IzPack documentation

Julien PONGE <julien@izforge.com>
Elmar GROM <elmar@grom.net>

April 26, 2003

Contents

1 Getting started 7
1.1 Overview e 7
1.2 First Compilationo 7
1.3 The IZPACK Architecture 8

1.3.1 The Compilation System 8
1.3.2 How an Installer Works. 9
1.3.3 The Different Kinds of Installers 11

2 Writing Installation XML Files 12

2.1 What YouNeed 12
2.1.1 Youreditor 12
2.1.2 Writing XMLo 12

2.2 Variable Substitution L. 13
2.2.1 The Built-In Variables 14
2.2.2 Parse Types Lo 14

2.3 The IzPAcK Elements 15
2.3.1 The Root Element <installation>. 15
2.3.2 The Information Element <info> 15
2.3.3 The Variables Element <variables> 16
2.3.4 The GUI Preferences Element <guiprefs> 16
2.3.5 The Localization Element <locale>. 17
2.3.6 The Resources Element <resources> 17
2.3.7 The Panels Element <panels> 18
2.3.8 The Packs Section <packs> 18
2.3.9 The Native Element <native> 21
2.3.10 The jar Merging Element <jar> 22

2.4 The Available Panels 22
2.4.1 HelloPanel 22
2.4.2 InfoPanel and HTMLInfoPanel 22
2.4.3 LicencePanel and HTMLLicencePanel 22
2.4.4 PacksPanel 23

2.4.5 ImgPacksPanel
2.4.6 TargetPanel
247 InstallPanel
248 XlInfoPanel
2.4.9 FinishPanel
2.4.10 ShortcutPanel
3 Advanced Features
3.1 Ant Integration
3.2 Automated Installers
3.3 Picture on the Language Selection Dialog
3.4 Picture in the installer
3.5 Native-looking installers
3.6 WeblInstallers
3.7 More Internationalization
4 Desktop Shortcuts
4.1 Defining Shortcuts oL
4.1.1 Introduction
4.1.2 What to Add to the Installer
4.1.3 Why Native Code to do the Job?
4.1.4 The Shortcut Specification
4.1.5 Shortcut Attributes L.
4.1.6 Selective Creation of Shortcuts
4.1.7 Summary
4.2 Shortcut Tips
4.2.1 The Desktop,
422 Icons
4.2.3 Targetso
424 Command Line,
4.3 Trouble Shooting L.
4.3.1 Problems You Can Solve
4.3.2 Problems That Have No Solution (yet)
5 Creating Your Own Panels
51 How It Works
51.1 What YouNeed
5.1.2 What You Have ToDo
5.2 The IzPanel Class
5.21 UML Diagram
5.2.2 Descriptiono

6 User Input 48

6.1 The Basic XML Structure 20
6.2 Concepts and XML Elements Common to All Fields. 50
6.3 Panel Title 52
6.4 Static Text 53
6.5 Visual Separation 53
6.6 TextInput 54
6.7 Radio Buttons. L 55
6.8 ComboBox 56
6.9 Check Box 56
6.10 Rule Inputo o7
6.10.1 Layout and Input Rules o8
6.10.2 Setting Field Content 60
6.10.3 The Output Format 61
6.10.4 Validating the Field Content 61
6.10.5 Processing the Field Content 61
6.10.6 Summary Example 62

A The GNU General Public License 63

Introduction

Welcome to IzPack !

Please select your language {503 code)
faor install instructions:

-
B eng 7|

on] IzPAcCK is a tool that will help you to solve
your software installation problems. It is a Java™ based software installer
builder that will run on any operating system coming with a Java Virtual
Machine (JVM) that is compliant with the Sun JVM 1.2 or higher. Its de-
sign is very modular and you will be able to choose how you want your
installer to look and you will also be able to customize it using a very simple
Application Programming Interface (API). Although 1ZPACK is essentially a
Java™ only application (it can run on virtually any operating system), it
can interact in a clean way with the underlying operating system. Native
code can interact with it on a specific platform without disturbing the op-
eration on incompatible operating systems. For instance, you can develop
Unix-specific code that will be silent if run on Windows. To put it in a nut-
shell, whereas most of the other Java™ installers force you to go their way,
[zPAcK will let you go your way. Some respectable companies have been

using it in order to produce customized installers for their very specific needs.

”So, if it’s so good, how much is it ?” : well, you can get it for free. BUT
1ZPACK is not a freeware. It’s not free as in “free beer” but “free as in free
speech”. So it’s neither freeware nor public domain. It is software covered by
the GNU GENERAL PuBLIC LICENSE (GPL). It uses the tactic of copyleft
: to make it short, you can use it, modify it and redistribute it freely but
you must also make your modifications available to everyone whenever you
publish a modified version of a copylefted software. You have access to the 1z-
PACK source code and you can modify it to make it suit your needs, but if you
publish such a modified version, you are forced to publish the modifications
you’ve made. That’s a fair exchange of expertise and work. To learn more
about the GPL license and the copyleft principles, visit http://www.gnu.org/.

The Features

[zPAcCK uses XML files to describe installations. When you make an installer,
you have a choice of panels. You can see panels as a kind of plugin that
composes the installer. For instance, a panel can choose the installation
path, the packs to install, prompt the user for a license agreement and so on.
This approach is very modular. You can also create your own panels if you
have specific needs. In some cases you even have a choice from multiple panel
versions for the same task. You can also choose the order in which panels
appear during the installation process. 1ZPACK can be used in a number of
different ways:

e by writing the XML installation file ”by hand” and compiling it with
the command line compiler

e by invoking the compiler from the great APACHE JAKARTA ANT tool
(see http://jakarta.apache.org/) as [ZPACK can be used as a task
for ANT

e by using the GUI based frontend. The frontend can be used to both
generate the XML file and to initiate the compilation process.

Here is a brief (and certainly incomplete !) list of the main IzPACK
features :

e XML based installation files

easy internationalization using XML files (10 translations are already
available)

Ant integration, command-line compiler and GUI frontend

easy customization with the panels and a rich API (even an XML parser
is included !)

powerful variable substitution system that you can use to customize
scripts and more generally any text-based file

different kinds of installers (standard, web-based, ...)

launching of external executables during the installation process and
Unix executable flag support (useful for the scripts for instance)

layout of the installation files in packs (some can be optional)
native code integration facilities
jar files nesting support

. more things to discover and create !.

The Development

I started writing IZPACK in April 2001 and many people have helped me
improving it since. I prefer not to mention them here as I would for sure
forget some of them, so please check the file named Thanks.txt which I try
to get as up-to-date as possible in order to mention everyone who helped
me. As far as I'm concerned, I'm a french student and I rather see this as
a fun activity in my free time where I can learn a lot of great things. The
contributors to the project are both individuals and companies. Help can
take any form :

translations
new features and various fixes
bug fixes

writing manuals

e ... anything else you like :-)

The official IZPACK homepage is located at http://www.izforge.com/izpack/.
There is a mailing-list available (izpack.ml@izforge.com) and you can sub-
scribe to it by sending an email to izpack.ml_request@izforge.com and
typing subscribe in the subject field. Consider the mailing-list as the best
way to get help about IzPack and for submitting new ideas and contributions.

There are two types of releases for IZPACK :
e a stable release that is ready for production use

e an unstable release that may contain bugs and incomplete features.
This is the result of regular CVS snapshots.

To access CVS, please use this CVSROOT :
’ :pserver:anonymous@cvs.tuxfamily.org:/cvsroot/izpack2’. A BIG
thank you to the TuxFamily team (see http://www.tuxfamily.org/). If you
need read/write access to contribute to 1ZPACK , then ask me at julien®@
izforge.com. Of course don’t forget to replace ’anonymous’ for your login.
There are two modules in CVS :

e izpack-src : contains a minimal image that can be used to generate
an installer for the IzZPACK CVS version (if you need to use a CVS
version then use the installed one, not the CVS files directly)

e izpack-guidelines : contains the IZPACK coding guidelines for those
interessted in contributing to the project.

3rd party code used in IzPack

[ZPACK uses several 3rd party libraries and I would like to mention them in
respect for their respective authors work :

e NanoXML by Marc DE SCHEEMAECKER : the XML parser used inside
IzPAcK and released under a 2zlib/png-style license - see
http://nanoxml .sourceforge.net/ -

o Kunststoff Look and Feel by Incors Gmbh : a Swing™ Look and Feel
that can be used for installers. It really looks good and is released
under the GNU LESSER GENERAL PUBLIC LICENSE (LGPL) - see
http://www.incors.org/ -

e Swing Connection Icons : the icons used in 1ZPACK come from the
Java™ section of the Sun website - see http://java.sun.com/ -

e Jakarta Ant DirectoryScanner class : allows the use of Ant filesets
syntax support.

So, now let’s dive into understanding how [ZPACK works. You'll be sur-
prised to see how powerful and simple it can be :-)

Chapter 1

Getting started

1.1 Overview

To begin with, you should know what 1ZPACK is organized if you want to
use it. Let’s go into the directory where you have installed IzZPACK on your
machine. There are 3 text files and a set of directories. The most important
for the moment are bin/ doc/ sample/. If you are reading this, you already
know that doc contains this documentation :-)

So let’s go into bin/. The icons/ directory contains some directories for
your system, in case you would like an icon to launch a component of 1z-
PAcK . But the most important things you can see in bin are the izpack-fe
and compile scripts (in both Unix* and Windows formats). izpack-fe will
launch the GUI based frontend of 1ZPACK . It gives you the ability to prepare
an installation XML file and compile it to generate your installer. compile
is used to compile a ready-to-go XML installation file from a command-line
context or from an external tool.

Note : these scripts can be launched from anywhere on your system as the in-
staller has customized these scripts so that they can inform 1ZPACK of where
it 15 located.

