
2006 JavaOneSM Conference | Session TS-3108 |

TS-3108

Project Sigrid:
The Simplest Possible
Grid Computing Platform
Tim Bray
Director of Web Technologies
Sun Microsystems
http://www.tbray.org/ongoing/

Copyright © 2006, Sun Microsystems Inc., All rights reserved.

2006 JavaOneSM Conference | Session TS-3108 | 2

Goal of This Talk

Learn what Grids are good at and not
good at, what kinds of Grids there are,
and about Project Sigrid, a simple
Web-style grid framework

2006 JavaOneSM Conference | Session TS-3108 | 3

Agenda

Why Grids? Why Not?
Grid History:
Batch and Service Orientation
Existing Grid Frameworks (How to Say
“Hello World” 108 Times in Parallel)
Project Sigrid

2006 JavaOneSM Conference | Session TS-3108 | 4

Why Grids? Big Problems!

Source: Dave Sifry, Technorati (www.sifry.com/alerts)

2006 JavaOneSM Conference | Session TS-3108 | 5

Big Problem: One Year of Blog Search

● 1.2 million posts/day; average ~100 words/post
● Per year: ~44 billion words, ~220G text, ~500G

full-text index
● About 13 new articles per second, so ~1,000

index updates/second
● One million searches/day, ~11.5/sec
● No single computer can handle the

update/query load
● You really don’t want to involve disks

2006 JavaOneSM Conference | Session TS-3108 | 6

Some Performance Facts

● Memory is a lot faster than disks: a big 4-way
server running SolarisTM ZFS, highly parallelized,
can do maybe 500 random seeks/second

● It’s faster even if you
have to go across a
data center network
to another computer’s
memory (Infiniband,
10G ethernet)

Source (image): Virginia Tech (tcf.vt.edu)

2006 JavaOneSM Conference | Session TS-3108 | 7

Slogan

Memory is the new disk
Disk is the new tape

2006 JavaOneSM Conference | Session TS-3108 | 8

Blog Search: Grid Solution

● T2000 with 32G RAM: $27K
● 20xT2000 = 640G: ~$500K list
● Should be able to handle updates and quite a few

million queries/day

Source: Sun.com

2006 JavaOneSM Conference | Session TS-3108 | 9

In 2003, there was rough price parity between:
Why Not Put Everything on the Grid?

● One database access
● Ten bytes of network traffic
● 100,000 instructions
● 10 bytes of disk storage, and
● 1 megabyte of disk bandwidth

Source: Jim Gray, Microsoft Research (research.microsoft.com/research/pubs/view.aspx?tr_id=655)

2006 JavaOneSM Conference | Session TS-3108 | 10

In other words:
Why Not Put Everything on the Grid?

● CPU is affordable
● Memory is cheap
● Disk is free
● Moving data is expensive!

2006 JavaOneSM Conference | Session TS-3108 | 11

Grid Economics

● Maximize the ratio of computation to data traffic
Example: SETI@Home, render farms

● Put the data near the computation
Example: Google GFS + MapReduce

2006 JavaOneSM Conference | Session TS-3108 | 12

Agenda

Why Grids? Why Not?
Grid History:
Batch and Service Orientation
Existing Grid Frameworks (How to Say
“Hello World” 108 Times in Parallel)
Project Sigrid

2006 JavaOneSM Conference | Session TS-3108 | 13

What Do Grids Do Today?

● Render movies
● Simulate silicon
● Price derivatives
● Model oil fields
● Build Web search indices
● Search the Web

2006 JavaOneSM Conference | Session TS-3108 | 14

What Do Grids Do Today?

● Render movies
● Simulate silicon
● Price derivatives
● Model oil fields
● Build Web search indices
● Search the Web

}Batch

2006 JavaOneSM Conference | Session TS-3108 | 15

For example, Google
A Service-Oriented Grid

● Always online
● Applications never stop running
● The data lives in the grid

2006 JavaOneSM Conference | Session TS-3108 | 16

Agenda

Why Grids? Why Not?
Grid History:
Batch and Service Orientation
Existing Grid Frameworks (How to Say
“Hello World” 108 Times in Parallel)
Project Sigrid

2006 JavaOneSM Conference | Session TS-3108 | 17

The Grid Landscape

MPI,
MapReduce,
SGE, DRMAA

OGSA, Rio,
Gridbus

Google, Yahoo,
etc.

