
2006 JavaOneSM Conference | Session TS-1615 |

TS-1615

Java™ EE 5 BluePrints for
AJAX-Enabled Web 2.0
Applications
Sean Brydon, Greg Murray,
Inderjeet Singh, Mark Basler
Java BluePrints
Sun Microsystems, Inc.
http://blueprints.dev.java.net/

Copyright © 2006, Sun Microsystems Inc., All rights reserved.

2006 JavaOneSM Conference | Session TS-1615 | 2

Goal of Our Talk

Learn how to architect and build
AJAX-enabled Web 2.0 applications
using Java Enterprise Edition™
(Java EE™) 5 platform

2006 JavaOneSM Conference | Session TS-1615 | 3

Speaker’s Qualifications
● Members of the Java BluePrints

Program at Sun Microsystems
● http://blueprints.dev.java.net/
● Programming Model, Guidelines, Patterns
● Open-Source BSD License Projects
● Projects:

● Java Pet Store, a new version showing
Web 2.0 with Java EE 5

● Java BluePrints Solutions Catalog
● Java Adventure Builder

● Books
● Designing Web Services with

the J2EE 1.4 Platform
● Designing Enterprise Applications

with the J2EE Platform, 2nd Ed

http://blueprints.dev.java.net/

2006 JavaOneSM Conference | Session TS-1615 | 4

Web 2.0: Salient Aspects
● Web as a Platform

● Network is the computer
● Lightweight de-facto programming models

● For example: SOAP vs. REST
● Mashups

● Richer User Experience
● Community created content

● Collective Intelligence for collaborative categorization
● New security issues
● Do you have a long tail?
● BluePrints focussed on engineering aspects

2006 JavaOneSM Conference | Session TS-1615 | 5

Agenda

Brief AJAX Overview
Demo
Application Design
JavaScript Guidelines
JSF Approach
Summary

2006 JavaOneSM Conference | Session TS-1615 | 6

Conventional vs. Rich Web
Applications

● Conventional Web Applications
● Server Centric
● Page to Page navigation based

● Rich AJAX Web Applications
● Client executes logic
● Client holds some data
● Page is the application

2006 JavaOneSM Conference | Session TS-1615 | 7

Conventional Interaction Model

Browser UI

HTTP GET products.jsp

Add to Cart—HTTP POST

cart.jsp

cart.jsp

Products.jsp

Products.jsp

Index.jsp

Update Cart
Quantity

Cart Details

User

Add Product

Cart Details

index.jsp URL

Show Product
Event

Add to Cart Event

Add to Cart Event

Show Product
Event

Update Cart Quantity—
HTTP POST

Controller Cart

HTTP GET index.jsp

2006 JavaOneSM Conference | Session TS-1615 | 8

High-Level AJAX Interaction Model
User

Browser UI XMLHttpRequest
<javaScript>

Client Java EE Container

Servlet/JSF
Controller Cart

main.jsp
URL

Cart XML

Products XML

main.jsp
Select

Product
Event

Update
Cart

Event

Product
Selection

Java Script
Handler

Update UI

Add to Cart
Java Script

Handler

Update UI

Request for Product—
HTTP GET

HTTP GET main.jsp

DB

Lookup Product

Product Details

Add Product

Cart Details

Add to Cart—HTTP POST

2006 JavaOneSM Conference | Session TS-1615 | 9

var req;
function doCompletion() {

 var target = document.getElementById("autocompleteField");
 var url = "autocomplete?action=complete&id=" +
encodeURI(target.value);
 req = new XMLHttpRequest();
 req.onreadystatechange = myCallBack;
 req.open("GET", url, true);
 req.send(null);
}
function myCallBack() {
 if (req.readyState == 4) {
 var resp = req.responseXML;
 //get data from XML doc
 var personName = resp.getElementsByTagName("person")[0];
 //update dom to add name to page
 mydiv = document.getElementById("peopleListID");
 mydiv.appendChild(document.createTextNode(personName));
 }
}

