
2006 JavaOneSM Conference   |  TS-9263   | 

Recommendations for 
Web Service Development
Nazrul Islam, Sameer Tyagi, Satish Viswanatham 
Sun Microsystems, Inc.
glassfish.dev.java.net

Session TS-9263
Copyright © 2006, Sun Microsystems, Inc., All rights reserved.



2006 JavaOneSM Conference   |   TS-9263   | 2

Goal of This Talk 

Discuss how to build and manage Web 
Services easily in Java EE 5 and some 
design options



2006 JavaOneSM Conference   |   TS-9263   | 3

Agenda 

Ease of Development
Web Services BluePrints/Patterns
Strategies for Document-Based Web Services
RESTful Web Services
Web Services Annotations
Web Services in Enterprise



2006 JavaOneSM Conference   |   TS-9263   | 4

Project GlassFishSM Community 
Simplifying Java application development 
with Java EE 5 technologies

Includes JWSDP, EJB 3.0, JSF 1.2,    
JAX-WS  and JAX-B 2.0
Supports > 20 frameworks and apps
Open source CDDL license 
Basis for the Sun Java System 
Application Server PE 9
Free to download and free to deploy
Over 2,200 members and 200,000 
downloadsBuilding a Java™ EE 5 

Platform-based Open Source 
Application Server

java.sun.com/javaee/GlassFish 



2006 JavaOneSM Conference   |   TS-9263   | 5

Agenda 

Ease of Development 
Web Services BluePrints/Patterns
Strategies for Document-Based Web Services
RESTful Web Services
Web Services Annotations
Web Services in Enterprise



2006 JavaOneSM Conference   |   TS-9263   | 6

What Changed for the Web Services?

● Significantly revised and simplified
● JAX-RPC 2.0 renamed to JAX-WS 2.0 

● Breaks compatibility with JAX-RPC 1.1
● Key features

● Simplified programming model with annotations 
and dependency injection

● Uses JAXB 2.0 for type-mappings
● Portable runtime artifacts
● Can generate annotated JAX-WS and JAXB code 

from WSDL and XSD



2006 JavaOneSM Conference   |   TS-9263   | 7

JAXB 2.0 Is Now Bi-Directional

● 1.0: Schema     Java only
● JAXB is for compiling schema
● Don’t touch the generated code

● 2.0: Java      XML + schema compiler
● JAXB is about persisting POJOs to XML
● Annotations for controlling XML representation
● Modify the generated code to suit your taste



2006 JavaOneSM Conference   |   TS-9263   | 8

J2EE™ 1.4 Platform-Based 
Web Service

package endpoint;
import java.rmi.*;
public class HelloServiceImpl
            implements HelloServiceSEI 
{
    public String sayHello(String 
param)
        throws 
java.rmi.RemoteException {
        return “Hello “ + param;
    }
}
package endpoint;
import java.rmi.*;
public interface HelloServiceSEI
            extends java.rmi.Remote {
    public String sayHello(String 
param)
        throws 
java.rmi.RemoteException;
}

<?xml version='1.0' encoding='UTF-8' ?>
<webservices xmlns='http://java.sun.com/xml/ns/j2ee' 
version='1.1'>
  <webservice-description>
    <webservice-description-name>
     HelloService</webservice-description-name>
    <wsdl-file>
     WEB-INF/wsdl/HelloService.wsdl</wsdl-file>
    <jaxrpc-mapping-file>
     WEB-INF/HelloService-mapping.xml
     </jaxrpc-mapping-file>
    <port-component xmlns:wsdl-port_ns='urn:HelloService/wsdl'>
      <port-component-name>HelloService</port-component-name>
      <wsdl-port>wsdl-port_ns:HelloServiceSEIPort</wsdl-port>
      <service-endpoint-interface>
       endpoint.HelloServiceSEI</service-endpoint-interface>
      <service-impl-bean>
        <servlet-link>WSServlet_HelloService</servlet-link>
      </service-impl-bean>
    </port-component>
  </webservice-description>
</webservices>
<?xml version='1.0' encoding='UTF-8' ?>
<configuration
    xmlns='http://java.sun.com/xml/ns/jax-rpc/ri/config'>
  <service name='HelloService'
      targetNamespace='urn:HelloService/wsdl'
      typeNamespace='urn:HelloService/types'
      packageName='endpoint'>
    <interface name='endpoint.HelloServiceSEI'
        servantName='endpoint.HelloServiceImpl'>
    </interface>
  </service>
</configuration>
}

