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Understand how model-based 
performance management can help you 
manage and understand your application
Or, a one hour nap.  Your choice.  Enjoy!

What Are You Going to Get Out of This?
Goal of This Talk
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Model-Based Performance 
Management Techniques
• Definitions: monitoring and performance management
• Introduction: what is a model, and why is it helpful?
• History of monitoring and performance management

• How applications are evolving

• Problems that break traditional monitoring:
• Transactional flow data
• Virtualized environments

• How models work
• Examples of models
• Summary and conclusions
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Monitoring and Performance 
Management
• Monitoring

• Is it running?
• Is it fast enough? (service levels)
• Less data on all the parts
• How much does it cost (resource consumption)?
• Operations, production, reporting, management

• Performance management
• Keeping it running
• Making it run faster (or fast enough)
• More data on fewer parts

• Evolving to be broader
• Design, capacity planning, profiling, diagnosis
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What Is a Model, and Why Is it Helpful?
• A model is a specific way of organizing data gathered about a system

• Application of well-known object-oriented principals to the 
monitoring domain

• Model-based performance management involves turning raw 
collected data into a model of the underlying system

• Should look like the picture an application owner would draw
• Separates the context of the data from the data itself
• Allows the same data to be used in different ways by different models
• Allows different users to have different views on the data

• Model-based performance management helps
• Reduce false alerts
• Speed diagnosis
• Uncover trends
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How Does a Model Differ From 
Traditional Monitoring
• Traditional monitoring organizes 

data by point of collection, or by 
metric type

• Relational database tables
• Correlation inside the table
• Correlation using keys
• Difficult to correlate outside 

the table
• Cannot differentiate properties 

and metrics

• Model-based monitoring organizes 
data by monitored resource

• Represents what is being 
monitored

• Correlation is implicit in the location 
of the data
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CPU

Host

App Server

How Does a Model Work?
• Groups data into an object of a 

particular type
• Differentiates between metrics and 

properties
• Metric: time-series data
• Property: attribute of system that doesn’t 

change frequently

• Tracks changes to properties
• Uses properties and context to identify 

relationships with other objects
• Including dynamic dependency mapping

• Allows correlation
• Metrics to metrics
• Metrics to properties
• Properties to properties
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Why Do I Care About Models?
• If you do performance management or monitoring for 

your applications, you need better data
• Application scale and complexity is increasing
• Current state of the art is presenting more uncorrelated data

• Uncorrelated data can help sometimes, but some problems cannot 
be solved

• Gathered data set changes at run time

• With the basics of models in mind, let’s examine the 
history of monitoring and evolving application complexity
• Make the case for a new approach
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History of Monitoring

• Phase One: Availability
• Is it running?

• Phase Two: Proprietary performance data
• Why isn’t it running?
• Monitoring vendors provide performance data
• Platform vendors provide performance data

• Phase Three: Standardization
• JSR 77, Java™ Management Extensions (JMX™)
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History of Monitoring Part II

• Phase One: Your environment was a simple 
network map showing everything
• Available or not available

• Phase Two: Add more data to the network map
• Phase Three: The data often contains relationship 

and property information
• JSR 77 has a rich object hierarchy and can represent 

properties as well as metrics
• Domain-specific models
• But what about cross-domain data?
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How Applications Are Evolving

• Huge changes in the last 10 years
• Your application is not just yours

• Integrations, other groups
• Your part of the application is not all your code

• Frameworks, open source

• These changes have made old school 
techniques obsolete
• Not the good old school
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Application 1996

• In the early days, getting your application on the 
Internet was cool enough
• Servlet using JDBC™ software to call a database

• Infrastructure was fairly simple
• <5 systems, including 1 database
• Isolated: low cost, therefore dedicated hardware 

made sense
• Isolated: single group owned the whole thing
• Transaction volumes were small

• Didn’t seem like it at the time
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Application 2006
• Applications have new complexities along all 

possible axes
• Huge infrastructure that is shared with other applications

• Or, ASP model—somebody else provides it
• Or, grid—infrastructure is flexible

• Infrastructure is shared with other groups
• Multiple interests are being served: systems group, database group, 

etc.
• Incorporation of legacy systems
• Frameworks, open source
• Specialty servers
• Platforms e.g. workflow servers and ERPs built on top of the 