Simple AJAX Example

2006 JavaOneSM Conference | Session TS-1615 | 10

DEMO

2006 JavaOneSM Conference | Session TS-1615 | 11

Agenda

AJAX Overview
Demo
Application Design
JavaScript Guidelines
JSF Approach
Summary

2006 JavaOneSM Conference | Session TS-1615 | 12

Pet Store 2.0 Design Choices
● When to Use AJAX
● Page is the Application Architecture
● Model View Controller and Patterns
● Leverage Existing AJAX Libraries
● Use JSF Components to Wrap AJAX
● Mashup Architectures

● Proxy for cross domain
● Rest service APIs

● Domain model to store and manage data
● Including user content and images

● Now Build it on Java EE 5!

2006 JavaOneSM Conference | Session TS-1615 | 13

AJAX Design Choices
● When to Use AJAX

● When it enhances user experience
● “But it’s fun to go crazy!”, tech team quote

● Page is the Application
● Really just one page?
● Client and server split MVC responsibilities

● Server Centric
● Server renders everything

● Client Centric
● More logic coded in JavaScript
● Client controller
● Consider existing AJAX library design

2006 JavaOneSM Conference | Session TS-1615 | 14

Model View Controller

2006 JavaOneSM Conference | Session TS-1615 | 15

Split Model View Controller
● Client and Server Code need MVC
● Model

● Java Persistence APIs for Domain Model
● XML/JSON for Model Data Transport
● Programmatically Cache Locally in Client

● Controller
● Server-side is a Servlet or JSF component
● Server-side returns JavaScript
● JavaScript executed on client

● View
● Server Returns Fragments and Style Sheets
● Presentation Handled by Browser

2006 JavaOneSM Conference | Session TS-1615 | 16

New Security Issues
● Upload user content

● Programmatic validation
● User policing of content—no naked pets!

● CAPTCHA
● Avoid automated graffiti

● JavaScript Sandbox
● Origin of domain policy for executing code

● We accessed an RSS over HTTPS
● Using REST APIs

● Trust Google code on your clients?
● JavaScript code visible to the world
● HTTP-->HTTPS—Requires a page refresh

2006 JavaOneSM Conference | Session TS-1615 | 17

Mash Design Choices

● Pet Store Uses Four Services
● Google Map, Yahoo GeoCoder, Pay Pal, RSS feed

● Client directly
● Proxy
● Feeling Clean?

● Don’t need SOAP!
● Don’t need WS-Infinity
● Take a REST

● Wrap in JSF component

2006 JavaOneSM Conference | Session TS-1615 | 18

Proxy for Cross-Domain
● Example: News Bar using RSS Feed
● Client uses server to mediate with service
● Avoid Server of Origin Security Policy
● Why?

● Mitigate slow RSS over HTTPS
● Server pre-processes data
● Read RSS feed, similar to a datasource
● Parse big document
● Return as JSON

● Application-Scoped Data so Cached
● Security Settings on Server

2006 JavaOneSM Conference | Session TS-1615 | 19

Client-Side Mash Up

● Example: Google Maps for Pet Sale Search
● Use Third-Party Service APIs from Client

● Presentation and logic comes from service
● Client-Specific Data
● Existing API Satisfies Need
● Hard to Achieve with Proxy Style

● Handle Presentation Code
● Give up some control

2006 JavaOneSM Conference | Session TS-1615 | 20

Client-Side Mashup
● Server of origin policy

● Can not just XMLHttpRequest from page
● Script is Loaded From Third-Party
● Client Request Fetches Page Which Includes

Google JavaScript
● Third-Party Code Is Executed in Client
<script type="text/javascript"
src="http://maps.google.com/maps?file=api&v=1&key=ABI...">
</script>
<script type="text/javascript"
 src="/petstore/faces//mapviewer/script.js">
</script>

http://maps.google.com/maps?file=api&v=1&key=ABI

2006 JavaOneSM Conference | Session TS-1615 | 21

Model Tier

● Does Model Need to be Different for AJAX apps?
● Use Java Persistence APIs for Domain Model

