
2006 JavaOneSM Conference | Session TS-1451

TS-1451

Writing Optimized Applications
for High-Performance Java™ ME
Runtime Environments
Kyle Buza
Sun Microsystems

Oleg Pliss, Ph.D.
Sun Microsystems

Copyright © 2006, Sun Microsystems Inc., All rights reserved.

2006 JavaOneSM Conference | Session TS-1451 | 2

Speaker Qualification

● Kyle Buza has been a software engineer at
Sun Microsystems for five years, implementing
numerous performance enhancements for
both the CLDC and CDC HotSpot
implementation VMs

● Oleg Pliss is a Senior Staff Engineer with the
Client Systems Group at Sun; he is working on
high performance Java ME virtual machines and
specializes in compilers and garbage collection

2006 JavaOneSM Conference | Session TS-1451 | 3

Goal of This Talk

Learn about features and capabilities of
high performance Java™ Platform, Micro
Edition runtime environments and how your
applications can take advantage of them

2006 JavaOneSM Conference | Session TS-1451 | 4

Agenda

The Evolution of Java ME Performance
Optimization Techniques
Summary
Q&A

2006 JavaOneSM Conference | Session TS-1451 | 5

The Evolution of Java ME Performance

Jazelle

1999 2000 2001 2002 2003 2004 2005 2006

KVM

KVM+asmloop

CLDC HotSpot 1.0

CLDC HotSpot 1.1.3

2006 JavaOneSM Conference | Session TS-1451 | 6

The Evolution of Java ME Performance (2)

1999 2000 2001 2002 2003 2004 2005 2006

ARM9, 50Mhz

ARM7,16Mhz

ARM7, 30Mhz

ARM9, 200Mhz

ARM11, Xscale, 300+Mhz

2006 JavaOneSM Conference | Session TS-1451 | 7

The Evolution of Java ME Performance (3)

1999 2000 2001 2002 2003 2004 2005 2006

MIDP 2.0, Sprite
animation, MMAPI

MIDP 1.0, DoJa,
simple animation

JSR 184 M3G

OpenGL®/ES

2006 JavaOneSM Conference | Session TS-1451 | 8

Techniques for Java ME Runtime
Environments

● Know what works well with Java ME software
dynamic compilers

● Manage Garbage-collection pauses
● Tune for a range of platforms (compilers,

hardware engines, interpreters)
● Know your platforms

2006 JavaOneSM Conference | Session TS-1451 | 9

A Developer’s Cookbook

● 15 guidelines for application design and coding
● Focus on straightforward, most effective

improvements
● Guidelines are high-level and generic to make them

as universal as possible
● Organized according to user experience impact

● Initialization
● Runtime optimizations
● Execution
● Memory Use

2006 JavaOneSM Conference | Session TS-1451 | 10

1) Static Array Initialization
Initialization

● Problem
● Array initialization performed in static initializer
● Significant code bloat and slow down class loading

● Impact
● Application startup, memory footprint

● Guideline
● Move initialization out of static initializer and do

programmatic initialization or read data from I/O
● Note: Time vs. space trade-off (I/O can be slow)

2006 JavaOneSM Conference | Session TS-1451 | 11

2) Locality of Hot Code
Runtime Optimizations

● Problem
● Hot code spread out over multiple individual methods
● Optimization techniques typically operate on method

boundaries (for semantical reasons)
● This multiplies overhead for hot spot detection,

optimization, and subsequent management
● Impact

● Liveliness, execution consistency
● Guideline

● Factor/concentrate hot code in a few methods
(as practical from design perspective)

2006 JavaOneSM Conference | Session TS-1451 | 12

Example: Locality of Hot Code
gameLoop() {
 while (!done)
 advance();
}

advance() {
 updateModel(); // update game state
 updateScreen(); // refresh screen
 // Check collision with different objects: Non-optimal!
 checkCollisionObjectA();
 checkCollisionObjectB();
 checkCollisionObjectC();
 checkCollisionObjectD();
 checkCollisionObjectE();
 ...
}