Code Written by Developer/Deployer



2006 JavaOneSM Conference   |   TS-9263   | 9

Ease of Development

package server;
import javax.jws.WebService;
@WebService
public class HelloImpl {
    
    public String sayHello(String name) {
        return "Hello, " + name + "!";
    }
}

Web Service in Java EE 5 Platform

http://javax.jws.WebService/


2006 JavaOneSM Conference   |   TS-9263   | 10

Ease of Development

● Compile POJO to auto-deploy directory
● javac -classpath $AS_HOME/lib/javaee.jar -d 

$AS_HOME/domains/domain1/autodeploy HelloImpl.java

● Annotations are processed and appropriate 
deployment descriptors are generated 
automatically

Development and Deployment of POJO



2006 JavaOneSM Conference   |   TS-9263   | 11

Web Services as First-Class Objects
Ease of Development

● Auto-discovery of Web Services
● View Web Service meta data 

● URI, endpoint type, descriptors, and 
associated information

● Auto generated test forms—ping
● Shows operations and parameter values
● Supports Java APIs for XML Web Services 

(JAX-WS) standard
● Web Services as Java Business Integration (JBI) 

service providers by default



2006 JavaOneSM Conference   |   TS-9263   | 12

Operational Statistics and Content Visualization
Ease of Development

● Number of requests, throughput, response time 
(average, min, max), number of SOAP faults

● Message trace—SOAP messages for a 
Web-service endpoint are displayed 
● SOAP request, response, HTTP headers, response 

time, Size of request, response, SOAP fault, Client IP 
address and user principle

● You can also configure the number of messages 
that are kept in memory (25 by default)

● LOW (statistics), HIGH (statistics + content 
visualization), OFF (none)



2006 JavaOneSM Conference   |   TS-9263   | 13

Call Flow/Root Cause Analysis
Ease of Development

● Track processing time of a request in each of 
the major container (Web, EJB™ architecture, 
JDBC™ software, and ORB)

● The flow data often reveal performance 
bottlenecks

● Measure performance in live environment
● Using filter (IP, user principle) you can collect 

information on particular request types



142006 JavaOneSM Conference   |  TS-9263   | 

DEMO
Web Services Monitoring 



2006 JavaOneSM Conference   |   TS-9263   | 15

Agenda 

Ease of Development
Web Services BluePrints/Patterns
Strategies for Document-Based Web Services
RESTful Web Services
Web Services Annotations
Web Services in Enterprise



2006 JavaOneSM Conference   |   TS-9263   | 16

Web Services BluePrints/Patterns

● Prefer Java language type parameters that have 
standard type mapping
● For example, use Java technology arrays instead 

of ArrayList and Collection
● Handling non-standard type parameters

● Extensible type mapping not standard
● Avoid as much as possible

● Two types of Web service requests
● Short processing time → synchronous response
● Long processing time → asynchronous response



2006 JavaOneSM Conference   |   TS-9263   | 17

Web Services BluePrints/Patterns
● JAX-WS service endpoint in the Web tier

● A JAX-WS service endpoint has to handle concurrent client 
access on its own

● Transactional context is unspecified
● There is also no declarative means to automatically start the 

transaction
● JAX-WS service endpoint in the Enterprise JavaBeans™ 

(EJB) architecture tier
● An EJB architecture-based service endpoint is implemented 

as a stateless session bean, multi-threaded access is handled 
by the EJB architecture-based container

● Runs in the transaction context of the EJB architecture-based 
container

● Can declaratively demarcate transactions

Choice of the Interface Endpoint Type



2006 JavaOneSM Conference   |   TS-9263   | 18

Agenda 

Ease of Development
Web Services BluePrints/Patterns
Strategies for Document-Based Web Services
RESTful Web Services
Web Services Annotations
Web Services in Enterprise



