
2006 JavaOneSM Conference | Session TS-3217 |

Transparently Clustered Spring—
A Runtime Solution for Java™ Technology
Jonas Bonér
Senior Software Engineer
Terracotta, Inc.

http://www.terracottatech.com
TS-3217

2006 JavaOneSM Conference | Session TS-3217 | 2

Learn how to cluster your Spring
application declaratively and
transparently with zero changes
to existing application code

What You Will Learn

2006 JavaOneSM Conference | Session TS-3217 | 3

Agenda
• Overview of clustering solutions today

• Sample problem statement
• Traditional clustering solutions
• Discussion: Scale-out OR Simplicity

• The need for Naturally Clustered Java™ technology
• Scale-out AND Simplicity: Clustering at the Java VM

(JVM™) level
• Introduction to the Terracotta for Spring

• Overview of the Terracotta for Spring—
features and demos

• Summary and Q&A

2006 JavaOneSM Conference | Session TS-3217 | 4

Sample Application

• Our application
• Inventory application (very naive app, but anyway…)
• Spring based

• In-memory singleton consists of:
• Product
• Department
• Inventory
• Store

2006 JavaOneSM Conference | Session TS-3217 | 5

Sample Code: Product
public class Product {
 private double m_price;
 private final String m_name;
 private final String m_sku;

 public Product(String name, double price, String sku) {
 m_name = name; m_price = price; m_sku = sku;
 }
 public synchronized void setPrice(double price) {
 m_price = price;
 }
 public synchronized double getPrice() { return m_price; }
 public String getName() { return m_name; }
 public String getSku() { return m_sku; }
}

2006 JavaOneSM Conference | Session TS-3217 | 6

Sample Code: Department
public class Department {
 private final String m_code;
 private final String m_name;
 private final Product[] m_products;

 public Department(
 String code, String name, Product[] products) {
 m_code = code; m_name = name; m_products = products;
 }

 public String getName() { return m_name; }
 public Product[] getProducts() { return m_products; }
}

2006 JavaOneSM Conference | Session TS-3217 | 7

Sample Code: Store Bean
public class Store {
 private final List m_departments = new ArrayList();
 private final Map m_inventory = new HashMap();
 public synchronized List getDepartments() {
 return m_departments;
 }
 public synchronized Map getInventory() {
 return m_inventory;
 }
 public synchronized void addDepartment(Department department) {
 m_departments.add(department);
 }
 public synchronized void addInventoryItem(
 String sku, Product product) {
 m_inventory.put(sku, product);
 }
}

2006 JavaOneSM Conference | Session TS-3217 | 8

Sample Code: Spring Bean Config File
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.org/dtd/spring-beans.dtd">

<beans>
 <bean id="store" class="demo.inventory.Store"/>
</beans>

2006 JavaOneSM Conference | Session TS-3217 | 9

Problems

• Requirements
• Need to enhance scalability
• Need to ensure high-availability
• Need to handle fail-over

• Solution
• We need some sort of Clustering,

e.g., sharing of state across many Java VMs

2006 JavaOneSM Conference | Session TS-3217 | 10

Problem Overview

• One Store per Java VM is simple—
but does not scale

• Need to share the state across multiple nodes

• How can we do it?

STORE STORE STORE STORE STORE

2006 JavaOneSM Conference | Session TS-3217 | 11

Agenda
• Overview of clustering solutions today

• Sample problem statement
• Traditional clustering solutions
• Discussion: Scale-out OR Simplicity

• The need for Naturally Clustered Java™ technology
• Scale-out AND Simplicity: Clustering at the Java VM

(JVM™) level
• Introduction to the Terracotta for Spring

• Overview of the Terracotta for Spring—
features and demos

• Summary and Q&A

2006 JavaOneSM Conference | Session TS-3217 | 12

Solution 1: Java Message Service

• Use Publish-Subscribe (Topic)
• The Store has a JMS API Topic and

subscribes on updates

• Note: Showing actual JMS code—can be
simplified a little bit using Spring’s
JmsTemplate

• Note: Showing simplified code

2006 JavaOneSM Conference | Session TS-3217 | 13

Solution 1: Java Message Service
private interface InventoryMessage
 extends Serializable {}

public class ProductMessage
 implements InventoryMessage {
 public static enum Type {CREATE, UPDATE, DELETE};
 private Product product;
 private Type type;
 public ProductMessage(Product p, Type t) {
 product = p;
 type = t;
 }
 public Product getProduct() { return product; }
 public Type getType() { return type; }
}

First We Need to Create Some Messages

2006 JavaOneSM Conference | Session TS-3217 | 14

Solution 1: Java Message Service
...
InitialContext context = new InitialContext();
topicConnectionFactory = (TopicConnectionFactory) context.lookup(CONNECTION_FACTORY_JNDI_NAME);
topicConnection = topicConnectionFactory.createTopicConnection();
topicSession = topicConnection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
topic = (Topic) context.lookup(TOPIC_NAME);
topicSubscriber = topicSession.createSubscriber(topic);
topicSubscriber.setMessageListener(this);
topicPublisher = topicSession.createPublisher(topic);
topicConnection.start();
...

