

Jahia 5 Performance Tuning
Guide

5.0SP3

Jahia

9 route des Jeunes, CH-1227, Carouge Switzerland

http://www.jahia.com > The company web site
http://www.jahia.net > The community web site

VERSION

This table records the versions of this document and their last updates

Version Author Date Modifications
1.0 Serge Huber 2007-06-26 Initial document
2.0 Serge Huber 2007-09-14 New sections on

selecting
configurations
for deployment

5.0SP3 Serge Huber 2007-10-08 Preparing for
simultaneous
release with
Jahia 5.0SP3

SUMMARY

 Page

Version 1
Summary 2
Introduction 1
Users types 1

Effects on Jahia system load 1
Jahia Caches 3
Introduction 3
Choosing output cache deployment 3

HTML cache 5
HTML cache – expiration only mode 7
Container HTML cache 7
ESI (Edge-Side Includes), deactivated in 5.0SP3, being rewritten for 5.1 8
ESI – expiration mode 9
OSCache 10
Rule of thumb for choosing between output cache deployments : 11

Output cache compatibility matrix 11
Configuring output cache 12

Full-page HTML cache parameters 12
Configuring ESI 13

Time-based invalidation mode 13
Clustering deployment 14
Clustering overhead 14
Jahia “Browsing & Editing” nodes 15
Processing server 15
Indexing server 16
How to size the cluster deployment 16
Rules of thumb to size the cluster deployment 17
Cluster configuration 17

Testing performance 18
Configuration 18

On Jahia 18
On Tomcat 19
On the database 19

Before each test 19
Restart each computer running Jahia 19
Warm up pass 20

Tools 20
Extracting test input data 20

Case studies 22
Introduction 22
Small Jahia site 22
Medium Jahia site 23

Large Jahia site 25
Scaling out the configuration 27
Fail-over configurations 28

Template fine-tuning 30
During development 30
In production 32
Jahia Tuning 34
During development 34
In production 34

Portlets fine-tuning 47
During development 47
In production 47

Database Tuning 48
During development 48
In production 48

Other useful tools 50

 - 1 -

INTRODUCTION

This document presents various deployment and fine tuning tips, in order to
achieve the best possible performance when deploying high traffic and large
data Jahia installations.

In order to better understand how to fine-tune Jahia for the best possible
performance, we will first give a quick overview of the architecture of the
application. Jahia is composed of many layers, and a proper understanding of
each of them will help you build and setup the best system for deployment.

USERS TYPES

Users types define different types of load on Jahia content management
installations, and we will introduce them here so that we can better explain
how to deploy and configure Jahia according to the expected amount of user
types.

- Anonymous users : these users are people simply navigating through
the site, without any type of personalization associated with them.

- Logged-in, authentified users : recognized users of the Jahia system,
which will see possibly different content than anonymous users, and
will have different options for personalizing their experience on the
site. This can include user profile information that is being displayed
or used to personalize the page display.

- Content editors : these are a sub-class of the authentified users that
are allowed to enter EDIT mode and modify content on the site. They
may also control access to content if they have the permissions to do
so.

- Content validators : these users are similar to content editors, except
that their behavior is a little different. They mostly review content
and publish it once it has been approved.

- Administrators : in charge of administrating the site, or maintaining
the complete Jahia installation. They can create new sites, setup
replication of content, etc.

Effects on Jahia system load
- Anonymous users are in effect the users that affect Jahia’s load the

least, as they are only viewing content that is identical to all. They

 - 2 -

share the same username called “guest”, which is part of the “guest”
group.

- Authentified users may introduce load because the generated HTML
might be different amongst users, meaning more memory will be
needed to handle them. Page generation load will be more important
as they do not see them same content. This is especially true for the
full-page HTML output cache system, which cases a copy of the
whole page for each user. The container HTML cache and ESI sub
systems are more efficient for handling this type of user. Such users
do not have major influences over load on the processing server or
the indexation server.

- Content editors generate and modify content. They introduce an
edition load because they can enter EDIT mode (and therefore the
output cache will be different for them), but they also introduce an
additional load as database writes will happen when they modify or
add new content. They also have an effect on the indexing sub-system
when uploading files, as well as load on the processing server when
doing operations such as copy & paste or import / export.

- Content validators mostly affect the processing and indexing servers
as they publish the modifications to the LIVE mode.

- Administrators introduce the most varied load, depending on the
operations they are performing. Site creation and deletion are also
load expensive operations, as well as site replication that are similar
to import/export operations.

 - 3 -

JAHIA CACHES

INTRODUCTION
Jahia uses caches to improve the performance of its input/output operations
(such as reading from /writing to the database or generating the resulting
HTML page). We can separate these caches into two categories:

- Backend caches : these cache layers mostly concern optimizing Jahia’s
internal operations when communicating with the database, or
internal work such as creating objects, accessing LDAP servers, etc.

- Frontend caches, also known as output caches or HTML caches : these
caches are located in the request chain as close as possible to the
HTML browser in order to serve HTML mostly from the caches
instead of generating load on the Jahia backend. This leaves the
backend free for other operations.

The above illustration explains where the two different caches are located in
the request flow.

CHOOSING OUTPUT CACHE DEPLOYMENT

 - 4 -

Jahia is quite powerful in terms of performance, and offers multiple
possibilities in order to cache the output of a generated page, so that
subsequent requests for the page will be very fast. In best case scenarios, page
response time can be below measurable milliseconds, so it is clearly an
interesting topic to think about when looking at deployment possibilities.

Jahia also uses other caches, notably to optimize the performance of the back-
end services when accessing the database, but these will not be presented in
this section. Check out the database and Jahia fine-tuning tips later in this
document for more information.

Jahia basically offers 4 different output cache solutions:

- HTML cache

- Container HTML cache (starting from Jahia 5.1)

- ESI cache

- OSCache

Disclaimer : this graph is for informational purposes only, and doesn’t represent real performance testing data

As we can see in the above graph, the theoretical evolution of response times
versus the number of pages will help you select the best cache
implementation for your deployment. For small sites, the HTML cache is the
best, while for large sites, the ESI server in expiration-only configuration is
clearly the most performing cache implementation.

 - 5 -

We will now detail each cache implementation, as to give an idea what their
advantages / disadvantages are.

HTML cache
The basic integrated output cache in Jahia is called the “HTML cache”, and
caches the whole HTML rendered for a specific page. Since Jahia pages may
be different by type of users (because of access controls at the container level),
by type of navigation modes (live/edit/preview) and by language, we must
actually store multiple HTML versions of the same page in the cache.

As an example, let’s say you have a site that contains 1000 pages, that has 500
authentified users (not using the same guest/anonymous profile) that are all
able to edit content and that contains 5 languages, the total combination of
entries that will be stored in the HTML cache could be as high as 500 x 5 x 4
(navigation modes) x 1000 = 10’000’000. If we average the size of an HTML
page at 80kBytes, the total weight of the HTML cache would be 768GB (!). Of
course this is assuming that each user has visited all the pages of the site
which is rarely the case, and that each user has full editing rights on the
whole site, which is even less likely. Nevertheless, this cache can quickly
grow in size, assuming that entries are not flushed too often because of
content updates.

But it is evident that as this cache is integrated into the same JVM as the rest
of the Jahia server, the size of this cache can quickly become problematic.
Properly adjusting the size this cache is also difficult because it largely
depends on the type of expected traffic.

Moreover, as Jahia allows for content to be re-used on multiple pages, when
we update this content, we will need to invalidate the HTML cache for all the
target pages. In order to keep track of which content is stored on which page,
Jahia uses an internal structure called “JahiaLinks” which stores information
as to which content is stored on which page. In order to better illustrate this,
let’s have a look at the following schema :

 - 6 -

As we can see, both pages “categories” and “double” display the same
navigation container list (as in Jahia even navigation are built using a
container list). As the choice of displaying this container list is done in the
templates, Jahia also tracks this usage in the database, in the “JahiaLinks”
(aka as cross-reference table) table, because it needs to be able to access
reference information without dispatching to the template. If more pages also
display the same container list, the number of cross-references will grow.
This structure is built on demand, so each time a page displays a new content
object, the structure in the database must be updated, and therefore database
write operations can occur when we are simply displaying a page, which in
turn will slow down the rendering of the page.

Advantages :

- Extremely fast when in cache, can’t be faster as we are directly
serving HTML from memory

- Integrated in the Jahia server, no need to setup a distinct cache proxy
server

- Invalidation is handled by Jahia’s content management system, not
need to take care of it at the template developer or user level, not is
there any waiting time for new content to appear.

- Immediately invalidated when a change occurs

Disadvantages :

 - 7 -

- Can consume a lot of memory which could lead, if the cache is not
limited to out of memory errors.

- “JahiaLinks” cross-reference table can grow really large, and
exponentially on large sites which can lead to severe performance
issues on large sites.

HTML cache – expiration only mode
The expiration-only HTML cache is a configuration variation of the HTML
output cache. Basically when this mode is activated, it means that the
“JahiaLinks” cross-reference system will no longer be used to keep track of
which pages need invalidating when a content object is modified, and
invalidations will only be based on a time-based policy. This configuration is
valid only for the LIVE mode navigation. EDIT, PREVIEW and COMPARE
modes, as they need to always be up-to-date, will never be cached. So if you
have lots of content editors, this option will put more load on the back-end
system that will have to regenerate the page each time.

Advantages :

- Scales better than HTML cache on large sites

- Consumes less memory (since we don’t cache EDIT, PREVIEW and
COMPARE navigation modes)

- Much faster page generation on large sites since we don’t have to
maintain cross-reference data

Disadvantages :

- EDIT mode becomes slower

- LIVE content is not immediately available after a page has been
published but only when the expiration time has been reached.

Container HTML cache (Jahia 5.1 and later only)
Starting from Jahia 5.1, we will introduce a new HTML cache, that, instead of
caching the entire HTML page, automatically caches the output of a single
Jahia container.

