
Oracle® JavaFX
Implementing JavaFX Best Practices

Release 2.2

E18451-01

January 2014

Oracle JavaFX/Implementing JavaFX Best Practices, Release 2.2

E18451-01

Copyright © 2012, 2014, Oracle and/or its affiliates. All rights reserved.

Primary Author: Scott Hommel

Contributing Author:

Contributor:

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

Best Practice: Use a Custom Preloader ... 1-1
Best Practice: Choose Meaningful Package Names ... 1-7
Best Practice: Enforce Model-View-Controller (MVC) with FXML ... 1-9
Best Practice: Use Cascading Style Sheets (CSS) .. 1-11
Best Practice: Run Tasks on a Background Thread .. 1-13
iii

iv

1

1Implementing JavaFX Best Practices

This document contains a collection of JavaFX best practices. It is based on code from
the Henley Sales application, and presents a number of suggestions for you to keep in
mind when writing your own applications. The Henley Sales application is large, and
as such, complete inline code listings are not possible. However, it is not necessary to
learn the entire implementation to understand the topics that are presented.

Best Practice: Use a Custom Preloader
Upon launching the Henley Sales application, you will be greeted with a custom
animation of a car driving around a race track. The car moves in relation to the amount
of data loaded, which is also represented as a percentage in the center of the screen.
Technically speaking, this screen is the preloader, a separate program that runs while
your main application is starting up.
Implementing JavaFX Best Practices 1-1

Best Practice: Use a Custom Preloader
Figure 1–1 The Henley Sales Preloader

Preloaders are not necessary for programs that load quickly. But if your users will be
forced to wait a significant amount of time (such as when loading large amounts of
data, or downloading an application from the web), a custom preloader can improve
their overall experience. This Henley preloader features the same look and feel as the
main application, and has access to all available JavaFX API’s.

So what does the preloader code look like? Figure 1–2 shows where its source files are
located, as seen from within the NetBeans IDE.
1-2 Oracle JavaFX/Implementing JavaFX Best Practices

Best Practice: Use a Custom Preloader
Figure 1–2 DataAppPreloader Project Files in the NetBeans IDE

The first file to consider is DataAppPreloader.java. Examining it reveals that the
DataAppPreloader class extends javafx.application.Preloader and overrides a few
important methods of interest.

Example 1–1 DataAppPreloader.java: Overriding the init Method

@Override
 public void init() throws Exception {
 root = new StackPane();
 background = new StackPane();
 background.setId("Window");
 background.setCache(true);
 ImageView carImageView = new ImageView(new Image(
 DataAppPreloader.class.getResourceAsStream("images/car.png")));
 raceTrack = new RaceTrack();
 root.getChildren().addAll(background, raceTrack, carImageView);
 Platform.runLater(new Runnable() {

 @Override
 public void run() {
 preloaderScene = new Scene(root, 1250, 750);
 preloaderScene.getStylesheets().add(
 DataAppPreloader.class.getResource(
 "preloader.css").toExternalForm());
 }
 });
 }
The init method performs common initialization tasks, such creating the root node,
populating it with children, and telling the system to create the preloader’s scene on
the JavaFX application thread. This particular implementation is typical of what you
will find in most JavaFX applications, so will probably look familiar if you have
written other applications in JavaFX before. The same can be said for the start
method, as shown in Example 1–2.

Example 1–2 DataAppPreloader.java: Overriding the start Method

 @Override
Implementing JavaFX Best Practices 1-3

Best Practice: Use a Custom Preloader
 public void start(Stage stage) throws Exception {
 preloaderStage = stage;
 preloaderStage.setScene(preloaderScene);
 preloaderStage.show();

 if (DEMO_MODE) {
 ...
 }
 }

However, the DataAppPreloader class overrides a few preloader-specific methods as
well, for handling various kinds of notifications received from the main application.

Example 1–3 DataAppPreloader.java: Overriding the handleProgressNotification Method

@Override
 public void handleProgressNotification(ProgressNotification info) {
 if (startDownload == -1) {
 startDownload = System.currentTimeMillis();
 }
 raceTrack.setProgress(info.getProgress() * 0.5);
 }

The handleProgressNotification method handles notifications about the main
application’s data loading progress. This particular implementation calls setProgress
on the raceTrack object, based on information that is encapsulated within the received
ProgressNotification object.