Java Platform, Enterprise Edition (Java EE)
• SOA
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Application 2006: Complexity Rules
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Organizing Application Complexity

• Vertical complexity
• Add complexity inside a single piece
• Tiers, isolation layers, frameworks

• Horizontal complexity
• Add pieces and paths between them
• Clustering, dynamic deployment, virtual environments

• Heterogeneity
• Adding complexity by adding variables on the pieces
• Server types, legacy systems, changing 

deployments, Web Services
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Application Complexity: So What?
• A big problem if you need to manage application 

performance
• How are you going to get data from all the domains?

• Probably a mixture of tools you buy, tools you download and 
tools you build yourself?

• How are you going to correlate that data across 
domains?

• Excel?
• What if your domain changes—do you lose your 

ability to manage the domain?
• Sometimes the domain changes are mandated

• The relationships must be preserved!
• Enter model-based monitoring
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Problems That Break Traditional 
Monitoring: Transaction Flow Data

• Transaction flow data is gathered using 
instrumentation that can monitor an in-flow 
or out-flow 
• Call tree
• Each node has metrics on the performance of a 

“method” or “tier”
• Each node also has relationships with other nodes

• App server X calls app server Y calls database Z

• Absolutely critical for SOA and Web Services
• What are the dependencies?
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The Transaction Flow Problem

• Web server X, Y call app server A
• X has a caching error that causes too many calls to 

the app server tier
• X->A: 26000
• Y->A: 23

• If the relationship is not preserved, all you have is call 
count for A

• Similar: if Y is misconfigured so it never calls A

X

Y

A
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Problems That Break Traditional 
Monitoring: Virtualized Environments
• Host monitoring used to be easy

• A host was always a host
• 1:1 mapping between logical and physical host

• Today’s world is much more complex
• A host may be a logical host representing an 

active-passive cluster
• A host may be one of a cluster of hosts arbitrarily 

grouped together
• A host may be a virtual host running on a 

physical host
• A host may change its IP address or domain 

dynamically
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Problems That Break Traditional 
Monitoring: Virtualized Environments

• Two problems:
• The relationship between physical and logical must 

be preserved, or the host data becomes meaningless
• The Wichita lab is shutting down all servers for a scheduled 

power outage.  They have provided a list of physical boxes 
that will be shut down.  Will I be affected?

• A host goes down, and my active-passive cluster switches to 
one of the passive nodes.  Do I get an alarm because my 
original host was tied to my app server data?

• The property information must be tracked—  
changes could require groupings to change

• Example: Hosts are grouped by IP address, IP 
address changes
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How Do Models Work?

• Remember that we said 
that models:
• Group data into objects
• Create properties 

from metrics
• Track changes
• Preserve relationships
• Enable correlation
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Attributes of a Model

• Models are made up of objects that have:
• Properties
• Relationships
• Metrics
• Alarms and changes

• A property can have multiple items
• Single entry or list

• In terms of the actual implementation, 
everything is a property
• Relationships, metrics, alarms, changes are typed 

specializations of a property
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Model Capabilities: 
Properties and Relationships

AppServer

Metric:availability

String:name=bankapp

Integer:port=8080

Java EE App:app=bankapp.ear

Java EE App:app=admin.ear

Java EE App

String:name=bankapp.ear

Java EE App

String:name=admin.ear
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AppServer

Metric:availability

String:name=bankapp

Integer:port=8080

Java EE App:app=bankapp.ear

Java EE App:app=admin.ear

Java EE App

String:name=bankapp.ear

Java EE App

String:name=admin.ear

Model Capabilities: 
Implicit Data Correlation

M1 M2
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AppServer

Model Capabilities: 
Tracking Property Changes

Change:app:Add bad.ear

Change:app:Remove bad.ear

Metric:availability

String:name=bankapp

Integer:port=8080

Java EE App:app=bankapp.ear

Java EE App:app=admin.ear
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AppServer

