JavaFX

Oracle JavaFX Creating Visual Effects in JavaFX
Release 2.1

E20486-03

October 2012

ORACLE

JavaFX Creating Visual Effects in JavaFX, Release 2.1

E20486-03

Copyright © 2011, 2012 Oracle and/or its affiliates. All rights reserved.
Primary Author: Dmitry Kostovarov

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered
to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set
forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

This software and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Blending Objects
Using the Bloom Effect

Applying Blur Effects

BOXBIUT ...t
MoOtion BIUToooviiiiieiiieeeee e
Gaussian BIUr.........coooviiiiiceeeeeee e

Creating a Drop Shadow
Creating an Inner Shadow
Adding a Reflection
Adding a Lighting Effect
Adding a Perspective

Creating a Chain of Effects

Contents

Part |

About This Document

Use visual effects in JavaFX to enhance the look of your Java application.

All effects are located in the javafx.scene.effect package and are subclasses of the Ef fect
class. For more information about particular classes, methods, or additional features, see the
API documentation.

This document describes how to use some of the visual effects available in JavaFX and
contains the following topics:

» Blending Objects

» Using the Bloom Effect

» Applying Blur Effects

» Creating a Drop Shadow

» Creating an Inner Shadow
» Adding a Reflection

» Adding a Lighting Effect

» Adding a Perspective

» Creating a Chain of Effects

1

Blending Objects

Blend is an effect that combines two objects using one of the predefined blend modes. A blend
mode defines the manner in which the objects are mixed together. For example, in Figure 1-1,
you can see examples of some blend modes applied to an intersecting circle and a square.

Figure 1-1 Different Blend Modes

— MULTIPLY
- SRC_ATOP

- SRC_OVER

Note that the produced effect also depends on the order of the elements in the code. For
example, Figure 1-2 shows the difference that appears when the blend mode is applied to
objects specified in the code in a different order.

Figure 1-2 Same Blend Mode Applied to Objects in Different Order

— Square is first

‘ — Circle is first

Example 1-1 shows a code snippet for the blend effect in the sample application.

Example 1-1 Blend Effect

static Node blendMode() {
Rectangle r = new Rectangle();
r.setX(590);
r.setY(50);

Blending Objects 1-1

r.setWidth (50) ;
r.setHeight (50);
r.setFill (Color.BLUE) ;

Circle ¢ = new Circle();
c.setFill(Color.rgb (255, 0, 0, 0.5f));
c.setCenterX(590) ;

c.setCenterY (50) ;

c.setRadius (25);

Group g = new Group();
g.setBlendMode (BlendMode . MULTIPLY) ;
g.getChildren() .add(r);
g.getChildren() .add(c);

return g;

1-2 Oracle JavaFX Creating Visual Effects in JavaFX

2

Using the Bloom Effect

The bloom effect makes brighter portions an image appear to glow, based on a configurable
threshold. The threshold varies from 0.0 to 1.0. By default, the threshold is set to 0.3.

Figure 2-1 shows the bloom effect at the default threshold and at a threshold of 1.0.

Figure 2-1 Bloom Effect

Bloom! — Default threshold

2leYe eIl — Threshoid 1.0

Example 2—-1 shows a code snippet from the sample application that is using the bloom effect.

Example 2-1 Bloom Example

static Node bloom() {
Group g = new Group();

Rectangle r = new Rectangle();
r.setX(10);

r.setY(10);

r.setWidth(160);

r.setHeight (80);

r.setFill (Color.DARKBLUE) ;

Text t = new Text();

t.setText ("Bloom!") ;

t.setFill (Color.YELLOW) ;

t.setFont (Font.font ("null", FontWeight.BOLD, 36));
t)

t)

i

.setX (25
.setY (65

1

g.setCache (true);
//g.setEffect (new Bloom());
Bloom bloom = new Bloom() ;
bloom.setThreshold(1.0);
g.setEffect (bloom) ;
g.getChildren() .add(r);

Using the Bloom Effect 2-1

g.getChildren() .add(t);
g.setTranslateX(350);
return g;

2-2 Oracle JavaFX Creating Visual Effects in JavaFX

3

Applying Blur Effects

Blurring are common effects that can be used to provide more focus to selected objects. With
JavaFX you can apply a boxblur, a motion blur, or a gaussian blur.

3.1 BoxBlur

The BoxBlur is a blur effect that uses a simple box filter kernel, with separately configurable
sizes in both dimensions that control the amount of blur applied to an object, and an
Iterations parameter that controls the quality of the resulting blur.

Figure 3-1 shows two samples of blurred text.

Figure 3-1 BoxBlur Effect

— Width(5), Height(5)

— Width(10), Height(10)

Example 3-1 is a code snippet that uses the BoxBlur effect.

