have some knowledge of how the different
transports used in defining an endpoint work.

You can also add an endpoint to a contract using any text editor. When you
hand edit a contract, you are responsible for ensuring that the contract is
valid.

Supported transports Artix endpoint definitions are built using extensions defined for each of the
transports Artix supports. Artix supports the following transports:

� HTTP

� BEA Tuxedo

� IBM WebSphere MQ

� TIBCO Rendezvous�

� IIOP
188

� CORBA

� Java Messaging Service

� File Transfer Protocol
 189

CHAPTER 15 | Understanding How Endpoints are Defined WSDL
190

CHAPTER 16

Using HTTP
HTTP is the standard transport used in Web services.

Overview HTTP is the standard TCP/IP-based protocol used for client-server
communications on the World Wide Web. The main function of HTTP is to
establish a connection between a web browser (client) and a web server for
the purposes of exchanging files and possibly other information on the Web.

In this chapter This chapter discusses the following topics:

Adding an HTTP Endpoint to a Contract page 192

Configuring an HTTP Endpoint page 199

Managing Cookies in Artix Clients page 210
 191

CHAPTER 16 | Using HTTP
Adding an HTTP Endpoint to a Contract

Overview Artix provides three ways of specifying an HTTP endpoint�s address
depending on the payload format you are using. SOAP 1.1 has a
standardized soap:address element. SOAP 1.2 uses the wsoap12:address
element. All other payload formats use Artix�s http:address element.

As well as the standard soap:address element or http:address element,
Artix provides a number of HTTP extensions. The Artix extensions allow you
to specify a number of the HTTP port�s configuration values in the contract.

soap:address When you are sending SOAP 1.1 messages over HTTP you must use the
soap:address element to specify the endpoint�s address. It has one
attribute, location, that specifies the endpoint�s address as a URL.

Example 92 shows a port element used to send SOAP 1.1 messages over
HTTP.

soap:address When you are sending SOAP 12 messages over HTTP you must use the
wsoap12:address element to specify the endpoint�s address. It has one
attribute, location, that specifies the endpoint�s address as a URL.

Example 92 shows a port element used to send SOAP 1.2 messages over
HTTP.

Example 92: SOAP 1.1 Port Element

<service name="artieSOAP11Service">
 <port binding="artieSOAPBinding" name="artieSOAPPort">
 <soap:address location="http://artie.com/index.xml">
 </port>
</service>

Example 93: SOAP 1.2 Port Element

<service name="artieSOAP12Service">
 <port binding="artieSOAPBinding" name="artieSOAPPort">
 <wsoap12:address location="http://artie.com/index.xml">
 </port>
</service>
192

Adding an HTTP Endpoint to a Contract
http:address When your messages are mapped to any payload format other than SOAP,
such as fixed, you must use Artix�s http:address element to specify the
endpoint�s address. Like the soap:address element, it has one attribute,
location, that specifies the endpoint�s address as a URL.

Using the command line tool To use wsdltoservice to add an HTTP endpoint use the following options.

wsdltoservice -transport soap/http [-e service][-t port]
 [-b binding][-a address][-hssdt serverSendTimeout]
 [-hscvt serverReceiveTimeout]
 [-hstrc trustedRootCertificates]
 [-hsuss useSecureSockets]
 [-hsct contentType][-hscc serverCacheControl]
 [-hsscse supressClientSendErrors]
 [-hsscre supressClientReceiveErrors]
 [-hshka honorKeepAlive]
 [-hsmps serverMultiplexPoolSize]
 [-hsrurl redirectURL][-hscl contentLocation]
 [-hsce contentEncoding][-hsst serverType]
 [-hssc serverCertificate]
 [-hsscc serverCertificateChain]
 [-hsspk serverPrivateKey]
 [-hsspkp serverPrivateKeyPassword]
 [-hcst clientSendTimeout]
 [-hccvt clientReceiveTimeout]
 [-hctrc trustedRootCertificates]
 [-hcuss useSecureSockets][-hcct contentType]
 [-hccc clientCacheControl][-hcar autoRedirect]
 [-hcun userName][-hcp password]
 [-hcat clientAuthorizationType]
 [-hca clientAuthorization][-hca accept]
 [-hcal acceptLanguage][-hcae acceptEncoding]
 [-hch host][-hccn clientConnection][-hcck cookie]
 [-hcbt browserType][-hcr referer]
 [-hcps proxyServer][-hcpun proxyUserName]
 [-hcpp proxyPassword]
 [-hcpat proxyAuthorizationType]
 [-hcpa proxyAuthorization]
 [-hccce clientCertificate]
 [-hcccc clientCertificateChain]
 [-hcpk clientPrivateKey]
 [-hcpkp clientPrivateKeyPassword][-o file][-d dir]
 [-L file][-quiet][-verbose][-h][-v]wsdlurl
 193

CHAPTER 16 | Using HTTP
The -transport soap/http flag specifies that the tool is to generate an
HTTP service. The other options are as follows.

-transport soap/http If the payload being sent over the wire is
SOAP, use -transport soap. For all other
payloads use -transport http.

-e service Specifies the name of the generated service
element.

-t port Specifies the value of the name attribute of the
generated port element.

-b binding Specifies the name of the binding for which
the service is generated.

-a address Specifies the value used in the address
element of the port.

-hssdt serverSendTimeout Specifies the number of milliseconds that the
server can continue to try to send a response
to the client before the connection is
timed-out.

-hscvt
serverReceiveTimeout

Specifies the number of milliseconds that the
server can continue to try to receive a request
from the client before the connection is
timed-out.

-hstrc
trustedRootCertificates

Specifies the full path to the X509 certificate
for the certificate authority.

-hsuss useSecureSockets Specifies if the server uses secure sockets.
Valid values are true or false.

-hsct contentType Specifies the media type of the information
being sent in a server response.

-hscc serverCacheControl Specifies directives about the behavior that
must be adhered to by caches involved in the
chain comprising a request from a client to a
server.

-hsscse
supressClientSendErrors

Specifies whether exceptions are thrown when
an error is encountered on receiving a client
request. Valid values are true or false.

-hsscre
supressClientReceiveErrors

Specifies whether exceptions are thrown when
an error is encountered on sending a response
to a client. Valid values are true or false.
194

Adding an HTTP Endpoint to a Contract
-hshka honorKeepAlive Specifies if the server honors client keep-alive
requests. Valid values are true or false.

-hsrurl redirectURL Specifies the URL to which the client request
should be redirected if the URL specified in
the client request is no longer appropriate for
the requested resource.

-hscl contentLocation Specifies the URL where the resource being
sent in a server response is located.

-hsce contentEncoding Specifies what additional content codings
have been applied to the information being
sent by the server, and what decoding
mechanisms the client therefore needs to
retrieve the information.

-hsst serverType Specifies what type of server is sending the
response to the client.

-hssc serverCertificate Specifies the full path to the X509 certificate
issued by the certificate authority for the
server.

-hsscc
serverCertificateChain

Specifies the full path to the file that contains
all the certificates in the chain.

-hsspk serverPrivateKey Specifies the full path to the private key that
corresponds to the X509 certificate specified
by serverCertificate.

-hsspkp
serverPrivateKeyPassword

Specifies a password that is used to decrypt
the private key.

-hcst clientSendTimeout Specifies the number of milliseconds that the
client can continue to try to send a request to
the server before the connection is timed-out.

-hccvt
clientReceiveTimeout

Specifies the number of milliseconds that the
client can continue to try to receive a response
from the server before the connection is
timed-out.

-hctrc
trustedRootCertificates

Specifies the full path to the X509 certificate
for the certificate authority.

-hcuss ueSecureSockets Specifies if the client uses secure sockets.
Valid values are true or false.

-hcct contentType Specifies the media type of the data being
sent in the body of the client request.
 195

CHAPTER 16 | Using HTTP
-hccc clientCacheControl Specifies directives about the behavior that
must be adhered to by caches involved in the
chain comprising a request from a client to a
server.

-hcar autoRedirect Specifies if the server should automatically
redirect client requests.

-hcun userName Specifies the username the client uses to
register with servers.

-hcp password Specifies the password the client uses to
register with servers.

-hcat
clientAuthorizationType

Specifies the authorization mechanisms the
client uses when contacting servers.

-hca clientAuthorization Specifies the authorization credentials used to
perform the authorization.

-hca accept Specifies what media types the client is
prepared to handle.

-hcal acceptLanguage Specifies what language the client prefers for
the purposes of receiving a response

-hcae acceptEncoding Specifies what content codings the client is
prepared to handle.

-hch host Specifies the internet host and port number of
the resource on which the client request is
being invoked.

-hccn clientConnection Specifies if the client will open a new
connection for each request or if it will keep
the original one open. Valid values are close
and Keep-Alive.

-hcck cookie Specifies a static cookie to be sent to the
server.

-hcbt browserType Specifies information about the browser from
which the client request originates.

-hcr referer Specifies the value for the client�s referring
entity.

-hcps proxyServer Specifies the URL of the proxy server, if one
exists along the message path.

-hcpun proxyUserName Specifies the username that the client uses to
be authorized by proxy servers.
196

Adding an HTTP Endpoint to a Contract
For more information about the specific attributes and their values see the
Artix WSDL Extension Reference.

-hcpp proxyPassword Specifies the password that the client uses to
be authorized by proxy servers.

-hcpat
proxyAuthorizationType

Specifies the authorization mechanism the
client uses with proxy servers.

-hcpa proxyAuthorization Specifies the actual data that the proxy server
should use to authenticate the client.

-hccce clientCertificate Specifies the full path to the X509 certificate
issued by the certificate authority for the
client.

-hcccc
clientCertificateChain

Specifies the full path to the file that contains
all the certificates in the chain.

-hcpk clientPrivateKey Specifies the full path to the private key that
corresponds to the X509 certificate specified
by clientCertificate.

-hcpkp
clientPrivateKeyPassword

Specifies a password that is used to decrypt
the private key.

-o file Specifies the filename for the generated
contract. The default is to append -service to
the name of the imported contract.

-d dir Specifies the output directory for the
generated contract.

-L file Specifies the location of your Artix license file.
The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.

-h Displays the tool�s usage statement.

-v Displays the tool�s version.
 197

../wsdl_ref/index.htm

CHAPTER 16 | Using HTTP
Example Example 94 shows the namespace entries you need to add to the
definitions element of your contract to use the HTTP extensions.

Example 95 shows a port element for an endpoint that sends fixed data
over HTTP.

Example 94: Artix HTTP Extension Namespaces

<definitions
 ...
 xmlns:http="http://schemas.iona.com/transports/http"
 ... >

Example 95: Generic HTTP Port

<service name="artieFixedService">
 <port binding="artieFixedBinding" name="artieFixedPort">
 <http:address location="http://artie.com/index.xml">
 </port>
</service>
198

Configuring an HTTP Endpoint
Configuring an HTTP Endpoint

Overview In addition to the http:address element or soap:address element used to
specify the URL of an HTTP endpoint, Artix uses two other elements to
define a number of other properties for HTTP endpoints: http-conf:client
and http-conf:server.

The http-conf:client element specifies properties used to configure an
HTTP client-side endpoint. The http-conf:server element specifies
properties used to configure an HTTP server-side endpoint. The properties
are specified as attributes to the elements. While the elements share many
attributes there are differences.

To use the HTTP configuration elements, you need to include the following
entry in your contract�s definition element:

For a complete discussion of the specific attributes and their values see the
Artix WSDL Extension Reference.

In this section This section discusses the following features:

xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"

Specifying Send and Receive Timeout Limits page 200

Specifying a Username and a Password page 202

Configuring Keep-Alive Behavior page 204

Specifying Cache Control Directives page 206
 199

../wsdl_ref/index.htm

CHAPTER 16 | Using HTTP
Specifying Send and Receive Timeout Limits

Overview The most common values that needs to be configured for an HTTP endpoint
are the ones controlling how long the endpoint will spend sending a
receiving messages before issuing a timeout exception. Both client
endpoints and server endpoints have two attributes that control their
timeout behaviors: SendTimeout and RecieveTimeout.

Send Timeout The timeout limit for attempting to send a message is specified, for both the
client-side and server-side, using the SendTimeout attribute. The timeout
limit specifies the number of milliseconds an endpoint will spend attempting
to transmit a message. It has a default setting of 30000 milliseconds.

This value may need to be adjusted if you are transmitting large messages
as they take longer to send. Other factors that may effect the amount if time
needed to transmit messages over HTTP are the speed of the network,
distance between the endpoints, and the amount of traffic on the network.
For example, if you were transmitting high-resolution photographs across
the Atlantic, you may need to adjust the value of the SendTimeout attribute
to 1200000 as shown in Example 96.

Receive Timeout The timeout limit for attempting to read a message is specified, for both the
client-side and the server-side, using the ReceiveTimeout attribute. The
timeout limit specifies the number of milliseconds an endpoint will spend
attempting to read a message from the network. It has a default setting of
30000 milliseconds.

This value has the same meaning for both client-side and server-side
endpoints. It does not specify the amount of time a client will wait for a
response. It only specifies the amount of time an endpoint spends between
when it initially receives the beginning of a message and the when it
receives the last piece of data in the message. For example, if a client using

Example 96: Setting the SendTimeout Attribute

<port ...>
 <soap:address ... />
 <http-conf:client SendTimeout="120000" />
</port>
200

Configuring an HTTP Endpoint
the default settings sends a response to a service that takes 90 seconds to
process the response, the client will not timeout. However, if it takes the
client 45 seconds to read the response from the network, it will timeout.

The causes for long read times are similar to the reasons for long send
times. Large messages, heavy network traffic, and large physical distances
can all have an impact on the amount if time it takes an HTTP endpoint to
receive a message. For example, if you are transmitting map data to a
remote research facility, you may want to specify a value of 600000 for the
ReceiveTimeout attribute of the remote endpoint as shown in Example 97.

Example 97: Setting the ReceiveTimeout Attribute

<port ...>
 <soap:address ... />
 <http-conf:server ReceiveTimeout="600000" />
</port>
 201

CHAPTER 16 | Using HTTP
Specifying a Username and a Password

Overview Username/password authentication is a common way of requiring clients to
identify themselves. By requiring a client to provide a username and a
password, a server can keep a record of who is accessing it and determine if
they are authorized to access the functionality requested. For example,
many Wiki applications and blogging applications require a username and
password before allowing content to be edited.

In Artix, the username and password presented by an HTTP endpoint are
specified using the following attributes of the http-conf:client element:

� UserName
� Password

Be aware that these values will be visible to anyone that has access to the
endpoint�s contract. Using this style of authentication does not provide a
high level of security. For information on using stronger security measures
with Artix see the Artix Security Guide.

Setting a username You set a username using the http-conf:client element�s UserName
attribute. The value you specify is used to populate the username field in the
HTTP header of all messages sent from the endpoint. Setting this attribute is
optional. If no value is specified, Artix does not populate the username field
of the HTTP header with a default value.

Setting a password You set a password using the http-conf:client element�s Password
attribute. The value you specify is used to populate the password field in the
HTTP header of all messages sent from the endpoint. It is an entirely
optional attribute. If no value is specified, Artix does not populate the
password field of the HTTP header with a default value.

Relationship between the
attributes

The UserName attribute and the Password attribute are independent of each
other. Although most applications that require a username also require a
password, it is not mandatory that this pattern is followed. An application
may just require a username for identification, or it may just use a password
to provide a level of exclusivity.
202

../security/index.htm

Configuring an HTTP Endpoint
Similarly, Artix does not require that the two attributes be used together. If
an endpoint only needs to provide a password, you can provide a value for
the Password attribute without providing a value for the UserName attribute.
Example 98 shows an HTTP endpoint definition that specifies just a
username.

The attributes and other security
features

Specifying a username and password in an endpoint�s contract does not
effect the use of other Artix security features. You are not forced to use
HTTPS when using a username or password. Similarly, you are not stopped
from implementing your endpoint using WS-Security headers. For more
details on using Artix�s security features see the Artix Security Guide.

Example 98: Specifying Just a Usernamre

<port ...>
 <http:address ... />
 <http-conf:client UserName="Joe" />
</port>
 203

../security/index.htm

CHAPTER 16 | Using HTTP
Configuring Keep-Alive Behavior

Overview The default behavior of Artix endpoints is to open a connection and keep it
open for as long as the client requires. However, it is not always desirable to
keep a connection open over multiple requests. This can present a security
problem. Artix endpoints can, therefore, be configured to close connections
after each request/response cycle.

Making keep-alive requests HTTP client endpoints are configured to make keep-alive requests using the
http-conf:client element�s Conneciton attribute. This attribute has two
values: close and Keep-Alive.

Keep-Alive is the default. It specifies that the client endpoint wishes to
keep its connections open for future requests. The client will request that the
server keep the connection open. If the server does honor the request, the
connection remains open until one of the endpoints dies. If the server does
not honor the request, the client must open a new conneciton for each
request.

close specifies that the client endpoint does not wish to keep its
connecitons open for future requests. The client will always open a new
connection for each request.

Example 99 shows a port element that defines an HTTP client endpoint
that does not want to reuse connections.

Honoring keep-alive requests HTTP server endpoints are not required to honor keep-alive requests. The
default behavior of Artix HTTP server endpoints is the accept keep-alive
requests. You can change this behavior using the http-conf:server
element�s HonorKeepAlive attribute. It has two values: false and true.

Example 99: Specifying that the HTTP Connection is Closed

<port ...>
 <soap:address location="http://localhost:8080" />
 <http-conf:client Conneciton="close" />
</port>
204

Configuring an HTTP Endpoint
true is the default. It specifies that the server endpoint will honor all
keep-alive requests. If a client connects to the server endpoint using at least
HTTP 1.1 and requests that the connection is kept alive, the server endpoint
is left open. The client can continue to make requests over the original
connection.

false specifies that the server endpoint rejects all keep-alive requests. Once
the endpoint responds to a request it closes the connection used for the
request/response sequence.

Example 100 shows a port element that defines an HTTP server endpoint
that rejects keep-alive requests.

