
Router Guide
Version 4.2, March 2007

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work Together,
Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus are
trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2007 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: February 23, 2007

Contents

List of Figures 5

List of Tables 7

Preface 9
What is Covered in this Book 9
Who Should Read this Book 9
How to Use this Book 9
The Artix Documentation Library 10

Chapter 1 Introduction 11
Features of the Routing Service 12
Routing Contracts 14
Router Deployment Patterns 16

Chapter 2 Compatibility of Ports and Operations 19

Chapter 3 Creating a Basic Route 23

Chapter 4 Adding Operation-Based Rules to a Route 27

Chapter 5 Adding Attribute-Based Rules to a Route 31

Chapter 6 Adding Content-Based Rules to a Route 35
The Router�s Message Representation 37
Specifying Evaluation Expressions 41
Adding a Content-Based Rule to a Route 43

Chapter 7 Using Advanced Routing Features 45
Load Balancing 46
Message Broadcasting 47
 3

CONTENTS
Failover Routing 49

Chapter 8 Linking Routes 51

Chapter 9 Creating Routes Using Artix Tools 55
Creating Routes with Artix Designer 56
Creating Routes from the Command Line 57

Chapter 10 Deploying an Artix Router 61
Enabling Artix Routing 62
Configuring an Artix Router 64
Deploying a Router Using a Deployment Descriptor 67
Optimizing Router Performance 71

Chapter 11 Routing Messages Containing Endpoint References 73
Service Lifecycles 74
Routing References to Transient Servants 76

Chapter 12 Error Handling 79

Index 81
4

List of Figures

Figure 1: Using Multiple Artix Routers for Single Routes 16

Figure 2: Using a Single Artix Router for Multiple Routes 17
 5

LIST OF FIGURES
 6

List of Tables

Table 1: Required Attributes for routing:source 24

Table 2: Required Attributes for routing:destination 24

Table 3: Required Attributes for Attribute Selection Elements 32

Table 4: Context QNames 32

Table 5: Required Attributes for routing:expression 41

Table 6: Context Names Used with wsdltorouting 58

Table 7: Conditions Used with wsdltorouting 58
 7

LIST OF TABLES
 8

Preface
What is Covered in this Book
This book discusses how to use the Artix routing service. It covers how the
routing service directs message, the WSDL extensions used to define routing
rules, and how to deploy an instance of the routing service.

Who Should Read this Book
This book is intended for any user who needs to use the Artix routing service
to connect endpoints in a SOA. It is expected that the reader have a basic
understanding of Service Oriented design concepts and WSDL.

How to Use this Book
If you are new to Artix or just want an overview of the routing service you
should read the �Introduction�.

If you are interested in learning how to write routing rules you should read
the following chapters:

� �Compatibility of Ports and Operations�

� �Creating a Basic Route�

� �Adding Operation-Based Rules to a Route�

� �Adding Attribute-Based Rules to a Route�

� �Adding Content-Based Rules to a Route�

� �Linking Routes�

� �Creating Routes Using Artix Tools�

If you are interested in configuring the routing service and optimizing its
performance you should read the following chapters:

� �Deploying an Artix Router�
 9

PREFACE
� �Routing Messages Containing Endpoint References�

If you are interested in using the advanced features of the router you should
read �Using Advanced Routing Features�.

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the
Artix Library.
 10

../library_intro/index.htm
../library_intro/index.htm

CHAPTER 1

Introduction
The Artix routing service provides message routing based on
operations, ports, message attributes, or message content.

In this chapter This chapter discusses the following topics:

Features of the Routing Service page 12

Routing Contracts page 14

Router Deployment Patterns page 16
 11

CHAPTER 1 | Introduction
Features of the Routing Service

Overview An Artix router redirects messages based on rules defined in an Artix
contract. The routing functionality is provided by an Artix plug-in and
configuration. This means that neither the client nor the server endpoints
need to be modified, nor are they are aware that routing is occurring. An
Artix router is sometimes referred to as an Artix switch.

Routes The most basic Artix routes are between two endpoints that are described by
the port element of a WSDL contract. You can refine your routes using the
following types of additional rules:

� Operation-based

� Attribute-based

� Content-based

Operation-based Operation-based rules allow you to refine a route by specifying a particular
operation on which the router will filter messages. By adding an
operation-based rule to a route, you direct the router to only act upon
messages that originate due to an invocation on a particular operation of the
specified port. Messages are routed between logical operations whose
arguments are equivalent.

For more information see �Adding Operation-Based Rules to a Route� on
page 27.

Attribute-based Attribute-based routing rules allow you to refine a routing by specifying
values in the message header to be inspected. By adding attribute-based
rules to a route, you can direct the router to only redirect messages based on
certain values specified in the message header.

For more information see �Adding Attribute-Based Rules to a Route� on
page 31.
12

Features of the Routing Service
Content-based Content-based routing rules allow to refine a route by inspecting the
contents a message. Adding a content-based rule lets you route messages
based on the value of particular elements of a message. The routes are
defined using simple XPATH expressions that query the message content
and select a destination based on the result.

For more information see �Adding Content-Based Rules to a Route� on
page 35.

Advanced features In addition, you can specify routes that give you the following advanced
capabilities:

� Failover

� Load balancing

� Message broadcasting (fanout)

For more information see �Using Advanced Routing Features� on page 45.
 13

CHAPTER 1 | Introduction
Routing Contracts

Overview A router's contract must include definitions for the source services and
destination services. The contract also defines the routes that connect the
source endpoints to the destination endpoints. These routing rules is all that
is required to implement a route.

Routing contract requirements A contract for the routing service is very similar to a contract for any other
Artix service. It is a WSDL document that defines the types, interfaces, data
mappings, and networking information that defines an endpoint. Because
the routing service bridges two, or more endpoints, it requires that all of the
information for the endpoints it bridges are defined. In addition, a routing
service contract contains information specifying the routing rules for
connecting the defined endpoints.

A contract for the routing service must specify the following:

� all of the types passed between all of the endpoints being connected.

� all of the messages that can be passed between the endpoints being
connected.

� an interface definition for each of the endpoints being connected.

� a binding definition for each endpoint being connected.

� the connection information for all of the endpoints being connected.

� at least one set of routing rules to define how messages are routed
between the connected endpoints.

Note: A routing service contract may have only one interface
definition because multiple endpoints can share the same interface.
14

Routing Contracts
Routing namespace The WSDL extension used to specify routes in an Artix contract are defined
in the namespace http://schemas.iona.com/routing. When describing
routes in an Artix contract you must add the following to your contract�s
definition element:

Common routing extensions The most commonly used of the routing extensions are:

routing:route is the root element of any route defined in the contract.

routing:source specifies the port that acts as the source for messages that
are to be routed.

routing:destination specifies the port to which messages will be routed.

You do not need to do any programming and your applications need not be
aware that any routing is taking place.

<definitions ...
 xmlns:routing="http://schemas.iona.com/routing"
 ...>
 15

CHAPTER 1 | Introduction
Router Deployment Patterns

Overview An Artix router does not require that any Artix-specific code be compiled or
linked into existing applications. An Artix router is created by loading the
Artix routing plug-in into an Artix process. The recommended way to deploy
a router is to use the Artix container (see Deploying Artix Solutions).

Artix router can be deployed in a number of ways. Two common deployment
patterns are:

� Deploying multiple routers�each bridging between two applications.

� Deploying one router�it bridges between all applications in a domain.

Deploying multiple routers This approach simplifies designing integration solutions, and provides faster
processing of each message (shown in Figure 1). Using this approach, the
Artix contract describing the interaction of the applications is simpler. It
contains only the logical interfaces shared by the two applications, the
bindings for each payload format, and the routing rules.

Because most applications use only one network transport, the number of
ports is minimal and the routing rules are simple. Keeping the contract
simple also enhances the performance of each router because it has less
processing to do. In this approach, each router�s resource usage can be
limited by tailoring its configuration to optimize the router for the integration
task that it is responsible for.

Figure 1: Using Multiple Artix Routers for Single Routes
16

Router Deployment Patterns
Deploying one router This approach limits the number of external services required in your
deployment environment (shown in Figure 2). This can simplify monitoring
and installation of deployments. It also reduces the number of moving parts
in an integration solution.

Using this approach, you can use a single WSDL contract that includes all
the information for all routes. In this case, the contract information that
describes the interaction of the applications is more complex. It contains the
logical interfaces shared by multiple applications, the bindings for each
payload format, and the routing rules.

Alternatively, you can also specify that a single router uses multiple WSDL
files, each of which describes a single route, or a number of routes. These
could be the same WSDL contracts used in multiple router deployment,
however, they are all deployed in the same router process. The configuration
that identifies the WSDL file containing the routing details is specified using
a list, which can include a collection of multiple WSDL files. For more
information, see �Configuring an Artix Router� on page 64.

