
 | © 2011 Oracle Corporation – Proprietary and Confidential

Thursday, July 7, 2011

 | © 2011 Oracle Corporation – Proprietary and Confidential

A Renaissance VM:
One Platform, Many Languages
John R. Rose, Da Vinci Machine Project Lead

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

Announcing
Java 7 support for
dynamic languages:

Invokedynamic

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

Overview...

• Why dynamic languages?
• The invokedynamic instruction
• Method handles
• User experience

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

Why dynamic languages?

• Fast turnaround time for simple programs
– no compile step required
– direct interpretation possible
– loose binding to the environment

• Data-driven programming
– program shape can change along with data shape
– radically open-ended code (plugins, aspects, closures)

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

Key dynamic languages on the JVM

• JavaScript (Rhino)
• Ruby (JRuby)
• Python (Jython)
• Lisp (Clojure, Kawa, ABCL, etc.)
• Groovy
• Smalltalk
• ...and many, many more

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

Dynamic languages are here to stay

Source: http://tiobe.com

Thursday, July 7, 2011

http://tiobe.com
http://tiobe.com

 | © 2011 Oracle Corporation

CUSTOMER LOGO

“Businesses like Twitter, LinkedIn, and RedHat are
increasing attention to Ruby because of its fast
turnaround times... Implementations like JRuby have
started to solve performance problems of the past.”
Charles Nutter
JRuby Lead, Engine Yard

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

Overview...

• Why dynamic languages?
• The invokedynamic instruction
• Method handles
• User experience

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

What a JVM can do...
compiler tactics
 delayed compilation
 Tiered compilation
 on-stack replacement
 delayed reoptimization
 program dependence graph representation
 static single assignment representation
proof-based techniques
 exact type inference
 memory value inference
 memory value tracking
 constant folding
 reassociation
 operator strength reduction
 null check elimination
 type test strength reduction
 type test elimination
 algebraic simplification
 common subexpression elimination
 integer range typing
flow-sensitive rewrites
 conditional constant propagation
 dominating test detection
 flow-carried type narrowing
 dead code elimination

language-specific techniques
 class hierarchy analysis
 devirtualization
 symbolic constant propagation
 autobox elimination
 escape analysis
 lock elision
 lock fusion
 de-reflection
speculative (profile-based) techniques
 optimistic nullness assertions
 optimistic type assertions
 optimistic type strengthening
 optimistic array length strengthening
 untaken branch pruning
 optimistic N-morphic inlining
 branch frequency prediction
 call frequency prediction
memory and placement transformation
 expression hoisting
 expression sinking
 redundant store elimination
 adjacent store fusion
 card-mark elimination
 merge-point splitting

loop transformations
 loop unrolling
 loop peeling
 safepoint elimination
 iteration range splitting
 range check elimination
 loop vectorization
global code shaping
 inlining (graph integration)
 global code motion
 heat-based code layout
 switch balancing
 throw inlining
control flow graph transformation
 local code scheduling
 local code bundling
 delay slot filling
 graph-coloring register allocation
 linear scan register allocation
 live range splitting
 copy coalescing
 constant splitting
 copy removal
 address mode matching
 instruction peepholing
 DFA-based code generator

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

...And what slows down a JVM

• Non-Java languages require special call sites.
– Example: Smalltalk message sending (no static types).
– Example: JavaScript or Ruby method call (different lookup rules).

• In the past, special calls required simulation overheads
– ...such as reflection and/or extra levels of lookup and indirection
– ...which have inhibited JIT optimizations.

• Result: Pain for non-Java developers.
• Enter Java 7.

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

Key Features

• New bytecode instruction: invokedynamic.
– Linked reflectively, under user control.
– User-visible object: java.lang.invoke.CallSite
– Dynamic call sites can be linked and relinked, dynamically.

• New unit of behavior: method handle
– The content of a dynamic call site is a method handle.
– Method handles are function pointers for the JVM.

– (Or if you like, each MH implements a single-method interface.)

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

• Each call site is bound
to one or more method
handles, which point
back to bytecoded
methods.

Method
handles

Dynamic program composition

• Bytecodes are
created by Java
compilers or
dynamic runtimes. Bytecodes

• A dynamic call site is
created for each
invokedynamic
bytecode. Dynamic call

sites

JVM
JIT• The JVM seamlessly

integrates execution,
optimizing to native code
as necessary.

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

Passing the burden to the JVM

• Non-Java languages require special call sites.
• In the past, special calls required simulation overheads

• Now, invokedynamic call sites are fully user-configurable
– ...and are fully optimizable by the JIT.