Example 100: Rejecting Keep-Alive Requests

<port ...>
 <soap:address location="http://localhost:8080" />
 <http-conf:server HonorKeepAlive="false" />
</port>
 205

CHAPTER 16 | Using HTTP
Specifying Cache Control Directives

Overview A common method to reduce latency and control network traffic on the Web
is to use caches that sit between server endpoints and client endpoints.
These caches monitor the interactions between the endpoints. They store
responses to requests as they are passed from a server endpoint to a client
endpoint.

When a cache sees a request that it recognizes, it will check its stored
responses. If a match is found, the cache will respond to the request on
behalf of the server endpoint. The server endpoint will never know the
request was made and the client endpoint will never know that it is getting a
cached response.

While this optimizes the transaction time, it does pose a few possible
problems:

� If a server endpoint collects usage statistics, it will not have accurate
data.

� If the server endpoint frequently updates its data, the client endpoint
may get a response that is out of date.

HTTP provides a mechanism for specifying cache behavior using the HTTP
message header. You can configure these settings for your endpoints using
the CacheControl attribute of both the http-conf:server element and the
http-conf:client element.

Server endpoint settings Server endpoints can tell caches how to handle the responses they issue.
For example, a server endpoint can direct caches that its responses are stale
after 10 seconds. These directives are only valid for the responses issued
from a particular server endpoint.
206

Configuring an HTTP Endpoint
Table 23 shows the valid values for CacheControl in http-conf:server.

Table 23: Settings for CacheControl on an HTTP Server Endpoint

Directive Behavior

no-cache Caches cannot use a particular response to satisfy
subsequent client requests without first revalidating
that response with the server. If specific response
header fields are specified with this value, the
restriction applies only to those header fields within
the response. If no response header fields are
specified, the restriction applies to the entire
response.

public Any cache can store the response.

private Public (shared) caches cannot store the response
because the response is intended for a single user.
If specific response header fields are specified with
this value, the restriction applies only to those
header fields within the response. If no response
header fields are specified, the restriction applies to
the entire response.

no-store Caches must not store any part of response or any
part of the request that invoked it.

no-transform Caches must not modify the media type or location
of the content in a response between a server and a
client.

must-revalidate Caches must revaildate expired entries that relate
to a response before that entry can be used in a
subsequent response.

proxy-revelidate Means the same as must-revalidate, except that
it can only be enforced on shared caches and is
ignored by private unshared caches. If using this
directive, the public cache directive must also be
used.

max-age Specifies the maximum age, in seconds, of a
cached response before it is stale.
 207

CHAPTER 16 | Using HTTP
Client endpoint settings Client endpoints can tell caches what kinds of responses they will accept
and how to handle the response they receive. For example, a client endpoint
can direct caches not to store any responses that it receives. A client
endpoint can also direct caches that it will only accept a cached response
that is less than 5 seconds old.

Table 24 shows the valid settings for CacheControl in http-conf:client.

s-maxage Means the same as max-age, except that it can only
be enforced on shared caches and is ignored by
private unshared caches. The age specified by
s-maxage overrides the age specified by max-age. If
using this directive, the proxy-revalidate directive
must also be used.

cache-extension Specifies additional extensions to the other cache
directives. Extensions might be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications
not understanding the extended directive can at
least adhere to the behavior mandated by the
standard directive.

Table 23: Settings for CacheControl on an HTTP Server Endpoint

Directive Behavior

Table 24: Settings for CacheControl on HTTP Client Endpoint

Directive Behavior

no-cache Caches cannot use a particular response to satisfy
subsequent client requests without first revalidating
that response with the server. If specific response
header fields are specified with this value, the
restriction applies only to those header fields within
the response. If no response header fields are
specified, the restriction applies to the entire
response.

no-store Caches must not store any part of a response or
any part of the request that invoked it.
208

Configuring an HTTP Endpoint
max-age The client can accept a response whose age is no
greater than the specified time in seconds.

max-stale The client can accept a response that has exceeded
its expiration time. If a value is assigned to
max-stale, it represents the number of seconds
beyond the expiration time of a response up to
which the client can still accept that response. If
no value is assigned, it means the client can accept
a stale response of any age.

min-fresh The client wants a response that will be still be
fresh for at least the specified number of seconds
indicated.

no-transform Caches must not modify media type or location of
the content in a response between a server and a
client.

only-if-cached Caches should return only responses that are
currently stored in the cache, and not responses
that need to be reloaded or revalidated.

cache-extension Specifies additional extensions to the other cache
directives. Extensions might be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications
not understanding the extended directive can at
least adhere to the behavior mandated by the
standard directive.

Table 24: Settings for CacheControl on HTTP Client Endpoint

Directive Behavior
 209

CHAPTER 16 | Using HTTP
Managing Cookies in Artix Clients

Overview Artix can send and receive cookies. It can also be configured to pass along a
static cookie with all outgoing requests. While Artix can send and receive
cookies, it is up to the application to set dynamic cookies and ensure they
are properly managed.

Sending static cookies If you want your client to always attach a static cookie to its requests, you
can specify this in the client�s contract. The cookie is specified using the
cookie attribute of the http-conf:client element.
210

Managing Cookies in Artix Clients
How Artix processes cookies Artix handles cookies using its context mechanism. For an HTTP application
there are two contexts. One context is for incoming messages and the other
is for outgoing messages. Figure 1 shows how an Artix client manages
cookies.

When a client makes a request it can save a cookie into its outbound context
and it will be sent with all future requests. If a client receives a cookie from
a service, that cookie is stored in the client�s inbound context.

The received cookie does not have to be inspected. In order to inspect the
contents of a received cookie, you will need to add the proper logic to your
client using the Artix context APIs.

The received cookie is not automatically transferred to the out bound
context. If you client needs to pass a received cookie along with future
requests, you will need to add logic to your client so that it will transfer the
received cookie from the client�s inbound context to the outbound context.

Figure 1: Artix Cookie Processing

Artix Client Process

Outbound Context

Inbound Context

Client Logic

Cookie

Cookie

Client can
read the cookie�s

data from the
context

Client can
set data to be

sent as a
cookie
 211

CHAPTER 16 | Using HTTP
More information For information about setting cookies and using Artix contexts see the
relevant programming guide:

� Developing Artix Applications in C++

� Developing Artix Applications in Java
212

../prog_guide/index.htm
../java_pguide/index.htm

CHAPTER 17

Using IIOP
Using IIOP to send non-CORBA formats allows you to take
advantages of CORBA services and QoS without using CORBA
applications.

Overview Artix allows you to use IIOP as a generic transport for sending data using
any of the payload formats. When using IIOP as a generic transport, you
define your endpoint�s address using iiop:address. The benefit of using the
generic IIOP transport is that it allows you to use CORBA services without
requiring your applications to be CORBA applications. For example, you
could use an IIOP tunnel to send fixed format messages to an endpoint
whose address is published in a CORBA naming service.

Namespace The namespace under which the IIOP extensions are defined is
"http://schemas.iona.com/bindings/iiop_tunnel". If you are going to
add an IIOP port by hand you will need to add this to your contract�s
definition element.

IIOP address specification The IOR, or address, of the IIOP port is specified using the iiop:address
element. You have four options for specifying IORs in Artix contracts:

� Specify the object�s IOR directly in the contract, using the stringified
IOR format:

IOR:22342....
 213

CHAPTER 17 | Using IIOP
� Specify a file location for the IOR, using the following syntax:

� Specify that the IOR is published to a CORBA name service, by
entering the object�s name using the corbaname format:

For more information on using the name service with Artix see Artix for
CORBA.

� Specify the IOR using corbaloc, by specifying the port at which the
service exposes itself, using the corbaloc syntax.

When using corbaloc, you must be sure to configure your service to
start up on the specified host and port.

Specifying type of payload
encoding

The IIOP transport can perform codeset negotiation on the encoded
messages passed through it if your CORBA system supports it. By default,
this feature is disabled so that the agents sending the message maintain
complete control over codeset conversion. If you wish to enable automatic
codeset negotiation use the following element:

Specifying POA policies Using the optional iiop:policy element, you can describe the POA polices
Artix will use when creating the IIOP endpoint. These policies include:

� POA Name

� Persistence

� ID Assignment

Setting these policies lets you exploit some of the enterprise features of
IONA�s Orbix 6.x, such as load balancing and fault tolerance, when
deploying an Artix endpoints using the IIOP transport. For information on
using these advanced CORBA features, see the Orbix documentation.

file:///file_name

Note: The file specification requires three backslashes (///).

corbaname:rir/NameService#object_name

corbaloc:iiop:host:port/service_name

<iiop:payload type="string"/>
214

../corba_ws/index.htm
../corba_ws/index.htm

POA Name

Artix POAs are created with the default name of WS_ORB. To specify a name
for the POA that Artix creates for an IIOP endpoint, you use the following:

The POA name is used for setting certain policies, such as direct persistence
and well-known port numbers in the CORBA configuration.

Persistence

By default Artix POAs have a persistence policy of false. To set the POA�s
persistence policy to true, use the following:

ID Assignment

By default Artix POAs are created with a SYSTEM_ID policy, meaning that
their ID is assigned by Artix. To specify that the IIOP endpoint�s POA should
use a user-assigned ID, use the following:

This creates a POA with a USER_ID policy and an object id of POAid.

Using the command line tool To use wsdltoservice to add an IIOP endpoint use the tool with the
following options.

The -transport iiop flag specifies that the tool is to generate an IIOP
endpoint. The other options are as follows.

<iiop:policy poaname="poa_name"/>

<iiop:policy persistent="true"/>

<corba:policy serviceid="POAid"/>

wsdltoservice -transport iiop [-e service][-t port][-b binding]
 [-a address][-poa poaName][-sid serviceId]
 [-pst persists][-paytype payload][-o file]
 [-d dir][-L file][-quiet][-verbose][-h][-v] wsdlurl

-e service Specifies the name of the generated service element.

-t port Specifies the value of the name attribute of the generated
port element.

-b binding Specifies the name of the binding for which the endpoint
is generated.
 215

CHAPTER 17 | Using IIOP
For more information about the specific attributes and their values see the
Artix WSDL Extension Reference.

Example For example, an IIOP endpoint definition for the personalInfoLookup
binding would look similar to Example 101:

-a address Specifies the value used in the generated iiop:address
elements.

-poa poaName Specifies the value of the POA name policy.

-sid serviceId Specifies the value of the ID assignment policy.

-pst persists Specifies the value of the persistence policy. Valid values
are true and false.

-paytype payloadSpecifies the type of data being sent in the message
payloads. Valid values are string, octets, imsraw,
imsraw_binary, cicsraw, and cicsraw_binary.

-o file Specifies the filename for the generated contract. The
default is to append -service to the name of the
imported contract.

-d dir Specifies the output directory for the generated contract.

-L file Specifies the location of your Artix license file. The default
behavior is to check IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.

-h Displays the tool�s usage statement.

-v Displays the tool�s version.

Example 101: CORBA personalInfoLookup Port

<service name="personalInfoLookupService">
 <port name="personalInfoLookupPort"
 binding="tns:personalInfoLookupBinding">
 <iiop:address location="file:///objref.ior"/>
 <iiop:policy persistent="true"/>
 <iiop:policy serviceid="personalInfoLookup"/>
 </port>
</service>
216

../wsdl_ref/index.htm

Artix expects the IOR for the IIOP endpoint to be located in a file called
objref.ior, and creates a persistent POA with an object id of personalInfo
to configure the IIOP endpoint.
 217

CHAPTER 17 | Using IIOP
218

CHAPTER 18

Using WebSphere
MQ
Artix can use WebSphere MQ to transport messages and
leverage much of WebSphere�s infrastructure to provide QoS.

In this chapter This chapter discusses the following topics:

Adding a WebSphere MQ Endpoint page 220

Specifying the WebSphere Library to Load page 226

Using Queues on Remote Hosts page 228

Using WebSphere MQ�s Transaction Features page 230

Setting a Value of the Message Descriptor�s Format Field page 232
 219

CHAPTER 18 | Using WebSphere MQ
Adding a WebSphere MQ Endpoint

Overview The description for an Artix WebSphere MQ endpoint is entered in a port
element of the Artix contract containing the interface to be exposed over
WebSphere MQ. Artix defines two elements to describe WebSphere MQ
endpoints and their attributes:

� mq:client defines an endpoint for a WebSphere MQ client application.

� mq:server defines an endpoint for a WebSphere MQ server
application.

You can use one or both of the WebSphere MQ elements to describe a
WebSphere MQ endpoint. Each can have different configurations depending
on the attributes you choose to set.

WebSphere MQ namespace The WSDL extensions used to describe WebSphere MQ transport details are
defined in the WSDL namespace
http://schemas.iona.com/transports/mq. If you are going to add a
WebSphere MQ port by hand you will need to include the following in the
definitions tag of your contract:

Required attributes When you define a WebSphere MQ endpoint you need to provide at least
enough information for the endpoint to connect to its message queues. For
any WebSphere application that means setting the QueueManager and
QueueName attributes in the port element. In addition, if you are configuring
a client that expects to receive replies from the server, you need to set the
ReplyQueueManager and ReplyQueueName attributes of the mq:client
element defining the client endpoint.

In addition, if you are deploying applications on a machine with a full MQ
installation, you need to set the Server_Client attribute to client if the
endpoint is going to use remote queues. This setting instructs Artix to load
libmqic instead of libmqm.

xmlns:mq="http://schemas.iona.com/transports/mq"
220

Adding a WebSphere MQ Endpoint
Using the command line tool To use wsdltoservice to add a WebSphere MQ endpoint use the tool with
the following options.

The -transport mq flag specifies that the tool is to generate a WebSphere
MQ service. The other options are as follows.

wsdltoservice -transport mq [-e service][-t port][-b binding]
 [-sqm queueManager][-sqn queue][-srqm queueManager]
 [-srqn queue][-smqn modelQueue][-sus usageStyle]
 [-scs correlationStyle][-sam accessMode]
 [-sto timeout][-sme expiry][-smp priority]
 [-smi messageId][-sci correlationId][-sd delivery]
 [-st transactional][-sro reportOption][-sf format]
 [-sad applicationData][-sat accountingToken]
 [-scn connectionName][-sc convert][-scr reusable]
 [-scfp fastPath][-said idData][-saod originData]
 [-cqm queueManager][-cqn queue][-crqm queueManager]
 [-crqn queue][-cmqn modelQueue][-cus usageStyle]
 [-ccs correlationStyle][-cam accessMode]
 [-cto timeout][-cme expiry][-cmp priority]
 [-cmi messageId][-cci correlationId][-cd delivery]
 [-ct transactional][-cro reportOption][-cf format]
 [-cad applicationData][-cat accountingToken]
 [-ccn connectionName][-cc convert][-ccr reusable]
 [-ccfp fastPath][-caid idData][-caod originData]
 [-caqn queue][-cui userId][-o file][-d dir]
 [-L file][-quiet][-verbose][-h][-v] wsdlurl

-e service Specifies the name of the generated service
element.

-t port Specifies the value of the name attribute of the
generated port element.

-b binding Specifies the name of the binding for which the
endpoint is generated.

-sqm queueManager Specifies the name of the server�s queue
manager.

-sqn queue Specifies the name of the server�s request queue.

-srqm queueManager Specifies the name of the server�s reply queue
manager.

-srqn queue Specifies the name of the server�s reply queue.

-smqn modelQueue Specifies the name of the server�s model queue.
 221

CHAPTER 18 | Using WebSphere MQ
-sus usageStyle Specifies the value of the server�s UsageStyle
attribute. Valid values are Peer, Requester, or
Responder.

-scs correlationStyle Specifies the value of the server�s
CorrelationStyle attribute. Valid values are
messageId, correlationId, or messageId copy.

-sam accessMode Specifies the value of the server�s AccessMode
attribute. Valid values are peek, send, receive,
receive exclusive, or receive shared.

-sto timeout Specifies the value of the server�s Timeout
attribute.

-sme expiry Specifies the value of the server�s MessageExpiry
attribute.

-smp priority Specifies the value of the server�s
MessagePriority attribute.

-smi messageId Specifies the value of the server�s MessageId
attribute.

-sci correlationId Specifies the value of the server�s CorrelationID
attribute.

-sd delivery Specifies the value of the server�s Delivery
attribute.

-st transactional Specifies the value of the server�s Transactional
attribute. Valid values are none, internal, or xa.

-sro reportOption Specifies the value of the server�s ReportOption
attribute. Valid values are none, coa, cod,
exception, expiration, or discard.

-sf format Specifies the value of the server�s Format
attribute.

-sad applicationData Specifies the value of the server�s
ApplicationData attribute.

-sat accountingToken Specifies the value of the server�s
AccountingToken attribute.

-scn connectionName Specifies the name of the connection by which
the adapter connects to the queue.

-sc convert Specifies if the messages in the queue need to be
converted to the system�s native encoding. Valid
values are true or false.
222

Adding a WebSphere MQ Endpoint
-scr reusable Specifies the value of the server�s
ConnectionReusable attribute. Valid values are
true or false.

-scfp fastPath Specifies the value of the server�s
ConnectionFastPath attribute. Valid values are
true or false.

-said idData Specifies the value of the server�s
ApplicationIdData attribute.

-saod originData Specifies the value of the server�s
ApplicationOriginData attribute.

-cqm queueManager Specifies the name of the client�s queue manager.

-cqn queue Specifies the name of the client�s request queue.

-crqm queueManager Specifies the name of the client�s reply queue
manager.

-crqn queue Specifies the name of the client�s reply queue.

-cmqn modelQueue Specifies the name of the client�s model queue.

-cus usageStyle Specifies the value of the client�s UsageStyle
attribute. Valid values are Peer, Requester, or
Responder.

-ccs correlationStyle Specifies the value of the client�s
CorrelationStyle attribute. Valid values are
messageId, correlationId, or messageId copy.

-cam accessMode Specifies the value of the client�s AccessMode
attribute. Valid values are peek, send, receive,
receive exclusive, or receive shared.

-cto timeout Specifies the value of the client�s Timeout
attribute.

-cme expiry Specifies the value of the client�s MessageExpiry
attribute.

-cmp priority Specifies the value of the client�s
MessagePriority attribute.

-cmi messageId Specifies the value of the client�s MessageId
attribute.

-cci correlationId Specifies the value of the client�s CorrelationId
attribute.
 223

CHAPTER 18 | Using WebSphere MQ
-cd delivery Specifies the value of the client�s Delivery
attribute.