Figure 2: Using a Single Artix Router for Multiple Routes
 17

CHAPTER 1 | Introduction
18

CHAPTER 2

Compatibility of
Ports and
Operations
The source endpoint and destination endpoint of a route must
be able to consume the routed messages.

Overview The routing service can route messages between endpoints that expect
similar messages. The endpoints can use different message transports and
different payload formats, but the messages must be logically identical. For
example, if you have a baseball scoring service that is hosted on a
mainframe, it might send data using fixed record length fields over a
WebSphere MQ queue. Using a router, you can route the score data to a
reporting service that consumes SOAP messages over HTTP.

Using the most basic routing rules, the destination endpoint must have a
matching logical operation defined for each of the logical operations defined
for the source endpoint. If you add an operation-based rule, the restriction
on the endpoints is relaxed. The source endpoint and the destination
endpoint must have one logical operation that uses messages with the same
logical description.
 19

CHAPTER 2 | Compatibility of Ports and Operations
Routing between endpoints Routing between endpoints is rough grained in that the routing rules are
defined on the port elements of an Artix contract and do not look at the
individual logical operations defined in the logical interface, defined by a
portType element, for which the port element defines an endpoint.
Therefore, basic routing rules require that the endpoints between which
messages are routed must have compatible logical interface descriptions.

For two endpoints to have compatible logical interfaces the following
conditions must be met:

� The portType element defining the destination�s logical interface must
contain a matching operation element for each operation element in
the portType element defining the source�s logical interface. Matching
operation elements must have the same value in their name attribute.

� Each of the matching operation elements must have the same
number of input, output, and fault elements.

� Each of the matching operation elements� input elements must be
associated to a logical message, defined by a message element, whose
sequence of part elements have matching types.

� Each of the matching operation elements� output elements must be
associated to a logical message whose sequence of part elements have
matching types.

� Each of the matching operation elements� fault elements must be
associated to a logical message whose sequence of part elements have
matching types.

For example, given the two logical interfaces defined in Example 1 you
could construct a route from an endpoint bound to baseballScorePortType
to an endpoint bound to baseballGamePortType. However, you could not
create a route from an endpoint bound to finalScorePortType to an
endpoint bound to baseballGamePortType because the message types used
for the getScore operation do not match.

Example 1: Logical interface compatibility example

<message name="scoreRequest>
 <part name="gameNumber" type="xsd:int"/>
</message>
20

Routing between operations Operation-based routing rules check for compatibility based on the
operation elements of an endpoint�s logical interface description. Therefore,
messages can be routed between any two compatible logical operations.

The following conditions must be met for operations to be compatible:

� The operations must have the same number of input, output, and
fault elements.

<message name="baseballScore">
 <part name="homeTeam" type="xsd:int"/>
 <part name="awayTeam" type="xsd:int"/>
 <part name="final" type="xsd:boolean"/>
</message>
<message name="finalScore">
 <part name="home" type="xsd:int"/>
 <part name="away" type="xsd:int"/>
 <part name="winningTeam" type="xsd:string"/>
</message>
<message name="winner">
 <part name="winningTeam" type="xsd:string"/>
</message>
<portType name="baseballGamePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:basballScore" name="baseballScore"/>
 </operation>
 <operation name="getWinner">
 <input message="tns:scoreRequest" name="winnerRequest"/>
 <output message="tns:winner" name="winner"/>
 </operation>
</portType>
<portType name="baseballScorePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:basballScore" name="baseballScore"/>
 </operation>
</portType>
<portType name="finalScorePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:finalScore" name="finalScore"/>
 </operation>
</portType>

Example 1: Logical interface compatibility example
 21

CHAPTER 2 | Compatibility of Ports and Operations
� The logical messages must have the same sequence of part types.

For example, if you added the logical interface in Example 2 to the
interfaces in Example 1 on page 20, you could specify a route from
getFinalScore defined in fullScorePortType to getScore defined in
finalScorePortType. You could also define a route from getScore defined
in fullScorePortType to getScore defined in baseballScorePortType.

Example 2: Operation-based routing interface

<portType name="fullScorePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:basballScore" name="baseballScore"/>
 </operation>
 <operation name="getFinalScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:finalScore" name="finalScore"/>
 </operation>
</portType>
22

CHAPTER 3

Creating a Basic
Route
The simplest route directs messages between two endpoints
without any conditions.

Overview Basic routing rules simply specify the source endpoint, or endpoints, for the
messages and the destination endpoint to which messages are routed. All
messages received by the source endpoint are routed to the destination
endpoint.

To describe a basic routing rule you use three elements:

� routing:route

� routing:source

� routing:destination

routing:route The routing:route element is the root element of each route you describe
in your contract. It takes one required attribute, name, that specifies a unique
identifier for the route. The routing:route element also has an optional
attribute, multiRoute, which is discussed in �Using Advanced Routing
Features� on page 45.
 23

CHAPTER 3 | Creating a Basic Route
routing:source The routing:source element specifies the endpoint on which the route
listens for messages. A route can have several routing:source elements as
long as they all meet the compatibility rules discussed in �Routing between
endpoints� on page 20.

The routing:source element requires two attributes described in Table 1.

routing:destination The routing:destination element specifies the endpoint to which the
source messages are routed. The destination endpoint must be compatible
with the source endpoint. For a discussion of the compatibility rules see
�Routing between endpoints� on page 20.

In standard routing only one destination is allowed per route. Multiple
destinations are allowed in conjunction with the rouitng:route element�s
multiRoute attribute that is discussed in �Using Advanced Routing
Features� on page 45.

The routing:destination element requires two attributes described in
Table 2..

Table 1: Required Attributes for routing:source

Attribute Description

service Specifies the name of the service element in which
the source endpoint is defined.

port Specifies the name of the port element defining the
source endpoint.

Table 2: Required Attributes for routing:destination

Attribute Description

service Specifies the name of the service element in which
the destination endpoint is defined.

port Specifies the name of the port element defining the
destination endpoint.
24

Example For example, to define a route from baseballScorePortType to
baseballGamePortType, defined in Example 1 on page 20, your Artix
contract would contain the elements in Example 3.

There are two sections to the contract fragment shown in Example 3:

1. The logical interfaces must be bound to physical ports in service
elements of the Artix contract.

2. The route, baseballRoute, is defined with the appropriate service and
port attributes.

Example 3: Port-based routing example

1 <service name="baseballScoreService">
 <port binding="tns:baseballScoreBinding"
 name="baseballScorePort">
 <soap:address location="http://localhost:8991"/>
 </port>
</service>
<service name="baseballGameService">
 <port binding="tns:baseballGameBinding"
 name="baseballGamePort">
 <tibrv:port serverSubject="com.mycompany.baseball"/>
 </port>
</service>

2 <routing:route name="baseballRoute">
 <routing:source service="tns:baseballScoreService"
 port="tns:baseballScorePort"/>
 <routing:destination service="tns:baseballGameService"
 port="tns:baseballGamePort"/>
</routing:route>
 25

CHAPTER 3 | Creating a Basic Route
26

CHAPTER 4

Adding
Operation-Based
Rules to a Route
Operation-based rules narrow the scope used to define the
source of the messages to a specific operation.

Overview Operation-based routing rules refine a route by narrowing the source of
routed messages to specific logical operation. Any message not related to
the specified logical operation will be unaffected by the route.

Adding an operation-based rule To specify an operation-based routing rule you need to specify one
additional element to your route description: routing:operation. The
routing:operation element takes one required attribute, name, that
specifies the value of the name attribute of an operation element in the
source endpoint�s logical interface. The specified operation element
becomes the source of messages that are routed. Messages corresponding
to other logical operations will not be routed.

The routing:operation element also has one optional attribute, target,
that specifies the value of the name attribute of an operation element in the
destination endpoint�s logical interface. The specified operation element
becomes the destination of messages redirected by the route. If a target is
specified, messages are routed between the two operations. If no target is
 27

CHAPTER 4 | Adding Operation-Based Rules to a Route
specified, the source operation�s name is used as the name of the target
operation. The source and target operations must meet the compatibility
requirements discussed in �Routing between operations� on page 21.

You can specify any number of routing:operation elements in a route.
They must be specified after all of the routing:source elements and before
any routing:destination elements.

How operation-based rules are
applied

Operation-based routing rules apply to all of the routing:source elements
in the route. Therefore, if an operation-based routing rule is specified, a
message will be routed if all of the following are true:

� The message is received from one of the endpoints specified in a
routing:source element.

