
2006 JavaOneSM Conference | Session TS-8614 |

TS-8614

AJAX and Persistence:
Emerging Patterns and
Pain Points
Craig Russell
Larry White
Smitha Kangath
Sun Microsystems, Inc.

Copyright © 2006, Sun Microsystems, Inc., All rights reserved.

2006 JavaOneSM Conference | Session TS-8614 | 2

Goal of This Talk

Explore challenges and opportunities
integrating data persistence and
AJAX applications

2006 JavaOneSM Conference | Session TS-8614 | 3

Agenda

AJAX Overview
Frameworks and Communication Patterns
Data Model and Caching
Client/Server Protocol Examples
Server Architectures
Conclusion

2006 JavaOneSM Conference | Session TS-8614 | 4

AJAX Overview

● Asynchronous JavaScript™ technology and XML
● Web Page == Application
● XMLHTTP Object

● Request to host
● Asynchronous reply calls event handler
● User’s JavaScript technology event handling code

● Analyzes reply
● Updates DOM, causing partial browser refresh

● Request and reply content defined by JavaScript
technology and server-side component(s)

2006 JavaOneSM Conference | Session TS-8614 | 5

AJAX Overview

● Benefits
● More lively applications (no page refresh)
● Richer presentation by combining multiple data sources

● Tradeoff
● More complex programming
● Possible performance issues

2006 JavaOneSM Conference | Session TS-8614 | 6

AJAX Example: maps.google.com

● Moveable static content
● Tiled geographic information

● Satellite images
● Street maps

● Dynamic content
● Persistent data looked up on the server (model)
● Flags identifying points of interest (view)

● Pizza joints
● Tattoo parlors
● Animal rescue centers

● Detailed descriptions based on user actions (controller)

2006 JavaOneSM Conference | Session TS-8614 | 7

Key Takeaway—Is there Any Good
Mexican Food Near Moscone?

2006 JavaOneSM Conference | Session TS-8614 | 8

Agenda

AJAX Overview
Frameworks and Communication Patterns
Data Model and Caching
Client/Server Protocol Examples
Server Architectures
Conclusion

2006 JavaOneSM Conference | Session TS-8614 | 9

Frameworks and
Communication Patterns

Scores of frameworks are available
● Client-side

● Widget libraries
● DOM manipulation tools

● Server-side
● JavaServer™ Faces software ManagedBean
● Servlets, JSP™ technology-based pages, CGI

● Integration with cool sites
● maps.google.com
● paypal.com

2006 JavaOneSM Conference | Session TS-8614 | 10

Frameworks and
Communication Patterns

Look for Reusable Components
No single framework will meet all your requirements

Choose frameworks that encourage mix/match
approach

2006 JavaOneSM Conference | Session TS-8614 | 11

Communication With Server

● HTTP Protocol Wraps Message
● HTML
● XML
● REST (HTML or XML)
● JavaScript technology

● JSON
● RPC
● Web Service (SOAP/WSDL format)

2006 JavaOneSM Conference | Session TS-8614 | 12

Agenda

AJAX Overview
Frameworks and Communication Patterns
Data Model and Caching
Client/Server Protocol Examples
Server Architectures
Conclusion

2006 JavaOneSM Conference | Session TS-8614 | 13

Data Model and Caching

● General principles
● Cached data minimizes server communication
● DOM can contain arbitrary data
● Format of data is application-specific

2006 JavaOneSM Conference | Session TS-8614 | 14

Data Model and Caching

● Cached data minimizes server communication
● Client-side caching solutions

● Browser cache
● Home-grown written in JavaScript technology
● Other solutions

2006 JavaOneSM Conference | Session TS-8614 | 15

Caching

● Client-side caching solutions
● Browser cache

● Works fine except when it doesn’t
● Beware—browser-specific behavior and different user

settings cause issues
● HTTP Expiration Model—cache directives

● HTML meta tags (this only works when using HTML)
● <head>
...
<meta http-equiv=”Cache-Control”
content=”max-age=1800”> <!-- ½ hour -->

