

JavaFX
JavaFX Interoperability with SWT

Release 2.2

E24175-03

August 2012

Learn how to add a JavaFX scene graph to a Standard Widget
Toolkit (SWT) application, and how to make SWT and
JavaFX controls interoperate.

JavaFX/JavaFX Interoperability with SWT, Release 2.2

E24175-03

Copyright © 2008, 2012 Oracle and/or its affiliates. All rights reserved.

Primary Author: Steve Northover

Contributing Author: Nancy Hildebrandt

Contributor:

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

1 JavaFX Interoperability with SWT

Introduction... 1-1
Adding JavaFX Content to an SWT Component .. 1-2
Creating SWT-JavaFX Applications in an IDE ... 1-4
Packaging SWT-JavaFX Applications... 1-4

Packaging the Application when JavaFX is Bundled with the JDK ... 1-4
Packaging the Application with a Standalone JavaFX Installation .. 1-4
Special VM Option for Mac .. 1-7

iv

1

JavaFX Interoperability with SWT 1-1

1JavaFX Interoperability with SWT

This article shows how to add a JavaFX scene graph to a Standard Widget Toolkit
(SWT) application, and how to make SWT and JavaFX controls interoperate.

■ "Introduction"

■ "Adding JavaFX Content to an SWT Component"

■ "Creating SWT-JavaFX Applications in an IDE"

■ "Packaging SWT-JavaFX Applications"

Introduction
If you develop SWT applications, you know that SWT uses the native operating
system controls and cannot easily be configured to use advanced GUI features, such as
animation. You can quickly add sparkle to an SWT application by integrating JavaFX
with SWT. All you need is the FXCanvas class, which is located in the
javafx.embed.swt package. FXCanvas is a regular SWT canvas that can be used
anywhere that an SWT canvas can appear. It’s that simple.

In this article, you will see how to create an interactive SWT button and JavaFX button,
shown in Figure 1–1.

Figure 1–1 SWT Button on Left, JavaFX Button on Right

When the user clicks either button, the text is changed in the other button, as shown in
Figure 1–2 and Figure 1–3. This example shows how the SWT code and JavaFX code
can interoperate.

Figure 1–2 Clicking the SWT Button Changes the JavaFX Button Label

Adding JavaFX Content to an SWT Component

1-2 Oracle JavaFX/JavaFX Interoperability with SWT

Figure 1–3 Clicking the JavaFX Button Changes the SWT Button Label

Adding JavaFX Content to an SWT Component
In JavaFX, the Java code that creates and manipulates JavaFX classes runs in the
JavaFX User thread. In SWT, code that creates and manipulates SWT widgets runs in
the event loop thread. When JavaFX is embedded in SWT, these two threads are the
same. This means that there are no restrictions when calling methods defined in one
toolkit from the other.

Example 1–1 shows the code to create the SWT button and JavaFX button shown in
Figure 1–1. As shown in the code, you set JavaFX content into an FXCanvas with the
setScene() method in the FXCanvas class. To force SWT to lay out the canvas based on
the new JavaFX content, resize the JavaFX content first. To do this, get the JavaFX
Window that contains the JavaFX content and call sizeToScene(). When JavaFX is
embedded in SWT, a new preferred size is set for FXCanvas, enabling SWT to resize the
embedded JFX content in the same manner as other SWT controls.

JavaFX constructs content in terms of a hierarchical scene graph, placed inside a scene.
The code in Example 1–1 places the JavaFX button into a scene with the scene graph
shown in Figure 1–4 and described in comments in the code example.

Figure 1–4 JavaFX Scene Graph in SWT Application

Example 1–1 Java Code for Plain SWT and JavaFX Buttons

import javafx.embed.swt.FXCanvas;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.paint.Color;

import org.eclipse.swt.SWT;
import org.eclipse.swt.graphics.Point;
import org.eclipse.swt.layout.RowLayout;
import org.eclipse.swt.widgets.Display;
import org.eclipse.swt.widgets.Event;

Adding JavaFX Content to an SWT Component

JavaFX Interoperability with SWT 1-3

import org.eclipse.swt.widgets.Listener;
import org.eclipse.swt.widgets.Shell;

public class TwoButtons {

 public static void main(String[] args) {
 final Display display = new Display();
 final Shell shell = new Shell(display);
 final RowLayout layout = new RowLayout();
 shell.setLayout(layout);

 /* Create the SWT button */
 final org.eclipse.swt.widgets.Button swtButton =
 new org.eclipse.swt.widgets.Button(shell, SWT.PUSH);
 swtButton.setText("SWT Button");

 /* Create an FXCanvas */
 final FXCanvas fxCanvas = new FXCanvas(shell, SWT.NONE) {
 public Point computeSize(int wHint, int hHint, boolean changed) {
 getScene().getWindow().sizeToScene();
 int width = (int) getScene().getWidth();
 int height = (int) getScene().getHeight();
 return new Point(width, height);
 }
 };
 /* Create a JavaFX Group node */
 Group group = new Group();
 /* Create a JavaFX button */
 final Button jfxButton = new Button("JFX Button");
 /* Assign the CSS ID ipad-dark-grey */
 jfxButton.setId("ipad-dark-grey");
 /* Add the button as a child of the Group node */
 group.getChildren().add(jfxButton);
 /* Create the Scene instance and set the group node as root */
 Scene scene = new Scene(group, Color.rgb(
 shell.getBackground().getRed(),
 shell.getBackground().getGreen(),
 shell.getBackground().getBlue()));
 /* Attach an external stylesheet */
 scene.getStylesheets().add("twobuttons/Buttons.css");
 fxCanvas.setScene(scene);