� The operation name associated with the received message is specified
in one of the routing:operation elements.

If there are multiple operation-based rules in the route, the message will be
routed to the destination specified by the first the matching operation�s
target attribute.

Example For example, to route messages from the getFinalScore operation defined
in fullScorePortType, shown in Example 2 on page 22, to the getScore
operation defined in finalScorePortType, shown in Example 1 on page 20,
your Artix contract would contain the elements in Example 4.

Example 4: Operation to Operation Routing

1 <service name="fullScoreService">
 <port binding="tns:fullScoreBinding"
 name="fullScorePort">
 <mq:server QueueManager="BBQM"
 QueueName="MLBQueue"
 ReplyQueueManager="BBRQM"
 ReplyQueueName="MLBScoreQueue"/>
 </port>
</service>
<service name="finalScoreSerice">
 <port binding="tns:finalScoreBinding"
 name="finalScorePort">
 <soap:address location="http://artie.com/finalScoreServer"/>
 </port>
</service>
28

There are two sections to the contract fragment shown in Example 4:

1. The logical interfaces must be bound to physical endpoints in service
elements of the Artix contract.

2. The route, scoreRoute, is defined using the routing:operation
element.

You could also create a route between the operation getScore, defined in
baseballGamePortType, and an endpoint bound to baseballScorePortType.
See Example 1 on page 20.The resulting contract would include the
fragment shown in Example 5.

2 <routing:route name="scoreRoute">
 <routing:source service="tns:fullScoreService"
 port="tns:fullScorePort"/>
 <routing:operation name="getFinalScore" target="getScore"/>
 <routing:destination service="tns:finalScoreService"
 port="tns:finalScorePort"/>
</routing:route>

Example 4: Operation to Operation Routing

Example 5: Operation to Port Routing Example

<service name="baseballGameService">
 <port binding="tns:baseballGameBinding"
 name="baseballGamePort">
 <soap:address location="http://localhost:8991"/>
 </port>
</service>
<service name="baseballScoreService">
 <port binding="tns:baseballScoreBinding"
 name="baseballScorePort">
 <iiop:address location="file:\\score.ref"/>
 </port>
</service>
<routing:route name="scoreRoute">
 <routing:source service="tns:baseballGameService"
 port="tns:baseballGamePort"/>
 <routing:operation name="getScore"/>
 <routing:destination service="tns:baseballScoreService"
 port="tns:baseballScorePort"/>
</routing:route>
 29

CHAPTER 4 | Adding Operation-Based Rules to a Route
Note that the routing:operation element only uses the name attribute. In
this case the logical interface bound to baseballScorePort,
baseballScorePortType, must contain an operation getScore that has
matching messages as discussed in �Routing between operations� on
page 21.
30

CHAPTER 5

Adding
Attribute-Based
Rules to a Route
Attribute-based rules refine a route by selecting the messages
to be routed based on the transport attributes set in a
message�s header.

Overview Artix allows you to route messages based on the transport attributes set in a
message�s header when using HTTP or WebSphere MQ. You can also route
messages based on security settings and the CORBA principle.

Adding attribute-based rules Rules the select messages based on message header transport attributes are
defined in routing:transportAttribute elements in the route definition.
Transport attribute rules are defined after all of the operation-based routing
rules and before any destinations are listed.

The criteria for determining if a message meets an attribute-based rule are
specified in sub-elements of the routing:tranportAttribute element. A
message passes the rule if it meets each criterion specified in the listed
sub-element.
 31

CHAPTER 5 | Adding Attribute-Based Rules to a Route
Defining the attributes Each sub-element requires the two attributes defined in Table 3.

The contextName attribute is specified using the QName of the context in
which the attribute is defined. The contexts shipped with Artix are described
in Table 4.The contextAttributeName is also a QName and is relative to
the context specified. For example, UserName is a valid attribute name for
any of the HTTP contexts, but not for the MQ contexts.

Most sub-elements have a value attribute that can be tested. When dealing
with string comparisons all elements have an optional ignorecase attribute
that can have the values yes or no (no is the default). Each of the
sub-elements can occur zero or more times, in any order:

Table 3: Required Attributes for Attribute Selection Elements

Attribute Description

contextName Specifies the context defining the transport
attribute being evaluated.

contextAttributeName Specifies the name of the transport attribute
being evaluated.

Table 4: Context QNames

Context QName Details

http-conf:HTTPServerIncomingContexts Contains the attributes for
HTTP messages being
received by a service.

corba:corba_input_attributes Contains the data stored in
the CORBA principle.

mq:IncomingMessageAttributes Contains the attributes for
MQ messages being
received by a service.

bus-security Contains the attributes
used by the IONA security
service to secure your
services.
32

routing:equals applies to string or numeric attributes. For strings, the

ignorecase attribute may be used.

routing:greater applies only to numeric attributes and tests whether the
attribute is greater than the value.

routing:less applies only to numeric attributes and tests whether the
attribute is less than the value.

routing:startswith applies to string attributes and tests whether the attribute
starts with the specified value.

routing:endswith applies to string attributes and tests whether the attribute
ends with the specified value.

routing:contains applies to string or list attributes. For strings, it tests
whether the attribute contains the value. For lists, it tests whether the value
is a member of the list. The contains element accepts the optional
ignorecase attribute for both strings and lists.

routing:empty applies to string or list attributes. For lists, it tests whether
the list is empty. For strings, it tests for an empty string.

routing:nonempty applies to string or list attributes. For lists, it passes if the
list is not empty. For strings, it passes if the string is not empty.

For information on the transport attributes for HTTP and WebSphere MQ see
Writing Artix Contracts.
 33

../contract/index.htm

CHAPTER 5 | Adding Attribute-Based Rules to a Route
Example Example 6 shows a route using attribute-based rules based on HTTP header
attributes. Only messages sent to the server whose UserName is equal to
JohnQ will be passed through to the destination port.

Example 6: Transport Attribute Rules

<routing:route name="httpTransportRoute">
 <routing:source service="tns:httpService"
 port="tns:httpPort"/>
 <routing:transportAttributes>
 <routing:equals
 contextName="http-conf:HTTPServerIncomingContexts"
 contextAttributeName="UserName"
 value="JohnQ"/>
 </routing:transportAttributes>
 <routing:destination service="tns:httpDest"
 port="tns:httpDestPort"/>
</routing:route>
34

CHAPTER 6

Adding
Content-Based
Rules to a Route
Content-based routing rules evaluate the contents of a
message and routes it based on the results.

Procedure To create a content-based route rule in your contract you need to do the
following things:

1. Add an expression to select message content using a
routing:expression element.

2. Add a new route to you contract using a routing:route element.

3. Add a source endpoint to your route using a routing:source element.

4. Specify the expression to use as a routing criteria using a
routing:query element.

5. Add one or more routing:destination elements as children to the
routing:query element.

6. If you want to add a default destination endpoint, add a
routing:destination element as a child of the routing:route
element.
 35

CHAPTER 6 | Adding Content-Based Rules to a Route
In this section This section discusses the following topics:

The Router�s Message Representation page 37

Specifying Evaluation Expressions page 41

Adding a Content-Based Rule to a Route page 43
36

The Router�s Message Representation
The Router�s Message Representation

Overview The router receives messages in a number of wire formats. It uses the
information provided in the binding element of its contract to turn the raw
message into an XML message that can be evaluated. Before you can write
an expression to select content from a message passing through the router,
you need to understand how the router sees the message.

Doc-literal style contracts If your contract is constructed using the recommended doc-literal style, the
router sees the message as an instance of the element specified as the
message part. For example, if your service was defined by the WSDL
fragment in Example 7, the router would see a message with the root
element ticket.

Example 7: Doc-literal WSDL Fragment

<definitions targetNamespace="vehicle.demo.example"
 xmlns:tns="vehicle.demo.example"
 ...>
 <types ...>
 ...
 <complexType name="vehicleType">
 <sequence>
 <element name="vin" type="xsd:string" />
 <element name="model" type="xsd:string" />
 </sequence>
 </complexType>
 <complexType name="ticketType">
 <sequence>
 <element name="vehicle" type="vehicleType" />
 <element name="name" type="xsd:string" />
 <element name="parkTime" type="xsd:string" />
 </sequence>
 </complexType>
 <element name="ticket" type="ticketType" />
 ...
 </types>
...
<message name="ticketRequest">
 <part name="myTicket" element="xsd1:ticket" />
</message>
 37

CHAPTER 6 | Adding Content-Based Rules to a Route
Example 8 shows an example of the message that the router would process
given the WSDL in Example 7.