<meta http-equiv=”Expires”
content=”Tues, 23 May 2006 1:00:00 GMT”>

</head>

2006 JavaOneSM Conference | Session TS-8614 | 16

Caching

● Client-side caching solutions
● HTTP Expiration Model—cache directives

● HTTP Headers
● HTTP/1.1 200 OK
Cache-Control: Public, max-age=1800
Expires: Tues, 23 May 2006 1:00:00 GMT
Content-Type: text/html;charset=ILO-8859-1
...etc

● Can be used with XML or other content

2006 JavaOneSM Conference | Session TS-8614 | 17

Caching

● Client-side caching solutions (browser cache)
● HTTP Validation Model

● A unique ticket used for each HTTP response
● Browser sends ticket with subsequent requests
● Server can send fresh data or send HTTP 304 (no changes)

● Difficult to apply to dynamically generated content—
servlets, etc.
● Special coding required

2006 JavaOneSM Conference | Session TS-8614 | 18

Caching

● Client-side caching solutions
● Home-grown written in JavaScript technology

● Global variables—anything you want, as long as it’s a
JavaScript technology object or a JavaScript
technology array

2006 JavaOneSM Conference | Session TS-8614 | 19

Caching—Other Solutions

● dojo.storage—key/value pairs
● Stored using various strategies—for now,

Flash Storage
var results = dojo.storage.get(key);
// save some value:
try{
 dojo.storage.put(key, value,
 saveHandler);
}catch(exp){
 alert(exp);
}

● Values—String or “JSON-ified” JavaScript
technology object

2006 JavaOneSM Conference | Session TS-8614 | 20

Caching—Other Solutions
● Modeling complex relationships is possible using XML

or JavaScript technology but not as natural as with a
fully object-oriented language like Java™ technology

● Java technology (at present) is not widely used on the
client-side

● Possible Java technology-based solutions?
● Applet or Java Web Start software client app used as

client-side cache
● Use with Java technology ↔ JSON transformation
● Would the community accept/use it?

2006 JavaOneSM Conference | Session TS-8614 | 21

Data Model

● DOM can contain arbitrary data
● Each use case in an app tends to require a different

sub-set (“view”) of data
● Difficult using key-value pairs with opaque values
● Developing equivalent of alternate indices requires

complex coding
● Format of data is application-specific
● JSON can make caching easier

2006 JavaOneSM Conference | Session TS-8614 | 22

General Caching Issues

● Staleness of data
● Is the data static (unchanging)?

● No need to refresh
● e.g., world aerial map geo tiles

● Beware—even seemingly static data can change
● Remember the country “Yugoslavia”?

2006 JavaOneSM Conference | Session TS-8614 | 23

General Caching Issues

● Staleness of data
● Dynamic data

● How often does it change?
● How important (from a business perspective) is it to never

have stale data?
● e.g., an on-line store may sell an “out-of-stock” item if

it can be re-stocked in time—or if customers can be
otherwise assuaged if problems occur

2006 JavaOneSM Conference | Session TS-8614 | 24

General Caching Issues

● Size of data
● Even static data may be too large to reasonably cache

on the client
● e.g., all the geo aerial tiles in the world (at all zoom scales)

● Server-side caching is an option
● Performance trade-off

2006 JavaOneSM Conference | Session TS-8614 | 25

General Caching Issues

● Caching optimization techniques
● Selective

● Cache based on user actions—e.g., selections
● Lazy-loading

● Defer loading until data requested
● Pre-fetching

● Make inferences to pre-fetch required data before it is
requested
● Single user history—e.g., “you generally browse

comedy movies”
● Or user community history—e.g., “people who rented this

movie tend to like Mexican food too”

2006 JavaOneSM Conference | Session TS-8614 | 26

General Caching Issues

● Caching optimization techniques
● Techniques may be combined
● Trade-off between

● General-use/less-optimizable caching
● Do-it-yourself customized caching

2006 JavaOneSM Conference | Session TS-8614 | 27

Agenda

AJAX Overview
Frameworks and Communication Patterns
Data Model and Caching
Client/Server Protocol Examples
Server Architectures
Conclusion