● Goodbye EJB CMPs!
● Use Facade Pattern

● Web object or Session Bean
● Transactions and entity manager access encapsulated
● Detached objects returned from client of facade

● Keep Transformation Code Separate
● Model is POJOs
● Client expects XML, JSON, HTML, text,

JavaScript code

2006 JavaOneSM Conference | Session TS-1615 | 22

Use Java Persitence APIs
@NamedQuery(
 name="Item.getItemsPerProductCategory",
 query="SELECT i FROM Item i WHERE i.pID = :pID")
@Entity
public class Item implements java.io.Serializable{
 private String itemID;
 private String productID; //other fields ...
 public Item() {}

 @TableGenerator(name="ITEM_ID_GEN",table="ID_GEN"...)
 @GeneratedValue(strategy=GenerationType.TABLE,
 generator="ITEM_ID_GEN")
 @Id
 public String getItemID() {
 return itemID;
 }
//other getters & setters...

2006 JavaOneSM Conference | Session TS-1615 | 23

Use Model Facade Pattern
public class CatalogFacade
 implements ServletContextListener {
 @PersistenceUnit(unitName="PetstorePu")
 private EntityManagerFactory emf;

 @ResourceUserTransaction utx;
 ...

 public List<Item> getItems(String pID){
 EntityManager em = emf.createEntityManager();
 Query query = em.createNamedQuery
 ("Item.getItemsPerProductCategory");
 List<Item> items =
 query.setParameter("pID",pID).getResultList();
 em.close();
 return items;
 }

2006 JavaOneSM Conference | Session TS-1615 | 24

Agenda

AJAX Overview
Demo
Application Design
JavaScript Guidelines
JSF Approach
Summary

2006 JavaOneSM Conference | Session TS-1615 | 25

AJAX Guidelines

● JavaScript Libraries
● Eventing
● Return content-types
● Value List Handler
● Usability
● Mashups

2006 JavaOneSM Conference | Session TS-1615 | 26

JavaScript Programming
Language Libraries

● Prototype
● RICO
● Script.aculo.us
● Dojo
● Zimbra

Recommendation: Adopt a library and
don’t try to re-invent the wheel.

2006 JavaOneSM Conference | Session TS-1615 | 27

Eventing

● Anonymous
● Publish/Subscribe
● Closely coupled

Recommendation: Consider the meaning of each and
weigh the benefits when designing your application.

2006 JavaOneSM Conference | Session TS-1615 | 28

Eventing

2006 JavaOneSM Conference | Session TS-1615 | 29

JavaScript and AJAX Conventions
Used in Petstore Architecture

● Standardized on Dojo
● dojo.event.connect
● dojo.io.bind
● dojo.widget.*

● Used Object-Oriented JavaScript
● Cleanly Separation of CSS/JS/HTML (MVC)
● Used Namespaces as much as possible
● Used feature detection
● Favored DOM injection over innerHTML

2006 JavaOneSM Conference | Session TS-1615 | 30

Response Content Type
● XML
● HTML
● Text

● Post processing on client
● Inject directly into the page

● JavaScript
● Evaluated in JavaScript using eval()
● JavaScript object representations of data(JSON)

Recommendation: Use XML for structured portable data. Use
plain text for when injecting content into the HTML. Use JavaScript
to return object representations data.

2006 JavaOneSM Conference | Session TS-1615 | 31

Value List Handler

2006 JavaOneSM Conference | Session TS-1615 | 32

What About Usability?

● Integrated JSF components with their own
packaged JavaScript

● Externalized customizable portions of a
component rather than embed it in JavaScript
(Info Pane)

● Bookmarking using the # (anchor technique)
● Exposing access to specific chunks of data

via the CatalogFacade.