Non-standard contracts When you use non-standard messages in your contract, the router sees the
message as a virtual XML document that is reconstructed from the WSDL
definitions in the contract. The mapping is done as follows:

1. The name of the message�s root element is the QName of the message
element referred to by the operation�s input element.

2. Each part element of the message referenced by the input element is
mapped to an element derived from the name attribute of the part
element.

3. If the part element is of a complex type, or an element of a complex
type, the type�s elements appear inside of the element corresponding
to the part element.

...
<portType name="parkingLotMeter">
 <operation name="register">
 <input name="parkedCar" message="tns:ticketRequest"/>
 ...
 </operation>
...
</portType>
...

Example 7: Doc-literal WSDL Fragment

Example 8: Doc-literal Router Message

<ns1:parkedCar xmlns:ns1="vehicle.demo.example">
 <ticket>
 <vehicle>
 <VIN>0123456789</VIN>
 <model>Prius</model>
 </vehicle>
 <name>Old MacDonald</name>
 <time>19:00</time>
 </ticket>
</ns1:parkedCar>
38

The Router�s Message Representation
For example, if you had a service defined by the WSDL fragment in
Example 9 and were going to route requests to the register operation, the
router would scan an XML document constructed using the message
ticketRequest, which is the input message.

Example 9: Non-standard WSDL Fragment

<definitions targetNamespace="vehicle.demo.example"
 xmlns:tns="vehicle.demo.example"
 ...>
 <types ...>
 ...
 <complexType name="vehicleType">
 <element name="vin" type="xsd:string" />
 <element name="model" type="xsd:string" />
 </complexType>
 ...
 </types>
...
<message name="ticketRequest">
 <part name="vehicle" type="xsd1:vehicleType"/>
 <part name="name" type="xsd:string"/>
 <part name="parkTime" type="xsd:string" />
</message>
...
<portType name="parkingLotMeter">
 <operation name="register">
 <input name="parkedCar" message="tns:ticketRequest"/>
 ...
 </operation>
...
</portType>
...
 39

CHAPTER 6 | Adding Content-Based Rules to a Route
When the router reconstructs the message, it the input message�s name,
given in the input element, as the name of the XML document�s root
element. It uses the message parts and the schema types to recreate the
remaining elements in the XML document. The resulting XML document
would look like Example 10.

Using element names You can configure the transformer to use the element name of the message
parts instead of the value of the part element�s name attribute. For more
information see Configuring and Deploying Artix Solutions.

Example 10: Router Message

<ns1:parkedCar xmlns:ns1="vehicle.demo.example">
 <vehicle>
 <VIN>0123456789</VIN>
 <model>Prius</model>
 </vehicle>
 <name>Old MacDonald</name>
 <time>19:00</time>
</ns1:parkedCar>
40

../deploy/index.htm

Specifying Evaluation Expressions
Specifying Evaluation Expressions

Overview The router uses expressions to evaluate a message�s content and route it.
These expressions are written using the XPath grammar.

Writing XPath expressions XPath is a standard grammar for addressing the parts of an XML document.
The Artix router uses XPath expressions to extract the content of a message
for evaluation. For example, if you wanted to write an XPath expression to
extract the data stored in the model element of the XML document in
Example 10 you could use the XPath expression parkedCar\vehicle\model
which translates into select the model element whose parent is a vehicle
element and has a parkedCar element as a parent.

You could also use the XPath expression \\model which translates into
select all of the model elements that are a descendent of the root element. If
there were multiple model elements, the expression would select them all
and return a string representing the node set of model elements.

For more information on XPath see the specification at
http://www.w3.org/TR/xpath or see the tutorial at
http://www.w3schools.com/xpath.

Adding expressions to a contract You add an expression to your contract using a routing:expression
element. The routing:expression element requires the two attributes
described in Table 5.

Table 5: Required Attributes for routing:expression

Attribute Description

name Specifies a unique identifier by which the expression
is referred to when used in a route definition.

evaluator Specifies the type of expression being used to select
the content.

Note: XPath is the only supported grammar and is specified using the
string xpath.
 41

http://www.w3.org/TR/xpath
http://www.w3schools.com/xpath/default.asp

CHAPTER 6 | Adding Content-Based Rules to a Route
Example Example 11 shows an example of adding an expression to an Artix contract.

The expression selects the type child element of the widgetOrderForm
element in the message. The widgetOrderForm element is not the root
element of the message. It is generated from one of the part elements
defined in the contract.

Example 11: Expression in an Artix Contract

<routing:expression name="widgetSize" evaluator="xpath">
 /*/widgetOrderform/type
</routing:expression>
42

Adding a Content-Based Rule to a Route
Adding a Content-Based Rule to a Route

Using expressions in a route To use the expression to route messages, you need to add it to the route.
This is done using the routing:query element. The routing:query element
is a child of the routing:route element and must follow a single
routing:source element. It has one attribute, expression, that specifies
the name of the expression used to select a destination endpoint.

Specifying destinations for a
content based routing rule

The destinations that can be selected by the expression are specified using
routing:destination elements that are children of the routing:query
element. When used in content-based routing rules, the
routing:destination elements use the value attribute. The value attribute
specifies the value of the expression that will select the destination
endpoint.

For example, the route shown in Example 12 specifies a content-based
routing rule that uses the expressing defined in Example 11 and has three
possible destination endpoints.

If the value of the message�s type element is med, the message will be
routed to the endpoint defined by the contract�s service element whose
name attribute equals medService.

Adding a default destination To add a default destination for a content based routing rule, you simply add
a routing:destination element after the routing:query element. If none
of the destination endpoints specified by the content-based routing rule are

Example 12: Content-Based Routing Rule

<routing:route name="sizeRoute">
 <routing:source service="tns:orderService" />
 <routing:query expression="tns:widgetSize">
 <routing:destination value="small"
 service="tns:smallService" />
 <routing:destination value="med" service="tns:medService" />
 <routing:destination value="big" service="tns:bigService" />
 </routing:query>
</routing:route>
 43

CHAPTER 6 | Adding Content-Based Rules to a Route
selected, the first destination after the routing:query element is selected.
Example 13 shows a content-based routing rule with a default destination
endpoint.

Example 13: Content-Based Routing Rule with a Default Destination

<routing:route name="sizeRoute">
 <routing:source service="tns:orderService" />
 <routing:query expression="tns:widgetSize">
 <routing:destination value="small"
 service="tns:smallService" />
 <routing:destination value="med" service="tns:medService" />
 <routing:destination value="big" service="tns:bigService" />
 </routing:query>
 <routing:destination service="tns:miscService" />
</routing:route>
44

CHAPTER 7

Using Advanced
Routing Features
The router has a number of advanced features that use
multiple destinations.

Overview Artix routing also supports the following advanced routing capabilities:

� Load balancing between a number of endpoints.

� Broadcasting a message to a number of destinations.

� Specifying a failover service to which messages are routed.

All of these features use the optional multiRoute attribute on the
rotuing:route element.

In this chapter This chapter discusses the following topics:

Load Balancing page 46

Message Broadcasting page 47

Failover Routing page 49
 45

CHAPTER 7 | Using Advanced Routing Features
Load Balancing

Overview The router can load balance requests across a number of endpoints without
requiring any special configuration or programming. It uses a round-robin
algorithm to route requests, that match a routing rule, to one of the specified
destination endpoints.

Specifying router based load
balancing

Router-based load balancing rules are defined using the routing:route
element�s multiRoute attribute. To define a failover route you set the
multiRoute attribute to loadBalance. Within the route definition you define
a message source as you would for any other route. You also specify a
number of destination endpoints to which messages will be routed. Using a
round-robin algorithm the router will direct each request from the source
endpoint to one of the specified destination endpoints.

Example For example, if you had three endpoints that could process requests for
baseball scores and wanted to balance the request load among them, you
could create a route similar to the one shown in Example 14.

Using this route, each time a new request was received for the getScore
operation, the router would direct it to whichever endpoint was next in the
rotation. So, the first request would be routed to baseballScoreService1,
the second request would be routed to baseballScoreService2, the third
request would be routed baseballScoreService3, and so forth.

Example 14: Router Based Load Balancing

<routing:route name="scoreRoute" nultiRoute="loadBalance">
 <routing:source service="tns:baseballGameService"
 port="tns:baseballGamePort"/>
 <routing:operation name="getScore"/>
 <routing:destination service="tns:baseballScoreService1"
 port="tns:baseballScorePort"/>
 <routing:destination service="tns:baseballScoreService2"
 port="tns:baseballScorePort"/>
 <routing:destination service="tns:baseballScoreService3"
 port="tns:baseballScorePort"/>
</routing:route>
46

Message Broadcasting
Message Broadcasting

Overview Using the router, you can broadcast a message to multiple endpoints. For
example, you could deploy an endpoint whose function is to generate
shutdown warnings to all services deployed in a network. You could simplify
the development of this service by using an Artix router to intercept a single
warning message and broadcast it to the other services. In this way, you
would only need to change the router�s contract when you add or remove
services.