This cache is targeted at Jahia deployments that will be doing a lot of content
re-use, which is often the case for top-level container navigation menus that
usually always display the top-level pages on each page. If an editor were to
change the name of a top-level page when using the full-page HTML output
cache, Jahia would have to invalidate the whole cache, as all the pages
display the top-level menu. This is the worst case scenario for the full-page
HTML cache. Another consequence of using the full-page HTML cache is

 - 8 -

that the cross-references for this navigation content object must be
maintained on all the pages, and as the site grows, so does the database table
containing the references. This directly impacts the performance of the page
generation as the references must be updated for each page, and as the
number of pages grows, the loading of the references from the database
becomes slower.

The container HTML cache is based on the assumption that we will no longer
cache the full-page, but only container “blocks” of HTML. If these blocks are
re-used on multiple pages, the same cached entry will be used. This is very
similar to what the ESI cache server does in a more general way with
fragments. Contrary to the ESI technology, the template developer cannot
himself define what the fragment would be on each page.

If we take the same example as in the full-page HTML output cache example,
when we update a container that’s displayed on multiple pages, with the
container HTML cache we will only flush the container entry and no other
cache entry will be flushed, not even the other containers in the same
container list.

Another advantage of the container HTML cache implementation is that it is
able to share cache entries between users, by calculating the group of users
that have the same permissions on content. This is also known in Jahia
terminology as “ACL groups”.

Advantages :

- Good performer on sites which re-use content on multiple pages, for
example in the case of a top-level navigation menu displayed on each
page

- Scales up well to large content sites

Disadvantages :

- Slightly slower than best-case full-page HTML output cache, as Jahia
needs to aggregate the container fragments in order to recompose the
full page.

ESI (Edge-Side Includes), deactivated in 5.0SP3, being rewritten for
5.1

ESI, also known as Edge-Side Includes (http://www.esi.org), is a caching
technology that was developed to solve the problem of caching output in
highly dynamic web pages. In such pages, we often only want to cache
HTML fragments of the page, instead of the complete rendered HTML, as
with each request the displayed fragments may change. This is also based on
the assumption that fragments will be re-used, amongst different users or
pages, and therefore will provide a performance benefit by generating a
specific fragment only once. It also introduces the possibility of having lighter

 - 9 -

cache proxy servers serving the “edge” content without requiring all the
complex back-end architecture of a full-fledged Jahia server.

From a technical point of view, ESI uses a structure similar to the
“JahiaLinks” (or cross-references) to keep track of which fragments contain
which container lists, in order to send the ESI caching server invalidation
messages when a container is updated. The tracking of these relationships is
done through an AOP system implemented using the Aspectwerkz
implementation. This implementation introduces some limitations on
deployment on specific application servers.

As this last aspect was causing performance and deployment problems, it is
currently de-activated in Jahia 5.0SP3 and being rewritten for Jahia 5.1, using
the new container HTML cache feature.

Advantages :

- Standalone caching server, doesn’t use any memory from the Jahia
server

- In future versions, could be clustered

- Encourages fragment re-use between users, groups, pages

- Relatively straight-forward to integrate into templates

Disadvantages :

- Requires support for Aspectwerkz in web application server, as it
relies on this library to perform it’s invalidation tracking. Another
side effect is a partial slow-down on the JDK 1.4 because it doesn’t
have built-in support for code instrumentation, which is a
requirement of aspect oriented systems such as Aspectwerkz.

- Traffic between caching servers and Jahia servers can introduce in
some cases high loads on the Jahia servers (if a lot of fragment
requests happen simultaneously)

- More complicated to deploy than other Jahia output cache solutions

- Scalability issues in current implementation when the number of
Jahia servers increases due to replication of the invalidation tracking
information (which keeps track of which fragment contains which
content objects).

ESI – expiration mode
In order to solve some of the problems in the current implementation of the
tracking structure, Jahia 5.0 Service Pack 3 introduces a new mode for the ESI

 - 10 -

caching server that caches fragments only in live mode, and invalidates them
using time-based rules instead of invalidation messages coming from the
Jahia server. This new mode is similar to the HTML expiration-only mode
that was introduced in Jahia 5.0 Service Pack 2.

Advantages :

- Same as ESI

- No need for an invalidation tracking structure that is stored on the
Jahia back-end server and eats up precious memory

- No scalability problems

Disadvantages :

- Time-based expiration. Published content is not immediately visible
on caching server

- EDIT mode is no longer cached, meaning that surfing in this mode
will be a little slower

The future of the ESI implementation is to provide an implementation similar
to the container HTML cache system, but that will be able to run in
standalone mode on a dedicated caching server.

OSCache
The last solution for output HTML caching is the introduction of a legacy
caching library. It is targeted at integrators that will develop and integrate
into their own Jahia templates their custom logic to personalize page
generation. This could also include aggregating outside content from RSS
feeds, portlets, or other sources. The goal is to cache the result so that
subsequent requests will be much faster. For this we recommend using the
OSCache JSP tags that offer custom control of caching. Invalidation must be
handled either through time-based expiration or through custom logic
implemented by the integrator. An example of a custom invalidation
implementation could be done using Jahia event listeners, so that
invalidation could be performed even on Jahia content modifications.

For more information on integrating OSCache, please check the following
URL : http://www.opensymphony.com/oscache/wiki/JSP%20Tags.html

It should also be noted that it is perfectly possible to mix OSCache integration
with another output cache system, such as the full-page HTML cache or ESI,
but one must be careful about the invalidation then, as it will be more
complicated to handle because of the intermix between the two caching
systems.

 - 11 -

Advantages :

- Flexible solution for custom output caching

- Easy to use if a time-based expiration solution is acceptable

Disadvantages :

- Not integrated with Jahia content modifications, must be done
manually by the integrator if needed

- Not a remote caching solution like ESI. The cache will consume the
memory of a Jahia server which could lead to out of memory issues if
the expiration policy is not properly setup.

Rule of thumb for choosing between output cache deployments :

Site type Preferred output cache

Small “static” sites HTML cache

Large “static” sites HTML cache with time-based
expiration mode

Small dynamic sites and
personalization

Container HTML cache

Large dynamic sites with high load
and personalization

ESI

Custom page rendering or portlets in
pages

OSCache

OUTPUT CACHE COMPATIBILITY MATRIX
The following table explains the output caches that may be activated
simultaneously.

 - 12 -

H
TM

L

H
TM

L
tim

e
ex

pi
ra

tio
n

C
on

ta
in

er
 H

TM
L

(5
.1

)

ES
I (

5.
1)

ES
I t

im
e

ex
pi

ra
tio

n

O
SC

ac
he

HTML x x*

HTML time expiration x x*

Container HTML (5.1) x x*** x x

ESI (5.1) x*** x x**

ESI time expiration x x x**

OSCache x* x* x x** x** x

*=cache will need to be deactivated on the page that has the fragments

**=not really interesting for performance, use default ESI functionality
instead

***=not optional, required

CONFIGURING OUTPUT CACHE

The output cache is mostly configured in the tomcat/webapps/jahia/WEB-
INF/etc/config/jahia.properties file, except for the case of the ESI server
where configuration must be done on it’s server (see section later in this
document for ESI setup).

Full-page HTML cache parameters
The output (HTML) cache may also be controlled in more detail with the
following parameters.
outputCacheActivated = false
the following value is in milliseconds, set to -1 for no time expiration
outputCacheDefaultExpirationDelay = -1
The following setting is designed to be used for large sites (10'000
pages and more), and will switch the output cache to a expiration-only
mode. This means that all pages in live mode will not be invalidated
immediately when content is published, but only after the expiration
of the cache entry. This also deactivates the output cache in EDIT
mode, which might have a performance impact. Also, this deactivates
the generation of the JahiaLink HTML references building, which is

 - 13 -

a performance problem when sites reach large sizes. So if your
site is getting large, it is recommended that you switch this
variable to true and that you set a reasonable value for the
outputCacheDefaultExpirationDelay.
outputCacheExpirationOnly = false

CONFIGURING ESI
ESI can be configured in two ways :

- Using time-based expiration of fragments, in which case new content
will only be available after a certain time for validated elements, but
all the other navigation modes are non-cached. This mode is by far
the one that can handle the biggest load in LIVE mode, because the
server doesn’t need to do anything to track content invalidation.
Unfortunately there is a slowdown in EDIT/PREVIEW and
COMPARE modes as these are not cached.

- (Jahia 5.1, deactivated in 5.0SP3) Immediate invalidation upon
content modification. This mode uses structures on the Jahia server so
it can eat up a little more memory as well as a little more CPU, but it
ensures that all modes are cached, therefore offering better overall
performance.

Time-based invalidation mode
In order to launch ESI using the new time-based invalidation mode, you must
run ESI without the Aspectwerkz framework so be sure to start your Jahia
server using jahia.sh or jahia.bat and no longer the jahia_Esi.sh or
jahia_Esi.bat (now deprecated)

In the ESI server configuration file (tomcat/webapps/ROOT/WEB-
INF/data.xml) is configured to not cache EDIT/PREVIEW/COMPARE
modes (as defined in the pass through rules)

The expiration of content will only happen once the elapsed time has been
reached. The default value is set to 3600s (1 hour) this could be easily
changed in jahia.properties or jahia.skeleton

In order to migrate an existing installation, after installing all the new
versions of ESI and Jahia, in the jahia.properties the following variable must
be set to this value :

esiCacheDefaultExpirationDelay = 3600

 - 14 -

CLUSTERING DEPLOYMENT

Deploying Jahia in a cluster is a very powerful way of distributing CPU and
memory load to handle larger traffic sites. We will explain in this section the
different types of possible deployments, as well as how to choose whether to
use them or not.

CLUSTERING OVERHEAD
Although clustering is a good solution to scale Jahia, it is not completely
transparent in terms of performance impact. As Jahia uses internal caches to
speed up its operations, cache coherency must be maintained throughout all
the nodes of the cluster so that, when a node invalidates a cache entry (for
example because it has modified it), the other nodes are informed, and in
turn must invalidate their own cache entry. This communication overhead is
only present when Jahia is configured in cluster. If we have a look at it
graphically, and can be illustrated as follow :

As we can see in the above illustration, each node communicates with all the
others, in a truly peer-to-peer fashion. The nice thing about this is that nodes
are completely independent, and if one of them fails the system can still
work. By default the cluster configuration uses UDP multicast packets, which
reduces the need to actually connect to all the nodes. This requires a solid
configuration on the routing equipment, which is quite often a bit
problematic. In order to avoid this problem, a TCP configuration mode is also
available, as well as even other types of transport. Jahia uses for this the

 - 15 -

JGroups clustering library. More information about the capabilities of this
library may be found here : http://www.jgroups.org .

