
2006 JavaOneSM Conference | Session TS-1660 |

TS-1660

Twelve Java™ Technology
Security Traps and How
to Avoid Them
Brian Chess, PhD
Chief Scientist
Fortify Software
http://www.fortifysoftware.com

2006 JavaOneSM Conference | Session TS-1660 | 2

Overview

• Just 12?
• The 12 traps

• In: Mistakes, errors, boo-boos, oversights,
and gotchas; Very network/web oriented

• Out: Gnarly discussion of crypto APIs, single sign-on
packages, other security features

• Getting security right: Policy, process, and tools

2006 JavaOneSM Conference | Session TS-1660 | 3

The seven deadly sins

2006 JavaOneSM Conference | Session TS-1660 | 4

The Seven Deadly Sins

2006 JavaOneSM Conference | Session TS-1660 | 5

The Seven Deadly Sins

2006 JavaOneSM Conference | Session TS-1660 | 6

The Seven Deadly Sins

2006 JavaOneSM Conference | Session TS-1660 | 7

The Seven Deadly Sins

2006 JavaOneSM Conference | Session TS-1660 | 8

The Seven Deadly Sins

2006 JavaOneSM Conference | Session TS-1660 | 9

The Seven Deadly Sins

2006 JavaOneSM Conference | Session TS-1660 | 10

The Seven Deadly Sins

2006 JavaOneSM Conference | Session TS-1660 | 11

The Seven Deadly Sins

• Pope Gregory I
• 6th Century
• Why talk about sins?

• Understand your actions
• Know what to confess

2006 JavaOneSM Conference | Session TS-1660 | 12

The Three Virtues of a Programmer

• Laziness
• Impatience
• Hubris

Larry Wall is a subversive.

2006 JavaOneSM Conference | Session TS-1660 | 13

Values Programmers Are Taught

• Cleverness
• Simplicity

• Encapsulation
• Reuse

• Performance
• Time
• Space

2006 JavaOneSM Conference | Session TS-1660 | 14

Values Programmers Are Not Taught

• Reliability
• Conflicts with simplicity and performance

• Longevity
• Maintainability

2006 JavaOneSM Conference | Session TS-1660 | 15

Mistakes That Put Software in Jeopardy

1. Input validation and
representation

2. API abuse
3. Security features
4. Time and state

7* Pernicious Kingdoms:
A taxonomy of programming errors that affect security

• Error Handling
• Code quality
• Encapsulation
* Environment

2006 JavaOneSM Conference | Session TS-1660 | 16

Mistakes That Put Software in Jeopardy

1. Software security can be handled as a
sequence of bugs

2006 JavaOneSM Conference | Session TS-1660 | 17

Current Solution: Build Then Measure

production operations

production audit /
penetration test

business
requirements

planning

design &
coding test

(minimal security activities)

host & perimeter
security

alarming security findings!

software development

2006 JavaOneSM Conference | Session TS-1660 | 18

Real Solution

production operations

audit / pen test

host & perimeter
security

verification

business
requirements

planning

design &
coding test

software security activities

software development

2006 JavaOneSM Conference | Session TS-1660 | 19

Mistakes That Put Software in Jeopardy

1. Failure to understand how the system works

2006 JavaOneSM Conference | Session TS-1660 | 20

Mistakes That Put Software in Jeopardy

1. Failure to consider what could go wrong

2006 JavaOneSM Conference | Session TS-1660 | 21

2006 JavaOneSM Conference | Session TS-1660 | 22

Java Jeopardy
Trust Me, I’m a

Browser!
Configuration
Consternation

You Can’t Trust
Anybody These

Days

It’s Not a Problem
Because…I Used
Java™ Technology

HTTP, How
I Love Thee

2006 JavaOneSM Conference | Session TS-1660 | 23

Trust Me, I’m a
Browser!

2006 JavaOneSM Conference | Session TS-1660 | 24

rs = stmt.executeQuery(
 “select * from users “
 “where uname = ‘” + uName
+ “’”);

2006 JavaOneSM Conference | Session TS-1660 | 25

#1 SQL Injection (And More)

• Injection attacks
• SQL Injection
• Command injection
• File system traversal
• XML injection

• Defense
• Prepared statements (bind variables)
• Whitelist
• Blacklist Input Validation and

Representation

2006 JavaOneSM Conference | Session TS-1660 | 26

out.println(
“malformed input: “ + queryParameter);

2006 JavaOneSM Conference | Session TS-1660 | 27

Database

Display
Logic

HTTP Response

Business
Logic

HTTP Request

#2 Cross-site Scripting (XSS)

Input Validation and

Representation

2006 JavaOneSM Conference | Session TS-1660 | 28

Bonus

n = req.getParameter(“name”);
session.setAttribute(“name”, n);

