

JavaFX
Handling JavaFX Events

Release 2.2

E24178-06

October 2013

This document describes how event handlers and event
filters can be used to handle events such as mouse events,
keyboard events, drag-and-drop events, window events,
action events, touch events and others that are generated by
your JavaFX application.

JavaFX /Handling JavaFX Events, Release 2.2

E24178-06

Copyright © 2011, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Joni Gordon

Contributor: Lubomír Nerád

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Part I About This Tutorial

1 Processing Events

Events.. 1-1
Event Types... 1-1
Event Targets .. 1-2

Event Delivery Process .. 1-2
Target Selection .. 1-3
Route Construction .. 1-3
Event Capturing Phase.. 1-4
Event Bubbling Phase.. 1-4

Event Handling ... 1-4
Event Filters .. 1-5
Event Handlers ... 1-5
Consuming of an Event... 1-5

Additional Resources .. 1-6

2 Working with Convenience Methods

Using Convenience Methods ... 2-1
Examples for Mouse Events ... 2-3
Examples for Keyboard Events .. 2-4

Additional Resources .. 2-4

3 Working with Event Filters

Registering and Removing an Event Filter ... 3-1
Using Event Filters ... 3-2

Draggable Panels Example ... 3-2
Filters for the Draggable Panels Example... 3-4

Additional Resources .. 3-5

4 Working with Event Handlers

Registering and Removing an Event Handler .. 4-1
Using Event Handlers.. 4-2

Keyboard Example... 4-2

iv

Handlers for the Keyboard Example... 4-3
Additional Resources .. 4-4

5 Working with Events from Touch-Enabled Devices

Gesture and Touch Events .. 5-1
Targets of Gestures .. 5-2
Other Events Generated .. 5-2

Gesture Events Example ... 5-3
Creating the Shapes ... 5-4
Handling the Events .. 5-4

Handling Scroll Events... 5-5
Handling Zoom Events .. 5-6
Handling Rotate Events ... 5-6
Handling Swipe Events.. 5-7
Handling Touch Events ... 5-7
Handling Mouse Events... 5-8

Managing the Log .. 5-8
Additional Resources .. 5-9

6 Working with Touch Events

Overview of Touch Actions .. 6-1
Touch Points ... 6-1
Touch Events... 6-2
Event Sets .. 6-2
Touch Point Targets and Touch Event Targets.. 6-3
Additional Events Generated from Touches.. 6-3

Touch Events Example... 6-4
Handling Concurrent Touch Points Independently ... 6-5
Changing the Target of a Touch Point .. 6-6

Additional Resources .. 6-8

Part I
Part I About This Tutorial

In JavaFX applications, events are notifications that something has happened. As a
user clicks a button, presses a key, moves a mouse, or performs other actions, events
are dispatched. Registered event filters and event handlers within the application
receive the event and provide a response. This tutorial describes how events are
processed and provides examples of handling events.

This tutorial contains the following topics:

■ Processing Events

Describes the underlying architecture of how events are processed within JavaFX
applications.

■ Working with Convenience Methods

Explains the simplest way to provide event handlers to handle the events
generated as users interact with your application.

■ Working with Event Filters

Provides a sample of how event filters can be used to handle events.

■ Working with Event Handlers

Provides a sample of how event handlers can be used to handle events.

■ Working with Events from Touch-Enabled Devices

Describes the events generated for user gestures on touch-enabled devices and
provides a sample that logs the events from gestures.

■ Working with Touch Events

Describes the events and touch points that are generated when a user touches a
touch screen and provides a sample that shows how touch events can be used in a
JavaFX application.

Expand the Table of Contents in the sidebar for a more detailed list of topics.

1

Processing Events 1-1

1 Processing Events

This topic describes events and the handling of events in JavaFX applications. Learn
about event types, event targets, event capturing, event bubbling, and the underlying
architecture of the event processing system.

Events are used to notify your application of actions taken by the user and enable the
application to respond to the event. The JavaFX platform provides the structure for
capturing an event, routing the event to its target, and enabling the application to
handle the event as needed.

Events
An event represents an occurrence of something of interest to the application, such as a
mouse being moved or a key being pressed. In JavaFX, an event is an instance of the
javafx.event.Event class or any subclass of Event. JavaFX provides several events,
including DragEvent, KeyEvent, MouseEvent, ScrollEvent, and others. You can define
your own event by extending the Event class.

Every event includes the information described in Table 1–1.

Event subclasses provide additional information that is specific to the type of event.
For example, the MouseEvent class includes information such as which button was
pushed, the number of times the button was pushed, and the position of the mouse.

Event Types
An event type is an instance of the EventType class. Event types further classify the
events of a single event class. For example, the KeyEvent class contains the following
event types:

■ KEY_PRESSED

Table 1–1 Event Properties

Property Description

Event type Type of event that occurred.

Source Origin of the event, with respect to the location of the event in the event
dispatch chain. The source changes as the event is passed along the
chain.

Target Node on which the action occurred and the end node in the event
dispatch chain. The target does not change, however if an event filter
consumes the event during the event capturing phase, the target will not
receive the event.

Event Delivery Process

1-2 JavaFX /Handling JavaFX Events

■ KEY_RELEASED

■ KEY_TYPED

Event types are hierarchical. Every event type has a name and a super type. For
example, the name of the event for a key being pressed is KEY_PRESSED, and the super
type is KeyEvent.ANY. The super type of the top-level event type is null. Figure 1–1
shows a subset of the hierarchy.

Figure 1–1 Event Type Hierarchy

The top-level event type in the hierarchy is Event.ROOT, which is equivalent to
Event.ANY. In the subtypes, the event type ANY is used to mean any event type in the
event class. For example, to provide the same response to any type of key event, use
KeyEvent.ANY as the event type for the event filter or event handler. To respond only
when a key is released, use the KeyEvent.KEY_RELEASED event type for the filter or
handler.

Event Targets
The target of an event can be an instance of any class that implements the EventTarget
interface. The implementation of the buildEventDispatchChain creates the event
dispatch chain that the event must travel to reach the target.

The Window, Scene, and Node classes implement the EventTarget interface and
subclasses of those classes inherit the implementation. Therefore, most of the elements
in your user interface have their dispatch chain defined, enabling you to focus on
responding to the events and not be concerned with creating the event dispatch chain.

If you create a custom UI control that responds to user actions and that control is a
subclass of Window, Scene, or Node, your control is an event target through inheritance.
If your control or an element of your control is not a subclass of Window, Scene, or Node,
you must implement the EventTarget interface for that control or element. For
example, the MenuBar control is a target through inheritance, but the MenuItem element
of a menu bar must implement the EventTarget interface so that it can receive events.

Event Delivery Process
The event delivery process contains the following steps:

Event Delivery Process

Processing Events 1-3

1. Target selection

2. Route construction

3. Event capturing

4. Event bubbling

Target Selection
When an action occurs, the system determines which node is the target based on
internal rules:

■ For key events, the target is the node that has focus.

■ For mouse events, the target is the node at the location of the cursor. For
synthesized mouse events, the touch point is considered the location of the cursor.

■ For continuous gesture events that are generated by a gesture on a touch screen,
the target is the node at the center point of all touches at the beginning of the
gesture. For indirect gesture events that are generated by a gesture on something
other than a touch screen, such as a trackpad, the target is the node at the location
of the cursor.

■ For swipe events that are generated by a swipe on a touch screen, the target is the
node at the center of the entire path of all of the fingers. For indirect swipe events,
the target is the node at the location of the cursor.

■ For touch events, the default target for each touch point is the node at the location
first pressed. A different target can be specified using the ungrab(), grab(), or
grab(node) methods for a touch point in an event filter or event handler.

If more than one node is located at the cursor or touch, the topmost node is considered
the target. For example, if a user clicks or touches the triangle shown in Figure 1–2, the
triangle is the target, not the rectangle that contains the circle and the triangle.

Figure 1–2 Sample User Interface Event Targets

When a mouse button is pressed and the target is selected, all subsequent mouse
events are delivered to the same target until the button is released. Similarly for
gesture events, from the start of the gesture to the completion of the gesture, gesture
events are delivered to the target identified at the beginning of the gesture. The default
for touch events is to deliver the events to the initial target node that was identified for
each touch point, unless the target is modified using the ungrab(), grab(), or
grab(node) methods.