As the number of nodes in a cluster deployment grows, so does the traffic
between the machines, so it is important to remember that there is an
overhead due to the communication between all the machines (in the form of
invalidation messages). It is therefore crucial that the networking hardware
between the machines does not interfere with the traffic, and that everything
is setup properly so that the performance impact stays minimal. Jahia already
optimizes the traffic of messages between the nodes in order to regroup them
and only send one packet at the end of each request. The receiving nodes
then must unpack the list of invalidations and process them. Basically this
traffic should stay in the 10% CPU overhead range, and this is mostly related
to the number of nodes as well as the performance of the CPU and the JVM
on each node, so if a large cluster is planned, the machines should be
properly dimensioned in terms of processing power.

 JAHIA “BROWSING & EDITING” NODES

Jahia “browsing & editing” nodes are cluster nodes that can be used to either
browse Jahia content or edit it. This is the most common usage of Jahia nodes,
and therefore it is interesting to have multiple instances of these in order to
distribute the load.

It is also possible, through Apache Web server rewrite rules, to separate edit
and browsing loads by, for example, redirecting all edit mode navigation and
editing to specific machines. Support for this type of separation will be
improved in Jahia 5.0 Service Pack 3 and further versions. It should be noted
that the clustering setup requires the configuration of “sticky” sessions, as
Jahia does not currently support session distribution, and each user session
must be always directed to the same node.

Browsing is usually not a heavy operation, but can become more important if
personalization is used or if portlets are deployed on a Jahia site. Also, as
Jahia browsing nodes can also serve as “cache loaders” for ESI cache servers,
it might be good to have multiple Jahia browsing servers in order to
sufficiently serve the requests coming from the cache server.

Edition-specific nodes are also quite interesting because they clearly avoid
loading the browsing nodes with edition operations, which makes sure they
stay fully available for the larger number of users only browsing the site.
Usually the number of editors is significantly lower than the number of
“simple” users, so this type of configuration is quite interesting. It is of course
also recommended to limit the maximum number of editors per node, and
therefore to add editing nodes if the number of content modifiers grows.

PROCESSING SERVER

 - 16 -

In Jahia, long-running tasks such as workflow validation operations, copy &
pasting, content import and indexing are executed as background tasks. This
way while these long operations are executed, the server is still able to
process content browsing and editing requests. Despite this, these
background tasks may eat up significant memory and CPU resources, so this
is rarely ideal for medium to large Jahia installations.

In order to off-load Jahia browsing and editing nodes of long-running
operations such as workflow operations, copy & pasting, import of content,
such tasks could be directed to a Jahia server configured as a stand-alone
processing server. Usually this server will not be made available to serve
Jahia pages, although it is capable of doing so. In most cluster installations
the processing server is a node dedicated to this task, which is a good
solution, both in terms of user-experience and system load. It should also be
noted that it is mandatory to have one and only one processing node.

INDEXING SERVER

File and content indexation can be a very expensive operation both in terms
of CPU usage and memory load. For example, in order to index PDF files, the
server must actually execute the script instructions that are contained within
the file in order to extract the text content. This requires the execution of a full
Postscript-like language, including its memory management and instruction
processing, just to extract text content. In the case of complex Microsoft Office
files, extracting the text can require a lot of memory and CPU. Indexing large
files also requires memory that cannot be freed until the actual extraction has
been completed.

Indexation is usually considered to be an operation that is not needed in real-
time, and therefore can run as a background task. In order to reduce the load
on the Jahia servers doing the actual content editing or processing, it is
strongly recommended to install a separate content indexing server,
especially if the content will contain a lot of typical office files.

It is also possible to install multiple indexing nodes, so that there is no single
point of failure for this type of operation. In this case the filesystem between
the nodes must be shared, as indexes are stored on a shared filesystem.

HOW TO SIZE THE CLUSTER DEPLOYMENT
Now that we have introduced all the different parts of a typical Jahia
installation, it is quite common to ask what is really needed for a specific
customer site deployment. As much as this question is quite easy to ask,
unfortunately it is not as easy to answer, as it depends on lots of different
parameters, and some of them might be hard to guess in advance.

Basically, the main criteria for selecting the size of the cluster installation will
be the user load. By this we mean to say the different types of users that will

 - 17 -

use the site, the number of these types of users and the level of
personalization as well as dynamic content (such as portlets). All this will
help determine the projected CPU and memory load on the servers, which in
turn will give a clearer idea of what type of install to perform.

Other important criteria are the content size and frequency of modification,
as well as the number of files that will be managed by the Jahia installation.
More importantly, the type of file is quite significant, especially in the case of
PDF files. It is quite common for large sites to have needs to store large
number of PDF files, and therefore this will introduce specific requirements
on the deployment planning, especially the indexing configuration.

RULES OF THUMB TO SIZE THE CLUSTER DEPLOYMENT
Number of “editing nodes” : this is determined by the projected expected
number of content editors that will be working on the site simultaneously.
Anonymous and logged users can be important if their numbers are quite
significant, but content editors usually generate a higher CPU and memory
load than non content editors. Also if the browsing nodes are separated from
editing nodes, the browsing users need to be quantified in order to know
how many browsing nodes will be necessary.

Processing server : usually recommended as soon as the number of content
editors reaches 5-10 simultaneous users of if you are using lots of copy/paste,
cron or validation operations on large sites. Although this figure is not
precise, it is in general a good idea to separate long-running operations to a
separate server.

Indexing server : this requirement is mostly determined by the number of
files that will be introduced into the system, and the frequency of these
introductions.

CLUSTER CONFIGURATION

Please read the « Howto cluster » guide, that is referenced from the Jahia
readme to find the procedures that detail how to configure Jahia in cluster.

 - 18 -

TESTING PERFORMANCE

Along with the initial planning of deployment, it is also a very good time to
plan for performance testing. In order to avoid last minute surprises,
especially when going into production, it is highly recommended to have
executed minimal performance testing on the Jahia servers. Actually this is
not even specific to Jahia, and is in general a good idea for any web system
deployment.

Testing should be developed to simulate each user type, in a manner as close
as possible to the real thing, but automated so that it is possible to stress-test
too. Stress testing will possibly illustrate flaws in the installations that will
hopefully never occur, but give a good idea of the limitations of the system,
which in turn will help planning for scaling the system even further. For
example, stress testing might show that the database back-end is getting
overloaded, and will help plan for looking at clustering solutions on the
database side.

CONFIGURATION

In order to setup Jahia for performance testing, a few configuration
parameters must be modified. Basically first you must determine your user
load, which will be used as the basis for configuration of all the rest of the
Jahia installation. In this example we will assume that you will be used 200
simultaneous users.

On Jahia
In the jahia.properties file, located in the tomcat/webapps/jahia/WEB-
INF/etc/config directory, you must adjust the following parameters to the
following values :

maxParallelProcessings = 200

The above setting makes sure that Jahia allows at least 200 simultaneous
worker threads to serve the content (excluding pages served from the HTML
cache). Usually in production, in order to save memory it would be best to
put this as close to the “usual” load of simultaneous connections, but not
much higher, so that when load starts peaking, the server correctly limits
connections.

pageGenerationWaitTime = 1

 - 19 -

The above setting controls the wait time (in milliseconds) that threads above
the maxParallelProcessings value will have to wait. In our tests we set this
value to 1 ms, in order to immediately reject the extra requests. Normally we
should never have this case if the parallel thread limit has been properly
setup, and by setting this delay very low, if an extra thread request is
received, we will receive “503 - server overloaded” error messages, making
us aware that we should augment the maxParallelProcessings value.

On Tomcat
In the tomcat/conf/server.xml file, modify the “maxThreads” parameter on
the “connector” tag to at least 400 threads, as Tomcat is responsible to serve
not only the HTML, but also all associated resources (images, CSS,
Javascript). It should look like this :

 <Connector port="8080" maxHttpHeaderSize="8192"
 maxThreads="400" minSpareThreads="25" maxSpareThreads="75"
 enableLookups="false" redirectPort="8443" acceptCount="100"
 connectionTimeout="20000" disableUploadTimeout="true"
 emptySessionPath="true"/>

In the tomcat/conf/Catalina/localhost/jahia.xml file, the database
connection pool settings must be raised to allow at least 200 simultaneous
connections. This is done by changing the “maxActive” parameter on the
“Resource” tag, as shown below :

 <Resource name="jdbc/jetspeed" auth="Container"
 factory="org.apache.commons.dbcp.BasicDataSourceFactory"
 type="javax.sql.DataSource" username="jahia" password="jahia"
 driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://localhost/jahia_502?useUnicode=true&characterEncoding=U
TF-8" defaultAutoCommit="true"
 maxActive="200" maxIdle="30" maxWait="10000"/>

On the database
The database configuration must allow for at least the same number of
connections that were allocated to the database pool configuration in the “On
Tomcat” section. Please refer to your database documentation to figure out
how to change the maximum number of simultaneous connections allowed.

BEFORE EACH TEST

Restart each computer running Jahia
As long-running and stressed instances of Jahia can consume a lot of
resources, especially TCP/IP connections, it is a good idea to restart the
computer (not only the Jahia or web application server), before each
performance test. This ensures reproduceability of test results too.

 - 20 -

Warm up pass
Make sure that before you run your performance tests, you do once full
warm up pass, as new releases of Jahia introduce a lot of precalculation that
must be done only once. This way you can ensure that your performance will
also be as close as possible to real-world performance.