 /* Add Listeners */
 swtButton.addListener(SWT.Selection, new Listener() {

 public void handleEvent(Event event) {
 jfxButton.setText("JFX Button: Hello from SWT");
 shell.layout();
 }
 });
 jfxButton.setOnAction(new EventHandler<ActionEvent>() {

 public void handle(ActionEvent event) {
 swtButton.setText("SWT Button: Hello from JFX");
 shell.layout();
 }
 });

 shell.open();
 while (!shell.isDisposed()) {

Creating SWT-JavaFX Applications in an IDE

1-4 Oracle JavaFX/JavaFX Interoperability with SWT

 if (!display.readAndDispatch()) {
 display.sleep();
 }
 }
 display.dispose();
 }
}

The button style is based on a blog by Jasper Potts at the following location:
http://fxexperience.com/2011/12/styling-fx-buttons-with-css/

Creating SWT-JavaFX Applications in an IDE
Creating an SWT-JavaFX application in an IDE is simply a matter of adding the
following libraries to your project:

■ swt.jar, from an SWT zip download, available at
http://eclipse.org/swt

■ jfxrt.jar, from one of the following locations:

– If JavaFX is bundled with the JDK (JDK 7u6 and later), the JDK_HOME/jre/lib
directory. For example, for a default JDK installation on Windows, the full
path is:
C:\Program Files\Java\jdk1.7.0_06\jre\lib

– If you are using a standalone installation of the JavaFX SDK, the JAVAFX_
SDK_HOME/lib directory. For example, for a default Windows installation,
the full path is:
C:\Program Files\Oracle\JavaFX 2.0 SDK

The jfxrt.jar library is required to validate your JavaFX code in the IDE and for
compiling.

Packaging SWT-JavaFX Applications
How you package your SWT-JavaFX application depends on whether JavaFX is
bundled with the JDK (7u6 and later) or installed in a different location (for releases
prior to JDK 7u6).

Packaging the Application when JavaFX is Bundled with the JDK
If you use NetBeans IDE 7.2 or later, no special handling is required to package your
application, provided you have added the libraries as described in Creating
SWT-JavaFX Applications in an IDE. You can simply do a Clean and Build, which
produces a double-clickable JAR file in the /dist directory of the project.

Packaging the Application with a Standalone JavaFX Installation
When an SWT-JavaFX application is built, the JAR file must be packaged as a JavaFX
application so the application on startup will look for the standalone JavaFX Runtime
on the user's system. The SWT library (swt.jar) must be included as a resource (32-bit
or 64-bit to match the target system).

Note: Ensure that all JAR files are either 32 bit or 64 bit, as required
for your environment.

Packaging SWT-JavaFX Applications

JavaFX Interoperability with SWT 1-5

The JavaFX SDK includes JavaFX Ant tasks to build JavaFX applications. The
ant-javafx.jar file is required to load the JavaFX Ant task definitions. It is located in the
javafx-sdk-home\lib directory of the JavaFX SDK. You must also declare the fx:
namespace to load the JavaFX Ant task definitions. For more information about
JavaFX Ant tasks, see
http://docs.oracle.com/javafx/2/deployment/javafx_ant_task_reference.htm

If you used NetBeans IDE to create a Java application for your SWT-JavaFX code, you
can build the application with two extra steps:

■ Add ant-javafx.jar to as a Compile library to the NetBeans project properties. The
default location is JAVAFX_SDK_HOME/lib.

The ant-javafx.jar file contains a set of Ant tasks for packaging JavaFX
applications.

■ Override some of the default Ant build tasks in order to build a JavaFX application
and include the SWT library as a resource. Do this by modifying the build.xml file
in the NetBeans project directory, as described in the following example.

Example 1–2 shows a custom build.xml script for NetBeans IDE, containing those
overrides, for installation of the JavaFX 2.1 SDK. This build.xml script is included in
the TwoButtons sample application. After you do a Clean and Build in NetBeans IDE,
you can run the application outside NetBeans IDE by double-clicking the JAR file.