Route Construction
The initial event route is determined by the event dispatch chain that was created in
the implementation of the buildEventDispatchChain() method of the selected event
target. For example, if a user clicks the triangle shown in Figure 1–2, the initial route is
shown by the gray nodes in Figure 1–3. When a scene graph node is selected as an

Event Handling

1-4 JavaFX /Handling JavaFX Events

event target, the initial event route set in the default implementation of the
buildEventDispatchChain() method in the Node class is a path from the stage to itself.

Figure 1–3 Event Dispatch Chain

The route can be modified as event filters and event handlers along the route process
the event. Also, if an event filter or event handler consumes the event at any point,
some nodes on the initial route might not receive the event.

Event Capturing Phase
In the event capturing phase, the event is dispatched by the root node of your
application and passed down the event dispatch chain to the target node. Using the
event dispatch chain shown in Figure 1–3, the event travels from the Stage node to the
Triangle node during the event capturing phase.

If any node in the chain has an event filter registered for the type of event that
occurred, that filter is called. When the filter completes, the event is passed to the next
node down the chain. If a filter is not registered for a node, the event is passed to the
next node down the chain. If no filter consumes the event, the event target eventually
receives and processes the event.

Event Bubbling Phase
After the event target is reached and all registered filters have processed the event, the
event returns along the dispatch chain from the target to the root node. Using the
event dispatch chain shown in Figure 1–3, the event travels from the Triangle node to
the Stage node during the event bubbling phase.

If any node in the chain has a handler registered for the type of event encountered,
that handler is called. When the handler completes, the event is returned to the next
node up the chain. If a handler is not registered for a node, the event is returned to the
next node up the chain. If no handler consumes the event, the root node eventually
receives the event and processing is completed.

Event Handling
Event handling is provided by event filters and event handlers, which are
implementations of the EventHandler interface. If you want an application to be

Event Handling

Processing Events 1-5

notified when an event occurs, register a filter or a handler for the event. The primary
difference between a filter and a handler is when each one is executed.

Event Filters
An event filter is executed during the event capturing phase. An event filter for a
parent node can provide common event processing for multiple child nodes and if
desired, consume the event to prevent the child node from receiving the event. Filters
that are registered for the type of event that occurred are executed as the event passes
through the node that registered the filter.

A node can register more than one filter. The order in which each filter is called is
based on the hierarchy of event types. Filters for a specific event type are executed
before filters for generic event types. For example, a filter for the MouseEvent.MOUSE_
PRESSED event is called before the filter for the InputEvent.ANY event. The order in
which two filters at the same level are executed is not specified.

Event Handlers
An event handler is executed during the event bubbling phase. If an event handler for
a child node does not consume the event, an event handler for a parent node can act
on the event after a child node processes it and can provide common event processing
for multiple child nodes. Handlers that are registered for the type of event that
occurred are executed as the event returns through the node that registered the
handler.

A node can register more than one handler. The order in which each handler is called
is based on the hierarchy of event types. Handlers for a specific event type are
executed before handlers for generic event types. For example, a handler for the
KeyEvent.KEY_TYPED event is called before the handler for the InputEvent.ANY event.
The order in which two handlers at the same level are executed is not specified, with
the exception that handlers that are registered by the convenience methods described
in Working with Convenience Methods are executed last.

Consuming of an Event
An event can be consumed by an event filter or an event handler at any point in the
event dispatch chain by calling the consume() method. This method signals that
processing of the event is complete and traversal of the event dispatch chain ends.

Consuming the event in an event filter prevents any child node on the event dispatch
chain from acting on the event. Consuming the event in an event handler stops any
further processing of the event by parent handlers on the event dispatch chain.
However, if the node that consumes the event has more than one filter or handler
registered for the event, the peer filters or handlers are still executed.

For example, using the event dispatch chain shown in Figure 1–3, assume that the
Pane node has an event filter registered for the KeyEvent.KEY_PRESSED event and an
event filter registered for the InputEvent.ANY event. If the filter for the key pressed
event consumes the event, the filter for the input event is executed and the Triangle
node does not receive the event.

Note that the default handlers for the JavaFX UI controls typically consume most of
the input events.

Additional Resources

1-6 JavaFX /Handling JavaFX Events

Additional Resources
For more information on how events are processed, see the JavaFX API documentation
for the javafx.event package.

2

Working with Convenience Methods 2-1

2Working with Convenience Methods

This topic describes convenience methods that you can use to register event handlers
within your JavaFX application. Learn an easy way to create and register event
handlers to respond to mouse events, keyboard events, action events, drag-and-drop
events, window events, and others.

Some JavaFX classes define event handler properties, which provide a way to register
event handlers. Setting an event handler property to a user-defined event handler
automatically registers the handler to receive the corresponding event type. The setter
methods for the event handler properties are convenience methods for registering
event handlers.

Using Convenience Methods
Many of the convenience methods are defined in the Node class and are available to all
of its subclasses. Other classes also contain convenience methods. Table 2–1 describes
the events that convenience methods can be used to handle and identifies the classes
in which the convenience methods are defined.

Table 2–1 Classes with Convenience Methods for Event Handling

User Action Event Type Class

Key on the keyboard is pressed. KeyEvent Node, Scene

Mouse is moved or a button on the
mouse is pressed.

MouseEvent Node, Scene

Full mouse press-drag-release action
is performed.

MouseDragEvent Node, Scene

Input from an alternate method for
entering characters (typically for a
foreign language) is generated,
changed, removed, or committed.

InputMethodEvent Node, Scene

Platform-supported drag and drop
action is performed.

DragEvent Node, Scene

Object is scrolled. ScrollEvent Node, Scene

Rotation gesture is performed on an
object

RotateEvent Node, Scene

Swipe gesture is performed on an
object

SwipeEvent Node, Scene

An object is touched TouchEvent Node, Scene

Zoom gesture is performed on an
object

ZoomEvent Node, Scene

Using Convenience Methods

2-2 JavaFX /Handling JavaFX Events

Convenience methods for registering event handlers have the following format:

setOnEvent-type(EventHandler<? super event-class> value)

Event-type is the type of event that the handler processes, for example,
setOnKeyTyped for KEY_TYPED events or setOnMouseClicked for MOUSE_CLICKED events.
event-class is the class that defines the event type, for example, KeyEvent for events
related to keyboard input or MouseEvent for events related to mouse input. The string
<? super event-class> indicates that the method accepts an event handler for
event-class or an event handler for one of its super classes as the argument. For
example, an event handler for InputEvent could be used when the event is either a
keyboard event or a mouse event.

The following statement shows the definition for the method that registers an event
handler to handle the events that are generated when a key is typed, that is, when a
key is pressed and released:

setOnKeyTyped(EventHandler<? super KeyEvent> value)

You can create and register your event handler in a single step by defining the handler
as an anonymous class in the call to the convenience method. The event handler must
implement the handle() method to provide the code needed to process the event.

A example of the use of a convenience method is shown in the code that is generated
when you use the NetBeans IDE to create a JavaFX application. If you select the Create
Application Class option when you create your JavaFX application, the main class that
is created contains a "Hello World" application. The generated code is shown in
Example 2–1.

Example 2–1 Hello World Example

package yourapplication;

import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.Group;
import javafx.scene.Scene;

Context menu is requested ContextMenuEvent Node, Scene

Button is pressed, combo box is
shown or hidden, or a menu item is
selected.