Example 1–4 DataAppPreloader.java: Overriding the handleStateChangeNotification
Method

@Override
 public void handleStateChangeNotification(StateChangeNotification evt) {
 if (evt.getType() == StateChangeNotification.Type.BEFORE_INIT) {
 // check for fast download and restart progress
 if ((System.currentTimeMillis() - startDownload) < 500) {
 raceTrack.setProgress(0);
 }
 // we have finished downloading application, now we are
 // running application init() method, as we have no way
 // of calculating real progress
 // simplate pretend progress here
 simulatorTimeline = new Timeline();
 simulatorTimeline.getKeyFrames().add(
 new KeyFrame(Duration.seconds(3),
 new KeyValue(raceTrack.progressProperty(), 1)));
 simulatorTimeline.play();
 }
 }
The handleStateChangeNotification method is invoked when the main application
changes state. As stated in the Preloader.StateChangeNotification API
documentation, "A state change notification is sent to a preloader immediately prior to
loading the application class (and constructing an instance), calling the application init
method, or calling the application start method." The code in Example 1–4 plays the
race car animation as the main application enters its init method.
1-4 Oracle JavaFX/Implementing JavaFX Best Practices

Best Practice: Use a Custom Preloader
Example 1–5 DataAppPreloader.java: Overriding the handleApplicationNotification
Method

 @Override
 public void handleApplicationNotification(PreloaderNotification info) {
 if (info instanceof PreloaderHandoverEvent) {
 // handover from preloader to application
 final PreloaderHandoverEvent event = (PreloaderHandoverEvent) info;
 final Parent appRoot = event.getRoot();
 // remove race track
 root.getChildren().remove(raceTrack);
 // stop simulating progress
 simulatorTimeline.stop();
 // apply application stylsheet to scene
 preloaderScene.getStylesheets().setAll(event.getCssUrl());
 // enable caching for smooth fade
 appRoot.setCache(true);
 // make hide appRoot then add it to scene
 appRoot.setTranslateY(preloaderScene.getHeight());
 root.getChildren().add(1, appRoot);
 // animate fade in app content
 Timeline fadeOut = new Timeline();
 fadeOut.getKeyFrames().addAll(
 new KeyFrame(
 Duration.millis(1000),
 new KeyValue(
 appRoot.translateYProperty(), 0,
 Interpolator.EASE_OUT)),
 new KeyFrame(
 Duration.millis(1500),
 new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent t) {
 // turn off cache as not need any more
 appRoot.setCache(false);
 // done animation so start loading data
 for (Runnable task : event.getDataLoadingTasks()){
 Platform.runLater(task);
 }
 }
 }));
 fadeOut.play();
 }
 }
The handleApplicationNotification method is responsible for handling
application-generated notifications. In Example 1–5, the code reacts to the transition
period from when the preloader ends and the main application begins. This code
implements transitional features such as removing the race track, stopping the
progress animation, and performing the preloader fade-out.

A PreloaderHandoverEvent is instantiated in the start method of the main
application (defined in a separate project under
com.javafx.experiments.dataapp.client.DataApplication) , after its UI has finally
finished loading. Example 1–6 shows the most relevant parts of that code.

Example 1–6 Notifying the Preloader (from DataApplication)

...
@Override public void start(Stage stage) throws Exception {
Implementing JavaFX Best Practices 1-5

Best Practice: Use a Custom Preloader
 // let preloader know we are done creating the ui
 notifyPreloader(new PreloaderHandoverEvent(root,
 DataApplication.class.getResource("dataapp.css").toExternalForm(),
 dataLoadingTasks));
 }
...

The race track animation itself is defined in the preloader project’s RaceTrack.java
file. As shown in Example 1–7, this class implements the code for drawing the race
track, animating the car, and setting the percentage that appears in the center of the
screen.

Example 1–7 Excerpts From the RaceTrack Class

public class RaceTrack extends Pane {

...
private Text percentage;
...

private DoubleProperty progress = new SimpleDoubleProperty() {
 @Override protected void invalidated() {
 final double progress = get();
 if (progress >= 0) {
 race.jumpTo(Duration.seconds(progress));
 percentage.setText(((int)(100d*progress))+"%");
 }
 }
 };
 public double getProgress() { return progress.get(); }
 public void setProgress(double value) { progress.set(value); }
 public DoubleProperty progressProperty() { return progress; }

...

 // Create path animation that we will use to drive the car along the track
 race = new PathTransition(Duration.seconds(1), road, raceCar);
 race.setOrientation(PathTransition.OrientationType.ORTHOGONAL_TO_TANGENT);
 race.play();
 race.pause();

...

}
The percentage that displays on screen is bound to the underlying progress property,
so that the displayed value will change as the data loads. The car animation itself is
achieved by playing a PathTransition animation.