1.2 First Compilation

Now you probably can’t wait to build your first installer. So go on open
a command-line shell and navigate to sample/. The following should work
on both Unix* and Windows systems. For the latter, just change the path

separator (slash ’/’) to a backslash. So type ($ is your shell prompt !) :

$../bin/compile install.xml -b . -o install.jar -k standard
(installer generation text output here)
$ java -jar install.jar

There you are! The first command has produced the installer and the
second one did launch it. You can do the same thing by using the frontend.
You launch it with the izpack-fe script located in bin/.

[C) IzPack - GUI Frontend : [Untitled] o=
Eile| Compile_IzPack

[New o/

= gpen — :

& save Resources | [panels = PZ packs |

o Window widith

& Impon afile that uses relative paths = |

| Exh
L

Window height :
480]

Application homepage URL :

[] Make the window resizable

Authors list

L3 Add an author

[Remove the author_|

Like on the picture, import the file
by selecting it from the sample/ directory. Then you will be asked for a base
path, just go one directory back and select sample/. The different fields of
the frontend should be filled properly. To compile the installer, just go into
the compile menu and select a standard kind of installer. It will ask you for
an output file name, just enter install.jar. The building process should work
just as smooth as in command-line mode.

1.3 The IzPack Architecture

Now that you have packaged your first installer, it’s time for you to under-
stand how the whole thing works.

1.3.1 The Compilation System

The compilation system (see figure 1.1) is quite modular. Indeed, you can
use the compiler in 3 ways :

e from a command-line

e from the GUI frontend

10

e from Jakarta Ant

Figure 1.1: The compiler architecture.

XML Installation
File

Command-1ine }

QU frontend

Ant task

Installer
jar file

The compiler takes as its input an XML installation file that describes
(at a relatively high-level) the installation. This file contains detailed infor-
mation such as the application name, the authors, the files to install, the
panels to use, which resources to load and much more (see figure 1.2).

The compiler can generate different kinds of installers, but this informa-
tion is not located inside the XML file as it is not were it should be. On the
contrary, this is a compiler parameter.

1.3.2 How an Installer Works

An installer presents its panels to the end-user. For instance, there is one to
select the packages, one to prompt for the license agreement, one to select
the installation path and so on. You have a choice from a variety of panels
to place in the installer. For example, you can choose between a plain text
and a HTML text panel for the license agreement. Also, if you don’t want

11

of the HelloPanel, you just don’t include it.

Figure 1.2: The installer architecture.

Installer jar file

. Hel | oPanel / Li cense text .
‘I 1 LicencePanel Picture for pack #1 | |%

é----F-1 | ngPacksPanel Picture for pack #2 -------:‘9.
N ™ Install Panel (..) e’ :
1 s
The panel s showed The resources needed
to the end user by the panels

It is very important to understand that some of the panels may need ex-
tra data. For instance, the license agreement panel needs the license text. A
simple approach to specify such data would have been to add as many XML
tags as needed for each panel. However, this makes the XML file too specific
and not easy to maintain. The approach that has been chosen is to put the
data in files and we call these files resource files. They are specified with a
unique XML tag. This is a much cleaner approach.

You might wonder how your files are packaged. They can be grouped in
packs. For instance, you can have one pack for the core files, one for the doc-
umentation, one for the source code and so one. In this way, your end-users
will have the choice to install a pack or not (provided that the pack they
don’t want to install is not mandatory). Inside the jar file (which is a zip
file), a sub directory contains the pack files. Each pack file contains the files
that are part of it. Could we do it simpler 7 :-)

12

1.3.3 The Different Kinds of Installers
There are for the moment 4 kinds of installers available :
e standard : a single-file ready-to-run installer

e standard-kunststoff : same as above but using the Kunststoff Look
and Feel

e web : a web based installer (the packs files are located on a HTTP
server and the user installer will fetch it for him)

e web-kunststoff : same as above but using the Kunststoff Look and
Feel.

13

Chapter 2

Writing Installation XML Files

2.1 What You Need

2.1.1 Your editor

In order to write your XML installation files, you just need a plain text
editor. Of course it’s always easier to work with color coded text, so you
might rather want to work with a text editor having such a feature. Here is
a list of free editors that work well :

e Jext : http://www. jext.org/
e JEdit : http://www.jedit.org/

e classics like Vim and (X)Emacs.

2.1.2 Writing XML

Though you might not know much about XML, you have certainly heard
about it. If you know XML you can skip this subsection as we will briefly
present how to use XML.

XML is a markup language, really close to HTML. If you've ever worked
with HT'ML the transition will be fast. However there are a few little things
to know. The markups used in XML have the following form : <markup>.
Each markup has to be closed somewhere with its ending tag : </markup>.
Each tag can contain text and other markups. If a markup does not contain
anything, it is just reported once : <markup/>. A markup can contain at-
tributes like : <markup attr1="123" attr2="hello !"/>. Here is a sample
of a valid XML structure :

14

<chapter title="Chapter 1">
<section name="Introduction">
<paragraph>
This is the text of the paragraph number 1. It is available for the very low
price of <price currency="dollar">1 000 000</price>.
</paragraph>
</section>
<section name="xxx">
XXX
</section>
</chapter>

You should be aware of the following common mistakes :

e markups are case sensitive : <markup> is different from <Markup>.

e you must close the markups in the same order as you create them :
<m1><m2>(...)</m2></m1> is right but <m1><m2>(...)</m1></m2> is
not.

Also, an XML file must start with the following header :
<?xml version="1.0" encoding="iso0-8859-1 standalone="yes" 7>. The
only thing you should modify is the encoding (put here the one your text
editor saves your files to). The standalone attribute is not very important
for us.

This (brief !) introduction to XML was just meant to enable you to write
your installation specification. For a better introduction there are plenty
of books and articles/tutorials dealing with XML on the Internet, in book
stores, in magazines and so on.

2.2 Variable Substitution

During the installation process IzPack can substitute variables in various
places with real values. Obvious targets for variable substitution are re-
source files and launch scripts, however you will notice many more places
where it is more powerful to use variables rather then hard coded values.
Wherever variables can be used it will be explained in the documentation.

There are two types of variables:

e Built-In variables. These are implemented in IzPack and are all dy-
namic in nature. This means that the value of each variable depends
on local conditions on the target system.

15

e Variables that you can define. You also define the value, which is fixed
for a given installation file.

You define your own variables in the installation XML file with the
<variable> tag. How to do this is explained in detail later in this chap-
ter.

Please note that when using variables they must always appear with a
'$’ sign as the first character, even though they are not defined this way.

2.2.1 The Built-In Variables

The following variables are built-in :

e $INSTALL PATH : the installation path on the target system, as chosen
by the user.

e $JAVA_HOME : the Java™ virtual machine home path
e $USER HOME : the user’s home directory path

e $USER_NAME : the user name

2.2.2 Parse Types

Parse types apply only when replacing variables in text files. At places
where it might be necessary to specify a parse type, the documentation will
mention this. Depending on the parse type, IzPack will handle special cases
-such as escaping control characters- correctly. The following parse types are
available:

e plain - use this type for plain text files, where no special substitution
rules apply. All variables will be replaced with their respective values
as is.

e javaprop - use this type if the substitution happens in a Java properties
file. Individual variables might be modified to function properly within
the context of Java property files.

e xml - use this type if the substitution happens in a XML file. Individual
variables might be modified to function properly within the context of

XML files.

16

2.3 The I1zPack Elements

When writing your installer XML files, it’s a good idea to have a look at the
IZPACK installation DTD.

2.3.1 The Root Element <installation>

The root element of an installation is <installation>. It takes one required
attribute : version. The attribute defines the version of the XML file layout
and is used by the compiler to identify if it is compatible with the XML file.
This should be set to 1.0 for the moment.

2.3.2 The Information Element <info>

This element is used to specify some general information for the installer. It
contains the following elements :

e <appname> : the application name
e <appversion> : the application version
e <url> : the application official website url

e <authors> : specifies the author(s) of the application. It must contain
at least one <author> element whose attributes are :

— name : the author’s name

— email : the author’s email

Here is an example of a typical <info> section :

<info>
<appname>Super extractor</appname>
<appversion>2.1 beta 666</appversion>
<url>http://www.superextractor.com/</url>
<authors>
<author name="John John Doo" email="jjd@jjd-mail.com"/>
<author name="El Goyo" email="goyoman@mymail.org"/>
</authors>
</info>

17

2.3.3 The Variables Element <variables>

This element allows you to define variables for the variables substitution
system. Some variables are built-in, such as $INSTALL PATH (which is the
installation path chosen by the user). When you define a set of variables,
you just have to place as many <variable> tags in the file as needed. If you
define a variable named VERSION you need to type $VERSION in the files to
parse. The variable substitutor will then replace it with the correct value.
One <variable> tag take the following attributes :

e name : the variable name

e value : the variable value

Here’s a sample <variables> section :

<variables>
<variable name="app-version" value="1.4"/>
<variable name="released-on" value="08/03/2002"/>
</variables>

2.3.4 The GUI Preferences Element <guiprefs>

This element allows you to set the behavior of your installer GUI. This in-
formation will not have any effect on the command-line installers that will
be available in future versions of IZPACK . The arguments to specify are :

e resizable : takes yes or no and indicates wether the window size can
be changed or not.

e width : sets the initial window width

e height : sets the initial window height

Here’s a sample :

<guiprefs resizable="no" width="800" height="600"/>

18

2.3.5 The Localization Element <locale>

This element is used to specify the language packs (langpacks) that you want
to use for your installer. You must set one <langpack> markup per language.
This markup takes the iso3 parameter which specifies the iso3 language code.

Here’s a sample :

<locale>
<langpack iso3="eng"/>
<langpack iso3="fra"/>
<langpack iso3="spa"/>
</locale>

The supported ISO3 codes are :

ISO3 code | Language
cat Catalunyan
deu German
eng English

fin Finnish

fra French

hun Hungarian
jpn Japanese
ned Nederlands
pol Polnish

por Portuguese (Brazilian)
rus Russian
spa Spanish
swe Swedish
ukr Ukrainian

2.3.6 The Resources Element <resources>

Several panels, such as the license panel and the shortcut panel, require
additional data to perform their task. This data is supplied in the form of
resources. This section describes how to specify them. Take a look at each
panel description to see if it might need any resources. You have to set one
<res> markup for each resource. Here are the attributes to specify :

e src : the path to the resource file which can be named freely of course
(for instance my-picture. jpg).

