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Goal of This Talk 

Explore challenges and opportunities  
integrating data persistence and
AJAX applications
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AJAX Overview

● Asynchronous JavaScript™ technology and XML
● Web Page == Application
● XMLHTTP Object

● Request to host
● Asynchronous reply calls event handler
● User’s JavaScript technology event handling code 

● Analyzes reply
● Updates DOM, causing partial browser refresh

● Request and reply content defined by JavaScript 
technology and server-side component(s)
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AJAX Overview

● Benefits
● More lively applications (no page refresh)
● Richer presentation by combining multiple data sources

● Tradeoff
● More complex programming
● Possible performance issues
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AJAX Example: maps.google.com

● Moveable static content
● Tiled geographic information

● Satellite images 
● Street maps

● Dynamic content
● Persistent data looked up on the server (model)
● Flags identifying points of interest (view)

● Pizza joints
● Tattoo parlors
● Animal rescue centers

● Detailed descriptions based on user actions (controller)
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Key Takeaway—Is there Any Good 
Mexican Food Near Moscone?
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Frameworks and 
Communication Patterns

Scores of frameworks are available
● Client-side

● Widget libraries
● DOM manipulation tools

● Server-side
● JavaServer™ Faces software ManagedBean
● Servlets, JSP™ technology-based pages, CGI

● Integration with cool sites
● maps.google.com
● paypal.com
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Frameworks and
Communication Patterns

Look for Reusable Components
No single framework will meet all your requirements

Choose frameworks that encourage mix/match 
approach
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Communication With Server

● HTTP Protocol Wraps Message
● HTML
● XML
● REST (HTML or XML)
● JavaScript technology

● JSON
● RPC
● Web Service (SOAP/WSDL format)
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Data Model and Caching

● General principles
● Cached data minimizes server communication
● DOM can contain arbitrary data
● Format of data is application-specific
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Data Model and Caching

● Cached data minimizes server communication
● Client-side caching solutions

● Browser cache
● Home-grown written in JavaScript technology
● Other solutions
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Caching

● Client-side caching solutions
● Browser cache

● Works fine except when it doesn’t
● Beware—browser-specific behavior and different user 

settings cause issues
● HTTP Expiration Model—cache directives 

● HTML meta tags (this only works when using HTML)
● <head>
...
<meta http-equiv=”Cache-Control” 
content=”max-age=1800”>   <!-- ½ hour -->

<meta http-equiv=”Expires” 
content=”Tues, 23 May 2006 1:00:00 GMT”>

</head>
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Caching

● Client-side caching solutions
● HTTP Expiration Model—cache directives 

● HTTP Headers
● HTTP/1.1 200 OK
Cache-Control: Public, max-age=1800
Expires: Tues, 23 May 2006 1:00:00 GMT
Content-Type: text/html;charset=ILO-8859-1
...etc 

● Can be used with XML or other content
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Caching

● Client-side caching solutions (browser cache)
● HTTP Validation Model 

● A unique ticket used for each HTTP response
● Browser sends ticket with subsequent requests
● Server can send fresh data or send HTTP 304 (no changes)

● Difficult to apply to dynamically generated content— 
servlets, etc. 
● Special coding required
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Caching

● Client-side caching solutions
● Home-grown written in JavaScript technology

● Global variables—anything you want, as long as it’s a 
JavaScript technology object or a JavaScript 
technology array
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Caching—Other Solutions

● dojo.storage—key/value pairs
● Stored using various strategies—for now, 

Flash Storage
var results = dojo.storage.get(key);
// save some value:
try{
  dojo.storage.put(key, value,
                   saveHandler);
}catch(exp){
  alert(exp);
}

● Values—String or “JSON-ified” JavaScript 
technology object
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Caching—Other Solutions
● Modeling complex relationships is possible using XML 

or JavaScript technology but not as natural as with a 
fully object-oriented language like Java™ technology

● Java technology (at present) is not widely used on the 
client-side

● Possible Java technology-based solutions?
● Applet or Java Web Start software client app used as 

client-side cache
● Use with Java technology ↔ JSON transformation 
● Would the community accept/use it? 
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Data Model

● DOM can contain arbitrary data
● Each use case in an app tends to require a different

sub-set (“view”) of data
● Difficult using key-value pairs with opaque values
● Developing equivalent of alternate indices requires 

complex coding
● Format of data is application-specific
● JSON can make caching easier
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General Caching Issues

● Staleness of data
● Is the data static (unchanging)?