TOOLS

Performance testing can be performed with many various tools, and we will
present here a few of the most-used ones :

- Apache JMeter (http://jakarta.apache.org/jmeter/) : A very well
known open-source tool written in Java to test performance of web
applications. Apache JMeter may be used to test performance both on
static and dynamic resources (files, Servlets, Perl scripts, Java Objects,
Data Bases and Queries, FTP Servers and more). It can be used to
simulate a heavy load on a server, network or object to test its
strength or to analyze overall performance under different load types.
You can use it to make a graphical analysis of performance or to test
your server/script/object behavior under heavy concurrent load.
JMeter requires users to build the testing scripts pretty much by
hand, which can be a little tedious at first, but the interface for
building the scripts requires almost no programming.

- OpenSTA (http://www.opensta.org/) : OpenSTA is a distributed
software testing architecture designed around CORBA. The current
toolset has the capability of performing scripted HTTP and HTTPS
heavy load tests with performance measurements from Win32
platforms. However, the architectural design means it could be
capable of much more. OpenSTA uses a proxy server to record
requests and then generates scripts that can be edited to make them
more configurable. The scripting language can be quite cryptic at
times and the generated scripts are harder to maintain than JMeter
handcoded scripts.

- Mercury LoadRunner
(http://www.mercury.com/us/products/performance-
center/loadrunner/) : the leading commercial performance testing
tool.

You can find more tools that will help you test performance in our “Tools”
section at the end of this document. Mostly what we have not included in this
section are profiling tools that can be used on the server to diagnose the cause
of performance bottlenecks.

EXTRACTING TEST INPUT DATA

 - 21 -

In order to build the datasets for testing, usually you will need a list of valid
page IDs that you can use to test browsing the site for example. You can
retrieve the list of accessible page ID with the following SQL request :

SELECT id_jahia_pages_data FROM jahia_pages_data WHERE
pagetype_jahia_pages_data=0 AND workflow_state=1 ORDER BY
id_jahia_pages_data;

The above request returns the LIVE mode pages, i.e. pages that have already
been validated. If the objective is to load test in EDIT mode, the request must
be slightly modified to include the non-validated pages :

SELECT DISTINCT id_jahia_pages_data FROM jahia_pages_data WHERE
pagetype_jahia_pages_data=0 AND workflow_state>=1 ORDER BY
id_jahia_pages_data;

 - 22 -

CASE STUDIES

INTRODUCTION
In this section we will present three case studies that illustrate common Jahia
deployment scenarios. We will talk about the typical use of such systems, the
strength and limitations of each configuration, as well as the possibility to
customize the deployment depending on the specific needs.

SMALL JAHIA SITE

Jahia is quite able to provide a lot of functionality on a single server, and this
configuration is aimed at smaller installations such as personal websites,
small intranets, etc. In this configuration the Jahia installation doesn’t have
any requirements for high-availability or high performance, and background
tasks such as XML imports or indexing will directly influence the overall
performance. The configuration will look something like the following
diagram :

This means that the single Jahia server will handle all the caching, the
browsing, the editing, the workflow processing, XML import, indexing and
many other functions in an all-in-one server. User database is also completely
handled by Jahia. Everything is stored in the database and the file-system
(used for search indexes).

 - 23 -

MEDIUM JAHIA SITE
The medium site case study is targeted towards high-volume mostly static
sites. This doesn’t mean that they cannot contain elements of personalization
or external data, but these will be built on top of Jahia internal output cache
system, rather than by-passing it.

In order to achieve both high-performance and dynamic rendering of content
and personalization, tasks are delegated to both the server and the client.
Basically the server will serve cached HTML for the pages, and answer small
HTTP requests coming from the client. The client will generate AJAX
requests to the server, in order to render the dynamic part over the static
cached pages. This allows Jahia to be able to serve pages really fast without
having to regenerate full pages so often.

In the above illustration we can see the following elements :

- Apache Web server with mod_jk connector or any other hardware
load balancer

- Jahia server, that may be installed on different cluster nodes

- A separate Jahia server dedicated to processing and indexing

- External data sources, such as syndicated content

 - 24 -

- External custom authentification server (in this example non-LDAP)

- The database containing all the data managed by Jahia

- The file-system used to store search indexes

This case study includes the following features :

- Medium amount of pages (in the thousands of pages range)

- Large number of browsing users, very few editors, not a lot of
personalization

- Integration of external data through client-side data aggregation

- Integration of an external authentification server that is implemented
as a Jahia user provider

The Apache Web Server is installed on top of the complete stack so that it
may perform both URL rewriting and load-balancing functions. The URL
rewriting configuration is useful for exposing different URLs than the
standard Jahia ones, and also if there is a desire to separate browsing and
editing loads on separate servers. The load-balancing is based on a sticky-
session mechanism because Jahia sessions must stay on the same server.

The integration of external data through client-side aggregation is important
because it allows the page served by Jahia to come directly from the output
(HTML) cache, and the external data is then included through Javascript that
loads it from another server and modifies the page’s DOM (Document Object
Model) to add the data as soon as it is loaded. Another possibility of doing
aggregation on the client is to use IFrames to aggregate content. IFrames size
is usually fixed, but it could be made flexible by using Javascript to
automatically resize the IFrame to the content size (see http://www.dyn-
web.com/dhtml/iframes/) .

User personalization is done the same way, basically upon login a cookie is
inserted that is used by Javascript code to access external personalization
data, or using the AJAX aggregation requests.

Another interesting part of this case study is that it integrates with an
external authentification system that is non-LDAP. This is done through the
custom development of Jahia user (and possibly group) providers, which is a
pluggable interface. This of course is not a requirement and in most cases the
LDAP provider will suffice as an authentification system, but we just wanted
to illustrate the possibility to integrate with custom systems, as was done in
this case study.

The clustering section of this case study allows to instantiate multiple times
the Jahia server nodes, in order to handle more load. It would even be
possible to extend on this setup to separate browsing and editing nodes,

 - 25 -

much in the same way as we will present it in the “large Jahia site” case
study. A separate Jahia server node is dedicated for both processing and
indexing workloads. This avoids loading the browsing and editing nodes
with time-consuming operations such workflows, XML importing and
indexing. It also allows the “simple” nodes to keep all available memory to
support as many concurrent users as possible. In the above illustration we
have illustrated the horizontal traffic that flows between the various Jahia
server nodes, which is different from the request processing traffic that is
presented vertically.

LARGE JAHIA SITE

The large Jahia site case study is similar to an “all-you-can-eat” configuration
of Jahia, and is possibly the “higher-end” Jahia installation. Such an
environment is geared towards high-traffic and highly dynamic web site
usage. It includes personalization, portlet usage, filters, sorters and searchers,
separate browsing and editing servers, possibility to fail-over, LDAP server
connection for user authentification, etc. The configuration we will present
here can be summarized in the following diagram.

 - 26 -

The above illustration is basically an expanded version of the medium site
configuration. What is new is the introduction of the ESI front-end cache
proxy server as well as the separation of Jahia servers into more granular
specialized servers.

So basically the installation is composed of :

- A load-balancing Apache Web Server with a mod_rewrite and
mod_jk configuration, or any other hardware load balancer. This
server distributes the load over the various ESI cache servers, and is
in charge of separating browsing and editing mode load. It is also
possible to extend the configuration of the Apache configuration to
support fail-over. More information about this type of deployment
can be found in the below fail-over section.

- The ESI cache server is responsible of caching fragment of pages as
well as the complete generated page. The idea here is to take
advantage of fragment re-use across pages as well as sharing of
fragments among similar groups of users, and to make it possible to
mix both “static” and dynamic elements on a page, reducing
performance impact to a minimum. So in this configuration the ESI
server is also responsible of dispatching to the below Jahia servers,
and balancing the load on them if desired.

- Jahia browsing nodes : these are basically Jahia nodes reserved for
navigating the web site. The simplest way of doing this is to use
Apache Web Server rewrite rules to choose which servers are
dedicated to browsing, and which are dedicated to editing. This
allows for fail-over configurations too, as we will see in more detail
below.

- Jahia editing nodes : these nodes are dedicated to the workload
generated by content editors.

- The Jahia processing server is in charge of handling all the long
running jobs, except for indexing. This server has a requirement of
being the only instance of this type, because of the potential
corruption that could occur if two long-running jobs were running
concurrently. In order to reliably perform jobs, they are serialized in
the database, and should the server ever be shutdown and restarted,
it will restart the jobs. Internally it uses the open-source Quartz
enterprise scheduler (http://www.opensymphony.com/quartz/)
that is a very reliable and flexible implementation of a job processing
system.

- The Jahia indexing server is in charge of both the text extraction and
the indexing of the content inserted into Jahia. The extraction of text
from Adobe PDF or Microsoft Office is a heavy operation that uses up
both CPU and memory, and therefore it is very important to separate
this load on high-end installations that will contain large number of
office files. This server can be replicated to scale out the configuration

 - 27 -

to better distribute load or to provide fail-over using mirrored file-
systems.

- External data : the integration of external data in this case study is
different from the medium site configuration, and can be performed
with portlets for example. This is another reason why it is important
to distribute browsing load on multiple machines, as they will also
process the logic operations that the portlets contain. It is very
important therefore to also make sure the portlets are very efficiently
implemented, because in performance as in security the weakest link
can bring the whole system down, so a portlet accessing a remote
data server, if not down properly, could seriously hinder
performance. Another way of integrating external data could be
through the use of custom tag libraries integrated in Jahia templates.
In this latter example, an integration with ESI fragment caching is
also strongly recommended in order to benefit from the fragment
optimizations that this server offers, in order to reduce the load on
the Jahia server as well as the external data server.

- LDAP server : quite common in enterprise deployments is the
integration of Jahia with a directory service. Jahia works well with
various LDAP implementations such as Active Directory,
OpenLDAP, Novell LDAP.

- Database : in this type of high-end configuration, the database choice
and configuration is critical. As the number of requests can become
very important, the proper dimensioning of the database server is
critical. The chosen database should also be installed on powerful
hardware, including lots of memory, and possibly also be clustered.

Scaling out the configuration
In the above illustration, you will notice that the ESI cache server, the Jahia
browsing and editing nodes as well as the indexing server all have dashed
boxes behind them. These represent the possibility to extend the load
balancing by replicating these nodes multiple times in order to better
distribute load as well as offer better availability.

