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Goal of Our Talk 

Learn how to architect and build 
AJAX-enabled Web 2.0 applications 
using Java Enterprise Edition™ 
(Java EE™) 5 platform
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Speaker’s Qualifications
● Members of the Java BluePrints 

Program at Sun Microsystems
● http://blueprints.dev.java.net/ 
● Programming Model, Guidelines, Patterns
● Open-Source BSD License Projects
● Projects: 

● Java Pet Store, a new version showing 
Web 2.0 with Java EE 5

● Java BluePrints Solutions Catalog
● Java Adventure Builder

● Books
● Designing Web Services with                         

the J2EE 1.4 Platform
● Designing Enterprise Applications                 

with the J2EE Platform, 2nd Ed

http://blueprints.dev.java.net/
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Web 2.0: Salient Aspects
● Web as a Platform

● Network is the computer
● Lightweight de-facto programming models 

● For example: SOAP vs. REST
● Mashups

● Richer User Experience
● Community created content

● Collective Intelligence for collaborative categorization
● New security issues
● Do you have a long tail?
● BluePrints focussed on engineering aspects
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Agenda

Brief AJAX Overview
Demo
Application Design
JavaScript Guidelines
JSF Approach
Summary
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Conventional vs. Rich Web 
Applications

● Conventional Web Applications
● Server Centric
● Page to Page navigation based

● Rich AJAX Web Applications
● Client executes logic
● Client holds some data
● Page is the application



2006 JavaOneSM Conference   |   Session TS-1615   | 7

Conventional Interaction Model

Browser UI

HTTP GET products.jsp

Add to Cart—HTTP POST
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High-Level AJAX Interaction Model
User

Browser UI XMLHttpRequest
<javaScript>

Client Java EE Container

Servlet/JSF
Controller Cart

main.jsp 
URL

Cart XML

Products XML
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Select 
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var req;
function doCompletion() {

 var target = document.getElementById("autocompleteField");
    var url = "autocomplete?action=complete&id=" + 
encodeURI(target.value);
    req = new XMLHttpRequest();
    req.onreadystatechange = myCallBack;
    req.open("GET", url, true);
    req.send(null);
}
function myCallBack() {
  if (req.readyState == 4) {
     var resp = req.responseXML;
     //get data from XML doc
     var personName = resp.getElementsByTagName("person")[0]; 
     //update dom to add name to page
     mydiv = document.getElementById("peopleListID");
     mydiv.appendChild(document.createTextNode(personName));
   }
}

Simple AJAX Example
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DEMO
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Agenda

AJAX Overview
Demo
Application Design
JavaScript Guidelines
JSF Approach
Summary
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Pet Store 2.0 Design Choices
● When to Use AJAX
● Page is the Application Architecture
● Model View Controller and Patterns
● Leverage Existing AJAX Libraries
● Use JSF Components to Wrap AJAX
● Mashup Architectures

● Proxy for cross domain
● Rest service APIs

● Domain model to store and manage data
● Including user content and images

● Now Build it on Java EE 5!
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AJAX Design Choices
● When to Use AJAX

● When it enhances user experience
● “But it’s fun to go crazy!”, tech team quote

● Page is the Application
● Really just one page?
● Client and server split MVC responsibilities

● Server Centric
● Server renders everything

● Client Centric
● More logic coded in JavaScript 
● Client controller
● Consider existing AJAX library design
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Model View Controller



2006 JavaOneSM Conference   |   Session TS-1615   | 15

Split Model View Controller
● Client and Server Code need MVC
● Model

● Java Persistence APIs for Domain Model
● XML/JSON for Model Data Transport
● Programmatically Cache Locally in Client

● Controller
● Server-side is a Servlet or JSF component
● Server-side returns JavaScript
● JavaScript executed on client

● View
● Server Returns Fragments and Style Sheets
● Presentation Handled by Browser
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New Security Issues 
● Upload user content

● Programmatic validation 
● User policing of content—no naked pets!

