
2006 JavaOneSM Conference | Session TS-8486 |

Unbreakable and Self-Adaptive
Java™ EE Application Service
Henning Blohm
henning.blohm@sap.com
SAP AG

TS-8486

Dirk Marwinski
dirk.marwinski@sap.com
SAP AG

2006 JavaOneSM Conference | Session TS-8486 | 2

Learn about approaches for improved
robustness and availability in the Java™
Platform, Enterprise Edition

Goal

2006 JavaOneSM Conference | Session TS-8486 | 3

Agenda

• Availability and Robustness
• Business Application Anatomy
• Robustness via Isolation
• Availability via Isolation
• Robustness via Problem Prevention

2006 JavaOneSM Conference | Session TS-8486 | 4

Agenda

• Availability and Robustness
• Business Application Anatomy
• Robustness via Isolation
• Availability via Isolation
• Robustness via Problem Prevention

2006 JavaOneSM Conference | Session TS-8486 | 5

(Courtesy of Wikipedia)
Availability

• Availability:
The degree to which a system, subsystem, or
equipment is operable and in a committable state at
the start of a mission, when the mission is called for
at an unknown, i.e., a random, time

• Translation:
• Can you access it?

2006 JavaOneSM Conference | Session TS-8486 | 6

(Courtesy of Wikipedia)
Robustness

• Robustness:
Resilience of the system, especially when under
stress or when confronted with invalid input

• Translations:
• Once you access a system, will you be able

to complete your work?
• If something goes wrong, how much of the

system will be impacted?

2006 JavaOneSM Conference | Session TS-8486 | 7

Issues Which May Cause a System to Become Unavailable
Common Robustness Issues

• Hardware or Operating System malfunctions
• Java VM bugs

• e.g. JIT compiler problems cause the VM to crash
• Application server bugs

• Resource leaks (Out-of-memory, file handles,…)
• Application problems

• Leaks, hanging requests, inefficient code, …
• Robustness is limited—no matter how hard

you try!

2006 JavaOneSM Conference | Session TS-8486 | 8

Agenda

• Availability and Robustness
• Business Application Anatomy
• Robustness via Isolation
• Availability via Isolation
• Robustness via Problem Prevention

2006 JavaOneSM Conference | Session TS-8486 | 9

Business Application Anatomy

• Conversational state can become large:
• Helps putting load off the database

• Typical pattern:
• Select candidates
• Modify some,

mark others for
deletion

• Apply update to
persistent store

(Operating on Session State)

Select Browse Modify

Done

Pick

Save

Query

Special Considerations for Business Applications

2006 JavaOneSM Conference | Session TS-8486 | 10

Business Application Anatomy (Cont.)

• Business processes may require long running
conversations
• Complex user interactions
• Orchestrated processes

• Conversational state must not be lost
• Call center agent generally has no second chance to

fill a form (failure implies a lost business!)

Source: Please add the source of your data here

2006 JavaOneSM Conference | Session TS-8486 | 11

Business Application Anatomy (Cont.)

• Memory management is crucial
• Session loss because one more user started working

with the system is not acceptable (OutOfMemory)
• Overload may be paid by performance penalty rather

than non-availability
• Fail-over requirements extend to server

resources
• Stateful backend connections must be preserved

2006 JavaOneSM Conference | Session TS-8486 | 12

Agenda

• Availability and Robustness
• Business Application Anatomy
• Robustness via Isolation
• Availability via Isolation
• Robustness via Problem Prevention

2006 JavaOneSM Conference | Session TS-8486 | 13

Architecture Blueprint

Request
Dispatcher

Application
 Server VM

Application
Server VM

Application
Server VM

Request Queuehttp

Se
ss

io
n

St
or

e

…

C
ac

he

Request Queue
Monitoring

2006 JavaOneSM Conference | Session TS-8486 | 14

Request
Dispatcher

Application
 Server VM

Application
Server VM

Application
Server VM

Request Queue

S
es

si
on

 S
to

re

… C
ac

he

Session Data Should Survive a Java VM Failure
User Session Isolation

• Reduce the parallelism of active user sessions
• An increased number of VMs per machine ensures

that less active users are handled in each VM
• Separation of active from inactive sessions

• Inactive (waiting) sessions must be secured in an
area outside of the VM process
(An active session means that a request is currently
being processed on the server)

