@ Sun

Blueprints for Using the
Simplified Java™ EE 5
Programming Model

Smitha Kangath, Inderjeet Singh

Java BluePrints
Sun Microsystems Inc.

TS-1969

Copyright © 2006, Sun Microsystems Inc., All rights reserved.
2006 JavaOne®M Conference | Session TS-1969 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

>,

Goal of the Talk
Application Programming Model for Java™ EE 5 Platform

Sample the key features of the Java EE 5
Platform and see how it simplifies the
development of Enterprise Applications
and Web Services

2006 JavaOne®¥ Conference | Session TS-1969 | 2 java.sun.com/javaone/sf

Designing Enterprise
Applications with the J2EE”

, n u u
peaker’s Qualifications #:
p and GM, Eureword brﬁﬁ.l-:xh Slclz:“\elﬁ?(;“xlems, Inc

- Members of the Java BluePrints
Program

* http://blueprints.dev.java.net/

Inderjeet Singh - Sean Brydon + Greg Murray &
Vijay Ramachandran * Thierry Violleau + Beth Stearns

- Java BluePrints Solutions Catalog Designing Web

Services with the

« Topics: AJAX, JSF, Enterprise, Web Services
- J2EE 1.4 and Java EE 5

- Java Pet Store, a new version showing

Web 2.0 Wlth Java EE 5 s — | [li %
- Java Adventure Builder ~
- Books

« Designing Web Services with
the J2EE 1.4 Platform I ﬂ

’ DeSigning Enterprise Applications e
with the J2EE Platform, 2™ Ed

@f@Sun 2006 JavaOneSM Conference | Session TS-1969 | 3 java .sun.com/iavaone/sf

http://blueprints.dev.java.net/

Agenda

* POJO-based Programming
* Annotations and Dependency Injection
» Key Changes in Component Models
- EJB 3.0

« Web tier
- Web Services

* Programming Model for Java Persistence
- With EJB 3.0
* In Web-tier without EJBs

2006 JavaOneSM Conference | Session TS-1969 | 4 java .sun.com/iavaone/sf

The J2EE™ Challenges

Powerful and comprehensive

Supports lots of use-cases: Web applications, Web
Services, messaging, database applications, etc.

Deployment Descriptors allow a lot of customization
Challenges

Rigid enforcement of “good” design and patterns

Can be difficult to get started

Boring boilerplate code

Much Container configuration to get application to work

Java EE 5 addresses these challenges

@%’SM?’I 2006 JavaOnesM Conference | Session TS-1969 | 5 iava.sun.com/iavaone/sf

EoD through POJO based
Programming

Express Programmer's intentions in Java Code
instead of in XML or other external configuration
actions

Java Class is the main programming artifact
Annotations add new capabilities to the class
Lots of sensible defaults

Can be overridden by XML based deployment
descriptors

Still fully compatible with J2EE 1.4

@%’SM?’I 2006 JavaOnesM Conference | Session TS-1969 | 6 iava.sun.com/iavaone/sf

Java

Annotations

Based on Java SE 5 Annotations Support

Annotations available for
Defining Web Services
Defining Enterprise Beans
Calling out EJB Lifecycle callbacks or Interceptors
Dependency Injection

Almost anything that you used to previously have a
Deployment Descriptor entry for

Transaction Attributes
Security

Look at JSR-250: Common Annotations

”%:%S’Mﬂ 2006 JavaOnesM Conference | Session TS-1969 | 7 iava.sun.com/iavaone/sf

Annotations: Pros/Cons

- Annotations: Pros
- Easier to write than .xml
- Easier to understand than .xml
- Fewer files to maintain

- Annotations: Cons
= Only visible in source-code
« Can't express all Java Platform, EE 5 metadata

* Blurs lines between Java EE platform roles
(e.g., Component Provider vs. Application Assembler)

@%&Sun 2006 JavaOne®M Conference | Session TS-1969 | 8 java .sun.com/javaone/sf

>,

Best Uses for Annotations

» Metadata that does not change often
- Metadata tied to component development time

