
2006 JavaOneSM Conference | Session TS-1591 |

Model-Based Performance
Management Techniques
for Modern Applications
Geoffrey Vona
Development Manager
Quest Software
http://www.quest.com

TS-1591

2006 JavaOneSM Conference | Session TS-1591 | 2

Understand how model-based
performance management can help you
manage and understand your application
Or, a one hour nap. Your choice. Enjoy!

What Are You Going to Get Out of This?
Goal of This Talk

2006 JavaOneSM Conference | Session TS-1591 | 3

Model-Based Performance
Management Techniques
• Definitions: monitoring and performance management
• Introduction: what is a model, and why is it helpful?
• History of monitoring and performance management

• How applications are evolving

• Problems that break traditional monitoring:
• Transactional flow data
• Virtualized environments

• How models work
• Examples of models
• Summary and conclusions

2006 JavaOneSM Conference | Session TS-1591 | 4

Monitoring and Performance
Management
• Monitoring

• Is it running?
• Is it fast enough? (service levels)
• Less data on all the parts
• How much does it cost (resource consumption)?
• Operations, production, reporting, management

• Performance management
• Keeping it running
• Making it run faster (or fast enough)
• More data on fewer parts

• Evolving to be broader
• Design, capacity planning, profiling, diagnosis

2006 JavaOneSM Conference | Session TS-1591 | 5

What Is a Model, and Why Is it Helpful?
• A model is a specific way of organizing data gathered about a system

• Application of well-known object-oriented principals to the
monitoring domain

• Model-based performance management involves turning raw
collected data into a model of the underlying system

• Should look like the picture an application owner would draw
• Separates the context of the data from the data itself
• Allows the same data to be used in different ways by different models
• Allows different users to have different views on the data

• Model-based performance management helps
• Reduce false alerts
• Speed diagnosis
• Uncover trends

2006 JavaOneSM Conference | Session TS-1591 | 6

How Does a Model Differ From
Traditional Monitoring
• Traditional monitoring organizes

data by point of collection, or by
metric type

• Relational database tables
• Correlation inside the table
• Correlation using keys
• Difficult to correlate outside

the table
• Cannot differentiate properties

and metrics

• Model-based monitoring organizes
data by monitored resource

• Represents what is being
monitored

• Correlation is implicit in the location
of the data

M

M

M

M
P P

P

2006 JavaOneSM Conference | Session TS-1591 | 7

CPU

Host

App Server

How Does a Model Work?
• Groups data into an object of a

particular type
• Differentiates between metrics and

properties
• Metric: time-series data
• Property: attribute of system that doesn’t

change frequently

• Tracks changes to properties
• Uses properties and context to identify

relationships with other objects
• Including dynamic dependency mapping

• Allows correlation
• Metrics to metrics
• Metrics to properties
• Properties to properties

M

M

M
M

M

M

M

M

M

MP
P

P

P

P1 P2

2006 JavaOneSM Conference | Session TS-1591 | 8

Why Do I Care About Models?
• If you do performance management or monitoring for

your applications, you need better data
• Application scale and complexity is increasing
• Current state of the art is presenting more uncorrelated data

• Uncorrelated data can help sometimes, but some problems cannot
be solved

• Gathered data set changes at run time

• With the basics of models in mind, let’s examine the
history of monitoring and evolving application complexity
• Make the case for a new approach

2006 JavaOneSM Conference | Session TS-1591 | 9

History of Monitoring

• Phase One: Availability
• Is it running?

• Phase Two: Proprietary performance data
• Why isn’t it running?
• Monitoring vendors provide performance data
• Platform vendors provide performance data

• Phase Three: Standardization
• JSR 77, Java™ Management Extensions (JMX™)

2006 JavaOneSM Conference | Session TS-1591 | 10

History of Monitoring Part II

• Phase One: Your environment was a simple
network map showing everything
• Available or not available

• Phase Two: Add more data to the network map
• Phase Three: The data often contains relationship

and property information
• JSR 77 has a rich object hierarchy and can represent

properties as well as metrics
• Domain-specific models
• But what about cross-domain data?

