@ Sun

: ‘ POWER -a* TERRACOTTA

Java

JavaOne

Transparently Clustered Spring—

A Runtime Solution for Java™ Technology
Jonas Boneér

Senior Software Engineer
Terracotta, Inc.

http://www.terracottatech.com
TS-3217

2006 JavaOne®™ Conference | Session TS-3217 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

>,

What You Will Learn

Learn how to cluster your Spring
application declaratively and
transparently with zero changes
to existing application code

2006 JavaOnes" Conference | SessionTS-3217 | 2 java.sun.com/javaone/sf

Agenda

* Overview of clustering solutions today
* Sample problem statement
 Traditional clustering solutions
* Discussion: Scale-out OR Simplicity

* The need for Naturally Clustered Java™ technology

* Scale-out AND Simplicity: Clustering at the Java VM
(JVM™) level

* Introduction to the Terracotta for Spring

* Overview of the Terracotta for Spring—
features and demos

* Summary and Q&A

2006 JavaOnes" Conference | SessionTS-3217 | 3 java.sun.com/javaone/sf

Sample Application

* Our application

* Inventory application (very naive app, but anyway...)

* Spring based

* In-memory singleton consists of:

* Product

* Department
* Inventory

© Store

Z<zingleton==
Store

o.F
:\-_:_ Froduct
1"%3 Cepatment %1
.=

2006 JavaOne®™ Conference | Session TS-3217 | 4

java.sun.com/javaone/sf

Sample Code: Product

public class Product {

private double m price;
private final String m name;

private final String m sku;

public Product (String name, double price, String sku) {
m name = name; m price = price; m sku = sku;

}

public synchronized void setPrice (double price) {
m price = price;

}

public synchronized double getPrice() { return m price; }

public String getName () { return m name; }

public String getSku() { return m sku; }

é’f@SMﬂ 2006 JavaOne® Conference | Session TS-3217 | 5 java .sun.com/javaone/sf

Sample Code: Department

public class Department ({

private final String m_code;
private final String m_name;
private final Product[] m products;

public Department (

String code, String name, Product[] products) {

m code = code; m name = name; m products = products;

public String getName () { return m name; }
public Product[] getProducts() { return m products; }

@f@Sun 2006 JavaOne®™ Conference | Session TS-3217 | 6 java .sun.com/javaone/sf

Sample Code: Store Bean

public class Store {

private final List m departments = new ArrayList();
private final Map m inventory = new HashMap() ;
public synchronized List getDepartments () ({
return m departments;
}
public synchronized Map getInventory() {
return m_inventory;
}
public synchronized void addDepartment (Department department) {
m departments.add(department) ;
}
public synchronized void addInventoryItem (
String sku, Product product) {

m inventory.put(sku, product);

2006 JavaOne®™ Conference | Session TS-3217 | 7 java .sun.com/javaone/sf

@ Sun

Sample Code: Spring Bean Config File

<?xml version="1.0" encoding="UTF-8"?>

<!'DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-
beans.dtd">

<beans>

<bean id="store" class="demo.inventory.Store"/>
</beans>

2006 JavaOne®™ Conference | Session TS-3217 | 8 java .sun.com/javaone/sf

Problems

* Requirements
* Need to enhance scalability
* Need to ensure high-availability
* Need to handle fail-over

* Solution

* We need some sort of Clustering,
e.g., sharing of state across many Java VMs

@SM?} 2006 JavaOne® Conference | Session TS-3217 | 9 iava .sun.com/iavaone/sf

Problem Overview

* One Store per Java VM is simple—
but does not scale

* Need to share the state across multiple nodes

* How can we do it?

@Sun 2006 JavaOnes Conference | Session TS-3217 | 10 java.sun.com/javaone/sf

sssssssssss

Agenda

* Overview of clustering solutions today
* Sample problem statement
* Traditional clustering solutions
* Discussion: Scale-out OR Simplicity

* The need for Naturally Clustered Java™ technology

* Scale-out AND Simplicity: Clustering at the Java VM
(JVM™) level

* Introduction to the Terracotta for Spring

* Overview of the Terracotta for Spring—
features and demos

* Summary and Q&A

2006 JavaOnes Conference | Session TS-3217 | 11 java.sun.com/javaone/sf

>,

Solution 1: Java Message Service

Use Publish-Subscribe (Topic)