- Examples

» Structural metadata
© e.g., @Stateless, @WebService, @Entity

* Environment dependencies
* e.g., @EJB, @Resource, @PersistenceContext

- Callbacks
* e.g., @PostConstruct, @Timeout, @Remove

2006 JavaOne®M Conference | Session TS-1969 | 9 java .sun.com/javaone/sf

Best Uses for Deployment Descriptors

Overriding annotations and defaults

Application assembler metadata

EJB Security Method Permissions
Typically not known until assembly/deployment time
Likely to change
Independent of business logic

Dependency linking info
e.g. cross-module ejb-link
Metadata that has no corresponding annotation

e.g. EJB Default interceptors, EJB 2.x Entity Beans,
Message Destinations

@%’SM?’I 2006 JavaOnesM Conference | Session TS-1969 | 10 iava.sun.com/iavaone/sf

Guidelines for .xml Overriding

- Use sparingly

* Overuse can make app difficult to understand/maintain
» Good with linking metadata

* e.g., ejb-link, persistence-unit-name

- Keep in mind not all annotations are overridable

* e.g., Session bean type (Stateful vs. Stateless)
can’'t be overridden

@%Sun 2006 JavaOne®" Conference | Session TS-1969 | 11 java .sun.com/javaone/sf

Don’t Forget Spec-Defined Defaults!

» Default values can be easier than annotations
and .xml

- EJB based transaction demarcation type
+ Default: Container managed transaction

» EJB based transaction attribute
» Default: TX_REQUIRED

* Environment annotation name()
+ Default: Derived from class and field/method

”%:%S’M?’l 2006 JavaOne®" Conference | Session TS-1969 | 12 java .sun.com/javaone/sf

Component Dependency Annotations
For declaring environment dependencies

For eliminating JNDI lookups
ejb-ref, resource-ref, service-ref, etc.

Available on container-managed classes

Enterprise beans and interceptors, Servlets, Filters,
ServletListeners, JSF Managed Beans, Web service

endpoints and Handlers
Not for JSP, JSP beans, or other plain Java classes
that are not available at deployment

Declared at class, field, or method level

Field/method level dependencies injected
at runtime

f%:%Szm 2006 JavaOneSM Conference | Session TS-1969 | 13 Iava.sun.com/iavaone/sf

@ Sun

annotation vs. .xml

@Resour ce(nane="Fo0”) private DataSource ds;

<resource-ref>
<res-ref-nane>Foo</res-ref-nane>
<res-ref-type>] avax. sql . Dat aSource</res-ref-type>
<I nj ection-target>
<i nj ection-target-class>om acne. FooBean</...>
<i nj ection-target-nane>ds</injection-target-nane>
</injection-target>
</resource-ref>

2006 JavaOnesM Conference | Session TS-1969 | 14 java .sun.com/iavaone/sf

Dependency Injection

» Available for Fields as well as methods

» Avallable anywhere on the inheritence hierarchy
* Follows normal language overriding rules

* @PostConstruct annotation available to provide
initialization after injection

@f@SMﬂ 2006 JavaOnes™ Conference | Session TS-1969 | 15 java .sun.com/javaone/sf

Injected Field/Method Access Modifiers

Spec allows public, package, protected, private

Which should you use?
Private is best
Injected data is typically internal to the .class
Exception: Overriding of environment
dependencies within a class hierarchy
Use sparingly
Tightly couples classes
Harder to understand/maintain

@%’SM?’I 2006 JavaOnesM Conference | Session TS-1969 | 16 iava.sun.com/iavaone/sf

Which Is Best: Field, Method,
or Class-level?

* Field-level: Easiest
* e.g., @EJB Converter converter
- Takes fewest characters to declare
* Supports injection

+ Method-level

= Useful for logic tied to a specific dependency injection
- But... Field-level + @PostConstruct would work too

”%:%S’M?’l 2006 JavaOnesM Conference | Session TS-1969 | 17 java .sun.com/javaone/sf

Which Is Best: Field, Method,
or Class-level? (Cont.)