Metric:availability

String:name=bankapp

Integer:port=8080

Java EE App:app=bankapp.ear

Java EE App:app=admin.ear

Model Capabilities: State Annotations

M
M

Rule:
If M1>2 && M2 < 100

then FATAL

S



2006 JavaOneSM Conference   |   Session TS-1591   | 27

AppServer

Metric:availability

String:name=bankapp

Integer:port=8080

Java EE App:app=bankapp.ear

Java EE App:app=admin.ear

Model Capabilities: State Propagation

Java EE App

String:name=bankapp.ear

Java EE App

String:name=admin.ear

Normal

NormalFATAL

FATAL
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Runtime Behaviour of Models

• Models can be created and updated based on 
data available today
• Combination of raw data and collection context

• What is required is a transformation of the data 
from metrics to model objects, properties, 
property changes and metrics
• Could be done as part of data post-processing
• Could be done dynamically

• Benefits include responding to change, intelligent alerting
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Dynamic Data Transformation 
Architecture

• Configure with data transformation
• Transform data as it arrives
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Benefits of Dynamic Data 
Transformation

• Model can respond to real changes in the 
environment

• Model can change as new entities come online
• Or as new types of data collection are enabled

• Changes can be tracked as property changes
• No one-time calculation
• Data transformation definition can change

• Create multiple models from the same data
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More Benefits of Dynamic Data 
Transformation

• Result of transformation is a common form for 
the data
• Enables correlation and post-processing

• When data is transformed and placed in a 
model, the original collection context is no 
longer important
• Data is not “stamped” by where it was collected
• Enables remote/touchless collection
• Enables cluster collection

• Data from different collectors can rendezvous in 
the same object



2006 JavaOneSM Conference   |   Session TS-1591   | 32

How Models Enable Intelligent Alerting

• As mentioned earlier, by preserving all 
relationships, models enable state propagation
• Alerts are associated with the originating 

model object
• Functions can be written to propagate state in 

interesting ways
• Creation of Service Level Agreements (SLAs) like 

“AppServerCluster not available if more than 2 out of 5 
nodes are down”

• Difficult to do without preserving the relationships.
• Very important for reporting and chargeback
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Aggregate Models
• Models can be combined in 

arbitrary ways
• Application groupings
• Logical groupings
• Organizational groupings
• Geographical groupings

• Same features exist for 
aggregate models

• State is propagated
• Property changes are tracked
• Metrics can be associated and 

correlated

• Now we enter a very powerful 
domain! Host:

tor032

AppServer:
app2

App:
fin

AppServer:
app1

Host:
tor022

Host:
tor012

App:
bank App:

bank

App:
mine

MyModel
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Example of an Aggregate Model

• App server farm is provided for application 
developers at BigBucksBank

• Multiple applications hosted per app server
• User can create an aggregate model that 

selects only the applications she cares about
• Groups them in a way that makes sense
• Define custom ways of propagating state

• State is only propagated for the things she 
cares about
• No looking at someone else’s problems all the time 
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Do Models Exist Today?
• Models do exist today
• JSR 77 does a good job of defining a 

performance management model for the 
Java EE platform

• Most application servers have JMX API MBeans 
that are a model
• Unfortunately, most collection technologies jettison 

the object relationships
• CIM defines models for most domains

• Although this definition is relatively shallow
• Not frequently used
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JSR 77 Java EE Performance 
Management Model
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Do We Need More Than
Domain Models?

• Performance management is increasingly about 
bridging technology silos
• Multiple app servers, web servers, database

• Domain models are great, but something needs 
to bring it all together

• Need to be able to create models for domains 
that are flat

• Need to be able to create custom aggregate 
models to represent a true application owner’s 
slice on the systems
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Summary

• Application complexity requires a new approach 
to performance management and monitoring

• A model-based approach uses raw data to create 
objects that represent parts of an application

• Models have properties, relationships, metrics 
and state

• A model-based approach 
• Preserves context 
• Enables data correlation
• Structures system state
• Allows model elements to be rearranged in arbitrary ways
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