@ Sun

Unbreakable and Self-Adaptive
Java™ EE Application Service

Henning Blohm Dirk MarwinsKi
henning.blohm@sap.com dirk.marwinski@sap.com
SAP AG SAP AG

TS-8486

2006 JavaOne®™ Conference | Session TS-8486 | jaua.sun.com /'ji':IUEIOI'IE.fo

¢ JavaOne

2006 JavaOnes™ Conference | Session TS-8486 | 2 java.sun.com/javaone/sf

Agenda

* Avalilability and Robustness

* Business Application Anatomy

* Robustness via Isolation

* Avallability via Isolation

* Robustness via Problem Prevention

2006 JavaOne®™ Conference | Session TS-8486 | 3 java .sun.com/javaone/sf

Agenda

* Avallability and Robustness

* Business Application Anatomy

* Robustness via Isolation

* Avallability via Isolation

* Robustness via Problem Prevention

2006 JavaOnes Conference | Session TS-8486 | 4 java.sun.com/javaone/sf

Availability
(Courtesy of Wikipedia)
* Avalilability:

The degree to which a system, subsystem, or
equipment is operable and in a committable state at
the start of a mission, when the mission is called for
at an unknown, i.e., a random, time

* Translation:
* Can you access it?

”’f{’SMﬂ 2006 JavaOne® Conference | Session TS-8486 | 5 java .sun.com/javaone/sf

Robusthess
(Courtesy of Wikipedia)

Robustness:

Resilience of the system, especially when under
stress or when confronted with invalid input

ranslations:

Once you access a system, will you be able
to complete your work?

If something goes wrong, how much of the
system will be impacted?

@Sun 2006 JavaOnes" Conference | Session TS-8486 | 6 java.sun.com/javaone/sf

>,

Common Robustness Issues
Issues Which May Cause a System to Become Unavailable

Hardware or Operating System malfunctions

Java VM bugs

e.g. JIT compiler problems cause the VM to crash

Application server bugs
Resource leaks (Out-of-memory, file handles,...)

Application problems
Leaks, hanging requests, inefficient code, ...

Robustness is limited—no matter how hard
you try!

2006 JavaOnes Conference | Session TS-8486 | 7 java.sun.com/javaone/sf

Agenda

* Avalilability and Robustness

* Business Application Anatomy

* Robustness via Isolation

* Avallability via Isolation

* Robustness via Problem Prevention

2006 JavaOne®™ Conference | Session TS-8486 | 8 iava .sun.com/iavaone/sf

Business Application Anatomy
Special Considerations for Business Applications

* Conversational state can become large:
* Helps putting load off the database

* Typical pattern:
* Select candidates

* Modify some,
mark others for
deletion

* Apply update to
persistent store

(Operating on Session State)

mmﬂ

”%:”fSZﬂ’l 2006 JavaOne® Conference | Session TS-8486 | 9 java .sun.com/javaone/sf

Business Application Anatomy (Cont.)

* Business processes may require long running
conversations

* Complex user interactions
* Orchestrated processes

* Conversational state must not be lost

 Call center agent generally has no second chance to
fill a form (failure implies a lost business!)

Source: Please add the source of your data here

@Sun 2006 JavaOnes" Conference | Session TS-8486 | 10 java.sun.com/javaone/sf

Business Application Anatomy (Cont.)

Memory management is crucial

Session loss because one more user started working
with the system is not acceptable (OutOfMemory)

Overload may be paid by performance penalty rather
than non-availability

Fail-over requirements extend to server
resources

Stateful backend connections must be preserved

@Sun 2006 JavaOnes™ Conference | Session TS-8486 | 11 java.sun.com/javaone/sf

Agenda

* Avalilability and Robustness

* Business Application Anatomy

* Robustness via Isolation

* Avallability via Isolation

* Robustness via Problem Prevention

2006 JavaOneS Conference | Session TS-8486 | 12 java.sun.com/javaone/sf

@ Sun

Architecture Blueprint

Application
Server VM ™=

Application

Request .. HH R R Server VM

Dispatcher

Request Queue

Application
Server VM
Request Queue
Monitoring

Session Store

2006 JavaOneS Conference | Session TS-8486 | 13 java.sun.com/javaone/sf

Dispatcher

User Session Isolation
Session Data Should Survive a Java VM Failure

Reduce the parallelism of active user sessions
An increased number of VMs per machine ensures
that less active users are handled in each VM