Class-level
Useful for dependency declaration WITHOUT injection

Declare environment dependency for use by non
container-managed classes

FooBean.java:

@EJB(name="¢gjb/bar”, beanlnterface=Bar.class)

public class FooBean implements Foo { ... }

Utility.java:

Bar bar = (Bar) context.lookup(“java:comp/env/ejb/bar”);

@%’SM?’I 2006 JavaOnes™ Conference | Session TS-1969 | 18 iava.sun.com/iavaone/sf

>,

Another Class-Level
Dependency Example

« Stateful Session Bean creation

- EJB 3.0 SFSBs are created as a side-effect
of injection/lookup

- Common need : many instances of same SFSB
» Using field-based dependency + injection:
@EJB Cart cart1;

@EJB Cart cart2;

@EJB Cart cart3;

Too static :-(

2006 JavaOnes™ Conference | Session TS-1969 | 19 java .sun.com/javaone/sf

Another Class-Level
Dependency Example (Cont.)

- Alternative: class-level dependency + lookup

@EJB (name="ejb/Cart”, beanInterface=Cart.class)

public class CartClient {

Cart[] carts = new Cart[numCarts];
for(int 1 = 0; i < carts.length; i++) {

carts[i] = (Cart)
ctx.lookup (“java:comp/env/ejb/Cart”) ;

}

”%:%S’M?’l 2006 JavaOnesM Conference | Session TS-1969 | 20 java .sun.com/javaone/sf

Concurrency and Injection

Injection does not solve concurrency issues

If an object obtained through lookup()
IS non-sharable, it's non-sharable when injected

Be careful with Servlet instance injection

public class MyServlet ... {
private @EJB StatelessEJB stateless; // OK
private @EJB StatefulEJB stateful; // dangerous!

”%:%S’Mﬂ 2006 JavaOne®" Conference | Session TS-1969 | 21 iava.sun.com/iavaone/sf

Concurrency and Injection (Cont.)

Most common issues: Stateful Session Beans,
PersistenceContexts

Recommended alternative: lookup() and store
In HitpSession

@PersistenceContext (name="pc”,
type=EntityManager.class)

public class MyServlet ... {
EntityManager em = ctx.lookup (“java:comp/env/pc”) ;

httpSession.setAttribute (“entityManager”, em) ;

@%’SM?’I 2006 JavaOnes" Conference | Session TS-1969 | 22 iava.sun.com/iavaone/sf

>,

Performance and Injection

Use of injection is unlikely to cause
performance issues

Injection is essentially a ctx.lookup() + one
reflective operation

Injection occurs at instance creation-time

Overhead of injection typically small compared
to instance creation itself

Most lookups() resolved locally within server
Instances are typically long-lived/reused

2006 JavaOnesM Conference | Session TS-1969 | 23 iava.sun.com/iavaone/sf

@ Sun

Agenda

* POJO-based Programming

* Annotations and Dependency Injection

- Key Changes in Component Models
« EJB 3.0
* Web tier
* Web Services

* Programming Model for Java Persistence
- With EJB 3.0
* In Web-tier without EJBs

2006 JavaOnesM Conference | Session TS-1969 | 24 iava .sun.com/iavaone/sf

What Changed in EJB?

* |ssues with EJB 2.1

* Good component model, but required too much coding

and concepts

* Too many classes, interfaces, concepts
javax.ejb interfaces
Complex JNDI lookups
Awkward programming model
Deployment descriptors
Entity bean anti-patterns

@f@Sun 2006 JavaOne®™ Conference | Session TS-1969 | 25

java.sun.com/javaone/sf

>,

What is Different in EJB 3.0?