Defining broadcasting rules You define rules by setting the multiRoute attribute in the routing:route
element to fanout in your route definition. This causes routed messages to
be transmitted to all of the endpoints specified by the route�s
routing:destination elements.

There are three restrictions to using the fanout method of message
broadcasting:

� All of the source endpoints and destination endpoints must be
oneways. In other words, they cannot have any output messages.

� The source endpoints and destination endpoints cannot have any fault
messages.

� The input messages of the source endpoints and destination endpoints
must meet the compatibility requirements as described in
�Compatibility of Ports and Operations� on page 19.

Example Example 15 shows an Artix contract fragment describing a route for
broadcasting a message to a number of endpoints.

Example 15: Fanout Broadcasting

<message name="statusAlert">
 <part name="alertType" type="xsd:int"/>
 <part name="alertText" type="xsd:string"/>
</message>
 47

CHAPTER 7 | Using Advanced Routing Features
<portType name="statusGenerator">
 <operation name="eventHappens">
 <input message="tns:statusAlert" name="statusAlert"/>
 </operation>
</portType>
<portType name="statusChecker">
 <operation name="eventChecker">
 <input message="tns:statusAlert" name="statusAlert"/>
 </operation>
</portType>
<service name="statusGeneratorService">
 <port binding="tns:statusGeneratorBinding"
 name="statusGeneratorPort">
 <soap:address location="http:\\localhost:8081"/>
 </port>
</service>
<service name="statusCheckerService">
 <port binding="tns:statusCheckerBinding"
 name="statusCheckerPort1">
 <corba:address location="file:\\status1.ref"/>
 </port>
 <port binding="tns:statusCheckerBinding"
 name="statusCheckerPort2">
 <tuxedo:server>
 <tuxedo:service name="personalInfoService">
 <tuxedo:input operation="infoRequest"/>
 </tuxedo:service>
 </tuxedo:server>
 </port>
</service>
<routing:route name="statusBroadcast" multiRoute="fanout">
 <routing:source service="tns:statusGeneratorService"
 port="tns:statusGeneratorPort"/>
 <routing:operation name="eventHappens" target="eventChecker"/>
 <routing:destination service="tns:statusCheckerService"
 port="tns:statusCheckerPort1"/>
 <routing:destination service="tns:statusCheckerService"
 port="tns:statusCheckerPort2"/>
</routing:route>

Example 15: Fanout Broadcasting
48

Failover Routing
Failover Routing

Overview The Artix router can provide a basic level of high-availability by allowing you
to create routes that define failover scenarios. The router will automatically
redirect messages to a new endpoint if the current destination fails. The
router will attempt to send a request to all the destinations in a route before
throwing an exception back to the client.

Defining the failover rules To define a failover route you set the routing:route element�s multiRoute
attribute to failover. When you designate a route as failover, the routed
message�s target is selected using a round-robin algorithm. If the first target
in the list is unable to receive the message, it is routed to the second target.
The route will traverse the destination list until either one of the target
services can receive the message or the end of the list is reached. On the
next failure, the router will start searching from the last position on the list.
So if the message was routed to the second entry on the list to deal with an
initial failure, the router will start directing requests to the third entry on the
list to handle the second failure. When the end of the list is reached, the
router will start at the beginning again. If the router is unsuccessful in
delivering a message after trying each service in the failover route once, the
router will report that the message is undeliverable.

Example Given the route shown in Example 16, the message will first be routed to
destinationPortA. If service on destinationPortA cannot receive the
message, it is routed to destinationPortB.

Example 16: Failover Route

<routing:route name="failoverRoute" multiRoute="failover">
 <routing:source service="tns:sourceService"
 port="tns:sourcePort"/>
 <routing:destination service="tns:destinationServiceA"
 port="tns:destinationPortA"/>
 <routing:destination service="tns:destinationServiceB"
 port="tns:destinationPortB"/>
 <routing:destination service="tns:destinationServiceC"
 port="tns:destinationPortC"/>
</routing:route>
 49

CHAPTER 7 | Using Advanced Routing Features
If destinationPortB fails at some future point, the messages are then
routed to destinationPortC. If destinationPortC cannot receive messages,
the router will then try destinationPortA. If destinationPortA is not
available, the router will try destinationPortB. If destinationPortB is
unavailable, the router will report that the message cannot be delivered.
50

CHAPTER 8

Linking Routes
It is possible to create complex routes by linking together
several types of routes.

Overview There are occasions, particularly when using content-based routing or using
one of the multi-endpoint routing features, when you need to link together a
number of routing criteria. Using the routing service you can do this by
linking together a number of routes. For example, you may want to route
orders for customers in Brazil to a local endpoint, but you also want the
orders to automatically fail-over to a alternative endpoint. You can do this by
creating a content-based route that specifies a fail-over route as a
destination.

Specifying a route as a destination You link routes together by specifying one route as the destination of another
route. When the destination specifying the linked route is selected, the
message is passed through the second route to determine its destination.
The second route may also contain destinations that contain linked routes.
The message will pass through each linked route in order until a destination
containing an endpoint is selected.

To specify a linked route as a destination you replace the service attribute
and the port attribute in a routing:destination element with the route
attribute. The value of the route attribute must correspond to the name of
another route in the contract. The specified route becomes linked with the
destination and any message that selects this destination will be processed
through it.
 51

CHAPTER 8 | Linking Routes
Example Imagine that your company had order processing centers in several cities
and you needed to route orders to the processing center closest to the
delivery address. You could implement this using a content-based route as
shown in Example 17.

If you needed to add a fail-over mechanism to ensure that the orders were
processed by a different processing center in the event of a failure, you could
simply add two linked routes for the destination of the content-based route
as shown in Example 18.

Example 17: Content-Based Route

<routing:expression name="zipCode" evaluator="xpath">
 tns:placeWidgetOrder/widgetOrderForm/shippingAddress/zipCode
</routing:expression>
<routing:route name="zipCodeRoute">
 <routing:source service="tns:widgetOrderService"
 port="tns:SOAPPort" />
 <routing:query expression="tns:zipCode">
 <routing:destination value="02452"
 service="tns:widgetOrderServiceEast"
 port="walthamPort" />
 <routing:destination value="91105"
 service="tns:widgetOrderServiceWest"
 port="passadenaPort" />
 </routing:query>
</routing:route>

Example 18: Linked Routes

<routing:expression name="zipCode" evaluator="xpath">
 tns:placeWidgetOrder/widgetOrderForm/shippingAddress/zipCode
</routing:expression>
<routing:route name="walthamRoute" multiRoute="failover">
 <routing:destination service="tns:widgetOrderServiceEast"
 port="walthamPort" />
 <routing:destination service="tns:widgetOrderServiceWest"
 port="passadenaPort" />
</routing:route>
52

Example 18 expands on Example 17 by adding two routes: walthamRoute
and passadenaRoute. Both of these routes will not perform any routing on
their own because they lack routing:source elements. They are instead
used as destinations for the content-based route called zipCodeRoute. In
Example 17, the content-based route simply routed to one endpoint for each
destination. In Example 18, the route�s destinations are linked routes. If the
first destination is selected, the message is routed through the fail-over route
walthamRoute. If the second destination is selected, the message is routed
through the fail-over route passadenaRoute.

<routing:route name="passadenaRoute" multiRoute="failover">
 <routing:destination service="tns:widgetOrderServiceWest"
 port="passadenaPort" />
 <routing:destination service="tns:widgetOrderServiceEast"
 port="walthamPort" />
</routing:route>
<routing:route name="zipCodeRoute">
 <routing:source service="tns:widgetOrderService"
 port="tns:SOAPPort" />
 <routing:query expression="tns:zipCode">
 <routing:destination value="02452"
 route="tns:walthamRoute" />
 <routing:destination value="91105"
 route="tns:passadenaRoute" />
 </routing:query>
</routing:route>

Example 18: Linked Routes
 53

CHAPTER 8 | Linking Routes
54

CHAPTER 9

Creating Routes
Using Artix Tools
Artix provides both GUI and command-line tools for creating
routes.

In this chapter This chapter discusses the following topics:

Creating Routes with Artix Designer page 56

Creating Routes from the Command Line page 57
 55

CHAPTER 9 | Creating Routes Using Artix Tools
Creating Routes with Artix Designer

Overview The Artix Designer provides wizards for creating and editing routes in your
contracts. It also creates the artifacts needed to deploy an instance of the
routing service to implement the routes.