Other important parts of the clustering configuration include of course the
Apache Web Server that must be properly configured to distribute load, as
well as the back-end servers. The LDAP server must be able to handle
properly the larger amount of requests that will be generated by a growing
number of nodes, and the external data server must also be able to scale out
properly.

The database is really critical in terms of scaling out, and must be
dimensioned properly. It is not the purpose of this document to explain how
to achieve this, as each database implementation usually has good
documentation on how to improve performance and scale out, but it should

 - 28 -

be remembered that when growing the installation for higher performance,
the database is an extremely critical part of the equation.

For more information on clustering we refer you to the previously presented
clustering description in this document.

Fail-over configurations
In the proposed configuration, it is possible to introduce fail-over
installations, mostly by using the Apache web server with a powerful URL
rewriting configuration that will test first the availability of the Jahia server
before dispatching to them.

The really powerful mod_rewrite module of the Apache Web Server can be
extended to do all sort of things using the RewriteMap configuration
parameter that allows external programs to provide mapping. Here on the
custom deployment you could develop (or integrate) a high-availability
system that would check the status of the servers below, and provide a
mapping function for the rewriting module. As of the time of writing though
we do not provide such a script as part of our Jahia configuration, but it
should just be noted that it is technically possible to achieve this type of
install.

At the ESI cache server level, the cache server is capable of being connected to
multiple Jahia server, and will modify its dispatching rules dynamically if a
Jahia server becomes unavailable, and bring it back into the server pool once
it is available again.

Jahia browsing nodes are configured actually as fully capable nodes, that
include the possibility to perform edit loads, because of fail-over
requirements. Basically the Apache Web Server is in charge of limiting the
edit load to a subset of servers, checking if they are indeed available for
editing, and if not the script should be capable of detecting the failure, and
redirecting the editing load to the browsing nodes temporarily.

The fail-over configuration is more limited for the processing server, as it has
inherent limitations because the long-running processes risk interfering with
each other. Fortunately all the jobs are also stored in the database, so even if
the server goes down and comes back up, the jobs will restart as expected.
Therefore it is critical to have availability monitoring systems installed so that
the downtime of the processing server is quickly detected and so that it may
be restarted rapidly.

The indexing servers may be replicated to provider fail-over, but they also
work the same way as the processing server, so fail-over is really dependent
on quick failure detection and restart of the server, in order to guarantee
system integrity. Also as they store their indexes on a file-system, it should
also be setup so that a mirror file-system can takeover in case of failure. The
configuration of such a setup is not in the scope of this document though, but

 - 29 -

let it be known that most modern operating systems offer solutions for
problems like these.

The last important part of the fail-over configuration is the back-end system.
The external data server must be also made reliably available, or at the
minimum the front-end system accessing it must tolerate failure and possibly
display a message asking to try again later. The LDAP server must be
configured in a fault-tolerant configuration. Portlets and any back-end they
may access should properly handle failure conditions, and possibly simply
mark unavailability to the end-user if something goes wrong, until the
system can be made available again. The most important one is the database,
that must be really highly available, as any downtime could lead to serious
data corruption. There are here fortunately many solutions specific to each
database vendor, and it is usually not too much a problem of function but
rather an issue of configuration and licensing cost.

 - 30 -

TEMPLATE FINE-TUNING

DURING DEVELOPMENT

1) Use the Jahia API with care

If you plan to develop advanced Jahia features in addition to basic templates
(for example if you plan to automatically create a default set of pages for each
new virtual site or if you plan to automatically import external content into
the Jahia content repository), please take care to fully understand the Jahia
model and to fully and extensively test your custom developments before
putting them in production and in the hand of the end-users. Certain Jahia
operations are quite complex and tricky (e.g. the page creation operation).
Having full access to the source code and to all the underlying Jahia classes,
doesn’t imply that you can use them as-is without fully understanding the
Jahia object model. You risk corrupting the integrity of the database by
forgetting to integrate certain mandatory checks or certain tests in your code.

Moreover the Jahia developers does not guarantee that the Jahia API will not
change from a point release to another. So your workarounds or your
advanced features may not work anymore in the next releases. Consequently,
think twice before implementing such advanced features. Always think if it
isn’t better to contribute your changes to the community or to sponsor a
longer term development rather than implementing a short term custom
workaround which risks becoming rapidly unmaintainable and may corrupt
your whole content model if badly implemented.

Also, if you are trying to import content, please always refer to the built-in
features, such as the XML import mechanism that can cover a lot of needs.

2) Use OSCache or ESI to cache fragments

OSCache can perfectly be used for fragments of the page, which take much
time to render and where the result is always the same, especially if it is the
same on every page (header, footer, menu, last 5 news,...). However you
might want to use it only in LIVE mode, as in EDIT mode you might want to
always see the latest items, even if the page render time is a little slower.

You could do it like this:

<%
ContainerBean boxCont = (ContainerBean)
pageContext.getAttribute("boxContainerBean");
int boxContainerId = boxCont.getId();

 - 31 -

boolean isCacheActive = jData.gui().isNormalMode();
%>
<cache:cache time='<%= isCacheActive ? 120 : 0 %>'
 key='<%="box" + (new Integer(boxContainerId)).toString()%>'>

 [... the display of the box...]

</cache:cache>

In this example the box will be cached in LIVE mode for 120 seconds. You can
decide whether you want to cache a fragment for minutes or hours. It
depends how often it changes. For instance the header and footer will not
change often. For the navigation, it might happen more frequent that new
pages are coming or old pages are being deleted. In order to prevent 404
errors, if a fragment is still showing a page, which has been deleted, you
could also call

<cache:flush key='<%="box" + (new Integer(boxContainerId)).toString()%>' />

in EDIT mode on the JSP, where the container gets changed. If you are using
a cluster, then you should also consider the configuration, described here:
http://www.opensymphony.com/oscache/wiki/Clustering.html.

For the key, it also depends whether you are using access rights on the
container list, so each user might have a different view. For this case you
might want to add the user-id to the key, then the fragment will be cached
per user. You should surely limit the time on these fragments.

To use the OSCache you need to deploy the JAR to the lib directory of the
Jahia webapp, you need to add the oscache.tld to the web.xml and then you
can use the taglib in your templates.

As mentioned in the title of this tip, it is also possible to ESI to cache
fragments, and this behaves much in a similar way than the OSCache
solution. For more information on how to use ESI to cache page fragments,
please refer to the ESI integration documentation.

3) Avoid doing unnecessary container and field definitions

You can re-use field definitions between multiple container definitions (if
using the Jahia API calls). Also, container defs and fields defs are shared for
all pages using the same template, no need to instantiate them more than
that.

4) Avoid calculating default values for field definition
dynamically

Avoid calculating default values for field definition dynamically if possible. If
a default value is calculated for example using the current user name, the
definition will be modified each time a new user comes on the template.
Updating container definitions is an expensive operation and might lead to

 - 32 -

coherency problems if a template is loading content from a definition while it
is being updated

5) Avoid making definitions on pages that will only retrieve the
container list content

This is especially true for absolute container list usages. We do not need the
definition to be executed just to retrieve the content of the container list.

6) Avoid building interfaces with lots of hierarchies

Avoid building interfaces with lots of hierarchies, as retrieving sub-pages and
content can become expensive operations as the sites grow larger. An
example of this is the classic DHTML scroll-down menu, which, if displayed
on every page of the website, can become a real performance problem
because Jahia will have to track it’s usage on all pages, to know which pages
to flush when content is added / modified (when the built-in full page
HTML cache is used).

7) Think about total page loading time

When designing Jahia templates, remember that the total page loading time
not only includes the HTML generation, but also all the surrounding
resources that will be loaded from the HTML links such as: Javascript source
files, CSS files and images. You can use a tool like Firebug
(http://www.getfirebug.com/) for Firefox to analyze total page loading
time. A slow loading resource can also give the impression that the whole
system is slow because some browsers “wait” on a resource before displaying
the page. Also check the configuration of your application server so that it
has enough free connections to serve all the requests including the resources.
Also, remember that access to external resources such as external images, RSS
feeds, external Javascript files or other resources can cause problems if the
connection with the external site is slow, or if the Internet connection is not
always available.

IN PRODUCTION

8) Precompile your set of templates

If you do not plan to change your set of templates often, you may precompile
your templates with the jspc command or another similar tool. By default, the
Jahia engines (i.e. the edition pop-ups) are already pre-compiled.

In Jahia 5 we have also introduced a new servlet, which you can trigger after
deployment of new templates or template changes. Simply call

 - 33 -

http://<yourservername:port>/jahia/precompileServlet and then select an
option by clicking on the link.

 - 34 -

JAHIA TUNING

DURING DEVELOPMENT

9) Avoid loading the webapps/portlets if they are not necessary

By default and for demo purposes, each bundled web application is an
independent servlet which launches its own embedded Hypersonic database.
Each web application is then loaded in memory with its own embedded
database at startup. This behavior can rapidly cause “Out of Memory”
problems and/or some performance issues.

Certain web applications can be configured to use another data source than
the embedded one (e.g. the database used for your Jahia installation). So
instead of launching a separate database for each web application, it is
recommend to centralize all your web application data into one centralized
storage system. This will also simplify database backups.

Warning: Not all the web applications provided by default with Jahia have been
developed to be able to use another data source. Modifications to the web application
may be required.

IN PRODUCTION

10) 64-bit installations

As Jahia is quite demanding in terms of operating memory, it is strongly
recommended to install Jahia on a 64-bit operating system, so that the JVM
can allocate more than 1.5GB of RAM. The more available memory a Jahia
installations has, the less it will reach potential memory saturation, which can
be both bad for performance and stability.

11) Prefer UNIX-based OS

Prefer a UNIX-based install, as they are much faster on I/O than Microsoft
Windows systems. This is especially true if you are using open-source
databases such as MySQL or PostgreSQL that are highly optimized under
Linux, but a lot less on Windows.