● CAPTCHA
● Avoid automated graffiti

● JavaScript Sandbox
● Origin of domain policy for executing code

● We accessed an RSS over HTTPS
● Using REST APIs

● Trust Google code on your clients?
● JavaScript code visible to the world
● HTTP-->HTTPS—Requires a page refresh
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Mash Design Choices

● Pet Store Uses Four Services
● Google Map, Yahoo GeoCoder, Pay Pal, RSS feed 

● Client directly
● Proxy
● Feeling Clean? 

● Don’t need SOAP!
● Don’t need WS-Infinity
● Take a REST

● Wrap in JSF component
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Proxy for Cross-Domain 
● Example: News Bar using RSS Feed 
● Client uses server to mediate with service
● Avoid Server of Origin Security Policy
● Why? 

● Mitigate slow RSS over HTTPS
● Server pre-processes data
● Read RSS feed, similar to a datasource 
● Parse big document
● Return as JSON

● Application-Scoped Data so Cached
● Security Settings on Server
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Client-Side Mash Up 

● Example: Google Maps for Pet Sale Search
● Use Third-Party Service APIs from Client

● Presentation and logic comes from service
● Client-Specific Data
● Existing API Satisfies Need 
● Hard to Achieve with Proxy Style

● Handle Presentation Code
● Give up some control
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Client-Side Mashup 
● Server of origin policy

● Can not just XMLHttpRequest from page
● Script is Loaded From Third-Party
● Client Request Fetches Page Which Includes 

Google JavaScript
● Third-Party Code Is Executed in Client
<script type="text/javascript" 
src="http://maps.google.com/maps?file=api&v=1&key=ABI...">
</script>
<script type="text/javascript"
            src="/petstore/faces//mapviewer/script.js">
</script>

http://maps.google.com/maps?file=api&v=1&key=ABI
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Model Tier 

● Does Model Need to be Different for AJAX apps?
● Use Java Persistence APIs for Domain Model

● Goodbye EJB CMPs!
● Use Facade Pattern

● Web object or Session Bean
● Transactions and entity manager access encapsulated
● Detached objects returned from client of facade

● Keep Transformation Code Separate 
● Model is POJOs
● Client expects XML, JSON, HTML, text, 

JavaScript code
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Use Java Persitence APIs
@NamedQuery( 
  name="Item.getItemsPerProductCategory",
  query="SELECT i FROM Item i WHERE i.pID = :pID")
@Entity
public class Item implements java.io.Serializable{
  private String itemID;
  private String productID;  //other fields ...
  public Item() {}

  @TableGenerator(name="ITEM_ID_GEN",table="ID_GEN"...) 
  @GeneratedValue(strategy=GenerationType.TABLE,
                         generator="ITEM_ID_GEN")
  @Id 
  public String getItemID() {
    return itemID;
  }
//other getters & setters...
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Use Model Facade Pattern 
public class CatalogFacade
              implements ServletContextListener { 
  @PersistenceUnit(unitName="PetstorePu") 
        private EntityManagerFactory emf;

  @ResourceUserTransaction utx;
  ...

  public List<Item> getItems(String pID){
    EntityManager em = emf.createEntityManager();     
    Query query =   em.createNamedQuery
                    ("Item.getItemsPerProductCategory");
    List<Item>  items =
          query.setParameter("pID",pID).getResultList();
    em.close();
    return items;
  } 
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Agenda

AJAX Overview
Demo
Application Design
JavaScript Guidelines
JSF Approach
Summary
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AJAX Guidelines

● JavaScript Libraries
● Eventing
● Return content-types
● Value List Handler
● Usability
● Mashups
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JavaScript Programming
Language Libraries

● Prototype
● RICO
● Script.aculo.us
● Dojo
● Zimbra

Recommendation: Adopt a library and
don’t try to re-invent the wheel.
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Eventing