Example 1–2 Custom build.xml Script to Build the Application JAR File

<?xml version="1.0" encoding="UTF-8"?>

<!-- Declare the fx: namespace, necessary for JavaFX Ant task definitions -->
<project name="TwoButtons" default="default" basedir="."
 xmlns:fx="javafx:com.sun.javafx.tools.ant">
 <description>Builds, tests, and runs the project TwoButtons.</description>

 <import file="nbproject/build-impl.xml"/>

 <!-- Try to find the JavaFX SDK -->
 <target name="find-javafx" unless="javafx.sdk">
 <property environment="env" />
 <condition property="javafx.sdk"
 value="${env.ProgramFiles(x86)}/Oracle/JavaFX 2.1 SDK/"
 else="${env.ProgramFiles}/Oracle/JavaFX 2.1 SDK/">
 <and>
 <contains string="${os.arch}" substring="x86"/>
 <available file="${env.ProgramFiles(x86)}/Oracle/JavaFX 2.1 SDK/
rt/lib/jfxrt.jar"/>
 </and>
 </condition>
 </target>

 <!-- Check if the jfxrt.jar library exists in the specified JavaFX SDK
 directory-->
 <target name="check-javafx">
 <available file="${javafx.sdk}/rt/lib/jfxrt.jar"
 property="found-javafx"/>
 </target>

 <!-- If the JavaFX SDK cannot be found -->
 <target name="javafx-missing" unless="found-javafx">
 <fail>.
 Ant could not find the JavaFX 2.1 SDK. Please set [javafx.sdk]

Packaging SWT-JavaFX Applications

1-6 Oracle JavaFX/JavaFX Interoperability with SWT

 on the command line. For example:
 ant -Djavafx.sdk="C:\Program Files\Oracle\JavaFX 2.1 SDK"
 or ant -Djavafx.sdk="C:\Program Files (x86)\Oracle\JavaFX 2.1 SDK"
 </fail>
 </target>

 <!-- When not running in NetBeans IDE, try to locate the JavaFX SDK -->
 <target name="-pre-init" depends="find-javafx, check-javafx"
 unless="netbeans-home">
 <echo message="Using JavaFX SDK: ${javafx.sdk}"/>
 <property name="javafx.tools.ant.jar"
 value="${javafx.sdk}/lib/ant-javafx.jar"/>
 <property name="file.reference.jfxrt.jar"
 value="${javafx.sdk}/rt/lib/jfxrt.jar"/>
 <property name="file.reference.ant-javafx.jar"
 value="${javafx.sdk}/lib/ant-javafx.jar"/>
 </target>

 <target name="-pre-compile" depends="javafx-missing">
 </target>

 <target name="-pre-jar" depends="javafx-missing">
 </target>

 <target name="-post-jar">
 <taskdef resource="com/sun/javafx/tools/ant/antlib.xml"
 uri="javafx:com.sun.javafx.tools.ant"
 classpath="${javafx.tools.ant.jar}"/>

 <!-- Remove the JavaFX libraries from /dist/lib because the app
 will use the installed JavaFX Runtime -->
 <delete file="${dist.dir}/lib/jfxrt.jar"/>
 <delete file="${dist.dir}/lib/ant-javafx.jar"/>

 <!-- Package the JAR file so that it has the code to
 find the installed JavaFX Runtime -->
 <fx:jar destfile="${dist.jar}">
 <fx:application mainClass="${main.class}"/>
 <fileset dir="${build.classes.dir}"/>

 <!-- Add the SWT library -->
 <fx:resources>
 <fx:fileset dir="dist" includes="lib/swt.jar"/>
 </fx:resources>

 <!-- Add information for the manifest -->
 <manifest>
 <attribute name="Implementation-Vendor"
 value="${application.vendor}"/>
 <attribute name="Implementation-Title"
 value="${application.title}"/>
 <attribute name="Implementation-Version"
 value="1.0"/>
 </manifest>
 </fx:jar>
 </target>
</project>

Packaging SWT-JavaFX Applications

JavaFX Interoperability with SWT 1-7

Special VM Option for Mac
On Mac, in order for SWT applications to run, the -XstartOnFirstThread VM option
must be specified. SWT applications run their event loop in main(), unlike JavaFX and
AWT/Swing, and the Mac needs to be given this information.

In the NetBeans IDE for Mac, you must add -XstartOnFirstThread in the VM Options
field of the Run category in Project Properties to run SWT applications.

In the Eclipse IDE for Mac, when a Java program references SWT, the IDE
automatically adds the VM option -XstartOnFirstThread. In most cases, this
automatic addition is helpful. However, there is one case when adding this VM option
causes a problem, namely with an Eclipse project for an SWT application that also
includes one or more "pure" JavaFX classes that do not interoperate with the SWT
classes. A "pure" JavaFX application that is launched from such an Eclipse project will
hang because it does not expect -XstartOnFirstThread.

The following issue has been reported related to this issue due to automatic insertion
of the XstartOnFirstThread VM option in Eclipse on Mac:
https://bugs.eclipse.org/bugs/show_bug.cgi?id=211625

As a workaround, for SWT applications that contain pure JavaFX classes, you can
create an Eclipse "Standard VM" instead of using the default. The Standard VM that
you create points to the same Java, but the Eclipse IDE does not add the
-XstartOnFirstThread VM option.

	Contents
	1 JavaFX Interoperability with SWT
	Introduction
	Adding JavaFX Content to an SWT Component
	Creating SWT-JavaFX Applications in an IDE
	Packaging SWT-JavaFX Applications
	Packaging the Application when JavaFX is Bundled with the JDK
	Packaging the Application with a Standalone JavaFX Installation
	Special VM Option for Mac