 - 35 -

12) Reduce logs verbosity

Do not forget to reduce log verbosity on the production server. Jahia makes
use of the Log4J library for all debugging info. Log4J defines some logging
levels as follows (from the more to the less verbose):

ALL < DEBUG < INFO < WARN < ERROR < FATAL < OFF
 More Verbose Less Verbose

By default, point releases of Jahia (as opposed to SVN builds) have the log
levels set to INFO. If you want to increase the log level to trace a problem,
you will need to modify the log4j.xml file located in the following directory:

%TOMCAT_HOME%/webapps/jahia/WEB-INF/etc/config/
(e.g. C:\jahia405 \tomcat\webapps\jahia\WEB-INF\etc\config)

At the bottom of the file, you have the <root>... </root> part. Change the
<priority value="info"/> to <priority value="debug"/> for example to have
more debugging information in the console.

Setting Debug-level logging in log4j.xml Setting Info-level logging in log4j.xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE log4j:configuration SYSTEM
"log4j.dtd">

<log4j:configuration
xmlns:log4j="http://jakarta.apache.org/log4j/
">

….

 <root>
 <priority value="debug"/>
 <appender-ref ref="STDOUT"/>
 <!--
 <appender-ref ref="Chainsaw"/>
 -->
 </root>
</log4j:configuration>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE log4j:configuration SYSTEM
"log4j.dtd">

<log4j:configuration
xmlns:log4j="http://jakarta.apache.org/log4j/
">

….

 <root>
 <priority value="info"/>
 <appender-ref ref="STDOUT"/>
 <!--
 <appender-ref ref="Chainsaw"/>
 -->
 </root>
</log4j:configuration>

Don't forget to change back the values to INFO, as DEBUG log level has a
pretty important impact on performance. If you encounter a problem
afterwards, you can perfectly temporarily switch the production server to
DEBUG mode (for example to have the time to get the full stack trace
exceptions). This can be done without rebooting since Jahia automatically
detects all the changes in log4j.xml every 30 seconds.

13) Modify your default JVM settings

We recommend to use the following JVM settings (for Tomcat set in
catalina.bat or catalina.sh) when using Sun JVMs:

 - 36 -

set CATALINA_OPTS=%CATALINA_OPTS% -server -Xms128m -Xmx1536m -
XX:MaxPermSize=128m -XX:+UseParNewGC -XX:NewRatio=4 -
Dsun.io.useCanonCaches=false

Here are the details of each option and it’s significance :

-server

Use Server Hotspot VM. Must be the first option.

Starting with Sun JDK 5.0 this option is set automatically for Solaris or Linux,
whenever the machine has at least 2 CPUs and at least 2GB of physical
memory. On Microsoft Windows platforms the parameter is never set
automatically. So we recommend to set it manually.

-Xms128m -Xmx1536m

Jahia is quite memory consuming, so you may typically want to increase the -
Xmx maximum memory value to the highest possible one supported by your
system or configure the JVM settings for your specific usage. More
information about the SUN JVM configurations can is available here:

 http://java.sun.com/docs/hotspot/VMOptions.html

As the maximum heap size is limited on 32-bit systems, we are
recommending to use a 64-bit operating system.

-XX:MaxPermSize=128m

There are reported issues with Jahia, when the JVM ran out of space in the
permanent generation heap. Therefore we recommend to increase the value
to 128 MB.

-XX:+UseParNewGC -XX:NewRatio=4

If you are using a Sun JVM 1.4.1_x or 1.4.2_x on a machine with 2 or more
CPUs, then we strongly recommend using the parallel copying collector and
to use a ratio of young generation to old generation of 4 (or even 3), what
means that the space for young objects is one fifth of the heap size (ratio 1:4).
The default is in most set ups 8, thus the young generation is too small and
the garbage collection will slow down your system. Starting with Sun JDK 5.0
the default settings regarding garbage collection are better, but especially on
Windows systems with more than 2 CPUs we are also recommending you to
try those two settings and see whether you get a better performance.

-Dsun.io.useCanonCaches=false

This parameter is required to support Windows file names.

 - 37 -

You may also install and use other JVMs (IBM, SUN, etc…). Be warned
though that although these JVMs may run faster, they haven’t necessarily
been tested with Jahia. Small differences may then occur and lead to
unexpected behaviors especially under heavy loads. If you change the default
SUN JVM, we suggest carefully monitoring your site over a period of time in
order to verify that everything is running smoothly. Some of the settings we
described are not available in JVMs of the other vendors

14) Fine-tune your connection pool

This point is one of the most important. Jahia relies heavily on a fast and
efficient database. So it is critical not to forget to allocate enough connections
to the database.

Jahia relies on the Apache Database Connection Pool. You can consult a
detailed description of all the available configuration options here:
http://jakarta.apache.org/commons/dbcp/configuration.html. By default
Jahia is already installed with the maxActive value increased to 100 (instead
of 8).

If your database supports query caching, please enable it. For example
MySQL 4.0.1+ integrates an internal cache. By default this cache is not turned
on. Using it will increase a lot the overall Jahia performance (more
information available on the MySQL cache here:
http://dev.mysql.com/doc/mysql/en/query-cache.html)

Jahia also can use the client side prepared statement pool, while in the
versions before we were using a custom implementation. Now you can set
this setting in %TOMCAT_HOME%/conf/Catalina/localhost/jahia.xml by
adding the following parameter to the <Resource> tags in the XML file :

poolPreparedStatements="true"

So your XML file should look something like this (default HSQLDB
configuration shown here, yours may have different values, but don’t modify
them) :

 <Resource name="jdbc/jetspeed" auth="Container"
 factory="org.apache.commons.dbcp.BasicDataSourceFactory"
 type="javax.sql.DataSource" username="sa" password=""
 driverClassName="org.hsqldb.jdbcDriver"
url="jdbc:hsqldb:hsql://localhost" defaultAutoCommit="true"
 maxActive="100" maxIdle="30" maxWait="10000"
poolPreparedStatements="true" />

 <Resource name="jdbc/jetspeedNonTx" auth="Container"
 factory="org.apache.commons.dbcp.BasicDataSourceFactory"
 type="javax.sql.DataSource" username="sa" password=""
 driverClassName="org.hsqldb.jdbcDriver"
url="jdbc:hsqldb:hsql://localhost" defaultAutoCommit="true"
 maxActive="20" maxIdle="30" maxWait="10000"
poolPreparedStatements="true" />

 - 38 -

15) Install your Tomcat as a service

Once in production, you may want to run your Tomcat application server as
a service. Please refer to the Jahia technical FAQ to get more information
about how to run Tomcat as a service:
http://www.jahia.org/jahia/page454.html#3 or to the Tomcat
documentation.

16) Fine-tune Tomcat configuration

For your production system, please ensure that the following Tomcat
parameters are set in %TOMCAT_HOME%/conf/web.xml:

Settings for DefaultServlet Description

<servlet>
 <servlet-name>default</servlet-name>
 ...
 <init-param>
 <param-name>listings</param-name>
 <param-value>false</param-value>
 </init-param>
 ...
 </servlet>

listings should be set to false, because of
security and because the robots of the search
machines might use the output of directories to
call JSPs directly, which will lead to
exceptions.

Settings for JSP servlet Description
<servlet>
 <servlet-name>jsp</servlet-name>
 ...
 <init-param>
 <param-name>fork</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>development</param-name>
 <param-value>false</param-value>
 </init-param>

From Tomcat 5 onwards:

 <init-param>
 <param-name>trimSpaces</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>genStrAsCharArray</param-
name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>checkInterval</param-
name>
 <param-value>300</param-value>
 </init-param>
 ...
 </servlet>

fork should be set to true, as the compiler
leaks memory and should be called in a
separate process. This way it also does not
block the JVM.

development should be set to false, as this
way Tomcat will not check, whether the JSP
changed on every request, but will cache JSPs
for a while (checkInterval parameter).

When using Tomcat 5 or newer, you should
also consider:

trimSpaces should be set to true, what will
compact the HTML results and delete all
empty lines
genStrAsCharArray should be set to true as
it increases performance on some JSPs
checkInterval should be set to 300, as with
Tomcat 5 the default is 0, while with Tomcat 4
the default is 300. With 0 changes in JSPs are
not considered , while the system is running.

 - 39 -

17) Periodically backup your Jahia environment

Do not forget to customize automatic backup procedures of your Jahia
environment. You may want to read the following Jahia FAQ to get more
information about how to backup Jahia:
http://www.jahia.net/jahia/Jahia/site/jahia_net/pid/589#14 or read the
Jahia Administration Guide. Basically to be sure not to forget anything,
backup everything in your Tomcat directory and your entire database.

18) Monitor your Jahia Server

Once in production and running, you may also want to monitor your Jahia
server in order to react promptly in case of downtime. Please use monitoring
tools such as IPSentry (http://www.ipsentry.com/) or others to monitor
your Jahia server.

19) Do not forget to upgrade to the latest Jahia release

Before sending email in the Jahia mailing lists or calling a Jahia expert, please
upgrade to the latest available Jahia release. Hundreds of bugs are corrected
from a service pack to another. It is possible that the bug or the performance
issue you are currently experiencing is already corrected in the latest release.
In any case, it is highly recommended, for security and stability reasons, to be
up to date with your Jahia release.

20) Do not forget to remove or modify the password of the
default Jahia users

Do not forget to remove in production the default Jahia users. Usually, Jahia
is installed with the default administrator “siteadmin”. So please do not
forget to modify the default password of this user or to delete him.

