

JavaFX
Oracle JavaFX Applying Transformations in JavaFX
Release 2.1
E20471-03

October 2012

JavaFX Applying Transformations in JavaFX, Release 2.1

E20471-03

Copyright © 2011, 2012 Oracle and/or its affiliates. All rights reserved.

Primary Author: Dmitry Kostovaorv

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of
the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered
to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set
forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners. Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of
any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or
services.

iii

Contents

1 Translation

2 Rotation

3 Scaling

4 Shearing

5 Multiple Transformations

iv

Part I
Part I About This Document

A transformation changes the place of a graphical object in a coordinate system according to
certain parameters. The following types of transformations are supported in JavaFX:

n Translation

n Rotation

n Scaling

n Shearing

These transformations can be applied to either a standalone node or to groups of nodes. You can
apply one transformation at a time or you can combine transformations and apply several
transformations to one node.

All transformations are located in the javafx.scene.transform package and are subclasses
of the Transform class.

The Transform class implements the concepts of affine transformations. The Affine class
extends the Transform class and acts as a superclass to all transformations. Affine
transformations are based on euclidean algebra, and perform a linear mapping (through the use
of matrixes) from initial coordinates to other coordinates while preserving the straightness and
parallelism of lines. Affine transformations can be constructed using observableArrayLists
rotations, translations, scales, and shears.

Transformations in JavaFX can be performed along three coordinates, thus enabling users to
create three-dimensional (3-D) objects and effects. To manage the display of objects with depth
in 3-D graphics, JavaFX implements z-buffering. Z-buffering ensures that the perspective is the
same in the virtual world as it is in the real one: a solid object in the foreground blocks the view
of one behind it. Z-buffering can be enabled by using the setDepthTest class. You can try to
disable z-buffering (setDepthTest(DepthTest.DISABLE)) in the sample application to see
the effect of the z-buffer.

To simplify transformation usage, JavaFX implements transformation constructors with the
x-axis and y-axis along with the x, y, and z axes. If you want to create a two-dimensional (2-D)
effect, you can specify only the x and y coordinates. If you want to create a 3-D effect, specify
all three coordinates.

To be able to see 3-D objects and transformation effects in JavaFX, users must enable the
perspective camera.

Note: Usually, do not use the Affine class directly, but instead, use the
specific Translate, Scale, Rotate, or Shear transformations.

Though knowing the underlying concepts can help you use JavaFX more effectively, you can
start using transformations by studying the example provided with this document and trying
different transformation parameters. For more information about particular classes, methods, or
additional features, see the API documentation.

In this document, a Xylophone application is used as a sample to illustrate all the available
transformations.

1

Translation 1-1

1Translation

The translation transformation shifts a node from one place to another along one of the axes
relative to its initial position. The initial position of the xylophone bar is defined by x, y, and z
coordinates. In Example 1–1, the initial position values are specified by the xStart, yPos, and
zPos variables. Some other variables are added to simplify the calculations when applying
different transformations. Each bar of the xylophone is based on one of the base bars. The
example then translates the base bars with different shifts along the three axes to correctly
locate them in space.

Example 1–1 shows a code snippet from the sample application with the translation
transformation.

Example 1–1 Translation
 Group rectangleGroup = new Group();
 rectangleGroup.setDepthTest(DepthTest.ENABLE);

 double xStart = 260.0;
 double xOffset = 30.0;
 double yPos = 300.0;
 double zPos = 0.0;
 double barWidth = 22.0;
 double barDepth = 7.0;

 // Base1
 Cube base1Cube = new Cube(1.0, new Color(0.2, 0.12, 0.1, 1.0), 1.0);
 base1Cube.setTranslateX(xStart + 135);
 base1Cube.setTranslateZ(yPos+20.0);
 base1Cube.setTranslateY(11.0);

1-2 Oracle JavaFX Applying Transformations in JavaFX

2

Rotation 2-1

2Rotation

The rotation transformation moves the node around a specified pivot point of the scene. You
can use the rotate function of the Transform class to perform the rotation.

To rotate the camera around the xylophone in the sample application, the rotation
transformation is used, although technically, it is the xylophone itself that is moving when the
mouse rotates the camera.

Example 2–1 shows the code for the rotation transformation.

