
2006 JavaOneSM Conference | Session TS-3456 |

Spring Web Flow
Dialogs for the Web
Keith Donald
Principal
Interface21
http://www.interface21.com

TS-3456

2006 JavaOneSM Conference | Session TS-3456 | 2

You will learn how to orchestrate
controlled web application conversations
using Spring Web Flow.

In the Next 60 Minutes…

2006 JavaOneSM Conference | Session TS-3456 | 3

Agenda

Problem
Approach
Usage examples
Integration
Future

2006 JavaOneSM Conference | Session TS-3456 | 4

Agenda

Problem
Approach
Usage examples
Integration
Future

2006 JavaOneSM Conference | Session TS-3456 | 5

Web applications are a mixed bag
Problem

• Consist of free navigations
• Browsing a product catalog
• Viewing product details

• And controlled page flows
• Completing a checkout process
• Applying for store credit

2006 JavaOneSM Conference | Session TS-3456 | 6

Characteristics
Free Navigation

• A set of pages connected by links
• Each link accesses a public resource

• http://www.spring-shoes.com/catalog
• http://www.spring-shoes.com/catalog/nb/476

• Users have access to each link freely
• Links are often bookmarked

• There is no controlled page flow
• There is no task to complete

2006 JavaOneSM Conference | Session TS-3456 | 7

Characteristics
Controlled Page Flow

• A user task consisting of multiple steps
• Has a starting point
• Usually has an ending point

• Each task is accessible as a public resource
• http://www.spring-shoes.com/checkout

• A task guides a single user toward completion
of a business goal

• The progress of one user’s task execution is
independent of other users

2006 JavaOneSM Conference | Session TS-3456 | 8

DEMO
Real-world examples

2006 JavaOneSM Conference | Session TS-3456 | 9

Free vs. controlled navigation
Controller Characteristics

• A free navigation controller is simple
• Stateless
• Renders the view of a resource when requested
• Existing frameworks do a good job here

• A controlled page flow controller is more complex
• Stateful
• Orchestrates a task with a linear progression
• Renders views as necessary to allow the user

to participate in the task
• Not the focus of most existing frameworks

2006 JavaOneSM Conference | Session TS-3456 | 10

What is traditionally difficult
Controlled Navigation Challenges

• Enforcing a linear progression
• Preventing the user from jumping around
• Preventing the same task from being completed twice

• Managing state
• Storing and accessing task state
• Cleaning up the state of ended or expired tasks
• Keeping server state in sync with the client
• Preventing server state from being overwritten

by other tasks executing in parallel

2006 JavaOneSM Conference | Session TS-3456 | 11

Agenda

Problem
Approach
Usage examples
Integration
Future

2006 JavaOneSM Conference | Session TS-3456 | 12

Conventional approach
Enforcing a Linear Progression

• The client drives the progression
• Navigation hints are often embedded in URLs

● order.do?_currentPage=3
● order.do?_finish=true

• The controller validates that the client does the
right thing according to the flow navigation rules
• Figures out what step the client says she is at
• Ensures task steps are executed in the correct order

2006 JavaOneSM Conference | Session TS-3456 | 13

DEMO
Enforcing a linear progression
Conventional

2006 JavaOneSM Conference | Session TS-3456 | 14

Conventional implications
Enforcing a Linear Progression

• The client can attempt to short-circuit the flow
• Maliciously or accidentally

• order.do?_confirmed=true
• The controller must prevent this
• As a result both the client and controller are

often aware of flow navigation rules
• This often leads to:

• Hard coded navigation hints in your JSPs
• Many if/else statements within your controller

implementation

2006 JavaOneSM Conference | Session TS-3456 | 15

2006 JavaOneSM Conference | Session TS-3456 | 16

Spring Web Flow approach
Enforcing a Linear Progression

• The controller drives the progression not
the client

• The client simply provides the controller
input when asked
• Client is not navigation rule aware

client: start task
server: start; process input; render the starting form
client: submit
server: resume; process input; render the next form
client: submit
server: resume; finish; render confirmation