POJO-based Component Definition

* No required Container interfaces
* No required deployment descriptor

Dependency Injection

Decoupled Java Persistence from EJB
components

Simple lookups
No required Deployment descriptor

2006 JavaOne®M™ Conference | Session TS-1969 | 26

java.sun.com/javaone/sf

Stateless Session Bean with J2EE

public class PayrollBean implements javax.ejb.SessionBean {
SessionContext ctx;
DataSource empDB;
public void setSessionContext (SessionContext ctx) {
this.ctx = ctx;

}
public void ejbCreate() { empDB = (DataSource)

ctx.lookup (“jdbc/empDb”) ; }

public void ejbActivate() {}
public void ejbPassivate() {}
public void ejbRemove) ({}

public void setBenefitsDeduction (int empId, double deduction) ({

Connection conn = empDB.getConnection() ;

3
Need Remote/Local, Home interfaces, Deployment descriptors

”%:%S’M?’l 2006 JavaOnes™ Conference | Session TS-1969 | 27 java .sun.com/javaone/sf

Stateless Bean Example with Java EE 5

@Stateless
public class PayrollBean implements Payroll

{

@Resource DataSource empDB;
public void setBenefitsDeduction(int empId,
double deduction) {

DataSource conn = empDB.getConnection() ;

%‘“@Sun 2006 JavaOne®™ Conference | Session TS-1969 | 28 java.sun.com/javaone/sf

Dependency Injection in EJB

» Resources a bean depends upon are injected
when bean instance is constructed

- References to
- EJBContext
- DataSources
« UserTransaction
* Environment entries
- EntityManager
« TimerService
» Other EJB beans

2006 JavaOneS™ Conference

Session TS-1969 | 29

java.sun.com/javaone/sf

Dependency Injection

* Annotations
- @QEJB

+ References to EJB business interfaces

- References to Home interfaces (when accessing
EJB 2.1 components)

* @Resource
- Almost everything else

* Number of annotations is simplified from EJB 3
specification early draft

* Injection can also be specified using deployment
descriptor elements

@%Sun 2006 JavaOnesM Conference | Session TS-1969 | 30 java .sun.com/javaone/sf

Simplified Client View

» Session beans have plain Java language
business interface

* No more EJB(Local)Home interface
* No more EJB(Local)Obiject interface

- Bean class implements interface
* Looks like normal Java class to Bean developer

* Looks like normal Java interface
to client

”%:%S’M?’l 2006 JavaOne®" Conference | Session TS-1969 | 31 java .sun.com/javaone/sf

EJB 3.0 Client Example

// EJB 3.0 client view

@EJB ShoppingCart myCart;

Collection widgets = myCart.startToShop (“widgets”) ;

XSun 2006 JavaOnes™ Conference | Session TS-1969 | 32 iava .sun.com/iavaone/sf

sssssssssssss

Why Use EJB 3.0?

* Nothing in the platform is REQUIRED to be used

- Use based on application requirements

+ Benefits of EJB 3.0

* Helps componentize and modularize code
- Enforce good architecture

* Good integration with Java Persistence

« Greatly simplified concept

2006 JavaOnesM Conference | Session TS-1969 | 33 java .sun.com/javaone/sf

What Changed in the Web Tier?

JSF 1.2 became part of the Java EE 5 platform

Annotations support
No component defining annotations

Common annotations in container managed objects
JSF managed beans, servlets, filters, event listeners
Not in JSP. But available in JSP tag handlers or event listeners

Web.xml not needed

Not needed if only JSP and Web service annotated
classes

Still needed for JSF, servlets, security settings, etc.

@%’SM?’I 2006 JavaOnesM Conference | Session TS-1969 | 34 iava.sun.com/iavaone/sf

Programming Model for Web Tier

Traditional JSP/Servlets based applications
Use an MVC Framework
For Web 2.0, use an AJAX library; for example, Dojo

JSF 1.2: Standardized MVC framework

Component-based
Unified expression language for JSP and JSF

Best used with a tool like Java Studio Creator
Also possible to write applications by hand

For Web 2.0, wrap AJAX functionality in reusable
components

@%’SM?’I 2006 JavaOnesM Conference | Session TS-1969 | 35 iava.sun.com/iavaone/sf

What Changed for the Web Services?