There is a lot of code involved in this example, but the most important point to
remember (in terms of best practices) is that custom preloaders are a good idea for
applications that have a long startup time. For a detailed discussion of preloaders in
general, see the "Preloaders" section of the JavaFX Deployment tutorial at
http://docs.oracle.com/javafx/2/deployment/preloaders.htm.
1-6 Oracle JavaFX/Implementing JavaFX Best Practices

Best Practice: Choose Meaningful Package Names
Best Practice: Choose Meaningful Package Names
The next best practice becomes apparent when you examine the Henley Sales
application from a high-level point of view. Choosing meaningful package names is a
simple practice that will make your code more organized and easier to maintain.

For example, consider the "Live" tab, which appears on screen after the preloader has
finished running:

Figure 1–3 The Henley Sales "Live" Tab

This tab provides a simulation of live sales data, as if they were occurring in real time.
Navigation through the Henley Sales application is made possible through a number
of such tabs, all of which appear along the top of the screen. Now look at the
DataAppClient project and notice how the heat tab, history tab, live tab, and products
tab source code are all defined within their own dedicated packages under
com.javafx.experiments.datapp.client.
Implementing JavaFX Best Practices 1-7

Best Practice: Choose Meaningful Package Names
Figure 1–4 Package Names for the DataAppClient Project

These descriptive and meaningful package names are good examples of appropriate
package naming choices. Figure 1–4 shows other packages as well: an images package
(for storing application image data), a map package (for code that draws the US map), a
rest package (for RESTful web services code), and a util package for additional
utility classes.

Figure 1–5 through Figure 1–7 provide screenshots of the remaining tabs.

Figure 1–5 The Henley Sales "Sales History" Tab

The "Sales History" tab shows various charts depicting vehicle sales over time. The
user can change the date range by moving a pair of sliders along the top of the screen.
1-8 Oracle JavaFX/Implementing JavaFX Best Practices

Best Practice: Enforce Model-View-Controller (MVC) with FXML
Figure 1–6 The Henley Sales "Product Listings" Tab

The "Product Listing" tab provides a traditional looking data table, filled with
information describing the vehicles that are currently for sale.

Figure 1–7 The Henley Sales "Heat Map" Tab

And finally, the "Heat Map" tab provides a color-coded representation of US sales by
region. Each state is colored to represent the amount of units sold. Users can select the
months and products to compare, plus zoom in on specific regions of interest.

Best Practice: Enforce Model-View-Controller (MVC) with FXML
JavaFX enables you to design with Model-View-Controller (MVC), through the use of
FXML and Java. The "Model" consists of application-specific domain objects, the
"View" consists of FXML, and the "Controller" is Java code that defines the GUI’s
behavior for interacting with the user. In the Henley Sales application, this pattern is
implemented on all tabs.

Consider the Heat Tab GUI, as shown in Example 1–8.
Implementing JavaFX Best Practices 1-9

Best Practice: Enforce Model-View-Controller (MVC) with FXML
Example 1–8 The ’View" as defined by heat-tab.fxml

<?import java.lang.*?>
<?import javafx.scene.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.control.*?>
<?import com.javafx.experiments.dataapp.client.map.UnitedStatesMapPane?>

<Tab text="Heat Map" fx:id="heatTab"
fx:controller="com.javafx.experiments.dataapp.client.heattab.HeatTabController"
xmlns:fx="http://javafx.com/fxml">
 <content>
 <AnchorPane id="heatTab"><children>
 <UnitedStatesMapPane fx:id="map"
 AnchorPane.topAnchor="0"
 AnchorPane.rightAnchor="0"
 AnchorPane.bottomAnchor="0"
 AnchorPane.leftAnchor="0"/>
 <HBox AnchorPane.topAnchor="10"
 AnchorPane.leftAnchor="10" spacing="10">
 <children>
 <Label text="Compare month:"/>
 <ChoiceBox fx:id="compareMonthChoiceBox"/>
 <ChoiceBox fx:id="compareProductChoiceBox"/>
 <Label text="to month:"/>
 <ChoiceBox fx:id="toMonthChoiceBox"/>
 <ChoiceBox fx:id="toProductChoiceBox"/>
 </children>
 </HBox>
 <HBox AnchorPane.topAnchor="10"
 AnchorPane.rightAnchor="10" spacing="10">
 <children>
 <Label text="Region:"/>
 <ChoiceBox fx:id="regionChoiceBox"/>
 </children>
 </HBox>
 </children></AnchorPane>
 </content>
</Tab>

Inspecting this code reveals that the GUI components in the FXML markup map
cleanly to what actually appears on screen. For example, the "Compare month:" and
"to month:" labels (and their corresponding choice boxes) are children of an HBox that
is anchored to the left side of the screen. And the "Region" label (and its corresponding
choice box) are children of the HBox that is anchored to the right side of the screen. The
most important thing to note about this code is that it simply defines the GUI; it does
not implement any code to handle interaction with the user. However, the lines shown
in Example 1–9 do indicate where such controller code can be found.