Batch

Service-Oriented

Real Speculative

2006 JavaOneSM Conference | Session TS-3108 | 18

MPI 1994, MPI-2 1997
Batch API: MPI (and MPI-2)

● FORTRAN and C APIs for message-passing and
parallel I/O; no Java™ technology yet

● Lots of message-distribution patterns:
point-to-point, broadcast, etc.

● Synchronous and asynchronous
● Language-independent (sort of) data binding
● “Reduce” operation

Source: MPI Forum (mpi-forum.org)

2006 JavaOneSM Conference | Session TS-3108 | 19

MPI Features

● “Processors” abstract across arbitrary number
of nodes

● Broadcast like this:
int MPI_Bcast (void* buffer, int count, MPI_Datatype
datatype, int rank, MPI_Comm comm);

● Can divide processors into matrices and sub-
matrices for dividing up work

2006 JavaOneSM Conference | Session TS-3108 | 20

MPI's “Reduce” Function

count = 1;
rank = 0;
MPI_Reduce(&a, &x, count, MPI_REAL,
 MPI_SUM, rank, MPI_COMM_WORLD);

2006 JavaOneSM Conference | Session TS-3108 | 21

A central piece of Google infrastructure
MapReduce

● A “map” function:
map (in_key, in_value) → list(out_key, intermediate_value)
● Processes input key/value pair
● Produces set of intermediate pairs

● A “reduce” function
reduce (out_key, list(intermediate_value)) → list(out_value)
● Combines all intermediate values for a particular key
● Produces a set of merged output values (usually

just one)

Source: Google (labs.google.com/papers/mapreduce.html)

2006 JavaOneSM Conference | Session TS-3108 | 22

MapReduce Example: Word Counter
map(String input_key, String input_value):
 // input_key: document name
 // input_value: document contents
 for each word w in input_value:
 EmitIntermediate(w, "1");

reduce(String output_key, Iterator intermediate_values):
 // output_key: a word
 // output_values: a list of counts
 int result = 0;
 for each v in intermediate_values:
 result += ParseInt(v);
 Emit(AsString(result));

2006 JavaOneSM Conference | Session TS-3108 | 23

MapReduce Implementation
● C++ ,runs across a cluster of a few thousand machines
● Assumes use of Google Filesystem to get data close to

computation
● Can tolerate machine failures and even bugs (by

detecting repeated failures on the same data)
● Redundant execution on CPUs that free up first
● Test: Scan 1010 100-byte records to extract records

matching a rare pattern (92K matching records):
80 sec.

● Test: Sort 1010 100-byte records: 839 sec.

2006 JavaOneSM Conference | Session TS-3108 | 24

MapReduce
Is Coming to the Java Platform!

● Doug Cutting, of Lucene and Nutch fame
● See http://svn.apache.org/repos/asf/lucene/nutch/
● Single-CPU only so far

Source: Tom White (weblogs.java.net/blog/tomwhite/archive/2005/09/mapreduce.html)

2006 JavaOneSM Conference | Session TS-3108 | 25

The Sun Grid Engine by Example

● Step1 initializes, reads a data file “input.txt”,
writes three intermediate files

● Step2 processes them in parallel, no
dependencies

● Step3 finalizes

Source (all SGE data): Network.com

2006 JavaOneSM Conference | Session TS-3108 | 26

Sun Grid Engine:
Three-way “Hello World”
>cat run.sh:
#!/bin/sh
qsub -N step1 -b n step1.sh
qsub -N step2 -hold_jid step1 -b n step2.sh
qsub -N step2 -hold_jid step1 -b n step2.sh
qsub -N step2 -hold_jid step1 -b n step2.sh
qsub -hold_jid step2 -b n step3.sh
>zip app.zip run.sh input.txt step*.sh
... zip output elided ...