2006 JavaOneSM Conference | Session TS-8486 | 15

The Following Picture Illustrates Both Concepts
Reduced Parallelism

MemoryMemory

Standard Setup

Memory

Enhanced Setup

VM 1..10

= Active Session
= Inactive Session

VM 1 VM 2

2006 JavaOneSM Conference | Session TS-8486 | 16

Request
Dispatcher

Application
 Server VM

Application
Server VM

Application
Server VM

Request Queue

S
es

si
on

 S
to

re

… C
ac

he

User Session Isolation
• User session isolation can be achieved by serializing

and de-serializing it to the file system or to a database
• The approach is not optimal, because

• Serialization is relatively slow and expensive
• I/O is relatively slow

• This is not acceptable for many applications
• In order to extend the usage a fast way to move

sessions and an efficient persistency mechanism
is required

• This approach allows moving sessions from one VM
to another

2006 JavaOneSM Conference | Session TS-8486 | 17

Fast Session Safeguarding
To Increase the Number of Secured Sessions We
 Have Optimized the Movement Process and the
Persistency• Use a shared memory area for persistency

• Much faster than file system or database
• Allows to shift sessions between VMs on

one machine
• Do not use serialization

• Use a memory copy approach which directly copies
objects in and out of shared memory

• The drawback is that sessions cannot be moved
between different machines

Request
Dispatcher

Application
 Server VM

Application
Server VM

Application
Server VM

Request Queue

S
es

si
on

 S
to

re

… C
ac

he

2006 JavaOneSM Conference | Session TS-8486 | 18

Application Data Sharing

• Applications may require that several hundreds
of megabytes of data are loaded into memory
• Faster handling of large data sets (compared to data

stored in SQL databases)
• Used to be stored in sessions—makes session

serialization impossible (too big)
• Separating the data from the session and

storing it in a file system or database is not
really an option
• Still too big
• Data is already there

Request
Dispatcher

Application
 Server VM

Application
Server VM

Application
Server VM

Request Queue

S
es

si
on

 S
to

re

… C
ac

he

2006 JavaOneSM Conference | Session TS-8486 | 19

Request
Dispatcher

Application
 Server VM

Application
Server VM

Application
Server VM

Request Queue

S
es

si
on

 S
to

re

… C
ac

he

Application Data Sharing

• Like sessions, application data can be stored in
shared memory accessible to all VMs

• Survives a crash of a particular VM
• Data does not have to be restored

• There is no need to copy the data when a
session is moved to a different VM

Application Data Can Also Be Shared Between
Different VMs Using a Shared Memory Approach

2006 JavaOneSM Conference | Session TS-8486 | 20

Request
Dispatcher

Application
 Server VM

Application
Server VM

Application
Server VM

Request Queue

S
es

si
on

 S
to

re

… C
ac

he

Request Queues

• Queue of pending requests should be
independent of a dedicated VM process
• Dispatching to a dedicated Java VM should only

happen if the request can be handled immediately
• Pending requests will be stored in the request queue

• Pending requests should not be affected by a
VM crash
• User session to be moved to another VM
• Only sessions with active requests are lost

Separate Requests from a Particular
VM as Long as it Is Waiting to Be Processed

2006 JavaOneSM Conference | Session TS-8486 | 21

Request
Dispatcher

Application
 Server VM

Application
Server VM

Application
Server VM

Request Queue

S
es

si
on

 S
to

re

… C
ac

he

Request Queues

• Implementation via shared memory
• Requests are put into a queue by a

dispatcher process
• They are taken out by a VM process when it has

sufficient resources to process the request

2006 JavaOneSM Conference | Session TS-8486 | 22

The Concepts Introduced Above Require Extensions to the
Underlying Virtual Machine, the Application Server, and
the Application

Technical Prerequisites

• The blueprint architecture described above can
be realized by using shared memory

• Several approaches possible in order to be able
to access shared memory from Java technology
• Access native operating system methods via Java

Native Interface
• Transparently add sharing features to the Java VM

2006 JavaOneSM Conference | Session TS-8486 | 23

An Efficient Integration of Shared Memory Concepts
into the Java VM

Enhanced Java VM Capabilities

• Support of sharing approaches between several
Java VMs on a single physical machine
• Shared Java objects

• Fast mechanism to copy Java based objects
into the shared memory
• Standard serialization is too slow
• Supports memory copy approach

2006 JavaOneSM Conference | Session TS-8486 | 24

Robust Applications Do Not Come for Free—
They Must Adhere to Certain Restrictions and Rules

Conclusions for Robust Applications

• The user sessions should be
• Kept small
• Serializable but without custom serialization

• Do not use the session as a cache
• Safeguarding it on every request can become

too expensive
• Sessions which do not adhere to the rules

are “sticky”
• They still work, but lack the robustness advantages

2006 JavaOneSM Conference | Session TS-8486 | 25

Conclusions for Robust Applications

• Large data sets should be stored in
shared memory
• Allows the same data to be used from multiple Java