19

e id : the resource id, depending on the needs of a particular panel

e parse : takes yes or no (default is no) - used to specify wether the
resource must be parsed at the installer compilation time. For in-
stance you could set the application version in a readme file used by
InfoPanel.

e type : specifies the parse type. This makes sense only for a text re-
source - the default is plain, other values are javaprop, xml (Java
properties file and XML files)

e encoding : specifies the resource encoding if the receiver needs to know.
This makes sense only for a text resource.

Here’s a sample :

<resources>
<res id="InfoPanel.info" src="doc/readme.txt" parse="yes"/>
<res id="LicencePanel.licence" src="1ega1/License.txt"/>
</resources>

2.3.7 The Panels Element <panels>

Here you tell the compiler which panels you want to use. They will appear
in the installer in the order in which they are listed in your XML installation
file. Take a look at the different panels in order to find the ones you need.
The <panel> markup takes a single attribute classname which is the class-
name of the panel.

Here’s a sample :

<panels>
<panel classname="HelloPanel"/>
<panel classname="LicencePanel"/>
<panel classname="TargetPanel"/>
<panel classname="InstallPanel"/>
<panel classname="FinishPanel"/>
</panels>

2.3.8 The Packs Section <packs>

This is a crucial section as it is used to specify the files that need to be in-
stalled. It contains the following XML elements :

20

e <pack> : specifies a pack, takes the following attributes :

— name : the pack name

— required : takes yes or no and specifies wether the pack is op-
tional or not.

— os : optional attribute that lets you make the pack targeted to a
specific operating system, for instance unix, mac and so on.

The following tags are available for a <pack> markup :

— <description> : text describing the pack
— <file>: specifies a file to include, takes the following attributes :
* src : the file location (relative path) - if this is a directory its
content will be added recursively

x targetdir : the destination directory, could be something
like $INSTALL_PATH/subdirX

% os : can optionally specify a target operating system (unix,
windows, mac) - this means that the file will only be installed
on its target operating system

x override : if true then if the file is already installed, it will
be overwritten. By default it is set to false.

— <fileset> : supports the Jakarta Ant powerful set syntax, takes
the following parameters :
% dir : the base directory for the fileset (relative path)
* targetdir : the destination path, works like for <file>

*x casesensitive : optionally lets you specify if the names are
case-sensitive or not - takes yes or no

x os : specifies the operating system, works like for <file>

You specify the files with <include> and <exclude> tags that
take the name parameter to specify the Ant-like pattern :

x *x : means any subdirectoy
x * : used as a wildcard.
Here are some examples of Ant patterns :

% <include name="1ib"/>: will include 1ib and the subdirec-
tories of 1ib

% <exclude name="*x/x*.java"/>: will exclude any file in any
directory starting from the base path ending by . java

21

% <include name="1lib/*.jar"/> : will include all the files
ending by .jar in 1ib

x <exclude name="1lib/**/*F00x"/> : will exclude any file in
any subdirectory starting from 1ib whose name contains FOO.

— <parsable> : used to specify the files for parsing by the variables
substitutor, here are the attributes :

x targetfile : the file to parse, could be something like
$INSTALL_PATH/bin/launch-script.sh

% type : specifies the type (same as for the resources) - the
default is plain

% encoding : specifies the file encoding

— <executable> : a very useful thing if you need to execute some-
thing during the installation process. It can also be used to set
the executable flag on Unix-like systems. Here are the attributes

x targetfile : the file to run, could be something like
$INSTALL _PATH/bin/launch-script.sh

% class : the class to run for a Java™ program

% type : bin or jar (the default is bin)

* stage : specifies when to launch : postinstall is just after
the installation is done and the default value, never will never
launch it (useful to set the 4+x flag on Unix). uninstall
will launch the executable when the application is uninstalled.
The executable is executed before any files are deleted.

x failure : specifies what to do when an error occurs : abort
will abort the installation process, ask (default) will ask the
user what to do and warn will just tell the user that some-
thing’s wrong

A <args> tag can also be specified in order to pass arguments to
the executable:

% <arg> : passes the argument specified in the value attribute

Finally it is possible to specify the target operating system with
the <os> tag :

* family : unix, windows, mac to specify the operating sys-
tem family

*x name : the operating system name

22

* version : the operating system version

* arch : the operating system architecture (for instance the
Linux kernel can run on i386, sparc, and so on)

Here’s an example installation file :

<packs>
<!-- The core files -->
<pack name="Core" required="yes">
<description>The IzPack core files.</description>
<file targetdir="$INSTALL_PATH" src="bin"/>
<file targetdir="$INSTALL_PATH" src="1lib"/>
<file targetdir="$INSTALL_PATH" src="legal"/>
<file targetdir="$INSTALL_PATH" src="Readme.txt"/>
<file targetdir="$INSTALL_PATH" src="Versiomns.txt"/>
<file targetdir="$INSTALL_PATH" src="Thanks.txt"/>
<parsable targetfile="$INSTALL_PATH/bin/izpack-fe"/>
<parsable targetfile="$INSTALL_PATH/bin/izpack-fe.bat"/>
<parsable targetfile="$INSTALL_PATH/bin/compile"/>
<parsable targetfile="$INSTALL_PATH/bin/compile.bat"/>
<executable targetfile="$INSTALL_PATH/bin/compile" stage="never"/>
<executable targetfile="$INSTALL_PATH/bin/izpack-fe" stage="never"/>
</pack>

<!-- The documentation (1 directory) -->
<pack name="Documentation" required="no">
<description>The IzPack documentation (HTML and PDF).</description>
<file targetdir="$INSTALL_PATH" src="doc"/>
</pack>
</packs>

2.3.9 The Native Element <native>

Use this if you want to use a feature that requires a native library. The
native libraries are placed under bin/native/... There are 2 kinds of na-
tive libraries : the IZPACK libraries and the third-party ones. The IzPack
libraries are located at bin/native/izpack, you can place your own libraries
at bin/native/3rdparty. The markup takes the following attributes :

e type : izpack or 3rdparty

e name : the library filename

23

Here’s a sample :

<native type="izpack" name="ShellLink.d1l1l"/>

2.3.10 The jar Merging Element <jar>

If you adapt I1ZPACK for your own needs, you might need to merge the con-
tent of another jar file into the jar installer. For instance, this could be a
library that you need to merge. The <jar> markup allows you to merge the
raw content of another jar file, specified by the src attribute.

A sample :

<jar src="../nicelibrary.jar"/>

2.4 The Available Panels

In this section I will introduce the various panels available in IzPack. The
usage for most is pretty simple and described right here. The more elaborate
ones are explained in more detail in the Advanced Features chapter or in their
own chapter. The panels are listed by their class name. This is the name
that must be used with the classname attribute (case-sensitive).

2.4.1 HelloPanel

This panel welcomes the user by displaying the project name, the version,
the URL as well as the authors.

2.4.2 InfoPanel and HTMLInfoPanel

This is a kind of ' README’ panel. It presents text of any length. The text
is specified by the (HTML) InfoPanel.info resource.

2.4.3 LicencePanel and HTMLLicencePanel

Note : there is a mistake in the name - it should be LicensePanel. In France
the word is Licence ... and one of my diploma is a 'Licence’ so ... :-)

24

These panels can prompt the user to acknowledge a license agreement.
They block unless the user selects the ’agree’ option. To specify the license
agreement text you have to use the (HTML)LicencePanel.licence resource.

2.4.4 PacksPanel

Allows the user to select the packs he wants to install.

2.4.5 ImgPacksPanel

This is the same as above, but for each panel a different picture is shown to
the user. The pictures are specified with the resources ImgPacksPanel.img.x
where x stands for the pack number, the numbers start from 0. Of course it’s
up to you to specify as many images as needed and with correct numbers.
For instance if you have 2 packs core and documentation (in this order),
then the resource for core will be ImgPacksPanel.img.0 and the resource
for doc will be ImgPacksPanel.img.1.

2.4.6 TargetPanel

This panel allows the user to select the installation path. It can be customized
with the following resources (they are text files containing the path) :

e TargetPanel.dir.f where f stands for the family (mac, macosx, windows,
unix)

e TargetPanel.dir : the directory name, instead of the software to in-
stall name

e TargetPanel.dir.d where d is a "dynamic” name, as returned by
the Java™ virtual machine. You should write the name in lower-
case and replace the spaces with underscores. For instance, you might
want a different setting for Solaris and GNU/Linux which are both
Unix-like systems. The resources would be TargetPanel.dir.sunos,
TargetPanel.dir.linux. You should have a Unix-resource in case it
wouldn’t work though.

25

2.4.7 InstallPanel

You should always have this one as it launches the installation process !

2.4.8 XlInfoPanel

A panel showing text parsed by the variable substitutor. The text can be
specified through the XInfoPanel.info resource. This panel can be useful
when you have to show information after the installation process is completed
(for instance if the text contains the target path).

2.4.9 FinishPanel

A ending panel, able to write automated installer information. For details
see the chapter on ’Advanced Features’.

2.4.10 ShortcutPanel

This panel is used to create desktop shortcuts. For details on using the
ShortcutPanel see the chapter 'Desktop Shortcuts’.

26

Chapter 3

Advanced Features

3.1 Ant Integration
[ZPACK can be easily integrated inside an Ant build process. To do so you
first need to tell Ant that you would like to use [ZPACK :

<!-- Allows us to use the IzPack Ant task -->
<taskdef name="izpack" classpath="${basedir}/lib/compiler.jar"
classname="com.izforge.izpack.ant.IzPackTask"/>

Don’t forget to add compiler. jar to the classpath of the Ant process.

Then you can invoke 1ZPACK with the izpack task which takes the fol-
lowing parameters :

e input : the XML installation file

output : the output jar installer file

installerType : the installer type

baseDir : the base directory to resolve the relative paths

izPackDir : the IZPACK home directory.