2006 JavaOneSM Conference | Session TS-1591 | 11

How Applications Are Evolving

• Huge changes in the last 10 years
• Your application is not just yours

• Integrations, other groups
• Your part of the application is not all your code

• Frameworks, open source

• These changes have made old school
techniques obsolete
• Not the good old school

2006 JavaOneSM Conference | Session TS-1591 | 12

Application 1996

• In the early days, getting your application on the
Internet was cool enough
• Servlet using JDBC™ software to call a database

• Infrastructure was fairly simple
• <5 systems, including 1 database
• Isolated: low cost, therefore dedicated hardware

made sense
• Isolated: single group owned the whole thing
• Transaction volumes were small

• Didn’t seem like it at the time

2006 JavaOneSM Conference | Session TS-1591 | 13

Application 2006
• Applications have new complexities along all

possible axes
• Huge infrastructure that is shared with other applications

• Or, ASP model—somebody else provides it
• Or, grid—infrastructure is flexible

• Infrastructure is shared with other groups
• Multiple interests are being served: systems group, database group,

etc.
• Incorporation of legacy systems
• Frameworks, open source
• Specialty servers
• Platforms e.g. workflow servers and ERPs built on top of the

Java Platform, Enterprise Edition (Java EE)
• SOA

2006 JavaOneSM Conference | Session TS-1591 | 14

Application 2006: Complexity Rules

Interfaces Portlets

Clients

Browser

App
Client

Mobile

Process Data

Database

Identity /
Policy

Mainframes

Legacy

WSRPWSRPServices

Portlets

WSRPWSRPServices

Presentation

Portal

Web App

WSRPWSRPServices

External

Workflow

Workflow

Logic

WSRPWSRPServices

Logic

WSRPWSRPServices

WSRPWSRPServicesB2B

Hardware

Assets

Security

Network

System

Internal

Custom and Packaged Apps Data and System Services

2006 JavaOneSM Conference | Session TS-1591 | 15

Organizing Application Complexity

• Vertical complexity
• Add complexity inside a single piece
• Tiers, isolation layers, frameworks

• Horizontal complexity
• Add pieces and paths between them
• Clustering, dynamic deployment, virtual environments

• Heterogeneity
• Adding complexity by adding variables on the pieces
• Server types, legacy systems, changing

deployments, Web Services

2006 JavaOneSM Conference | Session TS-1591 | 16

Application Complexity: So What?
• A big problem if you need to manage application

performance
• How are you going to get data from all the domains?

• Probably a mixture of tools you buy, tools you download and
tools you build yourself?

• How are you going to correlate that data across
domains?

• Excel?
• What if your domain changes—do you lose your

ability to manage the domain?
• Sometimes the domain changes are mandated

• The relationships must be preserved!
• Enter model-based monitoring

2006 JavaOneSM Conference | Session TS-1591 | 17

Problems That Break Traditional
Monitoring: Transaction Flow Data

• Transaction flow data is gathered using
instrumentation that can monitor an in-flow
or out-flow
• Call tree
• Each node has metrics on the performance of a

“method” or “tier”
• Each node also has relationships with other nodes

• App server X calls app server Y calls database Z

• Absolutely critical for SOA and Web Services
• What are the dependencies?