Significantly revised and simplified

JAX-RPC 2.0 renamed to JAX-WS 2.0
Breaks compatibility with JAX-RPC 1.1
JAX-RPC 1.1 is also available

Key Features

Simplified programming model with annotations and
dependency injection

Uses JAXB 2.0 for type-mappings
Portable runtime artifacts

@%’SM?’I 2006 JavaOnesM Conference | Session TS-1969 | 36 iava.sun.com/iavaone/sf

Key Features in Web Services

» Key Features (cont.)
* Supports Fast-Infoset for high performance

« JAX-WS supports REST services
« Useful for AJAX Backends

- Can generate annotated JAX-WS and JAXB code from
WSDL and XSD

2006 JavaOnesM Conference | Session TS-1969 | 37 java .sun.com/javaone/sf

JAX-WS 2.0 New Architecture

= Multiple protocols
« SOAP 1.1, SOAP 1.2, XML

* Multiple encodings
« XML, MTOM/XOP, FAST Infoset (Binary XML)

» Multiple transports
« HTTP
» Others to be added in future releases

2006 JavaOnesM Conference | Session TS-1969 | 38 java .sun.com/javaone/sf

JAXB 2.0 Is Now Bi-Directional

* 1.0: Schema —+Java only
* JAXB is for compiling schema
- Don’t touch the generated code

- 2.0: Java = XML + schema compiler
« JAXB is about persisting POJOs to XML
* Annotations for controlling XML representation
* Modify the generated code to suit your taste

@%Sun 2006 JavaOnes™ Conference | Session TS-1969 | 39 java .sun.com/javaone/sf

Web Service Annotation Example

@WebService (name="Hello” serviceName="HelloService”)
public class HelloWebService ({

@WebMethod
public String sayHello(String s) {...}
public void unpublished() {...}

public class HelloClient {
@QWebServiceRef (wsdlLocation=
"http://localhost:8080/HelloService?WSDL")
static hello.HelloService service;

public static void main(String[] args) {
hello.Hello wsPort = service.getHelloPort() ;
System.out.println(wsPort.sayHello()) ;

}

@f@Sun 2006 JavaOneSM Conference | Session TS-1969 | 40 java .sun.com/iavaone/sf

@ Sun

Agenda

* POJO-based Programming
* Annotations and Dependency Injection
» Key Changes in Component Models
- EJB 3.0

« Web tier
- Web Services

* Programming Model for Java Persistence
- With EJB 3.0
* In Web-tier without EJBs

2006 JavaOnes" Conference | Session TS-1969 | 41 iava .sun.com/iavaone/sf

Java Persistence API

Part of JSR-220, but a separate document
No reliance on EJB technology or EJB container
Usable in Web-only applications and Java SE

POJO-based persistence

Lightweight domain objects—no overhead of container-
managed components

Sensible default mappings
Complete query capabilities

Key concepts - persistent entities, persistence
unit, persistence context, entity manager

@%’SM?’I 2006 JavaOnes" Conference | Session TS-1969 | 42 iava.sun.com/iavaone/sf

>,

Persistent Entities

Plain old Java objects
No more interfaces required
Supports use of new, inheritance

Persistent properties with JavaBean style
accessor methods or persistent instance
variables

Usable as “detached” objects in other
application tiers—no more need for Data Transfer

Objects

Persistence, querying, and O/R mapping
managed by the Java Persistence API

2006 JavaOnesM Conference | Session TS-1969 | 43 iava.sun.com/iavaone/sf

Persistent Entities (Cont.)

@Entity

public class Item implements java.io.Serializable {

private String itemID;

private String name;

private String description;

@Id

public String getItemID() ({
return itemID;

}
public String getName () {

return name;

}

public void setName (String name) {
this.name = name; }

@@Sun } 2006 JavaOneSM Conference | Session TS-1969 | 44 java.sun.com/iavaone/sf

Persistence Unit

- Unit of packaging and deployment

- Set of related classes that map to a single
database

- Defined by a persistence.xml file

* Includes O/R mapping metadata—metadata
annotations or XML files

2006 JavaOnesM Conference | Session TS-1969 | 45 java .sun.com/javaone/sf

Persistence Context and
EntityManager

Persistence Context
Similar to transaction context, it's a scope

Entity instances are managed within the persistence
context

A unique instance exists for any persistent entity
identity

EntityManager
APl to manage the entity instance lifecycle
persist, remove, merge etc.