2006 JavaOneSM Conference | Session TS-1615 | 33

Petstore Mashup

2006 JavaOneSM Conference | Session TS-1615 | 34

Mashups From a JavaScript
Perspective

● Expose data via JSON for a data-centric mashup
● Allow for a callback function

● Use document.write() if you want to prevent
others from re-purposing your mashup data

● Consider using a key passed in as a URL
parameter to prevent improper use

● Consider restricting access to a list of hosts
● Consider Dojo ScriptSrcIO

2006 JavaOneSM Conference | Session TS-1615 | 35

Agenda

AJAX Overview
Demo
Application Design
JavaScript Guidelines
JSF and AJAX
Summary

2006 JavaOneSM Conference | Session TS-1615 | 36

JSF Approach—General

● Took a hybrid approach
● Goals

● Capture a wider audience
● Zero setup

● Encapsulates an AJAX component
● Client (browser) can share some of the load

for more flexibility
● Demonstrated Javascript frameworks and

their widgets
● Still exploring alternative approaches

2006 JavaOneSM Conference | Session TS-1615 | 37

File Upload Component Implementation

● File Upload through AJAX
● Utilized open source libraries
● Progress bar status
● Ongoing status Available
● CAPTCHAs
● Store the data
● Extending component

2006 JavaOneSM Conference | Session TS-1615 | 38

File Upload Component’s Submit

CAPTCHAs
Servlet
Filter

CAPTCHAs CAPTCHAs Value

Valid
CAPTCHAs

CAPTCHAs
Validation Error

2006 JavaOneSM Conference | Session TS-1615 | 39

Accessing Static and Dynamic Resources

Directly Accessing Resources
● Traditional Web Design
● Artifacts need deployment descriptor
● Possible name clash
● Could be appropriate for small groups

2006 JavaOneSM Conference | Session TS-1615 | 40

Accessing Static and Dynamic Resources

Renderer Serve Resources
● Serve component’s resources through renderer
● During the “Apply Request Values” phase
● Serve static resource
● Execute/delegate dynamic call
● Call ResponseComplete method

2006 JavaOneSM Conference | Session TS-1615 | 41

Accessing Static and Dynamic Resources

Renderer Server Resources (disadvantages)
● “Restore View” phase has to reconstitute the

component tree
● Performance Consequences
● Especially if state is maintained on the client
● Phase has to finish executing
● Side-effects also with "immediate=true"
● Not the optimal approach

2006 JavaOneSM Conference | Session TS-1615 | 42

Accessing Static and Dynamic Resources

PhaseListener Serves Resources
● During the “Restore View” phase
● Serve static resource
● Execute/delegate dynamic call
● Call ResponseComplete method

2006 JavaOneSM Conference | Session TS-1615 | 43

Accessing Static and Dynamic Resources

PhaseListener Server Resources (disadvantages)
● PhaseListener for each component
● Developers coding differently
● All PhaseListeners fired sequentially
● Performance burden

2006 JavaOneSM Conference | Session TS-1615 | 44

Accessing Static and Dynamic Resources

Third-Party Libraries (Shale-Remoting)
● Keeps developers from adding functionality
● Single PhaseListener
● Doesn’t require developer configuration
● Serves static requests
● Delegates dynamic requests
● URI starts with context root

2006 JavaOneSM Conference | Session TS-1615 | 45

Accessing Static Resources
import org.apache.shale.remoting.Mechanism;
import org.apache.shale.remoting.XhtmlHelper;
private static XhtmlHelper helper = new XhtmlHelper();
public void encodeEnd(FacesContext context, UIComponent component) throws

IOException {

 //shale remoting resource retrieval
 helper.linkJavascript(context, component, writer,
 Mechanism.CLASS_RESOURCE, "/META-INF/fileupload/fileupload.js");
 helper.linkStylesheet(context, component, writer,
 Mechanism.CLASS_RESOURCE, "/META-INF/fileupload/fileupload.css");
}

Markup Rendered to Page:
<script type="text/javascript" src="/petstore/faces/static/META-

INF/fileupload/fileupload.js"></script>
<link type="text/css" rel="stylesheet" href="/petstore/faces/static/META-