The Store has a JMS API Topic and
subscribes on updates

Note: Showing actual JMS code—can be
simplified a little bit using Spring’s
JmsTemplate

Note: Showing simplified code

2006 JavaOnes" Conference | Session TS-3217 | 12 java.sun.com/javaone/sf

Solution 1: Java Message Service
First We Need to Create Some Messages

private interface InventoryMessage
extends Serializable {}

public class ProductMessage
implements InventoryMessage {

public static enum Type {CREATE, UPDATE, DELETE};
private Product product;
private Type type;

public ProductMessage (Product p, Type t) {
product = p;
type = t;
}
public Product getProduct() { return product; }
public Type getType() { return type; }

%

v Sun 2006 JavaOnes" Conference | Session TS-3217 | 13 java.sun.com/javaone/sf

Solution 1: Java Message Service
Then Add Setup to the Constructor for the Store Bean

%

InitialContext context = new InitialContext () ;

topicConnectionFactorE = éTogicConnectionFactory)
context.lookup (CO CTION FACTORY JNDI NAME) ;

topicConnection =)]
opicConnectionFactory.createTopicConnection () ;

topicSession =]]
opicConnection.createTopicSession (false,
Se331on.AUTO_ACKNOWLEDGE?;

topic = (Topic) context.lookup (TOPIC NAME) ;
topicSubscriber = topicSession.createSubscriber (topic) ;
topicSubscriber.setMessagelListener (this) ;
topicPublisher = topicSession.createPublisher (topic) ;
topicConnection.start () ;

2006 JavaOneS Conference | Session TS-3217 | 14 java.sun.com/javaone/sf

Solution 1: Java Message Service
We Need CRUD-like Send Methods in the Store Bean

public synchronized void createProduct (Product product) ({
sendMessage (new ProductMessage (product,

ProductMessage.Type.CREATE)),
}
public synchronized void updateProduct (Product product) ({

sendMessage (new ProductMessage (product,
ProductMessage.Type.UPDATE))",
}

public synchronized void deleteProduct (Product product) ({

sendMessage (new ProductMessage (product,
ProductMessage.Type.DELETE)) ;
}

private void sendMessage (InventoryMessage msg) {
try {
Message message = topicSession.createObjectMessage (msg) ;
topicPublisher.publish (message) ;
} catch (Exception e) {
e.printStackTrace() ;

}

%

v Sun 2006 JavaOnes" Conference | Session TS-3217 | 15 java.sun.com/javaone/sf

Solution 1: Java Message Service

Add the MessageListener Interface to the Store Bean
public class Store implements MessagelListener {

public void onMessage (Message msg) {
try {
if (msg instanceof ObjectMessage) {
ObjectMessage objMsg = (ObjectMessage) msg;
if (objMsg instanceof ProductMessage) {
handleProductMessage (
(ProductMessage) objMsg.getObject())
}

} else {

}
} catch (JMSException e) {

// handle exception

}
}

@Sun 2006 JavaOnes" Conference | Session TS-3217 | 16 java.sun.com/javaone/sf

Solution 1: Java Message Service
Finally We Need to Handle the ProductMessage

private void handleProductMessage (
ProductMessage msqg) {

// check type (CREATE, UPDATE or DELETE)
// perform action accordingly

synchronized (this) {
// implementation omitted

}
}

@Sun 2006 JavaOne® Conference | Session TS-3217 | 17 java.sun.com/javaone/sf

sssssssssssss

Solution 1: Java Message Service

Problems

JMS is asynchronous, but updates must be handled
“synchronously”

Potential “window” where other nodes might be out
of sync (since messages take time to process)

Concurrent modifications may take place and hard
to handle

Scalability and performance are terrible
Pub-Sub is a bottleneck
Serialization + marshalling and unmarshalling

Extremely verbose code
Unnatural and error-prone

@Sun 2006 JavaOnes" Conference | Session TS-3217 | 18 java.sun.com/javaone/sf

Solution 2: JCache

* Let’s look at the standardization effort for
distributed caching: JCache

* Basically a distributed HashMap
* get() and put()

* Note: Using simplified code—omitting
transaction management, etc.

2006 JavaOnes" Conference | Session TS-3217 | 19 java.sun.com/javaone/sf

g microsystems

Solution 2: JCache
Attempt 1—Course-grained Caching

// at

cache.