2006 JavaOneSM Conference | Session TS-1451 | 13

Example: Locality of Hot Code (Cont.)
advance() {
 updateModel();
 updateScreen();
 // Better - Collapse multiple related hot methods:
 // - Management overhead is reduced to 1/5th
 // - Optimization occurs 5x sooner
 // - Concentrates hot code
 // - All related code is optimized as an entity
 checkCollisions();
 ...
}

2006 JavaOneSM Conference | Session TS-1451 | 14

3) Large Methods Containing Hot Code
Runtime Optimizations

● Problem
● Hot code embedded in large methods (good for K Virtual

Machine)
● High cost for dynamic compilation.
● Failed compilation == fall back to interpretation
● Some dynamic compilers may show visible pauses (though

not a problem in CLDC-HotSpot implementation compiler)
● Impact

● Liveliness, execution consistency
● Guideline

● Keep methods with hot code compact

2006 JavaOneSM Conference | Session TS-1451 | 15

Example: Large Methods
// Initialization and cleanup plus main loop
// all in one method: Non-optimal
gameMain() {
 ... // lots of code here, executed only once
 while (!done) // only section of hot code
 advance();
 ... // more code here, executed only once
}

2006 JavaOneSM Conference | Session TS-1451 | 16

Example: Large Methods (Cont.)
// Better - Factor out code to reduce method size:
// - Less overhead to optimize
// - Reduced resource requirements
gameMain() {
 initialize();
 while (!done)
 advance();
 cleanup();
}

initialize() {
 ...
}
cleanup() {
 ...
}

2006 JavaOneSM Conference | Session TS-1451 | 17

4) Mixing Hot and Cold Code
Runtime Optimizations

● Problem
● A section of code is hot but contains a number of code

paths that don’t execute often
● This results in large methods (see previous slide) and

disrupts optimization and execution due to branches
● Impact

● Execution speed
● Guideline

● Avoid mixing hot and cold code—All code in a hot
method should really be hot

2006 JavaOneSM Conference | Session TS-1451 | 18

Example: Mixing Hot and Cold Code
// Testing of rare conditions: Non-optimal
advance() {
 updateModel();
 updateScreen();

 if (condition == 1) { // occurs in 1% of loops
 ... // code to add object A (cold code)
 }
 if (condition == 2) { // occurs in 5% of loops
 ... // code to add object B (cold code)
 }
 if (condition == 3) { // occurs in 2% of loops
 ... // code to add object C (cold code)
 }
 ...
}

2006 JavaOneSM Conference | Session TS-1451 | 19

Example: Mixing Hot and Cold Code
advance() {
 updateModel();
 updateScreen();
 // Better - Factor out code to streamline execution
 // - Reduced method size
 // - Reduced number of branches
 // - Reduced size of branches
 // - Concentrated hot spot
 if (condition > 0) {
 addObject(condition);
 }
 ...
}

2006 JavaOneSM Conference | Session TS-1451 | 20

5) Conditional Exceptions in Hot Code
Runtime Optimizations

● Problem
● Code conditionally throws exceptions in the hot path
● This precludes certain optimizations (code

reordering/rescheduling); exceptions are expensive
● Impact

● Execution speed
● Guideline

● Never throw unconditional exceptions in hot code
● Avoid conditional exceptions if possible

● Caveat: Might not always be practical due to implicit
exception points such as null checks, array bounds, etc.

2006 JavaOneSM Conference | Session TS-1451 | 21

Example: Conditional Exceptions
// Conditional exception - Not optimal!
void process(data) throws MyException {
 ... // some processing of data
 if (problem) throw new MyException();
}

for (int i = data.length-1; i >= 0; i--) {
 try {
 process(data[i]);
 ... // additional operations
 } catch MyException { // can happen at any time
 ... // handle error
 }
}

2006 JavaOneSM Conference | Session TS-1451 | 22

Example: Conditional Exceptions
// Better - Eliminate conditional exception:
// - Array bounds check can be eliminated by runtime
// - Code reordering/rescheduling in hot loop possible
int process(data) {
 ...
 if (problem) return 1 else return 0;
}

int errors = 0;
for (int i = data.length-1; i >= 0; i--) {
 errors += process(data[i]) // no exceptions
 ... // additional operations, always executed
}
if (errors > 0) {
 ... // handle error
}