INF/fileupload/fileupload.css" />

2006 JavaOneSM Conference | Session TS-1615 | 46

Delegating to Dynamic Resources
import org.apache.shale.remoting.Mechanism;
import org.apache.shale.remoting.XhtmlHelper;
private static XhtmlHelper helper=new XhtmlHelper();
public void encodeBegin(FacesContext context, UIComponent component)

throws IOException {

 String fileUploadCallback = helper.mapResourceId(context,

Mechanism.DYNAMIC_RESOURCE,
"/bpui_fileupload_handler/handleFileUpload");

 outComp.getAttributes().put("onsubmit", "return
bpui.fileupload.submitForm(this, '" + retMimeType + "', '" + retFunction + "','" +
progressBarDivId + "', '" + fileUploadCallback + "')");

}

Markup Rendered to Page:
onsubmit="return bpui.fileupload.submitForm(this, 'text/xml',

'bpui.fileupload.defaultRetFunction','progress3x',
'/petstore/faces/dynamic/bpui_fileupload_handler/handleFileUpload')"

2006 JavaOneSM Conference | Session TS-1615 | 47

Extending Base Renderer Functionality

● Adding AJAX functionality
● Need new Tag Handler
● Don’t want to write a renderer from scratch
● Look up default renderer and delegate

2006 JavaOneSM Conference | Session TS-1615 | 48

Extending Base Renderer Functionality
public void encodeBegin(FacesContext context, UIComponent

component) {
 ...// lookup using family and rendererType
 Renderer

baseRenderer=context.getRenderKit().getRenderer("javax.faces.For
m", "javax.faces.Form");

 baseRenderer.encodeBegin(context, component);
}
public void encodeEnd(FacesContext context, UIComponent

component) {
 ... // lookup using family and rendererType
 Renderer

baseRenderer=context.getRenderKit().getRenderer("javax.faces.For
m", "javax.faces.Form");

 baseRenderer.encodeEnd(context, component);
}

2006 JavaOneSM Conference | Session TS-1615 | 49

Component Library Summary

● Accessing Resources through Renderers and
PhaseListerns can impact performance

● Preferred hybrid approach
● Preferred zero setup time (other than adding jar)
● Still exploring alternative approaches

2006 JavaOneSM Conference | Session TS-1615 | 50

Agenda

AJAX Overview
Demo
Application Design
JavaScript Guidelines
JSF Approach
Summary

2006 JavaOneSM Conference | Session TS-1615 | 51

Summary

● AJAX and Java EE 5 are Complimentary
● Use Page as the Application Architecture
● Follow MVC in your application
● Use Proxy Style or REST APIs for Mashups
● Use JavaScript Conventions
● Leverage an Existing AJAX Library
● Wrap AJAX in Java Server Faces for Re-Use
● Try the Java BluePrints AJAX Components!

2006 JavaOneSM Conference | Session TS-1615 | 52

For More Information

● BluePrints Projects on Java.net
http://blueprints.dev.java.net/

● Java Pet Store 2.0
 https://blueprints.dev.java.net/petstore

● AJAX Components
http://blueprints.dev.java.net/ajaxcomponents.html

● Talk: BluePrints for Java EE 5, TS-1969
Wednesday, 4:00pm–5:00pm

● BOF-2594 Thursday Night, 7:30pm–8:20pm

http://blueprints.dev.java.net/
http://blueprints.dev.java.net/ajaxcomponents.html

2006 JavaOneSM Conference | Session TS-1615 | 53

Q&A
Sean Brydon, Greg Murray,
Inderjeet Singh, Mark Basler

2006 JavaOneSM Conference | Session TS-1615 |

TS-1615

Java™ EE 5 BluePrints for
AJAX-Enabled Web 2.0
Applications
Sean Brydon, Greg Murray,
Inderjeet Singh, Mark Basler
Java BluePrints
Sun Microsystems, Inc.
http://blueprints.dev.java.net/