Here is a sample of the task invocation :

<!-- We call IzPack -->

<echo message="Makes the installer using IzPack"/>

<izpack input="${dist.dir}/IzPack-install.xml"
output="${dist.dir}/IzPack-install. jar"
installerType="standard-kunststoff"
basedir="${dist.dir}"
izPackDir="${dist.dir}/"/>

27

3.2 Automated Installers

When you conclude your installation with a FinishPanel, the user can save
the data for an automatic installation. With this data, he will be able to run
the same installation on another similar machine. In an environment where
many computers need to be supported this can save a lot of time.

So run once the installation on a machine and save your automatic in-
stallation data in auto-install.xml (that’s just a sample). Then put this
file in the same directory as the installer on another machine. Run it with :
java -jar installer.jar auto-install.xml

It has reproduced the same installation :-)

3.3 Picture on the Language Selection Dialog

You can add a picture on the language selection dialog by adding the follow-
ing resource : installer.langsel.img.

3.4 Picture in the installer

It is possible to specify an optional picture to display on the left side of
the installer. To do this, you just have to define a resource whose id is
Installer.image. For instance,

<res id="Installer.image" src="nice-image.png" />

will do that. If the resource isn’t specified, no picture will be displayed at all.

3.5 Native-looking installers

When using standard installers, it is possible to make them use the native

look and feel as provided by the JRE (UIManager . getNativeLookAndFeelClassName()).
To do that, just create a 0-bytes file and add it as a resource with useNativeLAF

as its ID. That’s all you have to do. If the JRE can’t provide a native look

and feel, then the standard Metal look and feel will be used.

28

This feature should make happy a lot of users with the JDK 1.4.2 which
introduces native look and feel bindings for Windows XP and GTK+. I know
it will work like that for Windows XP but I'm not sure as far as GTK+ is
concerned.

3.6 Web Installers

The web installers allow your users to download a small installer that does
not contain the files to install. These files will be downloaded from a HTTP
server such as Apache HTTPD. If you have many optional packs, this can
save people’s resources. It’s really easy : people download a small Jar file
containing the installer, they launch it and choose their packages. Then the
installer will get the files from another Jar file located on a server. It’s that
simple.

Now suppose that you want to make an installer for your application that
you want to be named install. jar.

1. open your favorite text editor and make a plain text file containing on
the first line the URL to where you want to put the Jar file contain-
ing your packs, let’s say for instance http://www.mywebsite/myapp/
install_web. jar

2. add this text file as a resource named WebInstallers.url
3. compile your installer : you get install.jar and install _web. jar

4. copy install web.jar to http://www.mywebsite/myapp/install_web.
jar and give your users install. jar for download.

That’s all you need to make web installers. Please note that the installa-
tion can look like frozen while the installer grabs the server part.

3.7 More Internationalization
[zPack is available in several languages. However you might want to inter-

nationalize some additional parts of your installer. In particular you might
want this for the *InfoPanel and *LicencePanel. This is actually pretty easy

29

to do. You just have to add one resource per localization, suffixed with the
ISO3 language code. At runtime these panels will try to load a localized
version.

For instance let’s suppose that we use a HI'MLInfoPanel. Suppose that
we have it in English, French and German. We want to have a French text
for french users. Here we add a resource pointing to the French text whose
name is HTMLInfoPanel.info fra. And that’s it | English and German
users (or anywhere other than in France) will get the default text (denoted
by HTMLInfoPanel.info) and the French users will get the French version.
Same thing for the other Licence and Info panels.

To sum up : add <iso3 code> to the resource name for InfoPanel, HTMLInfoPanel,
LicencePanel and HTMLLicencePanel.

30

Chapter 4

Desktop Shortcuts

(by Elmar GROM)

4.1 Defining Shortcuts

4.1.1 Introduction

On todays GUI oriented operating systems, users are used to launching ap-
plications, view web sites, look at documentation and perform a variety of
other tasks, by simply clicking on an icon on the desktop or in a menu system
located on the desktop. Depending on the operating system these icons have
different names. In this context I will refer to them collectively as shortcuts.

Apart from actually placing an application on the target system, users
routinely expect an installer to create the necessary shortcuts for the ap-
plication as well. For you as application developer, this means that for a
professional appearance of your product you should also consider creating
shortcuts.

In contrast to the general specification of an IzPack installer, the specifi-
cation of shortcuts in [zPack requires a little more effort. In addition, some
of the concepts are a bit more complex and there are some operating sys-
tem specific issues to observe. Fortunately, you only need to worry about
operating system specifics if you want to deploy your application to multiple
different operating systems. In any case, it will pay off to spend some time
to study this documentation and the example spec file before you start to
implement your own shortcuts.

31

At the time of this writing (for IzPack version 3.0) IzPack is only capable
of creating shortcuts on the Microsoft Windows operating systems [Win95
and higher and Win-NT 4.0 and higher]. Other operating systems, such as
Mac and UNIX flavors are not directly supported. However, there is a special
UI that automatically pops up on unsupported systems. It informs the user
about the intended targets of your shortcuts and allows the user to save this
information to a text file. While this is not an elegant solution, at least it
aids the user in the manual creation of the shortcuts.

If you would like to review what an end user would see if the target op-
erating system is not supported, you can do the following. Simply place the
tag <notSupported/> in the spec file. This tag requires no attributes or
other data. It must be placed under <shortcuts>, just like the individual
shortcut specifications. Be sure to remove this tag before getting your appli-
cation ready for shipment.

We expect other operating systems to be supported in the near future and
as always, contributions are very welcome. At present someone is actively
working on Mac support and Julien wanted to implement a solution for KDE.

4.1.2 What to Add to the Installer

There are a number of things that you must add to the installer to make it
ready for creating shortcuts. Obviously you need to add the panel responsi-
ble for creating shortcuts. This panel is aptly enough called ShortcutPanel.
However, in order for the ShortcutPanel to function properly a number of ad-
ditional items are required. These must be added manually to the installer,
because the front-end does not support this feature yet. In this chapter I will
explain which of these items are required and for what reason.

First, I would like to discuss items that are supplied with IzPack and
only need to be added to the installer. After that, I move on to the things
you have to prepare yourself before you can add them. The way in which
shortcuts are created varies widely among operating systems. In some cases
it is actually possible to do this with pure Java code, while other systems
-such as MS-Windows- require native code to accomplish this task. The na-
tive libraries required for the supported operating systems are supplied with
[zPack but they are not automatically added to your installer file. You need
to list them yourself in the XML file for the installer. I'll describe later how

32

to do this. At the time of this writing (for IzPack version 3.0) only MS-
Windows is supported. The native library required for this operating system
is called ShellLink.d11.

Native libraries can be added to the installer by using the <native> tag.
To add the DLL for Windows for example, you just have to add the following
line to the installer XML file:
<native type="izpack" name="ShellLink.d11"/>
For more details about the use of the <native> tag see the cahpter about
the format of the XML file.

You have to supply an extra specification file for the shortcuts that you
want to be created on the target system. This file is required by the shortcut
panel. The format for this spec file is XML. It must be added to the in-
staller as a resource. The source name of this specification does not matter,
however its name when added to the installer must be shortcutSpec.xml.
This is the name the ShortcutPanel looks for, do not use a different name
and do not a path to the name! If the specification file can not be found, the
ShortcutPanel will not show at all.

Example

<res src="C:\MyDocuments\Installer\MyShortcutSpec.xml" id="shortcutSpec.xml"/>

4.1.3 Why Native Code to do the Job?

This little chapter is not strictly part of the documentation but I have been
asked this question sufficiently often that I think it’s worth explaining right
here. It is certainly a natural question to ask. After all IzPack is an applica-
tion completely written in Java and primarily targeted for the installation of
Java based programs. So why wouldn’t we try to keep everything pure Java
and avoid the use of native code altogether? There must be some personal
preference of the developer hidden behind this approach you might think.
Well, not really, but I admit at first it seems quite feasible to write it all in
Java. On virtually any operating system or GUI surface around, Shortcuts
are simply files on the local file system. Files can be created and accessed di-
rectly from within Java, so why should there be a need for using native code?

Well, it turns out that just creating a file is not good enough, it also needs
to have the right content. Shell Links as they are called in Windows land are

33

binary files. I actually managed to find documentation on the format. Nat-
urally this was hacker data, you won’t get this sort of thing from Microsoft
(by the way: thanks a lot to Jesse Hager for a smash job!). Armed with this
information I tried to create these files myself in Java. The problem was that
the documentation was not entirely accurate and had some gaps as well. 1
tried for over a month to get this to work but finally I had to give up. Even if
I would have succeeded, it would have been a hack, since a shell link requires
some information that is impossible to obtain from within Java. Usually you
can successfully create a shell link by only filling in the bare minimum infor-
mation and then ask Windows to resolve the link. Windows then repairs the
shell link. Unfortunately this was only the beginning, soon I encountered a
host of other problems. For one thing, the installer needs to know the correct
directories for placing the links and it turns out they are named differently in
different countries. In addition, there are ways of manually modifying them,
which some people might actually have done. The only way to place the
shortcut files reliably is through accessing the Windows Registry. Naturally,
this operation also required native code. Same thing with asking Windows
to resolve the link... On the bottom line, at every step and turn you run into
an issue where you just need to use native code to do the trick. So I decided
that I would do it the proper way all the way through. That is in a nutshell
the reason why I used native code to create shortcuts on MS-Windows.

As T am writing this I am at work with a friend to replicate this work for
the Mac and it looks very much like we need to take the same approach there
as well. The various UNIX GUI surfaces on the other hand seem promising.
It might turn out that we can do the job without native libraries, we will see...

4.1.4 The Shortcut Specification

The specification for shortcuts is provided to the ShortcutPanel in the form
of a XML file. At the time of this writing (for IzPack version 3.0) the front-
end has no support for generating this specification. Until a later version
provides front-end support you will have to write the specification manually.
For your convenience, an annotated sample specification is located in the
sample subdirectory of your 1zPack installation. At the beginning you might
want to experiment with that file.