// if

Store

// if
Store
store.
cache.

startup time

put (“store”, new Store()):;

we need to access Store info
(Store) cache.get (“store”) ;

store

we need to update a product in Store
store (Store) cache.get (“store”) ;
getInventory () .get(“sku”) .setPrice (52.00) ;
put (“store”, store);

2006 JavaOnes Conference | Session TS-3217 | 20 java.sun.com/javaone/sf

Solution 2: JCache
Attempt 2—Fine-grained Caching

// only looking at how to handle Product now

// at startup time

cache.put(“sku”, new Product())

// if we need to access Product info
Product product = (Product)cache.get(“sku”);

// ok so far...but...

2006 JavaOneS™ Conference | Session TS-3217 | 21 java.sun.com/javaone/sf

@ Sun

Solution 2: JCache

Updating the Product Is More Complex

* Now we need to maintain the Product-Department
references ourselves

// if we need to update a product

Product product = (Product)cache.get (“sku”);
product.setPrice (52.00) ;

cache.put(“sku”, product);

// then we need a query mechanism to find the departments
Department[] deps = findDepartmentsWithProductID (“sku”) ;
for (int i; i < deps.length; i++) {

// need to update all individual departments

deps[i] .getProduct (“sku”) .setPrice (52.0) ;

// need to put them back in cache

cache.put(deps[i] .getName () , deps[i]);

2006 JavaOnes Conference | Session TS-3217 | 22 java.sun.com/javaone/sf

>,

Solution 2: JCache

Problems

Breaks Java technology’s “pass-by-reference”
semantics—developers need to maintain
references manually

Domain model is perturbed

Adds unnatural, verbose, and error-prone
coding rules

Using serialization—impacts scalability
Can not keep track of actual changes
Flattens and sends whole object graphs over the wire

2006 JavaOnes Conference | Session TS-3217 | 23 java.sun.com/javaone/sf

Agenda

* Overview of clustering solutions today
* Sample problem statement
* Traditional clustering solutions
* Discussion: Scale-out OR Simplicity

* The need for Naturally Clustered Java™ technology

* Scale-out AND Simplicity: Clustering at the Java VM
(JVM™) level

* Introduction to the Terracotta for Spring

* Overview of the Terracotta for Spring—
features and demos

* Summary and Q&A

2006 JavaOnes Conference | Session TS-3217 | 24 java.sun.com/javaone/sf

Scale-out OR Simplicity:
APls Are Not Simple

Historically, clustering solutions rely on Serialization

This breaks object identity
Data put into the cache and then read back will fail:
(obj == obj) [false

Perturbs the Domain Model
Management of object references using primary keys

Adds new coding rules
Need to get () an instance, even if we already have a reference to it
Need to put () changes back—easy to forget

Can’t trust callers outside the caching class to put a top-level object
back in the cache if they edited it

Java technology should be simple...

@Sun 2006 JavaOnes" Conference | Session TS-3217 | 25 java.sun.com/javaone/sf

Problems With Serialization

Java Has “Pass-by-Reference” Semantics
// let’s create one father and two sons

Person adam = new Person(“Adam”, null) ;

Person cain = new Person(“Cain”,

Person abel = new Person (“Abel”,

AN

adam

cain

abel

adam) ;

adam) ;

Object Identity Is Preserved

®Sun

2006 JavaOnes Conference | Session TS-3217 | 26 java.sun.com/javaone/sf

Problems With Serialization
Serialization Breaks Regular Object References

// but... if we serialize Cain and Abel
Person cain = (Person)Serializer.clone(cain);
Person abel = (Person)Serializer.clone(abel);
adam adam
cain abel

Object Identity Is NOT Preserved

@Sun 2006 JavaOnes" Conference | Session TS-3217 | 27 java.sun.com/javaone/sf

The Importance of Preserving Java
Technology’s Pass-by-Reference
Semantics

If Object ldentity is broken, then developers must:

Maintain the relational maps between objects
themselves

Layer some kind of primary-key mechanism onto
their domain objects

This forces developers to:
Think like relational database designers

Rip the domain model apart and then manually stitch
it back together with keys

@Sun 2006 JavaOnes" Conference | Session TS-3217 | 28 java.sun.com/javaone/sf

APIl-based Clustering Is Not Scalable

* Java technology serialization is not scalable
* Field updates

[Push whole object graph

[] Too much data is sent over wire
- Coarse-grained locks

[] Locking top-level object, regardless of scope of change
[Premature lock contention

2006 JavaOnes" Conference | Session TS-3217 | 29 java.sun.com/javaone/sf

There Has to Be a Better Way!