21) Fine-tune some Jahia properties

In Jahia there are some parameters for fine tuning your Jahia server. You
should edit:

%TOMCAT_HOME%/webapps/jahia/WEB-INF/etc/config/jahia.properties

Here is the list of the settings you should consider :

maxParallelProcessings = 50

With this parameter you can control how many threads in Jahia should be
used to do page render processing. Requests, which are served from the
HTML cache are not affected. This way you can prevent for instance
OutOfMemory exceptions, when the load is high, and also the performance

 - 40 -

will be more stable. The default it is set to 10 threads, but you can raise this
value depending of the power of your production server. By simulating a
heavy load with parallel requests from different users or for different pages,
you could determine, how many processing threads are still improving your
performance.

pageGenerationWaitTime = 20000

If all processing threads are working, then this setting is used for the waiting
threads, which need to wait until the first processing thread finishes its work.
In order to not wait endlessly, there is a timeout in milliseconds, which is set
to 1800000 on default (30 minutes). Set this to a short value, because users
should be rejected quickly. A good value would be 20-30 seconds.

org.jahia.acl.preload_active=false

For large volumes of content, this will deactivate ACL preloading upon Jahia
startup. Large sites can have huge numbers of ACLs in the database (it is not
uncommon to see 100’000 or more ACLs in the database), so preloading them
can cause large startup times of the Jahia application. In this case it becomes
more interesting to startup fast (high availability) even if this means that
initial page generation time will be a little slower. This is compensated
quickly over time.

org.jahia.workflow.preload_active=false

Much in the same way that Jahia preloads ACLs on startup, it also pre-
calculates Workflow status for a certain number of page levels in each site. In
large sites, this can again slow down Jahia startup. We recommend
deactivating preloading, as it is best to have the system up and running
quickly, in order to avoid down time.

editModeSessionTimeout=7200

This setting will set the session duration for editing users to 2 hours instead
of the default session expiration. In tomcat/conf/web.xml the following
setting should be lowered from 30 minutes to something like 10 minutes to
save memory :
<session-timeout>10</session-timeout>

Warning : users using online forms will also be expired using the general
timeout, so please take this into account when setting the global session
expiration. Another possibility would be to expand the session length by
adding a call to the session.setMaxInactiveInterval in the template that needs
the extended timeout. This method is documented here :
http://tomcat.apache.org/tomcat-5.5-
doc/servletapi/javax/servlet/http/HttpSession.html#setMaxInactiveInterva
l(int)

If you are using the HTML output cache with sites that have larger number of
pages (more than 5000), it must also be updated to use the new expiration-
only mode for live content (EDIT mode content will no longer be cached !)

 - 41 -

outputCacheExpirationOnly=true
outputCacheDefaultExpirationDelay=3600000

The last value is in milliseconds and represents an expiration delay of an
hour. You might have to adjust this setting to your own needs. Also you
might want to prefer the container HTML cache that is the new default cache
in Jahia and performs better on large sites.

22) Adjust the “permission to enter EDIT mode” role

Jahia has introduced in 5.0 Service Pack 2 a new “Permission to enter EDIT
mode” setting, that lets you specify the groups of users that are allowed to
actually switch to EDIT mode. This was done because the precise resolution
of entering EDIT mode requires the resolution of all write permissions on the
content of the whole page. As this is an expensive operation, especially for
users that will never have write permissions, we introduced the possibility to
control the switching to EDIT. For compatibility reasons, the default is that
this permission is given to all users, which makes for a transparent migration
and no change in functionality. But in order to fully benefit from the
performance gain this new function can bring you, you should for example
define a “content editors” groups that contains all the people that will be
given write access on content, and set the EDIT mode permission to include
only this group of users.

23) Preload your site in memory

You may want to preload pages in the Jahia HTML cache after a reboot or
during low activity period (e.g. during the night). You can use any kind of
offline site browser utility such as wget or httrack (http://www.httrack.com)
to preload Jahia pages in memory.

Please do not forget to limit the maximum number of connections per second
if you want such a preloading to be as transparent for the end-users as
possible.

You should then customize your utility in order to avoid browsing the
sitemap or to avoid to include parameters beginning with “?”.

24) Use JAMon to diagnose performance problems

In order to more finely diagnose performance problems in production, Jahia
already pre-integrates a performance monitoring tool called JAMon (
http://jamonapi.sourceforge.net/). This tool enables you to see in real time
the performance of the internal Jahia services and figure out which back-end
system is causing any bottlenecks. This might be a good way to for example
illustrate a performance problem of a remote LDAP server, or the database
server that might not be answering requests fast enough. It should be noted
that JAMon can be activated “on-the-fly” while the Jahia server is running,

 - 42 -

without requiring a restart, and that it has about a 10-20% impact on
performance while monitoring is active. So it is an ideal way to start
examining internal performance on production system without the need to
install any complex tool.

For more information on using JAMon to monitor Jahia performance, you can
check out our Monitoring howto guide that is included in each Jahia install,
and also available online here :
http://www.jahia.net/download/jahia5.0/stable/howto_monitoring.html

25) Fine-tune Lucene parameters

The Lucene indexation default parameters have been updated to speed up
lucene indexation. You should make the following modifications in the file
WEB-INF/etc/spring/applicationcontext-basejahiaconfig.xml :

<prop key="org.apache.lucene.mergeFactor">30</prop> <!-- previously 10 -->
<prop key="org.apache.lucene.maxBufferedDocs">1000</prop><!-- previously 50 -
->
<prop key="indexingJobBatchSize">500</prop><!-- previously 100 -->

To reduce memory usage if you encounter too much
OutOfMemoryException, you can adjust the org.apache.lucene.mergeFactor
property with smaller value, 20, 10, 5. But smaller value means slower
indexation.

26) Delayed indexation

In the SP3 release we added new options in order to delay (re)indexation of
the jahia content objects to a given hour (e.g midnight). We implemented 3
rules conditions such as:

 By content type: All content typesor BlogEntries container etc…

 By file field extension: File field with PDf, doc, xls or ppt extension

 By page sub tree : Sub pages child of a given page node

To activate them you need to uncomment the bean you want in the
configuration file : WEB-INF/etc/spring/applicationcontext-
indexationpolicy.xml

The list of rules for Jahia Content Indexation and File Field indexation are
defined using the beans “contentIndexationRulesList” and
“fileFieldIndexationRulesList”:

<bean id="contentIndexationRulesList"
class="org.springframework.beans.factory.config.ListFactoryBean">
<property name="sourceList">
<list>
<!-- uncomment each rule bean you want to add to the list -->
<!--ref bean="delayedContentIndexationRule"/-->

 - 43 -

<!--ref bean="blogContentIndexationRule"/-->
<!--ref bean="excludedSubTreeIndexationRule"/-->
</list>
</property>
</bean>

<bean id="fileFieldIndexationRulesList"
class="org.springframework.beans.factory.config.ListFactoryBean">
<property name="sourceList">
<list>
<!-- uncomment each rule bean you want to add to the list -->
<!--ref bean="delayedFileFieldIndexationRule"/-->
</list>
</property>
</bean>

These two list beans are used to set up the JahiaSearchIndexationService in
the file :WEB-INF/etc/spring/applicationcontext-services.xml

<bean id="JahiaSearchIndexationService" parent="proxyTemplate">
<property name="target">
<bean
class="org.jahia.services.search.indexingscheduler.JahiaSearchIndexationServi
ce" parent="jahiaServiceTemplate" factory-method="getInstance">
<property name="contentIndexationRules">
<ref bean="contentIndexationRulesList"/>
</property>
<property name="fileFieldIndexationRules">
<ref bean="fileFieldIndexationRulesList"/>
</property>
</bean>
</property>
</bean>

These two lists are empty by default, so that, this is the normal indexation
behaviour that will be used.

The applicationcontext-indexationpolicy.xml configuration file comes with
some sample declaration of indexation rules:

1) Example of rule that can be used to delay the indexation for all Jahia
Content:

<bean id="delayedContentIndexationRule"
class="org.jahia.services.search.indexingscheduler.impl.rule.BaseIndexationRu
le">
 <property name="id" value="1"/><!-- a unique id must be assigned to
each rule -->
 <property name="namedID" value="delayedContentIndexationRule"/><!--
optional unique name used for declarative rule. -->
 <property name="name" value="Delayed Content Indexation Rule"/><!--
human readable name or description -->
 <property name="indexationMode" value="2"/><!-- Indexation mode :
 0 = don't index,
 1 = index immediately
(as soon as possible),

 - 44 -

 2 = scheduled at
specified time -->
 <property name="conditions"><!-- a rule returns true only if all its
conditions evaluate to true -->
 <list>
 <bean
class="org.jahia.services.search.indexingscheduler.impl.condition.ContentType
RuleCondition">
 <property name="allowAll" value="true"/>
 <!-- In case allowAll is set to false, more precise
content type pattern can be defined
 "ContentPage" : match all pages
 "ContentContainer" : match all containers
 "ContentContainer|name_BlogContainer" : match all
containers with the definition name "BlogContainer"
 "ContentContainer|id_43" : match all containers
using the definition with the given ID=43
 -->
 <property name="allowedContentTypes">
 <list>
 <value>ContentPage</value>
 <value>ContentContainer</value>
 <!--
value>ContentContainer|name_BlogContainer</value-->
 <!--value>ContentContainer|id_43</value-->
 </list>
 </property>
 </bean>
 </list>
 </property>
 <property name="dailyIndexationTimes"><!-- the range of allowed
indexation time. Only used when the indexationMode == 2 -->
 <list>
 <bean
class="org.jahia.services.search.indexingscheduler.TimeRange">
 <property name="startHour" value="23"/>
 <property name="startMinute" value="00"/>
 <property name="endHour" value="3"/>
 <property name="endMinute" value="00"/>
 </bean>
 </list>
 </property>
 </bean>

2) Example of rule that can be used to delay the indexation of all File Field
with a PDF or Office file:

<bean id="delayedFileFieldIndexationRule"
class="org.jahia.services.search.indexingscheduler.impl.rule.BaseIndexationRu
le">
 <property name="id" value="2"/><!-- a unique id must be assigned to
each rule -->
 <property name="namedID" value="delayedFileFieldIndexationRule"/><!--
optional unique name used for declarative rule. -->
 <property name="name" value="Delayed File Field Indexation Rule"/><!-
- human readable name or description -->
 <property name="indexationMode" value="2"/><!-- Indexation mode :
 0 = don't index,
 1 = index immediately
(as soon as possible),
 2 = scheduled at
specified time -->
 <property name="conditions"><!-- a rule returns true only if all its
conditions evaluate to true -->

 - 45 -

 <list>
 <bean
class="org.jahia.services.search.indexingscheduler.impl.condition.FileFieldRu
leCondition">
 <property name="fileExtensions">
 <list>
 <value>.pdf</value>
 <value>.doc</value>
 <value>.xls</value>
 <value>.ppt</value>
 </list>
 </property>
 </bean>
 </list>
 </property>
 <property name="dailyIndexationTimes"><!-- the range of allowed
indexation time. Only used when the indexationMode == 2 -->
 <list>
 <bean
class="org.jahia.services.search.indexingscheduler.TimeRange">
 <property name="startHour" value="23"/>
 <property name="startMinute" value="00"/>
 <property name="endHour" value="3"/>
 <property name="endMinute" value="00"/>
 </bean>
 </list>
 </property>
 </bean>