2006 JavaOneSM Conference | Session TS-1451 | 23

6) Optimization Hints for the Target Device
Runtime Optimizations

● Problem
● Runtime optimizations must be dynamically detected
● This adds overhead and delays optimized execution

● Impact
● Execution speed and consistency

● Guideline
● Give hints to build system/runtime environment,

e.g. define known hot code for eager optimization
● Note: Expected to become more widely supported in

future platforms

2006 JavaOneSM Conference | Session TS-1451 | 24

7) Code Reuse
Code Execution

● Problem
● Application has multiple variants of similar hot code
● This adds overhead for extra optimizations and

dilutes hot spots
● Code reuse is generally a good idea, but even more

important in optimizing platforms
● Impact

● Liveliness, execution speed and consistency
● Guideline

● Design for code reuse as much as practical, in
particular with hot code

2006 JavaOneSM Conference | Session TS-1451 | 25

8) Native Code
Code Execution

● Problem
● Frequent calls to native code for “optimization”

purposes (as opposed to functional reasons)
● In optimized platforms the transitions between native

and Java code may incur significant overhead
● Impact

● Execution speed
● Guideline

● Avoid frequent calls to native code unless the work
performed is worth the transition overhead
● Note: Determining the trade-off might be difficult

2006 JavaOneSM Conference | Session TS-1451 | 26

Example: Native Code

// System.arraycopy() is often implemented in native.
// In this example, srcArr and dstArr hold primitive
// values. Threshold is implementation dependent.
if (length <= threshold) {
 for (i = length-1; i >= 0; i--) {
 dstArr[i] = srcArr[i]; // better off copying directly
 }
}
else {
 System.arraycopy(srcArr, 0, dstArr, 0, length);
}

//(smart VMs can optimized this ...)

2006 JavaOneSM Conference | Session TS-1451 | 27

9) Qualifiers
Code Execution

● Problem
● The Java language allows liberal use of features

such as polymorphism and a wide scope of visibility
● This lack of restrictions prevents certain

optimizations (fast access to members, fast calling,
simplified code transformation)

● Impact
● Execution speed

● Guideline
● Use private/static/final where possible

2006 JavaOneSM Conference | Session TS-1451 | 28

10) System.gc() (and Many VMs This Is No-op)
Code Execution

● Problem
● Application periodically calls System.gc()
● Sophisticated memory management systems already

dynamically adapt to a variety of conditions
● This means calls to System.gc() likely add overhead

without any benefit (or even cause disruption)
● Impact

● Execution speed
● Guideline

● Don’t call System.gc()

2006 JavaOneSM Conference | Session TS-1451 | 29

11) Complex Byte Codes
Code Execution

● Problem
● Use of complex Java byte codes (e.g. aastore,

new, instanceof, ...) in tight loops
● Operation might be heavyweight or cause transition

to a different execution state (e.g. software emulation)
with lots of associated overhead

● Impact
● Execution speed

● Guideline
● If possible, avoid complex byte codes in hot code

● Hint: Look at class file (byte stream of method) to verify

2006 JavaOneSM Conference | Session TS-1451 | 30

Example: Complex Byte Codes
// Use instanceof to determine object type: Non-optimal!
class BaseObject { ... }
class Object1 extends BaseObject { ... }
class Object2 extends BaseObject { ... }

BaseObject[] objList;
for (int i = objList.length-1; i >= 0; i--) {
 if (objList[i] instanceof Object2) // complex byte code
 ... // do something
}

2006 JavaOneSM Conference | Session TS-1451 | 31

Example: Complex Byte Codes (Cont.)
// Better - Add tag, allow easy runtime type determination
// Not the best OOP, but an acceptable tweak for specific
// situations
class BaseObject {
 bool isObject2; // tag
}
class Object2 extends BaseObject {
 Object2() {
 isObject2 = true; // constructor sets tag
 }
}

for (int i = objList.length-1; i >= 0; i--) {
 if (objList[i].isObject2) // simple member access
 ...
}