2006 JavaOneSM Conference | Session TS-3456 | 17

DEMO
Enforcing a linear progression
Spring Web Flow

2006 JavaOneSM Conference | Session TS-3456 | 18

Spring Web Flow benefits
Enforcing a Linear Progression

• The client can not short-circuit the flow
• She can only provide the flow input from a

specific point when asked
• The controller always knows what step the

client is at
• You no longer have to figure this out
• You get a callback to resume processing from

the correct point
• All flow navigation rules are encapsulated

within the controller
• Changing navigation rules does not impact clients

2006 JavaOneSM Conference | Session TS-3456 | 19

Conventional approach
Managing State

• The controller is stateless
• Stores task context in the session
• Cleans up context in the session after task

completion
• Manages a session token to prevent completing

the same task execution more than once

2006 JavaOneSM Conference | Session TS-3456 | 20

Code Sample
public Forward onFormSubmit(HttpServletRequest request) {
 if (isStartRequest(request)) {
 assertTaskNotInProgress(request);
 createTaskContext(request);
 return startingForm(request);
 } else if (isResumeRequest(request)) {
 assertSessionToken(request);
 if (isCurrentForm(request)) {
 updateSessionData(request);
 return errors(request) ? currentForm(request)
 : nextForm(request);
 } else {
 return handleOutofSyncSubmit(request);
 }
 } else if (isFinishRequest(request)) {
 assertSessionToken(request);
 processSubmit(request);
 cleanupSessionData(request);
 removeSessionToken(request);
 }
}

2006 JavaOneSM Conference | Session TS-3456 | 21

Conventional implications
Managing State

• Use of the back button refers to session state
captured at later point

• Opening a new window overwrites the other
window’s data

• Not properly cleaning up after task completion
brings consequences
• Memory leaks
• Duplicate submission
• Including stale data in a new task execution
• Flow short circuit

2006 JavaOneSM Conference | Session TS-3456 | 22

2006 JavaOneSM Conference | Session TS-3456 | 23

Spring Web Flow approach
Managing State

• The controller is stateful
• Represents an executing task at a point in time

• Stored in a repository between requests
• Clients resume the controller to continue task

execution from a point in time

2006 JavaOneSM Conference | Session TS-3456 | 24

start task

Flow
Execution
Repository

save

form1

Task
Execution

submit

form2

submit

confirmation

load

2006 JavaOneSM Conference | Session TS-3456 | 25

Spring Web Flow benefits
Managing State

• Use of the back button refers to the state of
the task execution at that point in history

• Opening a new window clones an independent
task execution at the current step

• When a task completes it is purged from its
repository
• All managed state is eligible for garbage collection
• It is impossible to continue a task that has completed

2006 JavaOneSM Conference | Session TS-3456 | 26

Created

Active

start

user input
needed

Paused

user event
signaled

Resuming

Ending

end

2006 JavaOneSM Conference | Session TS-3456 | 27

Spring Web Flow vs. Conventional
Approach Summary

• One controller, the flow, drives the entire task
execution

• The flow pauses when client input is required
• The flow resumes when client input is provided

• Initiated by an event
• Event processing logic is encapsulated within

the flow
• Client has no knowledge of flow navigation rules

• Can only influence navigation via an event model, can not
drive navigation

2006 JavaOneSM Conference | Session TS-3456 | 28

Agenda

Problem
Approach
Usage examples
Integration
Future

2006 JavaOneSM Conference | Session TS-3456 | 29

How do you define a flow?
Flow Definition

• You use a domain-specific language (DSL)
• XML form is most popular

2006 JavaOneSM Conference | Session TS-3456 | 30

XML Representation
<flow start-state=“step1”>
 <my-state id=“step1”>
 <transition on=“event” to=“step2”/>
 </my-state>
 <my-state id=“step2”>

 <transition on=“event” to=“finish”/>
 </my-state>
 <end-state id=“finish”/>
</flow>

2006 JavaOneSM Conference | Session TS-3456 | 31

Flow Builder API
FlowBuilder builder = new AbstractFlowBuilder() {
 protected void buildStates() {
 addMyState(“step1”, on(“event”, to(“step2”));
 addMyState(“step2”, on(“event”, to(“finish”));
 addEndState(“finish”);
 }
}
FlowAssembler assembler =
 new FlowAssembler(“myFlow”, builder);
assembler.assembleFlow();
Flow flow = builder.getResult();