Operations to find entities by primary keys, to create
Query objects, and to manage the persistence context

find, createQuery, close, getTransaction etc.

@%’SM?’I 2006 JavaOnesM Conference | Session TS-1969 | 46 iava.sun.com/iavaone/sf

>,

Types of Persistence Context

Persistence Context lifetime maybe transaction-
scoped or extended

Transaction-scoped persistence context

bound to a JTA transaction—starts and ends at
transaction boundaries

entities are detached from the persistence context
when transaction ends

Extended persistence context
spans multiple transactions
exists from the time the EntityManager instance is
created until it is closed

Defined when the EntityManager instance is
created

2006 JavaOnesM Conference | Session TS-1969 | 47 iava.sun.com/iavaone/sf

Types of EntityManager

Entity manager may be container-managed or
application-managed

Container-managed entity manager
Lifecycle managed by the Java EE container

May use transaction-scoped or extended persistence
context

Extended persistence context is only available to
stateful session beans
Application-managed entity manager
Life cycle managed by the application
Also available in Java SE environments
Must use extended persistence context

@:%SMW 2006 JavaOnesM Conference | Session TS-1969 | 48 iava.sun.com/iavaone/sf

Container-Managed Entity Manager
Example

Dependency injection of EntityManager with the
@PersistenceContext annotation or a JNDI
lookup

@Stateless
public class CatalogFacadeBean implements CatalogFacade({

@QPersistenceContext (unitName="PetstorePu")
private EntityManager em;

public List<Category> getCategories () {
List<Category> categories = em.createQuery ("SELECT
c FROM Category c'") .getResultList();
return categories;

”%:%S’Mﬂ 2006 JavaOnesM Conference | Session TS-1969 | 49 iava.sun.com/iavaone/sf

&N

%

Application-Managed Entity Manager
Example

Dependency injection of EntityManagerFactory
with the @PersistenceUnit annotation

public class CatalogFacade implements
ServletContextListener {

@QPersistenceUnit (unitName="PetstorePu")
private EntityManagerFactory emf;

public List<Category> getCategories () {
EntityManager em = emf.createEntityManager () ;
List<Category> categories = em.createQuery ("SELECT
c FROM Category c") .getResultList() ;
em.close () ;
return categories;

2006 JavaOnesM Conference | Session TS-1969 | 50 java .sun.com/javaone/sf

Java

Transactions with Entity Manager

JTA entity manager
Transactions are controlled through JTA
Container-managed entity manager always does JTA
transactions

Resource-local entity manager

Transactions are controlled through the
EntityTransaction API

Application-managed entity manager can be either JTA
or resource-local

Transactional type is defined in persistence.xml

@%’SM?’I 2006 JavaOne®" Conference | Session TS-1969 | 51 iava.sun.com/iavaone/sf

®Sun

Entity Operations

» Persisting an entity

@QPersistenceContext (unitName="PetstorePu")
private EntityManager em;

Item item = new Item(itemID, name, description, price);
em.persist(item) ;

* Finding and removing an entity

Item item = em.find(Item.class, itemlID) ;
em.remove (item) ;

2006 JavaOnes" Conference | Session TS-1969 | 52 iava .sun.com/iavaone/sf

Query API

* To query and retrieve entities
- Static and dynamic queries
- Named parameter binding and pagination control

* Queries are defined in Java Persistence Query
Language or native SQL

 Named Queries

2006 JavaOnes" Conference | Session TS-1969 | 53 java .sun.com/javaone/sf

An Example Using Queries

@PersistenceContext (unitName="PetstorePu")

private EntityManager em;

public List<Product> getProducts (String catID) {

Query query = em.createQuery ("SELECT p FROM Product p
WHERE p.categoryID LIKE :categoryID") ;