ActionEvent ButtonBase,
ComboBoxBase,
ContextMenu,
MenuItem, TextField

Item in a list, table, or tree is edited. ■ ListView.EditEvent

■ TableColumn.CellEditEvent

■ TreeView.EditEvent

■ ListView

■ TableColumn

■ TreeView

Media player encounters an error. MediaErrorEvent MediaView

Menu is either shown or hidden. Event Menu

Popup window is hidden. Event PopupWindow

Tab is selected or closed. Event Tab

Window is closed, shown, or hidden. WindowEvent Window

Table 2–1 (Cont.) Classes with Convenience Methods for Event Handling

User Action Event Type Class

Using Convenience Methods

Working with Convenience Methods 2-3

import javafx.scene.control.Button;
import javafx.stage.Stage;

public class YourApplication extends Application {

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Hello World");
 Group root = new Group();
 Scene scene = new Scene(root, 300, 250);
 Button btn = new Button();
 btn.setLayoutX(100);
 btn.setLayoutY(80);
 btn.setText("Hello World");
 btn.setOnAction(new EventHandler<ActionEvent>() {

 public void handle(ActionEvent event) {
 System.out.println("Hello World");
 }
 });
 root.getChildren().add(btn);
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

The "Hello World" code creates a window with a single button. The setOnAction()
method is used to register an event handler that handles the action events that are
dispatched when the button is clicked. The handle() method in the event handler
handles the event by printing the string "Hello World" to the console.

Examples for Mouse Events
Convenience methods for registering event handlers for mouse events include
setOnMouseEntered, setOnMouseExited, and setOnMousePressed. Example 2–2 shows
samples of these event handlers.

Example 2–2 Sample Event Handlers for Mouse Events

final Circle circle = new Circle(radius, Color.RED);

circle.setOnMouseEntered(new EventHandler<MouseEvent>() {
 public void handle(MouseEvent me) {
 System.out.println("Mouse entered");
 }
});

circle.setOnMouseExited(new EventHandler<MouseEvent>() {
 public void handle(MouseEvent me) {
 System.out.println("Mouse exited");
 }
});

Additional Resources

2-4 JavaFX /Handling JavaFX Events

circle.setOnMousePressed(new EventHandler<MouseEvent>() {
 public void handle(MouseEvent me) {
 System.out.println("Mouse pressed");
 }
});

To see how similar event handlers are used, run the Ensemble sample, which is
available in the JavaFX samples that can be downloaded from the JDK Demos and
Samples section of the Java SE Downloads page. The Ensemble sample also provides
the source code for the event handlers.

Examples for Keyboard Events
Convenience methods for registering event handlers for keyboard events include
setOnKeyPressed and setOnKeyReleased. Example 2–3 shows samples of these event
handlers.

Example 2–3 Sample Event Handlers for Keyboard Events

final TextField textBox = new TextField();
textBox.setPromptText("Write here");

textBox.setOnKeyPressed(new EventHandler<KeyEvent>() {
 public void handle(KeyEvent ke) {
 System.out.println("Key Pressed: " + ke.getText());
 }
});

textBox.setOnKeyReleased(new EventHandler<KeyEvent>() {
 public void handle(KeyEvent ke) {
 System.out.println("Key Released: " + ke.getText());
 }
});

To see how similar event handlers are used, run the Ensemble sample, which is
available in the JavaFX samples that can be downloaded from the JDK Demos and
Samples section of the Java SE Downloads page. The Ensemble sample also provides
the source code for the event handlers.

Additional Resources
For information on the available convenience methods, see the JavaFX API
documentation.

3

Working with Event Filters 3-1

3Working with Event Filters

This topic describes event filters in JavaFX applications. Learn how event filters can be
used to process the events generated by keyboard actions, mouse actions, scroll
actions, and other user interactions with your application.

Event filters enable you to handle an event during the event capturing phase of event
processing. A node can have one or more filters for handling an event. A single filter
can be used for more than one node and more than one event type. Event filters enable
the parent node to provide common processing for its child nodes or to intercept an
event and prevent child nodes from acting on the event.

Registering and Removing an Event Filter
To process an event during the event capturing phase, a node must register an event
filter. An event filter is an implementation of the EventHandler interface. The handle()
method of this interface provides the code that is executed when the event that is
associated with the filter is received by the node that registered the filter.

To register a filter, use the addEventFilter() method. This method takes the event
type and the filter as arguments. In Example 3–1, the first filter is added to a single
node and processes a specific event type. A second filter for handling input events is
defined and registered by two different nodes. The same filter is also registered for two
different types of events.

Example 3–1 Register a Filter

// Register an event filter for a single node and a specific event type
node.addEventFilter(MouseEvent.MOUSE_CLICKED,
 new EventHandler<MouseEvent>() {
 public void handle(MouseEvent) { ... };
 });

// Define an event filter
EventHandler filter = new EventHandler(<InputEvent>() {
 public void handle(InputEvent event) {
 System.out.println("Filtering out event " + event.getEventType());
 event.consume();
 }

// Register the same filter for two different nodes
myNode1.addEventFilter(MouseEvent.MOUSE_PRESSED, filter);
myNode2.addEventFilter(MouseEvent.MOUSE_PRESSED, filter);

// Register the filter for another event type
myNode1.addEventFilter(KeyEvent.KEY_PRESSED, filter);

Using Event Filters

3-2 JavaFX /Handling JavaFX Events

Note that an event filter that is defined for one type of event can also be used for any
subtypes of that event. See Event Types for information on the hierarchy of event
types.

When you no longer want an event filter to process events for a node or for an event
type, remove the filter using the removeEventFilter() method. This method takes the
event type and the filter as arguments. In Example 3–2, the filter defined in
Example 3–1 is removed from the MouseEvent.MOUSE_PRESSED event for myNode1. The
filter is still executed by myNode2 and by myNode1 for the KeyEvent.KEY_PRESSED event.

Example 3–2 Remove a Filter

// Remove an event filter
myNode1.removeEventFilter(MouseEvent.MOUSE_PRESSED, filter);

Using Event Filters
Event filters are typically used on a branch node of the event dispatch chain and are
called during the event capturing phase of event handling. Use a filter to perform
actions such as overriding an event response or blocking an event from reaching its
destination.

To see an example of how filters can be used, download the
DraggablePanelsExample.zip file. Extract the NetBeans project and open it in the
NetBeans IDE. The following sections describe the filters that are used by this
example.

Draggable Panels Example
The Draggable Panels example demonstrates the following uses of filters:

■ Registering a filter for a super-type event to provide common handling for
subtype events

■ Consuming an event to prevent a child node from acting on it

Figure 3–1 is the screen that is shown when the Draggable Panels example is started.
The user interface consists of three panels. Each panel contains different UI controls.
At the bottom of the screen is a check box that controls whether the panels can be
dragged.

Using Event Filters

Working with Event Filters 3-3

Figure 3–1 Initial Screen for the Draggable Panels Example

If the check box is not selected, clicking any of the controls in the panels generates a
response from the control. If the check box is selected, the individual controls do not
respond to mouse clicks. Instead, clicking anywhere within a panel and dragging the
mouse moves the entire panel, enabling you to change the position of the panels as
shown in Figure 3–2.

Figure 3–2 Screen with Repositioned Panels

Using Event Filters

3-4 JavaFX /Handling JavaFX Events

Filters for the Draggable Panels Example
In the Draggable Panels example, the makeDraggable() method is used in the creation
of the three panels to make each panel movable. This method and the filter definitions
are shown in Example 3–3.

Example 3–3 Filter Definitions in makeDraggable()

private Node makeDraggable(final Node node) {
 final DragContext dragContext = new DragContext();
 final Group wrapGroup = new Group(node);

 wrapGroup.addEventFilter(
 MouseEvent.ANY,
 new EventHandler<MouseEvent>() {
 public void handle(final MouseEvent mouseEvent) {
 if (dragModeActiveProperty.get()) {
 // disable mouse events for all children
 mouseEvent.consume();
 }
 }
 });

 wrapGroup.addEventFilter(
 MouseEvent.MOUSE_PRESSED,
 new EventHandler<MouseEvent>() {
 public void handle(final MouseEvent mouseEvent) {
 if (dragModeActiveProperty.get()) {
 // remember initial mouse cursor coordinates
 // and node position
 dragContext.mouseAnchorX = mouseEvent.getX();
 dragContext.mouseAnchorY = mouseEvent.getY();
 dragContext.initialTranslateX =
 node.getTranslateX();
 dragContext.initialTranslateY =
 node.getTranslateY();
 }
 }
 });

 wrapGroup.addEventFilter(
 MouseEvent.MOUSE_DRAGGED,
 new EventHandler<MouseEvent>() {
 public void handle(final MouseEvent mouseEvent) {
 if (dragModeActiveProperty.get()) {
 // shift node from its initial position by delta
 // calculated from mouse cursor movement
 node.setTranslateX(
 dragContext.initialTranslateX
 + mouseEvent.getX()
 - dragContext.mouseAnchorX);
 node.setTranslateY(
 dragContext.initialTranslateY
 + mouseEvent.getY()
 - dragContext.mouseAnchorY);
 }
 }
 });

 return wrapGroup;

Additional Resources

Working with Event Filters 3-5

}
Filters for the following events are defined and registered for each panel:

■ MouseEvent.ANY. This filter processes all mouse events for the panel. If the Drag
Mode check box is selected, the filter consumes the event, and the child nodes,
which are the UI controls within the panel, do not receive the event. If the check
box is not selected, the control at the location of the mouse cursor processes the
event.