• Result: Much simpler code for language implementors
– ...and new leverage for the JIT.

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

What’s in a method call? (before invokedynamic)
Source
code

Bytecode Linking Executing

Naming

Selecting

Adapting

Calling

Identifiers Utf8
constants

JVM
“dictionary”

Scopes Class
names

Loaded
classes

V-table
lookup

Argument
conversion

C2I / I2C
adapters

Receiver
narrowing

Jump with
arguments

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

What’s in a method call? (using invokedynamic)
Source
code

Bytecode Linking Executing

Naming

Selecting

Adapting

Calling

∞ ∞ ∞ ∞

∞ Bootstrap
methods

Bootstrap
method call ∞

∞ Method
handles ∞

Jump with
arguments

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

“Invokedynamic is the most important addition to Java in
years. It will change the face of the platform.”

Charles Nutter
JRuby Lead, Engine Yard

CUSTOMER LOGO

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

Overview...

• Why dynamic languages?
• The invokedynamic instruction
• Method handles
• User experience

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

Invokedynamic “plumbing”, take 1

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

More details about method handles

• A direct method handle points to a Java method.
– A DMH can emulate any of the pre-existing invoke instructions.

• A bound method handle includes an saved argument.
– The bound argument is specified on creation, and is used on call.
– The bound argument is inserted into the argument list.
– Any MH can be be bound, and the binding is invisible to callers.

• An adapter method handle adjusts values on the fly.
– Both argument and return values can be adjusted.
– Adaptations include cast, box/unbox, collect/spread, filter, etc.
– Any MH can be adapted. Adaptation is invisible to callers.

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

Invokedynamic “plumbing”, take 2

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

Coding directly with method handles

import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandles.Lookup LOOKUP = lookup();

MethodHandle HASHCODE = LOOKUP
 .findStatic(System.class,
 "identityHashCode", methodType(int.class, Object.class));
{assertEquals("xy".hashCode(), (int) HASHCODE.invoke("xy"));}

MethodHandle CONCAT = LOOKUP
 .findVirtual(String.class,
 "concat", methodType(String.class, String.class));
{assertEquals("xy", (String) CONCAT.invokeExact("x", "y"));}

MethodHandle CONCAT_FU = CONCAT.bindTo("fu");
{assertEquals("futbol", CONCAT_FU.invoke("tbol"));}

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

Overview...

• Why dynamic languages?
• The invokedynamic instruction
• Method handles
• User experience

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

“We were able to implement all of the Smalltalk
constructs... using invokedynamic to execute Smalltalk
code on the JVM. ...The ease of putting a true dynamic
language on the JVM was a wonder in itself.”
Mark Roos
Roos Instruments, Inc.

CUSTOMER LOGO

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

What shall we build today?

• Smaller, simpler script engines on the JVM.

• New options for high-performance programming.
– Multiple programming paradigms with full optimization.
– Function pointers, self-adjusting code.

• The only limit is our community’s imagination.

Thursday, July 7, 2011

 | © 2011 Oracle Corporation – Proprietary and Confidential | © 2011 Oracle Corporation

The following is intended to outline our general product direction.
It is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver
any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and
timing of any features or functionality described for Oracle’s
products remains at the sole discretion of Oracle.

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

Over the next hill...

• Project Lambda: mastering the multi-core
– Direct support for closures via invokedynamic.
– Better optimization of parallel, data-intensive

programs.

Thursday, July 7, 2011

 | © 2011 Oracle Corporation

And the next...

• Da Vinci Machine Project: an open source
incubator for JVM futures
– Yearly event: JVM Language Summit
– http://openjdk.java.net/projects/mlvm/

jvmlangsummit/

Thursday, July 7, 2011

http://openjdk.java.net/projects/mlvm/jvmlangsummit/
http://openjdk.java.net/projects/mlvm/jvmlangsummit/
http://openjdk.java.net/projects/mlvm/jvmlangsummit/
http://openjdk.java.net/projects/mlvm/jvmlangsummit/

 | © 2011 Oracle Corporation

“Invokedynamic makes it possible for every static-typed
operation on JVM to be dynamic... my mind boggles at
the possibilities.”

Charles Nutter
JRuby Lead, Engine Yard

CUSTOMER LOGO

Thursday, July 7, 2011

 | © 2011 Oracle Corporation – Proprietary and Confidential

Thursday, July 7, 2011