Example 3-1 BoxBlur Example

static Node boxBlur () {
Text t = new Text();
t.setText ("Blurry Text!");
t.setFill(Color.RED);
t.setFont (Font.font ("null", FontWeight.BOLD, 36));
t)
t)

’

.setX (10
.setY (40

1

BoxBlur bb = new BoxBlur();
bb.setWidth(5) ;
bb.setHeight (5);
bb.setIterations(3);

t.setEffect (bb);
t.setTranslateX (3
(1

00);
t.setTranslateY (100);

)

return t;

Applying Blur Effects 3-1

Motion Blur

3.2 Motion Blur

A motion blur effect uses a Gaussian blur, with a configurable radius and angle to create the
effect of a moving object.

Figure 3-2 shows the effect of the motion blur on a text.

Figure 3-2 Motion Blur Effect

) % Y & d .
Motion 8

L L

This illustration shows "Motion Blur" text blurred to create a moving object effect.

B L L R e S S S S R o % 2 S 2 2 2 2 2

*hhkhkhkhkhkhkkhkhkhhkkhkkikikiik

Example 3-2 shows a code snippet that creates a motion blur effect with radius set to 15 and
angle set to 45 in the sample application.

Example 3-2 Motion Blur Example

static Node motionBlur() {
Text t = new Text();
t.setX(20.0f);
.setY(80.0f);
.setText ("Motion Blur");
.setFill (Color.RED) ;
.setFont (Font.font ("null", FontWeight.BOLD, 60));

(g e e e

MotionBlur mb = new MotionBlur();
mb.setRadius (15.0f) ;

mb.setAngle (45.0f);
t.setEffect (mb) ;

t.setTranslateX(300);
t.setTranslateY (150);

return t;

3.3 Gaussian Blur

The Gaussian blur is an effect that uses a Gaussian algorithm with a configurable radius to blur
objects.

Figure 3-3 shows the effect of the Gaussian blur on a text.

Figure 3-3 Gaussian Blur

Example 3-3 shows a code snippet that blurs the text using Gaussian blur effect.

3-2 Oracle JavaFX Creating Visual Effects in JavaFX

Gaussian Blur

Example 3-3 Gaussian Blur

static Node gaussianBlur() {
Text t2 = new Text();
t2.setX(10.0f);
t2.setY(140.0£f);
t2.setCache (true);
t2.setText ("Gaussian Blur");
t2.setFill (Color.RED) ;
t2.setFont (Font.font ("null", FontWeight.BOLD, 36));
t2.setEffect (new GaussianBlur());
return t2;

Applying Blur Effects 3-3

Gaussian Blur

3-4 Oracle JavaFX Creating Visual Effects in JavaFX

A

Creating a Drop Shadow

A drop shadow is an effect that renders a shadow of the content to which it is applied. You can
specify the color, the radius, the offset, and some other parameters of the shadow.

Figure 4-1 shows the shadow effect on different objects.

Figure 4-1 Drop Shadow Example

JavaFX drop shadow effect

The illustration shows two examples of the drop shadow effect. The first example is a text
"JavaFX drop shadow effect” with a gray shadow, which is offset by 3 pixels in both horizontal
and vertical directions. The second example is a red circle with gray shadow, which is offset by
4 pixels in both horizontal and vertical directions.

B s e e e 2 2 2 e o

*k*k *% *k*k *

Example 4-1 shows how to create a drop shadow on text and a circle.

Example 4-1 Text and Circle With Shadows

import javafx.collections.ObservableList;
import javafx.application.Application;
import javafx.scene.*;

import javafx.stage.*;

import javafx.scene.shape.*;

import javafx.scene.effect.*;

import javafx.scene.paint.*;

import javafx.scene.text.*;

public class HelloEffects extends Application {

Stage stage;
Scene scene;

@Override public void start(Stage stage) {
stage.show() ;

scene = new Scene(new Group(), 840, 680);
ObservableList<Node> content = ((Group)scene.getRoot()).getChildren();

Creating a Drop Shadow 4-1

content.add (dropShadow ()) ;
stage.setScene(scene) ;
}
static Node dropShadow() {
Group g = new Group();

DropShadow ds = new DropShadow() ;
ds.setOffsetY(3.0);
ds.setOffsetX(3.0);

ds.setColor (Color.GRAY) ;

Text t = new Text();

.setEffect(ds);

.setCache (true) ;

.setX(20.0f);

.setY (70.0f);

.setFill (Color.RED) ;

.setText ("JavaFX drop shadow effect");

.setFont (Font.font ("null", FontWeight.BOLD, 32));

ot ot ot ot ot

DropShadow dsl = new DropShadow () ;
dsl.setOffsetY(4.0f);
dsl.setOffsetX(4.0f);

dsl.setColor (Color.CORAL) ;

Circle ¢ = new Circle();
c.setEffect (dsl);
.setCenterX(50.0f) ;
.setCenterY(325.0f);
.setRadius(30.0f);
.setFill(Color.RED);
.setCache (true) ;

Qo o o

g.getChildren() .add(t);
g.getChildren() .add(c);
return g;

}
public static void main(String[] args) {
Application.launch(args) ;

Tip:

» Making the drop shadow too wide gives the element the look of
heaviness. The color of the shadow should be realistic, usually a few
shades lighter than the background color.