■ MouseEvent.MOUSE_PRESSED. This filter processes only mouse-pressed events for
the panel. If the Drag Mode check box is selected, the current location of the
mouse is stored.

■ MouseEvent.MOUSE_DRAGGED. This filter processes only mouse-dragged events for
the panel. If the Drag Mode check box is selected, the panel is moved.

Note that a panel has three registered filters. Filters for specific event types are
invoked before super-type events, so the filters for MouseEvent.MOUSE_PRESSED and
MouseEvent.MOUSE_DRAGGED are invoked before the filter for MouseEvent.ANY.

Additional Resources
For information on event filters, see the JavaFX API documentation.

Additional Resources

3-6 JavaFX /Handling JavaFX Events

4

Working with Event Handlers 4-1

4Working with Event Handlers

This topic describes event handlers in JavaFX applications. Learn how event handlers
can be used to process the events generated by keyboard actions, mouse actions, scroll
actions, and other user interactions with your application.

Event handlers enable you to handle events during the event bubbling phase. A node
can have one or more handlers for handling an event. A single handler can be used for
more than one node and more than one event type. If an event handler for a child node
does not consume the event, an event handler for a parent node enables the parent
node to act on the event after a child node processes it and to provide common event
processing for multiple child nodes.

Registering and Removing an Event Handler
To process an event during the event bubbling phase, a node must register an event
handler. An event handler is an implementation of the EventHandler interface. The
handle() method of this interface provides the code that is executed when the event
that is associated with the handler is received by the node that registered the handler.

To register a handler, use the addEventHandler() method. This method takes the event
type and the handler as arguments. In Example 4–1, the first handler is added to a
single node and processes a specific event type. A second handler for handling input
events is defined and registered by two different nodes. The same handler is also
registered for two different types of events.

Example 4–1 Register a Handler

// Register an event handler for a single node and a specific event type
node.addEventHandler(DragEvent.DRAG_ENTERED,
 new EventHandler<DragEvent>() {
 public void handle(DragEvent) { ... };
 });

// Define an event handler
EventHandler handler = new EventHandler(<InputEvent>() {
 public void handle(InputEvent event) {
 System.out.println("Handling event " + event.getEventType());
 event.consume();
 }

// Register the same handler for two different nodes
myNode1.addEventHandler(DragEvent.DRAG_EXITED, handler);
myNode2.addEventHandler(DragEvent.DRAG_EXITED, handler);

// Register the handler for another event type

Using Event Handlers

4-2 JavaFX /Handling JavaFX Events

myNode1.addEventHandler(MouseEvent.MOUSE_DRAGGED, handler);

Note that an event handler that is defined for one type of event can also be used for
any subtypes of that event. See Event Types for information on the hierarchy of event
types.

When you no longer want an event handler to process events for a node or for an
event type, remove the handler using the removeEventHandler() method. This
method takes the event type and the handler as arguments. In Example 4–2, the
handler defined in Example 4–1 is removed from the DragEvent.DRAG_EXITED event
for myNode1. The handler is still executed by myNode2 and by myNode1 for the
MouseEvent.MOUSE_DRAGGED event.

Example 4–2 Remove a Handler

// Remove an event handler
myNode1.removeEventHandler(DragEvent.DRAG_EXITED, handler);

Using Event Handlers
Event handlers are typically used on a the leaf nodes or on a branch node of the event
dispatch chain and are called during the event bubbling phase of event handling. Use
a handler on a branch node to perform actions such as defining a default response for
all child nodes.

To see an example of how handlers can be used, download the KeyboardExample.zip
file. Extract the NetBeans project and open it in the NetBeans IDE. The following
sections describe the handlers that are used by this example.

Keyboard Example
The Keyboard example demonstrates the following uses of handlers:

■ Registering a single handler for two different event types

■ Providing common event processing for child nodes in a parent node

Figure 4–1 is the screen that is shown when the Keyboard Example is started. The user
interface consists of four letters, each in its own square, which represent the
corresponding keyboard key. The first key on the screen is highlighted, which
indicates that it has the focus. Use the left and right arrow keys on the keyboard to
move the focus to a different key on the screen.

Figure 4–1 Initial Screen for Keyboard Example

Tip: To remove an event handler that was registered by a
convenience method, pass null to the convenience method, for
example, node1.setOnMouseDragged(null).

Using Event Handlers

Working with Event Handlers 4-3

When the Enter key is pressed, the key on the screen with the focus changes to red.
When the Enter key is released, the key on the screen returns to its previous color.
When the key for a letter that matches one of the keys on the screen is pressed, the
matching key on the screen changes to red, and returns to its previous color when the
key is released. When a key that does not match any key on the screen is pressed,
nothing happens. Figure 4–2 shows the screen when the A key has focus and the D key
on the keyboard is pressed.

Figure 4–2 Key Pressed Screen

Handlers for the Keyboard Example
In the Keyboard example, internally each key shown on the screen is represented by a
key node. All key nodes are contained in a single keyboard node. Each key node has a
handler that receives key events when the key has focus. The handler responds to the
key-pressed and key-released events for the Enter key by changing the color of the key
on the screen. The event is then consumed so that the keyboard node, which is the
parent node, does not receive the event.

Example 4–3 shows the installEventHandler() method that defines the handler for
the key nodes.

Example 4–3 Handler for the Key Nodes

private void installEventHandler(final Node keyNode) {
 // handler for enter key press / release events, other keys are
 // handled by the parent (keyboard) node handler
 final EventHandler<KeyEvent> keyEventHandler =
 new EventHandler<KeyEvent>() {
 public void handle(final KeyEvent keyEvent) {
 if (keyEvent.getCode() == KeyCode.ENTER) {
 setPressed(keyEvent.getEventType()
 == KeyEvent.KEY_PRESSED);

 keyEvent.consume();
 }
 }
 };

 keyNode.setOnKeyPressed(keyEventHandler);
 keyNode.setOnKeyReleased(keyEventHandler);
}

The keyboard node has two handlers that handle key events that are not consumed by
a key node handler. The first handler changes the color of the key node that matches
the key pressed. The second handler responds to the left and right arrow keys and
moves the focus.

Example 4–4 shows the installEventHandler() method that defines the handlers for
the keyboard node.

Additional Resources

4-4 JavaFX /Handling JavaFX Events

Example 4–4 Handlers for the Keyboard Node

private void installEventHandler(final Parent keyboardNode) {
 // handler for key pressed / released events not handled by
 // key nodes
 final EventHandler<KeyEvent> keyEventHandler =
 new EventHandler<KeyEvent>() {
 public void handle(final KeyEvent keyEvent) {
 final Key key = lookupKey(keyEvent.getCode());
 if (key != null) {
 key.setPressed(keyEvent.getEventType()
 == KeyEvent.KEY_PRESSED);

 keyEvent.consume();
 }
 }
 };

 keyboardNode.setOnKeyPressed(keyEventHandler);
 keyboardNode.setOnKeyReleased(keyEventHandler);

 keyboardNode.addEventHandler(KeyEvent.KEY_PRESSED,
 new EventHandler<KeyEvent>() {
 public void handle(
 final KeyEvent keyEvent) {
 handleFocusTraversal(
 keyboardNode,
 keyEvent);
 }
 });
}

The two handlers for the key-pressed event are considered peer handlers. Therefore,
even though each handler consumes the event, the other handler is still invoked.