2006 JavaOneSM Conference | Session TS-3456 | 32

Characteristics
Flow Definition

• Declarative instructions to an execution engine
• A set of states that you define
• Each state executes a behavior when entered

• View states solicit user input
• Action states execute commands
• Decision states make routing decisions
• Subflow states spawn child flows
• End states terminate flows

• Events you define drive state transitions
• Transitions define the paths through the flow

2006 JavaOneSM Conference | Session TS-3456 | 33

start

Enter Purchase
submit

Is Shipping
Required?

Enter Shipping

yes

no
Place Order

submit

Show Confirmation

View State

Action State

End State

Decision State

2006 JavaOneSM Conference | Session TS-3456 | 34

<flow start-state=“enterPurchase”>
 <view-state id=“enterPurchase” view=“purchaseForm”>
 <transition on=“submit” to=“shippingRequired”>
 <action bean=“form” method=“bindAndValidate”/>
 </transition>
 </view-state>
 <decision-state id=“shippingRequired”>
 <if test=“${purchase.shipping}”
 then=“enterShipping” else=“placeOrder”/>
 </decision-state>
 <action-state id=“placeOrder”>
 <action bean=“orderClerk”
 method=“placeOrder(${purchase})”/>
 <transition on=“success” to=“showConfirmation”/>
 </action-state>
 <end-state id=“showConfirmation” view=“confirmation”/>
 <import resource=“purchase-flow-beans.xml”/>
</flow>

2006 JavaOneSM Conference | Session TS-3456 | 35

purchase-flow-beans.xml
<beans>
 <bean id=“orderClerk” class=“example.StubOrderClerk”/>
</beans>

Bean id to Implementation Binding

• Spring Web Flow can bind to any method on
any object:

public interface OrderClerk {
 OrderConfirmation placeOrder(Purchase purchase);
} ...Without your object depending on SWF APIs

purchase-flow.xml
<action bean=“orderClerk”
 method=“placeOrder(${purchase})”/>

2006 JavaOneSM Conference | Session TS-3456 | 36

Benefits
Flow Definition

• One artifact defines all task controller logic
• Is abstract; not concerned with:

• State management
• Servlet or Portlet APIs
• URLs
• Back button
• Malicious clients

• The execution system cares for those concerns
• A flow definition defines a task executable

in any environment

2006 JavaOneSM Conference | Session TS-3456 | 37

DEMO
The same flow executing within a Servlet
and Portlet environment

2006 JavaOneSM Conference | Session TS-3456 | 38

Readying a flow for execution
Steps to Flow Execution

• Deploy your flow definitions to a registry:
<beans>
 <xmlFlowRegistry id=“registry”
 flowLocations=“/WEB-INF/flows/**/*.xml”/>
 …
</beans>

• By default a flow is assigned a registry identifier
by convention
• purchase-flow.xml becomes purchase-flow

2006 JavaOneSM Conference | Session TS-3456 | 39

Readying a flow for execution
Steps to Flow Execution

• Configure the flow executor for the environment
you are running in
• Spring MVC, JavaServer™ Faces, Struts supported

out-of-the-box
• (Optional) Configure a strategy for how flow

executions will be persisted between requests
• In the session
• To the client

• (Optional) Configure how flow executor
arguments are extracted from the request
• From request parameters
• From the request path

2006 JavaOneSM Conference | Session TS-3456 | 40

Spring MVC Flow Executor
<beans>

 <flowController name=“/*”
 registry-ref=“registry”
 storage=“client”
 argumentExtractor=“requestPath”/>
</beans>

• Exposes flows in the registry for execution
• Uses request path parameterization to launch

new flow executions
• http://localhost/app/purchase
• http://localhost/app/credit Registry identifier

2006 JavaOneSM Conference | Session TS-3456 | 41

Requirements
Flow Execution Rendering

• View selections made by your flows must be
resolvable to a response writer

• Typically a view template
• Template resolution is handled by the framework

SWF is integrating with
• ViewResolver (Spring MVC)