* Let’s take a step back and look at how
Java technology works

@SM?} 2006 JavaOne® Conference | Session TS-3217 | 30 iava .sun.com/iavaone/sf

Agenda

* Qverview of clustering solutions today
* Sample problem statement
* Traditional clustering solutions
* Discussion: Scale-out OR Simplicity

* The need for Naturally Clustered Java™ technology

* Scale-out AND Simplicity: Clustering at the Java VM
(JVM™) |evel

* Introduction to the Terracotta for Spring

* Overview of the Terracotta for Spring—
features and demos

* Summary and Q&A

2006 JavaOnes Conference | Session TS-3217 | 31 java.sun.com/javaone/sf

Ideally, Clustered Java Technology Would...

* Use natural Java code semantics

* Turn a single-Java VM application into a
clustered one, without:

1. Code changes
2. Semantic changes

* What is needed is a Java-based service that
handles these issues Transparently...
at Runtime

2006 JavaOnes" Conference | Session TS-3217 | 32 java.sun.com/javaone/sf

Simplicity and Scale-out

* Simplicity at runtime requires...
* Preservation of Object Identity

* Preservation of the semantics of the
Java Memory Model

* Event-based caching, not time-based
* Scale-out requires...
* Fine-grained replication
* Runtime lock optimization for clustering
* Runtime caching for data access

”’f{’SMﬂ 2006 JavaOne®™ Conference | Session TS-3217 | 33

java.sun.com/javaone/sf

Agenda

* Qverview of clustering solutions today
* Sample problem statement
* Traditional clustering solutions
* Discussion: Scale-out OR Simplicity

* The need for Naturally Clustered Java™ technology

* Scale-out AND Simplicity: Clustering at the Java VM
(JVM™) level

* Introduction to the Terracotta for Spring

* Overview of the Terracotta for Spring—
features and demos

* Summary and Q&A

2006 JavaOneS Conference | Session TS-3217 | 34 java.sun.com/javaone/sf

Clustering at the Java VM Level:

Terracotta for Spring

Transparent Natural Runtime Clustering
for Java Technology

i S B e s B o i S il e e g T R T T P T [e e e e
single-Node Single-Mode 1! Single-Node Single-Node
Spring Application 1 | Spring Application Spring Application

[
I
Spring Application |
I
|
I

Terracotta for Spring

ributed Application Context & Simplified Messaging

e s e 8 i i o

Phiysical Server Physical Server Physical Server Physical Server

@Sun 2006 JavaOne® Conference | Session TS-3217 | 35 java.sun.com/javaone/sf

sssssssssss

Terracotta Injects Quality of Services
Transparently at Runtime

Developer focuses
solely on the

v, | business logic,
using POJOs,
Spring Beans, EJB™
specifications, etc.

-

Terracotta for Spring

Injects pre-packaged
QoS into the application

2006 JavaOnes" Conference | Session TS-3217 | 36 java.sun.com/javaone/sf

The Spring Framework

Life-cycle
* Defines and drives object life cycle (creates and destroys
beans)
Scope
* Singleton—scoped by application context

* Prototype—scoped by user (factory returns a new one
every time)

* Session (or custom) scoped beans—scoped by session
or custom code

Assembly

* Well-defined components with declarative dependencies

Allows us to naturally layer clustering services on top

2006 JavaOnes Conference | Session TS-3217 | 37 java.sun.com/javaone/sf

>,

Introducing Terracotta for Spring
Overview

Drops In and Out Transparently
Natural Clustering of Spring Beans

Turn Spring ApplicationContext Events
into Distributed Reliable Events

Sharing of Java Management Extensions
(JMX) state

Sharing of Spring WebFlow’s page flows
High performance—fine-grained clustering
Object identity is preserved

Cluster-wide thread coordination

2006 JavaOnes" Conference | Session TS-3217 | 38 java.sun.com/javaone/sf

Drops In and Out Transparently

* No changes to existing code necessary
* Declarative configuration in Terracotta XML file