-ct transactional Specifies the value of the client�s Transactional
attribute. Valid values are none, internal, or xa.

-cro reportOption Specifies the value of the client�s ReportOption
attribute. Valid values are none, coa, cod,
exception, expiration, or discard.

-cf format Specifies the value of the client�s Format attribute.

-cad applicationData Specifies the value of the client�s
ApplicationData attribute.

-cat accountingToken Specifies the value of the client�s
AccountingToken attribute.

-ccn connectionName Specifies the name of the connection by which
the adapter connects to the queue.

-cc convert Specifies if the messages in the queue need to be
converted to the system�s native encoding. Valid
values are true or false.

-ccr reusable Specifies the value of the client�s
ConnectionReusable attribute. Valid values are
true or false.

-ccfp fastPath Specifies the value of the client�s
ConnectionFastPath attribute. Valid values are
true or false.

-caid idData Specifies the value of the client�s
ApplicationIdData attribute.

-caod originData Specifies the value of the client�s
ApplicationOriginData attribute.

-caqn queue Specifies the remote queue to which a server will
put replies if its queue manager is not on the
same host as the client�s local queue manager.

-cui userId Specifies the value of the client�s
UserIdentification attribute.

-o file Specifies the filename for the generated contract.
The default is to append -service to the name of
the imported contract.

-d dir Specifies the output directory for the generated
contract.
224

Adding a WebSphere MQ Endpoint
For more information about the specific attributes and their values see the
Artix WSDL Extension Reference.

Example An Artix contract exposing an interface, monsterBash, bound to a SOAP
payload format, Raydon, on an WebSphere MQ queue, UltraMan would
contain a service element similar to Example 102.

-L file Specifies the location of your Artix license file. The
default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.

-h Displays the tool�s usage statement.

-v Displays the tool�s version.

Example 102: Sample WebSphere MQ Port

<service name="Mothra">
 <port name="X" binding="tns:Raydon">
 <mq:server QueueManager="UMA"
 QueueName="UltraMan"
 ReplyQueueManager="WINR"
 ReplyQueueName="Elek"
 AccessMode="receive"
 CorrelationStyle="messageId copy"/>
 </port>
</service>
 225

../wsdl_ref/index.htm

CHAPTER 18 | Using WebSphere MQ
Specifying the WebSphere Library to Load

Overview The version of the WebSphere MQ shared library loaded by an Artix MQ
endpoint alters the types of queues that an endpoint can access. For
example, if an Artix endpoint loads the MQ client shared library, it will only
be able to use queues hosted on a remote machine. Artix provides an
attribute in the MQ WSDL extensions that allows you to control which
library is loaded.

The attribute Both the mq:server element and the mq:client element support the
attribute that is used to specify which MQ libraries to load. The
Server_Client attribute specifies which shared libraries to load on systems
with a full WebSphere MQ installation. Table 25 describes the settings for
this attribute for each type of WebSphere MQ installation.

Table 25: WebSphere MQ Server_Client Attribute Settings

MQ
Installation

Server_Client
Setting

Behavior

Full The server shared library(libmqm) is
loaded and the application will use
queues hosted on the local machine.

Full server The server shared library(libmqm) is
loaded and the application will use
queues hosted on the local machine.

Full client The client shared library(libmqic) is
loaded and the application will use
queues hosted on a remote machine.

Client The application will attempt to load the
server shared library(libmqm) before
loading the client shared
library(libmqic). The application
accesses queues hosted on a remote
machine.
226

Specifying the WebSphere Library to Load
Example Example 103 shows an a service element for an MQ endpoint that uses
the MQ client shared library.

Client server The application will fail because it cannot
load the server shared libraries.

Client client The client shared library(libmqic) is
loaded and the application accesses
queues hosted on a remote machine.

Table 25: WebSphere MQ Server_Client Attribute Settings

MQ
Installation

Server_Client
Setting

Behavior

Example 103: ARTIX MQ Endpoint Using MQ Client Library

<service name="Mothra">
 <port name="X" binding="tns:Raydon">
 <mq:server QueueManager="UMA"
 QueueName="UltraMan"
 ReplyQueueManager="WINR"
 ReplyQueueName="Elek"
 Server_Client="client" />
 </port>
</service>
 227

CHAPTER 18 | Using WebSphere MQ
Using Queues on Remote Hosts

Overview When interoperating between WebSphere MQ endpoints whose queue
managers are on different hosts, Artix requires that you specify the name of
the remote queue to which the server will post reply messages. This ensures
that the server will put the replies on the proper queue. Otherwise, the
server will receive a request message with the ReplyToQ field set to a queue
that is managed by a queue manager on a remote host and will be unable to
send the reply.

You specify this server�s local reply queue name in the mq:client element�s
AliasQueueName attribute when you define it in the client endpoint�s
contract.

Effect of AliasQueueName When you specify a value for the AliasQueueName attribute in an mq:client
element, you alter how Artix populates the request message�s ReplyToQ field
and ReplyToQMgr field. Typically, Artix populates the reply queue
information in the request message�s message descriptor with the values
specified in the ReplyQueueManager attribute and the ReplyQueueName
attribute. Setting the AliasQueueName attribute causes Artix to leave
ReplytoQMgr empty, and to set ReplyToQ to the value of the AliasQueueName
attribute. When the ReplyToQMgr field of the message descriptor is left
empty, the sending queue manager inspects the queue named in the
ReplyToQ field to determine who its queue manager is and uses that value
for ReplyToQMgr. The server puts the message on the remote queue that is
configured as a proxy for the client�s local reply queue.

Example If you had a system defined similar to that shown in Figure 2, you would
need to use the AliasQueueName attribute setting when configuring your
WebSphere MQ client. In this set up the client is running on a host with a
local queue manager QMgrA. QMgrA has two queues configured. RqA is a
remote queue that is a proxy for RqB and RplyA is a local queue. The server
is running on a different machine whose local queue manager is QMgrB.
228

Using Queues on Remote Hosts
QMgrB also has two queues. RqB is a local queue and RplyB is a remote
queue that is a proxy for RplyA. The client places its request on RqA and
expects replies to arrive on RplyA.

The port elements for the client and server for this deployment are shown in
Example 104. The AliasQueueName attribute is set to RplyB because that is
the remote queue proxying for the reply queue in server�s local queue
manager. The ReplyQueueManager attribute and the ReplyQueueName
attribute are set to the client�s local queue manager so that it knows where
to listen for responses. In this example, the server�s ReplyQueueManager
attribute and ReplyQueueName attribute do not need to be set because you
are assured that the client is populating the request�s message descriptor
with the needed information for the server to determine where replies are
sent.

Figure 2: MQ Remote Queues

Example 104: Setting Up WebSphere MQ Ports for Intercommunication

<mq:client QueueManager="QMgrA" QueueName="RqA"
 ReplyQueueManager="QMgrA" ReplyQueueName="RplyA"
 AliasQueueName="RplyB"
 Format="string" Convert="true"/>
<mq:server QueueManager="QMgrB" QueueName="RqB"
 Format="String" Convert="true"/>
 229

CHAPTER 18 | Using WebSphere MQ
Using WebSphere MQ�s Transaction Features

Overview Artix endpoints that use WebSphere MQ as their transport can take
advantage of WebSphere MQ�s internal transaction features. By using these
features you can make WebSphere MQ a reliable message transport.

WebSphere MQ�s transaction features can also interact with Artix�s
transaction features. For a complete description of using Artix�s transaction
features and how they interact with WebSphere MQ, see either Artix
Transactions Guide, C++ or Artix Transactions Guide, Java.

Specifying transaction style You specify how an Artix endpoint uses WebSphere MQ�s transaction
features using the Transactional attribute. Both the mq:client element
and the mq:server element support the Transactional attribute.

The values of the Transactional attribute are explained in Table 26.

Correlation to persistence If you set your MQ endpoint to use one of the transactional styles, you must
also ensure that it uses persistent messages. You do this by setting the
Delievery attribute of the element defining the endpoint to persistent. For

Table 26: WebSphere MQ Transactional Attribute Settings

Attribute Setting Description

none (Default) The messages are not part of a transaction. No
rollback actions will be taken if errors occur.

internal The messages involved in an invocation are part of a
transaction with WebSphere MQ serving as the
transaction manager. Each invocation is a separate
transaction.

xa The messages involved in an invocation are part of a
flowed transaction with WebSphere MQ serving as
an enlisted resource manager. Each invocation is a
separate transaction.
230

../transactions_java/index.htm
../transactions_cxx/index.htm
../transactions_cxx/index.htm

Using WebSphere MQ�s Transaction Features
example if you are defining an endpoint that represents an MQ server that
uses internal transactions, you set the mq:server element�s Delivery
attribute to persistent.

Reliable MQ messages When the transactional attribute to internal for an Artix endpoint, the
following happens during request processing:

1. When a request is placed on the endpoint�s request queue, MQ begins
a transaction.

2. The endpoint processes the request.

3. Control is returned to the server transport layer.

4. If no reply is required, the local transaction is committed and the
request is permanently discarded.

5. If a reply message is required, the local transaction is committed and
the request is permanently discarded only after the reply is successfully
placed on the reply queue.

6. If an error is encountered while the request is being processed, the
local transaction is rolled back and the request is placed back onto the
endpoint�s request queue.

Example Example 105 shows the mq:server element for an MQ endpoint whose
requests will be part of transactions managed by WebSphere MQ. Note that
the Delivery attribute must be set to persistent when using transactions.

Example 105: MQ Client Setup to use Transactions

<mq:server QueueManager="herman" QueueName="eddie"
 ReplyQueueManager="gomez" ReplyQueueName="lurch"
 UsageStyle="responder" Delivery="persistent"
 CorrelationStyle="correlationId"
 Transactional="internal"/>
 231

CHAPTER 18 | Using WebSphere MQ
Setting a Value of the Message Descriptor�s
Format Field

Overview WebSphere MQ messages have a Format field in their message descriptors.
Message receivers use this field to determine the nature of the data in the
nature. What the message receiver does with this information is the
responsibility of the application developer. Artix, however, uses the Format
field to determine if the contents of a message are to undergo codeset
conversion.

You can specify the value placed in the message descriptor�s Format field
using the Format attribute. This attribute is supported by both the
mq:client element and the mq:server element and its value is a string
specifying the name of the message�s format.

Special values The Format attribute can take the special values none, string, event,
programmable command, and unicode. These settings are described in
Table 27.

Table 27: WebSphere MQ Format Attribute Settings

Attribute Setting Description

none (Default) Corresponds to MQFMT_NONE. No format name
is specified.

string Corresponds to MQFMT_STRING. string
specifies that the message consists entirely of
character data. The message data may be
either single-byte characters or double-byte
characters.

unicode Corresponds to MQFMT_STRING. unicode
specifies that the message consists entirely of
Unicode characters. (Unicode is not
supported in Artix at this time.)
232

Setting a Value of the Message Descriptor�s Format Field
Using Codeset Conversion Artix uses the value of the Format field in an MQ message header to
determine if the message data should be converted into a host systems
native codeset. If the Format field is set to MQFMT_STRING, Artix will attempt
to convert the data into the host�s native codeset. If the Format field has any
other value, Artix will not attempt to perform codeset conversion.

If you are interoperating with systems that use a different codeset than the
system your endpoint is hosted on, you need to set the Format attribute of
the Artix endpoint to string. This is particularly important when you are
interoperating with WebSphere MQ applications hosted on a mainframe
because the data needs to be converted into the systems native data format.
Not doing so will result in the mainframe receiving corrupted data.

event Corresponds to MQFMT_EVENT. event specifies
that the message reports the occurrence of an
WebSphere MQ event. Event messages have
the same structure as programmable
commands.

programmable command Corresponds to MQFMT_PCF. programmable
command specifies that the messages are
user-defined messages that conform to the
structure of a programmable command format
(PCF) message.

For more information, consult the IBM
Programmable Command Formats and
Administration Interfaces documentation at
http://publibfp.boulder.ibm.com/epubs/html/c
sqzac03/csqzac030d.htm#Header_12.

Table 27: WebSphere MQ Format Attribute Settings (Continued)

Attribute Setting Description
 233

http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12
http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12

CHAPTER 18 | Using WebSphere MQ
Example Example 106 shows an mq:client element that defines an endpoint used
for making requests against a server on a mainframe system.

Example 106: WebSphere MQ Client Talking to the Mainframe

<mq:client QueueManager="hunter" QueueName="bigGuy"
 ReplyQueueManager="slate" ReplyQueueName="rusty"
 Format="string" Convert="true"/>
234

CHAPTER 19

Using the Java
Messaging System
JMS is a standards based messaging system that is widely used
in enterprise Java applications.

In this chapter This chapter discusses the following topics:

Defining a JMS Endpoint page 236

Migrating to the 4.x JMS WSDL Extensions page 247

Using ActiveMQ as Your JMS Provider page 248
 235

CHAPTER 19 | Using the Java Messaging System
Defining a JMS Endpoint

Overview Artix provides a transport plug-in that enables endpoints to use Java
Messaging System (JMS) queues and topics. One large advantage of this is
that Artix allows C++ applications to interact directly with Java
applications over JMS.

Artix�s JMS transport plug-in uses the Java Naming and Directory Interface
(JNDI) to locate and obtain references to the JMS provider. Once Artix has
established a connection to a JMS provider, Artix supports the passing of
messages packaged as either a JMS ObjectMessage or a JMS TextMessage.

Message formatting The JMS transport takes messages and packages them into either a JMS
ObjectMessage or a TextMessage. When a message is packaged as an
ObjectMessage the message�s data, including any format-specific
information, is serialized into a byte[] and placed into the JMS message
body. When a message is packaged as a TextMessage, the message�s data,
including any format-specific information, is converted into a string and
placed into the JMS message body.

When a message sent by Artix is received by a JMS application, the JMS
application is responsible for understanding how to interpret the message
and the formatting information. For example, if the Artix contract specifies
that the binding used for a JMS endpoint is SOAP, and the messages are
packaged as a TextMessage, the JMS application will receive a string
containing all of the SOAP envelope information. For a message encoded
using the fixed binding, the message will contain no formatting information,
simply a string of characters, numbers, and spaces.

Namespace The WSDL extensions used to define a JMS endpoint are specified in the
namespace http://celtix.objectweb.org/transports/jms. To use the
JMS extensions you will need to add the line shown Example 107 to the
definitions element of your contract.

Example 107: JMS Extension�s Namespace

xmlns:jms="http://celtix.objectweb.org/transports/jms"
236

Defining a JMS Endpoint
In this section This section discusses the following topics:

Basic Endpoint Configuration page 238

Client Endpoint Configuration page 242

Server Endpoint Configuration page 243

Using the Command Line Tool page 245
 237

CHAPTER 19 | Using the Java Messaging System
Basic Endpoint Configuration

Overview JMS endpoints need to know certain basic information about how to
establish a connection to the proper destination. This information is
provided using the jms.address element and its child the
jms:JMSNamingProperty element. The jms:address element�s attributes
specify the information needed to identify the JMS broker and the
destination. The jms:JMSNamingProperty element specifies the Java
properties used to connect to the JNDI service.

address element The basic configuration for a JMS endpoint is done by using a jms:address
element in your service�s port element. The jms:address element uses the
attributes described in Table 28 to configure the connection to the JMS
broker.

Table 28: JMS Port Attributes

Attribute Description

destinationStyle Specifies if the JMS destination is a
JMS queue or a JMS topic.

jndiConnectionFactoryName Specifies the JNDI name of the JMS
connection factory to use when
connecting to the JMS destination.

jndiDestinationName Specifies the JNDI name of the JMS
destination to which requests are sent.

jndiReplyDestinationName Specifies the JNDI name of the JMS
destinations where replies are sent.
This attribute allows you to use a user
defined destination for replies. For
more details see �Using a named reply
destination�.

connectionUserName Specifies the username to use when
connecting to a JMS broker.

connectionPassword Specifies the password to use when
connecting to a JMS broker.
238

Defining a JMS Endpoint
JMSNamingProperties element To increase interoperability with JMS and JNDI providers, the jms:address
element has a child element, jms:JMSNamingProperty, that allows you to
specify the values used to populate the properties used when connecting to
the JNDI provider. The jms:JMSNamingProperty element has two attributes:
name and value. The name attribute specifies the name of the property to set.
The value attribute specifies the value for the specified property.

The following is a list of common JNDI properties that can be set:

� java.naming.factory.initial
� java.naming.provider.url
� java.naming.factory.object
� java.naming.factory.state
� java.naming.factory.url.pkgs
� java.naming.dns.url
� java.naming.authoritative
� java.naming.batchsize
� java.naming.referral
� java.naming.security.protocol
� java.naming.security.authentication
� java.naming.security.principal
� java.naming.security.credentials
� java.naming.language
� java.naming.applet

For more details on what information to use in these attributes, check your
JNDI provider�s documentation and consult the Java API reference material.

Using a named reply destination By default Artix endpoints using JMS create a temporary queue for the
response queue. You can change this behavior by setting the
jndiReplyDestinationName attribute in the endpoints contract. An Artix
client endpoint will listen for replies on the specified destination and it will
specify the value of the attribute in the ReplyTo field of all outgoing
requests. An Artix service endpoint will use the value of the
jndiReplyDestinationName attribute as the location for placing replies if
there is no destination specified in the request�s ReplyTo field.
 239

CHAPTER 19 | Using the Java Messaging System
Examples Example 108 shows an example of an Artix JMS port specification that uses
dynamic queues.

Example 108 shows an example of an Artix JMS port specification that does
not use dynamic queues.

Alternate InitialContextFactory
settings for using SonicMQ

If you are using Sonic MQ, you will need to use an alternative method of
specifying the InitialContextFactory value. You specify a colon-separated
list of package prefixes to force the JNDI service to instantiate a context

Example 108: Artix JMS Port with Dynamic Queues

<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <jms:address jndiConnectionFactoryName="ConnectionFactory"
 jndiDestinationName="dynamicQueues/test.artix.jmstransport">
 <jms:JMSNamingProperty name="java.naming.factory.initial"
 value="org.activemq.jndi.ActiveMQInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url" value="tcp://localhost:61616" />
 </jms:address>
 </port>
</service>

Example 109: Artix JMS Port with Non-dynamic Queues

<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <jms:address jndiConnectionFactoryName="ConnectionFactory"
 jndiDestinationName="MyQueue" destinationStyle="queue" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"
 value="org.activemq.jndi.ActiveMQInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url" value="tcp://localhost:61616" />
 <jms:JMSNamingProperty name="queue.MyQueue" value="example.MyQueue" />
 </jms:address>
 </port>
</service>
240

Defining a JMS Endpoint
factory with the class name
com.iona.jbus.jms.naming.sonic.sonicURLContextFactory to perform
lookups. This is shown in Example 110.