Creating a route To add a new route to a contract you select Artix Designer|New Route from
the Designer�s menu. This starts a wizard that walks you through the
process of creating a new route. The route wizard uses the information in
the current contract to populate the required fields to assist in creating valid
routes.

Editing a route To edit a route using Artix Designer you use the Edit Route... option from
the context menu available when a route is selected. This option opens the
route wizard populated with the settings for the selected route. You edit the
route by changing the values.

Deploying the routing service The designer provides two ways of deploying an instance of the routing
service:

� Create a project that deploys a router using the Artix Router template.

� Selecting the Router radio button when configuring the deployment
options for your project.

More information For a detailed discussion of using the Artix Designer see the Designer�s
on-line help. It is accessible by selecting Help|Help Contents from the
Designer�s menu.
56

Creating Routes from the Command Line
Creating Routes from the Command Line

Overview If you do not wish to use the Artix Designer or want to add routes to
contracts as part of a makefile, you can use the wsdltorouting command
line tool. wsdltorouting will import an existing contract and generate a new
contract containing the specified routing instructions. The imported contract
must contain the specified source endpoint and destination endpoint,
otherwise the tool will generate an error.

Usage To generate a route using the command line tool, use the following
command.

wsdltorouting has the following options.

wsdltorouting [-rn name][-ssn service][-spn port]
 [-dsn service][-dpn port][-on operation]
 [-ta attribute] [-d dir][-o file]
 [-L file][-quiet][verbose][-h][-v] wsdlurl

-rn name Specifies the name of the generated route. If no name is
given a unique name will be generated for the route.

-ssn service Specifies the name of the service element to use as the
source of the route.

-spn port Specifies the name of the port element to use as the
source of the route.

-dsn service Specifies the name of the service element to use as the
destination of the route.

-dpn port Specifies the name of the port element to use as the
destination of the route.

-on operation Specifies the name of the operation to use for the route. If
the route is port-based, you do not need to use this flag.

-ta attribute Specifies a transport attribute to use in defining the route.
For details on how to specify the transport attributes, see
�Specifying transport attributes� on page 58.

-d dir Specifies the output directory for the generated contract.

-o file Specifies the filename of the generated contract.
 57

CHAPTER 9 | Creating Routes Using Artix Tools
Specifying transport attributes When using wsdltorouting, transport attributes are specified using four
comma-separated values. The first value specifies the name of the
attribute�s context. The second value specifies the name of the attribute. The
third value is the condition used to evaluate the attribute. The fourth value is
the values against which the attribute is evaluated.

Table 6 shows the valid context names to use in specifying a transport
attribute.

For more information on the properties available in the contexts see either
Developing Artix Applications in C++ or Developing Artix Applications in
Java.

Table 7 shows the valid condition entries used in specifying transport
attributes when using wsdltorouting.

-L file Specifies the location of your Artix license file. The default
behavior is to check IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.

-h Displays the tool�s usage statement.

-v Displays the tool�s version.

Table 6: Context Names Used with wsdltorouting

Context Name Artix Context

HTTP_SERVER_INCOMING_CONTEXTS HTTP properties received as part
of a client request

CORBA_CONTEXT_ATTRIBUTES CORBA transport properties

SECURITY_SERVER_CONTEXT Properties used to configure
security settings

Table 7: Conditions Used with wsdltorouting

Condition WSDL Equivalent

equals routing:equals

startswith routing:startswith
58

../prog_guide/index.htm
../java_pguide/index.htm
../java_pguide/index.htm

Creating Routes from the Command Line
Example If you had a contract that contained the services itchy and scratchy, both
with an equivalent operation gouge, you could use the command shown in
Example 19 to add a route to your contract.

The resulting route is shown in Example 20.

endswith routing:endswith

contains routing:contains

empty routing:empty

nonempty routing:nonempty

greater routing:greater

less routing:less

Table 7: Conditions Used with wsdltorouting

Condition WSDL Equivalent

Example 19: Adding a Route with wsdltorouting

wsdltorouting -rn itchyGougeScratchy -ssn itchy -spn gougerPort
 -dsn scratchy -dpn gougedPort -on gouge
 -ta HTTP_SERVER_INCOMING_CONTEXTS,UserName,equals,Goering
 itchyscratchy.wsdl

Example 20: Route from wsdltorouting

<routing:route name="itchyGougeScratchy">
 <routing:source service="tns:itchy"
 port="tns:gougerPort"/>
 <routing:operation name="gouge"/>
 <routing:transportAttributes>
 <routing:equals
 contextName="http-conf:HTTPServerIncomingContexts"
 contextAttributeName="UserName"
 value="Goering"/>
 </routing:transportAttributes>
 <routing:destination service="tns:scratchy"
 port="gougedPort"/>
</routing:route>
 59

CHAPTER 9 | Creating Routes Using Artix Tools
60

CHAPTER 10

Deploying an Artix
Router
An instance of the Artix router can be deployed either as part
of an application�s configuration or directly into an Artix
container.

In this chapter This chapter discusses the following topics:

Enabling Artix Routing page 62

Configuring an Artix Router page 64

Deploying a Router Using a Deployment Descriptor page 67

Optimizing Router Performance page 71
 61

CHAPTER 10 | Deploying an Artix Router
Enabling Artix Routing

Overview There are two approaches to enabling an Artix router:

� Using configuration variables.

� Using an Artix deployment descriptor.

Using configuration You can configure an Artix router by adding the routing plug-in to the
orb_plugins list, and specifying the location of the contract using the
plugins:routing:wsdl_url entry. See �Configuring an Artix Router� on
page 64 for full details.

This configuration-based approach can be used with an Artix container.
Alternatively, you can also deploy a router into any Artix process. For
example, this might be useful if you want to write CORBA clients and use
Artix APIs.

You can also specify additional configuration variables to optimize
performance. See �Optimizing Router Performance� on page 71.

Using a deployment descriptor You can only use a deployment descriptor to define routes if you are using
the container to host the router. The advantage of this approach is that you
do not need a dedicated configuration scope.

Another advantage to this approach is that you can deploy additional routes
into the process without stopping and restarting the host process, which
would be necessary in the configuration approach.

When using the deployment descriptor approach, you must deploy each
router instance separately; whereas with the configuration approach, all
router instances are loaded automatically on startup. See �Deploying a
Router Using a Deployment Descriptor� on page 67 for full details.
62

Enabling Artix Routing
Selecting a host process Although any Artix process can be used for Artix routing, the preferred
approach is to use the Artix container as the host process.

When using the Artix container server process (it_container), you have the
option of using either the configuration approach, or the deployment
descriptor approach.

In addition, you can also use the container�s client application
(it_container_admin) to manage the deployed route.

Disabling a router To undeploy a router, you must stop and restart the process hosting the
router. This applies to both the configuration and deployment descriptor
approach.

Using the configuration approach, you must edit the
plugins:routing:wsdl_url entry, removing the contract describing the
routes you wanted to undeploy.

Using the deployment descriptor approach, you would then either not
redeploy that particular contract, or you would remove its corresponding
deployment descriptor from the persistent deployment directory. See
Configuring and Deploying Artix Solutions for full details.

Note: If you use an Artix client or server process to host the routing
plug-in, you can only use configuration to specify routing details. You can
not use a deployment descriptor.
 63

../deploy/index.htm

CHAPTER 10 | Deploying an Artix Router
Configuring an Artix Router

Overview Because Artix�s routing functionality is implemented as an Artix plug-in, you
can make any Artix application a router by adding routing rules to its
contract, and by specifying configuration settings in an Artix configuration
file.

This section explains how to configure the routing plug-in, and specify the
location of the router�s contract.

Setting the orb_plugins list Artix routers must include the routing plug-in name in its orb_plugins list,
for example:

Plug-ins related to bindings, and transports are not required. These are
loaded automatically when the routing plug-in parses the contract.

orb_plugins = ["xmlfile_log_stream", "soap", "at_http", ... ,
"routing"];

Note: You do not need to add the routing plug-in if you have defined
routes in a deployment descriptor (see �Deploying a Router Using a
Deployment Descriptor� on page 67).

Note: The routing plug-in must always be the last plug-in listed in the
orb_plugins list.
64

Configuring an Artix Router
Setting the WSDL contract You must configure the location of the contract, or contracts, that the router
gets its routing information from. You can do this using the
plugins:routing:wsdl_url variable. This variable specifies the contracts
that the router parses for routing rules. The following is a simple example:

The location of the contract is relative to the location from which the Artix
router is started.