Then Add Setup to the Constructor for the Store Bean

2006 JavaOneSM Conference | Session TS-3217 | 15

Solution 1: Java Message Service
public synchronized void createProduct(Product product) {
 sendMessage(new ProductMessage(product, ProductMessage.Type.CREATE));
}
public synchronized void updateProduct(Product product) {
 sendMessage(new ProductMessage(product, ProductMessage.Type.UPDATE));
}
public synchronized void deleteProduct(Product product) {
 sendMessage(new ProductMessage(product, ProductMessage.Type.DELETE));
}
private void sendMessage(InventoryMessage msg) {
 try {
 Message message = topicSession.createObjectMessage(msg);
 topicPublisher.publish(message);
 } catch (Exception e) {
 e.printStackTrace();
 }
}

We Need CRUD-like Send Methods in the Store Bean

2006 JavaOneSM Conference | Session TS-3217 | 16

Solution 1: Java Message Service
public class Store implements MessageListener {
 ...
 public void onMessage(Message msg) {
 try {
 if (msg instanceof ObjectMessage) {
 ObjectMessage objMsg = (ObjectMessage) msg;
 if (objMsg instanceof ProductMessage) {
 handleProductMessage(
 (ProductMessage) objMsg.getObject());
 }
 } else {
 ...
 }
 } catch (JMSException e) {
 ... // handle exception
 }
 }
 ...
}

Add the MessageListener Interface to the Store Bean

2006 JavaOneSM Conference | Session TS-3217 | 17

Solution 1: Java Message Service

private void handleProductMessage(
 ProductMessage msg) {
 // check type (CREATE, UPDATE or DELETE)
 // perform action accordingly

 synchronized(this) {
 ... // implementation omitted
 }
}

Finally We Need to Handle the ProductMessage

2006 JavaOneSM Conference | Session TS-3217 | 18

Solution 1: Java Message Service
• JMS is asynchronous, but updates must be handled

“synchronously”
• Potential “window” where other nodes might be out

of sync (since messages take time to process)
• Concurrent modifications may take place and hard

to handle
• Scalability and performance are terrible

• Pub-Sub is a bottleneck
• Serialization + marshalling and unmarshalling

• Extremely verbose code
• Unnatural and error-prone

Problems

2006 JavaOneSM Conference | Session TS-3217 | 19

Solution 2: JCache

• Let’s look at the standardization effort for
distributed caching: JCache

• Basically a distributed HashMap
• get() and put()

• Note: Using simplified code—omitting
transaction management, etc.

2006 JavaOneSM Conference | Session TS-3217 | 20

Solution 2: JCache

 // at startup time
 cache.put(“store”, new Store());

// if we need to access Store info
Store store = (Store)cache.get(“store”);

// if we need to update a product in Store
Store store = (Store)cache.get(“store”);
store.getInventory().get(“sku”).setPrice(52.00);
cache.put(“store”, store);

Attempt 1—Course-grained Caching

2006 JavaOneSM Conference | Session TS-3217 | 21

Solution 2: JCache

 // only looking at how to handle Product now

 // at startup time
 cache.put(“sku”, new Product());

// if we need to access Product info
Product product = (Product)cache.get(“sku”);

// ok so far...but...

Attempt 2—Fine-grained Caching

2006 JavaOneSM Conference | Session TS-3217 | 22

Solution 2: JCache
• Now we need to maintain the Product-Department

references ourselves

// if we need to update a product
Product product = (Product)cache.get(“sku”);
product.setPrice(52.00);
cache.put(“sku”, product);
// then we need a query mechanism to find the departments
Department[] deps = findDepartmentsWithProductID(“sku”);
for (int i; i < deps.length; i++) {
 // need to update all individual departments
 deps[i].getProduct(“sku”).setPrice(52.0);
 // need to put them back in cache
 cache.put(deps[i].getName(), deps[i]);
}

Updating the Product Is More Complex

2006 JavaOneSM Conference | Session TS-3217 | 23

Solution 2: JCache

• Breaks Java technology’s “pass-by-reference”
semantics—developers need to maintain
references manually

• Domain model is perturbed
• Adds unnatural, verbose, and error-prone

coding rules
• Using serialization—impacts scalability

• Can not keep track of actual changes
• Flattens and sends whole object graphs over the wire