« If you have multiple objects with drop shadows, orient the drop shadow
the same for all of the objects. A drop shadow gives the appearance of a
light coming from one direction and casting a shadow on objects.

4-2 Oracle JavaFX Creating Visual Effects in JavaFX

D

Creating an Inner Shadow

An inner shadow is an effect that renders a shadow inside the edges of the given content with
the specified color, radius, and offset.

Figure 5-1 shows plain text and the same text with the inner shadow effect applied.

Figure 5-1 Inner Shadow

Inner Shadow
Inner Shadow

Example 5-1 shows how to create an inner shadow on text.

Example 5-1 Inner Shadow

static Node innerShadow () {
InnerShadow is = new InnerShadow();
is.setOffsetX(2.0f);
is.setOffsetY(2.0f);

Text t = new Text();

t.setEffect (is);

t.setX(20);

t.setY (100);

t.setText ("Inner Shadow");

t.setFill (Color.RED);

t.setFont (Font.font ("null", FontWeight.BOLD, 80));
t.setTranslateX(300);

g

.setTranslateY(300);

return t;

Creating an Inner Shadow 5-1

5-2 Oracle JavaFX Creating Visual Effects in JavaFX

Adding a Reflection

Reflection is an effect that renders a reflected version of the object below the actual object.

Note: The reflection of a node with a reflection effect will not respond to
mouse events or the containment methods on the node.

Figure 6-1 shows a reflection applied to text. Use the setFraction method to specify the
amount of visible reflection.

Figure 6-1 Reflection Effect

Reflection in JavaFX...

Example 6-1 shows how to create the reflection effect on text.

Example 6-1 Text With Reflection

import javafx.scene.text.*;

import javafx.scene.paint.*;

import javafx.scene.effect.*;

public class HelloEffects extends Application {

Stage stage;
Scene scene;

@Override public void start(Stage stage) {
stage.show() ;

scene = new Scene(new Group(), 840, 680);
ObservableList<Node> content = ((Group)scene.getRoot()).getChildren();
content.add (reflection());
stage.setScene (scene) ;

}

static Node reflection() {
Text t = new Text();

.setX(10.0f);

.setY (50.0f);

.setCache (true) ;

.setText ("Reflection in JavaFX...");

.setFill (Color.RED);

.setFont (Font.font ("null", FontWeight.BOLD, 30));

[e e e e

Adding a Reflection 6-1

Reflection r = new Reflection();
r.setFraction(0.9);

t.setEffect(r);

t.setTranslateY (400);
return t;

}

public static void main(String[] args) {
Application.launch(args);

6-2 Oracle JavaFX Creating Visual Effects in JavaFX

Adding a Lighting Effect

The lighting effect simulates a light source shining on the given content, which can be used to
give flat objects a more realistic three-dimensional appearance.

Figure 7-1 shows the lighting effect on text.

Figure 7-1 Lighting Effect

JavaFX
Lighting!

Example 7-1 shows how to create a lighting effect on text.

Example 7-1 Text with Applied Lighting Effect

import javafx.application.Application;
import javafx.collections.ObservableList;
import javafx.geometry.VPos;

import javafx.scene.effect.Light.Distant;
import javafx.scene.*;

import javafx.stage.*;

import javafx.scene.shape.*;

import javafx.scene.effect.*;

import javafx.scene.paint.*;

import javafx.scene.text.*;

public class HelloEffects extends Application {
Stage stage;
Scene scene;

@Override public void start(Stage stage) ({
stage.show() ;

scene = new Scene(new Group());
ObservableList<Node> content = ((Group)scene.getRoot()).getChildren();

content.add(lighting());
stage.setScene (scene) ;

}

static Node lighting() {
Distant light = new Distant();

Adding a Lighting Effect 7-1

light.setAzimuth(-135.0f);
Lighting 1 = new Lighting();
1.setLight (1ight);
1.setSurfaceScale(5.0f);

Text t = new Text();

t.setText ("JavaFX"+"\n"+"Lighting!");

t.setFill (Color.RED);

t.setFont (Font.font ("null", FontWeight.BOLD, 70));
t.setX(10.0f);

t.setY(10.0f);

t

.setTextOrigin (VPos.TOP) ;
t.setEffect(1l);

t.setTranslateX(0);
t.setTranslateY (320);

return t;

}
public static void main(String[] args) {
Application.launch(args);

7-2 Oracle JavaFX Creating Visual Effects in JavaFX

8

Adding a Perspective

The perspective effect creates a three-dimensional effect of otherwise two-dimensional object.