● Anonymous
● Publish/Subscribe
● Closely coupled

Recommendation: Consider the meaning of each and 
weigh the benefits when designing your application.  
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Eventing
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JavaScript and AJAX Conventions 
Used in Petstore Architecture

● Standardized on Dojo
● dojo.event.connect
● dojo.io.bind
● dojo.widget.*

● Used Object-Oriented JavaScript
● Cleanly Separation of CSS/JS/HTML (MVC)
● Used Namespaces as much as possible
● Used feature detection
● Favored DOM injection over innerHTML
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Response Content Type
● XML
● HTML
● Text

● Post processing on client
● Inject directly into the page

● JavaScript
● Evaluated in JavaScript using eval()
● JavaScript object representations of data(JSON)

Recommendation: Use XML for structured portable data. Use 
plain text for when injecting content into the HTML. Use JavaScript 
to return object representations data.
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Value List Handler
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What About Usability?

● Integrated JSF components with their own 
packaged JavaScript

● Externalized customizable portions of a 
component rather than embed it in JavaScript 
(Info Pane)

● Bookmarking using the # (anchor technique)
● Exposing access to specific chunks of data 

via the CatalogFacade. 
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Petstore Mashup



2006 JavaOneSM Conference   |   Session TS-1615   | 34

Mashups From a JavaScript 
Perspective

● Expose data via JSON for a data-centric mashup
● Allow for a callback function

● Use document.write() if you want to prevent 
others from re-purposing your mashup data

● Consider using a key passed in as a URL 
parameter to prevent improper use

● Consider restricting access to a list of hosts
● Consider Dojo ScriptSrcIO
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Agenda

AJAX Overview
Demo
Application Design
JavaScript Guidelines
JSF and AJAX
Summary
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JSF Approach—General

● Took a hybrid approach
● Goals

● Capture a wider audience
● Zero setup

● Encapsulates an AJAX component
● Client (browser) can share some of the load 

for more flexibility
● Demonstrated Javascript frameworks and 

their widgets
● Still exploring alternative approaches
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File Upload Component Implementation

● File Upload through AJAX
● Utilized open source libraries
● Progress bar status 
● Ongoing status Available
● CAPTCHAs
● Store the data
● Extending component
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File Upload Component’s Submit

CAPTCHAs 
Servlet 
Filter

CAPTCHAs CAPTCHAs Value

Valid 
CAPTCHAs 

CAPTCHAs
Validation Error
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Accessing Static and Dynamic Resources

Directly Accessing Resources
● Traditional Web Design
● Artifacts need deployment descriptor
● Possible name clash 
● Could be appropriate for small groups
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Accessing Static and Dynamic Resources

Renderer Serve Resources
● Serve component’s resources through renderer
● During the “Apply Request Values” phase
● Serve static resource
● Execute/delegate dynamic call
● Call ResponseComplete method
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Accessing Static and Dynamic Resources

Renderer Server Resources (disadvantages)
● “Restore View” phase has to reconstitute the 

component tree
● Performance Consequences
● Especially if state is maintained on the client
● Phase has to finish executing
● Side-effects also with "immediate=true"
● Not the optimal approach
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Accessing Static and Dynamic Resources

PhaseListener Serves Resources
● During the “Restore View” phase
● Serve static resource
● Execute/delegate dynamic call
● Call ResponseComplete method
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Accessing Static and Dynamic Resources

PhaseListener Server Resources (disadvantages)
● PhaseListener for each component
● Developers coding differently
● All PhaseListeners fired sequentially
● Performance burden 
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Accessing Static and Dynamic Resources

Third-Party Libraries (Shale-Remoting)
● Keeps developers from adding functionality
● Single PhaseListener
● Doesn’t require developer configuration
● Serves static requests
● Delegates dynamic requests
● URI starts with context root
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Accessing Static Resources
import org.apache.shale.remoting.Mechanism;
import org.apache.shale.remoting.XhtmlHelper;
private static XhtmlHelper helper = new XhtmlHelper();
public void encodeEnd(FacesContext context, UIComponent component) throws 