%‘“@Sun 2006 JavaOne® Conference | Session TS-3217 | 39 iava .sun.com/javaone/sf

Natural Clustering of Spring Beans

* Supported types are Singleton and Session
scoped beans

* Life-cycle semantics preserved

* Scope semantics preserved—within the same
“logical” ApplicationContext

2006 JavaOnes" Conference | Session TS-3217 | 40 java.sun.com/javaone/sf

DEMO

Clustered Inventory Spring Application

2006 JavaOnes™ Conference | Session TS-3217 | 41 java.sun.com/javaone/sf

This Is All the Config We Need

<application name="Inventory'>
<application-contexts>
<application-context>
<paths>
<path>*/inventory.xml</path>
</paths>

<beans>
<bean name="store"/>
</beans>
</application-context>
</application-contexts>
</application>

@Sun 2006 JavaOnes™ Conference | Session TS-3217 | 42 java.sun.com/javaone/sf

What Are Spring
ApplicationContext Events?

Spring has a simple event/messaging facility

in the ApplicationContext

Similar to the Observer pattern

Publish event to the context using
publishEvent (event)

All beans that implement the
ApplicationListener interface
will receive the event

%%Sun 2006 JavaOne® Conference | Session TS-3217 | 43

java.sun.com/javaone/sf

>,

Distributed Reliable Events

Turn Spring ApplicationContext events
iInto Distributed Reliable Events

Local within the same “logical”
ApplicationContext

Asynchronous and reliable multicast

Highly performant

Any POJO can be the event or part of the event
No serialization—sends actual delta
Pass-by-reference works as expected

2006 JavaOnes" Conference | Session TS-3217 | 44 java.sun.com/javaone/sf

Sharing JMX State

Shared beans can be exposed through
Spring JMX

Coherent view of the aggregate state
throughout the cluster

One single point of management
One single point of monitoring

2006 JavaOne®M Conference | Session TS-3217 | 45

java.sun.com/javaone/sf

Java

Sharing of Spring WebFlow

Clustering of WebFlow’s state machine

Transparent and high-performant fail-over
for page flows

Potentially allow sharing a WebFlow
Instance across an application, to be used
by more than one user (when parallel tasks
are required)

2006 JavaOnes" Conference | Session TS-3217 | 46 java.sun.com/javaone/sf

DEMO

Clustering JMX State—
Web Application

2006 JavaOnes" Conference | Session TS-3217 | 47 java.sun.com/javaone/sf

Agenda

* Qverview of clustering solutions today
* Sample problem statement
* Traditional clustering solutions
* Discussion: Scale-out OR Simplicity

* The need for Naturally Clustered Java™ technology

* Scale-out AND Simplicity: Clustering at the Java VM
(JVM™) level

* Introduction to the Terracotta for Spring

* Overview of the Terracotta for Spring—
features and demos

* Summary and Q&A

2006 JavaOnes" Conference | Session TS-3217 | 48 java.sun.com/javaone/sf

Summary

* Being able to Scale-out Spring applications is
becoming more and more important

* Historically there has been a trade-off between
Scale-out and Simplicity

* There is a need for a runtime that does not make
this trade-off

* A runtime that can handle this:
* Transparently—declarative config—zero code changes
* While preserving the normal semantics for Java

* The Terracotta for Spring can address these issues
today by clustering at the JVM level

2006 JavaOneS Conference | Session TS-3217 | 49 java.sun.com/javaone/sf

Availability—Terracotta for Spring

* Free license for production use

* Sign-up for the beta program today
* http://www.terracottatech.com/downloads.jsp

@Sun 2006 JavaOnes Conference | Session TS-3217 | 50 java.sun.com/javaone/sf

sssssssssss

For More Information

* http://www.terracottatech.com/
* http://springframework.org/

* http://blog.terracottatech.com/
* http://jonasboner.com/

java.sun.com/javaone/sf

2006 JavaOne®M Conference | Session TS-3217 | 51

Q&A

Jonas Bonér

2006 JavaOnes" Conference | Session TS-3217 | 52 java.sun.com/javaone/sf

@ Sun

: ‘ POWER -a* TERRACOTTA

Java

JavaOne

Transparently Clustered Spring—

A Runtime Solution for Java™ Technology
Jonas Boneér

Senior Software Engineer
Terracotta, Inc.

http://www.terracottatech.com
TS-3217

2006 JavaOne®™ Conference | Session TS-3217 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