List<Product> products = query.setParameter
("categoryID", catID) .getResultList()

@f@Sun 2006 JavaOnesM Conference | Session TS-1969 | 54 java .sun.com/javaone/sf

Refactoring Using Named Queries

- Defining named queries

@NamedQuery (
name="Item.getItemsPerProduct",
query="SELECT i FROM Item i WHERE i.productID LIKE
pID")

@Entity
public class Item implements java.io.Serializable ({

-
- Using named queries

Query query = em.createNamedQuery
("Item.getItemsPerProduct") ;
query.setParameter ("pID" ,prodID) ;
List<Item> items = query.getResultList()

fSMn 2006 JavaOne®™ Conference | Session TS-1969 | 55 java.sun.com/javaone/sf

S
4

Native SQL vs. Java Persistence
Query Language

Native SQL

Returns raw data — field values for the entity
Complex SQL for navigating relationships

Java Persistence Query Language

Returns entities
Relationships can be navigated using a “.”
Similar to SQL - small learning curve

”%:”fSZﬂ’l 2006 JavaOnesM Conference | Session TS-1969 | 56 java .sun.com/javaone/sf

&

%

Value List Handler

Common design pattern

Helper method in Java Persistence Query
Language to get chunks of data

public List<Item> getItemsVLH (String prodID, int start,
int chunkSize) {

Query query = em.createQuery ("SELECT i FROM Item 1i
WHERE i.productID = :pID");

List<Item> items = query.setParameter ("pID",prodID).
setFirstResult (start) .setMaxResults (chunkSize).
getResultList () ;

em.close() ;

return items;

2006 JavaOnes" Conference | Session TS-1969 | 57 java .sun.com/javaone/sf

>,

O/R Mapping Metadata

Physical mapping annotations
tables, columns etc. eg.,@Column, @Table

Logical mapping annotations
Relationship modeling annotations eg.,@OneToOne

Relationship mappings can be One-to-One, One-
to-many, Many-to-one, and Many-to-many

Relationships may be unidirectional or
bidirectional

2006 JavaOnesM Conference | Session TS-1969 | 58 iava.sun.com/iavaone/sf

O/R Mapping Metadata: Example

@Entity
@Table (name="Customer”)

public class Customer implements Serializable {
private String name;
private Collection<Order> orders;

@Column (name="CUST NAME")

public String getName () ({
return name;

}

@OneToMany

public Collection<Order> getOrders() ({
return orders;
}

2006 JavaOnes™ Conference | Session TS-1969 | 59 java .sun.com/iavaone/sf

Automatic Generation of Primary Keys

Different strategies — TABLE, SEQUENCE,
IDENTITY, AUTO

@Entity
public class Item implements java.io.Serializable ({

@TableGenerator (name="ITEM ID GEN", table="ID GEN",
pkColumnName="GEN_KEY" 6 valueColumnName="GEN VALUE”,
pkColumnValue="ITEM ID", allocationSize=l)

@GeneratedValue (strategy=GenerationType.TABLE,
generator="ITEM ID GEN")
@Id
public String getItemID() {
return itemlID;
}

”%:%S’Mﬂ 2006 JavaOnesM Conference | Session TS-1969 | 60 iava.sun.com/iavaone/sf

Java

Java Persistence in the Web Tier

Java Persistence was designed to be used
without requiring EJBs

Can be used in the Web tier
Can be used in Java SE environments

Web-only application may have

Application-managed or container-managed entity
manager

Transaction-scoped or extended persistence context
Application-managed transactions

@%’SM?’I 2006 JavaOne®" Conference | Session TS-1969 | 61 iava.sun.com/iavaone/sf

What Is Wrong with This Code?

public class CatalogServlet extends HttpServlet {

@PersistenceContext (unitName="PetstorePu")
EntityManager em;

public void doGet(HttpServletRequest req,
HttpServletResponse resp) throws ServletException,
IOException ({

Item item = new Item(itemID, name, description,

price) ;
em.persist (item)

@@Sun 2006 JavaOneSM Conference | Session TS-1969 | 62 java .sun.com/iavaone/sf

This Code Is Not Thread-Safe

PersistenceContext is injected just once during
the entire lifecycle of the application

Concurrent requests coming to the serviet will
access the same PersistenceContext object

PersistenceContext is NOT a thread-safe object!