IOException {
    ....
    //shale remoting resource retrieval
    helper.linkJavascript(context, component, writer,
        Mechanism.CLASS_RESOURCE, "/META-INF/fileupload/fileupload.js");
    helper.linkStylesheet(context, component, writer,
        Mechanism.CLASS_RESOURCE, "/META-INF/fileupload/fileupload.css");
}

Markup Rendered to Page:
<script type="text/javascript" src="/petstore/faces/static/META-

INF/fileupload/fileupload.js"></script>
<link type="text/css" rel="stylesheet" href="/petstore/faces/static/META-

INF/fileupload/fileupload.css" />
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Delegating to Dynamic Resources
import org.apache.shale.remoting.Mechanism;
import org.apache.shale.remoting.XhtmlHelper;
private static XhtmlHelper helper=new XhtmlHelper();
public void encodeBegin(FacesContext context, UIComponent component) 

throws IOException {
    ....
    String fileUploadCallback = helper.mapResourceId(context, 

Mechanism.DYNAMIC_RESOURCE,         
"/bpui_fileupload_handler/handleFileUpload");

    outComp.getAttributes().put("onsubmit", "return 
bpui.fileupload.submitForm(this, '" + retMimeType + "', '" + retFunction + "','" + 
progressBarDivId + "', '" + fileUploadCallback + "')");        

} 

Markup Rendered to Page:
onsubmit="return bpui.fileupload.submitForm(this, 'text/xml', 

'bpui.fileupload.defaultRetFunction','progress3x', 
'/petstore/faces/dynamic/bpui_fileupload_handler/handleFileUpload')"
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Extending Base Renderer Functionality

● Adding AJAX functionality
● Need new Tag Handler
● Don’t want to write a renderer from scratch
● Look up default renderer and delegate 
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Extending Base Renderer Functionality
public void encodeBegin(FacesContext context, UIComponent 

component)  {
    ...// lookup using family and rendererType
    Renderer 

baseRenderer=context.getRenderKit().getRenderer("javax.faces.For
m", "javax.faces.Form");

    baseRenderer.encodeBegin(context, component);
}
public void encodeEnd(FacesContext context, UIComponent 

component)  {
    ... // lookup using family and rendererType
    Renderer 

baseRenderer=context.getRenderKit().getRenderer("javax.faces.For
m", "javax.faces.Form");

    baseRenderer.encodeEnd(context, component);
}
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Component Library Summary

● Accessing Resources through Renderers and 
PhaseListerns can impact performance

● Preferred hybrid approach
● Preferred zero setup time (other than adding jar)
● Still exploring alternative approaches
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AJAX Overview
Demo
Application Design
JavaScript Guidelines
JSF Approach
Summary
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Summary

● AJAX and Java EE 5 are Complimentary
● Use Page as the Application Architecture
● Follow MVC in your application
● Use Proxy Style or REST APIs for Mashups
● Use JavaScript Conventions
● Leverage an Existing AJAX Library
● Wrap AJAX in Java Server Faces for Re-Use
● Try the Java BluePrints AJAX Components!
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For More Information

● BluePrints Projects on Java.net 
http://blueprints.dev.java.net/   

● Java Pet Store 2.0
 https://blueprints.dev.java.net/petstore

● AJAX Components 
http://blueprints.dev.java.net/ajaxcomponents.html
 

● Talk: BluePrints for Java EE 5, TS-1969 
Wednesday, 4:00pm–5:00pm

● BOF-2594  Thursday Night, 7:30pm–8:20pm

http://blueprints.dev.java.net/
http://blueprints.dev.java.net/ajaxcomponents.html
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Q&A
Sean Brydon, Greg Murray, 
Inderjeet Singh, Mark Basler
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