Additional Resources
For information on event handlers, see the JavaFX API documentation.

5

Working with Events from Touch-Enabled Devices 5-1

5Working with Events from Touch-Enabled
Devices

This topic describes the events that are generated by the different types of gestures that
are recognized by touch-enabled devices, such as touch events, zoom events, rotate
events, and swipe events. This topic shows you how to work with these types of
events in your JavaFX application.

Starting with JavaFX 2.2, users can interact with your JavaFX applications using
touches and gestures on touch-enabled devices. Touches and gestures can involve a
single point or multiple points of contact. The type of event that is generated is
determined by the touch or type of gesture that the user makes.

Touch and gesture events are processed the same way that other events are processed.
See Processing Events for a description of this process. Convenience methods for
registering event handlers for touch and gesture events are available. See Working
with Convenience Methods for more information.

Gesture and Touch Events
JavaFX applications generate gesture events when an application is running on a
device with a touch screen or a trackpad that recognizes gestures. For platforms that
recognize gestures, the native recognition is used to identify the gesture performed.
Table 5–1 describes the gestures that are supported and the corresponding event types
that are generated.

Gesture and Touch Events

5-2 JavaFX /Handling JavaFX Events

Touch events are generated when the application is running on a device with a touch
screen and the user touches one or more fingers to the screen. These events can be
used to provide lower level tracking for the individual touch points that are part of a
touch or gesture. For more information on touch events, see Working with Touch
Events.

Targets of Gestures
The target of most gestures is the node at the center point of all touches at the
beginning of the gesture. The target of a swipe gesture is the node at the center of the
entire path of all of the fingers.

If more than one node is located at the target point, the topmost node is considered the
target. All of the events generated from a single, continuous gesture, including inertia
from the gesture, are delivered to the node that was selected when the gesture started.
For more information on targets of events, see Target Selection.

Other Events Generated
Gestures and touches can generate other types of events in addition to the events for
the gesture or touch performed. A swipe gesture generates scroll events in addition to
the swipe event. Depending on the length of the swipe, it is possible that the swipe
and scroll events have different targets. The target of a scroll event is the node at the
point where the gesture started. The target of a swipe event is the node at the center of
the entire path of the gesture.

Touches on a touch screen also generate corresponding mouse events. For example,
touching a point on the screen generates TOUCH_PRESSED and MOUSE_PRESSED events.
Moving a single point on the screen generates scroll events and drag events. Even if

Table 5–1 Supported Gestures and Generated Event Types

Gesture Description Events Generated

Rotate Two-finger turning movement where one finger
moves clockwise around the other finger to rotate
an object clockwise and one finger moves
counterclockwise around the other finger to rotate
an object counterclockwise.

■ ROTATION_STARTED

■ ROTATE

■ ROTATION_FINISHED

Scroll Sliding movement, up or down for vertical
scrolling, left or right for horizontal scrolling.

■ SCROLL_STARTED

■ SCROLL

■ SCROLL_FINISHED

If a mouse wheel is used for scrolling, only the
events of type SCROLL are generated.

Swipe Sweeping movement across the screen or trackpad
to the right, left, up, or down. Diagonal movement
is not recognized as a swipe.

■ SWIPE_LEFT

■ SWIPE_RIGHT

■ SWIPE_UP

■ SWIPE_DOWN

A single swipe event is generated for each
swiping gesture. SCROLL_STARTED, SCROLL, and
SCROLL_FINISHED events are also generated.

Zoom Two-finger pinching motion where fingers are
brought together to zoom out and fingers are
moved apart to zoom in.

■ ZOOM_STARTED

■ ZOOM

■ ZOOM_FINISHED

Gesture Events Example

Working with Events from Touch-Enabled Devices 5-3

your application does not handle touch or gesture events directly, it can run on a
touch-enabled device with minimal changes by responding to the mouse events that
are generated in response to touches.

If your application handles touches, gestures, and mouse events, make sure that you
do not handle a single action multiple times. For example, if a gesture generates scroll
events and drag events and you provide the same processing for handlers of both
types of events, the movement on the screen could be twice the amount expected. You
can use the isSynthesized() method for mouse events to determine if the event was
generated by mouse movement or movement on a touch screen and only handle the
event once.

Gesture Events Example
The Gesture Events example shows a rectangle, an ellipse, and an event log. Figure 5–1
shows the example.

Figure 5–1 Gesture Events Example

The log contains a record of the events that were handled. This example enables you to
try different gestures and see what events are generated for each.

The Gesture Events example is available in the GestureEventsExample.zip file. Extract
the NetBeans project and open it in the NetBeans IDE.

Gesture Events Example

5-4 JavaFX /Handling JavaFX Events

To generate gesture events, you must run the example on a device with a touch screen
or a trackpad that supports gestures. To generate touch events, you must run the
example on a device with a touch screen.

Creating the Shapes
The Gesture Events example shows a rectangle and an ellipse. Example 5–1 shows the
code used to create each shape and the layout pane that contains the shapes.

Example 5–1 Set Up the Shapes

// Create the shapes that respond to gestures and use a VBox to
// organize them
VBox shapes = new VBox();
shapes.setAlignment(Pos.CENTER);
shapes.setPadding(new Insets(15.0));
shapes.setSpacing(30.0);
shapes.setPrefWidth(500);
shapes.getChildren().addAll(createRectangle(), createEllipse());
...
private Rectangle createRectangle() {

 final Rectangle rect = new Rectangle(100, 100, 100, 100);
 rect.setFill(Color.DARKMAGENTA);
...
 return rect;
}

private Ellipse createEllipse() {

 final Ellipse oval = new Ellipse(100, 50);
 oval.setFill(Color.STEELBLUE);
...
 return oval;
}

You can use gestures to move, rotate, and zoom in and out of these objects.

Handling the Events
In general, event handlers for the shape objects in the Gesture Events example perform
similar operations for each type of event that is handled. For all types of events, an
entry is posted to the log of events.

On platforms that support inertia for gestures, additional events might be generated
after the event-type_FINISHED event. For example, SCROLL events might be generated
after the SCROLL_FINISHED event if there is any inertia associated with the scroll
gesture. Use the isInertia() method to identify the events that are generated based
on the inertia of the gesture. If the method returns true, the event was generated after
the gesture was completed.

Events are generated by gestures on a touch screen or on a trackpad. SCROLL events are
also generated by the mouse wheel. Use the isDirect() method to identify the source
of the event. If the method returns true, the event was generated by a gesture on a
touch screen. Otherwise, the method returns false. You can use this information to
provide different behavior based on the source of the event.

Touches on a touch screen also generate corresponding mouse events. For example,
touching an object generates both TOUCH_PRESSED and MOUSE_PRESSED events. Use the

Gesture Events Example

Working with Events from Touch-Enabled Devices 5-5

isSynthesized() method to determine the source of the mouse event. If the method
returns true, the event was generated by a touch instead of by a mouse.

The inc() and dec() methods in the Gesture Events example are used to provide a
visual cue that an object is the target of a gesture. The number of gestures in progress
is tracked, and the appearance of the target object is changed when the number of
active gestures changes from 0 to 1 or drops to 0.

In the Gesture Events example, the handlers for the rectangle and ellipse are similar.
Therefore, the code examples in the following sections show the handlers for the
rectangle. See GestureEvents.java for the handlers for the ellipse.

Handling Scroll Events
When a scroll gesture is performed, SCROLL_STARTED, SCROLL, and SCROLL_FINISHED
events are generated. When a mouse wheel is moved, only a SCROLL event is
generated. Example 5–2 shows the rectangle’s handlers for scroll events in the Gesture
Events example. Handlers for the ellipse are similar.