Using the contract in Example 110, Artix would use the URL
sonic:jms/queue/helloWorldQueue to get a reference to the desired queue.
Artix would be handed a reference to a queue named helloWorldQueue if
the JMS broker has such a queue.

Example 110: JMS Port with Alternate InitialContextFactory Specification

<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <jms:address jndiConnectionFactoryName="sonic:jms/queue/connectionFactory"
 jndiDestinationName="sonic:jms/queue/helloWorldQueue">
 <jms:JMSNamingProperty name="java.naming.factory.initial"
 value="com.iona.jbus.jms.naming.sonic.sonicURLContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url" value="tcp://localhost:61616" />
 </jms:address>
 </port>
</service>
 241

CHAPTER 19 | Using the Java Messaging System
Client Endpoint Configuration

Overview JMS client endpoints can be configured to use different types of messages.

client element The client endpoint�s behaviors are configured using the jms:client
element. The jms:client element is a child of the WSDL port element and
has one attribute:

This element is optional. The default behavior of a JMS client endpoint is to
send text messages.

messageType Specifies how the message data will be packaged as a
JMS message. text specifies that the data will be
packaged as a TextMessage. binary specifies that the
data will be packaged as an ObjectMessage.
242

Defining a JMS Endpoint
Server Endpoint Configuration

Overview JMS server endpoints have a number of behaviors that are configurable in
the contract. These include if the server uses durable subscriptions, if the
servER uses local JMS transactions, and the message selectors used by the
endpoint.

server element Server endpoint behaviors are configured using the jms:server element.
The jms:server element is a child of the WSDL port element and has the
following attributes:

The jms:server element and all of its attributes are optional.

Setting up durable subscriptions If you want to configure your server to use durable subscriptions, you can set
the optional durableSubscriberName attribute. The value of the attribute is
the name used to register the durable subscription.

Using message selectors If you want to configure your server to use a JMS message selector, you can
set the optional messageSelector attribute. The value of the attribute is the
string value of the selector. For more information on the syntax used to
specify message selectors, see the JMS 1.1 specification.

useMessageIDAsCorrealationID Specifies whether JMS will use the
message ID to correlate messages. The
default is false.

durableSubscriberName Specifies the name used to register a
durable subscription. See �Setting up
durable subscriptions� on page 243

messageSelector Specifies the string value of a message
selector to use. See �Using message
selectors� on page 243.

transactional Specifies whether the local JMS broker
will create transactions around message
processing. The default is false. See
�Using reliable messaging� on page 244.
 243

CHAPTER 19 | Using the Java Messaging System
Using reliable messaging If you want your server to use the local JMS broker�s transaction
capabilities, you can set the optional transactional attribute to true.

When the transactional attribute is set, an Artix server�s JMS transport
layer will begin a transaction when it pulls a request from the queue. The
server will then process the request and send the response back to the JMS
transport layer. Once the JMS transport layer has successfully placed the
response on the response queue, the transport layer will commit the
transaction. So, if the Artix server crashes while processing a request or the
transport layer is unable to send the response, the JMS broker will hold the
request in the queue until it is successfully processed.

In cases where Artix is acting as a router between JMS and another
transport, setting the transactional attribute will ensure that the message
is delivered to the second server. The JMS portion of the router will not
commit the message until the message has been successfully consumed by
the outbound transport layer. If an exception is thrown during the
consumption of the message, the JMS transport will rollback the message,
pull it from the queue again, and attempt to resend it.
244

Defining a JMS Endpoint
Using the Command Line Tool

Overview The wsdltoservice tool can add a JMS endpoint definition to your contract.

wsdltoservice To use wsdltoservice to add a JMS endpoint use the tool with the following
options:

The -transport jms flag specifies that the tool is to generate a JMS
endpoint. The other options are as follows:

wsdltoservice -transport jms [-e service][-t port]
 [-b binding][-o file][-d dir]
 [-jnp propName:propVal]*[-jds (queue/topic)]
 [-jnf connectionFactoryName]
 [-jdn destinationName]
 [-jrdn replyDesinationName]
 [-jcun username][-jcp password]
 [-jmt (text/binary)][-jms messageSelector]
 [-jumi (true/false)][-jtr (true/false)]
 [-jdsn durableSubscriber]
 [-L file][-quiet][-verbose][-h][-v] wsdlurl

-e service Specifies the name of the generated
service element.

-t port Specifies the value of the name attribute of
the generated port element.

-b binding Specifies the name of the binding for
which the service is generated.

-o file Specifies the filename for the generated
contract. The default is to append
-service to the name of the imported
contract.

-d dir Specifies the output directory for the
generated contract.

-jnp propName:propVal Specifies any optional Java properties to
use in connecting to the JNDI provider.
This information is used to populate a
JMSNamingProperty element. You can use
this flag multiple times.
 245

CHAPTER 19 | Using the Java Messaging System
For more information about the specific attributes and their values see the
Artix WSDL Extension Reference.

-jds (queue/topic) Specifies if the JMS destination is a JMS
queue or a JMS topic.

-jfn connectionFactoryName Specifies the JNDI name bound to the
JMS connection factory to use when
connecting to the JMS destination.

-jdn destinationName Specifies the JNDI name of the JMS
destination to which Artix connects.

-jrdn replyDestinationName Specifies the JNDI name of the JMS
destination used for replies.

-jcun username Specifies the username used to connect to
the JMS broker.

-jcp password Specifies the password used to connect to
the JMS broker.

-jmt (text/binary) Specifies how the message data will be
packaged as a JMS message.

-jms messageSelector Specifies a message selector to use when
pulling messages from the JMS
destination.

-jumi (true/false) Specifies if the JMS message id should be
used as the correlation id.

-jtr (true/false) Specifies if the services uses local JMS
transactions when processing requests.

-jdsn durableSubscriber Specifies the name of the durable
subscription to use.

-L file Specifies the location of your Artix license
file. The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose
mode.

-h Displays the tool�s usage statement.

-v Displays the tool�s version.
246

../wsdl_ref/index.htm

Migrating to the 4.x JMS WSDL Extensions
Migrating to the 4.x JMS WSDL Extensions

Overview The WSDL extensions used to configure a JMS endpoint were modified in
the 4.0 release of Artix. This update makes Artix JMS endpoint definitions
compatible with Celtix JMS endpoints. To make the transition as smooth as
possible, Artix includes an XSLT script that can be used to automatically
migrate an old JMS endpoint definition to a new JMS endpoint definition.

XSLT script The XSLT script used to migrate old JMS endpoint definitions to 4.x JMS
endpoints is called oldjmswsdl_to_newjmswsdl.xsl and it is located in
IntallDir/Artix/Version/etc/xslt/utilities/jms. It will take any Artix
contract containing a pre-4.x Artix JMS endpoint definition as input and
output an equivalent Artix contract containing a 4.x Artix JMS endpoint.

Using the script with Artix You can use Artix�s XSLT processor to convert your JMS endpoints. To do so
you run the Artix xslttransform command line tool using the options
shown in Example 111.

The XSLT processor will read the contract in oldWsdl.wsdl, transform the
old JMS endpoint to a new JMS endpoint, and save the resulting contract in
newWsdl.wsdl.

Example 111: Running the Transformer with the JMS Migration Script

xslttransform -XSL oldjmswsdl_to_newjmswsdl.xsl -IN oldWsdl.wsdl -OUT newWsdl.wsdl
 247

CHAPTER 19 | Using the Java Messaging System
Using ActiveMQ as Your JMS Provider

Overview Artix installs ActiveMQ, an open source JMS implementation, for you to use
as a possible messaging system. All of the Artix JMS demos are configured
to use ActiveMQ, so to run the demos you must start the ActiveMQ broker.

Setting the CLASSPATH When you set your Artix environment using the artix_env script, the
ActiveMQ jars are automatically added to your CLASSPATH.

If you do not want to set the Artix environment before starting ActiveMQ you
need to add InstallDir/lib/activemq/activemq/3.2.1/activemq-rt.jar
to your CLASSPATH.

Staring the broker To start the ActiveMQ JMS broker run the following command:

Stopping the broker To shutdown the ActiveMQ JMS broker run the following command:

Security By default, ActiveMQ�s security features are turned off. To turn on
ActiveMQ�s security features see the ActiveMQ documentation.

More information For more information on using ActiveMQ see the project�s homepage at
http://activemq.org.

InstallDir/Artix/Version/bin/start_jms_broker

InstallDir/Artix/Version/bin/jmsbrokerinteract -sd
248

http://activemq.org/

CHAPTER 20

Using TIBCO
Rendezvous
TIBCO Rendezvous is used in a number of enterprise settings.

Overview The TIBCO Rendezvous transport lets you use Artix to integrate systems
based on TIBCO Rendezvous (TIB/RV) software.

Supported Features Table 29 shows the matrix of TIBCO Rendezvous features Artix supports.

Table 29: Supported TIBCO Rendezvous Features

Feature Supported Not
Supported

Server-Side Advisory Callbacks x

Certified Message Delivery x

Fault Tolerance (TibrvFtMember/Monitor) x

Virtual Connections (TibrvVcTransport) x

Secure Daemon (rvsd/TibrvSDContext) x

TIBRVMSG_IPADDR32 x

TIBRVMSG_IPPORT16 x
 249

CHAPTER 20 | Using TIBCO Rendezvous
Namespace To use the TIB/RV transport, you need to define the endpoint using TIB/RV
in the physical part of an Artix contract. The extensions used to describe a
TIB/RV endpoint are defined in the namespace:

This namespace will need to be included in your Artix contract�s definition
element.

Describing the port As with other transports, the TIB/RV transport specifications are contained
within a port element. Artix uses tibrv:port to describe the attributes of a
TIB/RV endpoint. The only required attribute for a tibrv:port element is
serverSubject which specifies the subject to which the server listens.

Using the command line tools To use wsdltoservice to add a TIB/RV endpoint use the following options.

xmlns:tibrv="http://schemas.iona.com/transports/tibrv"

wsdltoservice -transport tibrv [-e service][-t port][-b binding]
 [-tss subject][-tcst subject][-tbt bindingType]
 [-tcl callbackLevel][-trdt timeout]
 [-tts transportService][-ttn transportNetwork]
 [-ttbm batchMode][-tqp priority]
 [-tqlp queueLimitPolicy][-tqme queueMaxEvents]
 [-tqda queueDiscardAmount][-tcs cmSupport]
 [-tctsn cmTransportServerName]
 [-tctcn cmTransportClientName]
 [-tctro cmTransportRequestOld]
 [-tctln cmTransportLedgerName]
 [-tctsl cmTransportSyncLedger]
 [-tctra cmTransportRelayAgent]
 [-tctdtl cmTransportDefaultTimeLimit]
250

The -transport tibrv flag specifies that the tool is to generate a TIB/RV
service. The other options are as follows.

 [-tclca cmListenerCancelAgreements]
 [-tcqtsn cmQueueTransportServerName]
 [-tcqtcn cmQueueTransportClientName]
 [-tcqtww cmQueueTransportWorkerWeight]
 [-tcqtws cmQueueTransportWorkerTasks]
 [-tcqtsw cmQueueTransportSchedulerWeight]
 [-tcqtsh cmQueueTransportSchedulerHeartbeat]
 [-tcqtsa cmQueueTransportSchedulerActivation]
 [-tcqtct cmQueueTransportCompleteTime]
 [-tmnfv messageNameFieldValue]
 [-tmnfp messageNameFieldPath]
 [-tbfi bindingFieldId][-tbfn bindingFieldName]
 [-o file][-d dir][-L file]
 [-quiet][-verbose][-h][-v] wsdlurl

-e service Specifies the name of the generated
service element.

-t port Specifies the value of the name attribute of
the generated port element.

-b binding Specifies the name of the binding for
which the endpoint is generated.

-tss subject Specifies the subject to which the server
listens.

-tcst subject Specifies the prefix to the subject on
which the client listens for replies.

-tbt bindingType Specifies the message binding type. Valid
values are msg, xml, opaque, or string.

-tcl callbackLevel Specifies the server-side callback level
when TIB/RV system advisory messages
are received. Valid values are INFO, WARN,
or ERROR.

-trdt timeout Specifies the client-side response receive
dispatch timeout.

-tts transportService Specifies the UDP service name or port for
TibrvNetTransport.

-ttn transportNetwork Specifies the binding network addresses
for TibrvNetTransport.
 251

CHAPTER 20 | Using TIBCO Rendezvous
-ttbm batchMode Specifies if the TIB/RV transport uses
batch mode to send messages. Valid
values are DEFAULT_BATCH and
TIMER_BATCH.

-tqp priority Specifies the queue priority.

-tqlp queueLimitPolicy Valid values are DISCARD_NONE,
DISCARD_NEW, DISCARD_FIRST, or
DISCARD_LAST.

-tqme queueMaxEvents Specifies the queue max events.

-tqda queueDiscardAmount Specifies the queue discard amount.

-tcs cmSupport Specifies if Certified Message Delivery
support is enabled. Valid values are true
or false.

-tctsn cmTransportServerName Specifies the server�s TibrvCmTransport
correspondent name.

-tctcn cmTransportClientName Specifies the client TibrvCmTransport
correspondent name.

-tctro cmTransportRequestOld Specifies if the endpoint can request old
messages on start-up. Valid values are
true or false.

-tctln cmTransportLedgerName Specifies the TibrvCmTransport ledger file.

-tctsl cmTransportSyncLedger Specifies if the endpoint uses a
synchronous ledger. Valid values are true
or false.

-tctra cmTransportRelayAgent Specifies the endpoint�s TibrvCmTransport
relay agent.

-tctdtl
cmTransportDefaultTimeLimit

Specifies the default time limit for a
Certified Message to be delivered.

-tclca
cmListenerCancelAgreements

Specifies if Certified Message agreements
are canceled when the endpoint
disconnects. Valid values are true or
false.

-tcqtsn
cmQueueTransportServerName

Specifies the server�s
TibrvCmQueueTransport correspondent
name.
252

-tcqtcn
cmQueueTransportClientName

Specifies the client�s
TibrvCmQueueTransport correspondent
name.

-tcqtww
cmQueueTransportWorkerWeight

Specifies the endpoint�s
TibrvCmQueueTransport worker weight.

-tcqtws
cmQueueTransportWorkerTasks

Specifies the endpoint�s
TibrvCmQueueTransport worker tasks
parameter.

-tcqtsw
cmQueueTransportSchedulerWeight

Specifies the TibrvCmQueueTransport
scheduler weight parameter.

-tcqtsh
cmQueueTransportSchedulerHeartbeat

Specifies the endpoint�s
TibrvCmQueueTransport scheduler
heartbeat parameter.

-tcqtsa
cmQueueTransportSchedulerActivation

Specifies the TibrvCmQueueTransport
scheduler activation parameter.

-tcqtct
cmQueueTransportCompleteTime

Specifies the TibrvCmQueueTransport
complete time parameter.

-tmnfv messageNameFieldValue Specifies the message name field value.

-tmnfp messageNameFieldPath Specifies the message name field path.

-tbfi bindingFieldId Specifies the binding field id.

-tbfn bindingFieldName Specifies the binding field name.

-o file Specifies the filename for the generated
contract. The default is to append
-service to the name of the imported
contract.

-d dir Specifies the output directory for the
generated contract.

-L file Specifies the location of your Artix license
file. The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose
mode.

-h Displays the tool�s usage statement.

-v Displays the tool�s version.
 253

CHAPTER 20 | Using TIBCO Rendezvous
For more information about the specific attributes and their values see the
Artix WSDL Extension Reference.

Example Example 112 shows an Artix description for a TIB/RV endpoint.

Example 112: TIB/RV Port Description

 <service name="BaseService">
 <port binding="tns:BasePortBinding" name="BasePort">
 <tibrv:port serverSubject="Artix.BaseService.BasePort"/>
 </port>
 </service>
254

../wsdl_ref/index.htm

CHAPTER 21

Using Tuxedo
Overview Artix allows services to connect using Tuxedo�s transport mechanism. This

provides them with all of the qualities of service associated with Tuxedo.

Tuxedo namespaces To use the Tuxedo transport, you need to describe the endpoint using
Tuxedo in the physical part of an Artix contract. The extensions used to
describe a Tuxedo endpoint are defined in the following namespace:

This namespace will need to be included in your Artix contract�s definition
element.

Defining the Tuxedo services As with other transports, the Tuxedo transport description is contained
within a port element. Artix uses tuxedo:server to describe the attributes
of a Tuxedo endpoint. tuxedo:server has a child element, tuxedo:service,
that gives the bulletin board name of a Tuxedo endpoint. The bulletin board
name for the endpoint is specified in the element�s name attribute. You can
define more than one Tuxedo service to act as an endpoint.

Mapping operations to a Tuxedo
service

For each of the Tuxedo services that are endpoints, you must specify which
of the operations bound to the endpoint being defined are handled by the
Tuxedo service. This is done using one or more tuxedo:input child
elements. tuxedo:input takes one required attribute, operation, that
specifies the WSDL operation that is handled by this Tuxedo service
endpoint.

xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"
 255

CHAPTER 21 | Using Tuxedo
Using the command line tools To use wsdltoservice to add a Tuxedo endpoint use the tool with the
following options.

The -transport tuxedo flag specifies that the tool is to generate a Tuxedo
service. The other options are as follows.

wsdltoservice -transport tuxedo [-e service][-t port]
 [-b binding][-tsn tuxService]
 [-tfn tuxService:tuxFunction]
 [-ton tuxService:operation]
 [-o file][-d dir][-L file][-quiet][-verbose][-h][-v]
 wsdlurl

-e service Specifies the name of the generated
service element.