Separation of active from inactive sessions

Inactive (waiting) sessions must be secured in an
area outside of the VM process

(An active session means that a request is currently
being processed on the server)

eeeeee

@Sun 2006 JavaOnes™ Conference | Session TS-8486 | 14 java.sun.com/javaone/sf

Reduced Parallelism
The Following Picture lllustrates Both Concepts

Standard Setup Enhanced Setup
i KRE-HRKRRE
*.,#*** "M 1,10

e
B060600000

Memory Memory Memory

O =Inactive Session
@ = Active Session

@Sun 2006 JavaOnes" Conference | Session TS-8486 | 15 java.sun.com/javaone/sf

>,

User Session Isolation

User session isolation can be achieved by serializing
and de-serializing it to the file system or to a database

The approach is not optimal, because
Serialization is relatively slow and expensive
/O is relatively slow

This is not acceptable for many applications

In order to extend the usage a fast way to move
sessions and an efficient persistency mechanism
IS required

This approach allows moving sessions from one VM
to another

2006 JavaOneS Conference | Session TS-8486 | 16 java.sun.com/javaone/sf

Dispatcher

Fast Session Safeguarding

To Increase the Number of Secured Sessions We
Have Optimized the Movement Process and the

K 758°8 Yhared memory area for persistency

Much faster than file system or database

Allows to shift sessions between VMs on
one machine

Do not use serialization

Use a memory copy approach which directly copies
objects in and out of shared memory

The drawback is that sessions cannot be moved
between different machines

@Sun 2006 JavaOnes" Conference | Session TS-8486 | 17 java.sun.com/javaone/sf

Java

>,

Application

Dispatcher gyt BNL_IL_IL_L_'wmad Server VM

Application Data Sharing

eeeeeee

Applications may require that several hundreds

of megabytes of data are loaded into memory
Faster handling of large data sets (compared to data
stored in SQL databases)

Used to be stored in sessions—makes session
serialization impossible (too big)

Separating the data from the session and
storing it in a file system or database is not
really an option

Still too big
Data is already there

2006 JavaOnes" Conference | Session TS-8486 | 18 java.sun.com/javaone/sf

>,

Dispatcher

Application Data Sharing

Application Data Can Also Be Shared Between
Different VMs Using a Shared Memory Approach

* Like sessions, application data can be stored in
shared memory accessible to all VMs

* Survives a crash of a particular VM
* Data does not have to be restored

* There is no need to copy the data when a
session is moved to a different VM

2006 JavaOnes Conference | Session TS-8486 | 19 java.sun.com/javaone/sf

Request Queues

Separate Requests from a Particular
VM as Long as it Is Waiting to Be Processed

Queue of pending requests should be
independent of a dedicated VM process

Dispatching to a dedicated Java VM should only
happen if the request can be handled immediately

Pending requests will be stored in the request queue

Pending requests should not be affected by a
VM crash

User session to be moved to another VM
Only sessions with active requests are lost

@Sun 2006 JavaOnes" Conference | Session TS-8486 | 20 java.sun.com/javaone/sf

= fm‘ :
Request Queues = —

* Implementation via shared memory

* Requests are put into a queue by a
dispatcher process

* They are taken out by a VM process when it has
sufficient resources to process the request

@Sun 2006 JavaOnes™ Conference | Session TS-8486 | 21 java.sun.com/javaone/sf

Technical Prerequisites

The Concepts Introduced Above Require Extensions to the
Underlying Virtual Machine, the Application Server, and
the Application

The blueprint architecture described above can
be realized by using shared memory

Several approaches possible in order to be able
to access shared memory from Java technology

Access native operating system methods via Java
Native Interface

Transparently add sharing features to the Java VM

2006 JavaOnes" Conference | Session TS-8486 | 22 java.sun.com/javaone/sf

Enhanced Java VM Capabilities

An Efficient Integration of Shared Memory Concepts
into the Java VM

Support of sharing approaches between several
Java VMs on a single physical machine

Shared Java objects

Fast mechanism to copy Java based objects
into the shared memory

Standard serialization is too slow

Supports memory copy approach

@Sun 2006 JavaOnes" Conference | Session TS-8486 | 23 java.sun.com/javaone/sf

Java

Conclusions for Robust Applications

Robust Applications Do Not Come for Free—
They Must Adhere to Certain Restrictions and Rules

The user sessions should be
Kept small
Serializable but without custom serialization

Do not use the session as a cache

Safeguarding it on every request can become
too expensive

Sessions which do not adhere to the rules
are “sticky”

They still work, but lack the robustness advantages

@Sun 2006 JavaOnes™ Conference | Session TS-8486 | 24 java.sun.com/javaone/sf

Conclusions for Robust Applications

* Large data sets should be stored in
shared memory

- Allows the same data to be used from multiple Java
VMs and therefore reduces the memory consumption

* Data is protected against VM crashes

@Sun 2006 JavaOnes" Conference | Session TS-8486 | 25 java.sun.com/javaone/sf

Agenda

* Avalilability and Robustness

* Business Application Anatomy

* Robustness via Isolation

* Avallabllity via Isolation

* Robustness via Problem Prevention

2006 JavaOneS Conference | Session TS-8486 | 26 java.sun.com/javaone/sf

Application Isolation
Protect Scenarios Against Each Other

* Fallure protection

* Restrict “bad” (unstable, leaking, experimental) code to
separate server nodes

* Avalilability (SLA) for scenario
* Reserve server nodes for scenario

* Example:
* Five nodes for management reporting, one for the portal
* Example:
* Front-end portal applications
* Badminton booking app

* ...but still one system

2006 JavaOnes Conference | Session TS-8486 | 27 java.sun.com/javaone/sf

Application Isolation (Cont.)