”%:”fSZﬂ’l 2006 JavaOnesM Conference | Session TS-1969 | 63 java .sun.com/javaone/sf

A Better Way of Using Java
Persistence in Web Tier

Dependency injection of EntityManagerFactory
with the @PersistenceUnit annotation

public class CatalogServlet extends HttpServlet ({
@PersistenceUnit (unitName="PetstorePu")
EntityManagerFactory emf;

public void doGet(HttpServletRequest req,
HttpServletResponse resp) throws ServletException,
IOException ({
EntityManager em = emf.createEntityManager () ;
Item item = new Item(itemID, name, description,

price) ;

em.persist(item) ;
em.close () ;

’SM?’I 2006 JavaOne® Conference | Session TS-1969 | 64 java.sun.com/javaone/sf

S
4

A Better Way of Using Java
Persistence in Web Tier (Cont.)

- JNDI lookup to obtain the entity manager

@PersistenceContext (name="PetstorePu")
public class CatalogServlet extends HttpServlet {

public void doGet(HttpServletRequest req,
HttpServletResponse resp) throws ServletException,
IOException {

EntityManager em = (EntityManager) new

InitialContext () .lookup ("java:comp/env/PetstorePu") ;

Item item = new Item(itemID, name, description,
price) ;

em.persist (item)

Y g

45”71 2006 JavaOne®™ Conference | Session TS-1969 | 65 java.sun.com/javaone/sf

Managing Transactions in the Web
Tier

- JTA transactions

@Resource UserTransaction utx;

public void addItem(Item item) {
try{
utx.begin() ;
em. joinTransaction() ;
em.persist(item) ;
utx.commit () ;
} catch (Exception exe) {

} finally {
em.close () ;

}

@@Sun 2006 JavaOneSM Conference | Session TS-1969 | 66 java .sun.com/iavaone/sf

Managing Transactions in the Web
Tier (Cont.)

* Resource-local transactions

public void addItem(Item item) {
try{
em.getTransaction() .begin() ;
em. joinTransaction() ;
em.persist(item) ;
em.getTransaction () .commit () ;
} catch (Exception exe) {

} finally {
em.close () ;
}

@f@Sun 2006 JavaOne®™ Conference | Session TS-1969 | 67

java.sun.com/javaone/sf

>,

Facade Pattern

Centralizes requests to the domain

Handles and encapsulates transactions,
entity managers, etc.

May need to do dependency injections—
use container-managed classes

May return detached entities
May aggregate calls to multiple entities

May aggregate multiple calls to the entity
manager, such as a find and then merge

2006 JavaOnesM Conference | Session TS-1969 | 68 Iava.sun.com/iavaone/sf

>,

Summary

Use annotations and defaults to define
components and external dependencies

Use DD entries to override
Use EJB 3.0 for simplified components

Use JSF components for drag-and-drop Web
application development

Use JAX-WS (with integrated JAXB 2.0) for
creating Web services use Java Persistence for
OR mappings

2006 JavaOne®" Conference | Session TS-1969 | 69 java.sun.com/javaone/sf

If You Only Remember One
Thing...

Java EE 5 Dramatically Simplifies The Programming
Model for Enterprise Web Applications and Web
Services

@f@Sun 2006 JavaOnesM Conference | Session TS-1969 | 70 java .sun.com/javaone/sf

2006 JavaOne®™ Conference | Session XXXX | 71 jaua.sun.comfjauaone{sf

@ Sun

ORACLE

Blueprints for Using the
Simplified Java” EE 5
Programming Model
Smitha Kangath, Inderjeet Singh

Sun Microsystems Inc.

TS-1969

2006 JavaOne®M Conference | Session TS-1969 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