Problems

2006 JavaOneSM Conference | Session TS-3217 | 24

Agenda
• Overview of clustering solutions today

• Sample problem statement
• Traditional clustering solutions
• Discussion: Scale-out OR Simplicity

• The need for Naturally Clustered Java™ technology
• Scale-out AND Simplicity: Clustering at the Java VM

(JVM™) level
• Introduction to the Terracotta for Spring

• Overview of the Terracotta for Spring—
features and demos

• Summary and Q&A

2006 JavaOneSM Conference | Session TS-3217 | 25

Scale-out OR Simplicity:
APIs Are Not Simple
• Historically, clustering solutions rely on Serialization
• This breaks object identity

• Data put into the cache and then read back will fail:
 (obj == obj) ⇒ false

• Perturbs the Domain Model
• Management of object references using primary keys

• Adds new coding rules
• Need to get() an instance, even if we already have a reference to it
• Need to put() changes back—easy to forget
• Can’t trust callers outside the caching class to put a top-level object

back in the cache if they edited it
• Java technology should be simple…

2006 JavaOneSM Conference | Session TS-3217 | 26

Problems With Serialization

 // let’s create one father and two sons
 Person adam = new Person(“Adam”, null);
 Person cain = new Person(“Cain”, adam);
 Person abel = new Person(“Abel”, adam);

cain abel

adam

Object Identity Is Preserved

Java Has “Pass-by-Reference” Semantics

2006 JavaOneSM Conference | Session TS-3217 | 27

Problems With Serialization

 // but... if we serialize Cain and Abel
 Person cain = (Person)Serializer.clone(_cain);
 Person abel = (Person)Serializer.clone(_abel);

cain abel

adam adam

Object Identity Is NOT Preserved

Serialization Breaks Regular Object References

2006 JavaOneSM Conference | Session TS-3217 | 28

The Importance of Preserving Java
Technology’s Pass-by-Reference
Semantics

• If Object Identity is broken, then developers must:
• Maintain the relational maps between objects

themselves
• Layer some kind of primary-key mechanism onto

their domain objects
• This forces developers to:

• Think like relational database designers
• Rip the domain model apart and then manually stitch

it back together with keys

2006 JavaOneSM Conference | Session TS-3217 | 29

API-based Clustering Is Not Scalable
• Java technology serialization is not scalable
• Field updates
 ⇒ Push whole object graph
 ⇒ Too much data is sent over wire
• Coarse-grained locks
 ⇒ Locking top-level object, regardless of scope of change
 ⇒ Premature lock contention

2006 JavaOneSM Conference | Session TS-3217 | 30

There Has to Be a Better Way!

• Let’s take a step back and look at how
Java technology works

2006 JavaOneSM Conference | Session TS-3217 | 31

Agenda
• Overview of clustering solutions today

• Sample problem statement
• Traditional clustering solutions
• Discussion: Scale-out OR Simplicity

• The need for Naturally Clustered Java™ technology
• Scale-out AND Simplicity: Clustering at the Java VM

(JVM™) level
• Introduction to the Terracotta for Spring

• Overview of the Terracotta for Spring—
features and demos

• Summary and Q&A

2006 JavaOneSM Conference | Session TS-3217 | 32

Ideally, Clustered Java Technology Would…

• Use natural Java code semantics
• Turn a single-Java VM application into a

clustered one, without:
1. Code changes
2. Semantic changes

• What is needed is a Java-based service that
handles these issues Transparently…
at Runtime

2006 JavaOneSM Conference | Session TS-3217 | 33

Simplicity and Scale-out

• Simplicity at runtime requires…
• Preservation of Object Identity
• Preservation of the semantics of the

Java Memory Model
• Event-based caching, not time-based

• Scale-out requires…
• Fine-grained replication
• Runtime lock optimization for clustering
• Runtime caching for data access

2006 JavaOneSM Conference | Session TS-3217 | 34

Agenda
• Overview of clustering solutions today

• Sample problem statement
• Traditional clustering solutions
• Discussion: Scale-out OR Simplicity

• The need for Naturally Clustered Java™ technology
• Scale-out AND Simplicity: Clustering at the Java VM

(JVM™) level
• Introduction to the Terracotta for Spring

• Overview of the Terracotta for Spring—
features and demos

• Summary and Q&A

2006 JavaOneSM Conference | Session TS-3217 | 35

Clustering at the Java VM Level:
Terracotta for Spring
Transparent Natural Runtime Clustering
for Java Technology

2006 JavaOneSM Conference | Session TS-3217 | 36

Terracotta Injects Quality of Services
Transparently at Runtime

MonitoringMessagingClustering Injects pre-packaged
QoS into the application

 Terracotta for Spring

Developer focuses
solely on the
business logic,
using POJOs,
Spring Beans, EJB™
specifications, etc.