... upload app.zip and run via Web GUI ...

... fetch output via Web GUI ...

2006 JavaOneSM Conference | Session TS-3108 | 27

Sun Grid Engine Environment

● You’re on your own subnet; no Internet
connection

● You have a locally-rooted filesystem
● There is demand for service-oriented

capabilities, but there are complexity, security,
and safety issues

2006 JavaOneSM Conference | Session TS-3108 | 28

Global Grid Forum

● First met in 2001
● Currently 34 working groups
● Well-known: DRMAA, OGSA

Source: ggf.org

2006 JavaOneSM Conference | Session TS-3108 | 29

GGF: DRMAA

● Batch job submission/control API, capabilities
much like Sun Grid Engine

● Specified for C and Java languages
● Implementations: Sun Grid Engine and Project

Condor at U. Wisconsin-Madison

Source: DRMAA.org

2006 JavaOneSM Conference | Session TS-3108 | 30

GGF: OGSA

● Open, service-oriented grids based on WS-*
● Some use cases: data center management,

reactive storm modeling, large-scale archive

Source (all OGSA): GGF.org

“Open Grid Services Architecture”

2006 JavaOneSM Conference | Session TS-3108 | 31

OGSA in Pictures

2006 JavaOneSM Conference | Session TS-3108 | 32

OGSA in Pictures

Source: David Heinemeier Hansson (loudthinking.org/arc/000585.html)

2006 JavaOneSM Conference | Session TS-3108 | 33

The Jini™ Technology-based Project
Rio Framework

● “Project Rio provides a model to dynamically
instantiate, monitor and manage service
components as described in an architectural
meta-model called an OperationalString”

● “Hello World” has
one interface, six
classes, and 625
lines of Java
language code

Source: rio.jini.org

Tools Development and Assembly

Jini Service Beans Federation

Resources

Substrates

Assimilation
Integration and
Interoperability

Dynamic
Container

Dynamic Provisioning

Java™ 2, Jini™

2006 JavaOneSM Conference | Session TS-3108 | 34

The Gridbus Project

● Led by Rajkumar Buyya of Melbourne U.
● Ambitious framework includes an economic

model, SLAs, and a Market Directory
● “Alchemi” .NET-based implementation

Source: www.gridbus.org

2006 JavaOneSM Conference | Session TS-3108 | 35

The Grid Landscape

MPI,
MapReduce,
SGE, DRMAA

Google, Yahoo,
etc.

Batch

Service-Oriented OGSA, Rio,
Gridbus

Real Speculative

2006 JavaOneSM Conference | Session TS-3108 | 36

The Grid Infrastructure Landscape

MPI,
MapReduce,
SGE, DRMAA

Google, Yahoo,
etc.

Batch

Service-Oriented

Real Speculative

OGSA, Rio,
Gridbus

2006 JavaOneSM Conference | Session TS-3108 | 37

The Grid Infrastructure Landscape

MPI,
MapReduce,
SGE, DRMAA

Batch

Service-Oriented

Real Speculative

OGSA, Rio,
Gridbus

2006 JavaOneSM Conference | Session TS-3108 | 38

Agenda

Why Grids? Why Not?
Grid History:
Batch and Service Orientation
Existing Grid Frameworks (How to Say
“Hello World” 108 Times in Parallel)
Project Sigrid

2006 JavaOneSM Conference | Session TS-3108 | 39

AKA the UNIX® + Web world-view
Project Sigrid’s Design Center

● Tell me how many servers are available
● Find a server and run a program for me on it
● Tell me what’s running, allow me to kill it, and

notify me when it stops
● Stage modestly sized code and data files
● Assume that my program will listen on a socket

and I want to connect to it
● Route input, output, and error streams, assuming

they are textual

2006 JavaOneSM Conference | Session TS-3108 | 40

Launch an Echo Responder
Sigrid s = new Sigrid("HelloSigrid");
Task t = new Task(s, "perl-echo", "perl data/echo.pl");
t.addFile("/Users/twbray/dev/pd/tests/demo3.pl",
 "echo.pl", "data");
t.consumeOutput();
t.acceptInput();
t.routeError("10.0.0.33", 9321);
if (s.availableServerCount("perl-echo") > 0) {
 t.launch();
 BufferedReader fromTask = t.getTaskOutputStream();
 PrintStream toTask = t.getTaskInputStream();
 String message = new Double(Math.random()).toString();
 toTask.println(message);
 String response = fromTask.readLine();
}