-t port Specifies the value of the name attribute of
the generated port element.

-b binding Specifies the name of the binding for
which the endpoint is generated.

-tsn tuxService Specifies the name the service uses when
registering with the Tuxedo bulletin board.

-tfn tuxService:tuxFunction Specifies the name of the function to be
used on the specified Tuxedo bulletin
board.

-ton tuxService:operation Specifies the WSDL operation that is
handled by the specified Tuxedo endpoint.

-o file Specifies the filename for the generated
contract. The default is to append
-service to the name of the imported
contract.

-d dir Specifies the output directory for the
generated contract.

-L file Specifies the location of your Artix license
file. The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose
mode.
256

For more information about the specific attributes and their values see the
Artix WSDL Extension Reference.

Example An Artix contract exposing the personalInfoService as a Tuxedo endpoint
would contain a service element similar to Example 113 on page 257.

-h Displays the tool�s usage statement.

-v Displays the tool�s version.

Example 113: Tuxedo Port Description

<service name="personalInfoService">
 <port binding="tns:personalInfoBinding" name="tuxInfoPort">
 <tuxedo:server>
 <tuxedo:service name="personalInfoService">
 <tuxedo:input operation="infoRequest"/>
 </tuxedo:service>
 </tuxedo:server>
 </port>
</service>
 257

../wsdl_ref/index.htm

CHAPTER 21 | Using Tuxedo
258

CHAPTER 22

Using FTP
Overview Artix allows endpoints to communicate using a remote FTP server as an

intermediary persistent datastore. When using the FTP transport, client
endpoints will put request messages into a folder on the FTP server and
then begin scanning the folder for a response. Server endpoints will scan the
request folder on the FTP server for requests. When a request is found, the
service endpoint will get it and process the request. When the service
endpoint finishes processing the request, it will post the response back to
the FTP server. When the client sees the response, it will get the response
from the FTP server.

Because of the file-based nature of the FTP transport and the fact that
endpoints do not have a direct connection to each other, the FTP transport
places the burden of implementing a request/response coordination scheme
on the developer. The FTP transport also requires that you implement the
logic determining how the request and response messages are cleaned-up.

In this chapter This chapter discusses the following topics:

Adding an FTP Endpoint page 260

Coordinating Requests and Responses page 262
 259

CHAPTER 22 | Using FTP
Adding an FTP Endpoint

Overview You define an FTP endpoint using WSDL extensions that are placed within a
the port element of a contract. The WSDL extensions provided by Artix allow
you to specify a number of properties for establishing the FTP connection. In
addition, they allow you to specify some of the properties used to define the
naming properties for the files used by the transport.

FTP namespace To use the FTP transport, you need to describe the endpoint using the FTP
WSDL extensions in the physical part of an Artix contract. The extensions
used to describe a FTP port are defined in the following namespace:

This namespace will need to be included in your Artix contract�s
definitions element.

Defining the connection details The connection details for the endpoint are defined in an ftp:port element.
The ftp:port element has two attributes: host and port.

� The host attribute is required. It specifies the name of the machine
hosting the FTP server to which the endpoint connects.

� The port attribute is optional. It specifies the port number on which
the FTP server is listening. The default value is 21.

Example 114shows an example of a port element defining an FTP
endpoint.

In addition to the two required attributes, the ftp:port element has the
following optional attributes:

xmlns:ftp="http://schemas.iona.com/transports/ftp"

Example 114: Defining an FTP Endpoint

<port name="FTPendpoint">
 <ftp:port host="Dauphin" port="8080" />
</port>

requestLocation Specifies the location on the FTP server where requests
are stored. The default is /.
260

Adding an FTP Endpoint
Specifying optional naming
properties

You can specify optional naming policies using an ftp:properties element.
The ftp:properties element is a container for a number ftp:property
elements. The ftp:property elements specify the individual naming
properties. Each ftp:property element has two attributes, name and value,
that make up a name-value pair that are used to provide information to the
naming implementation used by the endpoint.

The default naming implementation provided with Artix has two properties:

For information on defining optional properties see �Using Properties to
Control Coordination Behavior� on page 271.

replyLocation Specifies the location on the FTP server where replies
are stored. The default is /.

connectMode Specifies the connection mode used to connect to the
FTP daemon. Valid values are passive and active. The
default is passive.

scanInsterval Specifies the interval, in seconds, at which the request
and reply locations are scanned for updates. The default
is 5.

staticFilemanes Determines if the endpoint uses a static,
non-unique, naming scheme for its files. Valid
values are true and false. The default is true.

requestFilenamePrefix Specifies the prefix to use for file names when
staticFilenames is set to false.
 261

CHAPTER 22 | Using FTP
Coordinating Requests and Responses

Overview FTP requires that messages are written out to a file system for retrieval. This
poses a few problems. The first is determining a naming scheme that is
agreed upon by all endpoints that use a common location on an FTP server.
Client endpoints and the server endpoints they are making requests on need
a method to coordinate requests and responses. This includes knowing
which messages are intended for which endpoint.

The other problem posed by using a file system as a transport is knowing
when a message can be cleaned-up. If a message is cleaned-up too soon,
there is no way to re-read the message if something goes wrong while it is
being processed. If a message is not cleaned-up soon enough, it is possible
that the message will be processed more than once.

Artix requires that you implement the logic used to determine the file
naming and clean-up logic used by your FTP endpoints. This is done by
implementing four Java interfaces: two for the client-side and two for the
server-side.

Default implementation Artix provides a default implementation for coordinating requests and
responses. The default implementation enables clients and servers to
interact as if they are using a standard RPC mechanism. Message names
are generated at runtime following a pattern based on the server endpoint�s
service name. Request messages are cleaned-up by the server endpoint
when the corresponding response is written to the file system. Responses
are cleaned-up by the client endpoint when they are read from the file
system.

In this section This section discusses the following topics:

Implementing the Client�s Coordination Logic page 263

Implementing the Server�s Coordination Logic page 267

Using Properties to Control Coordination Behavior page 271
262

Coordinating Requests and Responses
Implementing the Client�s Coordination Logic

Overview The client-side of the coordination implementation is made up of two parts:

� The filename factory is responsible for generating the filenames used
for storing request messages on the FTP server and determining the
name of the associated replies.

� The reply lifecycle policy is responsible for cleaning-up reply files.

The filename factory The client-side filename factory is created by implementing the interface
com.iona.jbus.transports.ftp.policy.client.FilenameFactory.
Example 115 shows the interface.

The interface has four methods to implement:

initialize()

initialize() is called by the transport when it is loaded by the bus. It
recieves the following:

Example 115: Client-Side Filename Factory Interface

// Java
package com.iona.jbus.transports.ftp.policy.client;

import javax.xml.namespace.QName;
import com.iona.webservices.wsdl.ext.ftp.FTPProperties;

public interface FilenameFactory
{
 void initialize(QName service, String port,
 FTPProperties properties) throws Exception;

 String getNextRequestFilename() throws Exception;

 String getRequestIncompleteFilename(String requestFilename)
 throws Exception;

 String getReplyFilename(String requestFilename)
 throws Exception;

 FilenameFactoryPropertyMetaData[] getPropertiesMetaData();
};
 263

CHAPTER 22 | Using FTP
� the QName of the service the client on which the client wants to make
requests.

� the value of the name attribute for the port element defining the
endpoint implementing the service.

� an array containing any properties you specified as ftp:property
elements in your client�s contract.

This method is used to set up any resources you need to implement naming
scheme used by the client-side endpoints. For example, the default
implementation uses initialize() to do the following:

1. Determine if the user wants to use static filenames based on an
ftp:property element in the contract. For more information see
�Using Properties to Control Coordination Behavior� on page 271.

2. If so, it generates a static filename prefix for the requests.

3. If not, it uses the user supplied filename prefix for the requests.

getNextRequestFilename()

getNextRequestFilename() is called by the transport each time a request is
sent out. It returns a string that the transport will use as the filename for the
completed request message. For example, the default implementation
creates a filename by appending a string representing the server endpoint�s
system address and the system time, in hexcode, to the prefix generated in
initialize().

getRequestIncompleteFilename()

getRequestIncompleteFilename() is called by the transport each time a
request is sent out. It returns a string that the transport will use as the
filename for the request message as it is being transmitted. For example, the
default implementation creates a filename by appending a the request
filename with _incomplete.

getReplyFilename()

getReplyFilename() is called by the transport when it starts listening for a
response to a two-way request. It recieves a string representing the name of
the request�s filename. It returns the name of the file that will contain the
response to the specified request. For example, the default implementation
generates the reply filename by appending _reply to the request filename.
264

Coordinating Requests and Responses
The reply lifecycle policy The reply lifecycle policy is created by implementing the
com.iona.jbus.transports.ftp.policy.client.ReplyFileLifecycle
interface. Example 116 shows the interface.

The interface has two methods to implement:

shouldDeleteReplyFile()

shouldDeleteReplyFile() is called by the transport after it completes
reading in a reply. It recieves the filename of the reply and returns a boolean
stating if the file should be deleted. If shouldDeleteReplyFile() returns
true, the transport deletes the reply file. If it returns false, the transport
renames reply file based on the logic implemented in renameReplyFile().

renameReplyFile()

renameReplyFile() is called by the transport if shouldDeleteReplyFile()
returns false. It receives the original name of the reply file. It returns a
string the contains the filename the transport uses to rename the reply file.

Configuring the client�s
coordination logic

If you choose to implement your own coordination logic for an FTP client
endpoint, you need to configure the endpoint to load the your
implementation classes. This is done by adding two configuration values to
the endpoint�s Artix configuration scope:

� plugins:ftp:policy:client:filenameFactory specifies the name of
the class implementing the client�s filename factory.

� plugins:ftp:policy:client:replyFileLifecycle specifies the name
of the class implementing the client�s reply lifecycle policy.

Both classes need to be on the endpoint�s classpath.

Example 116: Reply Lifecycle Interface

package com.iona.jbus.transports.ftp.policy.client;

public interface ReplyFileLifecycle
{
 boolean shouldDeleteReplyFile(String fileName)
 throws Exception;

 String renameReplyFile(String fileName) throws Exception;
}

 265

CHAPTER 22 | Using FTP
Example 117 shows an example of an Artix configuration scope that
specifies an FTP client endpoint�s coordination policies.

For more information on configuring Artix see Configuring and Deploying
Artix Solutions.

Example 117: Configuring an FTP Client Endpoint

ftp_client
{
 plugins:ftp:policy:client:filenameFactory="demo.ftp.policy.client.myFilenameFactory";
 plugins:ftp:policy:client:replyFileLifecycle="demo.ftp.policy.client.myReplyFileLifecycle";
};
266

../deploy/index.htm
../deploy/index.htm

Coordinating Requests and Responses
Implementing the Server�s Coordination Logic

Overview The server-side of the coordination implementation is made up of two parts:

� The filename factory is responsible for identifying which requests to
dispatch and how to name reply messages.

� The request lifecycle policy is responsible for cleaning-up request files.

The filename factory The server-side filename factory is created by implementing the interface
com.iona.jbus.transports.ftp.policy.server.FilenameFactory.
Example 118 shows the interface.

The interface has six methods to implement:

Example 118: Server-Side Filename Factory Interface

package com.iona.jbus.transports.ftp.policy.server;

import javax.xml.namespace.QName;

import com.iona.jbus.Bus;
import com.iona.transports.ftp.Element;
import com.iona.webservices.wsdl.ext.ftp.FTPProperties;

public interface FilenameFactory
{
 void initialize(Bus bus, QName service, String port,
 FTPProperties properties) throws Exception;

 String getRequestFilenamesRegEx() throws Exception;

 Element[] updateRequestFiles(Element[] inElements)
 throws Exception;

 String getReplyIncompleteFilename(String requestFilename)
 throws Exception;

 String getReplyFilename(String requestFilename)
 throws Exception;

 FilenameFactoryPropertyMetaData[] getPropertiesMetaData();
}

 267

CHAPTER 22 | Using FTP
initialize()

initialize() is called by the transport when it is activiated by the bus. It
recieves the following:

� the bus that has activated the transport.

� the QName of the service to which the endpoint is implementing.

� the value of the name attribute for the port element defining the
endpoint�s connection details.

� an array containing any properties you specified as ftp:property
elements in your server endpoint�s contract.

This method is used to set up any resources you need to implement naming
scheme used by the server-side endpoints. For example, the default
implementation uses initialize() to do the following:

1. Determine if the user wants to use static filenames based on an
ftp:property element in the contract. For more information see
�Using Properties to Control Coordination Behavior� on page 271.

2. If so, it generates a static filename prefix for the requests.

3. If not, it uses the user supplied filename prefix for the requests.

getRequestFileRegEx()

getRequestFileRegEx() is called by the transport when it initializes the
server-side FTP listener. It returns a regular expression that is used to match
request filenames intended for a specific server instance. For example, the
default implementation returns a regular expression of the form
{wsdl:tns}_{wsdl:service(@name)}_{wsdl:port(@name)}_{reqUuid}.

updateRequestFiles()

updateRequestFiles() is called by the transport after it determines thelist
of possbile requests and before it dispatches the requests to the service
implementation for processing. It recieves an array of
com.iona.transports.ftp.Element objects. This array is a list of all the
request messages selected by the request filename regular expression.
updateRequestFiles() returns an array of Element objects containing only
the messages that are to be dispatched to the service implementation.
268

Coordinating Requests and Responses
getReplyIncompleteFilename()

getReplyInclompleteFilename() is called by the transport when it is ready
to post a response. It recieves the filename of the request that generated
the response. It returns a string that is used as the filename for the response
as it is being written to the FTP server. For example, the default
implementation returns _incomplete appended to request filename.

getReplyFilename()

getReplyFilename() is called by the transport after it finishes writting a
response to the FTP server. It recieves the filename of the request that
generated the response. It returns a string that is used as the filename for
the completed response. For example, the default implementation returns
_reply appended to request filename.

getPropertiesMetaData()

getPropertiesMetaData() is a convience function that returns an array of
all the possbile properties you can use to effect the behavior of the FTP
naming scheme. The properties returned correspond to the values defined in
the ftp:properties element. For more information see �Using Properties to
Control Coordination Behavior� on page 271.

The request lifecycle policy The request lifecycle policy is created by implementing the
com.iona.jbus.transports.ftp.policy.server.RequestFileLifecycle
interface. Example 119 shows the interface.

The interface has two methods to implement:

Example 119: Request Lifecycle Interface

package com.iona.jbus.transports.ftp.policy.server;

public interface RequestFileLifecycle
{
 boolean shouldDeleteRequestFile(String fileName)
 throws Exception;

 String renameRequestFile(String fileName) throws Exception;
}

 269

CHAPTER 22 | Using FTP
shouldDeleteRequestFile()

shouldDeleteRequestFile() is called by the transport after it completes
writing in a response. It recieves the filename of the request that generated
the response and returns a boolean stating if the file should be deleted. If
shouldDeleteReplyFile() returns true, the transport deletes the request
file. If it returns false, the transport renames reply file based on the logic
implemented in renameRequestFile().

renameRequestFile()

renameRequestFile() is called by the transport if
shouldDeleteRequestFile() returns false. It receives the original name of
the request file. It returns a string the contains the filename the transport
uses to rename the request file.

Configuring the server�s
coordination logic

If you choose to use your own coordination logic for an FTP server endpoint,
you need to configure the endpoint to load the proper implementation
classes. This is done by adding two configuration values to the endpoint�s
Artix configuration scope:

� plugins:ftp:policy:server:filenameFactory specifies the name of
the class implementing the server�s filename factory.

� plugins:ftp:policy:server:requestFileLifecycle specifies the
name of the class implementing the server�s request lifecycle policy.

Both classes need to be on the endpoint�s classpath.

Example 120 shows an example of an Artix configuration scope that
specifies an FTP server endpoint�s coordination policies.

For more information on configuring Artix see Configuring and Deploying
Artix Solutions.

Example 120: Configuring an FTP Server Endpoint

ftp_client
{
 plugins:ftp:policy:server:filenameFactory="demo.ftp.policy.server.myFilenameFactory";
 plugins:ftp:policy:server:requestFileLifecycle="demo.ftp.policy.client.myReqFileLifecycle";
};
270

../deploy/index.htm
../deploy/index.htm

Coordinating Requests and Responses
Using Properties to Control Coordination Behavior

Overview In order to ensure that your FTP client endpoints and FTP server endpoints
are using the same coordination behavior, you may need to pass some
information to the transports as they initialize. To make this information
available to both sides of the application and still be settable at run time,
the Artix FTP transport allows you to provide custom properties that are
settable in an endpoint�s contract. These properties are set using the
ftp:properties element.

Properties in the contract You can place any number of custom properties into port element defining
an FTP endpoint. As described in �Specifying optional naming properties� on
page 261, the ftp:properties element is a container for one or more
ftp:property elements. The ftp:property element has two attributes:
name and value. Both attributes can have any string as a value. Together
they form a name/value pair that your coordination logic is responsible for
processing.

For example, imagine an FTP endpoint defined by the port element in
Example 121.

The endpoint is configured using two custom FTP properties:

� UseHumanNames with a value of true.

� LastName with a value of Doe.

These properties are only meaningful if the coordination logic used by the
endpoint supports them. If they are not supported, they are ignored.

Example 121: FTP Endpoint with Custom Properties

<port ...>
 <ftp:port ... />
 <ftp:properties>
 <ftp:property name="UseHumanNames" value="true" />
 <ftp:property name="LastName" value="Doe" />
 </ftp:properties>
</port>
 271

CHAPTER 22 | Using FTP
Supporting the properties The initialize() method of both the client-side filename factory and the
server-side filename factory take a
com.iona.webservices.wsdl.ext.ftp.FTPProperties object. The
FTPProperties object is populated by the contents of the endpoints
ftp:properties element when the transport is initialized.

The FTPProperties object can be used to access all of the properties
defined by ftp:property elements. To access the properties you do the
following:

1. Use the getExtensors() method to get an Iterator object.

2. Using the Iterator objects next() method, get the elements in the
list.

3. Cast the return value of the next() method to an FTPProperty object.

Each com.iona.webservices.wsdl.ext.ftp.FTPProperty object contains
one name/value pair from one ftp:property element. You can extract the
value of the name attribute using the FTPProperty object�s getProperty()
with the constant
com.iona.webservices.wsdl.ext.ftp.FTPProperty.NAME. You can extract
the value of the value attribute using the FTPProperty object�s
getProperty() with the constant
com.iona.webservices.wsdl.ext.ftp.FTPProperty.VALUE. Once you have
the values of the properties, it is up to you to determine how they impact the
coordination scheme.