Figure 8-1 shows the perspective effect.

Figure 8-1 Perspective Effect

A perspective transformation can map any square to another square, while preserving the
straightness of the lines. Unlike affine transformations, the parallelism of lines in the source is
not necessarily preserved in the output.

Note: This effect does not adjust the coordinates of input events or any
methods that measure containment on a node. Mouse clicking and the
containment methods are undefined if a perspective effect is applied to a
node.

Example 8-1 is a code snippet from the sample application that shows how to create a
perspective effect.

Example 8-1 Perspective Effect

static Node perspective() {
Group g = new Group();
PerspectiveTransform pt = new PerspectiveTransform();
pt.setUlx(10.0f);
pt.setUly(10.0f);
pt.setUrx(210.0f);
pt.setUry (40.0f);
pt.setLrx(210.0f);
pt.setLry(60.0f);
pt.setLlx(10.0f);
pt.setLly(90.0f)

1

g.setEffect (pt);
g.setCache(true) ;

Rectangle r =
r.setX(10.0f);
r.setY(10.0f);

new Rectangle();

Adding a Perspective 8-1

r.setWidth(280.0f);
r.setHeight (80.0f);
r.setFill (Color.DARKBLUE) ;

Text t = new Text();

t.setX(20.0f);

.setY(65.0f);

.setText ("Perspective") ;

.setFill (Color.RED) ;

.setFont (Font.font ("null", FontWeight.BOLD, 36));

(o e e e

g.getChildren() .add(r);
g.getChildren() .add(t);
return g;

Figure 8-2 shows which coordinates affect the resulting image.

Figure 8-2 Coordinates for Perspective Effect

Ulx(10.0f);
Uly(10.0f). Urx(210.0f);
Ury(40.0f);

Lrx(210.0f);
LIx(10.0f); Lry(60.0f);
Lly(90.0f);

8-2 Oracle JavaFX Creating Visual Effects in JavaFX

Creating a Chain of Effects

Some of the effects have an input property that you can use to create a chain of effects. The
chain of effects can be a tree-like structure, because some effects have two inputs and some do
not have any.

In Figure 9-1 the reflection effect is used as an input for the drop shadow effect, which means
that first the rectangle is reflected by the reflection effect and then the drop shadow effect is
applied to the result.

Figure 9-1 Shadow and Reflection

Example 9-1 Rectangle with a Shadow and Reflection Sequentially Applied

import javafx.application.Application;
import javafx.collections.ObservableList;
import javafx.scene.*;

import javafx.stage.*;

import javafx.scene.shape.*;

import javafx.scene.effect.*;

import javafx.scene.paint.*;

import javafx.scene.text.*;

public class HelloEffects extends Application {

Stage stage;
Scene scene;

@Override public void start(Stage stage) {
stage.show() ;

scene = new Scene(new Group());
ObservableList<Node> content = ((Group)scene.getRoot()).getChildren();

content.add (chainEffects());
stage.setScene (scene) ;

Creating a Chain of Effects 9-1

}
static Node chainEffects() {

Rectangle rect = new Rectangle();
rect.setFill (Color.RED) ;
rect.setWidth(200) ;
rect.setHeight (100) ;
rect.setX(20.0f) ;
rect.setY(20.0f) ;

DropShadow ds = new DropShadow() ;
ds.setOffsetY(5.0);
ds.setOffsetX(5.0);

ds.setColor (Color.GRAY) ;

Reflection reflection = new Reflection();

ds.setInput (reflection);
rect.setEffect (ds);

return rect;

}

public static void main(String[] args) {
Application.launch(args) ;

Note: If you change the last two lines in the static Node
chainEffects() to reflection.setInput(ds); and
rect.setEffect (reflection) ;, first the drop shadow will be applied to
the rectangle, and then the result will be reflected by the reflection effect.

For more information about particular classes, methods, or additional features, see the API
documentation.

9-2 Oracle JavaFX Creating Visual Effects in JavaFX

	Contents
	Part I About This Document
	1 Blending Objects
	2 Using the Bloom Effect
	3 Applying Blur Effects
	3.1 BoxBlur
	3.2 Motion Blur
	3.3 Gaussian Blur

	4 Creating a Drop Shadow
	5 Creating an Inner Shadow
	6 Adding a Reflection
	7 Adding a Lighting Effect
	8 Adding a Perspective
	9 Creating a Chain of Effects