2006 JavaOneSM Conference | Session TS-8614 | 28

Client/Server Protocol Examples

● Different formats—XML, HTML, JSON, etc.
● Data Model can be independent of the format
● A helper class or a filter can format the data

Follow the MVC approach—don’t mix formatting
logic in your persistent entities

2006 JavaOneSM Conference | Session TS-8614 | 29

Example: Auto-Completion

2006 JavaOneSM Conference | Session TS-8614 | 30

Example: Auto-Completion

● One of the most popular patterns
● Basic idea: Combo box (text plus drop-down)

● User types, script provides suggestions
● Keystrokes may send async message to server
● Message header has partial field content
● Server decides what to send back (heuristics)

Watch out for too much server interaction
Wait while user types
Consider submitting many fields at once

2006 JavaOneSM Conference | Session TS-8614 | 31

Example: ValueList Handler

● Another popular pattern
● Basic idea: Scroll box

● Output portion of query result
● Fetch and return first “N” rows

● Get more rows while user thinks

Watch out for too much server interaction
Wait until user gets near the end of the list
Fetch several rows at once

2006 JavaOneSM Conference | Session TS-8614 | 32

Java Pet Store Demo

Project Glassfish

2006 JavaOneSM Conference | Session TS-8614 | 33

XML vs. JSON

● JSON is a subset of the JavaScript language
● With JSON, the server returns text which is

converted to a JavaScript language object
(or array of objects)
● No need to parse the XML returned by the server
● eval() returns the corresponding JavaScript language

object[s] from the String representation
● What the server sends back can modify globals

2006 JavaOneSM Conference | Session TS-8614 | 34

XML Format
<items>

<item>
<id>10934</id>
<name>Red Lobster</name>
<imgURL>images/redlobster.gif</imgURL>

</item>
<item>

<id>62903</id>
<name>Lichen</name>
<imgURL>images/lichen.gif</imgURL>

</items>

2006 JavaOneSM Conference | Session TS-8614 | 35

Server Side Query
// Java technology Persistence Application Programming Interface

List<Item> getItems(String query, int first, int max) {

 Query q = em.createQuery(

 "SELECT NEW Item(i.id, i.name, i.imgURL)

 FROM PItem AS i" + query);

 q.setFirstResult(first).setMaxResults(max);

 return (List<Item>)q.getResultList();

}

// Java technology Data Objects

List<Item> getItems(String query, int first, int max) {

 Query q = pm.newQuery(

 "SELECT INTO Item(id, name, imgURL)

 FROM PItem " + query);

 q.setRange(first, first + max);

 return (List<Item>)q.execute();
}

2006 JavaOneSM Conference | Session TS-8614 | 36

Server Formats Data as XML
StringBuffer sb = new StringBuffer("<items>\n");
//call the facade that accesses persistent entities

 List items = facade.getItems(query, start, number);
 Iterator<Item> it = items.iterator();
 while (it.hasNext()) {
 Item c = it.next();
 sb.append("<item>\n");
 sb.append("<id>" + c.getCategoryID() + "</id>\n");
 sb.append("<name>" + c.getName() + "</name>\n");
 sb.append("<imgURL>" +c.getImageURL() +
 "</imgURL>\n");
 sb.append("</item>\n"); }

sb.append("</items>\n");
...
return sb.toString();

2006 JavaOneSM Conference | Session TS-8614 | 37

Client Interprets Data as XML
function parseCategories(asyncReq) {
 var items = asyncReq.responseXML.getElementsByTagName
 (“items”)[0];
 for (i = 0; i<items.childNodes.length; ++i) {
 var xitem = items.getElementsByTagName
 (“item”)[i];
 var item = new Item();
 item.id = xcategory.getElementsByTagName(“id”)[0].
 firstChild.nodeValue;
 item.name =
xcategory.getElementsByTagName(“name”)[0].
 firstChild.nodeValue;
 item.desc =
xcategory.getElementsByTagName(“imgURL”)[0].
 firstChild.nodeValue;
 appendItem(item);
 }
}