The specification file has only one major section called <shortcuts>. In
this section, two different tags are recognized: <programGroup> and <shortcut>.

34

The <programGroup> tag allows you to specify the name of the menu
under which the shortcuts will be grouped. The exact location and appear-
ance of the program group depends on the specific target system on which
the application will be installed, however you have some influence on this.
Please note that <programGroup> may only appear once in the specification.
If more than one instance occurs, only the first one will be used. This tag
requires two attributes: defaultName and location. defaultName speci-
fies the name that the group menu should have on the target system. You
should be aware that the ShortcutPanel will present this name to the user
as a choice. The user can then edit this name or select a group that al-
ready exists. As a result, there is no guarantee that the actual name of
the program group on the target system is identical with your specification.
location specifies where the group menu should show up. There are two
choices: applications and startMenu. If you use applications, then the
menu will be placed in the menu that is ordinarily used for application short-
cuts. If you use startMenu, the group menu will be placed at the top most
menu level available on the target system. Depending on the target system,
it might not be possible to honor this specification exactly. In such cases, the
ShortcutPanel will map the choice to the location that most closely resembles
your choice.

For each shortcut you want to create, add one <shortcut> tag. Most
details about the shortcut are listed as attributes with this tag. The follow-
ing sections describe what each attribute does, which attributes are optional
and which ones are required and what the values are that are accepted for
each of the attributes. Note that all attributes that have a yes/no choice can
also be omitted. Doing so has the same effect as using a value of no. The
shortcut attributes can be divided into two groups

e attributes that describe properties of the shortcut

e attributes that define the location(s) at which a copy of the shortcut
should be placed.

The following attributes are used to define location:
e programGroup
e desktop

e applications

35

e startMenu

e startup

4.1.5 Shortcut Attributes

There are three classes of attributes. Some are required, most are completely
optional and some are semi-optional. The set of semi-optional attributes are
all the attributes used to define the location of a shortcut. These are semi-
optional because for any individual one it is your choice if you want to include
it or not. However they are not completely optional. You must specify at
least one location. If all were omitted, the instruction would essentially tell
the panel that a copy of this shortcut is to be placed at no location. In other
words no copy is to be placed anywhere.
name - required

The value of this attribute defines the name that the shortcut will have.
This is the text that makes up the menu name if the shortcut is placed in a
menu or the caption that is displayed with the shortcut if it is placed on the
desktop.

target - required

The value of this attribute points to the application that should be
launched when the shortcut is clicked. The value is translated through the
variable substitutor. Therefore variables such as $INSTALL PATH can be used
to describe the location. You should be aware that the use of this tag
is likely to change once other operating systems are supported.

commandLine - optional

The value of this attribute will be passed to the application as command
line. I recommend to work without command line arguments, since these
are not supported by all operating systems. As a result, your applications
will not be portable if they depend on command line arguments. Instead,

consider using system properties or configuration files.

workingDirectory - optional

36

This attribute defines the working directory for the application at the
time it is launched. I would recommend some caution in relying on this
too heavily if your application should be portable, since this might not be
supported by all operating systems. At this time I don’t have enough in-
formation to make a definite statement one way or the other. The value
is translated through the variable substitutor. Therefore variables such as
$INSTALL PATH can be used to describe the directory.

description - optional

The value of this attribute will be visible to the user when a brief de-
scription about associated application is requested. The form of the request
and the way in which this description is displayed varies between operating
systems. On MS-Windows the description is shown as a tool tip when the
mouse cursor hovers over the icon for a few seconds. On some operating
systems this feature might not be supported but I think it is always a good
idea to include a brief description.

iconFile - optional

The value of this attribute points to the file that holds the icon that
should be displayed as a symbol for this shortcut. This value is also trans-
lated through the variable substitutor and consequently can contain variables
such as $INSTALL_PATH. If this attribute is omitted, no icon will be speci-
fied for the shortcut. Usually this causes the OS to display an OS supplied
default icon. The use of this attribute is also likely to change once
other operating systems are supported.

iconIndex - optional

If the file type for the icon supports multiple icons in one file, then this
attribute may be used to specify the correct index for the icon. I would also
advise against using this feature, because of operating system incompatibil-
ities in this area. In file formats that do not support multiple icons, this
values is ignored.

initialState - optional
There are four values accepted for this attribute: noShow, normal, maximized
and minimized. If th target operating system supports this feature, then this

value will have the appropriate influence on the initial window state of the

37

application. noShow is particularly useful when launch scripts are used that
cause a command window to open, because the command window will not be
visible with this option. For instance on MS-Windows starting a batch file
that launches a Java application has the less than pretty side effect that two
windows show: the DOS command prompt and the Java application window.
Even if the shortcut is configured to show minimized, there are buttons for
both windows in the task bar. Using noShow will completely eliminate this
effect, only the Java application window will be visible.

programGroup - semi-optional

The value for this attribute can be either yes or no. Any other value will
be interpreted as no. If the value is yes, then a copy of this shortcut will be
placed in the group menu.

desktop - semi-optional

For this attribute the value should also be yes or no. If the value is yes,
then a copy of the shortcut is placed on the desktop.

applications - semi-optional

This is also a yes/no attribute. If the value is yes, then a copy of the
shortcut is placed in the applications menu (if the target operating system
supports this). This is the same location as the applications choice for the
program group.

startMenu - semi-optional

This is a yes/no attribute as well. If the value is yes, then a copy of the
shortcut is placed directly in the top most menu that is available for placing
application shortcuts.

startup - semi-optional

This is also a yes/no attribute. If the value is yes, then a copy of the short-

cut is placed in a location where all applications get automatically started
at OS launch time, if this is available on the target OS.

38

4.1.6 Selective Creation of Shortcuts

Usually all shortcuts that are listed will be created when the user clicks the
"Create Shortcuts’ button. However it is possible to control to some degree
if specific shortcuts should be created or not. This is based on install condi-
tions. By including one or more <createForPack> tags in the specification
for a shortcut, you can direct the ShortcutPanel to create the shortcut only if
any of the listed packs are actually installed. The name’ attribute is used to
define the name of one of the packs for which the shortcut should be created.
You do not need to list all packs if a shortcut should always be created. In
this case simply omit this tag altogether.

A word of caution

For any shortcut that is always created, I would recommend to omit this
tag, since I have seen a number of problems related to changing pack names.
You can save yourself some troubleshooting and some Aspirin by not using
this feature if it’s not required. On the other hand if you need it I would
advise to be very careful about changing pack names.

4.1.7 Summary

Native Libraries

e ShellLink.dll - Microsoft Windows

Name of Specification File
shortcutSpec.xml

Specification File Layout

<shortcuts>

<programGroup defaultName="Name of the Program Group" location="applications/startMenu"/>

<shortcut
name="the name"
target="the application to launch"
commandLine=""
workingDirectory="c:\MyWorkingDirectory\data"
description="a description for the shortcut"
iconFile="the file that contains an icon for the shortcut"
iconIndex="0"
initialState="noShow/normal/maximized/minimized"
programGroup="yes/no"

39

desktop="yes/no"
applications="yes/no"
startMenu="yes/no"
startup="yes/no">

<createForPack name="a pack name"/>
<createForPack name="another pack name"/>
</shortcut>
</shortcuts>

4.2 Shortcut Tips

I wrote this section to provide additional information about issues surround-
ing the creation of shortcuts. Reading this section is not necessary to suc-
cessfully create shortcuts, but it might help you creating an installation that
works more smoothly. In addition, it might give you some knowledge about
operating systems that you don’t know so well. In fact most of the issues de-
scribed in this section are focused on differences in operating system specifics.

4.2.1 The Desktop

You should recognize that the desktop is precious real estate for many people.
They like to keep it uncluttered and keep only the things there that they use
on a regular basis. This is not true for everybody and you might personally
think different about this. Still, the fact remains that a lot of people might
have different feelings about it, so you should not automatically assume that
it is ok to place all of your shortcuts on the desktop proper. While your
application is certainly one of the most important things for you, for your
customers it is probably one of many applications they use and maybe not
even the most important one. Accordingly, placing more shortcut icons there
than they feel they will use on a regular basis and especially doing this with-
out asking for permission might trigger some bad temper.

It is common practice to create a program group on the application menu
system of the OS and place all shortcuts that go with an application in that
program group. In addition, only one shortcut to the key access point of the
application is placed directly on the desktop. Many installers first ask for
permission to do so, as does the ShortcutPanel in IzPack.

I would like to recommend that you always create a shortcut in the menu
system, even if your application has only one access point and you are placing

40

this on the desktop. Note that shortcuts can be placed directly in the menu,
they don’t need to be in a program group. There are two reasons for doing so.

e [f the user elects not to create shortcuts on the desktop, they will end
up with no access point to your application

e Even if this works fine, occasionally people 'clean up’ their desktop.
They might later find that they accidentally deleted the only access
point to your application. For the less technology savvy users, recreat-
ing the shortcut might be a rough experience.

4.2.2 Icons

Icons are supplied in image files, usually in some kind of bitmap format.
Unfortunately there is no format that is universally recognized by all oper-
ating systems. If you would like to create shortcuts on a variety of operating
systems that use your own icons, you must supply each icon in a number of
different formats. This chapter discusses icon file formats used on various
operating systems. Fortunately there are good programs available that allow
you to convert between these formats, so that creating the different files is
not much of a problem once the icons themselves are created.

Microsoft Windows

Windows prefers to use its native icon file format. Files of this type usu-
ally use the extension *.ico. Icon files can hold multiple icons in one file,
which can be useful if the same icon is to be provided in a number of sizes.
The iconIndex attribute in the spec file allows you to specify which of the
icons to use.

Windows also supports the use of bitmap files in the *.bmp format as
icons. Note that this format does not support multiple icons.

I am not a total expert in this area and might have overlooked other file
formats that are supported by Windows. However, I would suggest to test
other formats for compatibility as they might not work all the way back to
Windows 95 or on the NT /non-NT strain. Sticking with one of these two
formats should keep you out of trouble.