(Approaches)
Application isolation for the web may be implemented
using enhanced load-balancing:

@®
@ Balancer

More approaches:
WSRP based portal content e rEaes

: 2. Default balancer decision
Web Serwces 3. Redirect reply to URL carrying
i server group identification
Message queue separatlon P N V.

server group
5. Corresponding balancer decision

@Sun 2006 JavaOnes" Conference | Session TS-8486 | 28 java.sun.com/javaone/sf

Agenda

* Avalilability and Robustness

* Business Application Anatomy

* Robustness via Isolation

* Avallability via Isolation

* Robustness via Problem Prevention

2006 JavaOnes Conference | Session TS-8486 | 29 java.sun.com/javaone/sf

Enhanced Monitoring
Application

Server VM

Application
Request .. HHB RN Sgr:ver VM

Dispatcher

Request Queug

Application
Server VM

Monitoring Shared Memory

Request Queue Size Number of Threads
Memory Consumption
Response Times

’SM?’I 2006 JavaOne® Conference | Session TS-8486 | 30 java .sun.com/javaone/sf

S
4

Enhanced Monitoring

Monitoring and state information stored external
to the application server VM in order to
Survive the crash of one Java VM
Allow access to that information from all Java VM
processes handling user requests

Data can still be accessed when a VM becomes
unstable (e.g. high garbage collection times due
to low memory)

@Sun 2006 JavaOne®" Conference | Session TS-8486 | 31 java.sun.com/javaone/sf

>,

System Health Indicators
Indicators Visualize an Unhealthy System and Enable
Manual or Automatic Measures to Be Taken

Through deep integration with the monitoring capabilities
of the Java VM the health state can be estimated

* Memory situation (garbage collection times)
* Thread situation

* Response times

* Request queue size

Those health states can be visualized and measured
* Via visual indicators the administrators can treat the problem
* Automatic heuristics can react properly in many cases

2006 JavaOneS Conference | Session TS-8486 | 32 java.sun.com/javaone/sf

Java

Robustness Via Self-Adaptive

Problem Prevention

A Self-Healing Application Server Can Prevent Problems
by Taking Automatic Measures

Garbage collection times increase
Memory is getting low, reduce parallelism
Restart server node if this does not help
Prevent out-of-memory crash

Response time increase
Possible overload situation
Reduce parallelism
Prevent timeout situations

@Sun 2006 JavaOnes" Conference | Session TS-8486 | 33 java.sun.com/javaone/sf

Dealing with Unhealthy Java VMs
Unhealthy Java VMs Can be Dealt with Automatically

* Make sure that no additional requests are
dispatched to it

* Move all user sessions to other Java VMs

* Restart the Java VMs

* Afterwards, add it again to the available
Java VMs

2006 JavaOnes" Conference | Session TS-8486 | 34 java.sun.com/javaone/sf

For More Information

SAP NetWeaver Application Server Java:
https://www.sdn.sap.com/irj/sdn/developerareas/java

Norbert Kuck: Increasing the Robustness of the Java™
Virtual Machine, JavaOneSM Conference 2005,
1S-7179

Thomas Smits: Unbreakable Java, JDJ Volume 9 Issue 12
(12/2004), hitp://jd].sys-con.com/read/47362.htm

Peter Kulka: High-end Java™ EE Application Servers for
Enterprise Scale Business Suites, JavaOne Conference
2006, TS-4830

2006 JavaOnes" Conference | Session TS-8486 | 35 java.sun.com/javaone/sf

DEMO

Shared Memory Based Failover

2006 JavaOnes" Conference | Session TS-8486 | 36 java.sun.com/javaone/sf

2006 JavaOnes" Conference | Session TS-8486 | 37 java.sun.com/javaone/sf

@ Sun

Unbreakable and Self-Adaptive
Java™ EE Application Service

Henning Blohm Dirk MarwinsKi
henning.blohm@sap.com dirk.marwinski@sap.com
SAP AG SAP AG

TS-8486

2006 JavaOne®™ Conference | Session TS-8486 | jaua.sun.com /'ji':IUEIOI'IE.fo