2006 JavaOneSM Conference   |   TS-9263   | 19

Strategies for Document-Based WS

● Interoperability
● Validate against schema if XML docs are used
● Better performance than encoded formatting styles
● Service interface clearly describes the types of 

documents expected; This makes the WSDL file 
easier for clients to understand

● Can not use custom bindings or binding 
frameworks directly

● Endpoint receives object representation; if you 
want the XML, you have to reconstruct it

Using XML in the SOAP Body



2006 JavaOneSM Conference   |   TS-9263   | 20

Strategies for Document-Based WS

● Simple, same as writing a "hello world" 
application

● Simple to develop clients
● No issues with interoperability
● Schema validation offered by the runtime cannot 

be used
● Service interface is not descriptive because the 

document type is just a general string
● Memory intensive: The entire XML document is 

read into memory as a string for each request

Using String in the SOAP Body



2006 JavaOneSM Conference   |   TS-9263   | 21

Strategies for Document-Based WS

● Integration with third-party frameworks
● The XML document is received in its entirety
● Building RESTful services
● The behavior may be implementation specific 
● Loss of business context: The payload context 

is not described in the WSDL

Switching Off Data Binding



2006 JavaOneSM Conference   |   TS-9263   | 22

Strategies for Document-Based WS

● The mapping of the xsd:any element has been 
standardized to map to a SOAPElement

● Element is named in the WSDL
● Can be used with binding frameworks
● Schemas can evolve independently
● Need to manipulate low level 

SOAPElement objects
● Schemas defining the documents are not 

referenced directly
● Schemas need to be negotiated out of band

Using the xsd:any Element in WSDL



2006 JavaOneSM Conference   |   TS-9263   | 23

Strategies for Document-Based WS

● This may be useful when the XML contains 
characters or declarations that are not supported 
either by the SOAP message infoset or by the 
runtime implementation; examples of these are 
Document Type Definition (DTD) declarations, 
binary data, locale-specific character encoding, 
and so on

● Interoperability: Both parties need to know out 
of band what the data is

● Increased size: Base64 increases the size 
by 33%

Using Base 64-Encoded or Raw Bytes in the SOAP Body



2006 JavaOneSM Conference   |   TS-9263   | 24

Strategies for Document-Based WS

● Useful for documents that might conform to 
schemas such as a DTD

● Useful for large documents (can be 
compressed and decompressed)

● Additional facilities can be built on the 
attachments using handlers

● Interoperability: Not all vendors support 
attachments

Using Message Attachments in the SOAP Message



2006 JavaOneSM Conference   |   TS-9263   | 25

Agenda 

Ease of Development
Web Services BluePrints/Patterns
Strategies for Document-Based Web Services
RESTful Web Services
Web Services Annotations
Web Services in Enterprise



2006 JavaOneSM Conference   |   TS-9263   | 26

Representational State Transfer
RESTful Web Services

● REST is an arch style, not a standard
● Stateless—each request has all 

necessary information
● Employs standard HTTP methods such as 

GET, POST, PUT, DELETE
● Use logical URLs for all resources
● Design to reveal data gradually



2006 JavaOneSM Conference   |   TS-9263   | 27

Representational State Transfer
RESTful Web Services

● Simple to build with JAX-WS
● In the context of your application consider

● Performance implications
● Contract implications



2006 JavaOneSM Conference   |   TS-9263   | 28

Agenda 

Ease of Development
Web Services BluePrints/Patterns
Strategies for Document-Based Web Services
RESTful Web Services
Web Services Annotations
Web Services in Enterprise



2006 JavaOneSM Conference   |   TS-9263   | 29

@WebService
Web Services Annotations

● Marks a java class as web service 
implementation
● Name—name of the WSDL <portType>
● ServiceName—name of the WSDL <service>
● WsdlLocation—location of pre-defined WSDL
● TargetNamespace—XML namespace 

for WSDL and schema elements



2006 JavaOneSM Conference   |   TS-9263   | 30

@SOAPBinding
Web Services Annotations

● Default is DOCUMENT/LITERAL binding
● Style—DOCUMENT or RPC
● Use—LITERAL or ENCODED
● ParameterStyle—WRAPPED or BARE