2006 JavaOneSM Conference | Session TS-8614 | 38

JSON Format
[
 {
 “id”:”10934”,
 “name”:”Red Lobster”,
 “imgURL”:”images/redlobster.gif”
 },
 {
 “id”:”62903”,
 “name”:”Lichen”,
 “imgURL”:”images/lichen.gif”
 }
]

2006 JavaOneSM Conference | Session TS-8614 | 39

Server Formats Data as JSON
StringBuffer sb = new StringBuffer("[\n");
//call the facade that accesses persistent entities
List items = facade.getItems(query, start, number);
Iterator<Item> it = items.iterator();
while (it.hasNext()) {
 Item c = it.next();
 sb.append("{\"id\":\"" + c.getItemID()+"\",");
 sb.append("\"name\":\"" + c.getName() + "\",");
 sb.append("\"imgURL\":\"" +
 c.getImgURL() + "\"");
 sb.append("]}");
 if (it.hasNext()) {
 sb.append(",\n");}
}//end while loop
sb.append("\n]"); return sb.toString();

2006 JavaOneSM Conference | Session TS-8614 | 40

Client Interprets Data as JSON
function parseItems(asyncReq) {
 var items = eval(asyncReq.responseText);
 for (i = 0; i<items.length; ++i) {
 appendItem(items[i]);
 }
}

2006 JavaOneSM Conference | Session TS-8614 | 41

Agenda

AJAX Overview
Frameworks and Communication Patterns
Data Model and Caching
Client/Server Protocol Examples
Server Architectures
Conclusion

2006 JavaOneSM Conference | Session TS-8614 | 42

Server Architectures

● HTTP server without Java technology
(e.g., LAMP)
● Static content
● Dynamic content

● CGI scripts
● SQL access
● PHP, Perl, Python, etc.

AJAX
Client

HTTP
Server

Servlet
Container

Enterprise
Container

2006 JavaOneSM Conference | Session TS-8614 | 43

Server Architectures

● Servlet container (e.g., Tomcat)
● Dynamic content

● Servlets
● SQL access via JDBC™ software
● Java Data Objects (JDO), Hibernate, TopLink, Entity

JavaBeans™ architecture
● JavaServer Faces technology

AJAX
Client

HTTP
Server

Servlet
Container

Enterprise
Container

2006 JavaOneSM Conference | Session TS-8614 | 44

Server Architectures

● Enterprise container
● Dynamic content

● Session JavaBeans architecture
● JDO, Hibernate, TopLink, Entity JavaBeans architecture
● Distributed transactions
● WSDL/SOAP messages

AJAX
Client

HTTP
Server

Servlet
Container

Enterprise
Container

2006 JavaOneSM Conference | Session TS-8614 | 45

Active Record vs. Data Mapper

● Active record
● Mixes domain object with persistence
● e.g., Ruby on Rails

● Data mapper
● Separates domain object from persistence
● Mapping to datastore is separated
● e.g., JDO, Entity Beans, Hibernate, TopLink

Two of Many Patterns for Persistence

2006 JavaOneSM Conference | Session TS-8614 | 46

Agenda

AJAX Overview
Frameworks and Communication Patterns
Client/Server Protocol Examples
Data Model and Caching
Server Architectures
Conclusion

2006 JavaOneSM Conference | Session TS-8614 | 47

Conclusion

● AJAX enables more lively web applications
● Mix and match standard components
● Minimize server interactions

● Use caching on client and server
● Use predictive fetching
● Aggregate server requests

2006 JavaOneSM Conference | Session TS-8614 | 48

Q&A
https://glassfish.dev.java.net/

http://java.sun.com/blueprints/ajax.html

http://developers.sun.com/ajax

2006 JavaOneSM Conference | Session TS-8614 |

TS-8614

AJAX and Persistence:
Emerging Patterns and
Pain Points
Craig Russell
Larry White
Smitha Kangath
Sun Microsystems, Inc.