2006 JavaOneSM Conference | Session TS-3108 | 41

Launch and Find a Task
ArrayList<HostPort> monlist = sigrid.nowRunning(MON_TYPE);
if (monlist.size() == 0) {
 sigrid.watchForChanges(this, MON_TYPE);
 Task zepMon = new Task(sigrid, MON_TYPE, MON_CMD);
 synchronized(this) {
 host = zepMon.launch();
 this.wait();
 }
 monlist = sigrid.nowRunning(MON_TYPE);
 if (monlist.size() != 1)
 throw new Exception("Can't start monitor");
}
HostPort hp = monlist.get(0);
host = hp.getHost();
int port = hp.getPort();
// ready to connect now

2006 JavaOneSM Conference | Session TS-3108 | 42

Fill Up a Grid with
Java Language Tasks
Task scout = new Task(sigrid, scoutType,
 "java " + scoutArgs);
scout.addFile(jar, myJar(), "java");

int toLaunch = sigrid.availableServerCount(scoutType);
ArrayList<String> runningOn = new ArrayList<String>();
for (int i = 0; i < toLaunch; i++)
 runningOn.add(scout.launch());

2006 JavaOneSM Conference | Session TS-3108 | 43

How Project Sigrid Works (1)

● Add a node to a simple grid by running a “Null
task” with the simple grid’s name as argument

● There’s a “Monitor task” always running on one
of the nodes in the simple grid

● Each Null discovers a Monitor;
if it fails, it starts one

● Monitors discover other Monitors, all but one exit

2006 JavaOneSM Conference | Session TS-3108 | 44

How Project Sigrid Works (2)

● To start, clients have to discover a Monitor
● Clients interact with the Monitor to request task

launch/monitor/kill and pipe-fitting
● Nulls actually do the work
● Some special facilities (CLASSPATH setup) for

starting Java language tasks

2006 JavaOneSM Conference | Session TS-3108 | 45

How Project Sigrid Works (3)

● Discovery is done with JXTA™ technology…
● …but all the JXTA technology weirdness

is hidden; could possibly be done with
zeroconf instead

2006 JavaOneSM Conference | Session TS-3108 | 46

Project Sigrid Implementation

● 3500 lines of Java language code, 108K jar
● Requires SE 5
● No objects on the wire! Simple text message

protocol
● Highly multi-threaded and concurrent
● Tested on weird ad hoc collections of Mac,

Solaris™ OS, and Windows boxes;
no big grid yet

2006 JavaOneSM Conference | Session TS-3108 | 47

What Project Sigrid Is for

● I want a real-time blog search engine
● To store the index in memory, I wanted

something like “memcached”, an arbitrarily large
persistent in-memory HashMap running across as
many computers as necessary; this is called
Zeppelin

● Project Sigrid is the necessary infrastructure to let
a Zeppelin run across a grid-like collection of
computers

● Zeppelin runs very fast

2006 JavaOneSM Conference | Session TS-3108 | 48

Summary

● Grids are useful for many, but not all, problems
● There is lots of batch-oriented grid computing
● There is some batch-oriented grid infrastructure,

but not particularly Java technology-friendly
● There is lots of service-oriented grid computing
● There is no service-oriented grid infrastructure
● Project Sigrid is trying to fix that

2006 JavaOneSM Conference | Session XXXX | 49

Q&A

2006 JavaOneSM Conference | Session TS-3108 |

TS-3108

Project Sigrid:
The Simplest Possible
Grid Computing Platform
Tim Bray (tim.bray@sun.com)
Director of Web Technologies
Sun Microsystems
http://www.tbray.org/ongoing/

http://www.tbray.org/ongoing/