Example 5–2 Define the Handlers for Scroll Events

rect.setOnScroll(new EventHandler<ScrollEvent>() {
 @Override public void handle(ScrollEvent event) {
 if (!event.isInertia()) {
 rect.setTranslateX(rect.getTranslateX() + event.getDeltaX());
 rect.setTranslateY(rect.getTranslateY() + event.getDeltaY());
 }
 log("Rectangle: Scroll event" +
 ", inertia: " + event.isInertia() +
 ", direct: " + event.isDirect());
 event.consume();
 }
});

rect.setOnScrollStarted(new EventHandler<ScrollEvent>() {
 @Override public void handle(ScrollEvent event) {
 inc(rect);
 log("Rectangle: Scroll started event");
 event.consume();
 }
});

rect.setOnScrollFinished(new EventHandler<ScrollEvent>() {
 @Override public void handle(ScrollEvent event) {
 dec(rect);
 log("Rectangle: Scroll finished event");
 event.consume();
 }
});

In addition to the common handling described in Handling the Events, SCROLL events
are handled by moving the object in the direction of the scroll gesture. If the scroll
gesture ends outside of the window, the shape is moved out of the window. SCROLL
events that are generated based on inertia are ignored by the handler for the rectangle.
The handler for the ellipse continues to move the ellipse in response to SCROLL events
that are generated from inertia and could result in the ellipse moving out of the
window even if the gesture ends within the window.

Gesture Events Example

5-6 JavaFX /Handling JavaFX Events

Handling Zoom Events
When a zoom gesture is performed, ZOOM_STARTED, ZOOM, and ZOOM_FINISHED events
are generated. Example 5–3 shows the rectangle’s handlers for zoom events in the
Gesture Events example. Handlers for the ellipse are similar.

Example 5–3 Define the Handlers for Zoom Events

rect.setOnZoom(new EventHandler<ZoomEvent>() {
 @Override public void handle(ZoomEvent event) {
 rect.setScaleX(rect.getScaleX() * event.getZoomFactor());
 rect.setScaleY(rect.getScaleY() * event.getZoomFactor());
 log("Rectangle: Zoom event" +
 ", inertia: " + event.isInertia() +
 ", direct: " + event.isDirect());

 event.consume();
 }
});

rect.setOnZoomStarted(new EventHandler<ZoomEvent>() {
 @Override public void handle(ZoomEvent event) {
 inc(rect);
 log("Rectangle: Zoom event started");
 event.consume();
 }
});

rect.setOnZoomFinished(new EventHandler<ZoomEvent>() {
 @Override public void handle(ZoomEvent event) {
 dec(rect);
 log("Rectangle: Zoom event finished");
 event.consume();
 }
});

In addition to the common handling described in Handling the Events, ZOOM events are
handled by scaling the object according to the movement of the gesture. The handlers
for the rectangle and ellipse handle all ZOOM events the same, regardless of inertia or
the source of the event.

Handling Rotate Events
When a rotate gesture is performed, ROTATE_STARTED, ROTATE, and ROTATE_FINISHED
events are generated. Example 5–4 shows the rectangle’s handlers for rotate events in
the Gesture Events example. Handlers for the ellipse are similar.

Example 5–4 Define the Handlers for Rotate Events

rect.setOnRotate(new EventHandler<RotateEvent>() {
 @Override public void handle(RotateEvent event) {
 rect.setRotate(rect.getRotate() + event.getAngle());
 log("Rectangle: Rotate event" +
 ", inertia: " + event.isInertia() +
 ", direct: " + event.isDirect());
 event.consume();
 }
});

rect.setOnRotationStarted(new EventHandler<RotateEvent>() {
 @Override public void handle(RotateEvent event) {

Gesture Events Example

Working with Events from Touch-Enabled Devices 5-7

 inc(rect);
 log("Rectangle: Rotate event started");
 event.consume();
 }
});

rect.setOnRotationFinished(new EventHandler<RotateEvent>() {
 @Override public void handle(RotateEvent event) {
 dec(rect);
 log("Rectangle: Rotate event finished");
 event.consume();
 }
});

In addition to the common handling described in Handling the Events, ROTATE events
are handled by rotating the object according to the movement of the gesture. The
handlers for the rectangle and ellipse handle all ROTATE events the same, regardless of
inertia or the source of the event.

Handling Swipe Events
When a swipe gesture is performed, either a SWIPE_DOWN, SWIPE_LEFT, SWIPE_RIGHT, or
SWIPE_UP event is generated, depending on the direction of the swipe. Example 5–5
shows the rectangle’s handlers for SWIPE_RIGHT and SWIPE_LEFT events in the Gesture
Events example. The ellipse does not handle swipe events.

Example 5–5 Define the Handlers for Swipe Events

rect.setOnSwipeRight(new EventHandler<SwipeEvent>() {
 @Override public void handle(SwipeEvent event) {
 log("Rectangle: Swipe right event");
 event.consume();
 }
});

rect.setOnSwipeLeft(new EventHandler<SwipeEvent>() {
 @Override public void handle(SwipeEvent event) {
 log("Rectangle: Swipe left event");
 event.consume();
 }
});

The only action performed for swipe events is to record the event in the log. However,
swipe gestures also generate scroll events. The target of the swipe event is the topmost
node at the center of the path of the gesture. This target could be different than the
target of the scroll events, which is the topmost node at the point where the gesture
started. The rectangle and ellipse respond to scroll events that are generated by a
swipe gesture when they are the target of the scroll events.

Handling Touch Events
When a touch screen is touched, a TOUCH_MOVED, TOUCH_PRESSED, TOUCH_RELEASED, or
TOUCH_STATIONARY event is generated for each touch point. The touch event contains
information for every touch point that is part of the touch action. Example 5–6 shows
the rectangle’s handlers for touch pressed and touch released events in the Gesture
Events example. The ellipse does not handle touch events.

Gesture Events Example

5-8 JavaFX /Handling JavaFX Events

Example 5–6 Define the Handlers for Touch Events

rect.setOnTouchPressed(new EventHandler<TouchEvent>() {
 @Override public void handle(TouchEvent event) {
 log("Rectangle: Touch pressed event");
 event.consume();
 }
});

rect.setOnTouchReleased(new EventHandler<TouchEvent>() {
 @Override public void handle(TouchEvent event) {
 log("Rectangle: Touch released event");
 event.consume();
 }
});

The only action performed for touch events is to record the event in the log. Touch
events can be used to provide lower level tracking for the individual touch points that
are part of a touch or gesture. See Working with Touch Events for more information
and an example.

Handling Mouse Events
Mouse events are generated by actions with the mouse and by touches on a touch
screen. Example 5–7 shows the ellipse’s handlers for MOUSE_PRESSED and MOUSE_
RELEASED events in the Gesture Events example.

Example 5–7 Define Handlers for Mouse Events

oval.setOnMousePressed(new EventHandler<MouseEvent>() {
 @Override public void handle(MouseEvent event) {
 if (event.isSynthesized()) {
 log("Ellipse: Mouse pressed event from touch" +
 ", synthesized: " + event.isSynthesized());
 }
 event.consume();
 }
});

oval.setOnMouseReleased(new EventHandler<MouseEvent>() {
 @Override public void handle(MouseEvent event) {
 if (event.isSynthesized()) {
 log("Ellipse: Mouse released event from touch" +
 ", synthesized: " + event.isSynthesized());
 }
 event.consume();
 }
});

Mouse pressed and mouse released events are handled by the ellipse only when the
events are generated by touches on a touch screen. Handlers for the rectangle record
all mouse pressed and mouse released events in the log.

Managing the Log
The Gesture Events example shows a log of the events that were handled by the
shapes on the screen. An ObservableList object is used to record the events for each
shape, and a ListView object is used to display the list of events. The log is limited to
50 entries. The newest entry is added to the top of the list and the oldest entry is
removed from the bottom. See GestureEvents.java for the code that manages the log.

Additional Resources

Working with Events from Touch-Enabled Devices 5-9

Work with the shapes in the application and notice what events are generated for each
gesture that you perform.

Additional Resources
See the JavaFX API documentation for more information on gesture events, touch
events, and touch points.

Additional Resources

5-10 JavaFX /Handling JavaFX Events

6

Working with Touch Events 6-1

6Working with Touch Events

This topic describes the touch events that enable users to interact with your JavaFX
application using a touch screen. Touch points identify each point of contact for a
touch. This topic shows you how to identify the touch points and handle touch events
to provide sophisticated responses to touch actions.