Example 122 shows code for supporting the properties shown in
Example 121 on page 271.

Example 122: Using Custom FTP Properties

import com.iona.webservices.wsdl.ext.FTPProperties;
import com.iona.webservices.wsdl.ext.FTPProperty;

String nameTypeProp = "UseHumanNames";
String lastNameProp = "LastName";
for (Iterator it = properties.getExtensors(); it.hasNext();)
{
 FTPProperty property = (FTPProperty)it.next();
 String n = property.getProperty(FTPProperty.NAME);
272

Coordinating Requests and Responses
Filling in the Filename Factory
Property Metadata

The server-side filename factory�s getPropertiesMetaData() method is a
convenience function that can be used to publish the supported custom
properties. It returns the details of the supported properties in an array of
com.iona.jbus.transports.ftp.policy.server.FilenameFactoryPropert

yMetaData objects.

FilenameFactoryPropertyMetaData objects have three fields:

� name is a string that specifies the value of the ftp:property element�s
name attribute.

� readOnly is a boolean that specifies if you can set this property in a
contract.

� valueSet is an array of strings that specify the possible values for the
property.

FilenameFactoryPropertyMetaData objects do not have any methods for
populating its fields once the object is instantiated. You must set all of the
values using the constructor that is shown in Example 123.

 if (nameTypeProp.equals(n))
 {
 Boolean useHuman = new

Boolean(property.getProperty(FTPProperty.VALUE));
 }

 if (lastNameProp.equals(n))
 {
 String lastName = property.getProperty(FTPProperty.VALUE);
 }
}

Example 122: Using Custom FTP Properties

Example 123: Constructor for FilenameFactoryPropertyMetaData

public FilenameFactoryPropertyMetaData(String n, boolean ro,
 String[] vs)
{
 name = n;
 readOnly = ro;
 valueSet = vs;
}

 273

CHAPTER 22 | Using FTP
Example 124 shows code for creating an array to be returned from
getPropertiesMetaData().

The list of possible values specified for the property LastName is set to null
because the property can have any string value.

Example 124: Populating the Filename Properties Metadata

FilenameFactoryPropertyMetaData[] propMetas = new FilenameFactoryPropertyMetaData[]
{
 new FilenameFactoryPropertyMetaData("UseHumanNames", false,
 new String[] {Boolean.TRUE.toString(),
 Boolean.FALSE.toString()}),
 new FilenameFactoryPropertyMetaData("LastName", false, null)
};
274

Part IV
Other Artix Features

In this part This part contains the following chapters:

Working with CORBA page 277

Using the Artix Transformer page 291

Using Codeset Conversion page 313
 275

276

CHAPTER 23

Working with
CORBA
Artix provides extensions for describing CORBA applications
as services

Overview CORBA, unlike the other platforms supported by Artix, specifies both a
mapping between the logical messages and a network protocol. Because
these two cannot be decoupled, Artix provides extensions for both and
requires that they be used together. To further enforce the coupling of the
CORBA payload format and the CORBA network protocol all Artix tools that
generate CORBA extensions generate them in sets.

In the chapter This chapter discusses the following topics:

Adding a CORBA Binding page 278

Creating a CORBA Endpoint page 284
 277

CHAPTER 23 | Working with CORBA
Adding a CORBA Binding

Overview CORBA applications use a specific payload format when making and
responding to requests. The CORBA binding, described using an IONA
extension to WSDL, specifies the repository ID of the IDL interface
represented by the port type, resolves parameter order and mode ambiguity
in the operations� messages, and maps the XML Schema data types to
CORBA data types.

In addition to the binding information, Artix also uses a corba:typemap
element to unambiguously describe how data is mapped to CORBA data
types. For primitive types, the mapping is straightforward. However,
complex types such as structures, arrays, and exceptions require more
detailed descriptions. For a detailed description of the CORBA type
mappings see Artix for CORBA.

Options To add a CORBA binding to an Artix contract you can choose one of four
methods. The first option is to use Artix Designer. Artix Designer provides a
wizard that automatically generates the binding and type map information
for a specified port type.

The second option is to use the wsdltocorba command line tool. The
command line tool automatically generates the binding and type map
information for a specified port type. See �Using wsdltocorba� on page 279.

The third option is to enter the binding and typemap information by hand
using a text editor or XML editor. This option provides you the flexibility to
customize the binding. However, hand editing Artix contracts can be a time
consuming process and provides no error checking mechanisms. For
information on the WSDL extensions used to specify a CORBA binding see
�Mapping to the binding� on page 280.
278

../corba_ws/index.htm

Adding a CORBA Binding
Using wsdltocorba The wsdltocorba tool adds CORBA binding information to an existing Artix
contract. To generate a CORBA binding using wsdltocorba use the following
command:

The command has the following options:

The generated WSDL file will also contain a CORBA port with no address
specified. To complete the port specification you can do so manually or use
Artix Designer.

wsdltocorba -corba -i portType [-d dir][-b binding][-o file]
 [-props namespace][-wrapped]
 [-L file][-quiet][-verbose][-h][-v]
 wsdl_file

-corba Instructs the tool to generate a CORBA binding for the
specified port type.

-i portType Specifies the name of the port type being mapped to a
CORBA binding.

-d dir Specifies the directory into which the new WSDL file is
written.

-b binding Specifies the name for the generated CORBA binding.
Defaults to portTypeBinding.

-o file Specifies the name of the generated WSDL file. Defaults
to wsdl_file-corba.wsdl.

-props namespace Specifies the namespace to use for the generated CORBA
typemap

-wrapped Specifies that the generated CORBA binding uses
wrapper types.

-L file Specifies the location of your Artix license file. The default
behavior is to check IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode. No output will
be shown on the console. This includes error messages.

-verbose Specifies that the tool runs in verbose mode.

-h Specifies that the tool will display a usage message.

-v Displays the tool�s version.
 279

CHAPTER 23 | Working with CORBA
WSDL Namespace The WSDL extensions used to describe CORBA data mappings and CORBA
transport details are defined in the WSDL namespace
http://schemas.iona.com/bindings/corba. To use the CORBA extensions
you will need to include the following in the definitions tag of your
contract:

Mapping to the binding The extensions used to map a logical operation to a CORBA binding are
described in detail below:

corba:binding indicates that the binding is a CORBA binding. This element
has one required attribute: repositoryID. The repositoryID attribute
specifies the full type ID of the interface. The type ID is embedded in the
object�s IOR and therefore must conform to the IDs that are generated from
an IDL compiler. These are of the form:

The corba:binding element also has an optional attribute, bases, that
specifies that the interface being bound inherits from another interface. The
value for bases is the type ID of the interface from which the bound
interface inherits. For example, the following IDL:

would produce the following corba:binding:

corba:operation is an IONA-specific element of the operation element and
describes the parts of the operation�s messages. corba:operation takes a
single attribute, name, which duplicates the name given in operation.

corba:param is a child of corba:operation. Each part element of the input
and output messages specified in the logical operation, except for the part
representing the return value of the operation, must have a corresponding

xmlns:corba="http://schemas.iona.com/bindings/corba"

IDL:module/interface:1.0

//IDL
interface clash{};
interface bad : clash{};

<corba:binding repositoryID="IDL:bad:1.0"
 bases="IDL:clash:1.0"/>
280

Adding a CORBA Binding
corba:param element. The parameter order defined in the binding must
match the order specified in the IDL definition of the operation. The
corba:param element has the following required attributes:

corba:return is a child of corba:operation and specifies the return type, if
any, of the operation. It has two attributes:

corba:raises is a child of corba:operation and describes any exceptions the
operation can raise. The exceptions are defined as fault messages in the
logical definition of the operation. Each fault message must have a
corresponding corba:raises element. corba:raises has one required
attribute, exception, which specifies the type of data returned in the
exception.

In addition to operations specified in corba:operation tags, within the
operation block, each operation in the binding must also specify empty
input and output elements as required by the WSDL specification. The
CORBA binding specification, however, does not use them.

mode Specifies the direction of the parameter. The values
directly correspond to the IDL directions: in, inout, out.
Parameters set to in must be included in the input
message of the logical operation. Parameters set to out
must be included in the output message of the logical
operation. Parameters set to inout must appear in both
the input and output messages of the logical operation.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with corba: for primitive IDL types, and
corbatm: for complex data types, which are mapped out
in the corba:typeMapping portion of the contract.

name Specifies the name of the parameter as given in the
logical portion of the contract.

name Specifies the name of the parameter as given in the
logical portion of the contract.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with corba: for primitive IDL types and
corbatm: for complex data types which are mapped out
in the corba:typeMapping portion of the contract.
 281

CHAPTER 23 | Working with CORBA
For each fault message defined in the logical description of the operation, a
corresponding fault element must be provided in the operation, as
required by the WSDL specification. The name attribute of the fault element
specifies the name of the schema type representing the data passed in the
fault message.

Example For example, a logical interface for a system to retrieve employee
information might look similar to personalInfoLookup, shown in
Example 125.

The CORBA binding for personalInfoLookup is shown in Example 126.

Example 125: personalInfo lookup port type

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int"/>
</message>
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalInfo"/>
</message>
<message name="idNotFoundException">
 <part name="exception" element="xsd1:idNotFound"/>
</message>
<portType name="personalInfoLookup">
 <operation name="lookup">
 <input name="empID" message="personalLookupRequest"/>
 <output name="return" message="personalLookupResponse"/>
 <fault name="exception" message="idNotFoundException"/>
 </operation>
</portType>
282

Adding a CORBA Binding
Example 126: personalInfoLookup CORBA Binding

<binding name="personalInfoLookupBinding" type="tns:personalInfoLookup">
 <corba:binding repositoryID="IDL:personalInfoLookup:1.0"/>
 <operation name="lookup">
 <corba:operation name="lookup">
 <corba:param name="empId" mode="in" idltype="corba:long"/>
 <corba:return name="return" idltype="corbatm:personalInfo"/>
 <corba:raises exception="corbatm:idNotFound"/>
 </corba:operation>
 <input/>
 <output/>
 <fault name="personalInfoLookup.idNotFound"/>
 </operation>
</binding>
 283

CHAPTER 23 | Working with CORBA
Creating a CORBA Endpoint

Overview Generally, when you are creating a CORBA endpoint with Artix, you need to
do two things. First, you must specify the port information in the Artix
contract so that Artix can instantiate the appropriate port. Second, you must
generate the IDL describing your service so that a native CORBA application
can understand the interfaces of the new service.

In this section This section discusses the following topics:

Configuring an Artix CORBA Endpoint page 285

Generating CORBA IDL page 289
284

Creating a CORBA Endpoint
Configuring an Artix CORBA Endpoint

Overview CORBA endpoints are described using the IONA-specific WSDL elements
corba:address and corba:policy within the WSDL port element, to
specify how a CORBA object is exposed.

Namespace The namespace under which the CORBA extensions are defined is
"http://schemas.iona.com/bindings/corba". If you are going to add a
CORBA endpoint by hand you will need to add this to your contract�s
definition element.

CORBA address specification The IOR of the CORBA object is specified using the corba:address element.
You have four options for specifying IORs in Artix contracts:

� Specify the object�s IOR directly in the contract, using the stringified
IOR format:

� Specify a file location for the IOR, using the following syntax:

� Specify that the IOR is published to a CORBA name service, by
entering the object�s name using the corbaname format:

For more information on using the name service with Artix see Artix for
CORBA.

� Specify the IOR using corbaloc, by specifying the port at which the
endpoint exposes itself, using the corbaloc syntax.

IOR:22342...

file:///file_name

Note: The file specification requires three backslashes (///).

corbaname:rir/NameService#object_name

corbaloc:iiop:host:port/service_name
 285

../corba_ws/index.htm
../corba_ws/index.htm

CHAPTER 23 | Working with CORBA
When using corbaloc, you must be sure to configure your endpoint to
start up on the specified host and port.

Specifying POA policies Using the optional corba:policy element, you can describe a number of
POA polices the endpoint will use when creating the POA for connecting to a
CORBA application. These policies include:

� POA Name

� Persistence

� ID Assignment

Setting these policies lets you exploit some of the enterprise features of
IONA�s Orbix 6.x, such as load balancing and fault tolerance, when
deploying an Artix integration project. For information on using these
advanced CORBA features, see the Orbix documentation.

POA Name

Artix POAs are created with the default name of WS_ORB. To specify the
name of the POA Artix creates to connect with a CORBA object, you use the
following:

Persistence

By default Artix POAs have a persistence policy of false. To set the POA�s
persistence policy to true, use the following:

ID Assignment

By default Artix POAs are created with a SYSTEM_ID policy, meaning that
their ID is assigned by the ORB. To specify that the POA connecting a
specific object should use a user-assigned ID, use the following:

This creates a POA with a USER_ID policy and an object id of POAid.

<corba:policy poaname="poa_name"/>

<corba:policy persistent="true"/>

<corba:policy serviceid="POAid"/>
286

Creating a CORBA Endpoint
Using the command line tool You can use the wsdltoservice command line tool to add a CORBA
endpoint definition to an Artix contract. To use wsdltoservice to add a
CORBA endpoint use the tool with the following options.

The -transport corba flag specifies that the tool is to generate a CORBA
endpoint. The other options are as follows.

wsdltoservice -transport corba [-e service][-t port][-b binding]
 [-a address][-poa poaName][-sid serviceId]
 [-pst persists][-o file][-d dir][-L file]
 [-q][-h][-V] wsdlurl

-e service Specifies the name of the generated service element.

-t port Specifies the value of the name attribute of the generated
port element.

-b binding Specifies the name of the binding for which the service is
generated.

-a address Specifies the value used in the corba:address element of
the port.

-poa poaName Specifies the value of the POA name policy.

-sid serviceId Specifies the value of the ID assignment policy.

-pst persists Specifies the value of the persistence policy. Valid values
are true and false.

-o file Specifies the filename for the generated contract. The
default is to append -service to the name of the
imported contract.

-d dir Specifies the output directory for the generated contract.

-L file Specifies the location of your Artix license file. The default
behavior is to check IT_PRODUCT_DIR\etc\license.txt.

-q Specifies that the tool runs in quiet mode. No output will
be shown on the console. This includes error messages.

-h Specifies that the tool will display a usage message.

-V Specifies that the tool runs in verbose mode.
 287

CHAPTER 23 | Working with CORBA
Example For example, a CORBA port for the personalInfoLookup binding would look
similar to Example 127:

Artix expects the IOR for the CORBA object to be located in a file called
objref.ior, and creates a persistent POA with an object id of personalInfo
to connect the CORBA application.

Example 127: CORBA personalInfoLookup Port

<service name="personalInfoLookupService">
 <port name="personalInfoLookupPort"
 binding="tns:personalInfoLookupBinding">
 <corba:address location="file:///objref.ior"/>
 <corba:policy persistent="true"/>
 <corba:policy serviceid="personalInfoLookup"/>
 </port>
</service>
288

Creating a CORBA Endpoint
Generating CORBA IDL

Overview Artix clients that use a CORBA transport require that the IDL defining the
interface exists and be accessible. Artix provides tools to generate the
required IDL from an existing WSDL contract. The generated IDL captures
the information in the logical portion of the contract and uses that to
generate the IDL interface. Each portType in the contract generates an IDL
module.

From the command line The wsdltocorba tool compiles Artix contracts and generates IDL for the
specified CORBA endpoint. To generate IDL using wsdltocorba use the
following command:

The command has the following options:

wsdltocorba -idl -b binding [-corba][-i portType][-d dir]
 [-o file][-L file][-q][-h][-V] wsdl_file

-idl Instructs the tool to generate an IDL file from the
specified binding.

-b binding Specifies the CORBA binding from which IDL is to be
generated.

-corba Instructs the tool to generate a CORBA binding for the
specified port type.

-i portType Specifies the name of the port type being mapped to a
CORBA binding.

-d dir Specifies the directory into which the new WSDL file is
written.

-o file Specifies the name of the generated WSDL file. Defaults
to wsdl_file.idl.

-L file Specifies the location of your Artix license file. The default
behavior is to check IT_PRODUCT_DIR\etc\license.txt.

-q Specifies that the tool runs in quiet mode. No output will
be shown on the console. This includes error messages.

-h Specifies that the tool will display a usage message.

-V Specifies that the tool runs in verbose mode.
 289

CHAPTER 23 | Working with CORBA
By combining the -idl and -corba flags with wsdltocorba, you can
generate a CORBA binding for a logical operation and then generate the IDL
for the generated CORBA binding. When doing so, you must also use the -i
portType flag to specify the port type from which to generate the binding
and the -b binding flag to specify the name of the binding from which to
generate the IDL.
290

CHAPTER 24

Using the Artix
Transformer
The Artix transformer allows you to perform message
transformations, data validation, and interface versioning
without having to write additional code.

In this chapter This chapter discusses the following topics:

Using the Artix Transformer as a Service page 292

Using Artix to Facilitate Interface Versioning page 294

WSDL Messages and the Transformer page 299

Writing XSLT Scripts page 303
 291

CHAPTER 24 | Using the Artix Transformer
Using the Artix Transformer as a Service

Overview Using the Artix transformer, you can create a Web service that does simple
tasks such as converting dates into the proper format or generating HTML
output without writing any code. You can also develop services to validate
the format of requests before they are sent to a busy server for processing.

The data processing is performed by the Artix transformer which uses an
XSLT script to determine how to process the data.

Procedure To use the Artix transformer as a service you:

1. Define the data, interface, binding, and transport details for the server
in an Artix contract.

2. Write the XSLT script that defines the data processing you want the
transformer to perform.

3. Configure the service with the transformer�s configuration details.

Defining the server The contract for a service that is implemented by the Artix transformer is the
same as the Artix contract for any other service in Artix. You need to define
the complex types, if any, that the service uses. Then you need to define the
messages used by the service to receive and respond to requests.