41

Apple

Apple Macintosh systems use the Macintosh PICT format, extension
* pct. If you are working with an apple system you know a whole lot more
about this format than I do. If you don’t but would like to be able to install
your application on a Mac, simply start with any bitmap format that you
feel comfortable to work with. Then find an application that is capable of
converting this format into a *.pct file. T like to use Paint Shop Pro (PC
based), because it provides conversion capabilities among several dozen dif-
ferent file formats.

UNIX flavors

Sorry folks at this time I have no information available on icon file for-
mats for the various UNIX GUI frontends. If anyone can provide additional
information the would be most welcome.

4.2.3 Targets

So, you thought you could escape the ugly mess of operating system depen-
dencies at least with the way how your Java application is started? Sorry
but I have just another bad message. The one positive thing is that here you
have a way of escaping, even if doing so has a few less pretty side effects. At
first, I would like to discuss various launching options you have available on
different operating systems. At the end of the chapter I write about a way
to make launching your application OS independent.

Microsoft Windows

On Microsoft Windows you have a variety of options for launching your
application. Probably the most simple case is directly starting the Java VM
from the command line and typing out all parameters, such as class path,
the class name etc. In principle, this can be placed right in a shortcut and
should work.

A little more elegant solution is to place this in a batch file and have
the shortcut point to this batch file. This will also make it more likely that
users can repair or recreate shortcuts. Recreating shortcuts with sophisti-
cated command lines is practically impossible.

42

Another method is less commonly used but just as possible. Implement
a native executable that launches the VM with your Java application. The
VM comes as DLL and is used by java.exe in just the same way.

Clearly, even though the first option is a bit ugly and has some draw-
backs, it is the most portable solution among the three.

Apple

I am currently researching the details for the Mac environment. Expect
an updated chapter with the next release.

UNIX

UNIX provides essentially the same options as Windows. You can sim-
ply use the command line option, you can write a shell script and you can
write a native launcher. Naturally this stuff is in no way compatible with
the equivalent Windows implementations. The native option is even more
problematic in this environment, since the code can not even be moved from
one UNIX platform to another, without recompilation.

OS Independent Launching

So, after all this rather discouraging news, there is actually a portable
way to launch Java applications? You bet! although I have to admit that it
is not necessarily the most pretty way of doing things.

This approach is actually used by IzPack. Package your application in a
* jar file if you don’t already do so and make it executable. I am not going
into all the details on how exactly to do this, the Java documentation will
have to do. You might have noticed that even though the instructions to
install IzPack say to type :

java —jar IzPack-install.jar

You can just as well double click on IzPack-install.jar and it will start up.
This procedure will work on all Java supported operating systems -though
you might have to replace double clicking with dropping the file on the VM.
In just the same way, you can make the * jar file itself the target of a shortcut.

The one drawback with this approach is that a *.jar file can only have
one main file. So, if you have multiple targets, they need to be packaged

43

each into a different *.jar file. They can be in one *.jar file but then you
have to start them explicitly, which gets you back to the problems that I
mentioned before. This brings me to the ugly part. If you have just one tar-
get, then you are all set. If you have multiple targets, you need to create a
* jar file for each of them. In addition, you have a much harder time setting
the classpath, because each of the *.jar files that contain supporting code
must be listed. In fact, at present there is no way of setting this during the
installation, because IzPack does not yet (version 3.0) support the setting
and modification of environment variables.

4.2.4 Command Line

Before I start to write a lot about the use of command line arguments let
me state this: If you can avoid using them, do it! Not that there is anything
wrong with command line arguments as such. The issue is simply that if you
want your application to be usable cross platform (the big Java promise) you
should shy away from using command line arguments. The problem here is
that not all operating systems actually support command line arguments.
To be more precise, to my knowledge only Apple operating systems do not
support command line parameters. If you don’t care for running your ap-
plication on a Mac, then you might not worry about his at all. If you are
interested to support the Mac as well, read on.

In fact the Mac supports command line parameters in a way. More to
the point, it supports a single parameter that your application should in-
terpret as the name of a data file to open. You have no way of supplying
this to your application through the command line attribute. The operating
system generates this when the user drops the file on your application and
then passes it as command line argument. That’s it. This same behavior
will probably fly well on pretty much any system and should therefore be an
ok implementation.

So what to do if you want to modify program behavior based on runtime
switches? For one thing, you could set system properties accordingly. The
drawback here is the same as with the command line parameters: the way
of setting these might vary between operating systems. The best way seems
to be using a property file that contains the configuration data.

44

4.3 Trouble Shooting

It has been some time since I wrote this chapter during which a good number
of users had a chance to gather experience. Unfortunately I never know how
many have used it successfully without much difficulty. T only hear from
those that have encountered one problem or another. The type of problems
that I have seen prompted me to write this section, because I think it will
help you in locating most problems that you might encounter or at least give
you some idea where the problem might be located.

4.3.1 Problems You Can Solve

If you see an exception that essentially says that a library can not be loaded
(ShellLink.dll) you have an easy problem to deal with. Your installer file is
probably missing the native tag that adds the Windows dll to the installer
or something with this tag is no quite right. Read "What to Add to the
Installer’ for all details on this topic.

Most other problems cause the ShortcutPanel not to show at all during
the installation process. The reason is simply that the ShortcutPanel skips
if it does not know what to do or if it has nothing to do (no point showing
then and confusing the user). The problem is that this is not always what
you intended. In the most simple but not so uncommon case the Shortcut-
Panel cannot find the spec file. This can be caused by a number of reasons.
The associated resource tag might be missing in the installer specification,
the target file name might be misspelled (the name you specify for the id
attribute) or the target file name has a path or package name prepended.
Just use
textttshortcutSpec.xml and nothing else, just as described in "What to Add
to the Installer’. You can always verify if this part is ok by inspecting the
content of the installer *.jar file. The file shortcutSpec.xml should be located
in the directory res. This inspection can be performed with any zip tool. If
the file is not there, first correct this before proceeding.

If the file is there and the panel does not show you have a problem within
the specification file. In most cases that I have seen, it comes down to a
spelling mistake of an attribute or tag name. You just have to carefully
make sure that everything is spelled correctly. Don’t forget that all names
are case sensitive! In a few cases it has also turned out that required or semi-
optional attributes are omitted, so you might want to verify if all attributes

45

that you need are actually supplied.

If everything is correct up to this point the problem becomes more elu-
sive. Most likely the panel does not show because it is instructed not to
show. There are be several possible reasons for this. The simple case is that
no location has been specified for the shortcuts in your installation. This can
happen if all five location attributes are omitted or if all the ones that are
listed are set to no. Remember, you must specify at least one location for
every shortcut. If this is also correct, you might have used the jcreatForPack,,
tag. Review the details in ’Selective Creation of Shortcuts’. One possibility
for the panel not to show is that based on the packs that are actually selected
for installation no shortcut qualifies for creation. In this case the panel will
not show, this is perfectly normal behavior. More likely this condition is true
because of some accident and not because it’s intended. Make sure the packs
that you list for the shortcut are actually defined in your installation and
verify that they are all spelled correctly. Remember: case matters! Did the
ShortcutPanel use to work in your installation and all of a sudden stopped
working? Very likely you are dealing with the last problem. A package name
might have been modified and the shortcut spec was not adjusted to stay in
synch.

4.3.2 Problems That Have No Solution (yet)

Unfortunately one problem has been very persistent and only recently one
user found the reason. The problem occurs when installing on some target
systems where non-English characters are used in the storage path for the
shortcuts. The problem is that these characters don’t seem to be properly
translated across the Java Native Interface. This leads to a situation where
the proper path can not be located and the shortcut creation fails. I write
‘some target systems’ because it does not fail everywhere. After much ago-
nizing over this problem, one user found the solution: The shortcut creation
works fine if a Sun virtual machine is installed, but fails if a version from
IBM happens to be installed. So far I have no solution for this problem but
I am trying to find a workaround the problem.

46

Chapter 5

Creating Your Own Panels

5.1 How It Works

5.1.1 What You Need

First you have to read the NanoXML documentation if you need to use XML
in your panel. Secondly, it is necessary that you use the Javadoc-generated
class references. We will just explain here briefly how to start making your
panels.

It is a good idea to read the source code of some IzPack panels. They are
usually very small, which makes it easier to understand how to write your
own.

5.1.2 What You Have To Do

Extending 1ZPACK with a panel is quite simple. A panel used with 1z-
PACK must be a subclass of IzPanel. The IzPanel class is located in the
com.izforge.izpack.installer package but your panels need to belong to
com.izforge.izpack.panels.

Things will get a good deal easier if you build [zPack with Jakarta Ant.

Simply add your class in the source tree and add the And directives to build
your own panels. In this way you’ll be able to focus on your code :-)

47

5.2 The IzPanel Class

5.2.1 UML Diagram

JPanel

T

IzPanel

#idata: Install Data
#parent: |nstallerFrane

+l zPanel (parent:InstallerFrane, i data:|nstall Data)
+i sVal i dated(): bool

+panel Activate(): void

+makeXM_Dat a(panel Root : XMLEl enent): voi d

+r unAut omat ed(panel Root : XMLEl enent) : voi d

5.2.2 Description

The two data members are : the install data (refer to the InstallData
Javadoc reference) and a reference to the parent installer frame.

The methods have the following functionality :

e (constructor) : called just after the language selection dialog. All the
panels are constructed at this time and then the installer is shown. So
be aware of the fact that the installer window is not yet visible when
the panel is created. If you need to do some work when the window is
created, it is in most cases better do it in panelActivate.

e isValidated returns true if the user is allowed to go a step further in
the installation process. Returning false will lock it. For instance the
LicencePanel returns true only if the user has agreed with the license
agreement. The default is to return true.

e panelActivate is called when the panel becomes active. This is the
best place for most initialization tasks. The default is to do nothing.