Example 2–1 Rotation
 class Cam extends Group {
 Translate t = new Translate();
 Translate p = new Translate();
 Translate ip = new Translate();
 Rotate rx = new Rotate();
 { rx.setAxis(Rotate.X_AXIS); }
 Rotate ry = new Rotate();
 { ry.setAxis(Rotate.Y_AXIS); }
 Rotate rz = new Rotate();
 { rz.setAxis(Rotate.Z_AXIS); }
 Scale s = new Scale();
 public Cam() { super(); getTransforms().addAll(t, p, rx, rz, ry, s, ip); }
 }
...
 scene.setOnMouseDragged(new EventHandler<MouseEvent>() {
 public void handle(MouseEvent me) {
 mouseOldX = mousePosX;
 mouseOldY = mousePosY;
 mousePosX = me.getX();
 mousePosY = me.getY();
 mouseDeltaX = mousePosX - mouseOldX;
 mouseDeltaY = mousePosY - mouseOldY;
 if (me.isAltDown() && me.isShiftDown() &&
me.isPrimaryButtonDown()) {
 cam.rz.setAngle(cam.rz.getAngle() - mouseDeltaX);
 }
 else if (me.isAltDown() && me.isPrimaryButtonDown()) {
 cam.ry.setAngle(cam.ry.getAngle() - mouseDeltaX);
 cam.rx.setAngle(cam.rx.getAngle() + mouseDeltaY);
 }
 else if (me.isAltDown() && me.isSecondaryButtonDown()) {
 double scale = cam.s.getX();
 double newScale = scale + mouseDeltaX*0.01;
 cam.s.setX(newScale); cam.s.setY(newScale);
cam.s.setZ(newScale);

2-2 Oracle JavaFX Applying Transformations in JavaFX

 }
 else if (me.isAltDown() && me.isMiddleButtonDown()) {
 cam.t.setX(cam.t.getX() + mouseDeltaX);
 cam.t.setY(cam.t.getY() + mouseDeltaY);
 }
 }
 });

Note that the pivot point and the angle define the destination point the image is moved to.
Carefully calculate values when specifying the pivot point. Otherwise, the image might appear
where it is not intended to be. For more information, see the API documentation.

3

Scaling 3-1

3Scaling

The scaling transformation causes a node to either appear larger or smaller, depending on the
scaling factor. Scaling changes the node so that the dimensions along its axes are multiplied by
the scale factor. Similar to the rotation transformations, scaling transformations are applied at a
pivot point. This pivot point is considered the point around which scaling occurs.

To scale, use the Scale class and the scale function of the Transform class.

In the Xylophone application, you can scale the xylophone using the mouse while pressing Alt
and the right mouse button. The scale transformation is used to see the scaling.

Example 3–1 shows the code for the scale transformation.

Example 3–1 Scaling
 else if (me.isAltDown() && me.isSecondaryButtonDown()) {
 double scale = cam.s.getX();
 double newScale = scale + mouseDeltaX*0.01;
 cam.s.setX(newScale); cam.s.setY(newScale); cam.s.setZ(newScale);
 }
...

3-2 Oracle JavaFX Applying Transformations in JavaFX

4

Shearing 4-1

4Shearing

A shearing transformation rotates one axis so that the x-axis and y-axis are no longer
perpendicular. The coordinates of the node are shifted by the specified multipliers.

To shear, use the Shear class or the shear function of the Transform class.

In the Xylophone application, you can shear the xylophone by dragging the mouse while
holding Shift and pressing the left mouse button.

Figure 4–1 Shearing Transformation

Example 4–1 shows the code snippet for the shear transformation.

Example 4–1 Shearing
else if (me.isShiftDown() && me.isPrimaryButtonDown()) {
 double yShear = shear.getY();
 shear.setY(yShear + mouseDeltaY/1000.0);
 double xShear = shear.getX();
 shear.setX(xShear + mouseDeltaX/1000.0);
}

4-2 Oracle JavaFX Applying Transformations in JavaFX

5

Multiple Transformations 5-1

5Multiple Transformations

You can construct multiple transformations by specifying an ordered chain of transformations.
For example, you can scale an object and then apply a shearing transformation to it, or you can
translate an object and then scale it.

Example 5–1 shows multiple transformations applied to an object to create a xylophone bar.

Example 5–1 Multiple Transformation
 Cube base1Cube = new Cube(1.0, new Color(0.2, 0.12, 0.1, 1.0), 1.0);
 base1Cube.setTranslateX(xStart + 135);
 base1Cube.setTranslateZ(yPos+20.0);
 base1Cube.setTranslateY(11.0);
 base1Cube.setScaleX(barWidth*11.5);
 base1Cube.setScaleZ(10.0);
 base1Cube.setScaleY(barDepth*2.0);

5-2 Oracle JavaFX Applying Transformations in JavaFX

	Contents
	Part I About This Document
	1 Translation
	2 Rotation
	3 Scaling
	4 Shearing
	5 Multiple Transformations