3) Example of rule that can be used to schedule Blog Content for immediate
indexation:

<bean id="blogContentIndexationRule"
class="org.jahia.services.search.indexingscheduler.impl.rule.BaseIndexationRu
le">
 <property name="id" value="3"/><!-- a unique id must be assigned to
each rule -->
 <property name="namedID" value="blogContentIndexationRule"/><!--
optional unique name used for declarative rule. -->
 <property name="name" value="Blog Content Indexation Rule"/><!--
human readable name or description -->
 <property name="indexationMode" value="1"/><!-- Indexation mode :
 0 = don't index,
 1 = index immediately
(as soon as possible),
 2 = scheduled at
specified time -->
 <property name="conditions"><!-- a rule returns true only if all its
conditions evaluate to true -->
 <list>
 <bean
class="org.jahia.services.search.indexingscheduler.impl.condition.ContentType
RuleCondition">
 <property name="allowAll" value="false"/>
 <!-- In case allowAll is set to false, more precise
content type pattern can be defined
 "ContentPage" : match all pages
 "ContentContainer" : match all containers
 "ContentContainer|name_BlogContainer" : match all
containers with the definition name "BlogContainer"
 "ContentContainer|id_43" : match all containers
using the definition with the given ID=43
 -->
 <property name="allowedContentTypes">

 - 46 -

 <list>
 <value>ContentPage|name_blog</value><!—match Page
of template blog -->
 <value>ContentPage|name_blog_listing</value><!—
match Page of template blog_listing �

<value>ContentContainer|name_blogEntries</value><!—match container of type
blogEntries �
 <value>ContentContainer|name_comments</value><!—
match container of type comments �
 </list>
 </property>
 </bean>
 </list>
 </property>
 </bean>

4) Example of rule that can be used to exclude a whole sub tree from
indexation:

<bean id="excludedSubTreeIndexationRule"
class="org.jahia.services.search.indexingscheduler.impl.rule.BaseIndexationRu
le">
 <property name="id" value="4"/>
 <property name="namedID" value="excludedSubTreeIndexationRule"/>
 <property name="name" value="excluded SubTree Indexation Rule"/>
 <property name="indexationMode" value="0"/><!-- Indexation mode :
 0 = don't index,
 1 = index immediately
(as soon as possible),
 2 = scheduled at
specified time -->
 <property name="conditions">
 <list>
 <bean
class="org.jahia.services.search.indexingscheduler.impl.condition.ContentPage
PathRuleCondition">
 <property name="parentNodePages">
 <list>
 <value>3</value><!-- will match all content that
are child or sub child of the parent page node 3 -->
 </list>
 </property>
 </bean>
 </list>
 </property>
 </bean>

 - 47 -

PORTLETS FINE-TUNING

DURING DEVELOPMENT

27) Render must be really fast

When developing portlets, focus all your efforts on making sure that
whatever your portlets render will be really fast, as this is where your
application will be most stressed, as each time a page is requested, potentially
the render (or do* methods) will be called.

So for example if your portlets are accessing remote data (database or other
external systems), you might want to consider caching the default views to
offer better performance to the end-user. Also using systems such as
Hibernate or EJBs that offer built-in caching can be a good idea.

28) Use renderURLs instead of actionURL

Similar to optimizing rendering, try to avoid as much processAction calls as
possible, especially if no data is being processed, only a default view is
refreshed.

29) External portlet performance guide

You can find more information about portlet performance tuning here :
http://edocs.bea.com/wlp/docs92/portlets/performance.html

It should be noted that some of these points are specific to the application
server and not available on Jahia.

IN PRODUCTION

30) Limit the number of deployed portlets

As each portlet is actually contained in a full-fledged JEE application, it is a
good idea to limit to a minimum the number of deployed portlets, as they
each consume memory not only for their logic operations, but also for all the
classes loaded in memory. Also large application will consume more memory
just for their codebase, so plan your memory sizing accordingly.

 - 48 -

DATABASE TUNING

DURING DEVELOPMENT

31) NEVER use your development database in production

While developing or customizing your new set of templates or portlets, you
will most likely generate some Java exceptions. This will cause application
server crashes or require Java processes to be terminated quite abruptly. All
these actions may corrupt unfinished Jahia transactions and indirectly also
corrupt your underlying database. Therefore never use a development
database in production. Always migrate your set of templates, once fully
tested, on a fresh or on a stable production server. If you want to test your
templates with some real content, always copy the database and files from
the production server to your development workstation. Never do the
opposite.

IN PRODUCTION

32) Do not use HSQLDB in production.

Jahia is by default prepackaged with Hypersonic SQL. This is a small Java
database embedded in Jahia for demo or development purposes only. We do
not suggest using this database in production. If you want to use a free and
open source database, please consider using MySQL or PostgreSQL.

33) Database profiling tools

Use database profiling tools to figure out if some tables are being accessed in
sub-optimal way, adding indexes if necessary (for example SQL Profiler, for
more information see the “Tools” section)

34) MySQL Query cache

Make sure database is properly configured for performance : activate query
cache on MySQL. More information about the MySQL query cache can be
found here : http://dev.mysql.com/doc/refman/5.0/en/query-cache.html

 - 49 -

35) Vacuum the database

On PostgreSQL : schedule VACUUM FULL operations daily, and configure
auto-vacuum so that it doesn’t interfere with high-load times. You can find
more information here :
http://www.postgresql.org/docs/8.2/interactive/sql-vacuum.html as well
as here :
http://www.postgresql.org/docs/8.2/interactive/maintenance.html

Equivalent index reconstruction and table cleanup operations may exist on
other databases, and are strongly recommended if they improve
performance. Here an experience database administration (DBA) is highly
recommended to make sure the database is always optimally configured.

36) Update Jahia database indexes

In order to update the indexes when deploying a new Jahia build, you must
first delete all the standard indexes from the database, and then execute the
script jahia-schema-index.sql that can be found in the directory :
tomcat\webapps\jahia\WEB-INF\var\db\sql\schema\DATABASE_TYPE
where DATABASE_TYPE is the type of database you are using.

 - 50 -

OTHER USEFUL TOOLS

In this section we present tools that help integrators diagnostic possible
errors and performance bottlenecks.

• YourKit Profiler (http://www.yourkit.com/) : a powerful JEE and
Java profiler, with low overhead. YourKit introduces about 20-30%
slowdown, but it is still acceptable to run in production environment.
It allows to diagnose both CPU and memory usage, as well as analyze
JEE traffic to the database, servlets, etc. It is a very good tool to get an
idea of where the problem might come from. An alternative to
YourKit is JProfiler (http://www.ej-
technologies.com/products/jprofiler/overview.html), is generally
more precise, but has more overhead and therefore is not suited for
production analysis.

• JAMon, already integrated with Jahia, is a great tool to monitor
performance on production servers. You can find more information
about JAMon here : http://jamonapi.sourceforge.net/. This tool
enables you to see in real time the performance of the internal Jahia
services and figure out which back-end system is causing any
bottlenecks. This might be a good way to for example illustrate a
performance problem of a remote LDAP server, or the database
server that might not be answering requests fast enough. It should be
noted that JAMon can be activated “on-the-fly” while the Jahia server
is running, without requiring a restart, and that it has about a 10-20%
impact on performance while monitoring is active. So it is an ideal
way to start examining internal performance on production system
without the need to install any complex tool.

• SAP Memory Analyzer
(https://www.sdn.sap.com/irj/sdn/wiki?path=/display/Java/Java
+Memory+Analysis&) is a great tool to analyze JVM memory dumps,
especially to diagnose OutOfMemory exceptions. This tool will give a
detailed inside view of all the objects in memory, as well as their
parents. Information on generating heap dumps can be found here :
https://www.sdn.sap.com/irj/sdn/wiki?path=/pages/viewpage.act
ion&pageId=33456

• MySQL Advisors
(http://www.mysql.com/products/enterprise/advisors.html) : If
you are deploying using MySQL, the advisors are a part of MySQL
Enterprise version that allows to fine-tune your MySQL installation to
your custom usage of the database.

 - 51 -

• Java 6 Monitoring tools
(http://java.sun.com/javase/6/docs/technotes/guides/managemen
t/index.html) : Java 6 introduces new monitoring tools such as
JConsole, which are extremely useful to monitor basic system
performance until real load scenarios.

• BEA JRockit JVM
(http://www.bea.com/framework.jsp?CNT=index.htm&FP=/conten
t/products/weblogic/jrockit/) : a solid alternative to Sun’s JVM is
BEA’s JVM, which provides good performance and solid monitoring
tools.

• Jahia Doctor (http://cvspub.jahia.org/cgi-
bin/cvsweb.cgi/jahiadoctor/): The Jahia team developed a
convenient utility to carry out integrity tests on your Jahia database.
This utility attempts to automatically fix certain problems.
Warning: This tool is a low-level development tool. Please use only
against a fully backed-up copy of your database and, if automatic-
fixes are enabled, please make in-depth tests on the resulting
database before migrating it back into production.

• SQL Profiler (http://sqlprofiler.jahia.org/) : the Jahia team has also
developed a small utility to automatically regroup and identify the
most frequently used SQL queries and, if necessary, to automatically
generate new database indexes. This tool may be useful if you have
developed new SQL-intensive Jahia features. It should be noted that
YourKit is now also able to profile SQL requests and may be more
easy to use than this tool.

Finally if you still cannot determine the source of your problem, please
contact a Jahia expert. You could first submit your problem to the free Jahia
mailing lists. Please do not forget to give as much information as possible (OS
used, Jahia build used, database used; stack trace of the exception (if any),
etc…) so that the community can help you identify and solve the issue. If this
is not possible by email, you can buy some commercial support tickets
(www.jahia.com/support). Jahia experts will then spend some time re-
installing your full Jahia environment and carry out extensive performance
tests and diagnostics.