VMs and therefore reduces the memory consumption
• Data is protected against VM crashes

2006 JavaOneSM Conference | Session TS-8486 | 26

Agenda

• Availability and Robustness
• Business Application Anatomy
• Robustness via Isolation
• Availability via Isolation
• Robustness via Problem Prevention

2006 JavaOneSM Conference | Session TS-8486 | 27

Protect Scenarios Against Each Other
Application Isolation

• Failure protection
• Restrict “bad” (unstable, leaking, experimental) code to

separate server nodes

• Availability (SLA) for scenario
• Reserve server nodes for scenario
• Example:

● Five nodes for management reporting, one for the portal
• Example:

● Front-end portal applications
● Badminton booking app

• …but still one system

2006 JavaOneSM Conference | Session TS-8486 | 28

(Approaches)
Application Isolation (Cont.)
• Application isolation for the web may be implemented

using enhanced load-balancing:

• More approaches:
• WSRP based portal content
• Web Services
• Message queue separation

1. Incoming request
2. Default balancer decision
3. Redirect reply to URL carrying

server group identification
4. Request to appropriate

server group
5. Corresponding balancer decision

Client
1

2

4 5

Server

Load
Balancer

3

ServerServer

ServerServerServer

2006 JavaOneSM Conference | Session TS-8486 | 29

Agenda

• Availability and Robustness
• Business Application Anatomy
• Robustness via Isolation
• Availability via Isolation
• Robustness via Problem Prevention

2006 JavaOneSM Conference | Session TS-8486 | 30

Enhanced Monitoring

Request
Dispatcher

Application
 Server VM

Application
Server VM

Application
Server VM

Request Queuehttp
…

M
on

ito
rin

g
Sh

ar
ed

 M
em

or
y

Request Queue Size
Memory Consumption
Response Times

Number of Threads

2006 JavaOneSM Conference | Session TS-8486 | 31

Enhanced Monitoring

• Monitoring and state information stored external
to the application server VM in order to
• Survive the crash of one Java VM
• Allow access to that information from all Java VM

processes handling user requests
• Data can still be accessed when a VM becomes

unstable (e.g. high garbage collection times due
to low memory)

2006 JavaOneSM Conference | Session TS-8486 | 32

Indicators Visualize an Unhealthy System and Enable
Manual or Automatic Measures to Be Taken

System Health Indicators

• Through deep integration with the monitoring capabilities
of the Java VM the health state can be estimated
• Memory situation (garbage collection times)
• Thread situation
• Response times
• Request queue size

• Those health states can be visualized and measured
• Via visual indicators the administrators can treat the problem
• Automatic heuristics can react properly in many cases

2006 JavaOneSM Conference | Session TS-8486 | 33

A Self-Healing Application Server Can Prevent Problems
by Taking Automatic Measures

Robustness Via Self-Adaptive
Problem Prevention

• Garbage collection times increase
• Memory is getting low, reduce parallelism
• Restart server node if this does not help
• Prevent out-of-memory crash

• Response time increase
• Possible overload situation
• Reduce parallelism
• Prevent timeout situations

2006 JavaOneSM Conference | Session TS-8486 | 34

Unhealthy Java VMs Can be Dealt with Automatically
Dealing with Unhealthy Java VMs

• Make sure that no additional requests are
dispatched to it

• Move all user sessions to other Java VMs
• Restart the Java VMs
• Afterwards, add it again to the available

Java VMs

2006 JavaOneSM Conference | Session TS-8486 | 35

For More Information
• SAP NetWeaver Application Server Java:

https://www.sdn.sap.com/irj/sdn/developerareas/java
• Norbert Kuck: Increasing the Robustness of the Java™

Virtual Machine, JavaOneSM Conference 2005,
TS-7179

• Thomas Smits: Unbreakable Java, JDJ Volume 9 Issue 12
(12/2004), http://jdj.sys-con.com/read/47362.htm

• Peter Kulka: High-end Java™ EE Application Servers for
Enterprise Scale Business Suites, JavaOne Conference
2006, TS-4830

2006 JavaOneSM Conference | Session TS-8486 | 36

DEMO
Shared Memory Based Failover

2006 JavaOneSM Conference | Session TS-8486 | 37

Q&A

2006 JavaOneSM Conference | Session TS-8486 |

Unbreakable and Self-Adaptive
Java™ EE Application Service
Henning Blohm
henning.blohm@sap.com
SAP AG

TS-8486

Dirk Marwinski
dirk.marwinski@sap.com
SAP AG