48

e makeXMLData is called to build the automated installer data. The
default is to do nothing. panelRoot refers to the node in the XML
tree where you can save your data. Each panel is given a node. You
can organize it as you want with the markups you want starting from
panelRoot. It’s that simple.

e runAutomated is called by an automated-mode installation. Each panel
is called and can do its job by picking the data collected during a pre-
vious installation as saved in panelRoot by makeXMLData.

49

Chapter 6

User Input

(by Elmar GROM)

Most of the panels that come with IzPack take user input in some form.
In some panels this is through a simple user acknowledgement in others the
user can enter text or select a directory thorugh a file open dialog. In all of
those cases the user input is used for the specific purpose needed by the panel
that takes the input. However, if you need user input during installation that
will later on be available to your application then you need to use the user
input panel.

To use this panel list it in the install file with the class name UserInputPanel.
In addition you must write a XML specification and add it to the install re-
sources. The name of this resource must be UserInputSpec.xml.

The user input panel is a blank panel that can be populated with Ul
elements through a XML specification file. The specification supports text
labels, input elements, explanatory text and some minor formatting options.

The following types of ueser input elements are supported:
o Text

Combo Box

Radio Buttons

Check Box

Rule Input Field

50

The way in which this panel conveyes the user input to your application is
through the variable substitution system. User input is not directly inserted
into your configuration files but the variables that you specify for this panel
are set in the variable substitution system. After this operation has taken
place the variables and associated values are available for all substitutions
made. This way of operation has a number of implications that you should
be aware of.

First, not only can you set additional variables in this way but you can
also modify variables that are defined elsewhere -even built in variables. For
this reason you should be careful to avoid overlaps when chosng variable
names. Although there might be cases when it seems useful to modify the
value of other variables, it is generally not a good idea to do so. Because you
might not exactly know when other variables are set and when and where
they are used throughout the installation process, there might be unintended
side effects.

Second, the panel must be shown at a point during the installation process
before the variables are used. In most cases you will use the values to sub-
stitute variables in launch and configuration files that you supply with your
installation. For this to work you place this panel before the install panel,
because the install panel uses the variable substitutor to replace all such
variables. Although using this panel any later in the process will correctly
set the variables internally, there won’t be any affect on the files written to
disk. You can also use variables set in this way in other panels that you have
written yourself. There is a section in the chapter on writing your own panel
that explains how to do this. Also in this case it is important to place the
associated input panel in the process before the variables are used.

At this point I would also like to mention that it is possible to hide se-
lect elements on the panel or the panel altogether if certain packs are not
selected. For this to work you must place this panel after the packs panel.
One side effect of using this feature is that it is not possible to step back
once the user input panel is displayed. This is because the user might make
changes in the packs selection that would require a complete rebuild of the
UL Unfortunatly, building the Ul is an irreversible process, therefore the user
can not be allowed to go back to the packs panel.

o1

6.1 The Basic XML Structure

The top level XML section is called <userInput>. For most panels it does
not make sense to present them more than once, however you might want to
present multiple user input panels -with different content of course. There-
fore the <userInput> section can contain multiple tags that each specify the
details for one panel instance. The tag name for this is <panel>.

The <panel> tag uses the following attributes:
order - required

This is the order number of the user input panel for which this specifi-
cation should be used. Counting starts at 0 and increments by 1 for each
instance of the user input panel. So if a spec should be used for the second
occurrence of the user input panel use order="1".

layout - optional

There are three general layout rules this panel uses, they are 1left, center
and right. While I think left is most commonly used, you might want to ex-
periment with this attribute and see which you like best. The default is 1eft.

6.2 Concepts and XML Elements Common
to All Fields

Before I dive into the details of defining the various Ul elements I would like
to present XML elements and general concepts that apply thoughout. This
saves me a lot of work in writing and you a lot of repetitive reading and
maybe a tree or two.

The UI elements are generally laid out top to bottom in the order they
appear in the XML file. The only exception to this rule is the title, which
always appears at the very top. The layout pattern for the input fields is as
follows: If a description is defined, it appears first, using the full available
layout width. The input field is placed beneath the description. With fileds
such as the text filed or the combo box, the label is placed to the left and
the input field to the right. Fields such as radio buttons and check boxes are

92

somewhat indented and have the label text appear to their right.

Each UI element is specified with a <field> tag. The type attribute is
used to specify what kind of field you want to place. Obviously, the type
attribute is not optional.

Each field that takes user input must also specify the variable that should
be substituted. This is done with the variable attribute.

Almost all fields allow a description. When a description is allowed it is
always added in the same way. The description is part of the data within
the field tag. There can only be one description per field. If you add more
than one, the first one is used and the others ignored. There are three at-
tributes used with this tag. The text is specified through the txt or the id
attribute. The details on using them are described below. The attributes are
all optional but you must specify text to use, either directly or through the
id attribute. In addition, you can set the text justification to left, center
and right with the align attribute.

The following example illustrates the general pattern for field specifica-
tion:

<field type="text" variable="myFirstVariable">
<description align="left" txt="This is a description" id="description 1"/>

</field>

A very frequently used pattern is for the definition of text. Where ever
text is needed (lables, descriptions, static text, choices etc.) it can be spec-
ified in place using the txt attribute. This is conveninet if you are only
supporting a single language. However, if you would like to separate your
text definitions from the panel specification or if you need to support multi-
ple languages you might want to use the id attribute instead to only specify
an identifier. You can then add multiple XML files with the same name as
this spec file (UserInputSpec.xml) appended with an unserscore ’_" and the
the appropriate three letter ISO3 language code. The content of those files
must conform to the specification for IzPack language packages. For more
details on this topic see the chapter on language packages under advanced
features. id defines an identifier that is also defined in the language package,

33

toghether with the localized text to use. It is possible to use both the txt
and the id attribute. In this case the text from the language package is
used. If for some reason the language package is not available or the id is
not defined there, the text specified with txt is used as default.

All input fields can be pre-set with a value of your choice. Although the
details vary a bit from field type to field type, the set attribute is always
used to accomplish this. The set attribute is of course optional.

All fields that take user input use a <spec> tag to define the details of
the input field. In the some cases the content of this tag is rather simple.
Input fields with a more complex nature tend to have accordingly complex
content in this tag. Since the details vary widely, they are explained with
each input field.

Any number of <createForPack> tags can be added to the <panel> and
<field> sections. This tag has only one attribute and no data. The at-
tribute is name and specifies the name of one of the installation packs that
you have defined. Here is how it works: if no <createForPack> tag exists in
a section, the entity is always created. However, if the tag exists, the entity
is only created if one or more of the listed packs are selected for installation.
As mentioned before, if you are using this feature, make sure the user input
panel shows up after the packs panel.

6.3 Panel Title

You can place an optional title at the top of the panel. Though it is not pos-

sible to select a font for the title that is different form the one used on the rest

of the panel, it is possible to modify the font to some extent. To specify the

title create a <field> tag and use the type attribute with the value title. In

addition to the txt and id attributes, the following attributes are supported:
italic - optional

With a value of true specifies that the title font should be in italics.

bold - optional

o4

With a value of true specifies that the title font should be bold.
size - optional

This attribute specifies the size of the title font. Please note that the size
is not sprcified in points but as a relative size multiplier compared to the
body font on the panel. The default value is 2.

6.4 Static Text

Static text is simply text that is placed on the panel without direct con-
nection to any of the input elements. It is laid out to use the entire layout
width available on the panel and is broken into multiple lines if necessary.
To specify static text create a <field> tag and use the type attribute with
a value of staticText. In addition to the txt and id attributes, the text
can be justified left, center or right with the align attribute. It is not
possible to format this text in any way.

Example

The following example inserts some static text in the panel.

<field type="staticText" align="left" txt="This is just some simple static
id="staticText.text"/>

6.5 Visual Separation

Sometimes it is desirable to separate different entities visually. This can be
accomplished by inserting a space or a divider. A space simply inserts a
vertical separation of the average height of a single line lentity, such as a line
of text or a an input field. A divider inserts the same amout of space but
also draws a division line which can be either aligned at the top or bottom
of the separation. <space>, <divider>

..... maybe I should draw the line myself and add no additional space at
all ...

95

text."

6.6 Text Input

A text input field allows the user to enter and edit a single line of text, with-
out lenght restriction. The input field can have a label, which will show to
the left of the input field and a description, which can span multiple lines.
The description is placed above the input field and uses the entire available
layout width. The width of the input field must be explicitly set, otherwise it
will only accomodate a single character. To specify a text input field create
a <field> tag and use the type attribute with a value of text. The txt and
id attributes are not supported here. The variable attribute specifies the
variable that should be replaced with the text taken from the input field.

The Data

The data consists of two items, a description and the spec. The <spec>
tag uses four attributes. The label text is specified with txt and/or id as
described above. In addition, the width of the input field as it appears on
the panel can be set with the size attribute. The value must be an integer
and sets the field width based on the average character width of the active
font. If this is not specified, then you will end up with a very narrow field
that is practically unusable.

The fourth attribute set is optional. It takes a text string to pre-fill the
input field.

Example

The following example creates a text input field with a label and de-
scription. The width of the input field will be enough to accommodate 15
characters. The field will be pre-set with the text ’some text’ when the Ul
is first presented.

<field type="text" variable="textInput">
<description align="left" txt="This is a description for a text input field"
id="description.text"/>
<spec txt="Enter some text:" id="text.label" size="15" set="some text"/>
</field>

56

6.7 Radio Buttons

The radio buttons are useful when the user needs to select a specific option
out of a pre-defined list of choices. This field offers an arbitrary number of
mutually exclusive buttons, each with its own label. The placement of the
buttons and labels is different form other fields. First, the button is placed
to the left and the label text to the right. Second, the buttons are not lined
up all the way to the left as other lables are but they are indented from
that location. As with other fields, the description is placed above the list of
radio buttons and uses the entire available layout width. To specify a set of
radio buttons create a <field> tag and use the type attribute with a value
of radio. The txt and id attributes are not supported here. As with all
other input fields, the variable attribute specifies that variable that should
be replaced with the user selection.