● Supports JavaServer Pages™ technology, Velocity,
Freemarker, and custom views

• Action forward (Struts)
• View Name (JavaServer Faces technology)

• View templates must output the flow execution
key to support a resume operation on submit

2006 JavaOneSM Conference | Session TS-3456 | 42

<form method=“post” action=“${flowUrl}”>
 …
 <spring-webflow:flowExecutionKey/>
 <input type=“submit” name=“_eventId_submit”
 value=“Submit”>
</form>

Example Template (JSP™ Technology)

• Flow execution key identifies a FlowExecution
in the repository
• Continues the conversation from the view-state

that selected this view
• Event id communicates what user action

occurred
• Drives a transition out of the current view-state

2006 JavaOneSM Conference | Session TS-3456 | 43

Agenda

Problem
Approach
Usage examples
Integration
Future

2006 JavaOneSM Conference | Session TS-3456 | 44

Through an adaption layer
Integrating Into Other Frameworks
• Struts

• FlowAction executes all flows
• View selections are mapped to action forwards
• An action form adapter allows SWF data binding

• JavaServer Faces platform
• FlowPhaseListener restores flow executions from

the repository on “restore view” phase
• JSF components resolve flow expressions

• Via FlowVariableResolver and FlowPropertyResolver
• FlowNavigationHandler continues flows

• Spring Web Flow is positioned as an
embeddable page flow engine

2006 JavaOneSM Conference | Session TS-3456 | 45

<faces-config>
 …
 <navigation-handler>
 o.s.webflow.executor.jsf.FlowNavigationHandler
 </navigation-handler>
 <property-resolver>
 o.s.webflow.executor.jsf.FlowPropertyResolver
 </property-resolver>
 <variable-resolver>
 o.s.webflow.executor.jsf.FlowVariableResolver
 </variable-resolver>
 …
 <phase-listener>
 o.s.webflow.executor.jsf.FlowPhaseListener
 </phase-listener>
 …
</flow>

JavaServer Faces Integration Example

2006 JavaOneSM Conference | Session TS-3456 | 46

JavaServer Faces Integration Example
• Launching a flow as a command link

<h:commandLink value="Go" action="flowId:myflow"/>

• Resuming a flow with component binding
expressions

<h:form id="form">
 ...
 <h:inputText id="propertyName"
 value="#{managedBeanName.propertyName}"/>
 ...
 <h:commandButton type="submit" action="submit"/>
</h:form>

2006 JavaOneSM Conference | Session TS-3456 | 47

Agenda

Problem
Approach
Usage examples
Integration
Future

2006 JavaOneSM Conference | Session TS-3456 | 48

Spring Web Flow roadmap
Future

• Nested, parallel flow executions
• JMX™-based flow execution management

• Monitor in-flight conversations
• Conversation history subsystem

• To support bread crumbs, statistics
• More integration

• Tapestry
• Business process management (BPM)
• Acegi Security
• Persistence providers (Session per flow)
• Others?

2006 JavaOneSM Conference | Session TS-3456 | 49

Spring Web Flow jumpstart
Getting Started

• Access
http://www.springframework.com/download

• Download Spring Web Flow 1.0 RC2
• Extract zip archive
• CD to projects/build-spring-webflow
• Execute ant samples to build sample apps
• Deploy sample .WARs for evaluation

• Each sample is importable as a Eclipse project
for easy review

2006 JavaOneSM Conference | Session TS-3456 | 50

Spring Web Flow Related
Additional Resources

• Reference and API documentation
• http://www.springframework.org/documentation

• Support forum
• http://forum.springframework.org

• Books
• Expert Spring MVC and Web Flow, Apress

• Confluence Wiki
• http://opensource2.atlassian.com/confluence/spring/display/WEBFLOW

2006 JavaOneSM Conference | Session TS-3456 | 51

Q&A

2006 JavaOneSM Conference | Session TS-3456 |

Spring Web Flow
Dialogs for the Web
Keith Donald
Principal
Interface21
http://www.interface21.com

TS-3456