● No need to refresh
● e.g., world aerial map geo tiles

● Beware—even seemingly static data can change
● Remember the country “Yugoslavia”?
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General Caching Issues

● Staleness of data
● Dynamic data

● How often does it change?
● How important (from a business perspective) is it to never 

have stale data?
● e.g., an on-line store may sell an “out-of-stock” item if 

it can be re-stocked in time—or if customers can be 
otherwise assuaged if problems occur
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General Caching Issues

● Size of data
● Even static data may be too large to reasonably cache 

on the client
● e.g., all the geo aerial tiles in the world (at all zoom scales)

● Server-side caching is an option
● Performance trade-off
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General Caching Issues

● Caching optimization techniques
● Selective

● Cache based on user actions—e.g., selections
● Lazy-loading

● Defer loading until data requested
● Pre-fetching

● Make inferences to pre-fetch required data before it is 
requested
● Single user history—e.g., “you generally browse 

comedy movies”
● Or user community history—e.g., “people who rented this 

movie tend to like Mexican food too”
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General Caching Issues

● Caching optimization techniques
● Techniques may be combined
● Trade-off between

● General-use/less-optimizable caching
● Do-it-yourself customized caching
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Client/Server Protocol Examples

● Different formats—XML, HTML, JSON, etc.
● Data Model can be independent of the format
● A helper class or a filter can format the data

 
Follow the MVC approach—don’t mix formatting 
logic in your persistent entities
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Example: Auto-Completion
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Example: Auto-Completion

● One of the most popular patterns
● Basic idea: Combo box (text plus drop-down)

● User types, script provides suggestions
● Keystrokes may send async message to server
● Message header has partial field content
● Server decides what to send back (heuristics)

Watch out for too much server interaction
Wait while user types
Consider submitting many fields at once
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Example: ValueList Handler

● Another popular pattern
● Basic idea: Scroll box 

● Output portion of query result
● Fetch and return first “N” rows

● Get more rows while user thinks

Watch out for too much server interaction
Wait until user gets near the end of the list
Fetch several rows at once
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Java Pet Store Demo

Project Glassfish
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XML vs. JSON

● JSON is a subset of the JavaScript language
● With JSON, the server returns text which is 

converted to a JavaScript language object 
(or array of objects)
● No need to parse the XML returned by the server
● eval() returns the corresponding JavaScript language 

object[s] from the String representation
● What the server sends back can modify globals
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XML Format
<items>

<item>
<id>10934</id>
<name>Red Lobster</name>
<imgURL>images/redlobster.gif</imgURL>

</item>
<item>

<id>62903</id>
<name>Lichen</name>
<imgURL>images/lichen.gif</imgURL>

</items>
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Server Side Query
// Java technology Persistence Application Programming Interface

List<Item> getItems(String query, int first, int max) {

  Query q = em.createQuery(

    "SELECT NEW Item(i.id, i.name, i.imgURL) 

      FROM PItem AS i" + query);

  q.setFirstResult(first).setMaxResults(max);

  return (List<Item>)q.getResultList();

}

// Java technology Data Objects

List<Item> getItems(String query, int first, int max) {

  Query q = pm.newQuery(

    "SELECT INTO Item(id, name, imgURL) 

      FROM PItem " + query);

  q.setRange(first, first + max);

  return (List<Item>)q.execute();
}
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Server Formats Data as XML
StringBuffer sb = new StringBuffer("<items>\n");
//call the facade that accesses persistent entities