2006 JavaOneSM Conference   |   TS-9263   | 31

@WebParam
Web Services Annotations

● Depends on SOAPBinding
● Name—name of wsdl:part in case of RPC
● PartName—local name of element in case 

of DOCUMENT/BARE style 
● TargetNameSpace—namespace for this 

element, used only for DOCUMENT style
● Defaults to namespace of web service

● Mode—IN, INOUT, OUT holder types/RPC
● Header—true or false

● Same rules apply for @WebResult



2006 JavaOneSM Conference   |   TS-9263   | 32

@WebMethod
Web Services Annotations

● Marks the method as web service operation
● OperationName—name of the wsdl:operation
● Action—SOAPAction header in case 

of SOAP
● Exclude—by default all public methods 

are exposed



2006 JavaOneSM Conference   |   TS-9263   | 33

@WebServiceRef
Web Services Annotations

● No defaults
● Name—jndi name of the resource
● Type—java type of the resource
● MappedName—product specific resource name
● Value—service class name
● WsdlLocation—location of wsdl

● wsdlLocation commonly used



2006 JavaOneSM Conference   |   TS-9263   | 34

@WebServiceProvider
Web Services Annotations

● Provider implementation class
● portName—name of the WSDL wsdl:portName
● ServiceName—name of the WSDL 

wsdl:service
● WsdlLocation—location of pre-defined WSDL 

● Also look at @ServiceMode—PAYLOAD(Source) 
or MESSAGE (SOAPMessage)



2006 JavaOneSM Conference   |   TS-9263   | 35

Others
Web Services Annotations

● @Stateless can used with @WebService 
● @WebServiceClient—represents generated 

service interface, not client
● @WebEndpoint—ports with in the service
● @BindingType—default is SOAP 1.1/HTTP
● All annotations are in javax.jws.* or 

javax.jws.soap.*



2006 JavaOneSM Conference   |   TS-9263   | 36

Example
Web Service Annotations
@WebService( name="HelloWebService",
            targetNamespace="http://javaone.org/HelloWebService")
@SOAPBinding(style=SOAPBinding.Style.RPC,
use=SOAPBinding.Use.LITERAL)

public class HelloImpl {
    @WebMethod(action="urn:sayHello")
    @WebResult(name="greeting")
    public String sayHello(
           @WebParam(name="user")
           String name) {
        return "Hello "+name+"!";
    }
}

@WebServiceRef(wsdlLocation=”
http://localhost:8080/HelloImpl/HelloImplService?WSDL”)
static server.HelloImpl service;

http://localhost:8080/HelloImpl/HelloImplService?WSDL


2006 JavaOneSM Conference   |   TS-9263   | 37

Commonly Used Annotations
Web Services Annotations

● @WebService
● @WebMethod
● @OneWay
● @WebResult
● @WebParam
● @HandlerChain
● @SOAPBinding
● @WebServiceRef

● @BindingType
● @RequestWrapper
● @ResponseWrapper
● @ServiceMode
● @WebEndpoint
● @WebFault
● @WebServiceClient
● @WebServiceProvider



2006 JavaOneSM Conference   |   TS-9263   | 38

Agenda 

Ease of Development
Web Services BluePrints/Patterns
Strategies for Document-Based Web Services
RESTful Web Services
Web Services Annotations
Web Services in Enterprise



2006 JavaOneSM Conference   |   TS-9263   | 39

Java Management Extensions (JMX™) 
API in Project GlassFish

Programmatic Support for 
Web Services Management

try {
    // acs is object of type AppserverConnectionSource.
    final DomainRoot domainRoot = acs.getDomainRoot();

    Map m = dr.getWebServiceMgr().getWebServiceEndpointKeys();

    System.out.println("Number of web services " + m.keySet().size());
    System.out.println("Fully qualified names...");
    for (Iterator iter = m.keySet().iterator(); iter.hasNext();) {
        System.out.println((String)iter.next() + "\n"));
    }
    } catch(...) {
    }