2006 JavaOneSM Conference | Session TS-1591 | 18

The Transaction Flow Problem

• Web server X, Y call app server A
• X has a caching error that causes too many calls to

the app server tier
• X->A: 26000
• Y->A: 23

• If the relationship is not preserved, all you have is call
count for A

• Similar: if Y is misconfigured so it never calls A

X

Y

A

2006 JavaOneSM Conference | Session TS-1591 | 19

Problems That Break Traditional
Monitoring: Virtualized Environments
• Host monitoring used to be easy

• A host was always a host
• 1:1 mapping between logical and physical host

• Today’s world is much more complex
• A host may be a logical host representing an

active-passive cluster
• A host may be one of a cluster of hosts arbitrarily

grouped together
• A host may be a virtual host running on a

physical host
• A host may change its IP address or domain

dynamically

2006 JavaOneSM Conference | Session TS-1591 | 20

Problems That Break Traditional
Monitoring: Virtualized Environments

• Two problems:
• The relationship between physical and logical must

be preserved, or the host data becomes meaningless
• The Wichita lab is shutting down all servers for a scheduled

power outage. They have provided a list of physical boxes
that will be shut down. Will I be affected?

• A host goes down, and my active-passive cluster switches to
one of the passive nodes. Do I get an alarm because my
original host was tied to my app server data?

• The property information must be tracked—
changes could require groupings to change

• Example: Hosts are grouped by IP address, IP
address changes

2006 JavaOneSM Conference | Session TS-1591 | 21

How Do Models Work?

• Remember that we said
that models:
• Group data into objects
• Create properties

from metrics
• Track changes
• Preserve relationships
• Enable correlation

CPU

Host

App Server

M

M

M
M

M

M

M

M

M

MP
P

P

P

P1 P2

2006 JavaOneSM Conference | Session TS-1591 | 22

Attributes of a Model

• Models are made up of objects that have:
• Properties
• Relationships
• Metrics
• Alarms and changes

• A property can have multiple items
• Single entry or list

• In terms of the actual implementation,
everything is a property
• Relationships, metrics, alarms, changes are typed

specializations of a property

2006 JavaOneSM Conference | Session TS-1591 | 23

Model Capabilities:
Properties and Relationships

AppServer

Metric:availability

String:name=bankapp

Integer:port=8080

Java EE App:app=bankapp.ear

Java EE App:app=admin.ear

Java EE App

String:name=bankapp.ear

Java EE App

String:name=admin.ear

2006 JavaOneSM Conference | Session TS-1591 | 24

AppServer

Metric:availability

String:name=bankapp

Integer:port=8080

Java EE App:app=bankapp.ear

Java EE App:app=admin.ear

Java EE App

String:name=bankapp.ear

Java EE App

String:name=admin.ear

Model Capabilities:
Implicit Data Correlation

M1 M2

2006 JavaOneSM Conference | Session TS-1591 | 25

AppServer

Model Capabilities:
Tracking Property Changes

Change:app:Add bad.ear

Change:app:Remove bad.ear

Metric:availability

String:name=bankapp

Integer:port=8080

Java EE App:app=bankapp.ear

Java EE App:app=admin.ear

2006 JavaOneSM Conference | Session TS-1591 | 26

AppServer

Metric:availability

String:name=bankapp

Integer:port=8080

Java EE App:app=bankapp.ear

Java EE App:app=admin.ear

Model Capabilities: State Annotations

M
M

Rule:
If M1>2 && M2 < 100

then FATAL

S

2006 JavaOneSM Conference | Session TS-1591 | 27

AppServer

Metric:availability

String:name=bankapp

Integer:port=8080

Java EE App:app=bankapp.ear

Java EE App:app=admin.ear

Model Capabilities: State Propagation

Java EE App

String:name=bankapp.ear

Java EE App

String:name=admin.ear

Normal

NormalFATAL

FATAL

2006 JavaOneSM Conference | Session TS-1591 | 28

Runtime Behaviour of Models

• Models can be created and updated based on
data available today
• Combination of raw data and collection context

• What is required is a transformation of the data
from metrics to model objects, properties,
property changes and metrics
• Could be done as part of data post-processing
• Could be done dynamically