2006 JavaOneSM Conference | Session TS-1451 | 32

When Compilers
and Interpreters Disagree

● Some new JSRs are designed to work with an
optimizing compiler; for example, to manipulate
vertex data with JSR 239, Java Bindings for
OpenGL ES
intBuffer.put(value1); → str r0, [r1], #1
intBuffer.put(value2); → str r0, [r2], #1

● Techniques good for interpretation actually hurts
compiled performance
javaArray[n++] = value1; javaArray[n++] = value2;
intBuffer.put(javaArray);

12) Write Platform-Specific Hot Code

2006 JavaOneSM Conference | Session TS-1451 | 33

13) Avoid FPS Ramp-up
JIT Warmup

● Problem
● The game reaches optimal frame rate only after

dynamic compilation is complete
● User may see a “ramp up” of FPS

● Impact
● Execution speed and consistency

● Guideline
● Run the game loop in an invisible “warm up” loop

before starting the game

2006 JavaOneSM Conference | Session TS-1451 | 34

14) Allocation Rate and Overhead
Memory Use

● Problem
● Application tries to avoid memory allocation and gc, and

recycle memory itself
● This likely imposes much more overhead (and bugs) than

the VM-level memory management
● Impact

● Execution speed and consistency
● Guideline

● Leave most (or all) memory management to the Java VM
● But avoid high allocation rates and spikes (often a sign of poor

application design)

2006 JavaOneSM Conference | Session TS-1451 | 35

15) Spikes in Memory Usage
Memory Use

● Problem
● Allocation of large objects or periodic increases in

allocation activity cause large spikes in memory usage
● This may cause low memory conditions and/or undo

existing optimizations (e.g. trash code and information)
● Impact

● Liveliness, execution speed and consistency
● Guideline

● Maintain consistent and low to medium allocation rate,
cleanup and free objects in timely manner

● Pool/reuse objects with large or heavyweight allocations

2006 JavaOneSM Conference | Session TS-1451 | 36

Example: Memory Use
// Creates garbage on every collision: Non-optimal
class Fragment {
 ... // graphics and/or image data
 init() {
 ... // simple initialization to initial values
 }
}
initFragments() {
 for (int i = fragments.length-1; i >= 0; i--)
 fragments[i].init();
}
handleCollision() {
 // Throw away and allocate 30 objects on every collision
 Fragment[] fragments = new Fragment[30];
 initFragments(); // must initialize before using
 animateFragments(); // animate collision
}

2006 JavaOneSM Conference | Session TS-1451 | 37

Example: Memory Use (Cont.)
// Better - Reuse objects and do eager initialization
// - Low init. overhead compared to allocation and gc
// makes reuse worthwhile
// - Removes allocation and gc spikes
// - Improves visuals with eager initialization
initApp() {
 Fragment[] fragments = new Fragment[30];
 initFragments(); // init. for first use
}

handleCollision() {
 // Fragments already initalized, no delay
 animateFragments();
 initFragments(); // reset for next collision
}

2006 JavaOneSM Conference | Session TS-1451 | 38

Know Your Platforms

www.eembc.com
● Good source of Java VM performance; fairly reliable

www.jbenchmark.com
● Good source of graphics and game performance,

including 3D
● Simple benchmarks, beware of cheating!

2006 JavaOneSM Conference | Session TS-1451 | 39

Summary

● Be aware of the properties and techniques of
advanced Java ME platforms

● Make your application “Java VM-friendly” and
maximize your chances for a substantial
performance boost

● This is only a snapshot in time
● Java ME platforms will become more capable and

push the envelope on optimization techniques
● Application design must continue to adapt in order

to deliver the best user experience

2006 JavaOneSM Conference | Session TS-1451 | 40

For More Information

URLs
www.eembc.org (click on Java subsection)
www.jbenchmark.com

Books
Effective Java,
http://java.sun.com/docs/books/effective/

2006 JavaOneSM Conference | Session TS-1451 | 41

Q&A

2006 JavaOneSM Conference | Session TS-1451

TS-1451

Writing Optimized Applications
for High-Performance Java™ ME
Runtime Environments
Kyle Buza
Sun Microsystems

Oleg Pliss, Ph.D.
Sun Microsystems

Copyright © 2006, Sun Microsystems Inc., All rights reserved.