2006 JavaOneSM Conference   |   TS-9263   | 40

Clustering Web Services
Web Services in Enterprise

● Bind the URL of  the Target Service 
programmatically at run time
● This is often determined at or before deployment, 

so it is not necessary to do at runtime 
● Bind the URL of the Target Service 

at deployment time
● This is done in the runtime deployment descriptor 

of the client calling the service
● Use @WebServiceRef + service url from 

descriptor



2006 JavaOneSM Conference   |   TS-9263   | 41

Externalizing Web Service Endpoint Addresses
Web Services in Enterprise

● Service/dispatch interface—get URI from 
descriptor

● Bind the URL of the Target Service at build time 
(WSDL)
● Usually the URL is of the load balancer
<service name="StringPurchaseOrderService">
    <port name="PurchaseOrderServiceSEIPort" 

binding="tns:PurchaseOrderServiceSEIBinding">
      <soap:address location="http://lbhost

:8080/webservice/StringPurchaseOrderServiceBean"/>
   </port>
</service>

http://lbhost/


2006 JavaOneSM Conference   |   TS-9263   | 42

Service Virtualization
Web Services in Enterprise

● For a fine-grained control of Web-service request 
and responses, XSLT rules can applied to each 
of the Web-service endpoints

● Applying XSLT can mean a longer processing 
time for the Web services

● Transformation rules can act as proxies for the 
Web service with different dialects



2006 JavaOneSM Conference   |   TS-9263   | 43

Performance
Web Services in Enterprise

● Fast Infoset encoding (binary format) improves 
performance by two to four times for larger Web 
services

● Fast Infoset can be enabled with no application 
code change
● Client side system property com.sun.xml.rpc.client.ContentNegot
iation=pessimistic



2006 JavaOneSM Conference   |   TS-9263   | 44

Self Management
Web Services in Enterprise

● Management rules comprise an event 
and an optional action (Mbean)
● Events—Lifecycle events, monitor events, log events, 

trace events, timer events, notification events
● Using the monitoring statistics, you can trigger 

alerts or configure application server to perform 
management tasks



2006 JavaOneSM Conference   |   TS-9263   | 45

Security and Audit
Web Services in Enterprise

● Web service security
● username/password, X509, SAML token profile

● WS-I Basic Security Profile
● Integration with Access Manager

● Single sign-on for Web services
● Audit module records requests and responses 

for non-repudiation
● Audit module can be customized by implementing  com.sun.appserv.security.AuditModule



2006 JavaOneSM Conference   |   TS-9263   | 46

Governance
Web Services in Enterprise

● Effectively advertise Web services through 
registries

● We support both ebXML and UDDI registries
● Easy to configure, publish, and un-publish 

features



472006 JavaOneSM Conference   |  TS-9263   | 

DEMO



2006 JavaOneSM Conference   |   TS-9263   | 48

Summary

● It is easy to develop, deploy, and manage Web 
Services on Java EE 5  

● Download the Java EE 5 SDK and try!
● Java BluePrints Solutions Catalog 

http://bpcatalog.dev.java.net



2006 JavaOneSM Conference   |   TS-9263   | 49

For More Information

● TS-1194 Java™ API for XML Web Services 
(JAX-WS) 2.0

● BOF-2593 Implementing High-Performance 
Web Services with Next-Generation Java™ 
Technology APIs

● Java API for XML Web Services 
http://java.sun.com/webservices/jaxws/

● Web Services Management in Project GlassFish
https://glassfish.dev.java.net/javaee5/ws-mgmt/wsmgmthome.html

● AMX
https://glassfish.dev.java.net/javaee5/amx/



502006 JavaOneSM Conference   |  TS-9263   | 

Q&A



2006 JavaOneSM Conference   |  TS-9263   | 

Recommendations for 
Web Service Development
Nazrul Islam, Sameer Tyagi, Satish Viswanatham 
Sun Microsystems, Inc.
glassfish.dev.java.net

Session TS-9263