Example 1–9 Specifying the Controller file in heat-tab.fxml

<Tab text="Heat Map" fx:id="heatTab"
fx:controller="com.javafx.experiments.dataapp.client.heattab.HeatTabController"
xmlns:fx="http://javafx.com/fxml">

From this example, you can see that HeatTabController (a .java file) handles the
behavior related to this tab. That file is far too large to insert here, but we can look at
some of its sections to get a sense of the behavior that it provides.
1-10 Oracle JavaFX/Implementing JavaFX Best Practices

Best Practice: Use Cascading Style Sheets (CSS)
Example 1–10 Excerpts from HeatTabController.java

...
@Override public void initialize(URL url, ResourceBundle rb) {
 // populate live data regions choicebox
 regionChoiceBox.setItems(DataApplication.getAmericanRegions());
 regionChoiceBox.getSelectionModel().selectFirst();
 regionChoiceBox.getSelectionModel().selectedItemProperty().
 addListener(new ChangeListener() {
 @Override public void changed(ObservableValue ov,
 Object t, Object newValue) {
 if (newValue instanceof Region) {
 Region region = (Region)newValue;
 Timeline fadeLabels = new Timeline();
...
 map.zoomRegion(region.getName());
 fadeLabels.play();
...

// this needs to be run on FX thread
 DataApplication.registerDataLoadingTask(new Runnable() {
 @Override public void run() {
 // create task to fetch range of available dates in background
 Task<HeatMapRange> getHeatMapRangeTask =
 new Task<HeatMapRange>(){
...

 @Override protected HeatMapRange call() throws Exception {
 hmc = new HeatMapClient();
 return hmc.getDateRange_JSON(HeatMapRange.class);
 }
 };
 // listen for results and then update ui, and fetch initial data
 getHeatMapRangeTask.valueProperty().
 addListener(new ChangeListener<HeatMapRange>() {
..
The code shown in Example 1–10 illustrates a few important points, such as adding a
change listener to the "Region" choice box, or playing a fade animation, or fetching the
range of available dates in the background. You can study the full source file within
the NetBeans project, but the important thing to remember in terms of best practices is
that all of this behavior is cleanly separated from the GUI code of heat-tab.fxml. You
can follow the same approach when designing your own applications.

For additional reading about FXML in general, see "Getting Started with FXML" at
http://docs.oracle.com/javafx/2/fxml_get_started/jfxpub-fxml_get_
started.htm.

Best Practice: Use Cascading Style Sheets (CSS)
Another best practice worth remembering is to skin your GUI components with CSS.
Doing so is a modern approach that enables you to change the application’s look and
feel by simply switching the style sheet that is currently in use. The Henley Sales
application implements CSS skinning as defined in the DataApp.css file of the
com.javafx.experiments.dataapp.client package.

Example 1–11 Excerpts from DataApp.css

...
#Window {
 -fx-padding: 0;
Implementing JavaFX Best Practices 1-11

Best Practice: Use Cascading Style Sheets (CSS)
 -fx-background-color: radial-gradient(center 70% 5%, radius 60%,
#767a7b,#2b2f32);
 -fx-background-image: url("images/noise.png"),
 url("images/title.png");
 -fx-background-repeat: repeat, no-repeat;
 -fx-background-position: left top, left 19px top 15px ;
}
...

/* =============== STYLE ALL SCROLL BARS ================= */
.scroll-bar {
 -fx-background-color: transparent;
 -fx-background-insets: 0;
 -fx-padding: 5;
}
.scroll-bar .thumb {
 -fx-background-color: white;
 -fx-background-insets: 0;
 -fx-background-radius: 0.5em;
}
.scroll-bar .track {
 -fx-background-color: transparent;
 -fx-background-insets: 0;
 -fx-border-color: rgba(255,255,255,0.5);
 -fx-border-radius: 0.5em;
}
.scroll-bar .increment-button {
 -fx-background-color: null;

...