Once the data types and messages are defined, you then define the service�s
interface. The only limitation for a service that is implemented by the Artix
Transformer is that it cannot have any fault messages. The interface can
define multiple operations. Each operation will be processed using different
XSLT scripts.

After defining the logical details of the service, you need to define the
binding and network details for the service. The transformer can use any of
the bindings and transports supported by Artix. For information on adding a
binding for the transformer read �Understanding Bindings in WSDL� on
page 55. For information on adding network details for the transformer read
�Understanding How Endpoints are Defined WSDL� on page 187.
292

Using the Artix Transformer as a Service
Writing the scripts The XSLT scripts tell the transformer what it needs to do to process the data
it receives. The scripts can be as simple or complex as they need to be to
perform the task. The only requirement is that they are valid XSLT
documents. For more information about writing XSLT scripts read �Writing
XSLT Scripts� on page 303.

Configure the transformer The Artix transformer is an Artix plug-in and can be loaded by an Artix
process. This provides a great deal of flexibility in how you configure and
deploy the process. There are two common deployment patterns for
deploying the Artix transformer as a service. The first is to configure the
transformer to load into the Artix container. The second is to configure the
transformer to load directly into the client process which is making requests
against it.

For a detailed discussion of how to configure and deploy the Artix
Transformer see Configuring and Deploying Artix Solutions.
 293

../deploy/index.htm

CHAPTER 24 | Using the Artix Transformer
Using Artix to Facilitate Interface Versioning

Overview One of the most common and difficult problems faced in large scale client
server deployments is upgrading systems. For example, if you change the
interface for your server to add new functionality or streamline
communications, you then need to change all of the clients that access the
server. This can mean upgrading thousands of clients that may be scattered
across the globe.

The Artix transformer provides a solution to this problem that allows you to
slowly upgrade the clients without disrupting their ability to function. Using
the transformer you can develop an XSLT script that converts messages
between the different interfaces. Then you can place the transformer
between the old clients and the new server. This solution eliminates the
need for operating two versions of the same server, or trying to do a massive
client and server upgrade. It also does this without requiring you to do any
custom programing.

Procedure To use the Artix transformer for interface versioning:

1. Create a composite Artix contract defining both versions of the
interfaces that need to be supported.

2. Define an interface for the transformer that defines operations for
mapping the interfaces.

3. Add a SOAP binding to the contract for the transformer�s interface.

4. Add an HTTP port to the contract to define how the transformer can be
contacted.

5. Write the XSLT scripts that define the message transformations.

6. Configure the transformer.

7. Configure the Artix chain builder to create a chain containing the
transformer and the server on which clients will make requests.
294

Using Artix to Facilitate Interface Versioning
Creating a composite contract While the server and the client applications can be run without knowledge
of the other�s interface, the transformer responsible for translating the
messages between to the two interface versions must know about all of the
interface versions used. This includes all data type definitions and message
definitions used by both versions of the interface.

You can create this composite contract in several ways. The most
straightforward way is to create a new contract which imports both the new
interface�s contract and the old interface�s contract. To import the contracts
you place an import element for each contract just after the definitions
element in the new contract and before any other elements in the new
contract. The import element has two attributes. location specifies the
pathname of the file containing the contract that is being imported.
namespace defines the XML namespace under which the imported contract
can be referenced.

For example, if you were creating a composite contract for interface
versioning you would have two contracts; one for the server with the
updated interface and one for the client using the legacy interface. The file
name for the server�s contract is r2e2.wsdl and the contract for the client is
r2e1.wsdl. For simplicity, they are located in the same directory as the
composite contract. The composite contract importing both versions of the
interface is shown in Example 128.

Example 128: Composite WSDL

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="transformer"
 targetNamespace="http://www.widgets.com/transformer"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:r1="http://www.widgets.com/r2e2Server"
 xmlns:r2="http://www.widgets.com/r2e1Client"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.widgets.com/transformer"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <import location="r2e2.wsdl"
 namespace="http://www.widgets.com/r2e2Server/>
 <import location="r2e1.wsdl"
 namespace="http://www.widgets.com/r2e1Client"/>
</definitions>
 295

CHAPTER 24 | Using the Artix Transformer
Note that in the definitions element of the contract, XML namespace
shortcuts are defined for the imported contracts namespace. This makes
using items defined in the imported contracts much easier.

Define the transformer�s interface Once you have imported all versions of the interface that you need to
support into the transformer�s composite contract, you need to define the
transformer�s interface. The transformer must have one operation defined for
each transformation that is required to support all of the interface versions.
For example, if you only changed the structure of the request message in
when upgrading the server�s interface, the transformer only needs one
operation because the transformation is only one way. If you changed both
the request and response messages, the transformer�s interface will need
two operations; one for the request message and one for the response.

The operation to transform a request from the client to the proper format for
the server takes the client�s message as its input element and the server�s
message as its output message. The operation to transform a response from
the server to the proper format for a client takes the server�s outgoing
message as its input element and the client�s incoming message as its
output element.

When adding the operations, be sure to use the proper namespaces when
referencing the messages for the different versions of the interface. Using
the wrong namespaces could result in an invalid contract at the very least. If
the contract is valid, and the namespaces are incorrect, your system will
behave erratically.

For example, if the interface in Example 128 on page 295 was updated so
that both the client�s request and the server�s response need to be
transformed the transformer�s interface would need two operations. In this

Note: Fault messages are not supported.
296

Using Artix to Facilitate Interface Versioning
example the name of the request message is widgetRequest and the name
of the response message is widgetResponse. The interface for the
transformer, versionTransform, is shown in Example 129.

In the operation transforming the request, requestTransform, the input
message is taken from the namespace r1 which is the namespace under
which the client�s contract is imported. The output message is taken from r2
which is the namespace under which the server�s contract is imported. For
the response message transformation, responseTransform, the order is
reversed. The input message is from r2 and the output message is from r1.

Defining the physical details for
the transformer

After defining the operations used in transforming between the different
version of the interface, you need to define the binding and network details
for the transformer. The transformer can use any of the bindings and
transports supported by Artix. For information on adding a binding for the
transformer read �Understanding Bindings in WSDL� on page 55. For
information on adding network details for the transformer read
�Understanding How Endpoints are Defined WSDL� on page 187.

Writing the XSLT scripts The XSLT scripts tell the transformer what it needs to do to process the data
it receives. The scripts can be as simple or complex as they need to be to
perform the task. The only requirement is that they are valid XSLT
documents. For more information about writing XSLT scripts read �Writing
XSLT Scripts� on page 303.

Example 129: Versioning Interface

<portType name="versionTransform">
 <operation name="requestTransform">
 <input name="oldRequest" message="r1:widgetRequest"/>
 <output name="newRequest" message="r2:widgetRequest"/>
 </operation>
 <operation name="responseTransform">
 <input name="newResponse" message="r2:widgetResponse"/>
 <output name="oldReponse" message="r1:widgetResponse"/>
 </operation>
</portType>
 297

CHAPTER 24 | Using the Artix Transformer
Configuring the transformer The Artix transformer is an Artix plug-in and can be loaded by an Artix
process. This provides a great deal of flexibility in how you configure and
deploy the process. For a detailed discussion of how to configure and deploy
the Artix transformer see Configuring and Deploying Artix Solutions.

Configuring a chain When using the transformer to do interface versioning, you need to deploy it
as part of a service chain. To build a service chain in Artix you deploy the
Artix chain builder. Like the transformer, the chain builder is an Artix plug-in
and provides a number of deployment options. One way of deploying the
chain builder along with the transformer is to deploy it alongside the
transformer in an Artix container.

For a detailed discussion of how to configure and deploy the Artix chain
builder see Configuring and Deploying Artix Solutions.
298

../deploy/index.htm
../deploy/index.htm

WSDL Messages and the Transformer
WSDL Messages and the Transformer

Overview Conceptually, the Artix transformer works on XML representations of the
data passed along the wire. Your XSLT scripts are written based on the
WSDL descriptions of the message�s being processed. This relieves you of
the burden of understanding how the data on the wire is represented.

The incoming message The virtual XML document the transformer uses as input is created by using
the Artix contract to map the raw data from the input port into a DOM
facade. The mapping is done as follows:

� If the message is defined using the doc-literal styles, the transformer
uses the message part�s schema definition to create a representation of
the message.

� If the message is not defined using the doc-literal style, the transformer
does the following to build an XML representation of the message:

i. the name of the message�s root element is the QName of the
message element referred to by the operation�s input element.

ii. Each part element in the input message is placed in an element
derived from the name attribute of the part element.

iii. If the part is of a complex type, or an element of a complex type,
the type�s elements appear inside of the element containing the
part.

For example, if you had a service defined by the WSDL fragment in
Example 130 and the transformer implemented the operation configure
the XML document would be constructed using the message
oldClientInput, which is the input message.

Example 130: WSDL Fragment for Transformer

<definitions targetNamespace="vehicle.demo.example"
 xmlns:tns="vehicle.demo.example"
 ...>
 299

CHAPTER 24 | Using the Artix Transformer
When the message is reconstructed, the transformer uses the input
message�s name, given in the input element, as the name of the root
element of the XML document. It then uses the message parts and the
schema types to recreate the data as an XML message. So if the transformer
was using the contract defined in Example 130 on page 299 an input
message processed by the transformer could look like Example 131.

<types ...>
...
 <complexType name="vehicleType">
 <element name="vin" type="xsd:string" />
 <element name="model" type="xsd:string" />
 </complexType>
</types>
...
<message name="original">
 <part name="vehicle" type="xsd1:vehicleType"/>
 <part name="name" type="xsd:string"/>
</message>
<message name="transformed">
 <part name="vehicle" type="xsd:string"/>
 <part name="firstName" type="xsd:string"/>
 <part name="lastName" type="xsd:string"/>
</message>
...
<portType name="parkingLotMeter">
 <operation name="configure">
 <input name="oldClientInput" message="tns:original"/>
 <output name="updatedInput" message="tns:transformed"/>
 </operation>
...
</portType>
...

Example 130: WSDL Fragment for Transformer

Example 131: Transformer Input Message

<ns1:oldClientInput xmlns:ns1="vehicle.demo.example">
 <vehicle>
 <vin>0123456789</vin>
 <model>Prius</model>
 </vehicle>
 <name>Old MacDonald</name>
</oldClientInput>
300

WSDL Messages and the Transformer
Output message The results from the transformer goes through the reverse of the process that
turns the input message into a virtual XML document. The transformer uses
the output message definition from the Artix contract to place the result
message back onto the wire in the proper payload format. If the result
message is not properly formed this attempt will fail, so you must be careful
when writing your XSLT script to ensure that the results match the expected
format.

When the result message is deconstructed, the transformer expects the
following:

� If the output message is defined using the doc-literal style, the
message must match the schema defining the message�s part.

� If the output message is not defined using the doc-literal style, then the
following must be true:

♦ The name of the message�s root element is the QName of the
message element referred to by the output element in the Artix
contract.

♦ There are the same number of elements in the result as there are
part elements in the output message definition.

♦ The elements in the result are based on the name attributes of the
part elements in the output message definition.

♦ The data contained in the element representing the output
message�s part elements matched the XMLSchema definitions in
the contract.

For example, a result message for the configure operation defined in
Example 130 on page 299 would look like Example 132.

Example 132: Transformer Output Message

<ns1:updatedInput xmlns:ns1="vehicle.demo.example">>
 <vehicle>Prius</vehicle>
 <firstName>Old</firstName>
 <lastName>MacDonald</lastName>
</updatedInput>
 301

CHAPTER 24 | Using the Artix Transformer
Using element names You can configure the transformer to use the element name of the message
parts instead of the value of the part element�s name attribute. For more
information see Configuring and Deploying Artix Solutions.
302

../deploy/index.htm

Writing XSLT Scripts
Writing XSLT Scripts

Overview XML Stylesheet Language Transformations(XSLT) is a language used to
describe the transformation of XML documents. The current W3C standard
for XSLT is 1.0 and can be read at the W3C web site
(http://www.w3.org/TR/xslt). XSLT documents, called scripts, are
well-formed XML documents that describe how a source XML document is
transformed into a resulting XML document. It can be used to perform tasks
as simple as splitting a name entry into first and last name entries and as
complex as validating that a complex XML document matches the
expectations of an interface described in a WSDL document.

Procedure Writing an XSLT script can be done in a number of ways and using a
number of tools. The steps given here assume that you are writing fairly
simple scripts using a text editor.

To write a XSLT script you:

1. Create an XML stylesheet with the required <xsl:transform> element.

2. Determine which elements in your source message need to be
processed and create <xsd:template> elements for each of them.

3. For each element that has a matching template element, define how
you want the element processed to produce a new output document.

4. If child elements need to be processed as part of processing a parent
element, define a template for the child element and apply it as part of
the parent element�s template using <xsd:apply-templates>.

In this section This section discusses the following topics:

Elements of an XSLT Script page 304

XSLT Templates page 306

Common XSLT Functions page 312
 303

http://www.w3.org/TR/xslt

CHAPTER 24 | Using the Artix Transformer
Elements of an XSLT Script

Overview An XSLT script is essentially an XML stylesheet containing a special set of
elements that instruct an XSLT engine in the processing of other XML
documents. An XSLT script must be defined in an <xsl:transform> element
or an <xsl:stylesheet> element. In addition, it needs at least one valid
top-level element to define the transformation.

The transform element The <xsl:transform> element denotes that the document is an XML
stylesheet. The <xsl:stylesheet> element can be used in place of the
<xsl:transform> element. They are equivalent.

When creating an XSLT script you must set the version attribute to 1.0 to
inform the transformer what version of XSLT you are using. In addition, you
must provide an XML namespace shortcut for the XSLT namespace in the
<xsl:transform> element. Example 133 shows a valid <xsl:transform>
element for an XSLT script.

Top level elements While all that is needed to make an XML document a valid XSLT script is
the <xsl:transform> element, the <xsl:transform> element does not
provide any instructions for processing data. The data processing
instructions in an XSLT script are provided by a number of top-level XSLT
elements. These element�s include:

� xsl:import
� xsl:include
� xsl:strip-space
� xsl:preserve-space
� xsl:output
� xsl:key
� xsl:decimal-format
� xsl:namespace-alias
� xsl:attribute-set

Example 133: XSLT Script Stylesheet Element

<xsl:transform version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
...
</stylesheet>
304

Writing XSLT Scripts
� xsl:variable
� xsl:param
� xsl:template

An XSLT script can have any number and combination of top-level elements.
Other than xsl:import, which must occur before any other elements, the
top-level elements can be used in any order. However, be aware that the
order determines the order in which processing steps happen.

Example Example 134 shows a simple XSLT script that transforms SSN elements into
acctNum elements.

Using this XSLT script the transformer would change a message that
contained <SSN>012457890</SSN> into a message that contained
<acctNum>012457890</acctNum>.

Example 134: Simple XSLT Script

<xsl:transform version = '1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
 <xsl:template match="SSN">
 <acctNum>
 <xsl:value-of select="."/>
 </acctNum>
 </xsl:template>
</xsl:stylesheet>
 305

CHAPTER 24 | Using the Artix Transformer
XSLT Templates

Overview XSLT processors use templates to determine the elements on which to apply
a set of transformations. Documents are processed from the top element
through their structure to determine if elements match a defined template. If
a match is found, the rules specified by the template are applied.

To write a template in XSLT:

1. Create an <xsl:template> element.

2. Provide the path to the source element it processes.

3. Write the processing rules.

xsl:template elements Templates are defined using <xsl:template> elements. These elements
take one required attribute, match, which specifies the source element that
triggers the rules. In addition, you can use the name attribute to give the
template a unique identifier for referencing it elsewhere in the contract.

Specifying source elements You specify the elements of the source document to which template rules
are matched using the match attribute of the xsl:template element. The
source elements are specified using the syntax specified by the XPath
specification (http://www.w3.org/TR/xpath). The source element address
looks very similar to a file path where slash(/) specifies the root element and
child elements are listed in top down order separated by a slash(/). For
example to specify the surname element of the XML document shown in
Example 135, you would specify it as /name/surname.

Example 135: Sample XML Document

<name>
 <firstname>
 Joe
 </firstname>
 <surname>
 Friday
 </surname>
<name>
306

http://www.w3.org/TR/xpath

Writing XSLT Scripts
Template matching order XSLT processors start processing with the <xsl:template match="/">
element if it is present. All of the processing directives for this template act
on the top-level elements of the source document. For example, given the
XML document shown in Example 135 on page 306 any processing rules
specified in <xsl:template match="/"> would apply to the name element. In
addition, specifying a template for the root element(/) forces you to make all
your source element paths explicit from the root element. The XSLT script
shown in Example 136 generates the string Friday when run on
Example 135 on page 306.

You do not need to specify a template for the root element of the source
document in an XSLT script. When you omit the root element�s template the
processor treats all template paths as though they originated from the
source documents top level element. The XSLT script in Example 137
generates the same output as the script in Example 136.

Template rules The contents of an <xsl:template> element define how the source
document is processed to produce an output document. You can use a
combination of XSLT elements, HTML, and text to define the processing
rules. Any plain text and HTML that are used in the processing rules are
placed directly into the output document. For example, if you wanted to
generate an HTML document from an XML document you would use an
XSLT script that included HTML tags as part of its processing rules. The

Example 136: XSLT Script with Root Element Template

<xsl:transform version = '1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
 <xsl:template match="/">
 <xsl:value-of select="/name/surname"/>
 </xsl:template>
</xsl:transform>

Example 137: XSLT Script without Root Element Template

<xsl:transform version = '1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
 <xsl:template match="surname">
 <xsl:value-of select="."/>
 </xsl:template>
</xsl:transform>
 307

CHAPTER 24 | Using the Artix Transformer
script in Example 138 takes an XML document with a title element and a
subTitle element and produces an HTML document where the contents of
title are displayed using the <h1> style and the contents of subTitle are
displayed using the <h2> style.

Applying templates to child
elements

You can instruct the XSLT processor to apply any templates defined in the
script to the children of the element being processed using an
xsl:apply-templates element as one of the rules in a template.
xsl:apply-templates instructs the XSLT processor to treat the current
element as a root element and run the templates in the script against it.

For example you could rewrite Example 138 as shown in Example 139
using xsl:apply-templates and defining a template for the title and
subTitle elements.