2006 JavaOneSM Conference | Session TS-3217 | 37

The Spring Framework
• Life-cycle

• Defines and drives object life cycle (creates and destroys
beans)

• Scope
• Singleton—scoped by application context
• Prototype—scoped by user (factory returns a new one

every time)
• Session (or custom) scoped beans—scoped by session

or custom code

• Assembly
• Well-defined components with declarative dependencies

• Allows us to naturally layer clustering services on top

2006 JavaOneSM Conference | Session TS-3217 | 38

Introducing Terracotta for Spring
• Drops In and Out Transparently
• Natural Clustering of Spring Beans
• Turn Spring ApplicationContext Events

into Distributed Reliable Events
• Sharing of Java Management Extensions

(JMX) state
• Sharing of Spring WebFlow’s page flows
• High performance—fine-grained clustering
• Object identity is preserved
• Cluster-wide thread coordination

Overview

2006 JavaOneSM Conference | Session TS-3217 | 39

Drops In and Out Transparently

• No changes to existing code necessary
• Declarative configuration in Terracotta XML file

2006 JavaOneSM Conference | Session TS-3217 | 40

Natural Clustering of Spring Beans

• Supported types are Singleton and Session
scoped beans

• Life-cycle semantics preserved
• Scope semantics preserved—within the same

“logical” ApplicationContext

2006 JavaOneSM Conference | Session TS-3217 | 41

DEMO
Clustered Inventory Spring Application

2006 JavaOneSM Conference | Session TS-3217 | 42

This Is All the Config We Need
<application name="Inventory">
 <application-contexts>
 <application-context>
 <paths>
 <path>*/inventory.xml</path>
 </paths>
 <beans>
 <bean name="store"/>
 </beans>
 </application-context>
 </application-contexts>
</application>

2006 JavaOneSM Conference | Session TS-3217 | 43

What Are Spring
ApplicationContext Events?

• Spring has a simple event/messaging facility
in the ApplicationContext

• Similar to the Observer pattern
1. Publish event to the context using

publishEvent(event)
2. All beans that implement the

ApplicationListener interface
will receive the event

2006 JavaOneSM Conference | Session TS-3217 | 44

Distributed Reliable Events

• Turn Spring ApplicationContext events
into Distributed Reliable Events

• Local within the same “logical”
ApplicationContext

• Asynchronous and reliable multicast
• Highly performant
• Any POJO can be the event or part of the event
• No serialization—sends actual delta
• Pass-by-reference works as expected

2006 JavaOneSM Conference | Session TS-3217 | 45

Sharing JMX State

• Shared beans can be exposed through
Spring JMX

• Coherent view of the aggregate state
throughout the cluster

• One single point of management
• One single point of monitoring

2006 JavaOneSM Conference | Session TS-3217 | 46

Sharing of Spring WebFlow

• Clustering of WebFlow’s state machine
• Transparent and high-performant fail-over

for page flows
• Potentially allow sharing a WebFlow

instance across an application, to be used
by more than one user (when parallel tasks
are required)

2006 JavaOneSM Conference | Session TS-3217 | 47

DEMO
Clustering JMX State—
Web Application

2006 JavaOneSM Conference | Session TS-3217 | 48

Agenda
• Overview of clustering solutions today

• Sample problem statement
• Traditional clustering solutions
• Discussion: Scale-out OR Simplicity

• The need for Naturally Clustered Java™ technology
• Scale-out AND Simplicity: Clustering at the Java VM

(JVM™) level
• Introduction to the Terracotta for Spring

• Overview of the Terracotta for Spring—
features and demos

• Summary and Q&A

2006 JavaOneSM Conference | Session TS-3217 | 49

Summary
• Being able to Scale-out Spring applications is

becoming more and more important
• Historically there has been a trade-off between

Scale-out and Simplicity
• There is a need for a runtime that does not make

this trade-off
• A runtime that can handle this:

• Transparently—declarative config—zero code changes
• While preserving the normal semantics for Java

• The Terracotta for Spring can address these issues
today by clustering at the JVM level

2006 JavaOneSM Conference | Session TS-3217 | 50

Availability—Terracotta for Spring

• Free license for production use
• Sign-up for the beta program today

• http://www.terracottatech.com/downloads.jsp

2006 JavaOneSM Conference | Session TS-3217 | 51

For More Information

• http://www.terracottatech.com/
• http://springframework.org/
• http://blog.terracottatech.com/
• http://jonasboner.com/

2006 JavaOneSM Conference | Session TS-3217 | 52

Q&A
Jonas Bonér

2006 JavaOneSM Conference | Session TS-3217 |

Transparently Clustered Spring—
A Runtime Solution for Java™ Technology
Jonas Bonér
Senior Software Engineer
Terracotta, Inc.

http://www.terracottatech.com
TS-3217