The following example contains multiple routing contracts:

In this example, the router expects that route1.wsdl is located in the
directory that it was started in, and that route2.wsdl is located one
directory level higher.

Defining a single route in
configuration

This is the simple approach used by the routing demos (for example,
routing\operation_based).

Run the host process under a dedicated configuration scope. In this scope,
include the routing plug-in name in the orb_plugins list, and use the
plugins:routing:wsdl_url variable to specify the location the contract
containing the routing rules.

The required configuration is illustrated in Example 21, where
demos.operation_based.router is the scope under which the host process
runs.

plugins:routing:wsdl_url="../../etc/router.wsdl";

plugins:routing:wsdl_url=["route1.wsdl", "../route2.wsdl",
 "/artix/routes/route3"];

Example 21: Simple Router Configuration

demos {
 operation_based {
 orb_plugins = ["xmlfile_log_stream", "soap", "at_http"];

 router {
 #the routing plug-in implements the routing functionality
 orb_plugins = ["routing"];
 65

CHAPTER 10 | Deploying an Artix Router
This router can then be deployed in the container server using the following
command:

Defining multiple routes in
configuration

There are two approaches to using configuration to deploy multiple routes
into the same host process. The first is to specify multiple routes in a single
contract. Using this approach the configuration is the same as that shown in
Example 21. Using this approach sacrifices the modularity of your routes for
ease of configuration.

The second approach is to place your routes in multiple contracts. Using
this approach you must list multiple entries for the
plugins:routing:wsdl_url variable, as shown in the following example:

In this case, each contract may include one, or more, routes. When listing
multiple contracts, use the list format for specifying configuration variables

Further information For details of optional router configuration settings, see �Optimizing Router
Performance� on page 71.

For details of all the configuration options available for the routing plug-in,
see the Artix Configuration Reference.

 #the path to the WSDL file that includes the routing element
 plugins:routing:wsdl_url="../../etc/route.wsdl";
 };
 };
};

Example 21: Simple Router Configuration

it_container -ORBname demos.operation_based.router
-ORBdomain_name operation_based -ORBconfig_domains_dir
../../etc -publish

plugins:routing:wsdl_url= ["../../etc/route1.wsdl",
"../../etc/route2.wsdl"];
66

../config_ref/index.htm

Deploying a Router Using a Deployment Descriptor
Deploying a Router Using a Deployment
Descriptor

Overview This section explains how to deploy a router into an Artix container using a
deployment descriptor. This approach is illustrated in the
advanced\container\deploy_routes demo.

Defining multiple routes In the deploy_routes demo, the Artix container process starts under the
global configuration scope defined in the artix.cfg configuration file.

The extract shown in Example 22 is from one of the contracts used in the
advanced\container\deploy_routes demo.

Note: In this case, the routing plug-in is not loaded during startup
because it is not listed in the orb_plugins configuration entry.

Example 22: Deploy Routes Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BaseService"
 targetNamespace="http://www.iona.com/bus/demos/router"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://www.iona.com/bus/demos/router"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:routing="http://schemas.iona.com/routing">

 <portType name="GoodbyeServicePortType">
 <operation name="say_goodbye">
 <input message=� name=�/>
 <output message=� name=�/>
 </operation>
 </portType>
 67

CHAPTER 10 | Deploying an Artix Router
 <binding name="SOAPGoodbyeServiceBinding" type="tns:GoodbyeServicePortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="say_goodbye">
 <soap:operation �/>
 �
 </operation>
 </binding>

 <binding name="CORBAGoodbyeServiceBinding" type="tns:GoodbyeServicePortType">
 <corba:binding repositoryID="IDL:GoodbyeServicePortType:1.0"/>
 <operation name="say_goodbye">
 �
 </operation>
 </binding>

 <service name="SOAPHTTPService">
 <port binding="tns:SOAPGoodbyeServiceBinding" name="SOAPHTTPPort">
 <soap:address location=�/>
 </port>
 </service>

 <service name="CORBASoapService">
 <port binding="tns:CORBAGoodbyeServiceBinding" name="CORBASoapPort">
 <corba:policy poaname=�/>
 <corba:address location=�/>
 </port>
 </service>

 <routing:route name="CorbaToSoap">
 <routing:source port="CORBASoapPort" service="tns:CORBASoapService"/>
 <routing:destination port="SOAPHTTPPort" service="tns:SOAPHTTPService"/>
 </routing:route>
</definitions>

Example 22: Deploy Routes Contract
68

Deploying a Router Using a Deployment Descriptor
The corresponding deployment descriptor is shown in Example 23.

In the example deployment descriptor, the opening service element
specifies the targetNamespace as an attribute and the source service name
as the element value. This information links the deployment descriptor to a
specific service. The wsdl_location element provides the path to the
contract that includes the related route. The plugin element includes the
information needed to load the routing plug-in.

In the advanced\container\deploy_plugin demo, each contract includes
only one route. However, a contract can include multiple routes and be
referenced in the wsdl_location element in multiple deployment
descriptors. In this scenario, each deployment descriptor uniquely identifies
a source service using the content in the opening service element.

Example 23: Deploy Routes Deployment Descriptor

<?xml version="1.0" encoding="utf-8"?>
<m1:deploymentDescriptor xmlns:m1="http://schemas.iona.com/deploy">

 <service xmlns:servicens="http://www.iona.com/bus/demos/router"> servicens:CORBASoapService
 </service>

 <wsdl_location>
 ../../routes/soap_route.wsdl
 </wsdl_location>

 <plugin>
 <name>routing</name>
 <type>Cxx</type>
 <implementation>it_routing</implementation>
 <provider_namespace>
 http://schemas.iona.com/routing
 </provider_namespace>
 </plugin>
</m1:deploymentDescriptor>
 69

CHAPTER 10 | Deploying an Artix Router
Deploying multiple routes In the deploy_routes demo, the container client application
(it_container_admin) is used to deploy two routes, each of which is
specified in a dedicated deployment descriptor file. For example:

Each deployment descriptor describes a single router, which is identified by
the targetNamespace assigned to the contract that contains the route and
the name of the source service.

Specifying persistent deployment With the deployment descriptor approach, you can specify a persistent
deployment directory. When you initially deploy each contract, a copy of the
deployment descriptor is placed into this directory.

When you restart the container, it automatically redeploys all the contracts
identified in these deployment descriptors. In this case, the effect is the
same as the configuration approach (that is, all routes are deployed during
the startup).

Further information For more details on the Artix container, deployment descriptors, and
persistent deployment, see Deploying Artix Solutions.

For working examples of the routing plug-in deployed in an Artix container,
see any of the demos in the following directory:

InstallDir\\artix\Version\demos\routing

Alternatively, for a more advanced example, see:

InstallDir\artix\Version\demos\advanced\container\deploy_routes

it_container_admin -deploy -file
../../routes/deployCORBASoapService.xml

it_container_admin -deploy -file
../../routes/deployCORBAHTTPService.xml
70

Optimizing Router Performance
Optimizing Router Performance

Overview This section describes how to configure the following router optimizations in
an Artix configuration file:

� Setting router pass-through

� Setting CORBA bypass
 71

CHAPTER 10 | Deploying an Artix Router
Setting router pass-through By default a router instance to passes along messages without processing if
the source and destination of the route use the same binding. You can
change this behavior by setting plugins:routing:use_pass_through to
false.

When the router passes a message in its default pass-through mode it
copies the message buffer directly from the source endpoint to the
destination endpoint. This has a number of implications:

� Reference proxification does not occur.

� Request level handlers are not called.

� Server-side message level handlers are not called.

� Authentication and authorization are skipped regardless of the security
settings.

If you want all messages to go through the router and be fully processed, set
this variable to false.

Setting CORBA bypass For CORBA integrations, you can use location forwarding to connect CORBA
clients directly to CORBA servers, and thus bypass the Artix routing plug-in
entirely.

Set the plugins:routing:use_bypass configuration variable to true to
specify that the router sends CORBA LocateReply messages back to the
client. The default is false.

Further information For more information on Artix router optimizations, see the Artix
Configuration Reference.
72

../config_ref/index.htm
../config_ref/index.htm

CHAPTER 11

Routing Messages
Containing
Endpoint
References
When routing messages containing endpoint references Artix
creates proxies for the referenced endpoint.

In this chapter This chapter discusses the following topics:

Service Lifecycles page 74

Routing References to Transient Servants page 76
 73

CHAPTER 11 | Routing Messages Containing Endpoint References
Service Lifecycles

Overview When the Artix router uses dynamic proxy services, you can configure
garbage collection of old proxies. Dynamic proxies are used when the router
bridges endpoints that have patterns such as callback, factory, or any
interaction that passes references to other endpoints. When the router
encounters a reference in a message, it proxifies the reference into one that
a receiving application can use. For example, an IOR from a CORBA server
cannot be used by a SOAP client, so the router dynamically creates a new
route for the SOAP client.