Example 138: XSLT Template with HTML

<xsl:transform version = '1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
 <xsl:template match="/">
 <h1>
 <xsl:value-of select="//title"/>
 </h1>
 <h2>
 <xsl:value-of select="//subTitle"/>
 </h2>
 </xsl:template>
</xsl:transform>

Example 139: XSLT Template Using apply-templates

<xsl:transform version = '1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
 <xsl:template match="/">
 <xsl:apply-templates/>
 </xsl:template>
 <xsl"template match="title">
 <h1>
 <xsl:value-of select="."/>
 </h1>
 </xsl:template>
308

Writing XSLT Scripts
You can use the optional select attribute to limit the child elements to
which the templates are applied. select takes an XPath value and operates
in the same manner as the match attribute of xsl:template.

Example For example, if your ordering system produced bills that looked similar to
the XML document in Example 140, you could use an XSLT script to
reformat the bill for a system that required the customer�s name in a single
element, name, and the city and state to be in a comma-separated field,
city.

 <xsl"template match="subTitle">
 <h2>
 <xsl:value-of select="."/>
 </h2>
 </xsl:template>
</xsl:transform>

Example 139: XSLT Template Using apply-templates

Example 140: Bill XML Document

<widgetBill>
 <customer>
 <firstName>
 Joe
 </firstName>
 <lastName>
 Cool
 </lastName>
 </customer>
 <address>
 <street>
 123 Main Street
 </street>
 <city>
 Hot Coffee
 </city>
 <state>
 MS
 </state>
 <zipCode>
 3942
 </zipCode>
 </address>
 309

CHAPTER 24 | Using the Artix Transformer
The XSLT script shown in Example 141 would result in the desired
transformation.

The script does the following:

1. Creates an element, widgetBill, in the output document and places
the results of the other templates as its children.

2. Creates an element, name, and sets its value to the result of the
concatenation.

 <amtDue>
 123.50
 </amtDue>
</widgetBill>

Example 140: Bill XML Document

Example 141: XSLT Script for widgetBill

<xsl:transform version = '1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

1 <xsl:template match="widgetBill">
 <xsl:element name="widgetBill">
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:template>

2 <xsl:template match="customer">
 <xsl:element name="name">
 <xsl:value-of select="concat(//firstName,� �,//lastName)"/>
 </xsl:element>
 </xsl:template>

3 <xsl:template match="address">
 <xsl:element name="address">
 <xsl:copy-of select="//street"/>
 <xsl:element name="city">
 <xsl:value-of select="concat(//city,�, �,//state)"/>
 </xsl:element>
 <xsl:copy-of select="//zipCode"/>
 </xsl:element>
 </xsl:template>

4 <xsl:template match="amtDue">
 <xsl:copy-of select="."/>
 </xsl:template>
</xsl:transform>
310

Writing XSLT Scripts
3. Creates an element, address, and sets its value to the results of the
rules. address will contain a copy of the street element from the
source document, a new element, city, that is a concatenation, and a
copy of the zipCode element from the source document.

4. Copy the amtDue element from the source document into the output
document.

Processing the document in Example 140 on page 309 with this XSLT
script would result in the XML document shown in Example 142.

Example 142: Processed Bill XML Document

<widgetBill>
 <customer>
 Joe Cool
 </customer>
 <address>
 <street>
 123 Main Street
 </street>
 <city>
 Hot Coffee, MS
 </city>
 <zipCode>
 3942
 </zipCode>
 </address>
 <amtDue>
 123.50
 </amtDue>
</widgetBill>
 311

CHAPTER 24 | Using the Artix Transformer
Common XSLT Functions

Overview XSLT provides a range of capabilities in processing XML documents. These
include conditional statements, looping, creating variables, and sorting.
However, there are a few common functions that are used to generate
output documents. These include:

� xsl:value-of

� xsl:copy-of

� xsl:element

xsl:value-of xsl:value-of creates a text node in the ouput document. It has a required
select attribute that specifies the text to be inserted into the output
document.

The value of select is evaluated as an expression describing the data to
insert. It can contain any of the XSLT string functions, such as concat(), or
an XSLT axis describing an element in the source document.

Once the select expression is evaluated the result is placed in the output
document.

xsl:copy-of xsl:copy-of copies data from the source document into the output
document. It has a required select. The value of select is an expression
describing the elements to be copied.

When the result of evaluating the expression is a tree fragment, the
complete fragment is copied into the output document. When the result is
an element, the element, its attributes, its namespaces, and its children are
copied into the output document. When the result is neither an element nor
a result tree fragment, the result is converted to a string and then inserted
into the output document.

xsl:element xsl:element creates an element in the output document. It takes a required
name attribute that specifies the name of the element that is created. In
addtion, you can specify a namespace for the element using the optional
namespace attribute.
312

CHAPTER 25

Using Codeset
Conversion
Some bindings do not natively support codeset conversion.
Artix provides WSDL extensions and a plug-in that add codeset
conversion to these bindings.

Overview While many of the bindings supported by Artix provide a means for handling
codeset conversion, some do not. It is also possible that any custom
bindings you developed do not support codeset conversion. To allow
bindings that do not natively support codeset conversion to participate in
environments where more than one codeset is used, Artix provides an i18n
message-level interceptor that will perform codeset conversion on the
message buffer before it is placed on the wire.

The i18n interceptor can be configured by defining the codeset conversion in
your endpoint�s Artix contract using an Artix port extensor. You can also
configure the i18n interceptor programmatically using the context
mechanism. The programmatic settings will override any settings described
in the contract. For more information on using the context mechanism see
the appropriate development guide for your development environment.
 313

CHAPTER 25 | Using Codeset Conversion
Configuring Artix to use the i18n
interceptor

Before your application can use the generic i18n interceptor for code
conversion you must configure the Artix bus to load the required plug-ins
and add the interceptor to the appropriate message interceptor lists. To
configure your application to use the i18n interceptor:

1. If your application includes a client that needs to use codeset
conversion, add "i18n-context:I18nInterceptorFactory" to the
binding:artix:client_message_interceptor_list variable for your
application.

2. If your application includes a service that needs to use codeset
conversion, add "i18n-context:I18nInterceptorFactory" to the
binding:artix:server_message_interceptor_list variable for your
application.

For more information on configuring Artix see Configuring and Deploying
Artix Solutions.

Describing the codeset
conversions in the contract

You define the codeset conversions performed by the i18n interceptor in the
port element defining an endpoint. There are two extensors used to define
the codeset conversions. One, i18n-context:server, is for service providers
and the other, i18n-context:client, is for clients. They both provide
settings for how both incoming messages and outgoing messages are to be
encoded. These extensions are defined in the namespace
"http://schemas.iona.com/bus/i18n/context".

To define the codeset conversions performed by the i18n interceptor:

1. Add the following line to the definitions element of your contract.

2. If your application provides a service that requires codeset conversion
add a i18n-context:server element to the port definition of the
service endpoint.

i18n-context:server has the following attributes for defining how
message codesets are converted:

♦ LocalCodeSet specifies the server�s native codeset. Default is the
codeset specified by the local system�s locale setting.

xmlns:i18n-context="http://schemas.iona.com/bus/i18n/context"
314

../deploy/index.htm
../deploy/index.htm

♦ OutboundCodeSet specifies the codeset into which replies are
converted. Default is the codeset specified in InboundCodeSet.

♦ InboundCodeSet specifies the codeset into which requests are
converted. Default is the codeset specified in LocalCodeSet.

3. If your application includes a client that requires codeset conversion
add an i18n-context:client element to the port definition of the
service endpoint.

i18n-context:client has the following attributes for defining how
message codesets are converted:

♦ LocalCodeSet specifies the server�s native codeset. Default is the
codeset specified by the local system�s locale setting.

♦ OutboundCodeSet specifies the codeset into which requests are
converted. Default is the codeset specified in LocalCodeSet.

♦ InboundCodeSet specifies the codeset into which replies are
converted. Default is the codeset specified in OutboundCodeSet.

Example The contract fragment in Example 143 shows a port definition for an
endpoint that defines a server/client pair. The server uses UTF-8 as its local
codeset and the client uses ISO-8859-1 as its local codeset.

Using the endpoint definition above, the client will convert its requests into
UTF-8 before sending them to the server. The server will convert its replies
into ISO-8859-1 before sending them to the client. The client�s

Example 143: Specifying Codeset Conversion

...
<service name="covertedService">
 <port binding="tns:convertedFixedBinding"
 name="convertedPort">
 <http:address location="localhost:0"/>
 <i18n:client LocalCodeSet="ISO-8859-1"
 OutboundCodeSet="UTF-8"
 InboundCodeSet="ISO-8859-1"/>
 <i18n:server LocalCodeSet="UTF-8"
 OutboundCodeSet="ISO-8859-1"/>
 </port>
</service>
...
 315

CHAPTER 25 | Using Codeset Conversion
InboundCodeSet is set to ISO-8859-1 because if left unset the value would
have defaulted to UTF-8. The client would then perform an extra
conversion.
316

Index

A
ActiveMQ 248
Address specification

CORBA 285
HTTP 193
IIOP 213
SOAP 1.1 192
SOAP 1.2 192

B
bindings

CORBA 280
fixed record length 92
FML field tables 84
G2++ 177
SOAP with Attachments 69
tagged 110
TibrvMsg 125
XML 166

C
complex types

all type 29
TibrvMsg mapping 134

choice type 29
TibrvMsg mapping 134

elements 29
occurence contstraints 30
sequence type 29

TibrvMsg mapping 133
configuring IIOP 214
corba:address 285
corba:binding 280

bases 280
repositoryID 280

corba:operation 280
name 280

corba:param 280
idltype 281
mode 281
name 281

corba:policy 286

persistent 286
poaname 286
serviceid 286

corba:raises 281
exception 281

corba:return 281
idltype 281
name 281

corba:typemap 278

D
durable subscriptions 243

F
FilenameFactoryPropertyMetaData 273

name 273
readOnly 273
valueSet 273

fixed:binding 93
encoding 93
justification 93
padHexCode 93

fixed:body 94
encoding 94
justification 94
padHexCode 94

fixed:enumeration 98
fixedValue 98
value 98

fixed:field 95
bindingOnly 95
fixedValue 97
format 96
justification 97
size 95

fixed:operation 93
discriminator 94

fixed:sequence 102
counterName 102
occurs 102

ftp:port 260
connectMode 261
 317

INDEX
host 260
port 260
replyLocation 261
requestLocation 260
scanInsterval 261

ftp:properties 261, 269, 271
ftp:property 261, 264, 268, 271

name 261, 271
value 261, 271

FTPProperties 272
getExtensors() 272

FTPProperty 272
FTP Transport

client filename factory 263
reply lifecycle policy 265
request lifecycle policy 269
server filename factory 267

H
http:address 193

location 193
http-conf:client 199, 202

CacheControl 208
Conneciton 204
ReceiveTimeout 200
SendTimeout 200
UserName 202

http-conf:server 199
CacheControl 207
HonorKeepAlive 204
ReceiveTimeout 200
SendTimeout 200

I
i18n-context:client 314

InboundCodeSet 315
LocalCodeSet 315
OutboundCodeSet 315

i18n-context:server 314
InboundCodeSet 315
LocalCodeSet 314
OutboundCodeSet 315

iiop:address 213
iiop:payload 214
iiop:policy 214

persistent 215
poaname 215
serviceid 215

IOR specification 213, 285

J
Java Messaging System 236
Java Naming and Directory Interface 236
JMS 236
jms:address 238

connectionPassword attribute 238
connectionUserName attribute 238
destinationStyle attribute 238
durableSubscriberName 243
jndiConnectionFactoryName attribute 238
jndiDestinationName attribute 238
jndiReplyDestinationName attribute 238
messageSelector 243
transactional 244

jms:client 242
messageType attribute 242

jms:JMSNamingProperties
name attribute 239
value attribute 239

jms:JMSNamingProperty 239
jms:server 243

durableSubscriberName attribute 243
messageSelector attribute 243
transactional attribute 243
useMessageIDAsCorrealationID attribute 243

JNDI 236

M
mime:content 69

part 69
type 69

mime:multipartRelated 68
mime:part 68, 69

name 69
mq:client 220

AliasQueueName 228
Delievery 230
Format 232
Server_Client 226
Transactional 230

mq:server 220
Delivery 230
Format 232
Server_Client 226
Transactional 230
318

INDEX
N
NMTOKEN

TibrvMsg mapping 135

P
plugins:ftp:policy:client:filenameFactory 265
plugins:ftp:policy:client:replyFileLifecycle 265
plugins:ftp:policy:server:filenameFactory 270
plugins:ftp:policy:server:requestFileLifecycle 270

R
rmi:address 172
rmi:class 172

name 172
RPC style design 42

S
soap:address 192

location 192
soap:body

parts 64
soap:header 63

encodingStyle 63
message 63
namespace 63
part 63
use 63

Specifying POA policies 214, 286

T
tagged:binding 111
tagged:body 113
tagged:case 116
tagged:choice 116
tagged:enumeration 113
tagged:field 113
tagged:operation 112
tagged:sequence 114
tibrv:array 137
tibrv:binding 126

stringAsOpaque 126
stringEncoding 126

tibrv:context 161
tibrv:field 159
tibrv:input 127
tibrv:msg 159
tibrv:operation 127

tibrv:output 128
messageNameFieldPath 128
messageNameFieldValue 129
stringAsOpaque 129
stringEncoding 129

tibrv:port 250
serverSubject 250

tuxedo:binding 89
tuxedo:field 89

id 89
name 89

tuxedo:fieldTable 89
tuxedo:input 255

operation 255
tuxedo:operation 89
tuxedo:server 255
tuxedo:service 255

name 255

W
WebSphere MQ

Format
working with mainframes 233

wrapped document style 43
WSDL 15

binding element 16, 56
name attribute 56

definitions element 16, 68
message element 16, 41
operation element 16
part element 44

element attribute 44
name attribute 44
type attribute 44

port element 17, 188
binding attribute 188

portType element 16, 48
schema element 23

targetNamespace attribute 24
service element 16, 188

name attribute 188
types element 16, 23

WSDL design
RPC style 42
wrapped document style 43

wsdltocorba 279, 289
wsdltoservice

adding a CORBA service 287
adding a JMS service 245
 319

INDEX
adding an HTTP service 193
adding an IIOP service 215
adding a TIBCO service 250
adding a Tuxedo service 256
adding a WebSphere MQ service 221

wsdltosoap 60, 74
wsoap12

header
encodingStyle 78
use 78

wsoap12:address 192
location 192

wsoap12:body
parts 78

wsoap12:header 77
message 77
namespace 78
part 77

X
xformat:binding 166

rootNode 166
xformat:body 166

rootNode 166
XMLSchema 21

all element 29
choice element 29
complexType element 28
element element 29

maxOccurs attribute 30
minOcurrs attribute 30
name attribute 30
type attribute 30

sequence element 29
XML Stylesheet Language Transformations 303
XPath 306
xsl:apply-templates 308

select 309
xsl:copy-of 312

select 312
xsl:element 312

name 312
namespace 312

xsl:stylesheet 304
xsl:template 306

match 306
xsl:transform 304
xsl:value-of 312

select 312
XSLT 303
320

	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	The Artix Documentation Library

	List of Figures
	List of Tables
	Introduction
	Introducing Artix Contracts
	Defining Logical Data Units
	Mapping Data into Logical Data Units
	Adding Data Units to a Contract
	XMLSchema Simple Types
	Defining Complex Data Types
	Defining Data Structures
	Defining Arrays
	Defining Types by Extension
	Defining Types by Restriction
	Defining Enumerated Types

	Defining Elements

	Defining Logical Messages Used by a Service
	Defining Your Logical Interfaces

	Bindings
	Understanding Bindings in WSDL
	Using SOAP 1.1 Messages
	Adding a SOAP 1.1 Binding
	Adding SOAP Headers to a SOAP 1.1 Binding
	Sending Data Using SOAP with Attachments

	Using SOAP 1.2 Messages
	Adding a SOAP 1.2 Binding
	Adding Headers to a SOAP 1.2 Message

	Using Tuxedo’s FML Buffers
	Using Fixed Length Records
	Using Tagged Data
	Using Tibco Rendezvous Messages
	Defining a TibrvMsg Binding
	Artix Default Mappings for TibrvMsg
	Defining Array Mapping Policies
	Defining a Custom TibrvMsg Mapping
	Adding Context Information to a TibrvMsg

	Using XML Documents
	Using RMI
	Using G2++ Messages

	Transports
	Understanding How Endpoints are Defined WSDL
	Using HTTP
	Adding an HTTP Endpoint to a Contract
	Configuring an HTTP Endpoint
	Specifying Send and Receive Timeout Limits
	Specifying a Username and a Password
	Configuring Keep-Alive Behavior
	Specifying Cache Control Directives

	Managing Cookies in Artix Clients

	Using IIOP
	Using WebSphere MQ
	Adding a WebSphere MQ Endpoint
	Specifying the WebSphere Library to Load
	Using Queues on Remote Hosts
	Using WebSphere MQ’s Transaction Features
	Setting a Value of the Message Descriptor’s Format Field

	Using the Java Messaging System
	Defining a JMS Endpoint
	Basic Endpoint Configuration
	Client Endpoint Configuration
	Server Endpoint Configuration
	Using the Command Line Tool

	Migrating to the 4.x JMS WSDL Extensions
	Using ActiveMQ as Your JMS Provider

	Using TIBCO Rendezvous
	Using Tuxedo
	Using FTP
	Adding an FTP Endpoint
	Coordinating Requests and Responses
	Implementing the Client’s Coordination Logic
	Implementing the Server’s Coordination Logic
	Using Properties to Control Coordination Behavior

	Other Artix Features
	Working with CORBA
	Adding a CORBA Binding
	Creating a CORBA Endpoint
	Configuring an Artix CORBA Endpoint
	Generating CORBA IDL

	Using the Artix Transformer
	Using the Artix Transformer as a Service
	Using Artix to Facilitate Interface Versioning
	WSDL Messages and the Transformer
	Writing XSLT Scripts
	Elements of an XSLT Script
	XSLT Templates
	Common XSLT Functions

	Using Codeset Conversion

	Index