The Data

The data consists of two items, a description and the spec. The <spec>
tag has no attributes, instead the specification details are entered as data
within the <spec> tag. The <spec> data consists of one or more <choice>
tags. One <choice> tag is required for each radio button. The <choice>
tag accepts the usual txt and id attributes, which are used to specify the
label text. In addition the following attributes are supported:

value - required

The value attribute is used to specify which value to insert if this asso-
ciated radio button is selected. In other words, the label text has nothing to
do with the value that is actually substituted for the variable. For this reason
there is never an issue if multiple languages are used, the value is always the
same for a given selection.

set - optional

The set attribute accepts the values true and flase. Since the attribute
is optional it can also be omitted, which is interpreted as false. If a value
of true is used, the associated radio button will be selected when the Ul is
first presented. Obviously, only one of the buttons in a set should be set to

true.

Example

o7

The following example creates a set of four radio buttons with descrip-
tion. The second button will be selected when the Ul is first presented.

<field type="radio" variable="radioSelection">
<description align="left" txt="This is a description for radio buttons"
id="description.radio"/>
<choice txt="the first choice" id="radio.label.1l" value="1 selected">
<choice txt="the second choice" id="radio.label.2" value="2 selected"
set="true">
<choice txt="the third choice" id="radio.label.3" value="3 selected">
<choice txt="the fourth choice" id="radio.label.4" value="4 selected">
</field>

6.8 Combo Box

The combo box provides essentially the same functionality as do the radio
buttons, just in a different presentation stile. The advantage of the combo
box is that it is easier to deal with a long list of choices.

6.9 Check Box

If there are a number of choices and any combination of them could be se-
lected, not just a single one, then radio buttons are not the way to go. You
might be better off using a number of check boxes. The layout for a check
box works in the same way as for radio buttons. The check box is placed
indented from the left most edge and the label text is placed to the right of
it. Other than with radio buttons, you cannot define any number of check
boxes. This field allows the definition of only one check box, which is associ-
ated with one variable. If you need multiple check boxes you need to define
one field for each of them. To make it look like a cohesive group you simply
provide a description only for the first check box. All of the check boxes will
be positioned in such a way that they look like a group, even though they
are separate entities and their selections are conveyed to different variables.
The description is placed above the check box and uses the entire available
layout width. To specify a check box create a <field> tag and use the type
attribute with a value of check. As with all other input fields, the variable
attribute specifies the variable that should be replaced with the user input.

58

The Data

The data consists of two items, a description and the spec. The <spec>
tag accepts the usual txt and id attributes, which are used to specify the
label text. In addition, the following attributes are supported:

true - required

The true attribute specifies the value to use for substitution when the
box is selected.

false - required

The false attribute specifies the value to use for substitution when the
box is not selected.

set - optional

The set attribute accepts the values true and flase. Since the attribute
is optional it can also be omitted, which is interpreted as false. If a value
of true is used, the check box will be selected when the Ul is first presented.

Example

The following example creates a check box with description. The check
box will not be selected when the UI is first presented. This could also be
accomplished by ommitting the set attribute.

<field type="check" variable="chekSelection.1">
<description align="left" txt="This is a description for a check box"
id="description.check.1"/>
<spec txt="check box 1" id="check.label.1" true="on" false="off" set="false"/>
</field>

6.10 Rule Input

The rule input field is the most powerful and complex one of all the input
fields offerd by this panel. In its most simple incarnation it looks and works
like a regular text input field. There is also only an incremental increase of
the complexity in the specification for this case. However, it is unlikely that

39

you would use it for such a purpose. The real power of this input field comes
from the fact that rules can be apllied to it that control many aspects of its
look as well as overt and covert operation.

6.10.1 Layout and Input Rules

The basic nature of this input field is that of a text input field and as men-
tioned before, in its most simple incarnation that is what it looks like and
how it operates. However, the layout of the field can be defined in such a
way that there are multiple logically interconnected text input fields, adorned
with multiple labels. Further more, each of these fields can be instructed to
restrict the type of input that will be accepted. Now you might ask what
this could be useful for. As an answer, let me present a few examples that
show how this feature can be used. Before I do this howerver, I would like
to describe the specification syntax, so that the examples can be presented
together with the specifactions that make them work in a meaningful way:.

The actual specification of the layout, the lables and the type of input
each field accepts all happens in a single string with the layout attribute.
First let us have a look at the specification format for a single field. This
format consists of a triplet of information, separated by two colons .. A
typical field spec would look like this: —textttN:4:4, where the first item is a
key that specifies the type of input this particular field will accept - numeric
input in the example. The second item is an integer number that specifies
the physical width of the field, this is the same as in the with of any regular
text field. Therefore the field in the example will provide space to display
four characters. The third item specifies the editing length of the string or in
other words, the maximum length of the string that will be accepted by the
field. In the layout string you can list as may fields as you need, each with
its own set of limitations. In addition you can add text at the front, the end
and in between the fields. The various entities must be separated by white
space. The behavior of this field is such that when the editing length of a
field has been reached, the cursor automatically moves on to the next field.
Also, when the backspace key is used to delete characters and the beginning
of a field has been reached, the cursor automatically moves on to the previous
field. So let us have a look a some examples.

Phone Number
The following specification will produce a pre formatted input field to ac-
cept a US phone number with in-house extension. Even though the pattern

60

is formatted into number groups as customary, complete with parentheses ’(’
and dash ’-’; entering the number is as simple as typing all the digits. There
is no need to advance using the tab key or to enter formatting characters.
Because the fields only allow numeric entry, there is a much reduced chance
for entering erroneous information. "(N:3:3) N:3:3 - N:4:4 x N:5:5".
Each of the fields uses the N’ key, indicating that only numerals will be
accepted. Also, each of the fields only accepts strings of the same length as
the physical width of the field.

E-Mail Adress

This specification creates a pattern that is useful for entering an e-mail
address "AN:15:U @ AN:10:40 . A:4:4". Even though the first field is
only fifteen characters wide it will accept a string of unlimited length, be-
cause the "U’ identifier is used for the edit length. The second field is a bit
more restrictive by only accepting a string up to fourty characters long.

IP Address

It might not be uncommon to require entering of an IP address. The fol-
lowing simple specification will produce the necessary input field. All fields
are the same, allowing just three digits of numerical entry. "N:3:3 . N:3:3

N:3:3 . N:3:3"

Serial Number or Key Code

If you ship your product with a CD key code or serial number and re-
quire this information for registration, you might want to ask the cutomer to
trasncribe that number from the CD label, so that it is later on accessible to
your appication. As this is always an error prone operation, the predefined
pattern with the easy editing support and restriction of accepted data helps

61

to reduce transcription errors "H:4:4 - N:6:6 - N:3:3". This particular
specification will produce three fields, the first accepting four hexadecimal,
the second six numerical and the third three numerical digits.

Limitations

Even though the above examples all use single character lables between
fields, there is no restriction on the length of these lables. In addition, it is
possible to place label text in front of the first field and after the last field
and the text can even contain spaces. The only limitation in this regard is
the fact that all white space in the text will be reduced to a single space on
the display. This means that it is not possible to use multiple spaces ot tabs
in the text.

The following table lists and describes all the keys that can be used in
the specification string.

Key | Meaning Description

N numeric The field will acept only numerals.

H hexadecimal The field will accept only hexa-decimal numerals,
that is all numbers from 0-F.

A alphabetic The field will accept only alphabetic characters.
Numerals and punctuation marks will not be ac-
cepted.

AN | alpha-numeric | The field will accept alphabetic characters and nu-
merals but no punctuation marks.

O open The filed will accept any input, without restriction.
U unlimited This key is only legal for specifying the editing
length of a fields. If used, the field imposes no
length restriction on the text entered.

6.10.2 Setting Field Content

Like all other input fields the rule input field can also be pre-filled with data
and as usual, this is accomplished thought the set attribute. As you might
expect, the details of setting this field are rather on the complicated side. In
fact you can set each sub field individually and you can leave some of the

62

fields blank in the process. The set specification for all sub fields is given in
a single string. Each field is addressed by its index number, with the count
starting at 0. The index is followed by a colon ”:” and then by the content of
the field. The string ”70:1234 1:af415 3:awer” would fill the first subfield with
1234, the scond one with af415 and the fourth with awer. The third subfield

would stay blank and so would any additional fields that might follow.

The individual field specs must be separated with spaces. Spaces within
the prefill values are not allowed, otherwise the result is undefined.

6.10.3 The Output Format

The user input from all subfields is combined into one single value and used
to replace the variable associated with the field. You can make a num-
ber of choices when it comes to the way how the subfield content is com-
bined. This is done with the resultFormat and separator attributes. The
resultFormat attribute can take the following values:

Value Meaning

plainString The content of all subfields is simply concatenated
into one long string.

displayFormat The content of all subfields and all lables -as

displayed- is concatenated into one long string.
specialSeparator | The content of all subfields is concatenated into
one string, using the string specified withe the
separator attribute to separate the content of the
subfields.

processed The contnet is processed by Java code that you sup-
ply before replacing the variable. How to do this is
discribed below.

6.10.4 Validating the Field Content

This feature is not yet implemented!

6.10.5 Processing the Field Content

This feature is not yet implemented!

63

6.10.6 Summary Example

<field type="rule" variable="testl">
<description align="left" txt="This is a description for a rule input field."
id="description.rule.1"/>
<spec txt="Please enter your phone number:"(N:3:3) N:3:3 - N:4:4 x N:5:5"
resultFormat="specialSeparator" separator="."/>
<!--validator class=""/-->
<!--processor class=""/-->
</field>

64

Appendix A

The GNU General Public
License

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. QOur General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

65

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you

66

conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and

you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or

collective works based on the Program.

In addition, mere aggregation of another work not based on the Program

67

it.

with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

68

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

69

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

70

PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it

free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this

when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

USA

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate

parts of the General Public License. O0f course, the commands you use may
be called something other than ‘show w’ and ‘show c’; they could even be

mouse-clicks or menu items--whatever suits your program.

71

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

72

