
2006 JavaOneSM Conference | Session TS-1595 |

Scaling Out Tier Based
Applications
Nati Shalom
CTO

GigaSpaces
www.gigaspaces.com
TS-1595

2006 JavaOneSM Conference | Session TS-1595 | 2

Objectives

• Learn how to transform existing tier-based
applications into dynamically scalable services
using Space Based Architecture (SBA):
• Distributed caching
• Parallel processing
• Virtualization
• Dynamic provisioning

2006 JavaOneSM Conference | Session TS-1595 | 3

Agenda
• Nati Shalom: CTO, GigaSpaces

• Turning tiers into scalable services using SBA
• www.gigaspaces.com

• John Davies: CTO, C24
• Using SBA to deliver scalable trade execution engine
• www.c24.biz

• Frank Greco: Chair, NYJavaSIG
• Patterns and use-cases for using SBA to achieve scalability
• www.javasig.com

2006 JavaOneSM Conference | Session TS-1595 | 4

Before We Begin
• Scale-out

• Scale by adding more (duplicates) application processing
units (services) on a dynamic pool of machines

• Scale-up
• Scale by adding more processing power (CPU’s) to a

single machine
• Linear scalability

• The overall throughput = number of processing units *
throughput per unit

• Dynamic scalability
• Scale on demand (usually using some sort of provisioning

and monitoring capabilities)

“Scalability for Dummies”

2006 JavaOneSM Conference | Session TS-1595 | 5

The Business Motivation

• Process increasing volume of information faster
and at a lower cost

• Why?
• Financial applications

• Electronic trading—generate more volume
• New regulation rules—requires real time decision making
• Low latency = who wins the deal first

• Telco
• Billing—pre-paid services requires real time decision making
• Voip/3G—increasing volume of information

• Others
• RFID

2006 JavaOneSM Conference | Session TS-1595 | 6

The Ideal Scenario—
“Write Once Scale Anywhere”

• Process increasing volume
of information
• Scale out to get more

processing power when
volume increases

• Shorter time
• Through caching
• Through parallelizing

of transactions
• Lower cost

• Pooling low commodity
resources

• Better utilization

Total TPS =
X*N

X TPS

X TPS

X TPS

X TPS

Processing Unit 1

Processing Unit 2

Processing Unit 3

Processing Unit N

Incoming
Transactions

2006 JavaOneSM Conference | Session TS-1595 | 7

The Reality

Load
Balancer

Presentation
 Tier

Business
Tier

Data
Tier

Synchronous
Communication

Most applications scale on
one dimension—the
presentation tier and leaves
the backend centralized

• To ensure reliability all states is
stored in a centralized DB

• To reduce latency business logic is
often written as stored procedures.

This leads to I/O bound applications that are
limited to scaling up model

The Middleware is the Bottleneck
True scalability could not be achieved

without solving the middleware bottleneck on both
data and processing (Business Logic) layers

2006 JavaOneSM Conference | Session TS-1595 | 8

The Challenges—Scaling with Today
Tier Based Approach
• Parallelizing centralized architecture
• How to scale when there are too many (independent) moving parts
• Consistency: each tier maintains its own HA and consistency

model; scaling out of several tiers together while maintaining
coherency of the system becomes pretty complex

• Serialization overhead: communication between sub components
create significant performance overhead

• Scaling up vs. scaling out: currently enforces different architecture
implementation per model; how to create a model that will enable a
combination of the scale-up and scale-out models without changing
the code

• Dynamic scalability: requires support from the application—to
enable external life cycle management; export matrix that will
trigger up scaling, down scaling events

2006 JavaOneSM Conference | Session TS-1595 | 9

Turning the Tiers into Scalable Virtual Services

Common
Load
Balancing

External
DB

Presentation
 Tier

Business
Tier

Data
Tier+ +

Rich
ClientRich

ClientRich
Client

Thin
ClientThin

ClientThin
Client

•Improve Performance through
In Memory Data Grid
•Virtualize the data through
Partitioning

Reduce the serialization overhead and simplify the deployment through
consolidation of the tiers into logical processing units

Parallelize the execution between transactions
while maintaining FIFO within transactions

Question:
What technology
can I use to do all

that?

2006 JavaOneSM Conference | Session TS-1595 | 10

Space Based Architecture (SBA)

Write

Read, Take,Notify

W
rit

e

R
ea

d,
 T

ak
e,

N
ot

ify

• Write: writes a data object
• Read: reads a copy of a data object
• Take: reads a data object and deletes it
• Notify: generates an event on

data updates
• Providing virtualization middleware for

Distributed Services providing:
• Data caching
• Load balancing
• Messaging—1/1, */*, workflow, CBR
• Parallel processing

• Using one common model, technology
and runtime environment

2006 JavaOneSM Conference | Session TS-1595 | 11

Single Virtualization Technology for Data-Tier and Processing Tier
Space Based Middleware Virtualization

Virtual
TableJDBCTM

Clustered Space

JMS

Virtual
Topic/QueueSpace

A
pp

lic
at

io
ns

Virtual Middleware

JCache

• Same data can be viewed
through different interfaces!