However, dynamic proxies persist in the router memory and can have a
negative effect on performance. To overcome this, Artix provides service life
cycle garbage collection, which cleans up old proxy services that are no
longer used. This garbage collection service cleans up unused proxies when
a threshold has been reached on a least recently used basis.

Configuring service lifecycle To configure service garbage collection for the Artix router, perform the
following steps:

1. Add the service_lifecycle plug-in to the orb_plugins list:

2. Configure the service lifecycle cache size:

orb_plugins = ["xmlfile_log_stream", "service_lifecycle",
"routing"];

plugins:service_lifecycle:max_cache_size = "30";
74

Service Lifecycles
Writing client applications When writing client applications, you must also make allowances for the
garbage collection service; in particular, ensure that exceptions are handled
appropriately.

For example, a client might attempt to proxify to an endpoint that has
already been garbage collected. To prevent this, do either of the following:

� Handle the exception, get a new reference, and continue. However, in
some cases, this might not be possible if the endpoint has state.

� Set max_cache_size to a reasonable limit to ensure that all your clients
can be accommodated. For example, if you always expect to support
20 concurrent clients, each with a transient service session, you might
wish to configure the max_cache_size to 30.

You do not want to impact any clients, and must ensure that an endpoint is
no longer needed when it is garbage collected. However, if you set
max_cache_size too high, this might use up too much router memory and
have a negative impact on performance. For example, a suggested range for
this setting is 30-100.
 75

CHAPTER 11 | Routing Messages Containing Endpoint References
Routing References to Transient Servants

Overview Applications create transient servants by cloning a service element defined
in your contract. The cloned service element uses the same interface,
binding, and transport as the service element in the contract. However, it
has a unique QName and a unique address. So, a transient servant�s
service element only exists in the memory of the application that created it
and possesses no link back to the service element from which it was
cloned.

Because a transient servant does not have a service element in the
physical contract and no link to one, the router, when it receives a reference
to a transient servant, has no concrete information about how to create a
proxy for the referenced servant. The router must make a best guess about
which service element in its contract to use as the template for the proxy to
the transient servant. To do this, the router chooses the first compatible
service element in its contract.

Compatibility of services A service element is considered compatible with a transient servant if it
uses the same interface, binding, and transport as the transient servant. For
example, if a transient servant was created using the service element,
whose name attribute is set to templateVendor, in Example 24 it would be
compatible with IIOPVendor. However, it would not be compatible with
SOAPVendor because SOAPVendor uses a different transport than
templateVendor. Also, if IIOPVendor was defined using different transport
properties, such as having a defined POA name, transient servants created
from templateVendor would not be compatible.

Example 24: Contract with a Service Template

<definitions ...>
 ...
 <message name="mangoRequest">
 <part name="num" type="xsd:int"/>
 </message>
 <message name="mangoPrice">
 <part name="cost" type="xsd:float"/>
 </message>
76

Routing References to Transient Servants
 <portType name="fruitVendor">
 <operation name="sellMangos">
 <input name="num" message="tns:mangoRequest"/>
 <output name="price" message="tns:mangoPrice"/>
 </operation>
 </portType>
 <binding name="fruitVendorBinding" type="tns:fruitVendor">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sellMangos">
 <soap:operation soapAction="" style="rpc"/>
 <input name="num">
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://fruitVendor.com" use="encoded"/>
 </input>
 <output name="cost">
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://fruitVendor.com" use="encoded"/>
 </output>
 </operation>
 </binding>
 <service name="templateVendor">
 <port binding="tns:fruitVendorBinding"
 name="transientVendor">
 <iiop:address location="ior:"/>
 </port>
 </service>
 <service name="SOAPVendor">
 <port binding="tns:fruitVendorBinding"
 name="SOAPVendorPort">
 <soap:address location="lcoalhost:5150"/>
 </port>
 </service>
 <service name="IIOPVendor">
 <port binding="tns:fruitVendorBinding"
 name="IIOPVendorPort">
 <iiop:address location="file:///objref.ior"/>
 </port>
 </service>
</definitions>

Example 24: Contract with a Service Template
 77

CHAPTER 11 | Routing Messages Containing Endpoint References
Contract design issues The router�s means of selecting a compatible service element to create
proxies for transient servants can result in odd behavior if you use the same
interface to create both static servants and transient servants. When passing
references to these servants through the router, the potential exists for the
router to select the static servant to create proxies for the transient servants.
When this happens, the router will silently redirect all of the messages to
the servant defined by the static service element.

To avoid this situation be sure to place the service elements used to create
transient servants before the service elements that will be used to create
static servants. This will ensure that the router will find the transient
servant�s service elements.

Preventing bloat Because the router creates a new proxy for each transient reference that
passes through it, the router can suffer from memory bloating. To prevent
bloating, you can specify two properties in the router�s runtime
configuration:

� the maximum number of proxified references the router maintains

� the maximum number of unproxified references the router maintains

The plugins:routing:proxy_cache_size variable specifies the number of
proxified references the router maintains. The default is 50.

The plugins:routing:reference_cache_size variable specifies number of
unproxified server references maintained by the router. The default is
unbounded.

For example, take a SOAP-HTTP client and CORBA server banking system
with 1,500 accounts. By default, the 50 most recently used accounts are
present in the router as proxified references. The next 1450 most recently
used are unproxified references.

For more information about configuring a router see Configuring and
Deploying Artix Solutions.
78

../deploy/index.htm
../deploy/index.htm

CHAPTER 12

Error Handling
The routing service reports errors back to the message
originator.

Initialization errors Errors that can be detected when the routing service is initializing, such as
routing between incompatible endpoints and some kinds of route ambiguity,
are logged and an exception is raised. This exception aborts the initialization
and shuts down the service.

Runtime errors Errors that are detected at runtime are reported as exceptions and returned
to the message originator; for example �no route� or �ambiguous routes�.

The destination endpoint does not receive any notification that a message
failed to be forwarded to it. If your endpoints require such notification, you
need to implement a mechanism to deliver the notification outside the scope
of the routed operation.
 79

CHAPTER 12 | Error Handling
80

Index

A
Artix switch 12
attribute-based routing rules 12, 31

B
broadcasting 47
bus-security 32

C
content-based routing rules 13
corba:corba_input_attributes 32
CORBA bypass 72
CORBA LocateReply 72

F
failover 49
fanout 47

H
http-conf:HTTPServerIncomingContexts 32

I
ignorecase 32
it_container 63
it_container_admin 63

L
load balancing 46
LocateReply 72

M
mq:IncomingMessageAttributes 32

O
operation-based routing rules 12, 21, 27

P
pass-through 72
plugins:routing:use_bypass 72

plugins:routing:use_pass_through 72
plugins:routing:wsdl_url 63, 65
port-based routing rules 20

R
router pass-through 72
routing 16, 64
routing:contains 33
routing:destination 24, 43, 51

port 24
route 51
service 24
value 43

routing:empty 33
routing:endswith 33
routing:equals 33

contextAttributeName 32
contextName 32
value 32

routing:expression 41
evaluator attribute 41
name attribute 41

routing:greater 33
routing:less 33
routing:nonempty 33
routing:operation 27

name 27
target 27

routing:query 43
expression attribute 43

routing:route 23
multiRoute 46, 47, 49

failover 49
fanout 47
loadBalance 46

name 23
routing:source 24

port 24
service 24

routing:startswith 33
routing:transportAttribute 31
routing rules

basic 23
 81

INDEX
S
switch 12

X
XPath 41
82

	List of Figures
	List of Tables
	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	The Artix Documentation Library

	Introduction
	Features of the Routing Service
	Routing Contracts
	Router Deployment Patterns

	Compatibility of Ports and Operations
	Creating a Basic Route
	Adding Operation-Based Rules to a Route
	Adding Attribute-Based Rules to a Route
	Adding Content-Based Rules to a Route
	The Router’s Message Representation
	Specifying Evaluation Expressions
	Adding a Content-Based Rule to a Route

	Using Advanced Routing Features
	Load Balancing
	Message Broadcasting
	Failover Routing

	Linking Routes
	Creating Routes Using Artix Tools
	Creating Routes with Artix Designer
	Creating Routes from the Command Line

	Deploying an Artix Router
	Enabling Artix Routing
	Configuring an Artix Router
	Deploying a Router Using a Deployment Descriptor
	Optimizing Router Performance

	Routing Messages Containing Endpoint References
	Service Lifecycles
	Routing References to Transient Servants

	Error Handling
	Index