2006 JavaOneSM Conference | Session TS-1660 | 29

Bonus: Trust Boundary Errors

1
ListProfiles.jsp

ListProfilesAction.java

ProfileService.java1

2

3

Encapsulation

2006 JavaOneSM Conference | Session TS-1660 | 30

Bonus: Trust Boundary Errors

• Moral to the story: Do not use the same
container to store both trusted and
untrusted data

2006 JavaOneSM Conference | Session TS-1660 | 31

Configuration
Consternation

2006 JavaOneSM Conference | Session TS-1660 | 32

conn = DriverManager.getConnection
 (connStr, "scott", "tiger");

2006 JavaOneSM Conference | Session TS-1660 | 33

#3: Bad Credential Management

Also popular
• Store cleartext username/password/key in configuration

and/or properties file
• Protect with trivial encoding (base64, rot13)
• Ditto for encryption keys

Security

Features

2006 JavaOneSM Conference | Session TS-1660 | 34

#4: Bad error handling

2006 JavaOneSM Conference | Session TS-1660 | 35

#4: Bad Error Handling

• Lack of top-level (global) error handling
• Lack of understanding about how valuable error

messages are to an attacker

Erro
rs

2006 JavaOneSM Conference | Session TS-1660 | 36

http://www.mysite.com/admin/query.html

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

2006 JavaOneSM Conference | Session TS-1660 | 37

#5: Test Code Goes to Production

• “I’ll delete that before the release.”
• “I meant to delete that before the release.”

Encapsulation

2006 JavaOneSM Conference | Session TS-1660 | 38

Bonus: Struts Input Validation

 <form name="logonForm">
 <field property="username” depends="required">

 <arg0 key="logonForm.username"/>

 </field>

 <field property="password” depends="required,mask">

 <arg0 key="logonForm.password"/>

 <var>

 <var-name>mask</var-name>

 <var-value>^[0-9a-zA-Z]*$</var-value>

 </var>

 </field>

</form>
Configuration

2006 JavaOneSM Conference | Session TS-1660 | 39

It’s Not a Problem
Because…I Used
Java Technology

2006 JavaOneSM Conference | Session TS-1660 | 40

public class QuickSolver {
 private boolean minimize = false;
 private int timeLimit = 0;
 …
 private native int solveEq(String p);
}

2006 JavaOneSM Conference | Session TS-1660 | 41

#6: Native Methods

• All the memory safety promises that
Java makes?
• Gone

• All of the type safety promises that Java makes?
• Gone

Input validation

and representation

2006 JavaOneSM Conference | Session TS-1660 | 42

public class SimpleServlet extends
HttpServlet {

 public String acct;
 public Receipt rcpt;
 …
}

2006 JavaOneSM Conference | Session TS-1660 | 43

#7: Concurrency/Synchronization

• Classic Concurrency errors
• HttpServlet
• Struts Action
• Custom caches

• Also fun: deadlock

Time and State

2006 JavaOneSM Conference | Session TS-1660 | 44

Bonus

xParam = req.getParameter(“x”);
x = Integer.parseInt(xParam);
if ((x > 0) && (x + HDRM < MAX)) {
 process(x); // x is legal
} else {
 giveError(x); // x is illegal
}

2006 JavaOneSM Conference | Session TS-1660 | 45

Bonus: Integer Overflow

• Same problem as in C/C++, but without the
appealing memory corruption target

Input validation

and representation

2006 JavaOneSM Conference | Session TS-1660 | 46

Bonus: Bad Exception Handling

try {
computeResult();

} catch (Throwable t) {
}
presentResult();

Erro
rs

2006 JavaOneSM Conference | Session TS-1660 | 47

HTTP, How I
Love Thee

2006 JavaOneSM Conference | Session TS-1660 | 48

HTTP GET request

Access Control Presentation logic

HTTP response

HTTP POST request

Parameter validation Business logic

HTTP response

Presentation logic

Client

2006 JavaOneSM Conference | Session TS-1660 | 49

#8: Missing Access Control

• Missing back-end access control
• Access control errors are often the result of a

distributed access control scheme. (Sprinkling a
little access control in a lot of places is a recipe
for mistakes.)

Security

Features

2006 JavaOneSM Conference | Session TS-1660 | 50

private boolean doAuth(String usr,
 String passwd) {
 if (!checkPasswd(usr, passwd)) {
 return false;
 }
 session = req.getSession();
 session.setAttribute(USER, usr);
 return true;
}

2006 JavaOneSM Conference | Session TS-1660 | 51

#9: Bad Session Management

• Attackers have a leg up on session hijacking if
• App transitions from unauthenticated to authenticated

w/o issuing a new session ID
• Failure to invalidate session at logout
• Not enough randomness in session ID for period

of use

Security

Features

2006 JavaOneSM Conference | Session TS-1660 | 52

void printLocalizedGreeting() {
 lang = request.getHeader(“Accept-Language”);
 File f = new File(W_BASE + SEP + lang);
 if (!f.exists()) {
 throw new LangNotFoundError();
 } else {
 addToResponse(f);
 }
}