A touch action consists of one or more points of contact on a touch screen. The action
can be a simple press and release, or a more complicated series of holds and moves
between the press and release. A series of events is generated for each point of contact
for the duration of the action. In addition to the touch events, mouse events and
gesture events are generated. If your JavaFX application does not require a complex
response to a touch action, you might prefer to handle the mouse or gesture event
instead of the touch event. For more information about handling gesture events, see
Working with Events from Touch-Enabled Devices.

Touch events are introduced in JavaFX 2.2 and require a touch screen and the
Windows 7 operating system.

Overview of Touch Actions
The term touch action refers to the entire scope of a user’s touch from the time that
contact is made with the touch screen to the time that the touch screen is released by
all points of contact. The types of touch events that are generated during a touch action
are TOUCH_PRESSED, TOUCH_MOVED, TOUCH_STATIONARY, and TOUCH_RELEASED.

Each point of contact with the screen is considered a touch point. For each touch point,
a touch event is generated. When a touch action contains multiple points of contact, a
set of events, which is one event for each touch point, is generated for each state in the
touch action.

See the sections Touch Points, Touch Events, and Event Sets for more information
about these elements. See Touch Events Example for an example of how touch events
can be used in a JavaFX application.

Touch Points
When a user touches a touch screen, a touch point is created for each individual point
of contact. A touch point is represented by an instance of the TouchPoint class, and
contains information about the location, the state, and the target of the point of contact.
The states of a touch point are pressed, moved, stationary, and released.

Overview of Touch Actions

6-2 JavaFX /Handling JavaFX Events

Each touch point has an ID, which is assigned sequentially as touch points are added
to the touch action. The ID of a touch point remains the same from the time that
contact is made with the touch screen to the time that contact is released. When a point
of contact is released, the associated touch point is no longer part of the touch action.
For example, if the touch screen is touched with two fingers, the ID assigned to the
first touch point is 1 and the ID assigned to the second touch point is 2. If the second
finger is removed from the touch screen, only touch point 1 remains as part of the
touch action. If another finger is then added to the touch action, the ID assigned to the
new touch point is 3, and the touch action has touch points 1 and 3.

Touch Events
Touch events are generated to track the actions of touch points. A touch event is
represented by an instance of the TouchEvent class. Touch events are generated only
from touches on a touch screen. Touch events are not generated from a trackpad.

Touch events are similar to other events, which have a source, target, and event types
that further define the action that occurs. The types of touch events are TOUCH_PRESSED,
TOUCH_MOVED, TOUCH_STATIONARY, and TOUCH_RELEASED. Multiple TOUCH_MOVED and
TOUCH_STATIONARY events can be generated for a touch point, depending on the
distance moved and the time that a touch point is held in place. See Processing Events
for basic information about events and how events are processed.

Touch events also have the following items:

■ Touch point

Main touch point that is associated with this event

■ Touch count

The number of touch points currently associated with the touch action

■ List of touch points

The set of the touch points currently associated with the touch action

■ Event set ID

ID of the event set that contains this event

Event Sets
When a touch action has a single point of contact, a single touch event is generated for
each state of the action. When a touch action has multiple points of contact, a set of
touch events is generated for each state of the action. Each touch event in the set is
associated with a different one of the touch points.

Each set of events has an event set ID. The event set ID increments by one for each set
that is generated in response to the touch action. The events in the set can have
different event types, depending on the state of the touch point with which it is
associated. As points of contact are added or removed during the touch action, the
number of events in the event set changes. For example, Table 6–1 describes the event

Tip: The number of touch points that are generated might be limited
by the touch screen. For example, if the touch screen supports only
two points of contact and the user touches the screen with three
fingers, only two touch points are generated. For the purposes of this
article, it is assumed that the touch screen recognizes all points of
contact.

Overview of Touch Actions

Working with Touch Events 6-3

sets that are generated when a user touches the touch screen with two fingers, moves
both fingers, touches the touch screen with a third finger, moves all fingers, and then
removes all fingers from the screen.

Touch Point Targets and Touch Event Targets
The target of a touch event is the target of the touch point that is associated with the
event. The initial target of the touch point is the topmost node at the initial point of
contact with the touch screen. If a touch action has multiple points of contact, it is
possible for each touch point, and therefore each touch event, to have a different
target. This feature enables you to handle each touch point independently of the other
touch points. See Handling Concurrent Touch Points Independently for an example.

Typically, all of the events for one touch point are delivered to the same target.
However, you can alter the target of subsequent events using the grab() and ungrab()
methods for the touch point.

The grab() method enables the node that is currently processing the event to make
itself the target of the touch point. The grab(target) method enables another node to be
made the target of the touch point. Because events in the event set have access to all of
the touch points for the set, it is possible to use the grab() method to direct all
subsequent events for the touch action to the same node. The grab() method can also
be used to reset the target of a touch point, as shown in Changing the Target of a
Touch Point.

The ungrab() method is used to release the touch point from the current target.
Subsequent events for the touch action are then sent to the topmost node at the current
location of the touch point.

Additional Events Generated from Touches
When a user touches a touch screen, other types of events are generated in addition to
touch events:

■ Mouse events

Simulated mouse events enable an application to run on a device with a touch
screen even if touch events are not handled by the application. Use the

Table 6–1 Event Sets for a Single Touch Action

Event Set ID
Number of
Touch Events Event Type for Each Event

1 1 TOUCH_PRESSED

2 2 TOUCH_STATIONARY, TOUCH_PRESSED

3 2 TOUCH_MOVED, TOUCH_MOVED

4 3 TOUCH_STATIONARY, TOUCH_STATIONARY, TOUCH_PRESSED

5 3 TOUCH_MOVED, TOUCH_MOVED, TOUCH_MOVED

6 3 TOUCH_MOVED, TOUCH_MOVED, TOUCH_MOVED

7 3 TOUCH_MOVED, TOUCH_MOVED, TOUCH_MOVED

8 3 TOUCH_RELEASED, TOUCH_STATIONARY, TOUCH_STATIONARY

9 2 TOUCH_RELEASED, TOUCH_STATIONARY

10 1 TOUCH_RELEASED

Touch Events Example

6-4 JavaFX /Handling JavaFX Events

isSynthesized() method to determine if the mouse event is from a touch action.
See Handling Mouse Events for an example.

■ Gesture events

Gesture events are generated for the commonly recognized touch actions of
scrolling, swiping, rotating, and zooming. If these are the only types of touch
actions that your application must handle, you can handle these gesture events
instead of the touch events. See Working with Events from Touch-Enabled
Devices for information on gesture events.

Touch Events Example
The Touch Events example uses four folders to demonstrate the ability to
independently handle each touch point in a set. The example also shows how the
grab() method can be used to repeatedly jump the circle from one rectangle to
another. Figure 6–1 shows the user interface for the example.

Figure 6–1 Touch Events Example

The Touch Events example is available in the TouchEventsExample.zip file. Extract the
NetBeans project and open it in the NetBeans IDE. To generate touch events, you must
run the example on a device with a touch screen.

Touch Events Example

Working with Touch Events 6-5

Handling Concurrent Touch Points Independently
In a typical gesture, the target is the node at the center of all of the points of contact,
and only one node is affected by the response to the gesture. By handling each touch
point separately, you can affect all of the nodes that are touched.

In the Touch Events example, you can move each folder by touching the folder and
moving your finger. You can move multiple folders at once by touching each folder
with a separate finger and moving all fingers.

Each folder is an instance of the TouchImage class. The TouchImage class creates an
image view and adds event handlers for TOUCH_PRESSED, TOUCH_RELEASED, and
TOUCH_MOVED events. Example 6–1 shows the definition of this class.