• Benefits include responding to change, intelligent alerting

2006 JavaOneSM Conference | Session TS-1591 | 29

Dynamic Data Transformation
Architecture

• Configure with data transformation
• Transform data as it arrives

DT

Agent

M
Agent

M RR
R

M

M

M M

M
D

ata Transform
ation

Rule Engine
M R

Data
arrives
from

agents

Transformation
of data to model

Creation of
run-time model

instance

2006 JavaOneSM Conference | Session TS-1591 | 30

Benefits of Dynamic Data
Transformation

• Model can respond to real changes in the
environment

• Model can change as new entities come online
• Or as new types of data collection are enabled

• Changes can be tracked as property changes
• No one-time calculation
• Data transformation definition can change

• Create multiple models from the same data

2006 JavaOneSM Conference | Session TS-1591 | 31

More Benefits of Dynamic Data
Transformation

• Result of transformation is a common form for
the data
• Enables correlation and post-processing

• When data is transformed and placed in a
model, the original collection context is no
longer important
• Data is not “stamped” by where it was collected
• Enables remote/touchless collection
• Enables cluster collection

• Data from different collectors can rendezvous in
the same object

2006 JavaOneSM Conference | Session TS-1591 | 32

How Models Enable Intelligent Alerting

• As mentioned earlier, by preserving all
relationships, models enable state propagation
• Alerts are associated with the originating

model object
• Functions can be written to propagate state in

interesting ways
• Creation of Service Level Agreements (SLAs) like

“AppServerCluster not available if more than 2 out of 5
nodes are down”

• Difficult to do without preserving the relationships.
• Very important for reporting and chargeback

2006 JavaOneSM Conference | Session TS-1591 | 33

Aggregate Models
• Models can be combined in

arbitrary ways
• Application groupings
• Logical groupings
• Organizational groupings
• Geographical groupings

• Same features exist for
aggregate models

• State is propagated
• Property changes are tracked
• Metrics can be associated and

correlated

• Now we enter a very powerful
domain! Host:

tor032

AppServer:
app2

App:
fin

AppServer:
app1

Host:
tor022

Host:
tor012

App:
bank App:

bank

App:
mine

MyModel

2006 JavaOneSM Conference | Session TS-1591 | 34

Example of an Aggregate Model

• App server farm is provided for application
developers at BigBucksBank

• Multiple applications hosted per app server
• User can create an aggregate model that

selects only the applications she cares about
• Groups them in a way that makes sense
• Define custom ways of propagating state

• State is only propagated for the things she
cares about
• No looking at someone else’s problems all the time

2006 JavaOneSM Conference | Session TS-1591 | 35

Do Models Exist Today?
• Models do exist today
• JSR 77 does a good job of defining a

performance management model for the
Java EE platform

• Most application servers have JMX API MBeans
that are a model
• Unfortunately, most collection technologies jettison

the object relationships
• CIM defines models for most domains

• Although this definition is relatively shallow
• Not frequently used

2006 JavaOneSM Conference | Session TS-1591 | 36

JSR 77 Java EE Performance
Management Model

2006 JavaOneSM Conference | Session TS-1591 | 37

Do We Need More Than
Domain Models?

• Performance management is increasingly about
bridging technology silos
• Multiple app servers, web servers, database

• Domain models are great, but something needs
to bring it all together

• Need to be able to create models for domains
that are flat

• Need to be able to create custom aggregate
models to represent a true application owner’s
slice on the systems

2006 JavaOneSM Conference | Session TS-1591 | 38

Summary

• Application complexity requires a new approach
to performance management and monitoring

• A model-based approach uses raw data to create
objects that represent parts of an application

• Models have properties, relationships, metrics
and state

• A model-based approach
• Preserves context
• Enables data correlation
• Structures system state
• Allows model elements to be rearranged in arbitrary ways

2006 JavaOneSM Conference | Session TS-1591 |

Model-Based Performance
Management Techniques
for Modern Applications
Geoffrey Vona
Development Manager
Quest Software
http://www.quest.com

TS-1591