• A single runtime for
maintaining scalability,
redundancy across
all systems

• Reduces both the
maintenance overhead and
development complexity

• Provides Grid capabilities to
existing applications

2006 JavaOneSM Conference | Session TS-1595 | 12

Incoming
Requests
(Synchronous and
Asynchronous)

Intra Services Messaging Bus

Intra Services Messaging Bus

Intra Services Messaging Bus

Intra Services Messaging Bus

Service Grid

Dynamic Scalability Through
Virtualization of the Container
• SLA driven deployment

and management
• Adding dynamic

scalability and failover,
automation of
deployment and service
centralized monitoring
using the ServiceGrid

2006 JavaOneSM Conference | Session TS-1595 | 13

Can this Work with Existing
J2EE™ Platform-based Apps?

ORM
(Hibernate/JDO/iBatis/EJB 3s)

Business Layer
JMS, JDBC, EJBTM

Web/Application Containers
MVC

J2EE Platform Container

OS/Hardware

Applications

Application Middleware

• Distributed caching
• Parallel processing
• Messaging bus

Extending J2EE platform
through virtual Middleware
implementation

Use JCA, Session Bean as the
abstraction/ integration layer

2006 JavaOneSM Conference | Session TS-1595 | 14

Spring Makes it Seamless Transition

ORM
(Hibernate/JDO/iBatis/EJB 3s)

Business Layer

Web/Application Containers
MVC

J2EE Platform Container

OS/Hardware

Applications

Application Middleware

• Distributed caching
• Parallel processing
• Messaging bus

Using Spring to slide-in
virtual middleware while
keeping your POJO
unaware of that

Spring—POJO Abstraction

2006 JavaOneSM Conference | Session TS-1595 |

Using SBA to Deliver Scalable
Trade Execution Engine
John Davies
CTO

C24 Solutions

www.c24.biz

TS-1595

2006 JavaOneSM Conference | Session TS-1595 | 16

Pre-Trade Execution

• >5 million orders per day
• Typically Foreign Exchange (FX) and Equities

• >1000 orders per second
• Confirmation notification <5ms
• Near real-time liquidity monitoring (<100ms)
• Highly available and resilient
• Dynamically scalable

• Without taking the system down

Typically ECNs and OMSs

2006 JavaOneSM Conference | Session TS-1595 | 17

Pre-Trade Execution Architecture

SpaceSpace

Write new orders
into Space

Write new orders
into Space

Write sub-section
1 to local space

and Match

Write sub-section
4 to local space

and Match

Write sub-section
2 to local space

and Match

Write sub-section
3 to local space

and Match

Unmatched
Orders

Unmatched
Orders

Unmatched
Orders

Unmatched
Orders

Asynchronous copy
of all state for queries

Replicate

Replicate

Replicate

Replicate

Match Notifications Matching state
and Liquidity

Notifications Notifications

Collocating parsing and matching
business logic

• Order are partitioned
and processed in
parallel based on
correlation id

• Scaling out is done
through relocation of
partitions to different
machines

Orders are kept in the in memory
data-grid

Heavy weight queries could be
performed on replica to reduce
overhead on the matching
server

Logical View

2006 JavaOneSM Conference | Session TS-1595 | 18

Java™ Technology Binding
Gives More Flexibility

• Many message standards are non-XML based
• e.g. SWIFT, FIX, etc.
• FpML is a rare exception but the validation rules

extends beyond XML Schema
• Binding messages to Java technology provides

better integration, performance and flexibility
• Most SOA/ESB vendors are XML centric, this is

fine outside of the grid/bus but not internally
• IONA and C24 provide high-performance object

binding for better SOA performance and
integration

2006 JavaOneSM Conference | Session TS-1595 | 19

For Post-Trade Matching
Post-Trade Matching Engine

• >1 million trade pairs per day
• >1000 trades per second
• Match confirmation <5ms
• Near real-time liquidity monitoring (<100ms)
• Highly available and resilient
• Dynamically scalable

• Without taking the system down

2006 JavaOneSM Conference | Session TS-1595 | 20

3-Tier Has Had Its Day

JavaSpaces™ Technology Provides
a More Flexible Grid/Bus

• Slide 1 and 4 are the same, the architecture
is flexible

• Better still the same grid can be used for both
solutions—simultaneously

• JavaSpaces technology + Java technology
binding are quick to develop
• A lot of the code is generated

• JavaSpaces technology is simpler to understand

than Servlets

2006 JavaOneSM Conference | Session TS-1595 | 21

SBA Works for ESB and SOA

• Try to think out of the box—SOA is not new
• We can still expose services without XML

• Just bind them to an Object
• XML can still be used but don’t mandate it

• A true SOA or ESB must handle non-XML
services
• If it communicates internally without XML it’s going to

be more flexible
• A Space Based Architecture (SBA) provides the

flexibility needed for true SOA and ESB

2006 JavaOneSM Conference | Session TS-1595 |

No More Tiers—
Space-Based Computing
Use Cases
Frank Greco
Chair

NYJavaSIG, NY Java User Group
www.javasig.com

TS-1595

2006 JavaOneSM Conference | Session TS-1595 | 23

No More Tiers—Use Cases for
JavaSpaces Technology (Some Ideas)