   List items = facade.getItems(query, start, number);
   Iterator<Item> it = items.iterator();
   while (it.hasNext()) {
     Item c = it.next();
     sb.append("<item>\n");
     sb.append("<id>" + c.getCategoryID() + "</id>\n");
     sb.append("<name>" + c.getName() + "</name>\n");
     sb.append("<imgURL>" +c.getImageURL() + 
     "</imgURL>\n");
     sb.append("</item>\n"); }

sb.append("</items>\n");  
...
return sb.toString();
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Client Interprets Data as XML
function parseCategories(asyncReq) {
  var items = asyncReq.responseXML.getElementsByTagName
    (“items”)[0];
  for (i = 0; i<items.childNodes.length; ++i) {
    var xitem = items.getElementsByTagName
      (“item”)[i];
    var item = new Item();
    item.id = xcategory.getElementsByTagName(“id”)[0].
      firstChild.nodeValue;
    item.name = 
xcategory.getElementsByTagName(“name”)[0].
      firstChild.nodeValue;
    item.desc = 
xcategory.getElementsByTagName(“imgURL”)[0].
      firstChild.nodeValue;
    appendItem(item);
  }
}
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JSON Format
[
  {
    “id”:”10934”,
    “name”:”Red Lobster”,
    “imgURL”:”images/redlobster.gif”
  },
  {
    “id”:”62903”,
    “name”:”Lichen”,
    “imgURL”:”images/lichen.gif”
  }
]
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Server Formats Data as JSON 
StringBuffer sb = new StringBuffer("[\n"); 
//call the facade that accesses persistent entities
List items = facade.getItems(query, start, number);
Iterator<Item> it = items.iterator();
while (it.hasNext()) {
   Item c = it.next();
   sb.append("{\"id\":\"" + c.getItemID()+"\",");
   sb.append("\"name\":\"" + c.getName() + "\",");      
   sb.append("\"imgURL\":\"" + 
   c.getImgURL() + "\"");
   sb.append("]}");
   if (it.hasNext()) {
   sb.append(",\n");}
}//end while loop
sb.append("\n]"); return sb.toString();
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Client Interprets Data as JSON 
function parseItems(asyncReq) {
  var items = eval(asyncReq.responseText);
  for (i = 0; i<items.length; ++i) {
    appendItem(items[i]);
  }
}
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Server Architectures

● HTTP server without Java technology
(e.g., LAMP) 
● Static content
● Dynamic content

● CGI scripts
● SQL access
● PHP, Perl, Python, etc.

AJAX
Client

HTTP
Server

Servlet
Container

Enterprise
Container
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Server Architectures

● Servlet container (e.g., Tomcat)
● Dynamic content

● Servlets
● SQL access via JDBC™ software
● Java Data Objects (JDO), Hibernate, TopLink, Entity 

JavaBeans™ architecture
● JavaServer Faces technology

AJAX
Client

HTTP
Server

Servlet
Container

Enterprise
Container
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Server Architectures

● Enterprise container
● Dynamic content

● Session JavaBeans architecture
● JDO, Hibernate, TopLink, Entity JavaBeans architecture
● Distributed transactions
● WSDL/SOAP messages

AJAX
Client

HTTP
Server

Servlet
Container

Enterprise
Container
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Active Record vs. Data Mapper

● Active record
● Mixes domain object with persistence
● e.g., Ruby on Rails

● Data mapper
● Separates domain object from persistence
● Mapping to datastore is separated
● e.g., JDO, Entity Beans, Hibernate, TopLink

Two of Many Patterns for Persistence
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Conclusion

● AJAX enables more lively web applications
● Mix and match standard components
● Minimize server interactions

● Use caching on client and server
● Use predictive fetching
● Aggregate server requests
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Q&A
https://glassfish.dev.java.net/

http://java.sun.com/blueprints/ajax.html

http://developers.sun.com/ajax
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