Example 6–1 TouchImage Class Definition

public static class TouchImage extends ImageView {
 private long touchId = -1;
 double touchx, touchy;

 public TouchImage(int x, int y, Image img) {
 super(img);
 setTranslateX(x);
 setTranslateY(y);
 setEffect(new DropShadow(8.0, 4.5, 6.5, Color.DARKSLATEGRAY));

 setOnTouchPressed(new EventHandler<TouchEvent>() {
 @Override public void handle(TouchEvent event) {
 if (touchId == -1) {
 touchId = event.getTouchPoint().getId();
 touchx = event.getTouchPoint().getSceneX() - getTranslateX();
 touchy = event.getTouchPoint().getSceneY() - getTranslateY();
 }
 event.consume();
 }
 });

 setOnTouchReleased(new EventHandler<TouchEvent>() {
 @Override public void handle(TouchEvent event) {
 if (event.getTouchPoint().getId() == touchId) {
 touchId = -1;
 }
 event.consume();
 }
 });

 setOnTouchMoved(new EventHandler<TouchEvent>() {
 @Override public void handle(TouchEvent event) {
 if (event.getTouchPoint().getId() == touchId) {
 setTranslateX(event.getTouchPoint().getSceneX() - touchx);
 setTranslateY(event.getTouchPoint().getSceneY() - touchy);
 }
 event.consume();
 }
 });
 }
}

When a folder is touched, a touch point is created for each point of contact and touch
events are sent to the folder. The touch ID is used to ensure that a folder responds only
once when multiple points of contact are on the folder.

Touch Events Example

6-6 JavaFX /Handling JavaFX Events

When a TOUCH_PRESSED event is received, the touch ID is checked to determine if it is a
new touch for this folder. If so, the touch ID is set to the ID of the touch point and the
location of the touch point is saved.

When a TOUCH_RELEASED event is received, the touch ID is checked to ensure that it
matches the touch point that is being processed. If so, the touch ID is reset to indicate
that processing is complete.

When a TOUCH_MOVED event is received, the touch ID is checked to ensure that it
matches the touch point that is being processed. If so, the folder is moved to the new
location for the touch point. If the touch ID does not match the touch point, then more
than one point of contact is likely on the folder. To avoid responding to multiple
movements of the same folder, the event is ignored.

Changing the Target of a Touch Point
The target of a touch point is typically the same node for the duration of the touch
action. However, in some situations, you might want to change the target of a touch
point during the touch action.

In the Touch Events example, the circle moves from one rectangle to another by
touching the circle with one finger and a rectangle with a second finger. While the
second finger remains on the circle after the jump, lift the first finger and touch a
different rectangle to cause the circle to jump again. This action is possible only if you
change the target of the second touch point.

The circle is an instance of the Ball class. The Ball class creates a circle and adds event
handlers for the TOUCH_PRESSED, TOUCH_RELEASED, TOUCH_MOVED, and
TOUCH_STATIONARY events. The same handler is used for the TOUCH_MOVED and
TOUCH_STATIONARY events. Example 6–2 shows the definition of this class.

Example 6–2 Ball Class Definition

private static class Ball extends Circle {
 double touchx, touchy;

 public Ball(int x, int y) {
 super(35);

 RadialGradient gradient = new RadialGradient(0.8, -0.5, 0.5, 0.5, 1,
 true, CycleMethod.NO_CYCLE, new Stop [] {
 new Stop(0, Color.FIREBRICK),
 new Stop(1, Color.BLACK)
 });

 setFill(gradient);
 setTranslateX(x);
 setTranslateY(y);

 setOnTouchPressed(new EventHandler<TouchEvent>() {
 @Override public void handle(TouchEvent event) {
 if (event.getTouchCount() == 1) {
 touchx = event.getTouchPoint().getSceneX() - getTranslateX();
 touchy = event.getTouchPoint().getSceneY() - getTranslateY();
 setEffect(new Lighting());
 }
 event.consume();
 }
 });

Touch Events Example

Working with Touch Events 6-7

 setOnTouchReleased(new EventHandler<TouchEvent>() {
 @Override public void handle(TouchEvent event) {
 setEffect(null);
 event.consume();
 }
 });

 // Jump if the first finger touched the ball and is either
 // moving or still, and the second finger touches a rectangle
 EventHandler<TouchEvent> jumpHandler = new EventHandler<TouchEvent>() {
 @Override public void handle(TouchEvent event) {

 if (event.getTouchCount() != 2) {
 // Ignore if this is not a two-finger touch
 return;
 }

 TouchPoint main = event.getTouchPoint();
 TouchPoint other = event.getTouchPoints().get(1);

 if (other.getId() == main.getId()) {
 // Ignore if the second finger is in the ball and
 // the first finger is anywhere else
 return;
 }

 if (other.getState() != TouchPoint.State.PRESSED ||
 other.belongsTo(Ball.this) ||
 !(other.getTarget() instanceof Rectangle)){
 // Jump only if the second finger was just
 // pressed in a rectangle
 return;
 }

 // Jump now
 setTranslateX(other.getSceneX() - touchx);
 setTranslateY(other.getSceneY() - touchy);

 // Grab the destination touch point, which is now inside
 // the ball, so that jumping can continue without
 // releasing the finger
 other.grab();

 // The original touch point is no longer of interest so
 // call ungrab() to release the target
 main.ungrab();

 event.consume();
 }
 };

 setOnTouchStationary(jumpHandler);
 setOnTouchMoved(jumpHandler);
 }
}

When a TOUCH_PRESSED event is received, the number of touch points is checked to
ensure that only the instance of the Ball class is being touched. If so, the location of the
touch point is saved, and a lighting effect is added to show that the circle is selected.

Additional Resources

6-8 JavaFX /Handling JavaFX Events

When a TOUCH_RELEASED event is received, the lighting effect is removed to show that
the circle is no longer selected.

When a TOUCH_MOVED or TOUCH_STATIONARY event is received, the following conditions
that are required for a jump are checked:

■ The touch count must be two.

The touch point that is associated with this event is considered the start point of
the jump. The event has access to all of the touch points for the touch action. The
second touch point in the set of touch points is considered the end point of the
jump.

■ The state of the second touch point is PRESSED.

The circle is moved only when the second point of contact is made. Any other state
for the second touch point is ignored.

■ The target of the second touch point is a rectangle.

The circle can jump only from rectangle to rectangle, or within a rectangle. If the
target of the second touch point is anything else, the circle is not moved.

If the conditions for a jump are met, the circle is jumped to the location of the second
touch point. To jump again, the first point of contact is released and a third location is
touched, with the expectation that the circle will jump to the third location. However,
when the first point of contact is released, the touch point whose target was the circle
goes away and now the circle no longer gets touch events. A second jump is not
possible without lifting both fingers and starting a new jump.

To make a second jump possible while keeping the second finger on the circle and
touching a new location, the grab() method is used to make the circle the target of the
second touch point. After the grab, events for the second touch point are sent to the
circle instead of the rectangle that was the original target. The circle can then watch for
a new touch point and jump again.

Additional Resources
See the JavaFX API documentation for more information on touch events and touch
points.

	Contents
	Part I About This Tutorial
	1 Processing Events
	Events
	Event Types
	Event Targets

	Event Delivery Process
	Target Selection
	Route Construction
	Event Capturing Phase
	Event Bubbling Phase

	Event Handling
	Event Filters
	Event Handlers
	Consuming of an Event

	Additional Resources

	2 Working with Convenience Methods
	Using Convenience Methods
	Examples for Mouse Events
	Examples for Keyboard Events

	Additional Resources

	3 Working with Event Filters
	Registering and Removing an Event Filter
	Using Event Filters
	Draggable Panels Example
	Filters for the Draggable Panels Example

	Additional Resources

	4 Working with Event Handlers
	Registering and Removing an Event Handler
	Using Event Handlers
	Keyboard Example
	Handlers for the Keyboard Example

	Additional Resources

	5 Working with Events from Touch-Enabled Devices
	Gesture and Touch Events
	Targets of Gestures
	Other Events Generated

	Gesture Events Example
	Creating the Shapes
	Handling the Events
	Handling Scroll Events
	Handling Zoom Events
	Handling Rotate Events
	Handling Swipe Events
	Handling Touch Events
	Handling Mouse Events

	Managing the Log

	Additional Resources

	6 Working with Touch Events
	Overview of Touch Actions
	Touch Points
	Touch Events
	Event Sets
	Touch Point Targets and Touch Event Targets
	Additional Events Generated from Touches

	Touch Events Example
	Handling Concurrent Touch Points Independently
	Changing the Target of a Touch Point

	Additional Resources