• Middleware Replacement
• Distributed Grid Computing
• JMX™ API Repository
• Grid in a Box
• Enterprise Service Bus
• SOA Mesh

More than Just a Data Cache or a Generic Dispatcher

2006 JavaOneSM Conference | Session TS-1595 | 24

Middleware Replacement

• Improvement over RPC
• Loosely coupled
• Built-in reliability
• More scalable
• More SOA-friendly
• Pull model—naturally load-balancing

• Improvement over CORBA/SOAP
• Implicit retries
• Higher performance
• More scalable
• Can easily work with SOAP and other WS

2006 JavaOneSM Conference | Session TS-1595 | 25

Middleware Replacement

• Improvement over Publish/Subscribe
(Java Message Service, Tibco Rendezvous)
• Peer-to-peer vs. hub-and-spoke
• No single point of failure
• Not ‘Fire and Forget’

(lighter-weight guaranteed delivery)
• Formal specification for object notification
• Distributed cache “side affect” benefits state
• Scale up is straightforward

• JavaSpaces technology is Functional Superset

2006 JavaOneSM Conference | Session TS-1595 | 26

¹Loosely Coupled Communication and Coordination in Next-Generation Java Middleware
 http://today.java.net/pub/a/today/2005/06/03/loose.html

2006 JavaOneSM Conference | Session TS-1595 | 27

Distributed Grid Computing
• Classical Master/Workers grid model
• Transactional
• Workers can have dynamic behaviors

• Hey… they’re objects
• Spring allows POJOs to be grid-enabled

• From Enterprise JavaBeans™ (EJB) architecture
to grid by configuration

• Conventional compute grid or data grid
• Scaling the grid by merely adding more workers

or more Space servers

2006 JavaOneSM Conference | Session TS-1595 | 28

w

w

w

Compute Grid or Data Grid or Both
m

Space
m

pSpace

p

space

space

space
p

p

p

Peer-to-peer grid of migrating objects

2006 JavaOneSM Conference | Session TS-1595 | 29

JMX API Repository

• JMX API: Java Management eXtensions
• Match JMX Technology Events with Spaces

reliable delivery
• JMX Technology Events saved via Spaces-

based repository
• Can be distributed geographically
• Replicated for robustness and performance
• JMX API Containers with Spaces

• To scale, just add more Space servers for
increased monitoring loads

2006 JavaOneSM Conference | Session TS-1595 | 30

Geographic JMX API Monitorability

Space

space

space

space

Space

space

space

space

Space

space
space

space

U.S.

Europe
Asia

All news, all the time

2006 JavaOneSM Conference | Session TS-1595 | 31

Grid in a Box

• Both OS and CPU are increasingly more parallel
with threads and multi-cores

• Blades on high-speed, low-latency bus
• Grid in a box
• Blades are grid nodes with fast shared memory

• Sun’s Niagara/Project Rock, Azul Systems
• Grid on a chip
• Need an improved programming model—Spaces!

[New heavily-threaded languages would help too]
• Spaces model fits!

2006 JavaOneSM Conference | Session TS-1595 | 32

Enterprise Service Bus

• Services and queues
• Loosely-coupled architectures with API’s

(e.g., SOAP, JMS, RV)
• Spaces enhances reliability/robustness
• Extension of grid with state (data grid)
• Spaces can accommodate non-Java language

(C++, C#), SOAP, .NET, et al.
• Gigaspaces Enterprise Application Grid
• mule.codehaus.org—ESB with Spaces

2006 JavaOneSM Conference | Session TS-1595 | 33

SOA Mesh/Fabric

• Extension of ESB, borrowed from Telecom
• Services grid—more ‘A’ in “SOA”
• Services dynamically join federation
• Multiple federations in the fabric

• e.g., Can run “prod”, “staging”, “testing”, “dev”, “DR”
in the same fabric

• Scale up by adding machine/services
• Services announce themselves
• State always available

2006 JavaOneSM Conference | Session TS-1595 | 34

Summary

• Current tier based implementation cannot meet
the business requirement

• SOA and Grid provide a new architectural
approach for addressing the above
requirements through virtualization

• SBA provides a model for implementing high
performance and linearly scalable SOA/Grid
applications

• GigaSpaces is a pioneer in that field—providing
a complete solution for dynamic scalability
based on SBA in an evolutionary path

SimpleSimple!—“!—“WriteWrite Once Once ScaleScale Anywhere” Anywhere”

Try it out for free—www.GigaSpaces.comTry it out for free—www.GigaSpaces.com

2006 JavaOneSM Conference | Session TS-1595 | 35

Q&A
Nati Shalom
John Davies
Frank Greco

2006 JavaOneSM Conference | Session TS-1595 |

Nati Shalom
CTO

GigaSpaces
www.gigaspaces.com
TS-1595

Scaling Out Tier Based
Applications