2006 JavaOneSM Conference | Session TS-1660 | 53

#10 Cookies and Other Headers

• Cookies and HTTP headers cannot be trusted
• Often overlooked by validation logic
• 100% overlooked by Struts Validator
• Hidden fields often abused in the same way

Input validation

and representation

2006 JavaOneSM Conference | Session TS-1660 | 54

Bonus: Unadvertised Parameters
// No one will ever think to try this on
// their own!
debug = request.getParameter(“dbg”);

Encapsulation

2006 JavaOneSM Conference | Session TS-1660 | 55

You Can’t Trust
Anybody These Days

2006 JavaOneSM Conference | Session TS-1660 | 56

try {
 sqlStr = assembleSql(BASE_QUERY,
 user, passwd);
} catch (SQLException e) {
 logger.log(WARNING,
 “auth db exception “, e);
}

2006 JavaOneSM Conference | Session TS-1660 | 57

#11: Logging Sensitive Data

• Harvesting log files for
• E-mail addresses
• Authentication data
• Financial information

• Corp. privacy policy
• Regulatory compliance

Encapsulation

2006 JavaOneSM Conference | Session TS-1660 | 58

initCmd = System.getProperty(“init_cmd”);
runtime.exec(initCmd);

2006 JavaOneSM Conference | Session TS-1660 | 59

#12: Trusting the Configuration

• Datacenter managers don’t give unfettered,
unmonitored, unaudited control to system
administrators, why should you?

Configuration

2006 JavaOneSM Conference | Session TS-1660 | 60

Fundamental Tenants

• Software security
• Cannot be addressed as a series of bugs
• Requires changing the way software is developed

• The solution
• Policy
• Process
• Tools

2006 JavaOneSM Conference | Session TS-1660 | 61

Policy

• Security is not optional
• The status quo is not acceptable
• Education is mandatory

2006 JavaOneSM Conference | Session TS-1660 | 62

Education

• Study security
• What do the attackers want?
• How do attackers go about getting it?
• How do software systems fail?

2006 JavaOneSM Conference | Session TS-1660 | 63

Education

• Study your history!
• What kind of security problems has your organization

seen before?

• Collaborate with operations support

2006 JavaOneSM Conference | Session TS-1660 | 64

Process

• Visualize a bad day
• Do code review
• Do security testing
• Sign off

2006 JavaOneSM Conference | Session TS-1660 | 65

The Full Story

Requirements
and use cases

Design Test plans Code Test
results

Field
feedback

[5] Abuse
cases

[6] Security
requirements

[*] External
review

[2] Risk
analysis

[4] Risk-based
security tests

[7] Security
operations

[1] Code
Review
(tools)

[2] Risk
analysis

[3] Penetration
testing

Software Security Touchpoints

2006 JavaOneSM Conference | Session TS-1660 | 66

Visualize a Bad Day

• Threat modeling
• A threat is an entity
• Who’s the bad guy? What do they want?

• Risk assessment (with the design in mind)
• Microsoft’s STRIDE, Sun’s ACSM/SAR
• (Microsoft calls this “threat modeling”)

• Abuse cases

2006 JavaOneSM Conference | Session TS-1660 | 67

Do Code Review

• Code review finds bugs
• Security errors are often easier to spot in code

review than they are during testing
• Structured process for code review is essential

• Assigned roles: author, coordinator, reader
• Read the code ahead of time
• 2 hour max meeting time

• You must know what to look for

2006 JavaOneSM Conference | Session TS-1660 | 68

Do Security Testing

• A black box feel-good pen test is not enough
• A push-the-button webapp vulnerability scanner

is not enough
• Base tests on abuse cases
• Hint: by the time you get to the testing phase,

do you have a reason to believe you’ll pass?

2006 JavaOneSM Conference | Session TS-1660 | 69

Sign Off

• Software development is customer oriented:
security needs a “customer”

• Create a gate

2006 JavaOneSM Conference | Session TS-1660 | 70

Tool #1: Source Code Analyzer

• Use as part of code review (NOT in place
of code review)

• Tools are good at hypothesizing bugs
• Roughly 50% of security defects are in play here

2006 JavaOneSM Conference | Session TS-1660 | 71

Tool #2: Fuzz Tester

• Fuzzing is necessary but not sufficient.
Look beyond port 80!

• Use existing regression framework
• Incorporate source code analysis findings

• Attack surface (URLs, parameter names)

2006 JavaOneSM Conference | Session TS-1660 | 72

Conclusions

• Software security cannot be addressed
as a series of bugs

• Java technology is a world better than C,
but there’s plenty that still goes wrong

• Getting security right requires changing the way
the software is developed
• Policy
• Process
• Tools

2006 JavaOneSM Conference | Session TS-1660 |

TS-1660

Twelve Java™ Technology
Security Traps and How
to Avoid Them
Brian Chess, PhD
Chief Scientist
Fortify Software
http://www.fortifysoftware.com