/* =============== STYLE ALL TABLES ====================== */
.table-view {
 -fx-background-color: transparent;
 -fx-background-insets: 0;
 -fx-padding: 10;
}
.table-view .column-header-background {
 -fx-background-color: transparent;
 -fx-border-color: transparent transparent rgba(255,255,255,0.3) transparent;
 -fx-border-width: 1;
 -fx-background-insets: 0;
...
}
The CSS excerpts shown in Example 1–11 affect background colors, borders, padding,
fonts, etc. Note that by convention, this .css file is located in the same package as the
main class of the application. This file is referenced in the DataApplication’s start
method, as shown in Example 1–12.

Example 1–12 DataApplication.java: Overriding the start Method

@Override public void start(Stage stage) throws Exception {
 // let preloader know we are done creating the ui
 notifyPreloader(new PreloaderHandoverEvent(root,
 DataApplication.class.getResource("dataapp.css").toExternalForm(),
 dataLoadingTasks));
 }
Here, the .css file is used when the main application tells the preloader that it has
finished creating the UI. It passes the css url as the second parameter to the new
PreloaderHandoverEvent.
1-12 Oracle JavaFX/Implementing JavaFX Best Practices

Best Practice: Run Tasks on a Background Thread
You will also notice that the preloader itself defines and uses its own .css file. This file
is less complicated, and is shown in its entirety in Example 1–13.

Example 1–13 The preloader.css File

#Window {
 -fx-padding: 0;
 -fx-background-color: radial-gradient(center 70% 5%, radius 60%,
#767a7b,#2b2f32);
 -fx-background-image: url("images/noise.png") , url("images/title.png");
 -fx-background-repeat: repeat, no-repeat;
 -fx-background-position: left top, left 19px top 15px ;
}

A closer inspection of the DataAppPreloader.java file shows that this .css file is used
in its init() method:

Example 1–14

@Override public void init() throws Exception {
 root = new StackPane();
 background = new StackPane();
 background.setId("Window");
...

DataAppPreloader.class.getResource("preloader.css").toExternalForm());
 }
 });
 }
For details about JavaFX/CSS styling in general, see "Skinning JavaFX Applications
with CSS" at http://docs.oracle.com/javafx/2/css_tutorial/jfxpub-css_
tutorial.htm.

Best Practice: Run Tasks on a Background Thread
There may be times when your application will need to process large amounts of data.
If doing so would cause the user to wait a significant amount of time, you should
perform this work inside a new task that runs on a background thread.

The Henley Sales application uses this pattern in a number of different places, as
demonstrated in the following three code excerpts.

Example 1–15 DataApplication.java: Fetching Product Types

...
// fetch available product types in the background
Task<ProductType[]> getProductTypes = new Task<ProductType[]>(){
 @Override protected ProductType[] call() throws Exception {
 ProductTypeClient ptClient = new ProductTypeClient();
 ProductType[] types = ptClient.findAll_JSON(ProductType[].class);
 ptClient.close();
 return types;
 }
};
...
new Thread(getProductTypes).start();
...
Implementing JavaFX Best Practices 1-13

Best Practice: Run Tasks on a Background Thread
Example 1–16 HeatTabController.java: Fetching Available Dates

...
// create task to fetch range of available dates in background
Task<HeatMapRange> getHeatMapRangeTask = new Task<HeatMapRange>(){
 @Override protected HeatMapRange call() throws Exception {
 hmc = new HeatMapClient();
 return hmc.getDateRange_JSON(HeatMapRange.class);
 }
};

// start background task
new Thread(getHeatMapRangeTask).start();
...

Example 1–17 HistoryTabController.java: Fetching Initial Data

...
// fetch initial data in the background
final Task<TransitCumulativeSales[]> getCumulativeSales =
 new Task<TransitCumulativeSales[]>() {
 @Override protected TransitCumulativeSales[] call()
 throws Exception {
 return clsClient.findAll_JSON(TransitCumulativeSales[].class);
 }
};

// start fetching data for time range selector
new Thread(getCumulativeSales).start();
...
While the actual work performed varies in all three examples, the overall pattern
remains the same: a javafx.concurrent.Task object is defined and instantiated that
overrides call() to return an application-specific object; a new java.lang.Thread
object is created (passing in the task as an argument to its constructor); the new thread
is started by invoking its start() method.

For more information about threading in JavaFX, see the Concurrency in JavaFX
tutorial at http://docs.oracle.com/javafx/2/threads/jfxpub-threads.htm.
1-14 Oracle JavaFX/Implementing JavaFX Best Practices

